]> gcc.gnu.org Git - gcc.git/blob - gcc/dwarf2out.c
Change base class access representation.
[gcc.git] / gcc / dwarf2out.c
1 /* Output Dwarf2 format symbol table information from the GNU C compiler.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
24
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
30
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "real.h"
44 #include "rtl.h"
45 #include "hard-reg-set.h"
46 #include "regs.h"
47 #include "insn-config.h"
48 #include "reload.h"
49 #include "function.h"
50 #include "output.h"
51 #include "expr.h"
52 #include "libfuncs.h"
53 #include "except.h"
54 #include "dwarf2.h"
55 #include "dwarf2out.h"
56 #include "dwarf2asm.h"
57 #include "toplev.h"
58 #include "varray.h"
59 #include "ggc.h"
60 #include "md5.h"
61 #include "tm_p.h"
62 #include "diagnostic.h"
63 #include "debug.h"
64 #include "target.h"
65 #include "langhooks.h"
66 #include "hashtab.h"
67
68 #ifdef DWARF2_DEBUGGING_INFO
69 static void dwarf2out_source_line PARAMS ((unsigned int, const char *));
70 #endif
71
72 /* DWARF2 Abbreviation Glossary:
73 CFA = Canonical Frame Address
74 a fixed address on the stack which identifies a call frame.
75 We define it to be the value of SP just before the call insn.
76 The CFA register and offset, which may change during the course
77 of the function, are used to calculate its value at runtime.
78 CFI = Call Frame Instruction
79 an instruction for the DWARF2 abstract machine
80 CIE = Common Information Entry
81 information describing information common to one or more FDEs
82 DIE = Debugging Information Entry
83 FDE = Frame Description Entry
84 information describing the stack call frame, in particular,
85 how to restore registers
86
87 DW_CFA_... = DWARF2 CFA call frame instruction
88 DW_TAG_... = DWARF2 DIE tag */
89
90 /* Decide whether we want to emit frame unwind information for the current
91 translation unit. */
92
93 int
94 dwarf2out_do_frame ()
95 {
96 return (write_symbols == DWARF2_DEBUG
97 || write_symbols == VMS_AND_DWARF2_DEBUG
98 #ifdef DWARF2_FRAME_INFO
99 || DWARF2_FRAME_INFO
100 #endif
101 #ifdef DWARF2_UNWIND_INFO
102 || flag_unwind_tables
103 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
104 #endif
105 );
106 }
107
108 /* The size of the target's pointer type. */
109 #ifndef PTR_SIZE
110 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
111 #endif
112
113 /* Default version of targetm.eh_frame_section. Note this must appear
114 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro
115 guards. */
116
117 void
118 default_eh_frame_section ()
119 {
120 #ifdef EH_FRAME_SECTION_NAME
121 #ifdef HAVE_LD_RO_RW_SECTION_MIXING
122 int fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
123 int per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
124 int lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
125 int flags;
126
127 flags = (! flag_pic
128 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
129 && (fde_encoding & 0x70) != DW_EH_PE_aligned
130 && (per_encoding & 0x70) != DW_EH_PE_absptr
131 && (per_encoding & 0x70) != DW_EH_PE_aligned
132 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
133 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
134 ? 0 : SECTION_WRITE;
135 named_section_flags (EH_FRAME_SECTION_NAME, flags);
136 #else
137 named_section_flags (EH_FRAME_SECTION_NAME, SECTION_WRITE);
138 #endif
139 #else
140 tree label = get_file_function_name ('F');
141
142 data_section ();
143 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
144 (*targetm.asm_out.globalize_label) (asm_out_file, IDENTIFIER_POINTER (label));
145 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
146 #endif
147 }
148
149 /* Array of RTXes referenced by the debugging information, which therefore
150 must be kept around forever. */
151 static GTY(()) varray_type used_rtx_varray;
152
153 /* A pointer to the base of a list of incomplete types which might be
154 completed at some later time. incomplete_types_list needs to be a VARRAY
155 because we want to tell the garbage collector about it. */
156 static GTY(()) varray_type incomplete_types;
157
158 /* A pointer to the base of a table of references to declaration
159 scopes. This table is a display which tracks the nesting
160 of declaration scopes at the current scope and containing
161 scopes. This table is used to find the proper place to
162 define type declaration DIE's. */
163 static GTY(()) varray_type decl_scope_table;
164
165 /* How to start an assembler comment. */
166 #ifndef ASM_COMMENT_START
167 #define ASM_COMMENT_START ";#"
168 #endif
169
170 typedef struct dw_cfi_struct *dw_cfi_ref;
171 typedef struct dw_fde_struct *dw_fde_ref;
172 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
173
174 /* Call frames are described using a sequence of Call Frame
175 Information instructions. The register number, offset
176 and address fields are provided as possible operands;
177 their use is selected by the opcode field. */
178
179 enum dw_cfi_oprnd_type {
180 dw_cfi_oprnd_unused,
181 dw_cfi_oprnd_reg_num,
182 dw_cfi_oprnd_offset,
183 dw_cfi_oprnd_addr,
184 dw_cfi_oprnd_loc
185 };
186
187 typedef union dw_cfi_oprnd_struct GTY(())
188 {
189 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
190 long int GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
191 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
192 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
193 }
194 dw_cfi_oprnd;
195
196 typedef struct dw_cfi_struct GTY(())
197 {
198 dw_cfi_ref dw_cfi_next;
199 enum dwarf_call_frame_info dw_cfi_opc;
200 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
201 dw_cfi_oprnd1;
202 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
203 dw_cfi_oprnd2;
204 }
205 dw_cfi_node;
206
207 /* This is how we define the location of the CFA. We use to handle it
208 as REG + OFFSET all the time, but now it can be more complex.
209 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
210 Instead of passing around REG and OFFSET, we pass a copy
211 of this structure. */
212 typedef struct cfa_loc GTY(())
213 {
214 unsigned long reg;
215 long offset;
216 long base_offset;
217 int indirect; /* 1 if CFA is accessed via a dereference. */
218 } dw_cfa_location;
219
220 /* All call frame descriptions (FDE's) in the GCC generated DWARF
221 refer to a single Common Information Entry (CIE), defined at
222 the beginning of the .debug_frame section. This use of a single
223 CIE obviates the need to keep track of multiple CIE's
224 in the DWARF generation routines below. */
225
226 typedef struct dw_fde_struct GTY(())
227 {
228 const char *dw_fde_begin;
229 const char *dw_fde_current_label;
230 const char *dw_fde_end;
231 dw_cfi_ref dw_fde_cfi;
232 unsigned funcdef_number;
233 unsigned all_throwers_are_sibcalls : 1;
234 unsigned nothrow : 1;
235 unsigned uses_eh_lsda : 1;
236 }
237 dw_fde_node;
238
239 /* Maximum size (in bytes) of an artificially generated label. */
240 #define MAX_ARTIFICIAL_LABEL_BYTES 30
241
242 /* The size of addresses as they appear in the Dwarf 2 data.
243 Some architectures use word addresses to refer to code locations,
244 but Dwarf 2 info always uses byte addresses. On such machines,
245 Dwarf 2 addresses need to be larger than the architecture's
246 pointers. */
247 #ifndef DWARF2_ADDR_SIZE
248 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
249 #endif
250
251 /* The size in bytes of a DWARF field indicating an offset or length
252 relative to a debug info section, specified to be 4 bytes in the
253 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
254 as PTR_SIZE. */
255
256 #ifndef DWARF_OFFSET_SIZE
257 #define DWARF_OFFSET_SIZE 4
258 #endif
259
260 #define DWARF_VERSION 2
261
262 /* Round SIZE up to the nearest BOUNDARY. */
263 #define DWARF_ROUND(SIZE,BOUNDARY) \
264 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
265
266 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
267 #ifndef DWARF_CIE_DATA_ALIGNMENT
268 #ifdef STACK_GROWS_DOWNWARD
269 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
270 #else
271 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
272 #endif
273 #endif
274
275 /* A pointer to the base of a table that contains frame description
276 information for each routine. */
277 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
278
279 /* Number of elements currently allocated for fde_table. */
280 static unsigned fde_table_allocated;
281
282 /* Number of elements in fde_table currently in use. */
283 static GTY(()) unsigned fde_table_in_use;
284
285 /* Size (in elements) of increments by which we may expand the
286 fde_table. */
287 #define FDE_TABLE_INCREMENT 256
288
289 /* A list of call frame insns for the CIE. */
290 static GTY(()) dw_cfi_ref cie_cfi_head;
291
292 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
293 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
294 attribute that accelerates the lookup of the FDE associated
295 with the subprogram. This variable holds the table index of the FDE
296 associated with the current function (body) definition. */
297 static unsigned current_funcdef_fde;
298 #endif
299
300 struct indirect_string_node GTY(())
301 {
302 const char *str;
303 unsigned int refcount;
304 unsigned int form;
305 char *label;
306 };
307
308 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
309
310 static GTY(()) int dw2_string_counter;
311 static GTY(()) unsigned long dwarf2out_cfi_label_num;
312
313 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
314
315 /* Forward declarations for functions defined in this file. */
316
317 static char *stripattributes PARAMS ((const char *));
318 static const char *dwarf_cfi_name PARAMS ((unsigned));
319 static dw_cfi_ref new_cfi PARAMS ((void));
320 static void add_cfi PARAMS ((dw_cfi_ref *, dw_cfi_ref));
321 static void add_fde_cfi PARAMS ((const char *, dw_cfi_ref));
322 static void lookup_cfa_1 PARAMS ((dw_cfi_ref,
323 dw_cfa_location *));
324 static void lookup_cfa PARAMS ((dw_cfa_location *));
325 static void reg_save PARAMS ((const char *, unsigned,
326 unsigned, long));
327 static void initial_return_save PARAMS ((rtx));
328 static long stack_adjust_offset PARAMS ((rtx));
329 static void output_cfi PARAMS ((dw_cfi_ref, dw_fde_ref, int));
330 static void output_call_frame_info PARAMS ((int));
331 static void dwarf2out_stack_adjust PARAMS ((rtx));
332 static void queue_reg_save PARAMS ((const char *, rtx, long));
333 static void flush_queued_reg_saves PARAMS ((void));
334 static bool clobbers_queued_reg_save PARAMS ((rtx));
335 static void dwarf2out_frame_debug_expr PARAMS ((rtx, const char *));
336
337 /* Support for complex CFA locations. */
338 static void output_cfa_loc PARAMS ((dw_cfi_ref));
339 static void get_cfa_from_loc_descr PARAMS ((dw_cfa_location *,
340 struct dw_loc_descr_struct *));
341 static struct dw_loc_descr_struct *build_cfa_loc
342 PARAMS ((dw_cfa_location *));
343 static void def_cfa_1 PARAMS ((const char *,
344 dw_cfa_location *));
345
346 /* How to start an assembler comment. */
347 #ifndef ASM_COMMENT_START
348 #define ASM_COMMENT_START ";#"
349 #endif
350
351 /* Data and reference forms for relocatable data. */
352 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
353 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
354
355 #ifndef DEBUG_FRAME_SECTION
356 #define DEBUG_FRAME_SECTION ".debug_frame"
357 #endif
358
359 #ifndef FUNC_BEGIN_LABEL
360 #define FUNC_BEGIN_LABEL "LFB"
361 #endif
362
363 #ifndef FUNC_END_LABEL
364 #define FUNC_END_LABEL "LFE"
365 #endif
366
367 #define FRAME_BEGIN_LABEL "Lframe"
368 #define CIE_AFTER_SIZE_LABEL "LSCIE"
369 #define CIE_END_LABEL "LECIE"
370 #define FDE_LABEL "LSFDE"
371 #define FDE_AFTER_SIZE_LABEL "LASFDE"
372 #define FDE_END_LABEL "LEFDE"
373 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
374 #define LINE_NUMBER_END_LABEL "LELT"
375 #define LN_PROLOG_AS_LABEL "LASLTP"
376 #define LN_PROLOG_END_LABEL "LELTP"
377 #define DIE_LABEL_PREFIX "DW"
378
379 /* The DWARF 2 CFA column which tracks the return address. Normally this
380 is the column for PC, or the first column after all of the hard
381 registers. */
382 #ifndef DWARF_FRAME_RETURN_COLUMN
383 #ifdef PC_REGNUM
384 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
385 #else
386 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
387 #endif
388 #endif
389
390 /* The mapping from gcc register number to DWARF 2 CFA column number. By
391 default, we just provide columns for all registers. */
392 #ifndef DWARF_FRAME_REGNUM
393 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
394 #endif
395
396 /* The offset from the incoming value of %sp to the top of the stack frame
397 for the current function. */
398 #ifndef INCOMING_FRAME_SP_OFFSET
399 #define INCOMING_FRAME_SP_OFFSET 0
400 #endif
401 \f
402 /* Hook used by __throw. */
403
404 rtx
405 expand_builtin_dwarf_fp_regnum ()
406 {
407 return GEN_INT (DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM));
408 }
409
410 /* Return a pointer to a copy of the section string name S with all
411 attributes stripped off, and an asterisk prepended (for assemble_name). */
412
413 static inline char *
414 stripattributes (s)
415 const char *s;
416 {
417 char *stripped = xmalloc (strlen (s) + 2);
418 char *p = stripped;
419
420 *p++ = '*';
421
422 while (*s && *s != ',')
423 *p++ = *s++;
424
425 *p = '\0';
426 return stripped;
427 }
428
429 /* Generate code to initialize the register size table. */
430
431 void
432 expand_builtin_init_dwarf_reg_sizes (address)
433 tree address;
434 {
435 int i;
436 enum machine_mode mode = TYPE_MODE (char_type_node);
437 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
438 rtx mem = gen_rtx_MEM (BLKmode, addr);
439
440 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
441 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
442 {
443 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
444 HOST_WIDE_INT size = GET_MODE_SIZE (reg_raw_mode[i]);
445
446 if (offset < 0)
447 continue;
448
449 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
450 }
451 }
452
453 /* Convert a DWARF call frame info. operation to its string name */
454
455 static const char *
456 dwarf_cfi_name (cfi_opc)
457 unsigned cfi_opc;
458 {
459 switch (cfi_opc)
460 {
461 case DW_CFA_advance_loc:
462 return "DW_CFA_advance_loc";
463 case DW_CFA_offset:
464 return "DW_CFA_offset";
465 case DW_CFA_restore:
466 return "DW_CFA_restore";
467 case DW_CFA_nop:
468 return "DW_CFA_nop";
469 case DW_CFA_set_loc:
470 return "DW_CFA_set_loc";
471 case DW_CFA_advance_loc1:
472 return "DW_CFA_advance_loc1";
473 case DW_CFA_advance_loc2:
474 return "DW_CFA_advance_loc2";
475 case DW_CFA_advance_loc4:
476 return "DW_CFA_advance_loc4";
477 case DW_CFA_offset_extended:
478 return "DW_CFA_offset_extended";
479 case DW_CFA_restore_extended:
480 return "DW_CFA_restore_extended";
481 case DW_CFA_undefined:
482 return "DW_CFA_undefined";
483 case DW_CFA_same_value:
484 return "DW_CFA_same_value";
485 case DW_CFA_register:
486 return "DW_CFA_register";
487 case DW_CFA_remember_state:
488 return "DW_CFA_remember_state";
489 case DW_CFA_restore_state:
490 return "DW_CFA_restore_state";
491 case DW_CFA_def_cfa:
492 return "DW_CFA_def_cfa";
493 case DW_CFA_def_cfa_register:
494 return "DW_CFA_def_cfa_register";
495 case DW_CFA_def_cfa_offset:
496 return "DW_CFA_def_cfa_offset";
497
498 /* DWARF 3 */
499 case DW_CFA_def_cfa_expression:
500 return "DW_CFA_def_cfa_expression";
501 case DW_CFA_expression:
502 return "DW_CFA_expression";
503 case DW_CFA_offset_extended_sf:
504 return "DW_CFA_offset_extended_sf";
505 case DW_CFA_def_cfa_sf:
506 return "DW_CFA_def_cfa_sf";
507 case DW_CFA_def_cfa_offset_sf:
508 return "DW_CFA_def_cfa_offset_sf";
509
510 /* SGI/MIPS specific */
511 case DW_CFA_MIPS_advance_loc8:
512 return "DW_CFA_MIPS_advance_loc8";
513
514 /* GNU extensions */
515 case DW_CFA_GNU_window_save:
516 return "DW_CFA_GNU_window_save";
517 case DW_CFA_GNU_args_size:
518 return "DW_CFA_GNU_args_size";
519 case DW_CFA_GNU_negative_offset_extended:
520 return "DW_CFA_GNU_negative_offset_extended";
521
522 default:
523 return "DW_CFA_<unknown>";
524 }
525 }
526
527 /* Return a pointer to a newly allocated Call Frame Instruction. */
528
529 static inline dw_cfi_ref
530 new_cfi ()
531 {
532 dw_cfi_ref cfi = (dw_cfi_ref) ggc_alloc (sizeof (dw_cfi_node));
533
534 cfi->dw_cfi_next = NULL;
535 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
536 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
537
538 return cfi;
539 }
540
541 /* Add a Call Frame Instruction to list of instructions. */
542
543 static inline void
544 add_cfi (list_head, cfi)
545 dw_cfi_ref *list_head;
546 dw_cfi_ref cfi;
547 {
548 dw_cfi_ref *p;
549
550 /* Find the end of the chain. */
551 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
552 ;
553
554 *p = cfi;
555 }
556
557 /* Generate a new label for the CFI info to refer to. */
558
559 char *
560 dwarf2out_cfi_label ()
561 {
562 static char label[20];
563
564 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
565 ASM_OUTPUT_LABEL (asm_out_file, label);
566 return label;
567 }
568
569 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
570 or to the CIE if LABEL is NULL. */
571
572 static void
573 add_fde_cfi (label, cfi)
574 const char *label;
575 dw_cfi_ref cfi;
576 {
577 if (label)
578 {
579 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
580
581 if (*label == 0)
582 label = dwarf2out_cfi_label ();
583
584 if (fde->dw_fde_current_label == NULL
585 || strcmp (label, fde->dw_fde_current_label) != 0)
586 {
587 dw_cfi_ref xcfi;
588
589 fde->dw_fde_current_label = label = xstrdup (label);
590
591 /* Set the location counter to the new label. */
592 xcfi = new_cfi ();
593 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
594 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
595 add_cfi (&fde->dw_fde_cfi, xcfi);
596 }
597
598 add_cfi (&fde->dw_fde_cfi, cfi);
599 }
600
601 else
602 add_cfi (&cie_cfi_head, cfi);
603 }
604
605 /* Subroutine of lookup_cfa. */
606
607 static inline void
608 lookup_cfa_1 (cfi, loc)
609 dw_cfi_ref cfi;
610 dw_cfa_location *loc;
611 {
612 switch (cfi->dw_cfi_opc)
613 {
614 case DW_CFA_def_cfa_offset:
615 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
616 break;
617 case DW_CFA_def_cfa_register:
618 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
619 break;
620 case DW_CFA_def_cfa:
621 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
622 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
623 break;
624 case DW_CFA_def_cfa_expression:
625 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
626 break;
627 default:
628 break;
629 }
630 }
631
632 /* Find the previous value for the CFA. */
633
634 static void
635 lookup_cfa (loc)
636 dw_cfa_location *loc;
637 {
638 dw_cfi_ref cfi;
639
640 loc->reg = (unsigned long) -1;
641 loc->offset = 0;
642 loc->indirect = 0;
643 loc->base_offset = 0;
644
645 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
646 lookup_cfa_1 (cfi, loc);
647
648 if (fde_table_in_use)
649 {
650 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
651 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
652 lookup_cfa_1 (cfi, loc);
653 }
654 }
655
656 /* The current rule for calculating the DWARF2 canonical frame address. */
657 static dw_cfa_location cfa;
658
659 /* The register used for saving registers to the stack, and its offset
660 from the CFA. */
661 static dw_cfa_location cfa_store;
662
663 /* The running total of the size of arguments pushed onto the stack. */
664 static long args_size;
665
666 /* The last args_size we actually output. */
667 static long old_args_size;
668
669 /* Entry point to update the canonical frame address (CFA).
670 LABEL is passed to add_fde_cfi. The value of CFA is now to be
671 calculated from REG+OFFSET. */
672
673 void
674 dwarf2out_def_cfa (label, reg, offset)
675 const char *label;
676 unsigned reg;
677 long offset;
678 {
679 dw_cfa_location loc;
680 loc.indirect = 0;
681 loc.base_offset = 0;
682 loc.reg = reg;
683 loc.offset = offset;
684 def_cfa_1 (label, &loc);
685 }
686
687 /* This routine does the actual work. The CFA is now calculated from
688 the dw_cfa_location structure. */
689
690 static void
691 def_cfa_1 (label, loc_p)
692 const char *label;
693 dw_cfa_location *loc_p;
694 {
695 dw_cfi_ref cfi;
696 dw_cfa_location old_cfa, loc;
697
698 cfa = *loc_p;
699 loc = *loc_p;
700
701 if (cfa_store.reg == loc.reg && loc.indirect == 0)
702 cfa_store.offset = loc.offset;
703
704 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
705 lookup_cfa (&old_cfa);
706
707 /* If nothing changed, no need to issue any call frame instructions. */
708 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
709 && loc.indirect == old_cfa.indirect
710 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
711 return;
712
713 cfi = new_cfi ();
714
715 if (loc.reg == old_cfa.reg && !loc.indirect)
716 {
717 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
718 indicating the CFA register did not change but the offset
719 did. */
720 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
721 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
722 }
723
724 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
725 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
726 && !loc.indirect)
727 {
728 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
729 indicating the CFA register has changed to <register> but the
730 offset has not changed. */
731 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
732 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
733 }
734 #endif
735
736 else if (loc.indirect == 0)
737 {
738 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
739 indicating the CFA register has changed to <register> with
740 the specified offset. */
741 cfi->dw_cfi_opc = DW_CFA_def_cfa;
742 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
743 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
744 }
745 else
746 {
747 /* Construct a DW_CFA_def_cfa_expression instruction to
748 calculate the CFA using a full location expression since no
749 register-offset pair is available. */
750 struct dw_loc_descr_struct *loc_list;
751
752 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
753 loc_list = build_cfa_loc (&loc);
754 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
755 }
756
757 add_fde_cfi (label, cfi);
758 }
759
760 /* Add the CFI for saving a register. REG is the CFA column number.
761 LABEL is passed to add_fde_cfi.
762 If SREG is -1, the register is saved at OFFSET from the CFA;
763 otherwise it is saved in SREG. */
764
765 static void
766 reg_save (label, reg, sreg, offset)
767 const char *label;
768 unsigned reg;
769 unsigned sreg;
770 long offset;
771 {
772 dw_cfi_ref cfi = new_cfi ();
773
774 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
775
776 /* The following comparison is correct. -1 is used to indicate that
777 the value isn't a register number. */
778 if (sreg == (unsigned int) -1)
779 {
780 if (reg & ~0x3f)
781 /* The register number won't fit in 6 bits, so we have to use
782 the long form. */
783 cfi->dw_cfi_opc = DW_CFA_offset_extended;
784 else
785 cfi->dw_cfi_opc = DW_CFA_offset;
786
787 #ifdef ENABLE_CHECKING
788 {
789 /* If we get an offset that is not a multiple of
790 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
791 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
792 description. */
793 long check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
794
795 if (check_offset * DWARF_CIE_DATA_ALIGNMENT != offset)
796 abort ();
797 }
798 #endif
799 offset /= DWARF_CIE_DATA_ALIGNMENT;
800 if (offset < 0)
801 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
802
803 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
804 }
805 else if (sreg == reg)
806 /* We could emit a DW_CFA_same_value in this case, but don't bother. */
807 return;
808 else
809 {
810 cfi->dw_cfi_opc = DW_CFA_register;
811 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
812 }
813
814 add_fde_cfi (label, cfi);
815 }
816
817 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
818 This CFI tells the unwinder that it needs to restore the window registers
819 from the previous frame's window save area.
820
821 ??? Perhaps we should note in the CIE where windows are saved (instead of
822 assuming 0(cfa)) and what registers are in the window. */
823
824 void
825 dwarf2out_window_save (label)
826 const char *label;
827 {
828 dw_cfi_ref cfi = new_cfi ();
829
830 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
831 add_fde_cfi (label, cfi);
832 }
833
834 /* Add a CFI to update the running total of the size of arguments
835 pushed onto the stack. */
836
837 void
838 dwarf2out_args_size (label, size)
839 const char *label;
840 long size;
841 {
842 dw_cfi_ref cfi;
843
844 if (size == old_args_size)
845 return;
846
847 old_args_size = size;
848
849 cfi = new_cfi ();
850 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
851 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
852 add_fde_cfi (label, cfi);
853 }
854
855 /* Entry point for saving a register to the stack. REG is the GCC register
856 number. LABEL and OFFSET are passed to reg_save. */
857
858 void
859 dwarf2out_reg_save (label, reg, offset)
860 const char *label;
861 unsigned reg;
862 long offset;
863 {
864 reg_save (label, DWARF_FRAME_REGNUM (reg), -1, offset);
865 }
866
867 /* Entry point for saving the return address in the stack.
868 LABEL and OFFSET are passed to reg_save. */
869
870 void
871 dwarf2out_return_save (label, offset)
872 const char *label;
873 long offset;
874 {
875 reg_save (label, DWARF_FRAME_RETURN_COLUMN, -1, offset);
876 }
877
878 /* Entry point for saving the return address in a register.
879 LABEL and SREG are passed to reg_save. */
880
881 void
882 dwarf2out_return_reg (label, sreg)
883 const char *label;
884 unsigned sreg;
885 {
886 reg_save (label, DWARF_FRAME_RETURN_COLUMN, sreg, 0);
887 }
888
889 /* Record the initial position of the return address. RTL is
890 INCOMING_RETURN_ADDR_RTX. */
891
892 static void
893 initial_return_save (rtl)
894 rtx rtl;
895 {
896 unsigned int reg = (unsigned int) -1;
897 HOST_WIDE_INT offset = 0;
898
899 switch (GET_CODE (rtl))
900 {
901 case REG:
902 /* RA is in a register. */
903 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
904 break;
905
906 case MEM:
907 /* RA is on the stack. */
908 rtl = XEXP (rtl, 0);
909 switch (GET_CODE (rtl))
910 {
911 case REG:
912 if (REGNO (rtl) != STACK_POINTER_REGNUM)
913 abort ();
914 offset = 0;
915 break;
916
917 case PLUS:
918 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
919 abort ();
920 offset = INTVAL (XEXP (rtl, 1));
921 break;
922
923 case MINUS:
924 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
925 abort ();
926 offset = -INTVAL (XEXP (rtl, 1));
927 break;
928
929 default:
930 abort ();
931 }
932
933 break;
934
935 case PLUS:
936 /* The return address is at some offset from any value we can
937 actually load. For instance, on the SPARC it is in %i7+8. Just
938 ignore the offset for now; it doesn't matter for unwinding frames. */
939 if (GET_CODE (XEXP (rtl, 1)) != CONST_INT)
940 abort ();
941 initial_return_save (XEXP (rtl, 0));
942 return;
943
944 default:
945 abort ();
946 }
947
948 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
949 }
950
951 /* Given a SET, calculate the amount of stack adjustment it
952 contains. */
953
954 static long
955 stack_adjust_offset (pattern)
956 rtx pattern;
957 {
958 rtx src = SET_SRC (pattern);
959 rtx dest = SET_DEST (pattern);
960 HOST_WIDE_INT offset = 0;
961 enum rtx_code code;
962
963 if (dest == stack_pointer_rtx)
964 {
965 /* (set (reg sp) (plus (reg sp) (const_int))) */
966 code = GET_CODE (src);
967 if (! (code == PLUS || code == MINUS)
968 || XEXP (src, 0) != stack_pointer_rtx
969 || GET_CODE (XEXP (src, 1)) != CONST_INT)
970 return 0;
971
972 offset = INTVAL (XEXP (src, 1));
973 if (code == PLUS)
974 offset = -offset;
975 }
976 else if (GET_CODE (dest) == MEM)
977 {
978 /* (set (mem (pre_dec (reg sp))) (foo)) */
979 src = XEXP (dest, 0);
980 code = GET_CODE (src);
981
982 switch (code)
983 {
984 case PRE_MODIFY:
985 case POST_MODIFY:
986 if (XEXP (src, 0) == stack_pointer_rtx)
987 {
988 rtx val = XEXP (XEXP (src, 1), 1);
989 /* We handle only adjustments by constant amount. */
990 if (GET_CODE (XEXP (src, 1)) != PLUS ||
991 GET_CODE (val) != CONST_INT)
992 abort ();
993 offset = -INTVAL (val);
994 break;
995 }
996 return 0;
997
998 case PRE_DEC:
999 case POST_DEC:
1000 if (XEXP (src, 0) == stack_pointer_rtx)
1001 {
1002 offset = GET_MODE_SIZE (GET_MODE (dest));
1003 break;
1004 }
1005 return 0;
1006
1007 case PRE_INC:
1008 case POST_INC:
1009 if (XEXP (src, 0) == stack_pointer_rtx)
1010 {
1011 offset = -GET_MODE_SIZE (GET_MODE (dest));
1012 break;
1013 }
1014 return 0;
1015
1016 default:
1017 return 0;
1018 }
1019 }
1020 else
1021 return 0;
1022
1023 return offset;
1024 }
1025
1026 /* Check INSN to see if it looks like a push or a stack adjustment, and
1027 make a note of it if it does. EH uses this information to find out how
1028 much extra space it needs to pop off the stack. */
1029
1030 static void
1031 dwarf2out_stack_adjust (insn)
1032 rtx insn;
1033 {
1034 HOST_WIDE_INT offset;
1035 const char *label;
1036 int i;
1037
1038 if (!flag_asynchronous_unwind_tables && GET_CODE (insn) == CALL_INSN)
1039 {
1040 /* Extract the size of the args from the CALL rtx itself. */
1041 insn = PATTERN (insn);
1042 if (GET_CODE (insn) == PARALLEL)
1043 insn = XVECEXP (insn, 0, 0);
1044 if (GET_CODE (insn) == SET)
1045 insn = SET_SRC (insn);
1046 if (GET_CODE (insn) != CALL)
1047 abort ();
1048
1049 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1050 return;
1051 }
1052
1053 /* If only calls can throw, and we have a frame pointer,
1054 save up adjustments until we see the CALL_INSN. */
1055 else if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1056 return;
1057
1058 if (GET_CODE (insn) == BARRIER)
1059 {
1060 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1061 the compiler will have already emitted a stack adjustment, but
1062 doesn't bother for calls to noreturn functions. */
1063 #ifdef STACK_GROWS_DOWNWARD
1064 offset = -args_size;
1065 #else
1066 offset = args_size;
1067 #endif
1068 }
1069 else if (GET_CODE (PATTERN (insn)) == SET)
1070 offset = stack_adjust_offset (PATTERN (insn));
1071 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1072 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1073 {
1074 /* There may be stack adjustments inside compound insns. Search
1075 for them. */
1076 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1077 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1078 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1079 }
1080 else
1081 return;
1082
1083 if (offset == 0)
1084 return;
1085
1086 if (cfa.reg == STACK_POINTER_REGNUM)
1087 cfa.offset += offset;
1088
1089 #ifndef STACK_GROWS_DOWNWARD
1090 offset = -offset;
1091 #endif
1092
1093 args_size += offset;
1094 if (args_size < 0)
1095 args_size = 0;
1096
1097 label = dwarf2out_cfi_label ();
1098 def_cfa_1 (label, &cfa);
1099 dwarf2out_args_size (label, args_size);
1100 }
1101
1102 #endif
1103
1104 /* We delay emitting a register save until either (a) we reach the end
1105 of the prologue or (b) the register is clobbered. This clusters
1106 register saves so that there are fewer pc advances. */
1107
1108 struct queued_reg_save GTY(())
1109 {
1110 struct queued_reg_save *next;
1111 rtx reg;
1112 long cfa_offset;
1113 };
1114
1115 static GTY(()) struct queued_reg_save *queued_reg_saves;
1116
1117 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1118 static const char *last_reg_save_label;
1119
1120 static void
1121 queue_reg_save (label, reg, offset)
1122 const char *label;
1123 rtx reg;
1124 long offset;
1125 {
1126 struct queued_reg_save *q = ggc_alloc (sizeof (*q));
1127
1128 q->next = queued_reg_saves;
1129 q->reg = reg;
1130 q->cfa_offset = offset;
1131 queued_reg_saves = q;
1132
1133 last_reg_save_label = label;
1134 }
1135
1136 static void
1137 flush_queued_reg_saves ()
1138 {
1139 struct queued_reg_save *q, *next;
1140
1141 for (q = queued_reg_saves; q; q = next)
1142 {
1143 dwarf2out_reg_save (last_reg_save_label, REGNO (q->reg), q->cfa_offset);
1144 next = q->next;
1145 }
1146
1147 queued_reg_saves = NULL;
1148 last_reg_save_label = NULL;
1149 }
1150
1151 static bool
1152 clobbers_queued_reg_save (insn)
1153 rtx insn;
1154 {
1155 struct queued_reg_save *q;
1156
1157 for (q = queued_reg_saves; q; q = q->next)
1158 if (modified_in_p (q->reg, insn))
1159 return true;
1160
1161 return false;
1162 }
1163
1164
1165 /* A temporary register holding an integral value used in adjusting SP
1166 or setting up the store_reg. The "offset" field holds the integer
1167 value, not an offset. */
1168 static dw_cfa_location cfa_temp;
1169
1170 /* Record call frame debugging information for an expression EXPR,
1171 which either sets SP or FP (adjusting how we calculate the frame
1172 address) or saves a register to the stack. LABEL indicates the
1173 address of EXPR.
1174
1175 This function encodes a state machine mapping rtxes to actions on
1176 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1177 users need not read the source code.
1178
1179 The High-Level Picture
1180
1181 Changes in the register we use to calculate the CFA: Currently we
1182 assume that if you copy the CFA register into another register, we
1183 should take the other one as the new CFA register; this seems to
1184 work pretty well. If it's wrong for some target, it's simple
1185 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1186
1187 Changes in the register we use for saving registers to the stack:
1188 This is usually SP, but not always. Again, we deduce that if you
1189 copy SP into another register (and SP is not the CFA register),
1190 then the new register is the one we will be using for register
1191 saves. This also seems to work.
1192
1193 Register saves: There's not much guesswork about this one; if
1194 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1195 register save, and the register used to calculate the destination
1196 had better be the one we think we're using for this purpose.
1197
1198 Except: If the register being saved is the CFA register, and the
1199 offset is nonzero, we are saving the CFA, so we assume we have to
1200 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1201 the intent is to save the value of SP from the previous frame.
1202
1203 Invariants / Summaries of Rules
1204
1205 cfa current rule for calculating the CFA. It usually
1206 consists of a register and an offset.
1207 cfa_store register used by prologue code to save things to the stack
1208 cfa_store.offset is the offset from the value of
1209 cfa_store.reg to the actual CFA
1210 cfa_temp register holding an integral value. cfa_temp.offset
1211 stores the value, which will be used to adjust the
1212 stack pointer. cfa_temp is also used like cfa_store,
1213 to track stores to the stack via fp or a temp reg.
1214
1215 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1216 with cfa.reg as the first operand changes the cfa.reg and its
1217 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1218 cfa_temp.offset.
1219
1220 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1221 expression yielding a constant. This sets cfa_temp.reg
1222 and cfa_temp.offset.
1223
1224 Rule 5: Create a new register cfa_store used to save items to the
1225 stack.
1226
1227 Rules 10-14: Save a register to the stack. Define offset as the
1228 difference of the original location and cfa_store's
1229 location (or cfa_temp's location if cfa_temp is used).
1230
1231 The Rules
1232
1233 "{a,b}" indicates a choice of a xor b.
1234 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1235
1236 Rule 1:
1237 (set <reg1> <reg2>:cfa.reg)
1238 effects: cfa.reg = <reg1>
1239 cfa.offset unchanged
1240 cfa_temp.reg = <reg1>
1241 cfa_temp.offset = cfa.offset
1242
1243 Rule 2:
1244 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1245 {<const_int>,<reg>:cfa_temp.reg}))
1246 effects: cfa.reg = sp if fp used
1247 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1248 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1249 if cfa_store.reg==sp
1250
1251 Rule 3:
1252 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1253 effects: cfa.reg = fp
1254 cfa_offset += +/- <const_int>
1255
1256 Rule 4:
1257 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1258 constraints: <reg1> != fp
1259 <reg1> != sp
1260 effects: cfa.reg = <reg1>
1261 cfa_temp.reg = <reg1>
1262 cfa_temp.offset = cfa.offset
1263
1264 Rule 5:
1265 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1266 constraints: <reg1> != fp
1267 <reg1> != sp
1268 effects: cfa_store.reg = <reg1>
1269 cfa_store.offset = cfa.offset - cfa_temp.offset
1270
1271 Rule 6:
1272 (set <reg> <const_int>)
1273 effects: cfa_temp.reg = <reg>
1274 cfa_temp.offset = <const_int>
1275
1276 Rule 7:
1277 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1278 effects: cfa_temp.reg = <reg1>
1279 cfa_temp.offset |= <const_int>
1280
1281 Rule 8:
1282 (set <reg> (high <exp>))
1283 effects: none
1284
1285 Rule 9:
1286 (set <reg> (lo_sum <exp> <const_int>))
1287 effects: cfa_temp.reg = <reg>
1288 cfa_temp.offset = <const_int>
1289
1290 Rule 10:
1291 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1292 effects: cfa_store.offset -= <const_int>
1293 cfa.offset = cfa_store.offset if cfa.reg == sp
1294 cfa.reg = sp
1295 cfa.base_offset = -cfa_store.offset
1296
1297 Rule 11:
1298 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1299 effects: cfa_store.offset += -/+ mode_size(mem)
1300 cfa.offset = cfa_store.offset if cfa.reg == sp
1301 cfa.reg = sp
1302 cfa.base_offset = -cfa_store.offset
1303
1304 Rule 12:
1305 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1306
1307 <reg2>)
1308 effects: cfa.reg = <reg1>
1309 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1310
1311 Rule 13:
1312 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1313 effects: cfa.reg = <reg1>
1314 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1315
1316 Rule 14:
1317 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1318 effects: cfa.reg = <reg1>
1319 cfa.base_offset = -cfa_temp.offset
1320 cfa_temp.offset -= mode_size(mem) */
1321
1322 static void
1323 dwarf2out_frame_debug_expr (expr, label)
1324 rtx expr;
1325 const char *label;
1326 {
1327 rtx src, dest;
1328 HOST_WIDE_INT offset;
1329
1330 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1331 the PARALLEL independently. The first element is always processed if
1332 it is a SET. This is for backward compatibility. Other elements
1333 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1334 flag is set in them. */
1335 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1336 {
1337 int par_index;
1338 int limit = XVECLEN (expr, 0);
1339
1340 for (par_index = 0; par_index < limit; par_index++)
1341 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1342 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1343 || par_index == 0))
1344 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1345
1346 return;
1347 }
1348
1349 if (GET_CODE (expr) != SET)
1350 abort ();
1351
1352 src = SET_SRC (expr);
1353 dest = SET_DEST (expr);
1354
1355 switch (GET_CODE (dest))
1356 {
1357 case REG:
1358 /* Rule 1 */
1359 /* Update the CFA rule wrt SP or FP. Make sure src is
1360 relative to the current CFA register. */
1361 switch (GET_CODE (src))
1362 {
1363 /* Setting FP from SP. */
1364 case REG:
1365 if (cfa.reg == (unsigned) REGNO (src))
1366 /* OK. */
1367 ;
1368 else
1369 abort ();
1370
1371 /* We used to require that dest be either SP or FP, but the
1372 ARM copies SP to a temporary register, and from there to
1373 FP. So we just rely on the backends to only set
1374 RTX_FRAME_RELATED_P on appropriate insns. */
1375 cfa.reg = REGNO (dest);
1376 cfa_temp.reg = cfa.reg;
1377 cfa_temp.offset = cfa.offset;
1378 break;
1379
1380 case PLUS:
1381 case MINUS:
1382 case LO_SUM:
1383 if (dest == stack_pointer_rtx)
1384 {
1385 /* Rule 2 */
1386 /* Adjusting SP. */
1387 switch (GET_CODE (XEXP (src, 1)))
1388 {
1389 case CONST_INT:
1390 offset = INTVAL (XEXP (src, 1));
1391 break;
1392 case REG:
1393 if ((unsigned) REGNO (XEXP (src, 1)) != cfa_temp.reg)
1394 abort ();
1395 offset = cfa_temp.offset;
1396 break;
1397 default:
1398 abort ();
1399 }
1400
1401 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1402 {
1403 /* Restoring SP from FP in the epilogue. */
1404 if (cfa.reg != (unsigned) HARD_FRAME_POINTER_REGNUM)
1405 abort ();
1406 cfa.reg = STACK_POINTER_REGNUM;
1407 }
1408 else if (GET_CODE (src) == LO_SUM)
1409 /* Assume we've set the source reg of the LO_SUM from sp. */
1410 ;
1411 else if (XEXP (src, 0) != stack_pointer_rtx)
1412 abort ();
1413
1414 if (GET_CODE (src) != MINUS)
1415 offset = -offset;
1416 if (cfa.reg == STACK_POINTER_REGNUM)
1417 cfa.offset += offset;
1418 if (cfa_store.reg == STACK_POINTER_REGNUM)
1419 cfa_store.offset += offset;
1420 }
1421 else if (dest == hard_frame_pointer_rtx)
1422 {
1423 /* Rule 3 */
1424 /* Either setting the FP from an offset of the SP,
1425 or adjusting the FP */
1426 if (! frame_pointer_needed)
1427 abort ();
1428
1429 if (GET_CODE (XEXP (src, 0)) == REG
1430 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1431 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1432 {
1433 offset = INTVAL (XEXP (src, 1));
1434 if (GET_CODE (src) != MINUS)
1435 offset = -offset;
1436 cfa.offset += offset;
1437 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1438 }
1439 else
1440 abort ();
1441 }
1442 else
1443 {
1444 if (GET_CODE (src) == MINUS)
1445 abort ();
1446
1447 /* Rule 4 */
1448 if (GET_CODE (XEXP (src, 0)) == REG
1449 && REGNO (XEXP (src, 0)) == cfa.reg
1450 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1451 {
1452 /* Setting a temporary CFA register that will be copied
1453 into the FP later on. */
1454 offset = - INTVAL (XEXP (src, 1));
1455 cfa.offset += offset;
1456 cfa.reg = REGNO (dest);
1457 /* Or used to save regs to the stack. */
1458 cfa_temp.reg = cfa.reg;
1459 cfa_temp.offset = cfa.offset;
1460 }
1461
1462 /* Rule 5 */
1463 else if (GET_CODE (XEXP (src, 0)) == REG
1464 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1465 && XEXP (src, 1) == stack_pointer_rtx)
1466 {
1467 /* Setting a scratch register that we will use instead
1468 of SP for saving registers to the stack. */
1469 if (cfa.reg != STACK_POINTER_REGNUM)
1470 abort ();
1471 cfa_store.reg = REGNO (dest);
1472 cfa_store.offset = cfa.offset - cfa_temp.offset;
1473 }
1474
1475 /* Rule 9 */
1476 else if (GET_CODE (src) == LO_SUM
1477 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1478 {
1479 cfa_temp.reg = REGNO (dest);
1480 cfa_temp.offset = INTVAL (XEXP (src, 1));
1481 }
1482 else
1483 abort ();
1484 }
1485 break;
1486
1487 /* Rule 6 */
1488 case CONST_INT:
1489 cfa_temp.reg = REGNO (dest);
1490 cfa_temp.offset = INTVAL (src);
1491 break;
1492
1493 /* Rule 7 */
1494 case IOR:
1495 if (GET_CODE (XEXP (src, 0)) != REG
1496 || (unsigned) REGNO (XEXP (src, 0)) != cfa_temp.reg
1497 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1498 abort ();
1499
1500 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1501 cfa_temp.reg = REGNO (dest);
1502 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1503 break;
1504
1505 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1506 which will fill in all of the bits. */
1507 /* Rule 8 */
1508 case HIGH:
1509 break;
1510
1511 default:
1512 abort ();
1513 }
1514
1515 def_cfa_1 (label, &cfa);
1516 break;
1517
1518 case MEM:
1519 if (GET_CODE (src) != REG)
1520 abort ();
1521
1522 /* Saving a register to the stack. Make sure dest is relative to the
1523 CFA register. */
1524 switch (GET_CODE (XEXP (dest, 0)))
1525 {
1526 /* Rule 10 */
1527 /* With a push. */
1528 case PRE_MODIFY:
1529 /* We can't handle variable size modifications. */
1530 if (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1)) != CONST_INT)
1531 abort ();
1532 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1533
1534 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1535 || cfa_store.reg != STACK_POINTER_REGNUM)
1536 abort ();
1537
1538 cfa_store.offset += offset;
1539 if (cfa.reg == STACK_POINTER_REGNUM)
1540 cfa.offset = cfa_store.offset;
1541
1542 offset = -cfa_store.offset;
1543 break;
1544
1545 /* Rule 11 */
1546 case PRE_INC:
1547 case PRE_DEC:
1548 offset = GET_MODE_SIZE (GET_MODE (dest));
1549 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1550 offset = -offset;
1551
1552 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1553 || cfa_store.reg != STACK_POINTER_REGNUM)
1554 abort ();
1555
1556 cfa_store.offset += offset;
1557 if (cfa.reg == STACK_POINTER_REGNUM)
1558 cfa.offset = cfa_store.offset;
1559
1560 offset = -cfa_store.offset;
1561 break;
1562
1563 /* Rule 12 */
1564 /* With an offset. */
1565 case PLUS:
1566 case MINUS:
1567 case LO_SUM:
1568 if (GET_CODE (XEXP (XEXP (dest, 0), 1)) != CONST_INT)
1569 abort ();
1570 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1571 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1572 offset = -offset;
1573
1574 if (cfa_store.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1575 offset -= cfa_store.offset;
1576 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1577 offset -= cfa_temp.offset;
1578 else
1579 abort ();
1580 break;
1581
1582 /* Rule 13 */
1583 /* Without an offset. */
1584 case REG:
1585 if (cfa_store.reg == (unsigned) REGNO (XEXP (dest, 0)))
1586 offset = -cfa_store.offset;
1587 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (dest, 0)))
1588 offset = -cfa_temp.offset;
1589 else
1590 abort ();
1591 break;
1592
1593 /* Rule 14 */
1594 case POST_INC:
1595 if (cfa_temp.reg != (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1596 abort ();
1597 offset = -cfa_temp.offset;
1598 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1599 break;
1600
1601 default:
1602 abort ();
1603 }
1604
1605 if (REGNO (src) != STACK_POINTER_REGNUM
1606 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1607 && (unsigned) REGNO (src) == cfa.reg)
1608 {
1609 /* We're storing the current CFA reg into the stack. */
1610
1611 if (cfa.offset == 0)
1612 {
1613 /* If the source register is exactly the CFA, assume
1614 we're saving SP like any other register; this happens
1615 on the ARM. */
1616 def_cfa_1 (label, &cfa);
1617 queue_reg_save (label, stack_pointer_rtx, offset);
1618 break;
1619 }
1620 else
1621 {
1622 /* Otherwise, we'll need to look in the stack to
1623 calculate the CFA. */
1624 rtx x = XEXP (dest, 0);
1625
1626 if (GET_CODE (x) != REG)
1627 x = XEXP (x, 0);
1628 if (GET_CODE (x) != REG)
1629 abort ();
1630
1631 cfa.reg = REGNO (x);
1632 cfa.base_offset = offset;
1633 cfa.indirect = 1;
1634 def_cfa_1 (label, &cfa);
1635 break;
1636 }
1637 }
1638
1639 def_cfa_1 (label, &cfa);
1640 queue_reg_save (label, src, offset);
1641 break;
1642
1643 default:
1644 abort ();
1645 }
1646 }
1647
1648 /* Record call frame debugging information for INSN, which either
1649 sets SP or FP (adjusting how we calculate the frame address) or saves a
1650 register to the stack. If INSN is NULL_RTX, initialize our state. */
1651
1652 void
1653 dwarf2out_frame_debug (insn)
1654 rtx insn;
1655 {
1656 const char *label;
1657 rtx src;
1658
1659 if (insn == NULL_RTX)
1660 {
1661 /* Flush any queued register saves. */
1662 flush_queued_reg_saves ();
1663
1664 /* Set up state for generating call frame debug info. */
1665 lookup_cfa (&cfa);
1666 if (cfa.reg != (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM))
1667 abort ();
1668
1669 cfa.reg = STACK_POINTER_REGNUM;
1670 cfa_store = cfa;
1671 cfa_temp.reg = -1;
1672 cfa_temp.offset = 0;
1673 return;
1674 }
1675
1676 if (GET_CODE (insn) != INSN || clobbers_queued_reg_save (insn))
1677 flush_queued_reg_saves ();
1678
1679 if (! RTX_FRAME_RELATED_P (insn))
1680 {
1681 if (!ACCUMULATE_OUTGOING_ARGS)
1682 dwarf2out_stack_adjust (insn);
1683
1684 return;
1685 }
1686
1687 label = dwarf2out_cfi_label ();
1688 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1689 if (src)
1690 insn = XEXP (src, 0);
1691 else
1692 insn = PATTERN (insn);
1693
1694 dwarf2out_frame_debug_expr (insn, label);
1695 }
1696
1697 #endif
1698
1699 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1700 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1701 PARAMS ((enum dwarf_call_frame_info cfi));
1702
1703 static enum dw_cfi_oprnd_type
1704 dw_cfi_oprnd1_desc (cfi)
1705 enum dwarf_call_frame_info cfi;
1706 {
1707 switch (cfi)
1708 {
1709 case DW_CFA_nop:
1710 case DW_CFA_GNU_window_save:
1711 return dw_cfi_oprnd_unused;
1712
1713 case DW_CFA_set_loc:
1714 case DW_CFA_advance_loc1:
1715 case DW_CFA_advance_loc2:
1716 case DW_CFA_advance_loc4:
1717 case DW_CFA_MIPS_advance_loc8:
1718 return dw_cfi_oprnd_addr;
1719
1720 case DW_CFA_offset:
1721 case DW_CFA_offset_extended:
1722 case DW_CFA_def_cfa:
1723 case DW_CFA_offset_extended_sf:
1724 case DW_CFA_def_cfa_sf:
1725 case DW_CFA_restore_extended:
1726 case DW_CFA_undefined:
1727 case DW_CFA_same_value:
1728 case DW_CFA_def_cfa_register:
1729 case DW_CFA_register:
1730 return dw_cfi_oprnd_reg_num;
1731
1732 case DW_CFA_def_cfa_offset:
1733 case DW_CFA_GNU_args_size:
1734 case DW_CFA_def_cfa_offset_sf:
1735 return dw_cfi_oprnd_offset;
1736
1737 case DW_CFA_def_cfa_expression:
1738 case DW_CFA_expression:
1739 return dw_cfi_oprnd_loc;
1740
1741 default:
1742 abort ();
1743 }
1744 }
1745
1746 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1747 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1748 PARAMS ((enum dwarf_call_frame_info cfi));
1749
1750 static enum dw_cfi_oprnd_type
1751 dw_cfi_oprnd2_desc (cfi)
1752 enum dwarf_call_frame_info cfi;
1753 {
1754 switch (cfi)
1755 {
1756 case DW_CFA_def_cfa:
1757 case DW_CFA_def_cfa_sf:
1758 case DW_CFA_offset:
1759 case DW_CFA_offset_extended_sf:
1760 case DW_CFA_offset_extended:
1761 return dw_cfi_oprnd_offset;
1762
1763 case DW_CFA_register:
1764 return dw_cfi_oprnd_reg_num;
1765
1766 default:
1767 return dw_cfi_oprnd_unused;
1768 }
1769 }
1770
1771 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1772
1773 /* Output a Call Frame Information opcode and its operand(s). */
1774
1775 static void
1776 output_cfi (cfi, fde, for_eh)
1777 dw_cfi_ref cfi;
1778 dw_fde_ref fde;
1779 int for_eh;
1780 {
1781 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1782 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1783 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1784 "DW_CFA_advance_loc 0x%lx",
1785 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1786 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1787 {
1788 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1789 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1790 "DW_CFA_offset, column 0x%lx",
1791 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1792 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1793 }
1794 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1795 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1796 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1797 "DW_CFA_restore, column 0x%lx",
1798 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1799 else
1800 {
1801 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1802 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1803
1804 switch (cfi->dw_cfi_opc)
1805 {
1806 case DW_CFA_set_loc:
1807 if (for_eh)
1808 dw2_asm_output_encoded_addr_rtx (
1809 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1810 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1811 NULL);
1812 else
1813 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1814 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1815 break;
1816
1817 case DW_CFA_advance_loc1:
1818 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1819 fde->dw_fde_current_label, NULL);
1820 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1821 break;
1822
1823 case DW_CFA_advance_loc2:
1824 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1825 fde->dw_fde_current_label, NULL);
1826 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1827 break;
1828
1829 case DW_CFA_advance_loc4:
1830 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1831 fde->dw_fde_current_label, NULL);
1832 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1833 break;
1834
1835 case DW_CFA_MIPS_advance_loc8:
1836 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1837 fde->dw_fde_current_label, NULL);
1838 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1839 break;
1840
1841 case DW_CFA_offset_extended:
1842 case DW_CFA_def_cfa:
1843 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1844 NULL);
1845 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1846 break;
1847
1848 case DW_CFA_offset_extended_sf:
1849 case DW_CFA_def_cfa_sf:
1850 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1851 NULL);
1852 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1853 break;
1854
1855 case DW_CFA_restore_extended:
1856 case DW_CFA_undefined:
1857 case DW_CFA_same_value:
1858 case DW_CFA_def_cfa_register:
1859 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1860 NULL);
1861 break;
1862
1863 case DW_CFA_register:
1864 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1865 NULL);
1866 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_reg_num,
1867 NULL);
1868 break;
1869
1870 case DW_CFA_def_cfa_offset:
1871 case DW_CFA_GNU_args_size:
1872 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1873 break;
1874
1875 case DW_CFA_def_cfa_offset_sf:
1876 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1877 break;
1878
1879 case DW_CFA_GNU_window_save:
1880 break;
1881
1882 case DW_CFA_def_cfa_expression:
1883 case DW_CFA_expression:
1884 output_cfa_loc (cfi);
1885 break;
1886
1887 case DW_CFA_GNU_negative_offset_extended:
1888 /* Obsoleted by DW_CFA_offset_extended_sf. */
1889 abort ();
1890
1891 default:
1892 break;
1893 }
1894 }
1895 }
1896
1897 /* Output the call frame information used to used to record information
1898 that relates to calculating the frame pointer, and records the
1899 location of saved registers. */
1900
1901 static void
1902 output_call_frame_info (for_eh)
1903 int for_eh;
1904 {
1905 unsigned int i;
1906 dw_fde_ref fde;
1907 dw_cfi_ref cfi;
1908 char l1[20], l2[20], section_start_label[20];
1909 int any_lsda_needed = 0;
1910 char augmentation[6];
1911 int augmentation_size;
1912 int fde_encoding = DW_EH_PE_absptr;
1913 int per_encoding = DW_EH_PE_absptr;
1914 int lsda_encoding = DW_EH_PE_absptr;
1915
1916 /* Don't emit a CIE if there won't be any FDEs. */
1917 if (fde_table_in_use == 0)
1918 return;
1919
1920 /* If we don't have any functions we'll want to unwind out of, don't emit any
1921 EH unwind information. */
1922 if (for_eh)
1923 {
1924 int any_eh_needed = flag_asynchronous_unwind_tables;
1925
1926 for (i = 0; i < fde_table_in_use; i++)
1927 if (fde_table[i].uses_eh_lsda)
1928 any_eh_needed = any_lsda_needed = 1;
1929 else if (! fde_table[i].nothrow)
1930 any_eh_needed = 1;
1931
1932 if (! any_eh_needed)
1933 return;
1934 }
1935
1936 /* We're going to be generating comments, so turn on app. */
1937 if (flag_debug_asm)
1938 app_enable ();
1939
1940 if (for_eh)
1941 (*targetm.asm_out.eh_frame_section) ();
1942 else
1943 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
1944
1945 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
1946 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
1947
1948 /* Output the CIE. */
1949 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
1950 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
1951 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
1952 "Length of Common Information Entry");
1953 ASM_OUTPUT_LABEL (asm_out_file, l1);
1954
1955 /* Now that the CIE pointer is PC-relative for EH,
1956 use 0 to identify the CIE. */
1957 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
1958 (for_eh ? 0 : DW_CIE_ID),
1959 "CIE Identifier Tag");
1960
1961 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
1962
1963 augmentation[0] = 0;
1964 augmentation_size = 0;
1965 if (for_eh)
1966 {
1967 char *p;
1968
1969 /* Augmentation:
1970 z Indicates that a uleb128 is present to size the
1971 augmentation section.
1972 L Indicates the encoding (and thus presence) of
1973 an LSDA pointer in the FDE augmentation.
1974 R Indicates a non-default pointer encoding for
1975 FDE code pointers.
1976 P Indicates the presence of an encoding + language
1977 personality routine in the CIE augmentation. */
1978
1979 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
1980 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
1981 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
1982
1983 p = augmentation + 1;
1984 if (eh_personality_libfunc)
1985 {
1986 *p++ = 'P';
1987 augmentation_size += 1 + size_of_encoded_value (per_encoding);
1988 }
1989 if (any_lsda_needed)
1990 {
1991 *p++ = 'L';
1992 augmentation_size += 1;
1993 }
1994 if (fde_encoding != DW_EH_PE_absptr)
1995 {
1996 *p++ = 'R';
1997 augmentation_size += 1;
1998 }
1999 if (p > augmentation + 1)
2000 {
2001 augmentation[0] = 'z';
2002 *p = '\0';
2003 }
2004
2005 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2006 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2007 {
2008 int offset = ( 4 /* Length */
2009 + 4 /* CIE Id */
2010 + 1 /* CIE version */
2011 + strlen (augmentation) + 1 /* Augmentation */
2012 + size_of_uleb128 (1) /* Code alignment */
2013 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2014 + 1 /* RA column */
2015 + 1 /* Augmentation size */
2016 + 1 /* Personality encoding */ );
2017 int pad = -offset & (PTR_SIZE - 1);
2018
2019 augmentation_size += pad;
2020
2021 /* Augmentations should be small, so there's scarce need to
2022 iterate for a solution. Die if we exceed one uleb128 byte. */
2023 if (size_of_uleb128 (augmentation_size) != 1)
2024 abort ();
2025 }
2026 }
2027
2028 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2029 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2030 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2031 "CIE Data Alignment Factor");
2032 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2033
2034 if (augmentation[0])
2035 {
2036 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2037 if (eh_personality_libfunc)
2038 {
2039 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2040 eh_data_format_name (per_encoding));
2041 dw2_asm_output_encoded_addr_rtx (per_encoding,
2042 eh_personality_libfunc, NULL);
2043 }
2044
2045 if (any_lsda_needed)
2046 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2047 eh_data_format_name (lsda_encoding));
2048
2049 if (fde_encoding != DW_EH_PE_absptr)
2050 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2051 eh_data_format_name (fde_encoding));
2052 }
2053
2054 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2055 output_cfi (cfi, NULL, for_eh);
2056
2057 /* Pad the CIE out to an address sized boundary. */
2058 ASM_OUTPUT_ALIGN (asm_out_file,
2059 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2060 ASM_OUTPUT_LABEL (asm_out_file, l2);
2061
2062 /* Loop through all of the FDE's. */
2063 for (i = 0; i < fde_table_in_use; i++)
2064 {
2065 fde = &fde_table[i];
2066
2067 /* Don't emit EH unwind info for leaf functions that don't need it. */
2068 if (!flag_asynchronous_unwind_tables && for_eh
2069 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2070 && !fde->uses_eh_lsda)
2071 continue;
2072
2073 (*targetm.asm_out.internal_label) (asm_out_file, FDE_LABEL, for_eh + i * 2);
2074 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2075 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2076 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2077 "FDE Length");
2078 ASM_OUTPUT_LABEL (asm_out_file, l1);
2079
2080 if (for_eh)
2081 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2082 else
2083 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2084 "FDE CIE offset");
2085
2086 if (for_eh)
2087 {
2088 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2089 gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin),
2090 "FDE initial location");
2091 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2092 fde->dw_fde_end, fde->dw_fde_begin,
2093 "FDE address range");
2094 }
2095 else
2096 {
2097 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2098 "FDE initial location");
2099 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2100 fde->dw_fde_end, fde->dw_fde_begin,
2101 "FDE address range");
2102 }
2103
2104 if (augmentation[0])
2105 {
2106 if (any_lsda_needed)
2107 {
2108 int size = size_of_encoded_value (lsda_encoding);
2109
2110 if (lsda_encoding == DW_EH_PE_aligned)
2111 {
2112 int offset = ( 4 /* Length */
2113 + 4 /* CIE offset */
2114 + 2 * size_of_encoded_value (fde_encoding)
2115 + 1 /* Augmentation size */ );
2116 int pad = -offset & (PTR_SIZE - 1);
2117
2118 size += pad;
2119 if (size_of_uleb128 (size) != 1)
2120 abort ();
2121 }
2122
2123 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2124
2125 if (fde->uses_eh_lsda)
2126 {
2127 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2128 fde->funcdef_number);
2129 dw2_asm_output_encoded_addr_rtx (
2130 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2131 "Language Specific Data Area");
2132 }
2133 else
2134 {
2135 if (lsda_encoding == DW_EH_PE_aligned)
2136 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2137 dw2_asm_output_data
2138 (size_of_encoded_value (lsda_encoding), 0,
2139 "Language Specific Data Area (none)");
2140 }
2141 }
2142 else
2143 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2144 }
2145
2146 /* Loop through the Call Frame Instructions associated with
2147 this FDE. */
2148 fde->dw_fde_current_label = fde->dw_fde_begin;
2149 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2150 output_cfi (cfi, fde, for_eh);
2151
2152 /* Pad the FDE out to an address sized boundary. */
2153 ASM_OUTPUT_ALIGN (asm_out_file,
2154 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2155 ASM_OUTPUT_LABEL (asm_out_file, l2);
2156 }
2157
2158 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2159 dw2_asm_output_data (4, 0, "End of Table");
2160 #ifdef MIPS_DEBUGGING_INFO
2161 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2162 get a value of 0. Putting .align 0 after the label fixes it. */
2163 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2164 #endif
2165
2166 /* Turn off app to make assembly quicker. */
2167 if (flag_debug_asm)
2168 app_disable ();
2169 }
2170
2171 /* Output a marker (i.e. a label) for the beginning of a function, before
2172 the prologue. */
2173
2174 void
2175 dwarf2out_begin_prologue (line, file)
2176 unsigned int line ATTRIBUTE_UNUSED;
2177 const char *file ATTRIBUTE_UNUSED;
2178 {
2179 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2180 dw_fde_ref fde;
2181
2182 current_function_func_begin_label = 0;
2183
2184 #ifdef IA64_UNWIND_INFO
2185 /* ??? current_function_func_begin_label is also used by except.c
2186 for call-site information. We must emit this label if it might
2187 be used. */
2188 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2189 && ! dwarf2out_do_frame ())
2190 return;
2191 #else
2192 if (! dwarf2out_do_frame ())
2193 return;
2194 #endif
2195
2196 function_section (current_function_decl);
2197 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2198 current_function_funcdef_no);
2199 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2200 current_function_funcdef_no);
2201 current_function_func_begin_label = get_identifier (label);
2202
2203 #ifdef IA64_UNWIND_INFO
2204 /* We can elide the fde allocation if we're not emitting debug info. */
2205 if (! dwarf2out_do_frame ())
2206 return;
2207 #endif
2208
2209 /* Expand the fde table if necessary. */
2210 if (fde_table_in_use == fde_table_allocated)
2211 {
2212 fde_table_allocated += FDE_TABLE_INCREMENT;
2213 fde_table = ggc_realloc (fde_table,
2214 fde_table_allocated * sizeof (dw_fde_node));
2215 memset (fde_table + fde_table_in_use, 0,
2216 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2217 }
2218
2219 /* Record the FDE associated with this function. */
2220 current_funcdef_fde = fde_table_in_use;
2221
2222 /* Add the new FDE at the end of the fde_table. */
2223 fde = &fde_table[fde_table_in_use++];
2224 fde->dw_fde_begin = xstrdup (label);
2225 fde->dw_fde_current_label = NULL;
2226 fde->dw_fde_end = NULL;
2227 fde->dw_fde_cfi = NULL;
2228 fde->funcdef_number = current_function_funcdef_no;
2229 fde->nothrow = current_function_nothrow;
2230 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2231 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2232
2233 args_size = old_args_size = 0;
2234
2235 /* We only want to output line number information for the genuine dwarf2
2236 prologue case, not the eh frame case. */
2237 #ifdef DWARF2_DEBUGGING_INFO
2238 if (file)
2239 dwarf2out_source_line (line, file);
2240 #endif
2241 }
2242
2243 /* Output a marker (i.e. a label) for the absolute end of the generated code
2244 for a function definition. This gets called *after* the epilogue code has
2245 been generated. */
2246
2247 void
2248 dwarf2out_end_epilogue (line, file)
2249 unsigned int line ATTRIBUTE_UNUSED;
2250 const char *file ATTRIBUTE_UNUSED;
2251 {
2252 dw_fde_ref fde;
2253 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2254
2255 /* Output a label to mark the endpoint of the code generated for this
2256 function. */
2257 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2258 current_function_funcdef_no);
2259 ASM_OUTPUT_LABEL (asm_out_file, label);
2260 fde = &fde_table[fde_table_in_use - 1];
2261 fde->dw_fde_end = xstrdup (label);
2262 }
2263
2264 void
2265 dwarf2out_frame_init ()
2266 {
2267 /* Allocate the initial hunk of the fde_table. */
2268 fde_table = (dw_fde_ref) ggc_alloc_cleared (FDE_TABLE_INCREMENT
2269 * sizeof (dw_fde_node));
2270 fde_table_allocated = FDE_TABLE_INCREMENT;
2271 fde_table_in_use = 0;
2272
2273 /* Generate the CFA instructions common to all FDE's. Do it now for the
2274 sake of lookup_cfa. */
2275
2276 #ifdef DWARF2_UNWIND_INFO
2277 /* On entry, the Canonical Frame Address is at SP. */
2278 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2279 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2280 #endif
2281 }
2282
2283 void
2284 dwarf2out_frame_finish ()
2285 {
2286 /* Output call frame information. */
2287 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
2288 output_call_frame_info (0);
2289
2290 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2291 output_call_frame_info (1);
2292 }
2293 #endif
2294 \f
2295 /* And now, the subset of the debugging information support code necessary
2296 for emitting location expressions. */
2297
2298 /* We need some way to distinguish DW_OP_addr with a direct symbol
2299 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2300 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2301
2302
2303 typedef struct dw_val_struct *dw_val_ref;
2304 typedef struct die_struct *dw_die_ref;
2305 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2306 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2307
2308 /* Each DIE may have a series of attribute/value pairs. Values
2309 can take on several forms. The forms that are used in this
2310 implementation are listed below. */
2311
2312 enum dw_val_class
2313 {
2314 dw_val_class_addr,
2315 dw_val_class_offset,
2316 dw_val_class_loc,
2317 dw_val_class_loc_list,
2318 dw_val_class_range_list,
2319 dw_val_class_const,
2320 dw_val_class_unsigned_const,
2321 dw_val_class_long_long,
2322 dw_val_class_float,
2323 dw_val_class_flag,
2324 dw_val_class_die_ref,
2325 dw_val_class_fde_ref,
2326 dw_val_class_lbl_id,
2327 dw_val_class_lbl_offset,
2328 dw_val_class_str
2329 };
2330
2331 /* Describe a double word constant value. */
2332 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2333
2334 typedef struct dw_long_long_struct GTY(())
2335 {
2336 unsigned long hi;
2337 unsigned long low;
2338 }
2339 dw_long_long_const;
2340
2341 /* Describe a floating point constant value. */
2342
2343 typedef struct dw_fp_struct GTY(())
2344 {
2345 long * GTY((length ("%h.length"))) array;
2346 unsigned length;
2347 }
2348 dw_float_const;
2349
2350 /* The dw_val_node describes an attribute's value, as it is
2351 represented internally. */
2352
2353 typedef struct dw_val_struct GTY(())
2354 {
2355 enum dw_val_class val_class;
2356 union dw_val_struct_union
2357 {
2358 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2359 long unsigned GTY ((tag ("dw_val_class_offset"))) val_offset;
2360 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2361 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2362 long int GTY ((default (""))) val_int;
2363 long unsigned GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2364 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2365 dw_float_const GTY ((tag ("dw_val_class_float"))) val_float;
2366 struct dw_val_die_union
2367 {
2368 dw_die_ref die;
2369 int external;
2370 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2371 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2372 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2373 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2374 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2375 }
2376 GTY ((desc ("%1.val_class"))) v;
2377 }
2378 dw_val_node;
2379
2380 /* Locations in memory are described using a sequence of stack machine
2381 operations. */
2382
2383 typedef struct dw_loc_descr_struct GTY(())
2384 {
2385 dw_loc_descr_ref dw_loc_next;
2386 enum dwarf_location_atom dw_loc_opc;
2387 dw_val_node dw_loc_oprnd1;
2388 dw_val_node dw_loc_oprnd2;
2389 int dw_loc_addr;
2390 }
2391 dw_loc_descr_node;
2392
2393 /* Location lists are ranges + location descriptions for that range,
2394 so you can track variables that are in different places over
2395 their entire life. */
2396 typedef struct dw_loc_list_struct GTY(())
2397 {
2398 dw_loc_list_ref dw_loc_next;
2399 const char *begin; /* Label for begin address of range */
2400 const char *end; /* Label for end address of range */
2401 char *ll_symbol; /* Label for beginning of location list.
2402 Only on head of list */
2403 const char *section; /* Section this loclist is relative to */
2404 dw_loc_descr_ref expr;
2405 } dw_loc_list_node;
2406
2407 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2408
2409 static const char *dwarf_stack_op_name PARAMS ((unsigned));
2410 static dw_loc_descr_ref new_loc_descr PARAMS ((enum dwarf_location_atom,
2411 unsigned long,
2412 unsigned long));
2413 static void add_loc_descr PARAMS ((dw_loc_descr_ref *,
2414 dw_loc_descr_ref));
2415 static unsigned long size_of_loc_descr PARAMS ((dw_loc_descr_ref));
2416 static unsigned long size_of_locs PARAMS ((dw_loc_descr_ref));
2417 static void output_loc_operands PARAMS ((dw_loc_descr_ref));
2418 static void output_loc_sequence PARAMS ((dw_loc_descr_ref));
2419
2420 /* Convert a DWARF stack opcode into its string name. */
2421
2422 static const char *
2423 dwarf_stack_op_name (op)
2424 unsigned op;
2425 {
2426 switch (op)
2427 {
2428 case DW_OP_addr:
2429 case INTERNAL_DW_OP_tls_addr:
2430 return "DW_OP_addr";
2431 case DW_OP_deref:
2432 return "DW_OP_deref";
2433 case DW_OP_const1u:
2434 return "DW_OP_const1u";
2435 case DW_OP_const1s:
2436 return "DW_OP_const1s";
2437 case DW_OP_const2u:
2438 return "DW_OP_const2u";
2439 case DW_OP_const2s:
2440 return "DW_OP_const2s";
2441 case DW_OP_const4u:
2442 return "DW_OP_const4u";
2443 case DW_OP_const4s:
2444 return "DW_OP_const4s";
2445 case DW_OP_const8u:
2446 return "DW_OP_const8u";
2447 case DW_OP_const8s:
2448 return "DW_OP_const8s";
2449 case DW_OP_constu:
2450 return "DW_OP_constu";
2451 case DW_OP_consts:
2452 return "DW_OP_consts";
2453 case DW_OP_dup:
2454 return "DW_OP_dup";
2455 case DW_OP_drop:
2456 return "DW_OP_drop";
2457 case DW_OP_over:
2458 return "DW_OP_over";
2459 case DW_OP_pick:
2460 return "DW_OP_pick";
2461 case DW_OP_swap:
2462 return "DW_OP_swap";
2463 case DW_OP_rot:
2464 return "DW_OP_rot";
2465 case DW_OP_xderef:
2466 return "DW_OP_xderef";
2467 case DW_OP_abs:
2468 return "DW_OP_abs";
2469 case DW_OP_and:
2470 return "DW_OP_and";
2471 case DW_OP_div:
2472 return "DW_OP_div";
2473 case DW_OP_minus:
2474 return "DW_OP_minus";
2475 case DW_OP_mod:
2476 return "DW_OP_mod";
2477 case DW_OP_mul:
2478 return "DW_OP_mul";
2479 case DW_OP_neg:
2480 return "DW_OP_neg";
2481 case DW_OP_not:
2482 return "DW_OP_not";
2483 case DW_OP_or:
2484 return "DW_OP_or";
2485 case DW_OP_plus:
2486 return "DW_OP_plus";
2487 case DW_OP_plus_uconst:
2488 return "DW_OP_plus_uconst";
2489 case DW_OP_shl:
2490 return "DW_OP_shl";
2491 case DW_OP_shr:
2492 return "DW_OP_shr";
2493 case DW_OP_shra:
2494 return "DW_OP_shra";
2495 case DW_OP_xor:
2496 return "DW_OP_xor";
2497 case DW_OP_bra:
2498 return "DW_OP_bra";
2499 case DW_OP_eq:
2500 return "DW_OP_eq";
2501 case DW_OP_ge:
2502 return "DW_OP_ge";
2503 case DW_OP_gt:
2504 return "DW_OP_gt";
2505 case DW_OP_le:
2506 return "DW_OP_le";
2507 case DW_OP_lt:
2508 return "DW_OP_lt";
2509 case DW_OP_ne:
2510 return "DW_OP_ne";
2511 case DW_OP_skip:
2512 return "DW_OP_skip";
2513 case DW_OP_lit0:
2514 return "DW_OP_lit0";
2515 case DW_OP_lit1:
2516 return "DW_OP_lit1";
2517 case DW_OP_lit2:
2518 return "DW_OP_lit2";
2519 case DW_OP_lit3:
2520 return "DW_OP_lit3";
2521 case DW_OP_lit4:
2522 return "DW_OP_lit4";
2523 case DW_OP_lit5:
2524 return "DW_OP_lit5";
2525 case DW_OP_lit6:
2526 return "DW_OP_lit6";
2527 case DW_OP_lit7:
2528 return "DW_OP_lit7";
2529 case DW_OP_lit8:
2530 return "DW_OP_lit8";
2531 case DW_OP_lit9:
2532 return "DW_OP_lit9";
2533 case DW_OP_lit10:
2534 return "DW_OP_lit10";
2535 case DW_OP_lit11:
2536 return "DW_OP_lit11";
2537 case DW_OP_lit12:
2538 return "DW_OP_lit12";
2539 case DW_OP_lit13:
2540 return "DW_OP_lit13";
2541 case DW_OP_lit14:
2542 return "DW_OP_lit14";
2543 case DW_OP_lit15:
2544 return "DW_OP_lit15";
2545 case DW_OP_lit16:
2546 return "DW_OP_lit16";
2547 case DW_OP_lit17:
2548 return "DW_OP_lit17";
2549 case DW_OP_lit18:
2550 return "DW_OP_lit18";
2551 case DW_OP_lit19:
2552 return "DW_OP_lit19";
2553 case DW_OP_lit20:
2554 return "DW_OP_lit20";
2555 case DW_OP_lit21:
2556 return "DW_OP_lit21";
2557 case DW_OP_lit22:
2558 return "DW_OP_lit22";
2559 case DW_OP_lit23:
2560 return "DW_OP_lit23";
2561 case DW_OP_lit24:
2562 return "DW_OP_lit24";
2563 case DW_OP_lit25:
2564 return "DW_OP_lit25";
2565 case DW_OP_lit26:
2566 return "DW_OP_lit26";
2567 case DW_OP_lit27:
2568 return "DW_OP_lit27";
2569 case DW_OP_lit28:
2570 return "DW_OP_lit28";
2571 case DW_OP_lit29:
2572 return "DW_OP_lit29";
2573 case DW_OP_lit30:
2574 return "DW_OP_lit30";
2575 case DW_OP_lit31:
2576 return "DW_OP_lit31";
2577 case DW_OP_reg0:
2578 return "DW_OP_reg0";
2579 case DW_OP_reg1:
2580 return "DW_OP_reg1";
2581 case DW_OP_reg2:
2582 return "DW_OP_reg2";
2583 case DW_OP_reg3:
2584 return "DW_OP_reg3";
2585 case DW_OP_reg4:
2586 return "DW_OP_reg4";
2587 case DW_OP_reg5:
2588 return "DW_OP_reg5";
2589 case DW_OP_reg6:
2590 return "DW_OP_reg6";
2591 case DW_OP_reg7:
2592 return "DW_OP_reg7";
2593 case DW_OP_reg8:
2594 return "DW_OP_reg8";
2595 case DW_OP_reg9:
2596 return "DW_OP_reg9";
2597 case DW_OP_reg10:
2598 return "DW_OP_reg10";
2599 case DW_OP_reg11:
2600 return "DW_OP_reg11";
2601 case DW_OP_reg12:
2602 return "DW_OP_reg12";
2603 case DW_OP_reg13:
2604 return "DW_OP_reg13";
2605 case DW_OP_reg14:
2606 return "DW_OP_reg14";
2607 case DW_OP_reg15:
2608 return "DW_OP_reg15";
2609 case DW_OP_reg16:
2610 return "DW_OP_reg16";
2611 case DW_OP_reg17:
2612 return "DW_OP_reg17";
2613 case DW_OP_reg18:
2614 return "DW_OP_reg18";
2615 case DW_OP_reg19:
2616 return "DW_OP_reg19";
2617 case DW_OP_reg20:
2618 return "DW_OP_reg20";
2619 case DW_OP_reg21:
2620 return "DW_OP_reg21";
2621 case DW_OP_reg22:
2622 return "DW_OP_reg22";
2623 case DW_OP_reg23:
2624 return "DW_OP_reg23";
2625 case DW_OP_reg24:
2626 return "DW_OP_reg24";
2627 case DW_OP_reg25:
2628 return "DW_OP_reg25";
2629 case DW_OP_reg26:
2630 return "DW_OP_reg26";
2631 case DW_OP_reg27:
2632 return "DW_OP_reg27";
2633 case DW_OP_reg28:
2634 return "DW_OP_reg28";
2635 case DW_OP_reg29:
2636 return "DW_OP_reg29";
2637 case DW_OP_reg30:
2638 return "DW_OP_reg30";
2639 case DW_OP_reg31:
2640 return "DW_OP_reg31";
2641 case DW_OP_breg0:
2642 return "DW_OP_breg0";
2643 case DW_OP_breg1:
2644 return "DW_OP_breg1";
2645 case DW_OP_breg2:
2646 return "DW_OP_breg2";
2647 case DW_OP_breg3:
2648 return "DW_OP_breg3";
2649 case DW_OP_breg4:
2650 return "DW_OP_breg4";
2651 case DW_OP_breg5:
2652 return "DW_OP_breg5";
2653 case DW_OP_breg6:
2654 return "DW_OP_breg6";
2655 case DW_OP_breg7:
2656 return "DW_OP_breg7";
2657 case DW_OP_breg8:
2658 return "DW_OP_breg8";
2659 case DW_OP_breg9:
2660 return "DW_OP_breg9";
2661 case DW_OP_breg10:
2662 return "DW_OP_breg10";
2663 case DW_OP_breg11:
2664 return "DW_OP_breg11";
2665 case DW_OP_breg12:
2666 return "DW_OP_breg12";
2667 case DW_OP_breg13:
2668 return "DW_OP_breg13";
2669 case DW_OP_breg14:
2670 return "DW_OP_breg14";
2671 case DW_OP_breg15:
2672 return "DW_OP_breg15";
2673 case DW_OP_breg16:
2674 return "DW_OP_breg16";
2675 case DW_OP_breg17:
2676 return "DW_OP_breg17";
2677 case DW_OP_breg18:
2678 return "DW_OP_breg18";
2679 case DW_OP_breg19:
2680 return "DW_OP_breg19";
2681 case DW_OP_breg20:
2682 return "DW_OP_breg20";
2683 case DW_OP_breg21:
2684 return "DW_OP_breg21";
2685 case DW_OP_breg22:
2686 return "DW_OP_breg22";
2687 case DW_OP_breg23:
2688 return "DW_OP_breg23";
2689 case DW_OP_breg24:
2690 return "DW_OP_breg24";
2691 case DW_OP_breg25:
2692 return "DW_OP_breg25";
2693 case DW_OP_breg26:
2694 return "DW_OP_breg26";
2695 case DW_OP_breg27:
2696 return "DW_OP_breg27";
2697 case DW_OP_breg28:
2698 return "DW_OP_breg28";
2699 case DW_OP_breg29:
2700 return "DW_OP_breg29";
2701 case DW_OP_breg30:
2702 return "DW_OP_breg30";
2703 case DW_OP_breg31:
2704 return "DW_OP_breg31";
2705 case DW_OP_regx:
2706 return "DW_OP_regx";
2707 case DW_OP_fbreg:
2708 return "DW_OP_fbreg";
2709 case DW_OP_bregx:
2710 return "DW_OP_bregx";
2711 case DW_OP_piece:
2712 return "DW_OP_piece";
2713 case DW_OP_deref_size:
2714 return "DW_OP_deref_size";
2715 case DW_OP_xderef_size:
2716 return "DW_OP_xderef_size";
2717 case DW_OP_nop:
2718 return "DW_OP_nop";
2719 case DW_OP_push_object_address:
2720 return "DW_OP_push_object_address";
2721 case DW_OP_call2:
2722 return "DW_OP_call2";
2723 case DW_OP_call4:
2724 return "DW_OP_call4";
2725 case DW_OP_call_ref:
2726 return "DW_OP_call_ref";
2727 case DW_OP_GNU_push_tls_address:
2728 return "DW_OP_GNU_push_tls_address";
2729 default:
2730 return "OP_<unknown>";
2731 }
2732 }
2733
2734 /* Return a pointer to a newly allocated location description. Location
2735 descriptions are simple expression terms that can be strung
2736 together to form more complicated location (address) descriptions. */
2737
2738 static inline dw_loc_descr_ref
2739 new_loc_descr (op, oprnd1, oprnd2)
2740 enum dwarf_location_atom op;
2741 unsigned long oprnd1;
2742 unsigned long oprnd2;
2743 {
2744 dw_loc_descr_ref descr
2745 = (dw_loc_descr_ref) ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2746
2747 descr->dw_loc_opc = op;
2748 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2749 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2750 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2751 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2752
2753 return descr;
2754 }
2755
2756
2757 /* Add a location description term to a location description expression. */
2758
2759 static inline void
2760 add_loc_descr (list_head, descr)
2761 dw_loc_descr_ref *list_head;
2762 dw_loc_descr_ref descr;
2763 {
2764 dw_loc_descr_ref *d;
2765
2766 /* Find the end of the chain. */
2767 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2768 ;
2769
2770 *d = descr;
2771 }
2772
2773 /* Return the size of a location descriptor. */
2774
2775 static unsigned long
2776 size_of_loc_descr (loc)
2777 dw_loc_descr_ref loc;
2778 {
2779 unsigned long size = 1;
2780
2781 switch (loc->dw_loc_opc)
2782 {
2783 case DW_OP_addr:
2784 case INTERNAL_DW_OP_tls_addr:
2785 size += DWARF2_ADDR_SIZE;
2786 break;
2787 case DW_OP_const1u:
2788 case DW_OP_const1s:
2789 size += 1;
2790 break;
2791 case DW_OP_const2u:
2792 case DW_OP_const2s:
2793 size += 2;
2794 break;
2795 case DW_OP_const4u:
2796 case DW_OP_const4s:
2797 size += 4;
2798 break;
2799 case DW_OP_const8u:
2800 case DW_OP_const8s:
2801 size += 8;
2802 break;
2803 case DW_OP_constu:
2804 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2805 break;
2806 case DW_OP_consts:
2807 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2808 break;
2809 case DW_OP_pick:
2810 size += 1;
2811 break;
2812 case DW_OP_plus_uconst:
2813 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2814 break;
2815 case DW_OP_skip:
2816 case DW_OP_bra:
2817 size += 2;
2818 break;
2819 case DW_OP_breg0:
2820 case DW_OP_breg1:
2821 case DW_OP_breg2:
2822 case DW_OP_breg3:
2823 case DW_OP_breg4:
2824 case DW_OP_breg5:
2825 case DW_OP_breg6:
2826 case DW_OP_breg7:
2827 case DW_OP_breg8:
2828 case DW_OP_breg9:
2829 case DW_OP_breg10:
2830 case DW_OP_breg11:
2831 case DW_OP_breg12:
2832 case DW_OP_breg13:
2833 case DW_OP_breg14:
2834 case DW_OP_breg15:
2835 case DW_OP_breg16:
2836 case DW_OP_breg17:
2837 case DW_OP_breg18:
2838 case DW_OP_breg19:
2839 case DW_OP_breg20:
2840 case DW_OP_breg21:
2841 case DW_OP_breg22:
2842 case DW_OP_breg23:
2843 case DW_OP_breg24:
2844 case DW_OP_breg25:
2845 case DW_OP_breg26:
2846 case DW_OP_breg27:
2847 case DW_OP_breg28:
2848 case DW_OP_breg29:
2849 case DW_OP_breg30:
2850 case DW_OP_breg31:
2851 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2852 break;
2853 case DW_OP_regx:
2854 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2855 break;
2856 case DW_OP_fbreg:
2857 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2858 break;
2859 case DW_OP_bregx:
2860 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2861 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
2862 break;
2863 case DW_OP_piece:
2864 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2865 break;
2866 case DW_OP_deref_size:
2867 case DW_OP_xderef_size:
2868 size += 1;
2869 break;
2870 case DW_OP_call2:
2871 size += 2;
2872 break;
2873 case DW_OP_call4:
2874 size += 4;
2875 break;
2876 case DW_OP_call_ref:
2877 size += DWARF2_ADDR_SIZE;
2878 break;
2879 default:
2880 break;
2881 }
2882
2883 return size;
2884 }
2885
2886 /* Return the size of a series of location descriptors. */
2887
2888 static unsigned long
2889 size_of_locs (loc)
2890 dw_loc_descr_ref loc;
2891 {
2892 unsigned long size;
2893
2894 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
2895 {
2896 loc->dw_loc_addr = size;
2897 size += size_of_loc_descr (loc);
2898 }
2899
2900 return size;
2901 }
2902
2903 /* Output location description stack opcode's operands (if any). */
2904
2905 static void
2906 output_loc_operands (loc)
2907 dw_loc_descr_ref loc;
2908 {
2909 dw_val_ref val1 = &loc->dw_loc_oprnd1;
2910 dw_val_ref val2 = &loc->dw_loc_oprnd2;
2911
2912 switch (loc->dw_loc_opc)
2913 {
2914 #ifdef DWARF2_DEBUGGING_INFO
2915 case DW_OP_addr:
2916 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
2917 break;
2918 case DW_OP_const2u:
2919 case DW_OP_const2s:
2920 dw2_asm_output_data (2, val1->v.val_int, NULL);
2921 break;
2922 case DW_OP_const4u:
2923 case DW_OP_const4s:
2924 dw2_asm_output_data (4, val1->v.val_int, NULL);
2925 break;
2926 case DW_OP_const8u:
2927 case DW_OP_const8s:
2928 if (HOST_BITS_PER_LONG < 64)
2929 abort ();
2930 dw2_asm_output_data (8, val1->v.val_int, NULL);
2931 break;
2932 case DW_OP_skip:
2933 case DW_OP_bra:
2934 {
2935 int offset;
2936
2937 if (val1->val_class == dw_val_class_loc)
2938 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2939 else
2940 abort ();
2941
2942 dw2_asm_output_data (2, offset, NULL);
2943 }
2944 break;
2945 #else
2946 case DW_OP_addr:
2947 case DW_OP_const2u:
2948 case DW_OP_const2s:
2949 case DW_OP_const4u:
2950 case DW_OP_const4s:
2951 case DW_OP_const8u:
2952 case DW_OP_const8s:
2953 case DW_OP_skip:
2954 case DW_OP_bra:
2955 /* We currently don't make any attempt to make sure these are
2956 aligned properly like we do for the main unwind info, so
2957 don't support emitting things larger than a byte if we're
2958 only doing unwinding. */
2959 abort ();
2960 #endif
2961 case DW_OP_const1u:
2962 case DW_OP_const1s:
2963 dw2_asm_output_data (1, val1->v.val_int, NULL);
2964 break;
2965 case DW_OP_constu:
2966 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2967 break;
2968 case DW_OP_consts:
2969 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2970 break;
2971 case DW_OP_pick:
2972 dw2_asm_output_data (1, val1->v.val_int, NULL);
2973 break;
2974 case DW_OP_plus_uconst:
2975 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2976 break;
2977 case DW_OP_breg0:
2978 case DW_OP_breg1:
2979 case DW_OP_breg2:
2980 case DW_OP_breg3:
2981 case DW_OP_breg4:
2982 case DW_OP_breg5:
2983 case DW_OP_breg6:
2984 case DW_OP_breg7:
2985 case DW_OP_breg8:
2986 case DW_OP_breg9:
2987 case DW_OP_breg10:
2988 case DW_OP_breg11:
2989 case DW_OP_breg12:
2990 case DW_OP_breg13:
2991 case DW_OP_breg14:
2992 case DW_OP_breg15:
2993 case DW_OP_breg16:
2994 case DW_OP_breg17:
2995 case DW_OP_breg18:
2996 case DW_OP_breg19:
2997 case DW_OP_breg20:
2998 case DW_OP_breg21:
2999 case DW_OP_breg22:
3000 case DW_OP_breg23:
3001 case DW_OP_breg24:
3002 case DW_OP_breg25:
3003 case DW_OP_breg26:
3004 case DW_OP_breg27:
3005 case DW_OP_breg28:
3006 case DW_OP_breg29:
3007 case DW_OP_breg30:
3008 case DW_OP_breg31:
3009 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3010 break;
3011 case DW_OP_regx:
3012 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3013 break;
3014 case DW_OP_fbreg:
3015 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3016 break;
3017 case DW_OP_bregx:
3018 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3019 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3020 break;
3021 case DW_OP_piece:
3022 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3023 break;
3024 case DW_OP_deref_size:
3025 case DW_OP_xderef_size:
3026 dw2_asm_output_data (1, val1->v.val_int, NULL);
3027 break;
3028
3029 case INTERNAL_DW_OP_tls_addr:
3030 #ifdef ASM_OUTPUT_DWARF_DTPREL
3031 ASM_OUTPUT_DWARF_DTPREL (asm_out_file, DWARF2_ADDR_SIZE,
3032 val1->v.val_addr);
3033 fputc ('\n', asm_out_file);
3034 #else
3035 abort ();
3036 #endif
3037 break;
3038
3039 default:
3040 /* Other codes have no operands. */
3041 break;
3042 }
3043 }
3044
3045 /* Output a sequence of location operations. */
3046
3047 static void
3048 output_loc_sequence (loc)
3049 dw_loc_descr_ref loc;
3050 {
3051 for (; loc != NULL; loc = loc->dw_loc_next)
3052 {
3053 /* Output the opcode. */
3054 dw2_asm_output_data (1, loc->dw_loc_opc,
3055 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3056
3057 /* Output the operand(s) (if any). */
3058 output_loc_operands (loc);
3059 }
3060 }
3061
3062 /* This routine will generate the correct assembly data for a location
3063 description based on a cfi entry with a complex address. */
3064
3065 static void
3066 output_cfa_loc (cfi)
3067 dw_cfi_ref cfi;
3068 {
3069 dw_loc_descr_ref loc;
3070 unsigned long size;
3071
3072 /* Output the size of the block. */
3073 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3074 size = size_of_locs (loc);
3075 dw2_asm_output_data_uleb128 (size, NULL);
3076
3077 /* Now output the operations themselves. */
3078 output_loc_sequence (loc);
3079 }
3080
3081 /* This function builds a dwarf location descriptor sequence from
3082 a dw_cfa_location. */
3083
3084 static struct dw_loc_descr_struct *
3085 build_cfa_loc (cfa)
3086 dw_cfa_location *cfa;
3087 {
3088 struct dw_loc_descr_struct *head, *tmp;
3089
3090 if (cfa->indirect == 0)
3091 abort ();
3092
3093 if (cfa->base_offset)
3094 {
3095 if (cfa->reg <= 31)
3096 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3097 else
3098 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3099 }
3100 else if (cfa->reg <= 31)
3101 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3102 else
3103 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3104
3105 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3106 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3107 add_loc_descr (&head, tmp);
3108 if (cfa->offset != 0)
3109 {
3110 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3111 add_loc_descr (&head, tmp);
3112 }
3113
3114 return head;
3115 }
3116
3117 /* This function fills in aa dw_cfa_location structure from a dwarf location
3118 descriptor sequence. */
3119
3120 static void
3121 get_cfa_from_loc_descr (cfa, loc)
3122 dw_cfa_location *cfa;
3123 struct dw_loc_descr_struct *loc;
3124 {
3125 struct dw_loc_descr_struct *ptr;
3126 cfa->offset = 0;
3127 cfa->base_offset = 0;
3128 cfa->indirect = 0;
3129 cfa->reg = -1;
3130
3131 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3132 {
3133 enum dwarf_location_atom op = ptr->dw_loc_opc;
3134
3135 switch (op)
3136 {
3137 case DW_OP_reg0:
3138 case DW_OP_reg1:
3139 case DW_OP_reg2:
3140 case DW_OP_reg3:
3141 case DW_OP_reg4:
3142 case DW_OP_reg5:
3143 case DW_OP_reg6:
3144 case DW_OP_reg7:
3145 case DW_OP_reg8:
3146 case DW_OP_reg9:
3147 case DW_OP_reg10:
3148 case DW_OP_reg11:
3149 case DW_OP_reg12:
3150 case DW_OP_reg13:
3151 case DW_OP_reg14:
3152 case DW_OP_reg15:
3153 case DW_OP_reg16:
3154 case DW_OP_reg17:
3155 case DW_OP_reg18:
3156 case DW_OP_reg19:
3157 case DW_OP_reg20:
3158 case DW_OP_reg21:
3159 case DW_OP_reg22:
3160 case DW_OP_reg23:
3161 case DW_OP_reg24:
3162 case DW_OP_reg25:
3163 case DW_OP_reg26:
3164 case DW_OP_reg27:
3165 case DW_OP_reg28:
3166 case DW_OP_reg29:
3167 case DW_OP_reg30:
3168 case DW_OP_reg31:
3169 cfa->reg = op - DW_OP_reg0;
3170 break;
3171 case DW_OP_regx:
3172 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3173 break;
3174 case DW_OP_breg0:
3175 case DW_OP_breg1:
3176 case DW_OP_breg2:
3177 case DW_OP_breg3:
3178 case DW_OP_breg4:
3179 case DW_OP_breg5:
3180 case DW_OP_breg6:
3181 case DW_OP_breg7:
3182 case DW_OP_breg8:
3183 case DW_OP_breg9:
3184 case DW_OP_breg10:
3185 case DW_OP_breg11:
3186 case DW_OP_breg12:
3187 case DW_OP_breg13:
3188 case DW_OP_breg14:
3189 case DW_OP_breg15:
3190 case DW_OP_breg16:
3191 case DW_OP_breg17:
3192 case DW_OP_breg18:
3193 case DW_OP_breg19:
3194 case DW_OP_breg20:
3195 case DW_OP_breg21:
3196 case DW_OP_breg22:
3197 case DW_OP_breg23:
3198 case DW_OP_breg24:
3199 case DW_OP_breg25:
3200 case DW_OP_breg26:
3201 case DW_OP_breg27:
3202 case DW_OP_breg28:
3203 case DW_OP_breg29:
3204 case DW_OP_breg30:
3205 case DW_OP_breg31:
3206 cfa->reg = op - DW_OP_breg0;
3207 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3208 break;
3209 case DW_OP_bregx:
3210 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3211 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3212 break;
3213 case DW_OP_deref:
3214 cfa->indirect = 1;
3215 break;
3216 case DW_OP_plus_uconst:
3217 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3218 break;
3219 default:
3220 internal_error ("DW_LOC_OP %s not implemented\n",
3221 dwarf_stack_op_name (ptr->dw_loc_opc));
3222 }
3223 }
3224 }
3225 #endif /* .debug_frame support */
3226 \f
3227 /* And now, the support for symbolic debugging information. */
3228 #ifdef DWARF2_DEBUGGING_INFO
3229
3230 /* .debug_str support. */
3231 static int output_indirect_string PARAMS ((void **, void *));
3232
3233 static void dwarf2out_init PARAMS ((const char *));
3234 static void dwarf2out_finish PARAMS ((const char *));
3235 static void dwarf2out_define PARAMS ((unsigned int, const char *));
3236 static void dwarf2out_undef PARAMS ((unsigned int, const char *));
3237 static void dwarf2out_start_source_file PARAMS ((unsigned, const char *));
3238 static void dwarf2out_end_source_file PARAMS ((unsigned));
3239 static void dwarf2out_begin_block PARAMS ((unsigned, unsigned));
3240 static void dwarf2out_end_block PARAMS ((unsigned, unsigned));
3241 static bool dwarf2out_ignore_block PARAMS ((tree));
3242 static void dwarf2out_global_decl PARAMS ((tree));
3243 static void dwarf2out_abstract_function PARAMS ((tree));
3244
3245 /* The debug hooks structure. */
3246
3247 const struct gcc_debug_hooks dwarf2_debug_hooks =
3248 {
3249 dwarf2out_init,
3250 dwarf2out_finish,
3251 dwarf2out_define,
3252 dwarf2out_undef,
3253 dwarf2out_start_source_file,
3254 dwarf2out_end_source_file,
3255 dwarf2out_begin_block,
3256 dwarf2out_end_block,
3257 dwarf2out_ignore_block,
3258 dwarf2out_source_line,
3259 dwarf2out_begin_prologue,
3260 debug_nothing_int_charstar, /* end_prologue */
3261 dwarf2out_end_epilogue,
3262 debug_nothing_tree, /* begin_function */
3263 debug_nothing_int, /* end_function */
3264 dwarf2out_decl, /* function_decl */
3265 dwarf2out_global_decl,
3266 debug_nothing_tree, /* deferred_inline_function */
3267 /* The DWARF 2 backend tries to reduce debugging bloat by not
3268 emitting the abstract description of inline functions until
3269 something tries to reference them. */
3270 dwarf2out_abstract_function, /* outlining_inline_function */
3271 debug_nothing_rtx /* label */
3272 };
3273 #endif
3274 \f
3275 /* NOTE: In the comments in this file, many references are made to
3276 "Debugging Information Entries". This term is abbreviated as `DIE'
3277 throughout the remainder of this file. */
3278
3279 /* An internal representation of the DWARF output is built, and then
3280 walked to generate the DWARF debugging info. The walk of the internal
3281 representation is done after the entire program has been compiled.
3282 The types below are used to describe the internal representation. */
3283
3284 /* Various DIE's use offsets relative to the beginning of the
3285 .debug_info section to refer to each other. */
3286
3287 typedef long int dw_offset;
3288
3289 /* Define typedefs here to avoid circular dependencies. */
3290
3291 typedef struct dw_attr_struct *dw_attr_ref;
3292 typedef struct dw_line_info_struct *dw_line_info_ref;
3293 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3294 typedef struct pubname_struct *pubname_ref;
3295 typedef struct dw_ranges_struct *dw_ranges_ref;
3296
3297 /* Each entry in the line_info_table maintains the file and
3298 line number associated with the label generated for that
3299 entry. The label gives the PC value associated with
3300 the line number entry. */
3301
3302 typedef struct dw_line_info_struct GTY(())
3303 {
3304 unsigned long dw_file_num;
3305 unsigned long dw_line_num;
3306 }
3307 dw_line_info_entry;
3308
3309 /* Line information for functions in separate sections; each one gets its
3310 own sequence. */
3311 typedef struct dw_separate_line_info_struct GTY(())
3312 {
3313 unsigned long dw_file_num;
3314 unsigned long dw_line_num;
3315 unsigned long function;
3316 }
3317 dw_separate_line_info_entry;
3318
3319 /* Each DIE attribute has a field specifying the attribute kind,
3320 a link to the next attribute in the chain, and an attribute value.
3321 Attributes are typically linked below the DIE they modify. */
3322
3323 typedef struct dw_attr_struct GTY(())
3324 {
3325 enum dwarf_attribute dw_attr;
3326 dw_attr_ref dw_attr_next;
3327 dw_val_node dw_attr_val;
3328 }
3329 dw_attr_node;
3330
3331 /* The Debugging Information Entry (DIE) structure */
3332
3333 typedef struct die_struct GTY(())
3334 {
3335 enum dwarf_tag die_tag;
3336 char *die_symbol;
3337 dw_attr_ref die_attr;
3338 dw_die_ref die_parent;
3339 dw_die_ref die_child;
3340 dw_die_ref die_sib;
3341 dw_offset die_offset;
3342 unsigned long die_abbrev;
3343 int die_mark;
3344 }
3345 die_node;
3346
3347 /* The pubname structure */
3348
3349 typedef struct pubname_struct GTY(())
3350 {
3351 dw_die_ref die;
3352 char *name;
3353 }
3354 pubname_entry;
3355
3356 struct dw_ranges_struct GTY(())
3357 {
3358 int block_num;
3359 };
3360
3361 /* The limbo die list structure. */
3362 typedef struct limbo_die_struct GTY(())
3363 {
3364 dw_die_ref die;
3365 tree created_for;
3366 struct limbo_die_struct *next;
3367 }
3368 limbo_die_node;
3369
3370 /* How to start an assembler comment. */
3371 #ifndef ASM_COMMENT_START
3372 #define ASM_COMMENT_START ";#"
3373 #endif
3374
3375 /* Define a macro which returns nonzero for a TYPE_DECL which was
3376 implicitly generated for a tagged type.
3377
3378 Note that unlike the gcc front end (which generates a NULL named
3379 TYPE_DECL node for each complete tagged type, each array type, and
3380 each function type node created) the g++ front end generates a
3381 _named_ TYPE_DECL node for each tagged type node created.
3382 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3383 generate a DW_TAG_typedef DIE for them. */
3384
3385 #define TYPE_DECL_IS_STUB(decl) \
3386 (DECL_NAME (decl) == NULL_TREE \
3387 || (DECL_ARTIFICIAL (decl) \
3388 && is_tagged_type (TREE_TYPE (decl)) \
3389 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3390 /* This is necessary for stub decls that \
3391 appear in nested inline functions. */ \
3392 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3393 && (decl_ultimate_origin (decl) \
3394 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3395
3396 /* Information concerning the compilation unit's programming
3397 language, and compiler version. */
3398
3399 /* Fixed size portion of the DWARF compilation unit header. */
3400 #define DWARF_COMPILE_UNIT_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 3)
3401
3402 /* Fixed size portion of public names info. */
3403 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3404
3405 /* Fixed size portion of the address range info. */
3406 #define DWARF_ARANGES_HEADER_SIZE \
3407 (DWARF_ROUND (2 * DWARF_OFFSET_SIZE + 4, DWARF2_ADDR_SIZE * 2) \
3408 - DWARF_OFFSET_SIZE)
3409
3410 /* Size of padding portion in the address range info. It must be
3411 aligned to twice the pointer size. */
3412 #define DWARF_ARANGES_PAD_SIZE \
3413 (DWARF_ROUND (2 * DWARF_OFFSET_SIZE + 4, DWARF2_ADDR_SIZE * 2) \
3414 - (2 * DWARF_OFFSET_SIZE + 4))
3415
3416 /* Use assembler line directives if available. */
3417 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3418 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3419 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3420 #else
3421 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3422 #endif
3423 #endif
3424
3425 /* Minimum line offset in a special line info. opcode.
3426 This value was chosen to give a reasonable range of values. */
3427 #define DWARF_LINE_BASE -10
3428
3429 /* First special line opcode - leave room for the standard opcodes. */
3430 #define DWARF_LINE_OPCODE_BASE 10
3431
3432 /* Range of line offsets in a special line info. opcode. */
3433 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3434
3435 /* Flag that indicates the initial value of the is_stmt_start flag.
3436 In the present implementation, we do not mark any lines as
3437 the beginning of a source statement, because that information
3438 is not made available by the GCC front-end. */
3439 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3440
3441 #ifdef DWARF2_DEBUGGING_INFO
3442 /* This location is used by calc_die_sizes() to keep track
3443 the offset of each DIE within the .debug_info section. */
3444 static unsigned long next_die_offset;
3445 #endif
3446
3447 /* Record the root of the DIE's built for the current compilation unit. */
3448 static GTY(()) dw_die_ref comp_unit_die;
3449
3450 #ifdef DWARF2_DEBUGGING_INFO
3451 /* We need special handling in dwarf2out_start_source_file if it is
3452 first one. */
3453 static int is_main_source;
3454 #endif
3455
3456 /* A list of DIEs with a NULL parent waiting to be relocated. */
3457 static GTY(()) limbo_die_node *limbo_die_list;
3458
3459 /* Filenames referenced by this compilation unit. */
3460 static GTY(()) varray_type file_table;
3461 static GTY(()) size_t file_table_last_lookup_index;
3462
3463 /* A pointer to the base of a table of references to DIE's that describe
3464 declarations. The table is indexed by DECL_UID() which is a unique
3465 number identifying each decl. */
3466 static GTY((length ("decl_die_table_allocated"))) dw_die_ref *decl_die_table;
3467
3468 /* Number of elements currently allocated for the decl_die_table. */
3469 static unsigned decl_die_table_allocated;
3470
3471 #ifdef DWARF2_DEBUGGING_INFO
3472 /* Number of elements in decl_die_table currently in use. */
3473 static unsigned decl_die_table_in_use;
3474 #endif
3475
3476 /* Size (in elements) of increments by which we may expand the
3477 decl_die_table. */
3478 #define DECL_DIE_TABLE_INCREMENT 256
3479
3480 /* A pointer to the base of a list of references to DIE's that
3481 are uniquely identified by their tag, presence/absence of
3482 children DIE's, and list of attribute/value pairs. */
3483 static GTY((length ("abbrev_die_table_allocated")))
3484 dw_die_ref *abbrev_die_table;
3485
3486 /* Number of elements currently allocated for abbrev_die_table. */
3487 static unsigned abbrev_die_table_allocated;
3488
3489 #ifdef DWARF2_DEBUGGING_INFO
3490 /* Number of elements in type_die_table currently in use. */
3491 static unsigned abbrev_die_table_in_use;
3492 #endif
3493
3494 /* Size (in elements) of increments by which we may expand the
3495 abbrev_die_table. */
3496 #define ABBREV_DIE_TABLE_INCREMENT 256
3497
3498 /* A pointer to the base of a table that contains line information
3499 for each source code line in .text in the compilation unit. */
3500 static GTY((length ("line_info_table_allocated")))
3501 dw_line_info_ref line_info_table;
3502
3503 /* Number of elements currently allocated for line_info_table. */
3504 static unsigned line_info_table_allocated;
3505
3506 #ifdef DWARF2_DEBUGGING_INFO
3507 /* Number of elements in line_info_table currently in use. */
3508 static unsigned line_info_table_in_use;
3509 #endif
3510
3511 /* A pointer to the base of a table that contains line information
3512 for each source code line outside of .text in the compilation unit. */
3513 static GTY ((length ("separate_line_info_table_allocated")))
3514 dw_separate_line_info_ref separate_line_info_table;
3515
3516 /* Number of elements currently allocated for separate_line_info_table. */
3517 static unsigned separate_line_info_table_allocated;
3518
3519 #ifdef DWARF2_DEBUGGING_INFO
3520 /* Number of elements in separate_line_info_table currently in use. */
3521 static unsigned separate_line_info_table_in_use;
3522 #endif
3523
3524 /* Size (in elements) of increments by which we may expand the
3525 line_info_table. */
3526 #define LINE_INFO_TABLE_INCREMENT 1024
3527
3528 /* A pointer to the base of a table that contains a list of publicly
3529 accessible names. */
3530 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3531
3532 /* Number of elements currently allocated for pubname_table. */
3533 static unsigned pubname_table_allocated;
3534
3535 #ifdef DWARF2_DEBUGGING_INFO
3536 /* Number of elements in pubname_table currently in use. */
3537 static unsigned pubname_table_in_use;
3538 #endif
3539
3540 /* Size (in elements) of increments by which we may expand the
3541 pubname_table. */
3542 #define PUBNAME_TABLE_INCREMENT 64
3543
3544 /* Array of dies for which we should generate .debug_arange info. */
3545 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3546
3547 /* Number of elements currently allocated for arange_table. */
3548 static unsigned arange_table_allocated;
3549
3550 #ifdef DWARF2_DEBUGGING_INFO
3551 /* Number of elements in arange_table currently in use. */
3552 static unsigned arange_table_in_use;
3553 #endif
3554
3555 /* Size (in elements) of increments by which we may expand the
3556 arange_table. */
3557 #define ARANGE_TABLE_INCREMENT 64
3558
3559 /* Array of dies for which we should generate .debug_ranges info. */
3560 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3561
3562 /* Number of elements currently allocated for ranges_table. */
3563 static unsigned ranges_table_allocated;
3564
3565 #ifdef DWARF2_DEBUGGING_INFO
3566 /* Number of elements in ranges_table currently in use. */
3567 static unsigned ranges_table_in_use;
3568
3569 /* Size (in elements) of increments by which we may expand the
3570 ranges_table. */
3571 #define RANGES_TABLE_INCREMENT 64
3572
3573 /* Whether we have location lists that need outputting */
3574 static unsigned have_location_lists;
3575
3576 /* Record whether the function being analyzed contains inlined functions. */
3577 static int current_function_has_inlines;
3578 #endif
3579 #if 0 && defined (MIPS_DEBUGGING_INFO)
3580 static int comp_unit_has_inlines;
3581 #endif
3582
3583 #ifdef DWARF2_DEBUGGING_INFO
3584
3585 /* Forward declarations for functions defined in this file. */
3586
3587 static int is_pseudo_reg PARAMS ((rtx));
3588 static tree type_main_variant PARAMS ((tree));
3589 static int is_tagged_type PARAMS ((tree));
3590 static const char *dwarf_tag_name PARAMS ((unsigned));
3591 static const char *dwarf_attr_name PARAMS ((unsigned));
3592 static const char *dwarf_form_name PARAMS ((unsigned));
3593 #if 0
3594 static const char *dwarf_type_encoding_name PARAMS ((unsigned));
3595 #endif
3596 static tree decl_ultimate_origin PARAMS ((tree));
3597 static tree block_ultimate_origin PARAMS ((tree));
3598 static tree decl_class_context PARAMS ((tree));
3599 static void add_dwarf_attr PARAMS ((dw_die_ref, dw_attr_ref));
3600 static inline enum dw_val_class AT_class PARAMS ((dw_attr_ref));
3601 static void add_AT_flag PARAMS ((dw_die_ref,
3602 enum dwarf_attribute,
3603 unsigned));
3604 static inline unsigned AT_flag PARAMS ((dw_attr_ref));
3605 static void add_AT_int PARAMS ((dw_die_ref,
3606 enum dwarf_attribute, long));
3607 static inline long int AT_int PARAMS ((dw_attr_ref));
3608 static void add_AT_unsigned PARAMS ((dw_die_ref,
3609 enum dwarf_attribute,
3610 unsigned long));
3611 static inline unsigned long AT_unsigned PARAMS ((dw_attr_ref));
3612 static void add_AT_long_long PARAMS ((dw_die_ref,
3613 enum dwarf_attribute,
3614 unsigned long,
3615 unsigned long));
3616 static void add_AT_float PARAMS ((dw_die_ref,
3617 enum dwarf_attribute,
3618 unsigned, long *));
3619 static hashval_t debug_str_do_hash PARAMS ((const void *));
3620 static int debug_str_eq PARAMS ((const void *, const void *));
3621 static void add_AT_string PARAMS ((dw_die_ref,
3622 enum dwarf_attribute,
3623 const char *));
3624 static inline const char *AT_string PARAMS ((dw_attr_ref));
3625 static int AT_string_form PARAMS ((dw_attr_ref));
3626 static void add_AT_die_ref PARAMS ((dw_die_ref,
3627 enum dwarf_attribute,
3628 dw_die_ref));
3629 static inline dw_die_ref AT_ref PARAMS ((dw_attr_ref));
3630 static inline int AT_ref_external PARAMS ((dw_attr_ref));
3631 static inline void set_AT_ref_external PARAMS ((dw_attr_ref, int));
3632 static void add_AT_fde_ref PARAMS ((dw_die_ref,
3633 enum dwarf_attribute,
3634 unsigned));
3635 static void add_AT_loc PARAMS ((dw_die_ref,
3636 enum dwarf_attribute,
3637 dw_loc_descr_ref));
3638 static inline dw_loc_descr_ref AT_loc PARAMS ((dw_attr_ref));
3639 static void add_AT_loc_list PARAMS ((dw_die_ref,
3640 enum dwarf_attribute,
3641 dw_loc_list_ref));
3642 static inline dw_loc_list_ref AT_loc_list PARAMS ((dw_attr_ref));
3643 static void add_AT_addr PARAMS ((dw_die_ref,
3644 enum dwarf_attribute,
3645 rtx));
3646 static inline rtx AT_addr PARAMS ((dw_attr_ref));
3647 static void add_AT_lbl_id PARAMS ((dw_die_ref,
3648 enum dwarf_attribute,
3649 const char *));
3650 static void add_AT_lbl_offset PARAMS ((dw_die_ref,
3651 enum dwarf_attribute,
3652 const char *));
3653 static void add_AT_offset PARAMS ((dw_die_ref,
3654 enum dwarf_attribute,
3655 unsigned long));
3656 static void add_AT_range_list PARAMS ((dw_die_ref,
3657 enum dwarf_attribute,
3658 unsigned long));
3659 static inline const char *AT_lbl PARAMS ((dw_attr_ref));
3660 static dw_attr_ref get_AT PARAMS ((dw_die_ref,
3661 enum dwarf_attribute));
3662 static const char *get_AT_low_pc PARAMS ((dw_die_ref));
3663 static const char *get_AT_hi_pc PARAMS ((dw_die_ref));
3664 static const char *get_AT_string PARAMS ((dw_die_ref,
3665 enum dwarf_attribute));
3666 static int get_AT_flag PARAMS ((dw_die_ref,
3667 enum dwarf_attribute));
3668 static unsigned get_AT_unsigned PARAMS ((dw_die_ref,
3669 enum dwarf_attribute));
3670 static inline dw_die_ref get_AT_ref PARAMS ((dw_die_ref,
3671 enum dwarf_attribute));
3672 static int is_c_family PARAMS ((void));
3673 static int is_cxx PARAMS ((void));
3674 static int is_java PARAMS ((void));
3675 static int is_fortran PARAMS ((void));
3676 static void remove_AT PARAMS ((dw_die_ref,
3677 enum dwarf_attribute));
3678 static inline void free_die PARAMS ((dw_die_ref));
3679 static void remove_children PARAMS ((dw_die_ref));
3680 static void add_child_die PARAMS ((dw_die_ref, dw_die_ref));
3681 static dw_die_ref new_die PARAMS ((enum dwarf_tag, dw_die_ref,
3682 tree));
3683 static dw_die_ref lookup_type_die PARAMS ((tree));
3684 static void equate_type_number_to_die PARAMS ((tree, dw_die_ref));
3685 static dw_die_ref lookup_decl_die PARAMS ((tree));
3686 static void equate_decl_number_to_die PARAMS ((tree, dw_die_ref));
3687 static void print_spaces PARAMS ((FILE *));
3688 static void print_die PARAMS ((dw_die_ref, FILE *));
3689 static void print_dwarf_line_table PARAMS ((FILE *));
3690 static void reverse_die_lists PARAMS ((dw_die_ref));
3691 static void reverse_all_dies PARAMS ((dw_die_ref));
3692 static dw_die_ref push_new_compile_unit PARAMS ((dw_die_ref, dw_die_ref));
3693 static dw_die_ref pop_compile_unit PARAMS ((dw_die_ref));
3694 static void loc_checksum PARAMS ((dw_loc_descr_ref,
3695 struct md5_ctx *));
3696 static void attr_checksum PARAMS ((dw_attr_ref,
3697 struct md5_ctx *,
3698 int *));
3699 static void die_checksum PARAMS ((dw_die_ref,
3700 struct md5_ctx *,
3701 int *));
3702 static int same_loc_p PARAMS ((dw_loc_descr_ref,
3703 dw_loc_descr_ref, int *));
3704 static int same_dw_val_p PARAMS ((dw_val_node *, dw_val_node *,
3705 int *));
3706 static int same_attr_p PARAMS ((dw_attr_ref, dw_attr_ref, int *));
3707 static int same_die_p PARAMS ((dw_die_ref, dw_die_ref, int *));
3708 static int same_die_p_wrap PARAMS ((dw_die_ref, dw_die_ref));
3709 static void compute_section_prefix PARAMS ((dw_die_ref));
3710 static int is_type_die PARAMS ((dw_die_ref));
3711 static int is_comdat_die PARAMS ((dw_die_ref));
3712 static int is_symbol_die PARAMS ((dw_die_ref));
3713 static void assign_symbol_names PARAMS ((dw_die_ref));
3714 static void break_out_includes PARAMS ((dw_die_ref));
3715 static hashval_t htab_cu_hash PARAMS ((const void *));
3716 static int htab_cu_eq PARAMS ((const void *, const void *));
3717 static void htab_cu_del PARAMS ((void *));
3718 static int check_duplicate_cu PARAMS ((dw_die_ref, htab_t, unsigned *));
3719 static void record_comdat_symbol_number PARAMS ((dw_die_ref, htab_t, unsigned));
3720 static void add_sibling_attributes PARAMS ((dw_die_ref));
3721 static void build_abbrev_table PARAMS ((dw_die_ref));
3722 static void output_location_lists PARAMS ((dw_die_ref));
3723 static int constant_size PARAMS ((long unsigned));
3724 static unsigned long size_of_die PARAMS ((dw_die_ref));
3725 static void calc_die_sizes PARAMS ((dw_die_ref));
3726 static void mark_dies PARAMS ((dw_die_ref));
3727 static void unmark_dies PARAMS ((dw_die_ref));
3728 static void unmark_all_dies PARAMS ((dw_die_ref));
3729 static unsigned long size_of_pubnames PARAMS ((void));
3730 static unsigned long size_of_aranges PARAMS ((void));
3731 static enum dwarf_form value_format PARAMS ((dw_attr_ref));
3732 static void output_value_format PARAMS ((dw_attr_ref));
3733 static void output_abbrev_section PARAMS ((void));
3734 static void output_die_symbol PARAMS ((dw_die_ref));
3735 static void output_die PARAMS ((dw_die_ref));
3736 static void output_compilation_unit_header PARAMS ((void));
3737 static void output_comp_unit PARAMS ((dw_die_ref, int));
3738 static const char *dwarf2_name PARAMS ((tree, int));
3739 static void add_pubname PARAMS ((tree, dw_die_ref));
3740 static void output_pubnames PARAMS ((void));
3741 static void add_arange PARAMS ((tree, dw_die_ref));
3742 static void output_aranges PARAMS ((void));
3743 static unsigned int add_ranges PARAMS ((tree));
3744 static void output_ranges PARAMS ((void));
3745 static void output_line_info PARAMS ((void));
3746 static void output_file_names PARAMS ((void));
3747 static dw_die_ref base_type_die PARAMS ((tree));
3748 static tree root_type PARAMS ((tree));
3749 static int is_base_type PARAMS ((tree));
3750 static dw_die_ref modified_type_die PARAMS ((tree, int, int, dw_die_ref));
3751 static int type_is_enum PARAMS ((tree));
3752 static unsigned int reg_number PARAMS ((rtx));
3753 static dw_loc_descr_ref reg_loc_descriptor PARAMS ((rtx));
3754 static dw_loc_descr_ref int_loc_descriptor PARAMS ((HOST_WIDE_INT));
3755 static dw_loc_descr_ref based_loc_descr PARAMS ((unsigned, long));
3756 static int is_based_loc PARAMS ((rtx));
3757 static dw_loc_descr_ref mem_loc_descriptor PARAMS ((rtx, enum machine_mode mode));
3758 static dw_loc_descr_ref concat_loc_descriptor PARAMS ((rtx, rtx));
3759 static dw_loc_descr_ref loc_descriptor PARAMS ((rtx));
3760 static dw_loc_descr_ref loc_descriptor_from_tree PARAMS ((tree, int));
3761 static HOST_WIDE_INT ceiling PARAMS ((HOST_WIDE_INT, unsigned int));
3762 static tree field_type PARAMS ((tree));
3763 static unsigned int simple_type_align_in_bits PARAMS ((tree));
3764 static unsigned int simple_decl_align_in_bits PARAMS ((tree));
3765 static unsigned HOST_WIDE_INT simple_type_size_in_bits PARAMS ((tree));
3766 static HOST_WIDE_INT field_byte_offset PARAMS ((tree));
3767 static void add_AT_location_description PARAMS ((dw_die_ref,
3768 enum dwarf_attribute,
3769 dw_loc_descr_ref));
3770 static void add_data_member_location_attribute PARAMS ((dw_die_ref, tree));
3771 static void add_const_value_attribute PARAMS ((dw_die_ref, rtx));
3772 static rtx rtl_for_decl_location PARAMS ((tree));
3773 static void add_location_or_const_value_attribute PARAMS ((dw_die_ref, tree));
3774 static void tree_add_const_value_attribute PARAMS ((dw_die_ref, tree));
3775 static void add_name_attribute PARAMS ((dw_die_ref, const char *));
3776 static void add_comp_dir_attribute PARAMS ((dw_die_ref));
3777 static void add_bound_info PARAMS ((dw_die_ref,
3778 enum dwarf_attribute, tree));
3779 static void add_subscript_info PARAMS ((dw_die_ref, tree));
3780 static void add_byte_size_attribute PARAMS ((dw_die_ref, tree));
3781 static void add_bit_offset_attribute PARAMS ((dw_die_ref, tree));
3782 static void add_bit_size_attribute PARAMS ((dw_die_ref, tree));
3783 static void add_prototyped_attribute PARAMS ((dw_die_ref, tree));
3784 static void add_abstract_origin_attribute PARAMS ((dw_die_ref, tree));
3785 static void add_pure_or_virtual_attribute PARAMS ((dw_die_ref, tree));
3786 static void add_src_coords_attributes PARAMS ((dw_die_ref, tree));
3787 static void add_name_and_src_coords_attributes PARAMS ((dw_die_ref, tree));
3788 static void push_decl_scope PARAMS ((tree));
3789 static void pop_decl_scope PARAMS ((void));
3790 static dw_die_ref scope_die_for PARAMS ((tree, dw_die_ref));
3791 static inline int local_scope_p PARAMS ((dw_die_ref));
3792 static inline int class_scope_p PARAMS ((dw_die_ref));
3793 static void add_type_attribute PARAMS ((dw_die_ref, tree, int, int,
3794 dw_die_ref));
3795 static const char *type_tag PARAMS ((tree));
3796 static tree member_declared_type PARAMS ((tree));
3797 #if 0
3798 static const char *decl_start_label PARAMS ((tree));
3799 #endif
3800 static void gen_array_type_die PARAMS ((tree, dw_die_ref));
3801 static void gen_set_type_die PARAMS ((tree, dw_die_ref));
3802 #if 0
3803 static void gen_entry_point_die PARAMS ((tree, dw_die_ref));
3804 #endif
3805 static void gen_inlined_enumeration_type_die PARAMS ((tree, dw_die_ref));
3806 static void gen_inlined_structure_type_die PARAMS ((tree, dw_die_ref));
3807 static void gen_inlined_union_type_die PARAMS ((tree, dw_die_ref));
3808 static void gen_enumeration_type_die PARAMS ((tree, dw_die_ref));
3809 static dw_die_ref gen_formal_parameter_die PARAMS ((tree, dw_die_ref));
3810 static void gen_unspecified_parameters_die PARAMS ((tree, dw_die_ref));
3811 static void gen_formal_types_die PARAMS ((tree, dw_die_ref));
3812 static void gen_subprogram_die PARAMS ((tree, dw_die_ref));
3813 static void gen_variable_die PARAMS ((tree, dw_die_ref));
3814 static void gen_label_die PARAMS ((tree, dw_die_ref));
3815 static void gen_lexical_block_die PARAMS ((tree, dw_die_ref, int));
3816 static void gen_inlined_subroutine_die PARAMS ((tree, dw_die_ref, int));
3817 static void gen_field_die PARAMS ((tree, dw_die_ref));
3818 static void gen_ptr_to_mbr_type_die PARAMS ((tree, dw_die_ref));
3819 static dw_die_ref gen_compile_unit_die PARAMS ((const char *));
3820 static void gen_string_type_die PARAMS ((tree, dw_die_ref));
3821 static void gen_inheritance_die PARAMS ((tree, tree, dw_die_ref));
3822 static void gen_member_die PARAMS ((tree, dw_die_ref));
3823 static void gen_struct_or_union_type_die PARAMS ((tree, dw_die_ref));
3824 static void gen_subroutine_type_die PARAMS ((tree, dw_die_ref));
3825 static void gen_typedef_die PARAMS ((tree, dw_die_ref));
3826 static void gen_type_die PARAMS ((tree, dw_die_ref));
3827 static void gen_tagged_type_instantiation_die PARAMS ((tree, dw_die_ref));
3828 static void gen_block_die PARAMS ((tree, dw_die_ref, int));
3829 static void decls_for_scope PARAMS ((tree, dw_die_ref, int));
3830 static int is_redundant_typedef PARAMS ((tree));
3831 static void gen_decl_die PARAMS ((tree, dw_die_ref));
3832 static unsigned lookup_filename PARAMS ((const char *));
3833 static void init_file_table PARAMS ((void));
3834 static void retry_incomplete_types PARAMS ((void));
3835 static void gen_type_die_for_member PARAMS ((tree, tree, dw_die_ref));
3836 static void splice_child_die PARAMS ((dw_die_ref, dw_die_ref));
3837 static int file_info_cmp PARAMS ((const void *, const void *));
3838 static dw_loc_list_ref new_loc_list PARAMS ((dw_loc_descr_ref,
3839 const char *, const char *,
3840 const char *, unsigned));
3841 static void add_loc_descr_to_loc_list PARAMS ((dw_loc_list_ref *,
3842 dw_loc_descr_ref,
3843 const char *, const char *, const char *));
3844 static void output_loc_list PARAMS ((dw_loc_list_ref));
3845 static char *gen_internal_sym PARAMS ((const char *));
3846
3847 /* Section names used to hold DWARF debugging information. */
3848 #ifndef DEBUG_INFO_SECTION
3849 #define DEBUG_INFO_SECTION ".debug_info"
3850 #endif
3851 #ifndef DEBUG_ABBREV_SECTION
3852 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3853 #endif
3854 #ifndef DEBUG_ARANGES_SECTION
3855 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3856 #endif
3857 #ifndef DEBUG_MACINFO_SECTION
3858 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
3859 #endif
3860 #ifndef DEBUG_LINE_SECTION
3861 #define DEBUG_LINE_SECTION ".debug_line"
3862 #endif
3863 #ifndef DEBUG_LOC_SECTION
3864 #define DEBUG_LOC_SECTION ".debug_loc"
3865 #endif
3866 #ifndef DEBUG_PUBNAMES_SECTION
3867 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
3868 #endif
3869 #ifndef DEBUG_STR_SECTION
3870 #define DEBUG_STR_SECTION ".debug_str"
3871 #endif
3872 #ifndef DEBUG_RANGES_SECTION
3873 #define DEBUG_RANGES_SECTION ".debug_ranges"
3874 #endif
3875
3876 /* Standard ELF section names for compiled code and data. */
3877 #ifndef TEXT_SECTION_NAME
3878 #define TEXT_SECTION_NAME ".text"
3879 #endif
3880
3881 /* Section flags for .debug_str section. */
3882 #ifdef HAVE_GAS_SHF_MERGE
3883 #define DEBUG_STR_SECTION_FLAGS \
3884 (SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1)
3885 #else
3886 #define DEBUG_STR_SECTION_FLAGS SECTION_DEBUG
3887 #endif
3888
3889 /* Labels we insert at beginning sections we can reference instead of
3890 the section names themselves. */
3891
3892 #ifndef TEXT_SECTION_LABEL
3893 #define TEXT_SECTION_LABEL "Ltext"
3894 #endif
3895 #ifndef DEBUG_LINE_SECTION_LABEL
3896 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3897 #endif
3898 #ifndef DEBUG_INFO_SECTION_LABEL
3899 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3900 #endif
3901 #ifndef DEBUG_ABBREV_SECTION_LABEL
3902 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3903 #endif
3904 #ifndef DEBUG_LOC_SECTION_LABEL
3905 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3906 #endif
3907 #ifndef DEBUG_RANGES_SECTION_LABEL
3908 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3909 #endif
3910 #ifndef DEBUG_MACINFO_SECTION_LABEL
3911 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3912 #endif
3913
3914 /* Definitions of defaults for formats and names of various special
3915 (artificial) labels which may be generated within this file (when the -g
3916 options is used and DWARF_DEBUGGING_INFO is in effect.
3917 If necessary, these may be overridden from within the tm.h file, but
3918 typically, overriding these defaults is unnecessary. */
3919
3920 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3921 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3922 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3923 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3924 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3925 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3926 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3927 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
3928
3929 #ifndef TEXT_END_LABEL
3930 #define TEXT_END_LABEL "Letext"
3931 #endif
3932 #ifndef BLOCK_BEGIN_LABEL
3933 #define BLOCK_BEGIN_LABEL "LBB"
3934 #endif
3935 #ifndef BLOCK_END_LABEL
3936 #define BLOCK_END_LABEL "LBE"
3937 #endif
3938 #ifndef LINE_CODE_LABEL
3939 #define LINE_CODE_LABEL "LM"
3940 #endif
3941 #ifndef SEPARATE_LINE_CODE_LABEL
3942 #define SEPARATE_LINE_CODE_LABEL "LSM"
3943 #endif
3944 \f
3945 /* We allow a language front-end to designate a function that is to be
3946 called to "demangle" any name before it it put into a DIE. */
3947
3948 static const char *(*demangle_name_func) PARAMS ((const char *));
3949
3950 void
3951 dwarf2out_set_demangle_name_func (func)
3952 const char *(*func) PARAMS ((const char *));
3953 {
3954 demangle_name_func = func;
3955 }
3956
3957 /* Test if rtl node points to a pseudo register. */
3958
3959 static inline int
3960 is_pseudo_reg (rtl)
3961 rtx rtl;
3962 {
3963 return ((GET_CODE (rtl) == REG && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3964 || (GET_CODE (rtl) == SUBREG
3965 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
3966 }
3967
3968 /* Return a reference to a type, with its const and volatile qualifiers
3969 removed. */
3970
3971 static inline tree
3972 type_main_variant (type)
3973 tree type;
3974 {
3975 type = TYPE_MAIN_VARIANT (type);
3976
3977 /* ??? There really should be only one main variant among any group of
3978 variants of a given type (and all of the MAIN_VARIANT values for all
3979 members of the group should point to that one type) but sometimes the C
3980 front-end messes this up for array types, so we work around that bug
3981 here. */
3982 if (TREE_CODE (type) == ARRAY_TYPE)
3983 while (type != TYPE_MAIN_VARIANT (type))
3984 type = TYPE_MAIN_VARIANT (type);
3985
3986 return type;
3987 }
3988
3989 /* Return nonzero if the given type node represents a tagged type. */
3990
3991 static inline int
3992 is_tagged_type (type)
3993 tree type;
3994 {
3995 enum tree_code code = TREE_CODE (type);
3996
3997 return (code == RECORD_TYPE || code == UNION_TYPE
3998 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
3999 }
4000
4001 /* Convert a DIE tag into its string name. */
4002
4003 static const char *
4004 dwarf_tag_name (tag)
4005 unsigned tag;
4006 {
4007 switch (tag)
4008 {
4009 case DW_TAG_padding:
4010 return "DW_TAG_padding";
4011 case DW_TAG_array_type:
4012 return "DW_TAG_array_type";
4013 case DW_TAG_class_type:
4014 return "DW_TAG_class_type";
4015 case DW_TAG_entry_point:
4016 return "DW_TAG_entry_point";
4017 case DW_TAG_enumeration_type:
4018 return "DW_TAG_enumeration_type";
4019 case DW_TAG_formal_parameter:
4020 return "DW_TAG_formal_parameter";
4021 case DW_TAG_imported_declaration:
4022 return "DW_TAG_imported_declaration";
4023 case DW_TAG_label:
4024 return "DW_TAG_label";
4025 case DW_TAG_lexical_block:
4026 return "DW_TAG_lexical_block";
4027 case DW_TAG_member:
4028 return "DW_TAG_member";
4029 case DW_TAG_pointer_type:
4030 return "DW_TAG_pointer_type";
4031 case DW_TAG_reference_type:
4032 return "DW_TAG_reference_type";
4033 case DW_TAG_compile_unit:
4034 return "DW_TAG_compile_unit";
4035 case DW_TAG_string_type:
4036 return "DW_TAG_string_type";
4037 case DW_TAG_structure_type:
4038 return "DW_TAG_structure_type";
4039 case DW_TAG_subroutine_type:
4040 return "DW_TAG_subroutine_type";
4041 case DW_TAG_typedef:
4042 return "DW_TAG_typedef";
4043 case DW_TAG_union_type:
4044 return "DW_TAG_union_type";
4045 case DW_TAG_unspecified_parameters:
4046 return "DW_TAG_unspecified_parameters";
4047 case DW_TAG_variant:
4048 return "DW_TAG_variant";
4049 case DW_TAG_common_block:
4050 return "DW_TAG_common_block";
4051 case DW_TAG_common_inclusion:
4052 return "DW_TAG_common_inclusion";
4053 case DW_TAG_inheritance:
4054 return "DW_TAG_inheritance";
4055 case DW_TAG_inlined_subroutine:
4056 return "DW_TAG_inlined_subroutine";
4057 case DW_TAG_module:
4058 return "DW_TAG_module";
4059 case DW_TAG_ptr_to_member_type:
4060 return "DW_TAG_ptr_to_member_type";
4061 case DW_TAG_set_type:
4062 return "DW_TAG_set_type";
4063 case DW_TAG_subrange_type:
4064 return "DW_TAG_subrange_type";
4065 case DW_TAG_with_stmt:
4066 return "DW_TAG_with_stmt";
4067 case DW_TAG_access_declaration:
4068 return "DW_TAG_access_declaration";
4069 case DW_TAG_base_type:
4070 return "DW_TAG_base_type";
4071 case DW_TAG_catch_block:
4072 return "DW_TAG_catch_block";
4073 case DW_TAG_const_type:
4074 return "DW_TAG_const_type";
4075 case DW_TAG_constant:
4076 return "DW_TAG_constant";
4077 case DW_TAG_enumerator:
4078 return "DW_TAG_enumerator";
4079 case DW_TAG_file_type:
4080 return "DW_TAG_file_type";
4081 case DW_TAG_friend:
4082 return "DW_TAG_friend";
4083 case DW_TAG_namelist:
4084 return "DW_TAG_namelist";
4085 case DW_TAG_namelist_item:
4086 return "DW_TAG_namelist_item";
4087 case DW_TAG_packed_type:
4088 return "DW_TAG_packed_type";
4089 case DW_TAG_subprogram:
4090 return "DW_TAG_subprogram";
4091 case DW_TAG_template_type_param:
4092 return "DW_TAG_template_type_param";
4093 case DW_TAG_template_value_param:
4094 return "DW_TAG_template_value_param";
4095 case DW_TAG_thrown_type:
4096 return "DW_TAG_thrown_type";
4097 case DW_TAG_try_block:
4098 return "DW_TAG_try_block";
4099 case DW_TAG_variant_part:
4100 return "DW_TAG_variant_part";
4101 case DW_TAG_variable:
4102 return "DW_TAG_variable";
4103 case DW_TAG_volatile_type:
4104 return "DW_TAG_volatile_type";
4105 case DW_TAG_MIPS_loop:
4106 return "DW_TAG_MIPS_loop";
4107 case DW_TAG_format_label:
4108 return "DW_TAG_format_label";
4109 case DW_TAG_function_template:
4110 return "DW_TAG_function_template";
4111 case DW_TAG_class_template:
4112 return "DW_TAG_class_template";
4113 case DW_TAG_GNU_BINCL:
4114 return "DW_TAG_GNU_BINCL";
4115 case DW_TAG_GNU_EINCL:
4116 return "DW_TAG_GNU_EINCL";
4117 default:
4118 return "DW_TAG_<unknown>";
4119 }
4120 }
4121
4122 /* Convert a DWARF attribute code into its string name. */
4123
4124 static const char *
4125 dwarf_attr_name (attr)
4126 unsigned attr;
4127 {
4128 switch (attr)
4129 {
4130 case DW_AT_sibling:
4131 return "DW_AT_sibling";
4132 case DW_AT_location:
4133 return "DW_AT_location";
4134 case DW_AT_name:
4135 return "DW_AT_name";
4136 case DW_AT_ordering:
4137 return "DW_AT_ordering";
4138 case DW_AT_subscr_data:
4139 return "DW_AT_subscr_data";
4140 case DW_AT_byte_size:
4141 return "DW_AT_byte_size";
4142 case DW_AT_bit_offset:
4143 return "DW_AT_bit_offset";
4144 case DW_AT_bit_size:
4145 return "DW_AT_bit_size";
4146 case DW_AT_element_list:
4147 return "DW_AT_element_list";
4148 case DW_AT_stmt_list:
4149 return "DW_AT_stmt_list";
4150 case DW_AT_low_pc:
4151 return "DW_AT_low_pc";
4152 case DW_AT_high_pc:
4153 return "DW_AT_high_pc";
4154 case DW_AT_language:
4155 return "DW_AT_language";
4156 case DW_AT_member:
4157 return "DW_AT_member";
4158 case DW_AT_discr:
4159 return "DW_AT_discr";
4160 case DW_AT_discr_value:
4161 return "DW_AT_discr_value";
4162 case DW_AT_visibility:
4163 return "DW_AT_visibility";
4164 case DW_AT_import:
4165 return "DW_AT_import";
4166 case DW_AT_string_length:
4167 return "DW_AT_string_length";
4168 case DW_AT_common_reference:
4169 return "DW_AT_common_reference";
4170 case DW_AT_comp_dir:
4171 return "DW_AT_comp_dir";
4172 case DW_AT_const_value:
4173 return "DW_AT_const_value";
4174 case DW_AT_containing_type:
4175 return "DW_AT_containing_type";
4176 case DW_AT_default_value:
4177 return "DW_AT_default_value";
4178 case DW_AT_inline:
4179 return "DW_AT_inline";
4180 case DW_AT_is_optional:
4181 return "DW_AT_is_optional";
4182 case DW_AT_lower_bound:
4183 return "DW_AT_lower_bound";
4184 case DW_AT_producer:
4185 return "DW_AT_producer";
4186 case DW_AT_prototyped:
4187 return "DW_AT_prototyped";
4188 case DW_AT_return_addr:
4189 return "DW_AT_return_addr";
4190 case DW_AT_start_scope:
4191 return "DW_AT_start_scope";
4192 case DW_AT_stride_size:
4193 return "DW_AT_stride_size";
4194 case DW_AT_upper_bound:
4195 return "DW_AT_upper_bound";
4196 case DW_AT_abstract_origin:
4197 return "DW_AT_abstract_origin";
4198 case DW_AT_accessibility:
4199 return "DW_AT_accessibility";
4200 case DW_AT_address_class:
4201 return "DW_AT_address_class";
4202 case DW_AT_artificial:
4203 return "DW_AT_artificial";
4204 case DW_AT_base_types:
4205 return "DW_AT_base_types";
4206 case DW_AT_calling_convention:
4207 return "DW_AT_calling_convention";
4208 case DW_AT_count:
4209 return "DW_AT_count";
4210 case DW_AT_data_member_location:
4211 return "DW_AT_data_member_location";
4212 case DW_AT_decl_column:
4213 return "DW_AT_decl_column";
4214 case DW_AT_decl_file:
4215 return "DW_AT_decl_file";
4216 case DW_AT_decl_line:
4217 return "DW_AT_decl_line";
4218 case DW_AT_declaration:
4219 return "DW_AT_declaration";
4220 case DW_AT_discr_list:
4221 return "DW_AT_discr_list";
4222 case DW_AT_encoding:
4223 return "DW_AT_encoding";
4224 case DW_AT_external:
4225 return "DW_AT_external";
4226 case DW_AT_frame_base:
4227 return "DW_AT_frame_base";
4228 case DW_AT_friend:
4229 return "DW_AT_friend";
4230 case DW_AT_identifier_case:
4231 return "DW_AT_identifier_case";
4232 case DW_AT_macro_info:
4233 return "DW_AT_macro_info";
4234 case DW_AT_namelist_items:
4235 return "DW_AT_namelist_items";
4236 case DW_AT_priority:
4237 return "DW_AT_priority";
4238 case DW_AT_segment:
4239 return "DW_AT_segment";
4240 case DW_AT_specification:
4241 return "DW_AT_specification";
4242 case DW_AT_static_link:
4243 return "DW_AT_static_link";
4244 case DW_AT_type:
4245 return "DW_AT_type";
4246 case DW_AT_use_location:
4247 return "DW_AT_use_location";
4248 case DW_AT_variable_parameter:
4249 return "DW_AT_variable_parameter";
4250 case DW_AT_virtuality:
4251 return "DW_AT_virtuality";
4252 case DW_AT_vtable_elem_location:
4253 return "DW_AT_vtable_elem_location";
4254
4255 case DW_AT_allocated:
4256 return "DW_AT_allocated";
4257 case DW_AT_associated:
4258 return "DW_AT_associated";
4259 case DW_AT_data_location:
4260 return "DW_AT_data_location";
4261 case DW_AT_stride:
4262 return "DW_AT_stride";
4263 case DW_AT_entry_pc:
4264 return "DW_AT_entry_pc";
4265 case DW_AT_use_UTF8:
4266 return "DW_AT_use_UTF8";
4267 case DW_AT_extension:
4268 return "DW_AT_extension";
4269 case DW_AT_ranges:
4270 return "DW_AT_ranges";
4271 case DW_AT_trampoline:
4272 return "DW_AT_trampoline";
4273 case DW_AT_call_column:
4274 return "DW_AT_call_column";
4275 case DW_AT_call_file:
4276 return "DW_AT_call_file";
4277 case DW_AT_call_line:
4278 return "DW_AT_call_line";
4279
4280 case DW_AT_MIPS_fde:
4281 return "DW_AT_MIPS_fde";
4282 case DW_AT_MIPS_loop_begin:
4283 return "DW_AT_MIPS_loop_begin";
4284 case DW_AT_MIPS_tail_loop_begin:
4285 return "DW_AT_MIPS_tail_loop_begin";
4286 case DW_AT_MIPS_epilog_begin:
4287 return "DW_AT_MIPS_epilog_begin";
4288 case DW_AT_MIPS_loop_unroll_factor:
4289 return "DW_AT_MIPS_loop_unroll_factor";
4290 case DW_AT_MIPS_software_pipeline_depth:
4291 return "DW_AT_MIPS_software_pipeline_depth";
4292 case DW_AT_MIPS_linkage_name:
4293 return "DW_AT_MIPS_linkage_name";
4294 case DW_AT_MIPS_stride:
4295 return "DW_AT_MIPS_stride";
4296 case DW_AT_MIPS_abstract_name:
4297 return "DW_AT_MIPS_abstract_name";
4298 case DW_AT_MIPS_clone_origin:
4299 return "DW_AT_MIPS_clone_origin";
4300 case DW_AT_MIPS_has_inlines:
4301 return "DW_AT_MIPS_has_inlines";
4302
4303 case DW_AT_sf_names:
4304 return "DW_AT_sf_names";
4305 case DW_AT_src_info:
4306 return "DW_AT_src_info";
4307 case DW_AT_mac_info:
4308 return "DW_AT_mac_info";
4309 case DW_AT_src_coords:
4310 return "DW_AT_src_coords";
4311 case DW_AT_body_begin:
4312 return "DW_AT_body_begin";
4313 case DW_AT_body_end:
4314 return "DW_AT_body_end";
4315 case DW_AT_GNU_vector:
4316 return "DW_AT_GNU_vector";
4317
4318 case DW_AT_VMS_rtnbeg_pd_address:
4319 return "DW_AT_VMS_rtnbeg_pd_address";
4320
4321 default:
4322 return "DW_AT_<unknown>";
4323 }
4324 }
4325
4326 /* Convert a DWARF value form code into its string name. */
4327
4328 static const char *
4329 dwarf_form_name (form)
4330 unsigned form;
4331 {
4332 switch (form)
4333 {
4334 case DW_FORM_addr:
4335 return "DW_FORM_addr";
4336 case DW_FORM_block2:
4337 return "DW_FORM_block2";
4338 case DW_FORM_block4:
4339 return "DW_FORM_block4";
4340 case DW_FORM_data2:
4341 return "DW_FORM_data2";
4342 case DW_FORM_data4:
4343 return "DW_FORM_data4";
4344 case DW_FORM_data8:
4345 return "DW_FORM_data8";
4346 case DW_FORM_string:
4347 return "DW_FORM_string";
4348 case DW_FORM_block:
4349 return "DW_FORM_block";
4350 case DW_FORM_block1:
4351 return "DW_FORM_block1";
4352 case DW_FORM_data1:
4353 return "DW_FORM_data1";
4354 case DW_FORM_flag:
4355 return "DW_FORM_flag";
4356 case DW_FORM_sdata:
4357 return "DW_FORM_sdata";
4358 case DW_FORM_strp:
4359 return "DW_FORM_strp";
4360 case DW_FORM_udata:
4361 return "DW_FORM_udata";
4362 case DW_FORM_ref_addr:
4363 return "DW_FORM_ref_addr";
4364 case DW_FORM_ref1:
4365 return "DW_FORM_ref1";
4366 case DW_FORM_ref2:
4367 return "DW_FORM_ref2";
4368 case DW_FORM_ref4:
4369 return "DW_FORM_ref4";
4370 case DW_FORM_ref8:
4371 return "DW_FORM_ref8";
4372 case DW_FORM_ref_udata:
4373 return "DW_FORM_ref_udata";
4374 case DW_FORM_indirect:
4375 return "DW_FORM_indirect";
4376 default:
4377 return "DW_FORM_<unknown>";
4378 }
4379 }
4380
4381 /* Convert a DWARF type code into its string name. */
4382
4383 #if 0
4384 static const char *
4385 dwarf_type_encoding_name (enc)
4386 unsigned enc;
4387 {
4388 switch (enc)
4389 {
4390 case DW_ATE_address:
4391 return "DW_ATE_address";
4392 case DW_ATE_boolean:
4393 return "DW_ATE_boolean";
4394 case DW_ATE_complex_float:
4395 return "DW_ATE_complex_float";
4396 case DW_ATE_float:
4397 return "DW_ATE_float";
4398 case DW_ATE_signed:
4399 return "DW_ATE_signed";
4400 case DW_ATE_signed_char:
4401 return "DW_ATE_signed_char";
4402 case DW_ATE_unsigned:
4403 return "DW_ATE_unsigned";
4404 case DW_ATE_unsigned_char:
4405 return "DW_ATE_unsigned_char";
4406 default:
4407 return "DW_ATE_<unknown>";
4408 }
4409 }
4410 #endif
4411 \f
4412 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4413 instance of an inlined instance of a decl which is local to an inline
4414 function, so we have to trace all of the way back through the origin chain
4415 to find out what sort of node actually served as the original seed for the
4416 given block. */
4417
4418 static tree
4419 decl_ultimate_origin (decl)
4420 tree decl;
4421 {
4422 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4423 nodes in the function to point to themselves; ignore that if
4424 we're trying to output the abstract instance of this function. */
4425 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4426 return NULL_TREE;
4427
4428 #ifdef ENABLE_CHECKING
4429 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
4430 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4431 most distant ancestor, this should never happen. */
4432 abort ();
4433 #endif
4434
4435 return DECL_ABSTRACT_ORIGIN (decl);
4436 }
4437
4438 /* Determine the "ultimate origin" of a block. The block may be an inlined
4439 instance of an inlined instance of a block which is local to an inline
4440 function, so we have to trace all of the way back through the origin chain
4441 to find out what sort of node actually served as the original seed for the
4442 given block. */
4443
4444 static tree
4445 block_ultimate_origin (block)
4446 tree block;
4447 {
4448 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4449
4450 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4451 nodes in the function to point to themselves; ignore that if
4452 we're trying to output the abstract instance of this function. */
4453 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4454 return NULL_TREE;
4455
4456 if (immediate_origin == NULL_TREE)
4457 return NULL_TREE;
4458 else
4459 {
4460 tree ret_val;
4461 tree lookahead = immediate_origin;
4462
4463 do
4464 {
4465 ret_val = lookahead;
4466 lookahead = (TREE_CODE (ret_val) == BLOCK
4467 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4468 }
4469 while (lookahead != NULL && lookahead != ret_val);
4470
4471 return ret_val;
4472 }
4473 }
4474
4475 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4476 of a virtual function may refer to a base class, so we check the 'this'
4477 parameter. */
4478
4479 static tree
4480 decl_class_context (decl)
4481 tree decl;
4482 {
4483 tree context = NULL_TREE;
4484
4485 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4486 context = DECL_CONTEXT (decl);
4487 else
4488 context = TYPE_MAIN_VARIANT
4489 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4490
4491 if (context && !TYPE_P (context))
4492 context = NULL_TREE;
4493
4494 return context;
4495 }
4496 \f
4497 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4498 addition order, and correct that in reverse_all_dies. */
4499
4500 static inline void
4501 add_dwarf_attr (die, attr)
4502 dw_die_ref die;
4503 dw_attr_ref attr;
4504 {
4505 if (die != NULL && attr != NULL)
4506 {
4507 attr->dw_attr_next = die->die_attr;
4508 die->die_attr = attr;
4509 }
4510 }
4511
4512 static inline enum dw_val_class
4513 AT_class (a)
4514 dw_attr_ref a;
4515 {
4516 return a->dw_attr_val.val_class;
4517 }
4518
4519 /* Add a flag value attribute to a DIE. */
4520
4521 static inline void
4522 add_AT_flag (die, attr_kind, flag)
4523 dw_die_ref die;
4524 enum dwarf_attribute attr_kind;
4525 unsigned flag;
4526 {
4527 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4528
4529 attr->dw_attr_next = NULL;
4530 attr->dw_attr = attr_kind;
4531 attr->dw_attr_val.val_class = dw_val_class_flag;
4532 attr->dw_attr_val.v.val_flag = flag;
4533 add_dwarf_attr (die, attr);
4534 }
4535
4536 static inline unsigned
4537 AT_flag (a)
4538 dw_attr_ref a;
4539 {
4540 if (a && AT_class (a) == dw_val_class_flag)
4541 return a->dw_attr_val.v.val_flag;
4542
4543 abort ();
4544 }
4545
4546 /* Add a signed integer attribute value to a DIE. */
4547
4548 static inline void
4549 add_AT_int (die, attr_kind, int_val)
4550 dw_die_ref die;
4551 enum dwarf_attribute attr_kind;
4552 long int int_val;
4553 {
4554 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4555
4556 attr->dw_attr_next = NULL;
4557 attr->dw_attr = attr_kind;
4558 attr->dw_attr_val.val_class = dw_val_class_const;
4559 attr->dw_attr_val.v.val_int = int_val;
4560 add_dwarf_attr (die, attr);
4561 }
4562
4563 static inline long int
4564 AT_int (a)
4565 dw_attr_ref a;
4566 {
4567 if (a && AT_class (a) == dw_val_class_const)
4568 return a->dw_attr_val.v.val_int;
4569
4570 abort ();
4571 }
4572
4573 /* Add an unsigned integer attribute value to a DIE. */
4574
4575 static inline void
4576 add_AT_unsigned (die, attr_kind, unsigned_val)
4577 dw_die_ref die;
4578 enum dwarf_attribute attr_kind;
4579 unsigned long unsigned_val;
4580 {
4581 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4582
4583 attr->dw_attr_next = NULL;
4584 attr->dw_attr = attr_kind;
4585 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4586 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4587 add_dwarf_attr (die, attr);
4588 }
4589
4590 static inline unsigned long
4591 AT_unsigned (a)
4592 dw_attr_ref a;
4593 {
4594 if (a && AT_class (a) == dw_val_class_unsigned_const)
4595 return a->dw_attr_val.v.val_unsigned;
4596
4597 abort ();
4598 }
4599
4600 /* Add an unsigned double integer attribute value to a DIE. */
4601
4602 static inline void
4603 add_AT_long_long (die, attr_kind, val_hi, val_low)
4604 dw_die_ref die;
4605 enum dwarf_attribute attr_kind;
4606 unsigned long val_hi;
4607 unsigned long val_low;
4608 {
4609 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4610
4611 attr->dw_attr_next = NULL;
4612 attr->dw_attr = attr_kind;
4613 attr->dw_attr_val.val_class = dw_val_class_long_long;
4614 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4615 attr->dw_attr_val.v.val_long_long.low = val_low;
4616 add_dwarf_attr (die, attr);
4617 }
4618
4619 /* Add a floating point attribute value to a DIE and return it. */
4620
4621 static inline void
4622 add_AT_float (die, attr_kind, length, array)
4623 dw_die_ref die;
4624 enum dwarf_attribute attr_kind;
4625 unsigned length;
4626 long *array;
4627 {
4628 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4629
4630 attr->dw_attr_next = NULL;
4631 attr->dw_attr = attr_kind;
4632 attr->dw_attr_val.val_class = dw_val_class_float;
4633 attr->dw_attr_val.v.val_float.length = length;
4634 attr->dw_attr_val.v.val_float.array = array;
4635 add_dwarf_attr (die, attr);
4636 }
4637
4638 /* Hash and equality functions for debug_str_hash. */
4639
4640 static hashval_t
4641 debug_str_do_hash (x)
4642 const void * x;
4643 {
4644 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4645 }
4646
4647 static int
4648 debug_str_eq (x1, x2)
4649 const void * x1;
4650 const void * x2;
4651 {
4652 return strcmp ((((const struct indirect_string_node *)x1)->str),
4653 (const char *)x2) == 0;
4654 }
4655
4656 /* Add a string attribute value to a DIE. */
4657
4658 static inline void
4659 add_AT_string (die, attr_kind, str)
4660 dw_die_ref die;
4661 enum dwarf_attribute attr_kind;
4662 const char *str;
4663 {
4664 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4665 struct indirect_string_node *node;
4666 PTR *slot;
4667
4668 if (! debug_str_hash)
4669 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4670 debug_str_eq, NULL);
4671
4672 slot = htab_find_slot_with_hash (debug_str_hash, str,
4673 htab_hash_string (str), INSERT);
4674 if (*slot == NULL)
4675 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4676 node = (struct indirect_string_node *) *slot;
4677 node->str = ggc_alloc_string (str, -1);
4678 node->refcount++;
4679
4680 attr->dw_attr_next = NULL;
4681 attr->dw_attr = attr_kind;
4682 attr->dw_attr_val.val_class = dw_val_class_str;
4683 attr->dw_attr_val.v.val_str = node;
4684 add_dwarf_attr (die, attr);
4685 }
4686
4687 static inline const char *
4688 AT_string (a)
4689 dw_attr_ref a;
4690 {
4691 if (a && AT_class (a) == dw_val_class_str)
4692 return a->dw_attr_val.v.val_str->str;
4693
4694 abort ();
4695 }
4696
4697 /* Find out whether a string should be output inline in DIE
4698 or out-of-line in .debug_str section. */
4699
4700 static int
4701 AT_string_form (a)
4702 dw_attr_ref a;
4703 {
4704 if (a && AT_class (a) == dw_val_class_str)
4705 {
4706 struct indirect_string_node *node;
4707 unsigned int len;
4708 char label[32];
4709
4710 node = a->dw_attr_val.v.val_str;
4711 if (node->form)
4712 return node->form;
4713
4714 len = strlen (node->str) + 1;
4715
4716 /* If the string is shorter or equal to the size of the reference, it is
4717 always better to put it inline. */
4718 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4719 return node->form = DW_FORM_string;
4720
4721 /* If we cannot expect the linker to merge strings in .debug_str
4722 section, only put it into .debug_str if it is worth even in this
4723 single module. */
4724 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4725 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4726 return node->form = DW_FORM_string;
4727
4728 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4729 ++dw2_string_counter;
4730 node->label = xstrdup (label);
4731
4732 return node->form = DW_FORM_strp;
4733 }
4734
4735 abort ();
4736 }
4737
4738 /* Add a DIE reference attribute value to a DIE. */
4739
4740 static inline void
4741 add_AT_die_ref (die, attr_kind, targ_die)
4742 dw_die_ref die;
4743 enum dwarf_attribute attr_kind;
4744 dw_die_ref targ_die;
4745 {
4746 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4747
4748 attr->dw_attr_next = NULL;
4749 attr->dw_attr = attr_kind;
4750 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4751 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4752 attr->dw_attr_val.v.val_die_ref.external = 0;
4753 add_dwarf_attr (die, attr);
4754 }
4755
4756 static inline dw_die_ref
4757 AT_ref (a)
4758 dw_attr_ref a;
4759 {
4760 if (a && AT_class (a) == dw_val_class_die_ref)
4761 return a->dw_attr_val.v.val_die_ref.die;
4762
4763 abort ();
4764 }
4765
4766 static inline int
4767 AT_ref_external (a)
4768 dw_attr_ref a;
4769 {
4770 if (a && AT_class (a) == dw_val_class_die_ref)
4771 return a->dw_attr_val.v.val_die_ref.external;
4772
4773 return 0;
4774 }
4775
4776 static inline void
4777 set_AT_ref_external (a, i)
4778 dw_attr_ref a;
4779 int i;
4780 {
4781 if (a && AT_class (a) == dw_val_class_die_ref)
4782 a->dw_attr_val.v.val_die_ref.external = i;
4783 else
4784 abort ();
4785 }
4786
4787 /* Add an FDE reference attribute value to a DIE. */
4788
4789 static inline void
4790 add_AT_fde_ref (die, attr_kind, targ_fde)
4791 dw_die_ref die;
4792 enum dwarf_attribute attr_kind;
4793 unsigned targ_fde;
4794 {
4795 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4796
4797 attr->dw_attr_next = NULL;
4798 attr->dw_attr = attr_kind;
4799 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4800 attr->dw_attr_val.v.val_fde_index = targ_fde;
4801 add_dwarf_attr (die, attr);
4802 }
4803
4804 /* Add a location description attribute value to a DIE. */
4805
4806 static inline void
4807 add_AT_loc (die, attr_kind, loc)
4808 dw_die_ref die;
4809 enum dwarf_attribute attr_kind;
4810 dw_loc_descr_ref loc;
4811 {
4812 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4813
4814 attr->dw_attr_next = NULL;
4815 attr->dw_attr = attr_kind;
4816 attr->dw_attr_val.val_class = dw_val_class_loc;
4817 attr->dw_attr_val.v.val_loc = loc;
4818 add_dwarf_attr (die, attr);
4819 }
4820
4821 static inline dw_loc_descr_ref
4822 AT_loc (a)
4823 dw_attr_ref a;
4824 {
4825 if (a && AT_class (a) == dw_val_class_loc)
4826 return a->dw_attr_val.v.val_loc;
4827
4828 abort ();
4829 }
4830
4831 static inline void
4832 add_AT_loc_list (die, attr_kind, loc_list)
4833 dw_die_ref die;
4834 enum dwarf_attribute attr_kind;
4835 dw_loc_list_ref loc_list;
4836 {
4837 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4838
4839 attr->dw_attr_next = NULL;
4840 attr->dw_attr = attr_kind;
4841 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4842 attr->dw_attr_val.v.val_loc_list = loc_list;
4843 add_dwarf_attr (die, attr);
4844 have_location_lists = 1;
4845 }
4846
4847 static inline dw_loc_list_ref
4848 AT_loc_list (a)
4849 dw_attr_ref a;
4850 {
4851 if (a && AT_class (a) == dw_val_class_loc_list)
4852 return a->dw_attr_val.v.val_loc_list;
4853
4854 abort ();
4855 }
4856
4857 /* Add an address constant attribute value to a DIE. */
4858
4859 static inline void
4860 add_AT_addr (die, attr_kind, addr)
4861 dw_die_ref die;
4862 enum dwarf_attribute attr_kind;
4863 rtx addr;
4864 {
4865 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4866
4867 attr->dw_attr_next = NULL;
4868 attr->dw_attr = attr_kind;
4869 attr->dw_attr_val.val_class = dw_val_class_addr;
4870 attr->dw_attr_val.v.val_addr = addr;
4871 add_dwarf_attr (die, attr);
4872 }
4873
4874 static inline rtx
4875 AT_addr (a)
4876 dw_attr_ref a;
4877 {
4878 if (a && AT_class (a) == dw_val_class_addr)
4879 return a->dw_attr_val.v.val_addr;
4880
4881 abort ();
4882 }
4883
4884 /* Add a label identifier attribute value to a DIE. */
4885
4886 static inline void
4887 add_AT_lbl_id (die, attr_kind, lbl_id)
4888 dw_die_ref die;
4889 enum dwarf_attribute attr_kind;
4890 const char *lbl_id;
4891 {
4892 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4893
4894 attr->dw_attr_next = NULL;
4895 attr->dw_attr = attr_kind;
4896 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
4897 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4898 add_dwarf_attr (die, attr);
4899 }
4900
4901 /* Add a section offset attribute value to a DIE. */
4902
4903 static inline void
4904 add_AT_lbl_offset (die, attr_kind, label)
4905 dw_die_ref die;
4906 enum dwarf_attribute attr_kind;
4907 const char *label;
4908 {
4909 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4910
4911 attr->dw_attr_next = NULL;
4912 attr->dw_attr = attr_kind;
4913 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
4914 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
4915 add_dwarf_attr (die, attr);
4916 }
4917
4918 /* Add an offset attribute value to a DIE. */
4919
4920 static inline void
4921 add_AT_offset (die, attr_kind, offset)
4922 dw_die_ref die;
4923 enum dwarf_attribute attr_kind;
4924 unsigned long offset;
4925 {
4926 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4927
4928 attr->dw_attr_next = NULL;
4929 attr->dw_attr = attr_kind;
4930 attr->dw_attr_val.val_class = dw_val_class_offset;
4931 attr->dw_attr_val.v.val_offset = offset;
4932 add_dwarf_attr (die, attr);
4933 }
4934
4935 /* Add an range_list attribute value to a DIE. */
4936
4937 static void
4938 add_AT_range_list (die, attr_kind, offset)
4939 dw_die_ref die;
4940 enum dwarf_attribute attr_kind;
4941 unsigned long offset;
4942 {
4943 dw_attr_ref attr = (dw_attr_ref) ggc_alloc (sizeof (dw_attr_node));
4944
4945 attr->dw_attr_next = NULL;
4946 attr->dw_attr = attr_kind;
4947 attr->dw_attr_val.val_class = dw_val_class_range_list;
4948 attr->dw_attr_val.v.val_offset = offset;
4949 add_dwarf_attr (die, attr);
4950 }
4951
4952 static inline const char *
4953 AT_lbl (a)
4954 dw_attr_ref a;
4955 {
4956 if (a && (AT_class (a) == dw_val_class_lbl_id
4957 || AT_class (a) == dw_val_class_lbl_offset))
4958 return a->dw_attr_val.v.val_lbl_id;
4959
4960 abort ();
4961 }
4962
4963 /* Get the attribute of type attr_kind. */
4964
4965 static inline dw_attr_ref
4966 get_AT (die, attr_kind)
4967 dw_die_ref die;
4968 enum dwarf_attribute attr_kind;
4969 {
4970 dw_attr_ref a;
4971 dw_die_ref spec = NULL;
4972
4973 if (die != NULL)
4974 {
4975 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
4976 if (a->dw_attr == attr_kind)
4977 return a;
4978 else if (a->dw_attr == DW_AT_specification
4979 || a->dw_attr == DW_AT_abstract_origin)
4980 spec = AT_ref (a);
4981
4982 if (spec)
4983 return get_AT (spec, attr_kind);
4984 }
4985
4986 return NULL;
4987 }
4988
4989 /* Return the "low pc" attribute value, typically associated with a subprogram
4990 DIE. Return null if the "low pc" attribute is either not present, or if it
4991 cannot be represented as an assembler label identifier. */
4992
4993 static inline const char *
4994 get_AT_low_pc (die)
4995 dw_die_ref die;
4996 {
4997 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
4998
4999 return a ? AT_lbl (a) : NULL;
5000 }
5001
5002 /* Return the "high pc" attribute value, typically associated with a subprogram
5003 DIE. Return null if the "high pc" attribute is either not present, or if it
5004 cannot be represented as an assembler label identifier. */
5005
5006 static inline const char *
5007 get_AT_hi_pc (die)
5008 dw_die_ref die;
5009 {
5010 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5011
5012 return a ? AT_lbl (a) : NULL;
5013 }
5014
5015 /* Return the value of the string attribute designated by ATTR_KIND, or
5016 NULL if it is not present. */
5017
5018 static inline const char *
5019 get_AT_string (die, attr_kind)
5020 dw_die_ref die;
5021 enum dwarf_attribute attr_kind;
5022 {
5023 dw_attr_ref a = get_AT (die, attr_kind);
5024
5025 return a ? AT_string (a) : NULL;
5026 }
5027
5028 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5029 if it is not present. */
5030
5031 static inline int
5032 get_AT_flag (die, attr_kind)
5033 dw_die_ref die;
5034 enum dwarf_attribute attr_kind;
5035 {
5036 dw_attr_ref a = get_AT (die, attr_kind);
5037
5038 return a ? AT_flag (a) : 0;
5039 }
5040
5041 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5042 if it is not present. */
5043
5044 static inline unsigned
5045 get_AT_unsigned (die, attr_kind)
5046 dw_die_ref die;
5047 enum dwarf_attribute attr_kind;
5048 {
5049 dw_attr_ref a = get_AT (die, attr_kind);
5050
5051 return a ? AT_unsigned (a) : 0;
5052 }
5053
5054 static inline dw_die_ref
5055 get_AT_ref (die, attr_kind)
5056 dw_die_ref die;
5057 enum dwarf_attribute attr_kind;
5058 {
5059 dw_attr_ref a = get_AT (die, attr_kind);
5060
5061 return a ? AT_ref (a) : NULL;
5062 }
5063
5064 static inline int
5065 is_c_family ()
5066 {
5067 unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5068
5069 return (lang == DW_LANG_C || lang == DW_LANG_C89
5070 || lang == DW_LANG_C_plus_plus);
5071 }
5072
5073 static inline int
5074 is_cxx ()
5075 {
5076 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
5077 == DW_LANG_C_plus_plus);
5078 }
5079
5080 static inline int
5081 is_fortran ()
5082 {
5083 unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5084
5085 return (lang == DW_LANG_Fortran77 || lang == DW_LANG_Fortran90);
5086 }
5087
5088 static inline int
5089 is_java ()
5090 {
5091 unsigned lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5092
5093 return (lang == DW_LANG_Java);
5094 }
5095
5096 /* Free up the memory used by A. */
5097
5098 static inline void free_AT PARAMS ((dw_attr_ref));
5099 static inline void
5100 free_AT (a)
5101 dw_attr_ref a;
5102 {
5103 if (AT_class (a) == dw_val_class_str)
5104 if (a->dw_attr_val.v.val_str->refcount)
5105 a->dw_attr_val.v.val_str->refcount--;
5106 }
5107
5108 /* Remove the specified attribute if present. */
5109
5110 static void
5111 remove_AT (die, attr_kind)
5112 dw_die_ref die;
5113 enum dwarf_attribute attr_kind;
5114 {
5115 dw_attr_ref *p;
5116 dw_attr_ref removed = NULL;
5117
5118 if (die != NULL)
5119 {
5120 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5121 if ((*p)->dw_attr == attr_kind)
5122 {
5123 removed = *p;
5124 *p = (*p)->dw_attr_next;
5125 break;
5126 }
5127
5128 if (removed != 0)
5129 free_AT (removed);
5130 }
5131 }
5132
5133 /* Free up the memory used by DIE. */
5134
5135 static inline void
5136 free_die (die)
5137 dw_die_ref die;
5138 {
5139 remove_children (die);
5140 }
5141
5142 /* Discard the children of this DIE. */
5143
5144 static void
5145 remove_children (die)
5146 dw_die_ref die;
5147 {
5148 dw_die_ref child_die = die->die_child;
5149
5150 die->die_child = NULL;
5151
5152 while (child_die != NULL)
5153 {
5154 dw_die_ref tmp_die = child_die;
5155 dw_attr_ref a;
5156
5157 child_die = child_die->die_sib;
5158
5159 for (a = tmp_die->die_attr; a != NULL;)
5160 {
5161 dw_attr_ref tmp_a = a;
5162
5163 a = a->dw_attr_next;
5164 free_AT (tmp_a);
5165 }
5166
5167 free_die (tmp_die);
5168 }
5169 }
5170
5171 /* Add a child DIE below its parent. We build the lists up in reverse
5172 addition order, and correct that in reverse_all_dies. */
5173
5174 static inline void
5175 add_child_die (die, child_die)
5176 dw_die_ref die;
5177 dw_die_ref child_die;
5178 {
5179 if (die != NULL && child_die != NULL)
5180 {
5181 if (die == child_die)
5182 abort ();
5183
5184 child_die->die_parent = die;
5185 child_die->die_sib = die->die_child;
5186 die->die_child = child_die;
5187 }
5188 }
5189
5190 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5191 is the specification, to the front of PARENT's list of children. */
5192
5193 static void
5194 splice_child_die (parent, child)
5195 dw_die_ref parent, child;
5196 {
5197 dw_die_ref *p;
5198
5199 /* We want the declaration DIE from inside the class, not the
5200 specification DIE at toplevel. */
5201 if (child->die_parent != parent)
5202 {
5203 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5204
5205 if (tmp)
5206 child = tmp;
5207 }
5208
5209 if (child->die_parent != parent
5210 && child->die_parent != get_AT_ref (parent, DW_AT_specification))
5211 abort ();
5212
5213 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5214 if (*p == child)
5215 {
5216 *p = child->die_sib;
5217 break;
5218 }
5219
5220 child->die_sib = parent->die_child;
5221 parent->die_child = child;
5222 }
5223
5224 /* Return a pointer to a newly created DIE node. */
5225
5226 static inline dw_die_ref
5227 new_die (tag_value, parent_die, t)
5228 enum dwarf_tag tag_value;
5229 dw_die_ref parent_die;
5230 tree t;
5231 {
5232 dw_die_ref die = (dw_die_ref) ggc_alloc_cleared (sizeof (die_node));
5233
5234 die->die_tag = tag_value;
5235
5236 if (parent_die != NULL)
5237 add_child_die (parent_die, die);
5238 else
5239 {
5240 limbo_die_node *limbo_node;
5241
5242 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5243 limbo_node->die = die;
5244 limbo_node->created_for = t;
5245 limbo_node->next = limbo_die_list;
5246 limbo_die_list = limbo_node;
5247 }
5248
5249 return die;
5250 }
5251
5252 /* Return the DIE associated with the given type specifier. */
5253
5254 static inline dw_die_ref
5255 lookup_type_die (type)
5256 tree type;
5257 {
5258 return TYPE_SYMTAB_DIE (type);
5259 }
5260
5261 /* Equate a DIE to a given type specifier. */
5262
5263 static inline void
5264 equate_type_number_to_die (type, type_die)
5265 tree type;
5266 dw_die_ref type_die;
5267 {
5268 TYPE_SYMTAB_DIE (type) = type_die;
5269 }
5270
5271 /* Return the DIE associated with a given declaration. */
5272
5273 static inline dw_die_ref
5274 lookup_decl_die (decl)
5275 tree decl;
5276 {
5277 unsigned decl_id = DECL_UID (decl);
5278
5279 return (decl_id < decl_die_table_in_use ? decl_die_table[decl_id] : NULL);
5280 }
5281
5282 /* Equate a DIE to a particular declaration. */
5283
5284 static void
5285 equate_decl_number_to_die (decl, decl_die)
5286 tree decl;
5287 dw_die_ref decl_die;
5288 {
5289 unsigned int decl_id = DECL_UID (decl);
5290 unsigned int num_allocated;
5291
5292 if (decl_id >= decl_die_table_allocated)
5293 {
5294 num_allocated
5295 = ((decl_id + 1 + DECL_DIE_TABLE_INCREMENT - 1)
5296 / DECL_DIE_TABLE_INCREMENT)
5297 * DECL_DIE_TABLE_INCREMENT;
5298
5299 decl_die_table = ggc_realloc (decl_die_table,
5300 sizeof (dw_die_ref) * num_allocated);
5301
5302 memset ((char *) &decl_die_table[decl_die_table_allocated], 0,
5303 (num_allocated - decl_die_table_allocated) * sizeof (dw_die_ref));
5304 decl_die_table_allocated = num_allocated;
5305 }
5306
5307 if (decl_id >= decl_die_table_in_use)
5308 decl_die_table_in_use = (decl_id + 1);
5309
5310 decl_die_table[decl_id] = decl_die;
5311 }
5312 \f
5313 /* Keep track of the number of spaces used to indent the
5314 output of the debugging routines that print the structure of
5315 the DIE internal representation. */
5316 static int print_indent;
5317
5318 /* Indent the line the number of spaces given by print_indent. */
5319
5320 static inline void
5321 print_spaces (outfile)
5322 FILE *outfile;
5323 {
5324 fprintf (outfile, "%*s", print_indent, "");
5325 }
5326
5327 /* Print the information associated with a given DIE, and its children.
5328 This routine is a debugging aid only. */
5329
5330 static void
5331 print_die (die, outfile)
5332 dw_die_ref die;
5333 FILE *outfile;
5334 {
5335 dw_attr_ref a;
5336 dw_die_ref c;
5337
5338 print_spaces (outfile);
5339 fprintf (outfile, "DIE %4lu: %s\n",
5340 die->die_offset, dwarf_tag_name (die->die_tag));
5341 print_spaces (outfile);
5342 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5343 fprintf (outfile, " offset: %lu\n", die->die_offset);
5344
5345 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5346 {
5347 print_spaces (outfile);
5348 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5349
5350 switch (AT_class (a))
5351 {
5352 case dw_val_class_addr:
5353 fprintf (outfile, "address");
5354 break;
5355 case dw_val_class_offset:
5356 fprintf (outfile, "offset");
5357 break;
5358 case dw_val_class_loc:
5359 fprintf (outfile, "location descriptor");
5360 break;
5361 case dw_val_class_loc_list:
5362 fprintf (outfile, "location list -> label:%s",
5363 AT_loc_list (a)->ll_symbol);
5364 break;
5365 case dw_val_class_range_list:
5366 fprintf (outfile, "range list");
5367 break;
5368 case dw_val_class_const:
5369 fprintf (outfile, "%ld", AT_int (a));
5370 break;
5371 case dw_val_class_unsigned_const:
5372 fprintf (outfile, "%lu", AT_unsigned (a));
5373 break;
5374 case dw_val_class_long_long:
5375 fprintf (outfile, "constant (%lu,%lu)",
5376 a->dw_attr_val.v.val_long_long.hi,
5377 a->dw_attr_val.v.val_long_long.low);
5378 break;
5379 case dw_val_class_float:
5380 fprintf (outfile, "floating-point constant");
5381 break;
5382 case dw_val_class_flag:
5383 fprintf (outfile, "%u", AT_flag (a));
5384 break;
5385 case dw_val_class_die_ref:
5386 if (AT_ref (a) != NULL)
5387 {
5388 if (AT_ref (a)->die_symbol)
5389 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5390 else
5391 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5392 }
5393 else
5394 fprintf (outfile, "die -> <null>");
5395 break;
5396 case dw_val_class_lbl_id:
5397 case dw_val_class_lbl_offset:
5398 fprintf (outfile, "label: %s", AT_lbl (a));
5399 break;
5400 case dw_val_class_str:
5401 if (AT_string (a) != NULL)
5402 fprintf (outfile, "\"%s\"", AT_string (a));
5403 else
5404 fprintf (outfile, "<null>");
5405 break;
5406 default:
5407 break;
5408 }
5409
5410 fprintf (outfile, "\n");
5411 }
5412
5413 if (die->die_child != NULL)
5414 {
5415 print_indent += 4;
5416 for (c = die->die_child; c != NULL; c = c->die_sib)
5417 print_die (c, outfile);
5418
5419 print_indent -= 4;
5420 }
5421 if (print_indent == 0)
5422 fprintf (outfile, "\n");
5423 }
5424
5425 /* Print the contents of the source code line number correspondence table.
5426 This routine is a debugging aid only. */
5427
5428 static void
5429 print_dwarf_line_table (outfile)
5430 FILE *outfile;
5431 {
5432 unsigned i;
5433 dw_line_info_ref line_info;
5434
5435 fprintf (outfile, "\n\nDWARF source line information\n");
5436 for (i = 1; i < line_info_table_in_use; i++)
5437 {
5438 line_info = &line_info_table[i];
5439 fprintf (outfile, "%5d: ", i);
5440 fprintf (outfile, "%-20s",
5441 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5442 fprintf (outfile, "%6ld", line_info->dw_line_num);
5443 fprintf (outfile, "\n");
5444 }
5445
5446 fprintf (outfile, "\n\n");
5447 }
5448
5449 /* Print the information collected for a given DIE. */
5450
5451 void
5452 debug_dwarf_die (die)
5453 dw_die_ref die;
5454 {
5455 print_die (die, stderr);
5456 }
5457
5458 /* Print all DWARF information collected for the compilation unit.
5459 This routine is a debugging aid only. */
5460
5461 void
5462 debug_dwarf ()
5463 {
5464 print_indent = 0;
5465 print_die (comp_unit_die, stderr);
5466 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5467 print_dwarf_line_table (stderr);
5468 }
5469 \f
5470 /* We build up the lists of children and attributes by pushing new ones
5471 onto the beginning of the list. Reverse the lists for DIE so that
5472 they are in order of addition. */
5473
5474 static void
5475 reverse_die_lists (die)
5476 dw_die_ref die;
5477 {
5478 dw_die_ref c, cp, cn;
5479 dw_attr_ref a, ap, an;
5480
5481 for (a = die->die_attr, ap = 0; a; a = an)
5482 {
5483 an = a->dw_attr_next;
5484 a->dw_attr_next = ap;
5485 ap = a;
5486 }
5487
5488 die->die_attr = ap;
5489
5490 for (c = die->die_child, cp = 0; c; c = cn)
5491 {
5492 cn = c->die_sib;
5493 c->die_sib = cp;
5494 cp = c;
5495 }
5496
5497 die->die_child = cp;
5498 }
5499
5500 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5501 reverse all dies in add_sibling_attributes, which runs through all the dies,
5502 it would reverse all the dies. Now, however, since we don't call
5503 reverse_die_lists in add_sibling_attributes, we need a routine to
5504 recursively reverse all the dies. This is that routine. */
5505
5506 static void
5507 reverse_all_dies (die)
5508 dw_die_ref die;
5509 {
5510 dw_die_ref c;
5511
5512 reverse_die_lists (die);
5513
5514 for (c = die->die_child; c; c = c->die_sib)
5515 reverse_all_dies (c);
5516 }
5517
5518 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5519 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5520 DIE that marks the start of the DIEs for this include file. */
5521
5522 static dw_die_ref
5523 push_new_compile_unit (old_unit, bincl_die)
5524 dw_die_ref old_unit, bincl_die;
5525 {
5526 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5527 dw_die_ref new_unit = gen_compile_unit_die (filename);
5528
5529 new_unit->die_sib = old_unit;
5530 return new_unit;
5531 }
5532
5533 /* Close an include-file CU and reopen the enclosing one. */
5534
5535 static dw_die_ref
5536 pop_compile_unit (old_unit)
5537 dw_die_ref old_unit;
5538 {
5539 dw_die_ref new_unit = old_unit->die_sib;
5540
5541 old_unit->die_sib = NULL;
5542 return new_unit;
5543 }
5544
5545 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5546 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5547
5548 /* Calculate the checksum of a location expression. */
5549
5550 static inline void
5551 loc_checksum (loc, ctx)
5552 dw_loc_descr_ref loc;
5553 struct md5_ctx *ctx;
5554 {
5555 CHECKSUM (loc->dw_loc_opc);
5556 CHECKSUM (loc->dw_loc_oprnd1);
5557 CHECKSUM (loc->dw_loc_oprnd2);
5558 }
5559
5560 /* Calculate the checksum of an attribute. */
5561
5562 static void
5563 attr_checksum (at, ctx, mark)
5564 dw_attr_ref at;
5565 struct md5_ctx *ctx;
5566 int *mark;
5567 {
5568 dw_loc_descr_ref loc;
5569 rtx r;
5570
5571 CHECKSUM (at->dw_attr);
5572
5573 /* We don't care about differences in file numbering. */
5574 if (at->dw_attr == DW_AT_decl_file
5575 /* Or that this was compiled with a different compiler snapshot; if
5576 the output is the same, that's what matters. */
5577 || at->dw_attr == DW_AT_producer)
5578 return;
5579
5580 switch (AT_class (at))
5581 {
5582 case dw_val_class_const:
5583 CHECKSUM (at->dw_attr_val.v.val_int);
5584 break;
5585 case dw_val_class_unsigned_const:
5586 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5587 break;
5588 case dw_val_class_long_long:
5589 CHECKSUM (at->dw_attr_val.v.val_long_long);
5590 break;
5591 case dw_val_class_float:
5592 CHECKSUM (at->dw_attr_val.v.val_float);
5593 break;
5594 case dw_val_class_flag:
5595 CHECKSUM (at->dw_attr_val.v.val_flag);
5596 break;
5597 case dw_val_class_str:
5598 CHECKSUM_STRING (AT_string (at));
5599 break;
5600
5601 case dw_val_class_addr:
5602 r = AT_addr (at);
5603 switch (GET_CODE (r))
5604 {
5605 case SYMBOL_REF:
5606 CHECKSUM_STRING (XSTR (r, 0));
5607 break;
5608
5609 default:
5610 abort ();
5611 }
5612 break;
5613
5614 case dw_val_class_offset:
5615 CHECKSUM (at->dw_attr_val.v.val_offset);
5616 break;
5617
5618 case dw_val_class_loc:
5619 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5620 loc_checksum (loc, ctx);
5621 break;
5622
5623 case dw_val_class_die_ref:
5624 die_checksum (AT_ref (at), ctx, mark);
5625 break;
5626
5627 case dw_val_class_fde_ref:
5628 case dw_val_class_lbl_id:
5629 case dw_val_class_lbl_offset:
5630 break;
5631
5632 default:
5633 break;
5634 }
5635 }
5636
5637 /* Calculate the checksum of a DIE. */
5638
5639 static void
5640 die_checksum (die, ctx, mark)
5641 dw_die_ref die;
5642 struct md5_ctx *ctx;
5643 int *mark;
5644 {
5645 dw_die_ref c;
5646 dw_attr_ref a;
5647
5648 /* To avoid infinite recursion. */
5649 if (die->die_mark)
5650 {
5651 CHECKSUM (die->die_mark);
5652 return;
5653 }
5654 die->die_mark = ++(*mark);
5655
5656 CHECKSUM (die->die_tag);
5657
5658 for (a = die->die_attr; a; a = a->dw_attr_next)
5659 attr_checksum (a, ctx, mark);
5660
5661 for (c = die->die_child; c; c = c->die_sib)
5662 die_checksum (c, ctx, mark);
5663 }
5664
5665 #undef CHECKSUM
5666 #undef CHECKSUM_STRING
5667
5668 /* Do the location expressions look same? */
5669 static inline int
5670 same_loc_p (loc1, loc2, mark)
5671 dw_loc_descr_ref loc1;
5672 dw_loc_descr_ref loc2;
5673 int *mark;
5674 {
5675 return loc1->dw_loc_opc == loc2->dw_loc_opc
5676 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5677 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5678 }
5679
5680 /* Do the values look the same? */
5681 static int
5682 same_dw_val_p (v1, v2, mark)
5683 dw_val_node *v1;
5684 dw_val_node *v2;
5685 int *mark;
5686 {
5687 dw_loc_descr_ref loc1, loc2;
5688 rtx r1, r2;
5689 unsigned i;
5690
5691 if (v1->val_class != v2->val_class)
5692 return 0;
5693
5694 switch (v1->val_class)
5695 {
5696 case dw_val_class_const:
5697 return v1->v.val_int == v2->v.val_int;
5698 case dw_val_class_unsigned_const:
5699 return v1->v.val_unsigned == v2->v.val_unsigned;
5700 case dw_val_class_long_long:
5701 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5702 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5703 case dw_val_class_float:
5704 if (v1->v.val_float.length != v2->v.val_float.length)
5705 return 0;
5706 for (i = 0; i < v1->v.val_float.length; i++)
5707 if (v1->v.val_float.array[i] != v2->v.val_float.array[i])
5708 return 0;
5709 return 1;
5710 case dw_val_class_flag:
5711 return v1->v.val_flag == v2->v.val_flag;
5712 case dw_val_class_str:
5713 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5714
5715 case dw_val_class_addr:
5716 r1 = v1->v.val_addr;
5717 r2 = v2->v.val_addr;
5718 if (GET_CODE (r1) != GET_CODE (r2))
5719 return 0;
5720 switch (GET_CODE (r1))
5721 {
5722 case SYMBOL_REF:
5723 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5724
5725 default:
5726 abort ();
5727 }
5728
5729 case dw_val_class_offset:
5730 return v1->v.val_offset == v2->v.val_offset;
5731
5732 case dw_val_class_loc:
5733 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5734 loc1 && loc2;
5735 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5736 if (!same_loc_p (loc1, loc2, mark))
5737 return 0;
5738 return !loc1 && !loc2;
5739
5740 case dw_val_class_die_ref:
5741 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5742
5743 case dw_val_class_fde_ref:
5744 case dw_val_class_lbl_id:
5745 case dw_val_class_lbl_offset:
5746 return 1;
5747
5748 default:
5749 return 1;
5750 }
5751 }
5752
5753 /* Do the attributes look the same? */
5754
5755 static int
5756 same_attr_p (at1, at2, mark)
5757 dw_attr_ref at1;
5758 dw_attr_ref at2;
5759 int *mark;
5760 {
5761 if (at1->dw_attr != at2->dw_attr)
5762 return 0;
5763
5764 /* We don't care about differences in file numbering. */
5765 if (at1->dw_attr == DW_AT_decl_file
5766 /* Or that this was compiled with a different compiler snapshot; if
5767 the output is the same, that's what matters. */
5768 || at1->dw_attr == DW_AT_producer)
5769 return 1;
5770
5771 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5772 }
5773
5774 /* Do the dies look the same? */
5775
5776 static int
5777 same_die_p (die1, die2, mark)
5778 dw_die_ref die1;
5779 dw_die_ref die2;
5780 int *mark;
5781 {
5782 dw_die_ref c1, c2;
5783 dw_attr_ref a1, a2;
5784
5785 /* To avoid infinite recursion. */
5786 if (die1->die_mark)
5787 return die1->die_mark == die2->die_mark;
5788 die1->die_mark = die2->die_mark = ++(*mark);
5789
5790 if (die1->die_tag != die2->die_tag)
5791 return 0;
5792
5793 for (a1 = die1->die_attr, a2 = die2->die_attr;
5794 a1 && a2;
5795 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5796 if (!same_attr_p (a1, a2, mark))
5797 return 0;
5798 if (a1 || a2)
5799 return 0;
5800
5801 for (c1 = die1->die_child, c2 = die2->die_child;
5802 c1 && c2;
5803 c1 = c1->die_sib, c2 = c2->die_sib)
5804 if (!same_die_p (c1, c2, mark))
5805 return 0;
5806 if (c1 || c2)
5807 return 0;
5808
5809 return 1;
5810 }
5811
5812 /* Do the dies look the same? Wrapper around same_die_p. */
5813
5814 static int
5815 same_die_p_wrap (die1, die2)
5816 dw_die_ref die1;
5817 dw_die_ref die2;
5818 {
5819 int mark = 0;
5820 int ret = same_die_p (die1, die2, &mark);
5821
5822 unmark_all_dies (die1);
5823 unmark_all_dies (die2);
5824
5825 return ret;
5826 }
5827
5828 /* The prefix to attach to symbols on DIEs in the current comdat debug
5829 info section. */
5830 static char *comdat_symbol_id;
5831
5832 /* The index of the current symbol within the current comdat CU. */
5833 static unsigned int comdat_symbol_number;
5834
5835 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5836 children, and set comdat_symbol_id accordingly. */
5837
5838 static void
5839 compute_section_prefix (unit_die)
5840 dw_die_ref unit_die;
5841 {
5842 const char *die_name = get_AT_string (unit_die, DW_AT_name);
5843 const char *base = die_name ? lbasename (die_name) : "anonymous";
5844 char *name = (char *) alloca (strlen (base) + 64);
5845 char *p;
5846 int i, mark;
5847 unsigned char checksum[16];
5848 struct md5_ctx ctx;
5849
5850 /* Compute the checksum of the DIE, then append part of it as hex digits to
5851 the name filename of the unit. */
5852
5853 md5_init_ctx (&ctx);
5854 mark = 0;
5855 die_checksum (unit_die, &ctx, &mark);
5856 unmark_all_dies (unit_die);
5857 md5_finish_ctx (&ctx, checksum);
5858
5859 sprintf (name, "%s.", base);
5860 clean_symbol_name (name);
5861
5862 p = name + strlen (name);
5863 for (i = 0; i < 4; i++)
5864 {
5865 sprintf (p, "%.2x", checksum[i]);
5866 p += 2;
5867 }
5868
5869 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
5870 comdat_symbol_number = 0;
5871 }
5872
5873 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
5874
5875 static int
5876 is_type_die (die)
5877 dw_die_ref die;
5878 {
5879 switch (die->die_tag)
5880 {
5881 case DW_TAG_array_type:
5882 case DW_TAG_class_type:
5883 case DW_TAG_enumeration_type:
5884 case DW_TAG_pointer_type:
5885 case DW_TAG_reference_type:
5886 case DW_TAG_string_type:
5887 case DW_TAG_structure_type:
5888 case DW_TAG_subroutine_type:
5889 case DW_TAG_union_type:
5890 case DW_TAG_ptr_to_member_type:
5891 case DW_TAG_set_type:
5892 case DW_TAG_subrange_type:
5893 case DW_TAG_base_type:
5894 case DW_TAG_const_type:
5895 case DW_TAG_file_type:
5896 case DW_TAG_packed_type:
5897 case DW_TAG_volatile_type:
5898 case DW_TAG_typedef:
5899 return 1;
5900 default:
5901 return 0;
5902 }
5903 }
5904
5905 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
5906 Basically, we want to choose the bits that are likely to be shared between
5907 compilations (types) and leave out the bits that are specific to individual
5908 compilations (functions). */
5909
5910 static int
5911 is_comdat_die (c)
5912 dw_die_ref c;
5913 {
5914 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
5915 we do for stabs. The advantage is a greater likelihood of sharing between
5916 objects that don't include headers in the same order (and therefore would
5917 put the base types in a different comdat). jason 8/28/00 */
5918
5919 if (c->die_tag == DW_TAG_base_type)
5920 return 0;
5921
5922 if (c->die_tag == DW_TAG_pointer_type
5923 || c->die_tag == DW_TAG_reference_type
5924 || c->die_tag == DW_TAG_const_type
5925 || c->die_tag == DW_TAG_volatile_type)
5926 {
5927 dw_die_ref t = get_AT_ref (c, DW_AT_type);
5928
5929 return t ? is_comdat_die (t) : 0;
5930 }
5931
5932 return is_type_die (c);
5933 }
5934
5935 /* Returns 1 iff C is the sort of DIE that might be referred to from another
5936 compilation unit. */
5937
5938 static int
5939 is_symbol_die (c)
5940 dw_die_ref c;
5941 {
5942 return (is_type_die (c)
5943 || (get_AT (c, DW_AT_declaration)
5944 && !get_AT (c, DW_AT_specification)));
5945 }
5946
5947 static char *
5948 gen_internal_sym (prefix)
5949 const char *prefix;
5950 {
5951 char buf[256];
5952 static int label_num;
5953
5954 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
5955 return xstrdup (buf);
5956 }
5957
5958 /* Assign symbols to all worthy DIEs under DIE. */
5959
5960 static void
5961 assign_symbol_names (die)
5962 dw_die_ref die;
5963 {
5964 dw_die_ref c;
5965
5966 if (is_symbol_die (die))
5967 {
5968 if (comdat_symbol_id)
5969 {
5970 char *p = alloca (strlen (comdat_symbol_id) + 64);
5971
5972 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
5973 comdat_symbol_id, comdat_symbol_number++);
5974 die->die_symbol = xstrdup (p);
5975 }
5976 else
5977 die->die_symbol = gen_internal_sym ("LDIE");
5978 }
5979
5980 for (c = die->die_child; c != NULL; c = c->die_sib)
5981 assign_symbol_names (c);
5982 }
5983
5984 struct cu_hash_table_entry
5985 {
5986 dw_die_ref cu;
5987 unsigned min_comdat_num, max_comdat_num;
5988 struct cu_hash_table_entry *next;
5989 };
5990
5991 /* Routines to manipulate hash table of CUs. */
5992 static hashval_t
5993 htab_cu_hash (of)
5994 const void *of;
5995 {
5996 const struct cu_hash_table_entry *entry = of;
5997
5998 return htab_hash_string (entry->cu->die_symbol);
5999 }
6000
6001 static int
6002 htab_cu_eq (of1, of2)
6003 const void *of1;
6004 const void *of2;
6005 {
6006 const struct cu_hash_table_entry *entry1 = of1;
6007 const struct die_struct *entry2 = of2;
6008
6009 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6010 }
6011
6012 static void
6013 htab_cu_del (what)
6014 void *what;
6015 {
6016 struct cu_hash_table_entry *next, *entry = what;
6017
6018 while (entry)
6019 {
6020 next = entry->next;
6021 free (entry);
6022 entry = next;
6023 }
6024 }
6025
6026 /* Check whether we have already seen this CU and set up SYM_NUM
6027 accordingly. */
6028 static int
6029 check_duplicate_cu (cu, htable, sym_num)
6030 dw_die_ref cu;
6031 htab_t htable;
6032 unsigned *sym_num;
6033 {
6034 struct cu_hash_table_entry dummy;
6035 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6036
6037 dummy.max_comdat_num = 0;
6038
6039 slot = (struct cu_hash_table_entry **)
6040 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6041 INSERT);
6042 entry = *slot;
6043
6044 for (; entry; last = entry, entry = entry->next)
6045 {
6046 if (same_die_p_wrap (cu, entry->cu))
6047 break;
6048 }
6049
6050 if (entry)
6051 {
6052 *sym_num = entry->min_comdat_num;
6053 return 1;
6054 }
6055
6056 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
6057 entry->cu = cu;
6058 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6059 entry->next = *slot;
6060 *slot = entry;
6061
6062 return 0;
6063 }
6064
6065 /* Record SYM_NUM to record of CU in HTABLE. */
6066 static void
6067 record_comdat_symbol_number (cu, htable, sym_num)
6068 dw_die_ref cu;
6069 htab_t htable;
6070 unsigned sym_num;
6071 {
6072 struct cu_hash_table_entry **slot, *entry;
6073
6074 slot = (struct cu_hash_table_entry **)
6075 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6076 NO_INSERT);
6077 entry = *slot;
6078
6079 entry->max_comdat_num = sym_num;
6080 }
6081
6082 /* Traverse the DIE (which is always comp_unit_die), and set up
6083 additional compilation units for each of the include files we see
6084 bracketed by BINCL/EINCL. */
6085
6086 static void
6087 break_out_includes (die)
6088 dw_die_ref die;
6089 {
6090 dw_die_ref *ptr;
6091 dw_die_ref unit = NULL;
6092 limbo_die_node *node, **pnode;
6093 htab_t cu_hash_table;
6094
6095 for (ptr = &(die->die_child); *ptr;)
6096 {
6097 dw_die_ref c = *ptr;
6098
6099 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6100 || (unit && is_comdat_die (c)))
6101 {
6102 /* This DIE is for a secondary CU; remove it from the main one. */
6103 *ptr = c->die_sib;
6104
6105 if (c->die_tag == DW_TAG_GNU_BINCL)
6106 {
6107 unit = push_new_compile_unit (unit, c);
6108 free_die (c);
6109 }
6110 else if (c->die_tag == DW_TAG_GNU_EINCL)
6111 {
6112 unit = pop_compile_unit (unit);
6113 free_die (c);
6114 }
6115 else
6116 add_child_die (unit, c);
6117 }
6118 else
6119 {
6120 /* Leave this DIE in the main CU. */
6121 ptr = &(c->die_sib);
6122 continue;
6123 }
6124 }
6125
6126 #if 0
6127 /* We can only use this in debugging, since the frontend doesn't check
6128 to make sure that we leave every include file we enter. */
6129 if (unit != NULL)
6130 abort ();
6131 #endif
6132
6133 assign_symbol_names (die);
6134 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6135 for (node = limbo_die_list, pnode = &limbo_die_list;
6136 node;
6137 node = node->next)
6138 {
6139 int is_dupl;
6140
6141 compute_section_prefix (node->die);
6142 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6143 &comdat_symbol_number);
6144 assign_symbol_names (node->die);
6145 if (is_dupl)
6146 *pnode = node->next;
6147 else
6148 {
6149 pnode = &node->next;
6150 record_comdat_symbol_number (node->die, cu_hash_table,
6151 comdat_symbol_number);
6152 }
6153 }
6154 htab_delete (cu_hash_table);
6155 }
6156
6157 /* Traverse the DIE and add a sibling attribute if it may have the
6158 effect of speeding up access to siblings. To save some space,
6159 avoid generating sibling attributes for DIE's without children. */
6160
6161 static void
6162 add_sibling_attributes (die)
6163 dw_die_ref die;
6164 {
6165 dw_die_ref c;
6166
6167 if (die->die_tag != DW_TAG_compile_unit
6168 && die->die_sib && die->die_child != NULL)
6169 /* Add the sibling link to the front of the attribute list. */
6170 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6171
6172 for (c = die->die_child; c != NULL; c = c->die_sib)
6173 add_sibling_attributes (c);
6174 }
6175
6176 /* Output all location lists for the DIE and its children. */
6177
6178 static void
6179 output_location_lists (die)
6180 dw_die_ref die;
6181 {
6182 dw_die_ref c;
6183 dw_attr_ref d_attr;
6184
6185 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6186 if (AT_class (d_attr) == dw_val_class_loc_list)
6187 output_loc_list (AT_loc_list (d_attr));
6188
6189 for (c = die->die_child; c != NULL; c = c->die_sib)
6190 output_location_lists (c);
6191
6192 }
6193
6194 /* The format of each DIE (and its attribute value pairs) is encoded in an
6195 abbreviation table. This routine builds the abbreviation table and assigns
6196 a unique abbreviation id for each abbreviation entry. The children of each
6197 die are visited recursively. */
6198
6199 static void
6200 build_abbrev_table (die)
6201 dw_die_ref die;
6202 {
6203 unsigned long abbrev_id;
6204 unsigned int n_alloc;
6205 dw_die_ref c;
6206 dw_attr_ref d_attr, a_attr;
6207
6208 /* Scan the DIE references, and mark as external any that refer to
6209 DIEs from other CUs (i.e. those which are not marked). */
6210 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6211 if (AT_class (d_attr) == dw_val_class_die_ref
6212 && AT_ref (d_attr)->die_mark == 0)
6213 {
6214 if (AT_ref (d_attr)->die_symbol == 0)
6215 abort ();
6216
6217 set_AT_ref_external (d_attr, 1);
6218 }
6219
6220 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6221 {
6222 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6223
6224 if (abbrev->die_tag == die->die_tag)
6225 {
6226 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6227 {
6228 a_attr = abbrev->die_attr;
6229 d_attr = die->die_attr;
6230
6231 while (a_attr != NULL && d_attr != NULL)
6232 {
6233 if ((a_attr->dw_attr != d_attr->dw_attr)
6234 || (value_format (a_attr) != value_format (d_attr)))
6235 break;
6236
6237 a_attr = a_attr->dw_attr_next;
6238 d_attr = d_attr->dw_attr_next;
6239 }
6240
6241 if (a_attr == NULL && d_attr == NULL)
6242 break;
6243 }
6244 }
6245 }
6246
6247 if (abbrev_id >= abbrev_die_table_in_use)
6248 {
6249 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6250 {
6251 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6252 abbrev_die_table = ggc_realloc (abbrev_die_table,
6253 sizeof (dw_die_ref) * n_alloc);
6254
6255 memset ((char *) &abbrev_die_table[abbrev_die_table_allocated], 0,
6256 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6257 abbrev_die_table_allocated = n_alloc;
6258 }
6259
6260 ++abbrev_die_table_in_use;
6261 abbrev_die_table[abbrev_id] = die;
6262 }
6263
6264 die->die_abbrev = abbrev_id;
6265 for (c = die->die_child; c != NULL; c = c->die_sib)
6266 build_abbrev_table (c);
6267 }
6268 \f
6269 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6270
6271 static int
6272 constant_size (value)
6273 long unsigned value;
6274 {
6275 int log;
6276
6277 if (value == 0)
6278 log = 0;
6279 else
6280 log = floor_log2 (value);
6281
6282 log = log / 8;
6283 log = 1 << (floor_log2 (log) + 1);
6284
6285 return log;
6286 }
6287
6288 /* Return the size of a DIE as it is represented in the
6289 .debug_info section. */
6290
6291 static unsigned long
6292 size_of_die (die)
6293 dw_die_ref die;
6294 {
6295 unsigned long size = 0;
6296 dw_attr_ref a;
6297
6298 size += size_of_uleb128 (die->die_abbrev);
6299 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6300 {
6301 switch (AT_class (a))
6302 {
6303 case dw_val_class_addr:
6304 size += DWARF2_ADDR_SIZE;
6305 break;
6306 case dw_val_class_offset:
6307 size += DWARF_OFFSET_SIZE;
6308 break;
6309 case dw_val_class_loc:
6310 {
6311 unsigned long lsize = size_of_locs (AT_loc (a));
6312
6313 /* Block length. */
6314 size += constant_size (lsize);
6315 size += lsize;
6316 }
6317 break;
6318 case dw_val_class_loc_list:
6319 size += DWARF_OFFSET_SIZE;
6320 break;
6321 case dw_val_class_range_list:
6322 size += DWARF_OFFSET_SIZE;
6323 break;
6324 case dw_val_class_const:
6325 size += size_of_sleb128 (AT_int (a));
6326 break;
6327 case dw_val_class_unsigned_const:
6328 size += constant_size (AT_unsigned (a));
6329 break;
6330 case dw_val_class_long_long:
6331 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6332 break;
6333 case dw_val_class_float:
6334 size += 1 + a->dw_attr_val.v.val_float.length * 4; /* block */
6335 break;
6336 case dw_val_class_flag:
6337 size += 1;
6338 break;
6339 case dw_val_class_die_ref:
6340 size += DWARF_OFFSET_SIZE;
6341 break;
6342 case dw_val_class_fde_ref:
6343 size += DWARF_OFFSET_SIZE;
6344 break;
6345 case dw_val_class_lbl_id:
6346 size += DWARF2_ADDR_SIZE;
6347 break;
6348 case dw_val_class_lbl_offset:
6349 size += DWARF_OFFSET_SIZE;
6350 break;
6351 case dw_val_class_str:
6352 if (AT_string_form (a) == DW_FORM_strp)
6353 size += DWARF_OFFSET_SIZE;
6354 else
6355 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6356 break;
6357 default:
6358 abort ();
6359 }
6360 }
6361
6362 return size;
6363 }
6364
6365 /* Size the debugging information associated with a given DIE. Visits the
6366 DIE's children recursively. Updates the global variable next_die_offset, on
6367 each time through. Uses the current value of next_die_offset to update the
6368 die_offset field in each DIE. */
6369
6370 static void
6371 calc_die_sizes (die)
6372 dw_die_ref die;
6373 {
6374 dw_die_ref c;
6375
6376 die->die_offset = next_die_offset;
6377 next_die_offset += size_of_die (die);
6378
6379 for (c = die->die_child; c != NULL; c = c->die_sib)
6380 calc_die_sizes (c);
6381
6382 if (die->die_child != NULL)
6383 /* Count the null byte used to terminate sibling lists. */
6384 next_die_offset += 1;
6385 }
6386
6387 /* Set the marks for a die and its children. We do this so
6388 that we know whether or not a reference needs to use FORM_ref_addr; only
6389 DIEs in the same CU will be marked. We used to clear out the offset
6390 and use that as the flag, but ran into ordering problems. */
6391
6392 static void
6393 mark_dies (die)
6394 dw_die_ref die;
6395 {
6396 dw_die_ref c;
6397
6398 if (die->die_mark)
6399 abort ();
6400
6401 die->die_mark = 1;
6402 for (c = die->die_child; c; c = c->die_sib)
6403 mark_dies (c);
6404 }
6405
6406 /* Clear the marks for a die and its children. */
6407
6408 static void
6409 unmark_dies (die)
6410 dw_die_ref die;
6411 {
6412 dw_die_ref c;
6413
6414 if (!die->die_mark)
6415 abort ();
6416
6417 die->die_mark = 0;
6418 for (c = die->die_child; c; c = c->die_sib)
6419 unmark_dies (c);
6420 }
6421
6422 /* Clear the marks for a die, its children and referred dies. */
6423
6424 static void
6425 unmark_all_dies (die)
6426 dw_die_ref die;
6427 {
6428 dw_die_ref c;
6429 dw_attr_ref a;
6430
6431 if (!die->die_mark)
6432 return;
6433 die->die_mark = 0;
6434
6435 for (c = die->die_child; c; c = c->die_sib)
6436 unmark_all_dies (c);
6437
6438 for (a = die->die_attr; a; a = a->dw_attr_next)
6439 if (AT_class (a) == dw_val_class_die_ref)
6440 unmark_all_dies (AT_ref (a));
6441 }
6442
6443 /* Return the size of the .debug_pubnames table generated for the
6444 compilation unit. */
6445
6446 static unsigned long
6447 size_of_pubnames ()
6448 {
6449 unsigned long size;
6450 unsigned i;
6451
6452 size = DWARF_PUBNAMES_HEADER_SIZE;
6453 for (i = 0; i < pubname_table_in_use; i++)
6454 {
6455 pubname_ref p = &pubname_table[i];
6456 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6457 }
6458
6459 size += DWARF_OFFSET_SIZE;
6460 return size;
6461 }
6462
6463 /* Return the size of the information in the .debug_aranges section. */
6464
6465 static unsigned long
6466 size_of_aranges ()
6467 {
6468 unsigned long size;
6469
6470 size = DWARF_ARANGES_HEADER_SIZE;
6471
6472 /* Count the address/length pair for this compilation unit. */
6473 size += 2 * DWARF2_ADDR_SIZE;
6474 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6475
6476 /* Count the two zero words used to terminated the address range table. */
6477 size += 2 * DWARF2_ADDR_SIZE;
6478 return size;
6479 }
6480 \f
6481 /* Select the encoding of an attribute value. */
6482
6483 static enum dwarf_form
6484 value_format (a)
6485 dw_attr_ref a;
6486 {
6487 switch (a->dw_attr_val.val_class)
6488 {
6489 case dw_val_class_addr:
6490 return DW_FORM_addr;
6491 case dw_val_class_range_list:
6492 case dw_val_class_offset:
6493 if (DWARF_OFFSET_SIZE == 4)
6494 return DW_FORM_data4;
6495 if (DWARF_OFFSET_SIZE == 8)
6496 return DW_FORM_data8;
6497 abort ();
6498 case dw_val_class_loc_list:
6499 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6500 .debug_loc section */
6501 return DW_FORM_data4;
6502 case dw_val_class_loc:
6503 switch (constant_size (size_of_locs (AT_loc (a))))
6504 {
6505 case 1:
6506 return DW_FORM_block1;
6507 case 2:
6508 return DW_FORM_block2;
6509 default:
6510 abort ();
6511 }
6512 case dw_val_class_const:
6513 return DW_FORM_sdata;
6514 case dw_val_class_unsigned_const:
6515 switch (constant_size (AT_unsigned (a)))
6516 {
6517 case 1:
6518 return DW_FORM_data1;
6519 case 2:
6520 return DW_FORM_data2;
6521 case 4:
6522 return DW_FORM_data4;
6523 case 8:
6524 return DW_FORM_data8;
6525 default:
6526 abort ();
6527 }
6528 case dw_val_class_long_long:
6529 return DW_FORM_block1;
6530 case dw_val_class_float:
6531 return DW_FORM_block1;
6532 case dw_val_class_flag:
6533 return DW_FORM_flag;
6534 case dw_val_class_die_ref:
6535 if (AT_ref_external (a))
6536 return DW_FORM_ref_addr;
6537 else
6538 return DW_FORM_ref;
6539 case dw_val_class_fde_ref:
6540 return DW_FORM_data;
6541 case dw_val_class_lbl_id:
6542 return DW_FORM_addr;
6543 case dw_val_class_lbl_offset:
6544 return DW_FORM_data;
6545 case dw_val_class_str:
6546 return AT_string_form (a);
6547
6548 default:
6549 abort ();
6550 }
6551 }
6552
6553 /* Output the encoding of an attribute value. */
6554
6555 static void
6556 output_value_format (a)
6557 dw_attr_ref a;
6558 {
6559 enum dwarf_form form = value_format (a);
6560
6561 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6562 }
6563
6564 /* Output the .debug_abbrev section which defines the DIE abbreviation
6565 table. */
6566
6567 static void
6568 output_abbrev_section ()
6569 {
6570 unsigned long abbrev_id;
6571
6572 dw_attr_ref a_attr;
6573
6574 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6575 {
6576 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6577
6578 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6579 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6580 dwarf_tag_name (abbrev->die_tag));
6581
6582 if (abbrev->die_child != NULL)
6583 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6584 else
6585 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6586
6587 for (a_attr = abbrev->die_attr; a_attr != NULL;
6588 a_attr = a_attr->dw_attr_next)
6589 {
6590 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6591 dwarf_attr_name (a_attr->dw_attr));
6592 output_value_format (a_attr);
6593 }
6594
6595 dw2_asm_output_data (1, 0, NULL);
6596 dw2_asm_output_data (1, 0, NULL);
6597 }
6598
6599 /* Terminate the table. */
6600 dw2_asm_output_data (1, 0, NULL);
6601 }
6602
6603 /* Output a symbol we can use to refer to this DIE from another CU. */
6604
6605 static inline void
6606 output_die_symbol (die)
6607 dw_die_ref die;
6608 {
6609 char *sym = die->die_symbol;
6610
6611 if (sym == 0)
6612 return;
6613
6614 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6615 /* We make these global, not weak; if the target doesn't support
6616 .linkonce, it doesn't support combining the sections, so debugging
6617 will break. */
6618 (*targetm.asm_out.globalize_label) (asm_out_file, sym);
6619
6620 ASM_OUTPUT_LABEL (asm_out_file, sym);
6621 }
6622
6623 /* Return a new location list, given the begin and end range, and the
6624 expression. gensym tells us whether to generate a new internal symbol for
6625 this location list node, which is done for the head of the list only. */
6626
6627 static inline dw_loc_list_ref
6628 new_loc_list (expr, begin, end, section, gensym)
6629 dw_loc_descr_ref expr;
6630 const char *begin;
6631 const char *end;
6632 const char *section;
6633 unsigned gensym;
6634 {
6635 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6636
6637 retlist->begin = begin;
6638 retlist->end = end;
6639 retlist->expr = expr;
6640 retlist->section = section;
6641 if (gensym)
6642 retlist->ll_symbol = gen_internal_sym ("LLST");
6643
6644 return retlist;
6645 }
6646
6647 /* Add a location description expression to a location list */
6648
6649 static inline void
6650 add_loc_descr_to_loc_list (list_head, descr, begin, end, section)
6651 dw_loc_list_ref *list_head;
6652 dw_loc_descr_ref descr;
6653 const char *begin;
6654 const char *end;
6655 const char *section;
6656 {
6657 dw_loc_list_ref *d;
6658
6659 /* Find the end of the chain. */
6660 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6661 ;
6662
6663 /* Add a new location list node to the list */
6664 *d = new_loc_list (descr, begin, end, section, 0);
6665 }
6666
6667 /* Output the location list given to us */
6668
6669 static void
6670 output_loc_list (list_head)
6671 dw_loc_list_ref list_head;
6672 {
6673 dw_loc_list_ref curr = list_head;
6674
6675 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6676
6677 /* ??? This shouldn't be needed now that we've forced the
6678 compilation unit base address to zero when there is code
6679 in more than one section. */
6680 if (strcmp (curr->section, ".text") == 0)
6681 {
6682 /* dw2_asm_output_data will mask off any extra bits in the ~0. */
6683 dw2_asm_output_data (DWARF2_ADDR_SIZE, ~(unsigned HOST_WIDE_INT) 0,
6684 "Location list base address specifier fake entry");
6685 dw2_asm_output_offset (DWARF2_ADDR_SIZE, curr->section,
6686 "Location list base address specifier base");
6687 }
6688
6689 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6690 {
6691 unsigned long size;
6692
6693 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6694 "Location list begin address (%s)",
6695 list_head->ll_symbol);
6696 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6697 "Location list end address (%s)",
6698 list_head->ll_symbol);
6699 size = size_of_locs (curr->expr);
6700
6701 /* Output the block length for this list of location operations. */
6702 if (size > 0xffff)
6703 abort ();
6704 dw2_asm_output_data (2, size, "%s", "Location expression size");
6705
6706 output_loc_sequence (curr->expr);
6707 }
6708
6709 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6710 "Location list terminator begin (%s)",
6711 list_head->ll_symbol);
6712 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6713 "Location list terminator end (%s)",
6714 list_head->ll_symbol);
6715 }
6716
6717 /* Output the DIE and its attributes. Called recursively to generate
6718 the definitions of each child DIE. */
6719
6720 static void
6721 output_die (die)
6722 dw_die_ref die;
6723 {
6724 dw_attr_ref a;
6725 dw_die_ref c;
6726 unsigned long size;
6727
6728 /* If someone in another CU might refer to us, set up a symbol for
6729 them to point to. */
6730 if (die->die_symbol)
6731 output_die_symbol (die);
6732
6733 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6734 die->die_offset, dwarf_tag_name (die->die_tag));
6735
6736 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6737 {
6738 const char *name = dwarf_attr_name (a->dw_attr);
6739
6740 switch (AT_class (a))
6741 {
6742 case dw_val_class_addr:
6743 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6744 break;
6745
6746 case dw_val_class_offset:
6747 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6748 "%s", name);
6749 break;
6750
6751 case dw_val_class_range_list:
6752 {
6753 char *p = strchr (ranges_section_label, '\0');
6754
6755 sprintf (p, "+0x%lx", a->dw_attr_val.v.val_offset);
6756 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6757 "%s", name);
6758 *p = '\0';
6759 }
6760 break;
6761
6762 case dw_val_class_loc:
6763 size = size_of_locs (AT_loc (a));
6764
6765 /* Output the block length for this list of location operations. */
6766 dw2_asm_output_data (constant_size (size), size, "%s", name);
6767
6768 output_loc_sequence (AT_loc (a));
6769 break;
6770
6771 case dw_val_class_const:
6772 /* ??? It would be slightly more efficient to use a scheme like is
6773 used for unsigned constants below, but gdb 4.x does not sign
6774 extend. Gdb 5.x does sign extend. */
6775 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6776 break;
6777
6778 case dw_val_class_unsigned_const:
6779 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6780 AT_unsigned (a), "%s", name);
6781 break;
6782
6783 case dw_val_class_long_long:
6784 {
6785 unsigned HOST_WIDE_INT first, second;
6786
6787 dw2_asm_output_data (1,
6788 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6789 "%s", name);
6790
6791 if (WORDS_BIG_ENDIAN)
6792 {
6793 first = a->dw_attr_val.v.val_long_long.hi;
6794 second = a->dw_attr_val.v.val_long_long.low;
6795 }
6796 else
6797 {
6798 first = a->dw_attr_val.v.val_long_long.low;
6799 second = a->dw_attr_val.v.val_long_long.hi;
6800 }
6801
6802 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6803 first, "long long constant");
6804 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6805 second, NULL);
6806 }
6807 break;
6808
6809 case dw_val_class_float:
6810 {
6811 unsigned int i;
6812
6813 dw2_asm_output_data (1, a->dw_attr_val.v.val_float.length * 4,
6814 "%s", name);
6815
6816 for (i = 0; i < a->dw_attr_val.v.val_float.length; i++)
6817 dw2_asm_output_data (4, a->dw_attr_val.v.val_float.array[i],
6818 "fp constant word %u", i);
6819 break;
6820 }
6821
6822 case dw_val_class_flag:
6823 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6824 break;
6825
6826 case dw_val_class_loc_list:
6827 {
6828 char *sym = AT_loc_list (a)->ll_symbol;
6829
6830 if (sym == 0)
6831 abort ();
6832 dw2_asm_output_delta (DWARF_OFFSET_SIZE, sym,
6833 loc_section_label, "%s", name);
6834 }
6835 break;
6836
6837 case dw_val_class_die_ref:
6838 if (AT_ref_external (a))
6839 {
6840 char *sym = AT_ref (a)->die_symbol;
6841
6842 if (sym == 0)
6843 abort ();
6844 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6845 }
6846 else if (AT_ref (a)->die_offset == 0)
6847 abort ();
6848 else
6849 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6850 "%s", name);
6851 break;
6852
6853 case dw_val_class_fde_ref:
6854 {
6855 char l1[20];
6856
6857 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6858 a->dw_attr_val.v.val_fde_index * 2);
6859 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
6860 }
6861 break;
6862
6863 case dw_val_class_lbl_id:
6864 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
6865 break;
6866
6867 case dw_val_class_lbl_offset:
6868 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
6869 break;
6870
6871 case dw_val_class_str:
6872 if (AT_string_form (a) == DW_FORM_strp)
6873 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
6874 a->dw_attr_val.v.val_str->label,
6875 "%s: \"%s\"", name, AT_string (a));
6876 else
6877 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
6878 break;
6879
6880 default:
6881 abort ();
6882 }
6883 }
6884
6885 for (c = die->die_child; c != NULL; c = c->die_sib)
6886 output_die (c);
6887
6888 /* Add null byte to terminate sibling list. */
6889 if (die->die_child != NULL)
6890 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6891 die->die_offset);
6892 }
6893
6894 /* Output the compilation unit that appears at the beginning of the
6895 .debug_info section, and precedes the DIE descriptions. */
6896
6897 static void
6898 output_compilation_unit_header ()
6899 {
6900 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset - DWARF_OFFSET_SIZE,
6901 "Length of Compilation Unit Info");
6902 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
6903 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
6904 "Offset Into Abbrev. Section");
6905 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
6906 }
6907
6908 /* Output the compilation unit DIE and its children. */
6909
6910 static void
6911 output_comp_unit (die, output_if_empty)
6912 dw_die_ref die;
6913 int output_if_empty;
6914 {
6915 const char *secname;
6916 char *oldsym, *tmp;
6917
6918 /* Unless we are outputting main CU, we may throw away empty ones. */
6919 if (!output_if_empty && die->die_child == NULL)
6920 return;
6921
6922 /* Even if there are no children of this DIE, we must output the information
6923 about the compilation unit. Otherwise, on an empty translation unit, we
6924 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
6925 will then complain when examining the file. First mark all the DIEs in
6926 this CU so we know which get local refs. */
6927 mark_dies (die);
6928
6929 build_abbrev_table (die);
6930
6931 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
6932 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
6933 calc_die_sizes (die);
6934
6935 oldsym = die->die_symbol;
6936 if (oldsym)
6937 {
6938 tmp = (char *) alloca (strlen (oldsym) + 24);
6939
6940 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
6941 secname = tmp;
6942 die->die_symbol = NULL;
6943 }
6944 else
6945 secname = (const char *) DEBUG_INFO_SECTION;
6946
6947 /* Output debugging information. */
6948 named_section_flags (secname, SECTION_DEBUG);
6949 output_compilation_unit_header ();
6950 output_die (die);
6951
6952 /* Leave the marks on the main CU, so we can check them in
6953 output_pubnames. */
6954 if (oldsym)
6955 {
6956 unmark_dies (die);
6957 die->die_symbol = oldsym;
6958 }
6959 }
6960
6961 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
6962 output of lang_hooks.decl_printable_name for C++ looks like
6963 "A::f(int)". Let's drop the argument list, and maybe the scope. */
6964
6965 static const char *
6966 dwarf2_name (decl, scope)
6967 tree decl;
6968 int scope;
6969 {
6970 return (*lang_hooks.decl_printable_name) (decl, scope ? 1 : 0);
6971 }
6972
6973 /* Add a new entry to .debug_pubnames if appropriate. */
6974
6975 static void
6976 add_pubname (decl, die)
6977 tree decl;
6978 dw_die_ref die;
6979 {
6980 pubname_ref p;
6981
6982 if (! TREE_PUBLIC (decl))
6983 return;
6984
6985 if (pubname_table_in_use == pubname_table_allocated)
6986 {
6987 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
6988 pubname_table
6989 = (pubname_ref) ggc_realloc (pubname_table,
6990 (pubname_table_allocated
6991 * sizeof (pubname_entry)));
6992 memset (pubname_table + pubname_table_in_use, 0,
6993 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
6994 }
6995
6996 p = &pubname_table[pubname_table_in_use++];
6997 p->die = die;
6998 p->name = xstrdup (dwarf2_name (decl, 1));
6999 }
7000
7001 /* Output the public names table used to speed up access to externally
7002 visible names. For now, only generate entries for externally
7003 visible procedures. */
7004
7005 static void
7006 output_pubnames ()
7007 {
7008 unsigned i;
7009 unsigned long pubnames_length = size_of_pubnames ();
7010
7011 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7012 "Length of Public Names Info");
7013 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7014 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7015 "Offset of Compilation Unit Info");
7016 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7017 "Compilation Unit Length");
7018
7019 for (i = 0; i < pubname_table_in_use; i++)
7020 {
7021 pubname_ref pub = &pubname_table[i];
7022
7023 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7024 if (pub->die->die_mark == 0)
7025 abort ();
7026
7027 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7028 "DIE offset");
7029
7030 dw2_asm_output_nstring (pub->name, -1, "external name");
7031 }
7032
7033 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7034 }
7035
7036 /* Add a new entry to .debug_aranges if appropriate. */
7037
7038 static void
7039 add_arange (decl, die)
7040 tree decl;
7041 dw_die_ref die;
7042 {
7043 if (! DECL_SECTION_NAME (decl))
7044 return;
7045
7046 if (arange_table_in_use == arange_table_allocated)
7047 {
7048 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7049 arange_table = ggc_realloc (arange_table,
7050 (arange_table_allocated
7051 * sizeof (dw_die_ref)));
7052 memset (arange_table + arange_table_in_use, 0,
7053 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7054 }
7055
7056 arange_table[arange_table_in_use++] = die;
7057 }
7058
7059 /* Output the information that goes into the .debug_aranges table.
7060 Namely, define the beginning and ending address range of the
7061 text section generated for this compilation unit. */
7062
7063 static void
7064 output_aranges ()
7065 {
7066 unsigned i;
7067 unsigned long aranges_length = size_of_aranges ();
7068
7069 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7070 "Length of Address Ranges Info");
7071 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7072 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7073 "Offset of Compilation Unit Info");
7074 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7075 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7076
7077 /* We need to align to twice the pointer size here. */
7078 if (DWARF_ARANGES_PAD_SIZE)
7079 {
7080 /* Pad using a 2 byte words so that padding is correct for any
7081 pointer size. */
7082 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7083 2 * DWARF2_ADDR_SIZE);
7084 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7085 dw2_asm_output_data (2, 0, NULL);
7086 }
7087
7088 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7089 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7090 text_section_label, "Length");
7091
7092 for (i = 0; i < arange_table_in_use; i++)
7093 {
7094 dw_die_ref die = arange_table[i];
7095
7096 /* We shouldn't see aranges for DIEs outside of the main CU. */
7097 if (die->die_mark == 0)
7098 abort ();
7099
7100 if (die->die_tag == DW_TAG_subprogram)
7101 {
7102 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7103 "Address");
7104 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7105 get_AT_low_pc (die), "Length");
7106 }
7107 else
7108 {
7109 /* A static variable; extract the symbol from DW_AT_location.
7110 Note that this code isn't currently hit, as we only emit
7111 aranges for functions (jason 9/23/99). */
7112 dw_attr_ref a = get_AT (die, DW_AT_location);
7113 dw_loc_descr_ref loc;
7114
7115 if (! a || AT_class (a) != dw_val_class_loc)
7116 abort ();
7117
7118 loc = AT_loc (a);
7119 if (loc->dw_loc_opc != DW_OP_addr)
7120 abort ();
7121
7122 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7123 loc->dw_loc_oprnd1.v.val_addr, "Address");
7124 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7125 get_AT_unsigned (die, DW_AT_byte_size),
7126 "Length");
7127 }
7128 }
7129
7130 /* Output the terminator words. */
7131 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7132 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7133 }
7134
7135 /* Add a new entry to .debug_ranges. Return the offset at which it
7136 was placed. */
7137
7138 static unsigned int
7139 add_ranges (block)
7140 tree block;
7141 {
7142 unsigned int in_use = ranges_table_in_use;
7143
7144 if (in_use == ranges_table_allocated)
7145 {
7146 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7147 ranges_table = (dw_ranges_ref)
7148 ggc_realloc (ranges_table, (ranges_table_allocated
7149 * sizeof (struct dw_ranges_struct)));
7150 memset (ranges_table + ranges_table_in_use, 0,
7151 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7152 }
7153
7154 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7155 ranges_table_in_use = in_use + 1;
7156
7157 return in_use * 2 * DWARF2_ADDR_SIZE;
7158 }
7159
7160 static void
7161 output_ranges ()
7162 {
7163 unsigned i;
7164 static const char *const start_fmt = "Offset 0x%x";
7165 const char *fmt = start_fmt;
7166
7167 for (i = 0; i < ranges_table_in_use; i++)
7168 {
7169 int block_num = ranges_table[i].block_num;
7170
7171 if (block_num)
7172 {
7173 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7174 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7175
7176 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7177 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7178
7179 /* If all code is in the text section, then the compilation
7180 unit base address defaults to DW_AT_low_pc, which is the
7181 base of the text section. */
7182 if (separate_line_info_table_in_use == 0)
7183 {
7184 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7185 text_section_label,
7186 fmt, i * 2 * DWARF2_ADDR_SIZE);
7187 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7188 text_section_label, NULL);
7189 }
7190
7191 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7192 compilation unit base address to zero, which allows us to
7193 use absolute addresses, and not worry about whether the
7194 target supports cross-section arithmetic. */
7195 else
7196 {
7197 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7198 fmt, i * 2 * DWARF2_ADDR_SIZE);
7199 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7200 }
7201
7202 fmt = NULL;
7203 }
7204 else
7205 {
7206 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7207 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7208 fmt = start_fmt;
7209 }
7210 }
7211 }
7212
7213 /* Data structure containing information about input files. */
7214 struct file_info
7215 {
7216 char *path; /* Complete file name. */
7217 char *fname; /* File name part. */
7218 int length; /* Length of entire string. */
7219 int file_idx; /* Index in input file table. */
7220 int dir_idx; /* Index in directory table. */
7221 };
7222
7223 /* Data structure containing information about directories with source
7224 files. */
7225 struct dir_info
7226 {
7227 char *path; /* Path including directory name. */
7228 int length; /* Path length. */
7229 int prefix; /* Index of directory entry which is a prefix. */
7230 int count; /* Number of files in this directory. */
7231 int dir_idx; /* Index of directory used as base. */
7232 int used; /* Used in the end? */
7233 };
7234
7235 /* Callback function for file_info comparison. We sort by looking at
7236 the directories in the path. */
7237
7238 static int
7239 file_info_cmp (p1, p2)
7240 const void *p1;
7241 const void *p2;
7242 {
7243 const struct file_info *s1 = p1;
7244 const struct file_info *s2 = p2;
7245 unsigned char *cp1;
7246 unsigned char *cp2;
7247
7248 /* Take care of file names without directories. We need to make sure that
7249 we return consistent values to qsort since some will get confused if
7250 we return the same value when identical operands are passed in opposite
7251 orders. So if neither has a directory, return 0 and otherwise return
7252 1 or -1 depending on which one has the directory. */
7253 if ((s1->path == s1->fname || s2->path == s2->fname))
7254 return (s2->path == s2->fname) - (s1->path == s1->fname);
7255
7256 cp1 = (unsigned char *) s1->path;
7257 cp2 = (unsigned char *) s2->path;
7258
7259 while (1)
7260 {
7261 ++cp1;
7262 ++cp2;
7263 /* Reached the end of the first path? If so, handle like above. */
7264 if ((cp1 == (unsigned char *) s1->fname)
7265 || (cp2 == (unsigned char *) s2->fname))
7266 return ((cp2 == (unsigned char *) s2->fname)
7267 - (cp1 == (unsigned char *) s1->fname));
7268
7269 /* Character of current path component the same? */
7270 else if (*cp1 != *cp2)
7271 return *cp1 - *cp2;
7272 }
7273 }
7274
7275 /* Output the directory table and the file name table. We try to minimize
7276 the total amount of memory needed. A heuristic is used to avoid large
7277 slowdowns with many input files. */
7278
7279 static void
7280 output_file_names ()
7281 {
7282 struct file_info *files;
7283 struct dir_info *dirs;
7284 int *saved;
7285 int *savehere;
7286 int *backmap;
7287 size_t ndirs;
7288 int idx_offset;
7289 size_t i;
7290 int idx;
7291
7292 /* Handle the case where file_table is empty. */
7293 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7294 {
7295 dw2_asm_output_data (1, 0, "End directory table");
7296 dw2_asm_output_data (1, 0, "End file name table");
7297 return;
7298 }
7299
7300 /* Allocate the various arrays we need. */
7301 files = (struct file_info *) alloca (VARRAY_ACTIVE_SIZE (file_table)
7302 * sizeof (struct file_info));
7303 dirs = (struct dir_info *) alloca (VARRAY_ACTIVE_SIZE (file_table)
7304 * sizeof (struct dir_info));
7305
7306 /* Sort the file names. */
7307 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7308 {
7309 char *f;
7310
7311 /* Skip all leading "./". */
7312 f = VARRAY_CHAR_PTR (file_table, i);
7313 while (f[0] == '.' && f[1] == '/')
7314 f += 2;
7315
7316 /* Create a new array entry. */
7317 files[i].path = f;
7318 files[i].length = strlen (f);
7319 files[i].file_idx = i;
7320
7321 /* Search for the file name part. */
7322 f = strrchr (f, '/');
7323 files[i].fname = f == NULL ? files[i].path : f + 1;
7324 }
7325
7326 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7327 sizeof (files[0]), file_info_cmp);
7328
7329 /* Find all the different directories used. */
7330 dirs[0].path = files[1].path;
7331 dirs[0].length = files[1].fname - files[1].path;
7332 dirs[0].prefix = -1;
7333 dirs[0].count = 1;
7334 dirs[0].dir_idx = 0;
7335 dirs[0].used = 0;
7336 files[1].dir_idx = 0;
7337 ndirs = 1;
7338
7339 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7340 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7341 && memcmp (dirs[ndirs - 1].path, files[i].path,
7342 dirs[ndirs - 1].length) == 0)
7343 {
7344 /* Same directory as last entry. */
7345 files[i].dir_idx = ndirs - 1;
7346 ++dirs[ndirs - 1].count;
7347 }
7348 else
7349 {
7350 size_t j;
7351
7352 /* This is a new directory. */
7353 dirs[ndirs].path = files[i].path;
7354 dirs[ndirs].length = files[i].fname - files[i].path;
7355 dirs[ndirs].count = 1;
7356 dirs[ndirs].dir_idx = ndirs;
7357 dirs[ndirs].used = 0;
7358 files[i].dir_idx = ndirs;
7359
7360 /* Search for a prefix. */
7361 dirs[ndirs].prefix = -1;
7362 for (j = 0; j < ndirs; j++)
7363 if (dirs[j].length < dirs[ndirs].length
7364 && dirs[j].length > 1
7365 && (dirs[ndirs].prefix == -1
7366 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7367 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7368 dirs[ndirs].prefix = j;
7369
7370 ++ndirs;
7371 }
7372
7373 /* Now to the actual work. We have to find a subset of the directories which
7374 allow expressing the file name using references to the directory table
7375 with the least amount of characters. We do not do an exhaustive search
7376 where we would have to check out every combination of every single
7377 possible prefix. Instead we use a heuristic which provides nearly optimal
7378 results in most cases and never is much off. */
7379 saved = (int *) alloca (ndirs * sizeof (int));
7380 savehere = (int *) alloca (ndirs * sizeof (int));
7381
7382 memset (saved, '\0', ndirs * sizeof (saved[0]));
7383 for (i = 0; i < ndirs; i++)
7384 {
7385 size_t j;
7386 int total;
7387
7388 /* We can always save some space for the current directory. But this
7389 does not mean it will be enough to justify adding the directory. */
7390 savehere[i] = dirs[i].length;
7391 total = (savehere[i] - saved[i]) * dirs[i].count;
7392
7393 for (j = i + 1; j < ndirs; j++)
7394 {
7395 savehere[j] = 0;
7396 if (saved[j] < dirs[i].length)
7397 {
7398 /* Determine whether the dirs[i] path is a prefix of the
7399 dirs[j] path. */
7400 int k;
7401
7402 k = dirs[j].prefix;
7403 while (k != -1 && k != (int) i)
7404 k = dirs[k].prefix;
7405
7406 if (k == (int) i)
7407 {
7408 /* Yes it is. We can possibly safe some memory but
7409 writing the filenames in dirs[j] relative to
7410 dirs[i]. */
7411 savehere[j] = dirs[i].length;
7412 total += (savehere[j] - saved[j]) * dirs[j].count;
7413 }
7414 }
7415 }
7416
7417 /* Check whether we can safe enough to justify adding the dirs[i]
7418 directory. */
7419 if (total > dirs[i].length + 1)
7420 {
7421 /* It's worthwhile adding. */
7422 for (j = i; j < ndirs; j++)
7423 if (savehere[j] > 0)
7424 {
7425 /* Remember how much we saved for this directory so far. */
7426 saved[j] = savehere[j];
7427
7428 /* Remember the prefix directory. */
7429 dirs[j].dir_idx = i;
7430 }
7431 }
7432 }
7433
7434 /* We have to emit them in the order they appear in the file_table array
7435 since the index is used in the debug info generation. To do this
7436 efficiently we generate a back-mapping of the indices first. */
7437 backmap = (int *) alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7438 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7439 {
7440 backmap[files[i].file_idx] = i;
7441
7442 /* Mark this directory as used. */
7443 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7444 }
7445
7446 /* That was it. We are ready to emit the information. First emit the
7447 directory name table. We have to make sure the first actually emitted
7448 directory name has index one; zero is reserved for the current working
7449 directory. Make sure we do not confuse these indices with the one for the
7450 constructed table (even though most of the time they are identical). */
7451 idx = 1;
7452 idx_offset = dirs[0].length > 0 ? 1 : 0;
7453 for (i = 1 - idx_offset; i < ndirs; i++)
7454 if (dirs[i].used != 0)
7455 {
7456 dirs[i].used = idx++;
7457 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7458 "Directory Entry: 0x%x", dirs[i].used);
7459 }
7460
7461 dw2_asm_output_data (1, 0, "End directory table");
7462
7463 /* Correct the index for the current working directory entry if it
7464 exists. */
7465 if (idx_offset == 0)
7466 dirs[0].used = 0;
7467
7468 /* Now write all the file names. */
7469 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7470 {
7471 int file_idx = backmap[i];
7472 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7473
7474 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7475 "File Entry: 0x%x", i);
7476
7477 /* Include directory index. */
7478 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7479
7480 /* Modification time. */
7481 dw2_asm_output_data_uleb128 (0, NULL);
7482
7483 /* File length in bytes. */
7484 dw2_asm_output_data_uleb128 (0, NULL);
7485 }
7486
7487 dw2_asm_output_data (1, 0, "End file name table");
7488 }
7489
7490
7491 /* Output the source line number correspondence information. This
7492 information goes into the .debug_line section. */
7493
7494 static void
7495 output_line_info ()
7496 {
7497 char l1[20], l2[20], p1[20], p2[20];
7498 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7499 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7500 unsigned opc;
7501 unsigned n_op_args;
7502 unsigned long lt_index;
7503 unsigned long current_line;
7504 long line_offset;
7505 long line_delta;
7506 unsigned long current_file;
7507 unsigned long function;
7508
7509 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7510 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7511 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7512 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7513
7514 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7515 "Length of Source Line Info");
7516 ASM_OUTPUT_LABEL (asm_out_file, l1);
7517
7518 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7519 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7520 ASM_OUTPUT_LABEL (asm_out_file, p1);
7521
7522 /* Define the architecture-dependent minimum instruction length (in
7523 bytes). In this implementation of DWARF, this field is used for
7524 information purposes only. Since GCC generates assembly language,
7525 we have no a priori knowledge of how many instruction bytes are
7526 generated for each source line, and therefore can use only the
7527 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7528 commands. Accordingly, we fix this as `1', which is "correct
7529 enough" for all architectures, and don't let the target override. */
7530 dw2_asm_output_data (1, 1,
7531 "Minimum Instruction Length");
7532
7533 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7534 "Default is_stmt_start flag");
7535 dw2_asm_output_data (1, DWARF_LINE_BASE,
7536 "Line Base Value (Special Opcodes)");
7537 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7538 "Line Range Value (Special Opcodes)");
7539 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7540 "Special Opcode Base");
7541
7542 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7543 {
7544 switch (opc)
7545 {
7546 case DW_LNS_advance_pc:
7547 case DW_LNS_advance_line:
7548 case DW_LNS_set_file:
7549 case DW_LNS_set_column:
7550 case DW_LNS_fixed_advance_pc:
7551 n_op_args = 1;
7552 break;
7553 default:
7554 n_op_args = 0;
7555 break;
7556 }
7557
7558 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7559 opc, n_op_args);
7560 }
7561
7562 /* Write out the information about the files we use. */
7563 output_file_names ();
7564 ASM_OUTPUT_LABEL (asm_out_file, p2);
7565
7566 /* We used to set the address register to the first location in the text
7567 section here, but that didn't accomplish anything since we already
7568 have a line note for the opening brace of the first function. */
7569
7570 /* Generate the line number to PC correspondence table, encoded as
7571 a series of state machine operations. */
7572 current_file = 1;
7573 current_line = 1;
7574 strcpy (prev_line_label, text_section_label);
7575 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7576 {
7577 dw_line_info_ref line_info = &line_info_table[lt_index];
7578
7579 #if 0
7580 /* Disable this optimization for now; GDB wants to see two line notes
7581 at the beginning of a function so it can find the end of the
7582 prologue. */
7583
7584 /* Don't emit anything for redundant notes. Just updating the
7585 address doesn't accomplish anything, because we already assume
7586 that anything after the last address is this line. */
7587 if (line_info->dw_line_num == current_line
7588 && line_info->dw_file_num == current_file)
7589 continue;
7590 #endif
7591
7592 /* Emit debug info for the address of the current line.
7593
7594 Unfortunately, we have little choice here currently, and must always
7595 use the most general form. GCC does not know the address delta
7596 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7597 attributes which will give an upper bound on the address range. We
7598 could perhaps use length attributes to determine when it is safe to
7599 use DW_LNS_fixed_advance_pc. */
7600
7601 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7602 if (0)
7603 {
7604 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7605 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7606 "DW_LNS_fixed_advance_pc");
7607 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7608 }
7609 else
7610 {
7611 /* This can handle any delta. This takes
7612 4+DWARF2_ADDR_SIZE bytes. */
7613 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7614 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7615 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7616 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7617 }
7618
7619 strcpy (prev_line_label, line_label);
7620
7621 /* Emit debug info for the source file of the current line, if
7622 different from the previous line. */
7623 if (line_info->dw_file_num != current_file)
7624 {
7625 current_file = line_info->dw_file_num;
7626 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7627 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7628 VARRAY_CHAR_PTR (file_table,
7629 current_file));
7630 }
7631
7632 /* Emit debug info for the current line number, choosing the encoding
7633 that uses the least amount of space. */
7634 if (line_info->dw_line_num != current_line)
7635 {
7636 line_offset = line_info->dw_line_num - current_line;
7637 line_delta = line_offset - DWARF_LINE_BASE;
7638 current_line = line_info->dw_line_num;
7639 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7640 /* This can handle deltas from -10 to 234, using the current
7641 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7642 takes 1 byte. */
7643 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7644 "line %lu", current_line);
7645 else
7646 {
7647 /* This can handle any delta. This takes at least 4 bytes,
7648 depending on the value being encoded. */
7649 dw2_asm_output_data (1, DW_LNS_advance_line,
7650 "advance to line %lu", current_line);
7651 dw2_asm_output_data_sleb128 (line_offset, NULL);
7652 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7653 }
7654 }
7655 else
7656 /* We still need to start a new row, so output a copy insn. */
7657 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7658 }
7659
7660 /* Emit debug info for the address of the end of the function. */
7661 if (0)
7662 {
7663 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7664 "DW_LNS_fixed_advance_pc");
7665 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7666 }
7667 else
7668 {
7669 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7670 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7671 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7672 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7673 }
7674
7675 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7676 dw2_asm_output_data_uleb128 (1, NULL);
7677 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7678
7679 function = 0;
7680 current_file = 1;
7681 current_line = 1;
7682 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7683 {
7684 dw_separate_line_info_ref line_info
7685 = &separate_line_info_table[lt_index];
7686
7687 #if 0
7688 /* Don't emit anything for redundant notes. */
7689 if (line_info->dw_line_num == current_line
7690 && line_info->dw_file_num == current_file
7691 && line_info->function == function)
7692 goto cont;
7693 #endif
7694
7695 /* Emit debug info for the address of the current line. If this is
7696 a new function, or the first line of a function, then we need
7697 to handle it differently. */
7698 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7699 lt_index);
7700 if (function != line_info->function)
7701 {
7702 function = line_info->function;
7703
7704 /* Set the address register to the first line in the function */
7705 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7706 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7707 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7708 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7709 }
7710 else
7711 {
7712 /* ??? See the DW_LNS_advance_pc comment above. */
7713 if (0)
7714 {
7715 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7716 "DW_LNS_fixed_advance_pc");
7717 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7718 }
7719 else
7720 {
7721 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7722 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7723 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7724 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7725 }
7726 }
7727
7728 strcpy (prev_line_label, line_label);
7729
7730 /* Emit debug info for the source file of the current line, if
7731 different from the previous line. */
7732 if (line_info->dw_file_num != current_file)
7733 {
7734 current_file = line_info->dw_file_num;
7735 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7736 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7737 VARRAY_CHAR_PTR (file_table,
7738 current_file));
7739 }
7740
7741 /* Emit debug info for the current line number, choosing the encoding
7742 that uses the least amount of space. */
7743 if (line_info->dw_line_num != current_line)
7744 {
7745 line_offset = line_info->dw_line_num - current_line;
7746 line_delta = line_offset - DWARF_LINE_BASE;
7747 current_line = line_info->dw_line_num;
7748 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7749 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7750 "line %lu", current_line);
7751 else
7752 {
7753 dw2_asm_output_data (1, DW_LNS_advance_line,
7754 "advance to line %lu", current_line);
7755 dw2_asm_output_data_sleb128 (line_offset, NULL);
7756 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7757 }
7758 }
7759 else
7760 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7761
7762 #if 0
7763 cont:
7764 #endif
7765
7766 lt_index++;
7767
7768 /* If we're done with a function, end its sequence. */
7769 if (lt_index == separate_line_info_table_in_use
7770 || separate_line_info_table[lt_index].function != function)
7771 {
7772 current_file = 1;
7773 current_line = 1;
7774
7775 /* Emit debug info for the address of the end of the function. */
7776 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7777 if (0)
7778 {
7779 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7780 "DW_LNS_fixed_advance_pc");
7781 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7782 }
7783 else
7784 {
7785 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7786 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7787 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7788 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7789 }
7790
7791 /* Output the marker for the end of this sequence. */
7792 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7793 dw2_asm_output_data_uleb128 (1, NULL);
7794 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7795 }
7796 }
7797
7798 /* Output the marker for the end of the line number info. */
7799 ASM_OUTPUT_LABEL (asm_out_file, l2);
7800 }
7801 \f
7802 /* Given a pointer to a tree node for some base type, return a pointer to
7803 a DIE that describes the given type.
7804
7805 This routine must only be called for GCC type nodes that correspond to
7806 Dwarf base (fundamental) types. */
7807
7808 static dw_die_ref
7809 base_type_die (type)
7810 tree type;
7811 {
7812 dw_die_ref base_type_result;
7813 const char *type_name;
7814 enum dwarf_type encoding;
7815 tree name = TYPE_NAME (type);
7816
7817 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7818 return 0;
7819
7820 if (name)
7821 {
7822 if (TREE_CODE (name) == TYPE_DECL)
7823 name = DECL_NAME (name);
7824
7825 type_name = IDENTIFIER_POINTER (name);
7826 }
7827 else
7828 type_name = "__unknown__";
7829
7830 switch (TREE_CODE (type))
7831 {
7832 case INTEGER_TYPE:
7833 /* Carefully distinguish the C character types, without messing
7834 up if the language is not C. Note that we check only for the names
7835 that contain spaces; other names might occur by coincidence in other
7836 languages. */
7837 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7838 && (type == char_type_node
7839 || ! strcmp (type_name, "signed char")
7840 || ! strcmp (type_name, "unsigned char"))))
7841 {
7842 if (TREE_UNSIGNED (type))
7843 encoding = DW_ATE_unsigned;
7844 else
7845 encoding = DW_ATE_signed;
7846 break;
7847 }
7848 /* else fall through. */
7849
7850 case CHAR_TYPE:
7851 /* GNU Pascal/Ada CHAR type. Not used in C. */
7852 if (TREE_UNSIGNED (type))
7853 encoding = DW_ATE_unsigned_char;
7854 else
7855 encoding = DW_ATE_signed_char;
7856 break;
7857
7858 case REAL_TYPE:
7859 encoding = DW_ATE_float;
7860 break;
7861
7862 /* Dwarf2 doesn't know anything about complex ints, so use
7863 a user defined type for it. */
7864 case COMPLEX_TYPE:
7865 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
7866 encoding = DW_ATE_complex_float;
7867 else
7868 encoding = DW_ATE_lo_user;
7869 break;
7870
7871 case BOOLEAN_TYPE:
7872 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7873 encoding = DW_ATE_boolean;
7874 break;
7875
7876 default:
7877 /* No other TREE_CODEs are Dwarf fundamental types. */
7878 abort ();
7879 }
7880
7881 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
7882 if (demangle_name_func)
7883 type_name = (*demangle_name_func) (type_name);
7884
7885 add_AT_string (base_type_result, DW_AT_name, type_name);
7886 add_AT_unsigned (base_type_result, DW_AT_byte_size,
7887 int_size_in_bytes (type));
7888 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
7889
7890 return base_type_result;
7891 }
7892
7893 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7894 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7895 a given type is generally the same as the given type, except that if the
7896 given type is a pointer or reference type, then the root type of the given
7897 type is the root type of the "basis" type for the pointer or reference
7898 type. (This definition of the "root" type is recursive.) Also, the root
7899 type of a `const' qualified type or a `volatile' qualified type is the
7900 root type of the given type without the qualifiers. */
7901
7902 static tree
7903 root_type (type)
7904 tree type;
7905 {
7906 if (TREE_CODE (type) == ERROR_MARK)
7907 return error_mark_node;
7908
7909 switch (TREE_CODE (type))
7910 {
7911 case ERROR_MARK:
7912 return error_mark_node;
7913
7914 case POINTER_TYPE:
7915 case REFERENCE_TYPE:
7916 return type_main_variant (root_type (TREE_TYPE (type)));
7917
7918 default:
7919 return type_main_variant (type);
7920 }
7921 }
7922
7923 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
7924 given input type is a Dwarf "fundamental" type. Otherwise return null. */
7925
7926 static inline int
7927 is_base_type (type)
7928 tree type;
7929 {
7930 switch (TREE_CODE (type))
7931 {
7932 case ERROR_MARK:
7933 case VOID_TYPE:
7934 case INTEGER_TYPE:
7935 case REAL_TYPE:
7936 case COMPLEX_TYPE:
7937 case BOOLEAN_TYPE:
7938 case CHAR_TYPE:
7939 return 1;
7940
7941 case SET_TYPE:
7942 case ARRAY_TYPE:
7943 case RECORD_TYPE:
7944 case UNION_TYPE:
7945 case QUAL_UNION_TYPE:
7946 case ENUMERAL_TYPE:
7947 case FUNCTION_TYPE:
7948 case METHOD_TYPE:
7949 case POINTER_TYPE:
7950 case REFERENCE_TYPE:
7951 case FILE_TYPE:
7952 case OFFSET_TYPE:
7953 case LANG_TYPE:
7954 case VECTOR_TYPE:
7955 return 0;
7956
7957 default:
7958 abort ();
7959 }
7960
7961 return 0;
7962 }
7963
7964 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
7965 node, return the size in bits for the type if it is a constant, or else
7966 return the alignment for the type if the type's size is not constant, or
7967 else return BITS_PER_WORD if the type actually turns out to be an
7968 ERROR_MARK node. */
7969
7970 static inline unsigned HOST_WIDE_INT
7971 simple_type_size_in_bits (type)
7972 tree type;
7973 {
7974
7975 if (TREE_CODE (type) == ERROR_MARK)
7976 return BITS_PER_WORD;
7977 else if (TYPE_SIZE (type) == NULL_TREE)
7978 return 0;
7979 else if (host_integerp (TYPE_SIZE (type), 1))
7980 return tree_low_cst (TYPE_SIZE (type), 1);
7981 else
7982 return TYPE_ALIGN (type);
7983 }
7984
7985 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
7986 entry that chains various modifiers in front of the given type. */
7987
7988 static dw_die_ref
7989 modified_type_die (type, is_const_type, is_volatile_type, context_die)
7990 tree type;
7991 int is_const_type;
7992 int is_volatile_type;
7993 dw_die_ref context_die;
7994 {
7995 enum tree_code code = TREE_CODE (type);
7996 dw_die_ref mod_type_die = NULL;
7997 dw_die_ref sub_die = NULL;
7998 tree item_type = NULL;
7999
8000 if (code != ERROR_MARK)
8001 {
8002 tree qualified_type;
8003
8004 /* See if we already have the appropriately qualified variant of
8005 this type. */
8006 qualified_type
8007 = get_qualified_type (type,
8008 ((is_const_type ? TYPE_QUAL_CONST : 0)
8009 | (is_volatile_type
8010 ? TYPE_QUAL_VOLATILE : 0)));
8011
8012 /* If we do, then we can just use its DIE, if it exists. */
8013 if (qualified_type)
8014 {
8015 mod_type_die = lookup_type_die (qualified_type);
8016 if (mod_type_die)
8017 return mod_type_die;
8018 }
8019
8020 /* Handle C typedef types. */
8021 if (qualified_type && TYPE_NAME (qualified_type)
8022 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
8023 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
8024 {
8025 tree type_name = TYPE_NAME (qualified_type);
8026 tree dtype = TREE_TYPE (type_name);
8027
8028 if (qualified_type == dtype)
8029 {
8030 /* For a named type, use the typedef. */
8031 gen_type_die (qualified_type, context_die);
8032 mod_type_die = lookup_type_die (qualified_type);
8033 }
8034 else if (is_const_type < TYPE_READONLY (dtype)
8035 || is_volatile_type < TYPE_VOLATILE (dtype))
8036 /* cv-unqualified version of named type. Just use the unnamed
8037 type to which it refers. */
8038 mod_type_die
8039 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
8040 is_const_type, is_volatile_type,
8041 context_die);
8042
8043 /* Else cv-qualified version of named type; fall through. */
8044 }
8045
8046 if (mod_type_die)
8047 /* OK. */
8048 ;
8049 else if (is_const_type)
8050 {
8051 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8052 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8053 }
8054 else if (is_volatile_type)
8055 {
8056 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8057 sub_die = modified_type_die (type, 0, 0, context_die);
8058 }
8059 else if (code == POINTER_TYPE)
8060 {
8061 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8062 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8063 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8064 #if 0
8065 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8066 #endif
8067 item_type = TREE_TYPE (type);
8068 }
8069 else if (code == REFERENCE_TYPE)
8070 {
8071 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8072 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8073 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8074 #if 0
8075 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8076 #endif
8077 item_type = TREE_TYPE (type);
8078 }
8079 else if (is_base_type (type))
8080 mod_type_die = base_type_die (type);
8081 else
8082 {
8083 gen_type_die (type, context_die);
8084
8085 /* We have to get the type_main_variant here (and pass that to the
8086 `lookup_type_die' routine) because the ..._TYPE node we have
8087 might simply be a *copy* of some original type node (where the
8088 copy was created to help us keep track of typedef names) and
8089 that copy might have a different TYPE_UID from the original
8090 ..._TYPE node. */
8091 if (TREE_CODE (type) != VECTOR_TYPE)
8092 mod_type_die = lookup_type_die (type_main_variant (type));
8093 else
8094 /* Vectors have the debugging information in the type,
8095 not the main variant. */
8096 mod_type_die = lookup_type_die (type);
8097 if (mod_type_die == NULL)
8098 abort ();
8099 }
8100
8101 /* We want to equate the qualified type to the die below. */
8102 type = qualified_type;
8103 }
8104
8105 if (type)
8106 equate_type_number_to_die (type, mod_type_die);
8107 if (item_type)
8108 /* We must do this after the equate_type_number_to_die call, in case
8109 this is a recursive type. This ensures that the modified_type_die
8110 recursion will terminate even if the type is recursive. Recursive
8111 types are possible in Ada. */
8112 sub_die = modified_type_die (item_type,
8113 TYPE_READONLY (item_type),
8114 TYPE_VOLATILE (item_type),
8115 context_die);
8116
8117 if (sub_die != NULL)
8118 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8119
8120 return mod_type_die;
8121 }
8122
8123 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8124 an enumerated type. */
8125
8126 static inline int
8127 type_is_enum (type)
8128 tree type;
8129 {
8130 return TREE_CODE (type) == ENUMERAL_TYPE;
8131 }
8132
8133 /* Return the register number described by a given RTL node. */
8134
8135 static unsigned int
8136 reg_number (rtl)
8137 rtx rtl;
8138 {
8139 unsigned regno = REGNO (rtl);
8140
8141 if (regno >= FIRST_PSEUDO_REGISTER)
8142 abort ();
8143
8144 return DBX_REGISTER_NUMBER (regno);
8145 }
8146
8147 /* Return a location descriptor that designates a machine register or
8148 zero if there is no such. */
8149
8150 static dw_loc_descr_ref
8151 reg_loc_descriptor (rtl)
8152 rtx rtl;
8153 {
8154 dw_loc_descr_ref loc_result = NULL;
8155 unsigned reg;
8156
8157 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8158 return 0;
8159
8160 reg = reg_number (rtl);
8161 if (reg <= 31)
8162 loc_result = new_loc_descr (DW_OP_reg0 + reg, 0, 0);
8163 else
8164 loc_result = new_loc_descr (DW_OP_regx, reg, 0);
8165
8166 return loc_result;
8167 }
8168
8169 /* Return a location descriptor that designates a constant. */
8170
8171 static dw_loc_descr_ref
8172 int_loc_descriptor (i)
8173 HOST_WIDE_INT i;
8174 {
8175 enum dwarf_location_atom op;
8176
8177 /* Pick the smallest representation of a constant, rather than just
8178 defaulting to the LEB encoding. */
8179 if (i >= 0)
8180 {
8181 if (i <= 31)
8182 op = DW_OP_lit0 + i;
8183 else if (i <= 0xff)
8184 op = DW_OP_const1u;
8185 else if (i <= 0xffff)
8186 op = DW_OP_const2u;
8187 else if (HOST_BITS_PER_WIDE_INT == 32
8188 || i <= 0xffffffff)
8189 op = DW_OP_const4u;
8190 else
8191 op = DW_OP_constu;
8192 }
8193 else
8194 {
8195 if (i >= -0x80)
8196 op = DW_OP_const1s;
8197 else if (i >= -0x8000)
8198 op = DW_OP_const2s;
8199 else if (HOST_BITS_PER_WIDE_INT == 32
8200 || i >= -0x80000000)
8201 op = DW_OP_const4s;
8202 else
8203 op = DW_OP_consts;
8204 }
8205
8206 return new_loc_descr (op, i, 0);
8207 }
8208
8209 /* Return a location descriptor that designates a base+offset location. */
8210
8211 static dw_loc_descr_ref
8212 based_loc_descr (reg, offset)
8213 unsigned reg;
8214 long int offset;
8215 {
8216 dw_loc_descr_ref loc_result;
8217 /* For the "frame base", we use the frame pointer or stack pointer
8218 registers, since the RTL for local variables is relative to one of
8219 them. */
8220 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8221 ? HARD_FRAME_POINTER_REGNUM
8222 : STACK_POINTER_REGNUM);
8223
8224 if (reg == fp_reg)
8225 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8226 else if (reg <= 31)
8227 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8228 else
8229 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8230
8231 return loc_result;
8232 }
8233
8234 /* Return true if this RTL expression describes a base+offset calculation. */
8235
8236 static inline int
8237 is_based_loc (rtl)
8238 rtx rtl;
8239 {
8240 return (GET_CODE (rtl) == PLUS
8241 && ((GET_CODE (XEXP (rtl, 0)) == REG
8242 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8243 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8244 }
8245
8246 /* The following routine converts the RTL for a variable or parameter
8247 (resident in memory) into an equivalent Dwarf representation of a
8248 mechanism for getting the address of that same variable onto the top of a
8249 hypothetical "address evaluation" stack.
8250
8251 When creating memory location descriptors, we are effectively transforming
8252 the RTL for a memory-resident object into its Dwarf postfix expression
8253 equivalent. This routine recursively descends an RTL tree, turning
8254 it into Dwarf postfix code as it goes.
8255
8256 MODE is the mode of the memory reference, needed to handle some
8257 autoincrement addressing modes.
8258
8259 Return 0 if we can't represent the location. */
8260
8261 static dw_loc_descr_ref
8262 mem_loc_descriptor (rtl, mode)
8263 rtx rtl;
8264 enum machine_mode mode;
8265 {
8266 dw_loc_descr_ref mem_loc_result = NULL;
8267
8268 /* Note that for a dynamically sized array, the location we will generate a
8269 description of here will be the lowest numbered location which is
8270 actually within the array. That's *not* necessarily the same as the
8271 zeroth element of the array. */
8272
8273 rtl = (*targetm.delegitimize_address) (rtl);
8274
8275 switch (GET_CODE (rtl))
8276 {
8277 case POST_INC:
8278 case POST_DEC:
8279 case POST_MODIFY:
8280 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8281 just fall into the SUBREG code. */
8282
8283 /* ... fall through ... */
8284
8285 case SUBREG:
8286 /* The case of a subreg may arise when we have a local (register)
8287 variable or a formal (register) parameter which doesn't quite fill
8288 up an entire register. For now, just assume that it is
8289 legitimate to make the Dwarf info refer to the whole register which
8290 contains the given subreg. */
8291 rtl = SUBREG_REG (rtl);
8292
8293 /* ... fall through ... */
8294
8295 case REG:
8296 /* Whenever a register number forms a part of the description of the
8297 method for calculating the (dynamic) address of a memory resident
8298 object, DWARF rules require the register number be referred to as
8299 a "base register". This distinction is not based in any way upon
8300 what category of register the hardware believes the given register
8301 belongs to. This is strictly DWARF terminology we're dealing with
8302 here. Note that in cases where the location of a memory-resident
8303 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8304 OP_CONST (0)) the actual DWARF location descriptor that we generate
8305 may just be OP_BASEREG (basereg). This may look deceptively like
8306 the object in question was allocated to a register (rather than in
8307 memory) so DWARF consumers need to be aware of the subtle
8308 distinction between OP_REG and OP_BASEREG. */
8309 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8310 mem_loc_result = based_loc_descr (reg_number (rtl), 0);
8311 break;
8312
8313 case MEM:
8314 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8315 if (mem_loc_result != 0)
8316 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8317 break;
8318
8319 case LABEL_REF:
8320 /* Some ports can transform a symbol ref into a label ref, because
8321 the symbol ref is too far away and has to be dumped into a constant
8322 pool. */
8323 case CONST:
8324 case SYMBOL_REF:
8325 /* Alternatively, the symbol in the constant pool might be referenced
8326 by a different symbol. */
8327 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8328 {
8329 bool marked;
8330 rtx tmp = get_pool_constant_mark (rtl, &marked);
8331
8332 if (GET_CODE (tmp) == SYMBOL_REF)
8333 {
8334 rtl = tmp;
8335 if (CONSTANT_POOL_ADDRESS_P (tmp))
8336 get_pool_constant_mark (tmp, &marked);
8337 else
8338 marked = true;
8339 }
8340
8341 /* If all references to this pool constant were optimized away,
8342 it was not output and thus we can't represent it.
8343 FIXME: might try to use DW_OP_const_value here, though
8344 DW_OP_piece complicates it. */
8345 if (!marked)
8346 return 0;
8347 }
8348
8349 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8350 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8351 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8352 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8353 break;
8354
8355 case PRE_MODIFY:
8356 /* Extract the PLUS expression nested inside and fall into
8357 PLUS code below. */
8358 rtl = XEXP (rtl, 1);
8359 goto plus;
8360
8361 case PRE_INC:
8362 case PRE_DEC:
8363 /* Turn these into a PLUS expression and fall into the PLUS code
8364 below. */
8365 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8366 GEN_INT (GET_CODE (rtl) == PRE_INC
8367 ? GET_MODE_UNIT_SIZE (mode)
8368 : -GET_MODE_UNIT_SIZE (mode)));
8369
8370 /* ... fall through ... */
8371
8372 case PLUS:
8373 plus:
8374 if (is_based_loc (rtl))
8375 mem_loc_result = based_loc_descr (reg_number (XEXP (rtl, 0)),
8376 INTVAL (XEXP (rtl, 1)));
8377 else
8378 {
8379 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8380 if (mem_loc_result == 0)
8381 break;
8382
8383 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8384 && INTVAL (XEXP (rtl, 1)) >= 0)
8385 add_loc_descr (&mem_loc_result,
8386 new_loc_descr (DW_OP_plus_uconst,
8387 INTVAL (XEXP (rtl, 1)), 0));
8388 else
8389 {
8390 add_loc_descr (&mem_loc_result,
8391 mem_loc_descriptor (XEXP (rtl, 1), mode));
8392 add_loc_descr (&mem_loc_result,
8393 new_loc_descr (DW_OP_plus, 0, 0));
8394 }
8395 }
8396 break;
8397
8398 case MULT:
8399 {
8400 /* If a pseudo-reg is optimized away, it is possible for it to
8401 be replaced with a MEM containing a multiply. */
8402 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8403 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
8404
8405 if (op0 == 0 || op1 == 0)
8406 break;
8407
8408 mem_loc_result = op0;
8409 add_loc_descr (&mem_loc_result, op1);
8410 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
8411 break;
8412 }
8413
8414 case CONST_INT:
8415 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8416 break;
8417
8418 case ADDRESSOF:
8419 /* If this is a MEM, return its address. Otherwise, we can't
8420 represent this. */
8421 if (GET_CODE (XEXP (rtl, 0)) == MEM)
8422 return mem_loc_descriptor (XEXP (XEXP (rtl, 0), 0), mode);
8423 else
8424 return 0;
8425
8426 default:
8427 abort ();
8428 }
8429
8430 return mem_loc_result;
8431 }
8432
8433 /* Return a descriptor that describes the concatenation of two locations.
8434 This is typically a complex variable. */
8435
8436 static dw_loc_descr_ref
8437 concat_loc_descriptor (x0, x1)
8438 rtx x0, x1;
8439 {
8440 dw_loc_descr_ref cc_loc_result = NULL;
8441 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
8442 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
8443
8444 if (x0_ref == 0 || x1_ref == 0)
8445 return 0;
8446
8447 cc_loc_result = x0_ref;
8448 add_loc_descr (&cc_loc_result,
8449 new_loc_descr (DW_OP_piece,
8450 GET_MODE_SIZE (GET_MODE (x0)), 0));
8451
8452 add_loc_descr (&cc_loc_result, x1_ref);
8453 add_loc_descr (&cc_loc_result,
8454 new_loc_descr (DW_OP_piece,
8455 GET_MODE_SIZE (GET_MODE (x1)), 0));
8456
8457 return cc_loc_result;
8458 }
8459
8460 /* Output a proper Dwarf location descriptor for a variable or parameter
8461 which is either allocated in a register or in a memory location. For a
8462 register, we just generate an OP_REG and the register number. For a
8463 memory location we provide a Dwarf postfix expression describing how to
8464 generate the (dynamic) address of the object onto the address stack.
8465
8466 If we don't know how to describe it, return 0. */
8467
8468 static dw_loc_descr_ref
8469 loc_descriptor (rtl)
8470 rtx rtl;
8471 {
8472 dw_loc_descr_ref loc_result = NULL;
8473
8474 switch (GET_CODE (rtl))
8475 {
8476 case SUBREG:
8477 /* The case of a subreg may arise when we have a local (register)
8478 variable or a formal (register) parameter which doesn't quite fill
8479 up an entire register. For now, just assume that it is
8480 legitimate to make the Dwarf info refer to the whole register which
8481 contains the given subreg. */
8482 rtl = SUBREG_REG (rtl);
8483
8484 /* ... fall through ... */
8485
8486 case REG:
8487 loc_result = reg_loc_descriptor (rtl);
8488 break;
8489
8490 case MEM:
8491 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8492 break;
8493
8494 case CONCAT:
8495 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8496 break;
8497
8498 default:
8499 abort ();
8500 }
8501
8502 return loc_result;
8503 }
8504
8505 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8506 up particularly with variable length arrays. If ADDRESSP is nonzero, we are
8507 looking for an address. Otherwise, we return a value. If we can't make a
8508 descriptor, return 0. */
8509
8510 static dw_loc_descr_ref
8511 loc_descriptor_from_tree (loc, addressp)
8512 tree loc;
8513 int addressp;
8514 {
8515 dw_loc_descr_ref ret, ret1;
8516 int indirect_p = 0;
8517 int unsignedp = TREE_UNSIGNED (TREE_TYPE (loc));
8518 enum dwarf_location_atom op;
8519
8520 /* ??? Most of the time we do not take proper care for sign/zero
8521 extending the values properly. Hopefully this won't be a real
8522 problem... */
8523
8524 switch (TREE_CODE (loc))
8525 {
8526 case ERROR_MARK:
8527 return 0;
8528
8529 case WITH_RECORD_EXPR:
8530 case PLACEHOLDER_EXPR:
8531 /* This case involves extracting fields from an object to determine the
8532 position of other fields. We don't try to encode this here. The
8533 only user of this is Ada, which encodes the needed information using
8534 the names of types. */
8535 return 0;
8536
8537 case CALL_EXPR:
8538 return 0;
8539
8540 case ADDR_EXPR:
8541 /* We can support this only if we can look through conversions and
8542 find an INDIRECT_EXPR. */
8543 for (loc = TREE_OPERAND (loc, 0);
8544 TREE_CODE (loc) == CONVERT_EXPR || TREE_CODE (loc) == NOP_EXPR
8545 || TREE_CODE (loc) == NON_LVALUE_EXPR
8546 || TREE_CODE (loc) == VIEW_CONVERT_EXPR
8547 || TREE_CODE (loc) == SAVE_EXPR;
8548 loc = TREE_OPERAND (loc, 0))
8549 ;
8550
8551 return (TREE_CODE (loc) == INDIRECT_REF
8552 ? loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp)
8553 : 0);
8554
8555 case VAR_DECL:
8556 if (DECL_THREAD_LOCAL (loc))
8557 {
8558 rtx rtl;
8559
8560 #ifndef ASM_OUTPUT_DWARF_DTPREL
8561 /* If this is not defined, we have no way to emit the data. */
8562 return 0;
8563 #endif
8564
8565 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8566 look up addresses of objects in the current module. */
8567 if (DECL_EXTERNAL (loc))
8568 return 0;
8569
8570 rtl = rtl_for_decl_location (loc);
8571 if (rtl == NULL_RTX)
8572 return 0;
8573
8574 if (GET_CODE (rtl) != MEM)
8575 return 0;
8576 rtl = XEXP (rtl, 0);
8577 if (! CONSTANT_P (rtl))
8578 return 0;
8579
8580 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8581 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8582 ret->dw_loc_oprnd1.v.val_addr = rtl;
8583
8584 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8585 add_loc_descr (&ret, ret1);
8586
8587 indirect_p = 1;
8588 break;
8589 }
8590 /* FALLTHRU */
8591
8592 case PARM_DECL:
8593 {
8594 rtx rtl = rtl_for_decl_location (loc);
8595
8596 if (rtl == NULL_RTX)
8597 return 0;
8598 else if (CONSTANT_P (rtl))
8599 {
8600 ret = new_loc_descr (DW_OP_addr, 0, 0);
8601 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8602 ret->dw_loc_oprnd1.v.val_addr = rtl;
8603 indirect_p = 1;
8604 }
8605 else
8606 {
8607 enum machine_mode mode = GET_MODE (rtl);
8608
8609 if (GET_CODE (rtl) == MEM)
8610 {
8611 indirect_p = 1;
8612 rtl = XEXP (rtl, 0);
8613 }
8614
8615 ret = mem_loc_descriptor (rtl, mode);
8616 }
8617 }
8618 break;
8619
8620 case INDIRECT_REF:
8621 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8622 indirect_p = 1;
8623 break;
8624
8625 case COMPOUND_EXPR:
8626 return loc_descriptor_from_tree (TREE_OPERAND (loc, 1), addressp);
8627
8628 case NOP_EXPR:
8629 case CONVERT_EXPR:
8630 case NON_LVALUE_EXPR:
8631 case VIEW_CONVERT_EXPR:
8632 case SAVE_EXPR:
8633 return loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp);
8634
8635 case COMPONENT_REF:
8636 case BIT_FIELD_REF:
8637 case ARRAY_REF:
8638 case ARRAY_RANGE_REF:
8639 {
8640 tree obj, offset;
8641 HOST_WIDE_INT bitsize, bitpos, bytepos;
8642 enum machine_mode mode;
8643 int volatilep;
8644
8645 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
8646 &unsignedp, &volatilep);
8647
8648 if (obj == loc)
8649 return 0;
8650
8651 ret = loc_descriptor_from_tree (obj, 1);
8652 if (ret == 0
8653 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
8654 return 0;
8655
8656 if (offset != NULL_TREE)
8657 {
8658 /* Variable offset. */
8659 add_loc_descr (&ret, loc_descriptor_from_tree (offset, 0));
8660 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8661 }
8662
8663 if (!addressp)
8664 indirect_p = 1;
8665
8666 bytepos = bitpos / BITS_PER_UNIT;
8667 if (bytepos > 0)
8668 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
8669 else if (bytepos < 0)
8670 {
8671 add_loc_descr (&ret, int_loc_descriptor (bytepos));
8672 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8673 }
8674 break;
8675 }
8676
8677 case INTEGER_CST:
8678 if (host_integerp (loc, 0))
8679 ret = int_loc_descriptor (tree_low_cst (loc, 0));
8680 else
8681 return 0;
8682 break;
8683
8684 case TRUTH_AND_EXPR:
8685 case TRUTH_ANDIF_EXPR:
8686 case BIT_AND_EXPR:
8687 op = DW_OP_and;
8688 goto do_binop;
8689
8690 case TRUTH_XOR_EXPR:
8691 case BIT_XOR_EXPR:
8692 op = DW_OP_xor;
8693 goto do_binop;
8694
8695 case TRUTH_OR_EXPR:
8696 case TRUTH_ORIF_EXPR:
8697 case BIT_IOR_EXPR:
8698 op = DW_OP_or;
8699 goto do_binop;
8700
8701 case TRUNC_DIV_EXPR:
8702 op = DW_OP_div;
8703 goto do_binop;
8704
8705 case MINUS_EXPR:
8706 op = DW_OP_minus;
8707 goto do_binop;
8708
8709 case TRUNC_MOD_EXPR:
8710 op = DW_OP_mod;
8711 goto do_binop;
8712
8713 case MULT_EXPR:
8714 op = DW_OP_mul;
8715 goto do_binop;
8716
8717 case LSHIFT_EXPR:
8718 op = DW_OP_shl;
8719 goto do_binop;
8720
8721 case RSHIFT_EXPR:
8722 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
8723 goto do_binop;
8724
8725 case PLUS_EXPR:
8726 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
8727 && host_integerp (TREE_OPERAND (loc, 1), 0))
8728 {
8729 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8730 if (ret == 0)
8731 return 0;
8732
8733 add_loc_descr (&ret,
8734 new_loc_descr (DW_OP_plus_uconst,
8735 tree_low_cst (TREE_OPERAND (loc, 1),
8736 0),
8737 0));
8738 break;
8739 }
8740
8741 op = DW_OP_plus;
8742 goto do_binop;
8743
8744 case LE_EXPR:
8745 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8746 return 0;
8747
8748 op = DW_OP_le;
8749 goto do_binop;
8750
8751 case GE_EXPR:
8752 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8753 return 0;
8754
8755 op = DW_OP_ge;
8756 goto do_binop;
8757
8758 case LT_EXPR:
8759 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8760 return 0;
8761
8762 op = DW_OP_lt;
8763 goto do_binop;
8764
8765 case GT_EXPR:
8766 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8767 return 0;
8768
8769 op = DW_OP_gt;
8770 goto do_binop;
8771
8772 case EQ_EXPR:
8773 op = DW_OP_eq;
8774 goto do_binop;
8775
8776 case NE_EXPR:
8777 op = DW_OP_ne;
8778 goto do_binop;
8779
8780 do_binop:
8781 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8782 ret1 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8783 if (ret == 0 || ret1 == 0)
8784 return 0;
8785
8786 add_loc_descr (&ret, ret1);
8787 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8788 break;
8789
8790 case TRUTH_NOT_EXPR:
8791 case BIT_NOT_EXPR:
8792 op = DW_OP_not;
8793 goto do_unop;
8794
8795 case ABS_EXPR:
8796 op = DW_OP_abs;
8797 goto do_unop;
8798
8799 case NEGATE_EXPR:
8800 op = DW_OP_neg;
8801 goto do_unop;
8802
8803 do_unop:
8804 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8805 if (ret == 0)
8806 return 0;
8807
8808 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8809 break;
8810
8811 case MAX_EXPR:
8812 loc = build (COND_EXPR, TREE_TYPE (loc),
8813 build (LT_EXPR, integer_type_node,
8814 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
8815 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
8816
8817 /* ... fall through ... */
8818
8819 case COND_EXPR:
8820 {
8821 dw_loc_descr_ref lhs
8822 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8823 dw_loc_descr_ref rhs
8824 = loc_descriptor_from_tree (TREE_OPERAND (loc, 2), 0);
8825 dw_loc_descr_ref bra_node, jump_node, tmp;
8826
8827 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8828 if (ret == 0 || lhs == 0 || rhs == 0)
8829 return 0;
8830
8831 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
8832 add_loc_descr (&ret, bra_node);
8833
8834 add_loc_descr (&ret, rhs);
8835 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
8836 add_loc_descr (&ret, jump_node);
8837
8838 add_loc_descr (&ret, lhs);
8839 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8840 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
8841
8842 /* ??? Need a node to point the skip at. Use a nop. */
8843 tmp = new_loc_descr (DW_OP_nop, 0, 0);
8844 add_loc_descr (&ret, tmp);
8845 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8846 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
8847 }
8848 break;
8849
8850 default:
8851 abort ();
8852 }
8853
8854 /* Show if we can't fill the request for an address. */
8855 if (addressp && indirect_p == 0)
8856 return 0;
8857
8858 /* If we've got an address and don't want one, dereference. */
8859 if (!addressp && indirect_p > 0)
8860 {
8861 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
8862
8863 if (size > DWARF2_ADDR_SIZE || size == -1)
8864 return 0;
8865 else if (size == DWARF2_ADDR_SIZE)
8866 op = DW_OP_deref;
8867 else
8868 op = DW_OP_deref_size;
8869
8870 add_loc_descr (&ret, new_loc_descr (op, size, 0));
8871 }
8872
8873 return ret;
8874 }
8875
8876 /* Given a value, round it up to the lowest multiple of `boundary'
8877 which is not less than the value itself. */
8878
8879 static inline HOST_WIDE_INT
8880 ceiling (value, boundary)
8881 HOST_WIDE_INT value;
8882 unsigned int boundary;
8883 {
8884 return (((value + boundary - 1) / boundary) * boundary);
8885 }
8886
8887 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
8888 pointer to the declared type for the relevant field variable, or return
8889 `integer_type_node' if the given node turns out to be an
8890 ERROR_MARK node. */
8891
8892 static inline tree
8893 field_type (decl)
8894 tree decl;
8895 {
8896 tree type;
8897
8898 if (TREE_CODE (decl) == ERROR_MARK)
8899 return integer_type_node;
8900
8901 type = DECL_BIT_FIELD_TYPE (decl);
8902 if (type == NULL_TREE)
8903 type = TREE_TYPE (decl);
8904
8905 return type;
8906 }
8907
8908 /* Given a pointer to a tree node, return the alignment in bits for
8909 it, or else return BITS_PER_WORD if the node actually turns out to
8910 be an ERROR_MARK node. */
8911
8912 static inline unsigned
8913 simple_type_align_in_bits (type)
8914 tree type;
8915 {
8916 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
8917 }
8918
8919 static inline unsigned
8920 simple_decl_align_in_bits (decl)
8921 tree decl;
8922 {
8923 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
8924 }
8925
8926 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
8927 lowest addressed byte of the "containing object" for the given FIELD_DECL,
8928 or return 0 if we are unable to determine what that offset is, either
8929 because the argument turns out to be a pointer to an ERROR_MARK node, or
8930 because the offset is actually variable. (We can't handle the latter case
8931 just yet). */
8932
8933 static HOST_WIDE_INT
8934 field_byte_offset (decl)
8935 tree decl;
8936 {
8937 unsigned int type_align_in_bits;
8938 unsigned int decl_align_in_bits;
8939 unsigned HOST_WIDE_INT type_size_in_bits;
8940 HOST_WIDE_INT object_offset_in_bits;
8941 tree type;
8942 tree field_size_tree;
8943 HOST_WIDE_INT bitpos_int;
8944 HOST_WIDE_INT deepest_bitpos;
8945 unsigned HOST_WIDE_INT field_size_in_bits;
8946
8947 if (TREE_CODE (decl) == ERROR_MARK)
8948 return 0;
8949 else if (TREE_CODE (decl) != FIELD_DECL)
8950 abort ();
8951
8952 type = field_type (decl);
8953 field_size_tree = DECL_SIZE (decl);
8954
8955 /* The size could be unspecified if there was an error, or for
8956 a flexible array member. */
8957 if (! field_size_tree)
8958 field_size_tree = bitsize_zero_node;
8959
8960 /* We cannot yet cope with fields whose positions are variable, so
8961 for now, when we see such things, we simply return 0. Someday, we may
8962 be able to handle such cases, but it will be damn difficult. */
8963 if (! host_integerp (bit_position (decl), 0))
8964 return 0;
8965
8966 bitpos_int = int_bit_position (decl);
8967
8968 /* If we don't know the size of the field, pretend it's a full word. */
8969 if (host_integerp (field_size_tree, 1))
8970 field_size_in_bits = tree_low_cst (field_size_tree, 1);
8971 else
8972 field_size_in_bits = BITS_PER_WORD;
8973
8974 type_size_in_bits = simple_type_size_in_bits (type);
8975 type_align_in_bits = simple_type_align_in_bits (type);
8976 decl_align_in_bits = simple_decl_align_in_bits (decl);
8977
8978 /* The GCC front-end doesn't make any attempt to keep track of the starting
8979 bit offset (relative to the start of the containing structure type) of the
8980 hypothetical "containing object" for a bit-field. Thus, when computing
8981 the byte offset value for the start of the "containing object" of a
8982 bit-field, we must deduce this information on our own. This can be rather
8983 tricky to do in some cases. For example, handling the following structure
8984 type definition when compiling for an i386/i486 target (which only aligns
8985 long long's to 32-bit boundaries) can be very tricky:
8986
8987 struct S { int field1; long long field2:31; };
8988
8989 Fortunately, there is a simple rule-of-thumb which can be used in such
8990 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
8991 structure shown above. It decides to do this based upon one simple rule
8992 for bit-field allocation. GCC allocates each "containing object" for each
8993 bit-field at the first (i.e. lowest addressed) legitimate alignment
8994 boundary (based upon the required minimum alignment for the declared type
8995 of the field) which it can possibly use, subject to the condition that
8996 there is still enough available space remaining in the containing object
8997 (when allocated at the selected point) to fully accommodate all of the
8998 bits of the bit-field itself.
8999
9000 This simple rule makes it obvious why GCC allocates 8 bytes for each
9001 object of the structure type shown above. When looking for a place to
9002 allocate the "containing object" for `field2', the compiler simply tries
9003 to allocate a 64-bit "containing object" at each successive 32-bit
9004 boundary (starting at zero) until it finds a place to allocate that 64-
9005 bit field such that at least 31 contiguous (and previously unallocated)
9006 bits remain within that selected 64 bit field. (As it turns out, for the
9007 example above, the compiler finds it is OK to allocate the "containing
9008 object" 64-bit field at bit-offset zero within the structure type.)
9009
9010 Here we attempt to work backwards from the limited set of facts we're
9011 given, and we try to deduce from those facts, where GCC must have believed
9012 that the containing object started (within the structure type). The value
9013 we deduce is then used (by the callers of this routine) to generate
9014 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9015 and, in the case of DW_AT_location, regular fields as well). */
9016
9017 /* Figure out the bit-distance from the start of the structure to the
9018 "deepest" bit of the bit-field. */
9019 deepest_bitpos = bitpos_int + field_size_in_bits;
9020
9021 /* This is the tricky part. Use some fancy footwork to deduce where the
9022 lowest addressed bit of the containing object must be. */
9023 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9024
9025 /* Round up to type_align by default. This works best for bitfields. */
9026 object_offset_in_bits += type_align_in_bits - 1;
9027 object_offset_in_bits /= type_align_in_bits;
9028 object_offset_in_bits *= type_align_in_bits;
9029
9030 if (object_offset_in_bits > bitpos_int)
9031 {
9032 /* Sigh, the decl must be packed. */
9033 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9034
9035 /* Round up to decl_align instead. */
9036 object_offset_in_bits += decl_align_in_bits - 1;
9037 object_offset_in_bits /= decl_align_in_bits;
9038 object_offset_in_bits *= decl_align_in_bits;
9039 }
9040
9041 return object_offset_in_bits / BITS_PER_UNIT;
9042 }
9043 \f
9044 /* The following routines define various Dwarf attributes and any data
9045 associated with them. */
9046
9047 /* Add a location description attribute value to a DIE.
9048
9049 This emits location attributes suitable for whole variables and
9050 whole parameters. Note that the location attributes for struct fields are
9051 generated by the routine `data_member_location_attribute' below. */
9052
9053 static inline void
9054 add_AT_location_description (die, attr_kind, descr)
9055 dw_die_ref die;
9056 enum dwarf_attribute attr_kind;
9057 dw_loc_descr_ref descr;
9058 {
9059 if (descr != 0)
9060 add_AT_loc (die, attr_kind, descr);
9061 }
9062
9063 /* Attach the specialized form of location attribute used for data members of
9064 struct and union types. In the special case of a FIELD_DECL node which
9065 represents a bit-field, the "offset" part of this special location
9066 descriptor must indicate the distance in bytes from the lowest-addressed
9067 byte of the containing struct or union type to the lowest-addressed byte of
9068 the "containing object" for the bit-field. (See the `field_byte_offset'
9069 function above).
9070
9071 For any given bit-field, the "containing object" is a hypothetical object
9072 (of some integral or enum type) within which the given bit-field lives. The
9073 type of this hypothetical "containing object" is always the same as the
9074 declared type of the individual bit-field itself (for GCC anyway... the
9075 DWARF spec doesn't actually mandate this). Note that it is the size (in
9076 bytes) of the hypothetical "containing object" which will be given in the
9077 DW_AT_byte_size attribute for this bit-field. (See the
9078 `byte_size_attribute' function below.) It is also used when calculating the
9079 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9080 function below.) */
9081
9082 static void
9083 add_data_member_location_attribute (die, decl)
9084 dw_die_ref die;
9085 tree decl;
9086 {
9087 long offset;
9088 dw_loc_descr_ref loc_descr = 0;
9089
9090 if (TREE_CODE (decl) == TREE_VEC)
9091 {
9092 /* We're working on the TAG_inheritance for a base class. */
9093 if (TREE_VIA_VIRTUAL (decl) && is_cxx ())
9094 {
9095 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9096 aren't at a fixed offset from all (sub)objects of the same
9097 type. We need to extract the appropriate offset from our
9098 vtable. The following dwarf expression means
9099
9100 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9101
9102 This is specific to the V3 ABI, of course. */
9103
9104 dw_loc_descr_ref tmp;
9105
9106 /* Make a copy of the object address. */
9107 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9108 add_loc_descr (&loc_descr, tmp);
9109
9110 /* Extract the vtable address. */
9111 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9112 add_loc_descr (&loc_descr, tmp);
9113
9114 /* Calculate the address of the offset. */
9115 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9116 if (offset >= 0)
9117 abort ();
9118
9119 tmp = int_loc_descriptor (-offset);
9120 add_loc_descr (&loc_descr, tmp);
9121 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9122 add_loc_descr (&loc_descr, tmp);
9123
9124 /* Extract the offset. */
9125 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9126 add_loc_descr (&loc_descr, tmp);
9127
9128 /* Add it to the object address. */
9129 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9130 add_loc_descr (&loc_descr, tmp);
9131 }
9132 else
9133 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9134 }
9135 else
9136 offset = field_byte_offset (decl);
9137
9138 if (! loc_descr)
9139 {
9140 enum dwarf_location_atom op;
9141
9142 /* The DWARF2 standard says that we should assume that the structure
9143 address is already on the stack, so we can specify a structure field
9144 address by using DW_OP_plus_uconst. */
9145
9146 #ifdef MIPS_DEBUGGING_INFO
9147 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9148 operator correctly. It works only if we leave the offset on the
9149 stack. */
9150 op = DW_OP_constu;
9151 #else
9152 op = DW_OP_plus_uconst;
9153 #endif
9154
9155 loc_descr = new_loc_descr (op, offset, 0);
9156 }
9157
9158 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9159 }
9160
9161 /* Attach an DW_AT_const_value attribute for a variable or a parameter which
9162 does not have a "location" either in memory or in a register. These
9163 things can arise in GNU C when a constant is passed as an actual parameter
9164 to an inlined function. They can also arise in C++ where declared
9165 constants do not necessarily get memory "homes". */
9166
9167 static void
9168 add_const_value_attribute (die, rtl)
9169 dw_die_ref die;
9170 rtx rtl;
9171 {
9172 switch (GET_CODE (rtl))
9173 {
9174 case CONST_INT:
9175 /* Note that a CONST_INT rtx could represent either an integer
9176 or a floating-point constant. A CONST_INT is used whenever
9177 the constant will fit into a single word. In all such
9178 cases, the original mode of the constant value is wiped
9179 out, and the CONST_INT rtx is assigned VOIDmode. */
9180 {
9181 HOST_WIDE_INT val = INTVAL (rtl);
9182
9183 /* ??? We really should be using HOST_WIDE_INT throughout. */
9184 if (val < 0 && (long) val == val)
9185 add_AT_int (die, DW_AT_const_value, (long) val);
9186 else if ((unsigned long) val == (unsigned HOST_WIDE_INT) val)
9187 add_AT_unsigned (die, DW_AT_const_value, (unsigned long) val);
9188 else
9189 {
9190 #if HOST_BITS_PER_LONG * 2 == HOST_BITS_PER_WIDE_INT
9191 add_AT_long_long (die, DW_AT_const_value,
9192 val >> HOST_BITS_PER_LONG, val);
9193 #else
9194 abort ();
9195 #endif
9196 }
9197 }
9198 break;
9199
9200 case CONST_DOUBLE:
9201 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9202 floating-point constant. A CONST_DOUBLE is used whenever the
9203 constant requires more than one word in order to be adequately
9204 represented. We output CONST_DOUBLEs as blocks. */
9205 {
9206 enum machine_mode mode = GET_MODE (rtl);
9207
9208 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9209 {
9210 unsigned length = GET_MODE_SIZE (mode) / 4;
9211 long *array = (long *) ggc_alloc (sizeof (long) * length);
9212 REAL_VALUE_TYPE rv;
9213
9214 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9215 switch (mode)
9216 {
9217 case SFmode:
9218 REAL_VALUE_TO_TARGET_SINGLE (rv, array[0]);
9219 break;
9220
9221 case DFmode:
9222 REAL_VALUE_TO_TARGET_DOUBLE (rv, array);
9223 break;
9224
9225 case XFmode:
9226 case TFmode:
9227 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, array);
9228 break;
9229
9230 default:
9231 abort ();
9232 }
9233
9234 add_AT_float (die, DW_AT_const_value, length, array);
9235 }
9236 else
9237 {
9238 /* ??? We really should be using HOST_WIDE_INT throughout. */
9239 if (HOST_BITS_PER_LONG != HOST_BITS_PER_WIDE_INT)
9240 abort ();
9241
9242 add_AT_long_long (die, DW_AT_const_value,
9243 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9244 }
9245 }
9246 break;
9247
9248 case CONST_STRING:
9249 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9250 break;
9251
9252 case SYMBOL_REF:
9253 case LABEL_REF:
9254 case CONST:
9255 add_AT_addr (die, DW_AT_const_value, rtl);
9256 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
9257 break;
9258
9259 case PLUS:
9260 /* In cases where an inlined instance of an inline function is passed
9261 the address of an `auto' variable (which is local to the caller) we
9262 can get a situation where the DECL_RTL of the artificial local
9263 variable (for the inlining) which acts as a stand-in for the
9264 corresponding formal parameter (of the inline function) will look
9265 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9266 exactly a compile-time constant expression, but it isn't the address
9267 of the (artificial) local variable either. Rather, it represents the
9268 *value* which the artificial local variable always has during its
9269 lifetime. We currently have no way to represent such quasi-constant
9270 values in Dwarf, so for now we just punt and generate nothing. */
9271 break;
9272
9273 default:
9274 /* No other kinds of rtx should be possible here. */
9275 abort ();
9276 }
9277
9278 }
9279
9280 static rtx
9281 rtl_for_decl_location (decl)
9282 tree decl;
9283 {
9284 rtx rtl;
9285
9286 /* Here we have to decide where we are going to say the parameter "lives"
9287 (as far as the debugger is concerned). We only have a couple of
9288 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9289
9290 DECL_RTL normally indicates where the parameter lives during most of the
9291 activation of the function. If optimization is enabled however, this
9292 could be either NULL or else a pseudo-reg. Both of those cases indicate
9293 that the parameter doesn't really live anywhere (as far as the code
9294 generation parts of GCC are concerned) during most of the function's
9295 activation. That will happen (for example) if the parameter is never
9296 referenced within the function.
9297
9298 We could just generate a location descriptor here for all non-NULL
9299 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9300 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9301 where DECL_RTL is NULL or is a pseudo-reg.
9302
9303 Note however that we can only get away with using DECL_INCOMING_RTL as
9304 a backup substitute for DECL_RTL in certain limited cases. In cases
9305 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9306 we can be sure that the parameter was passed using the same type as it is
9307 declared to have within the function, and that its DECL_INCOMING_RTL
9308 points us to a place where a value of that type is passed.
9309
9310 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9311 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9312 because in these cases DECL_INCOMING_RTL points us to a value of some
9313 type which is *different* from the type of the parameter itself. Thus,
9314 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9315 such cases, the debugger would end up (for example) trying to fetch a
9316 `float' from a place which actually contains the first part of a
9317 `double'. That would lead to really incorrect and confusing
9318 output at debug-time.
9319
9320 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9321 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9322 are a couple of exceptions however. On little-endian machines we can
9323 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9324 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9325 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9326 when (on a little-endian machine) a non-prototyped function has a
9327 parameter declared to be of type `short' or `char'. In such cases,
9328 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9329 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9330 passed `int' value. If the debugger then uses that address to fetch
9331 a `short' or a `char' (on a little-endian machine) the result will be
9332 the correct data, so we allow for such exceptional cases below.
9333
9334 Note that our goal here is to describe the place where the given formal
9335 parameter lives during most of the function's activation (i.e. between the
9336 end of the prologue and the start of the epilogue). We'll do that as best
9337 as we can. Note however that if the given formal parameter is modified
9338 sometime during the execution of the function, then a stack backtrace (at
9339 debug-time) will show the function as having been called with the *new*
9340 value rather than the value which was originally passed in. This happens
9341 rarely enough that it is not a major problem, but it *is* a problem, and
9342 I'd like to fix it.
9343
9344 A future version of dwarf2out.c may generate two additional attributes for
9345 any given DW_TAG_formal_parameter DIE which will describe the "passed
9346 type" and the "passed location" for the given formal parameter in addition
9347 to the attributes we now generate to indicate the "declared type" and the
9348 "active location" for each parameter. This additional set of attributes
9349 could be used by debuggers for stack backtraces. Separately, note that
9350 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9351 This happens (for example) for inlined-instances of inline function formal
9352 parameters which are never referenced. This really shouldn't be
9353 happening. All PARM_DECL nodes should get valid non-NULL
9354 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate these
9355 values for inlined instances of inline function parameters, so when we see
9356 such cases, we are just out-of-luck for the time being (until integrate.c
9357 gets fixed). */
9358
9359 /* Use DECL_RTL as the "location" unless we find something better. */
9360 rtl = DECL_RTL_IF_SET (decl);
9361
9362 /* When generating abstract instances, ignore everything except
9363 constants and symbols living in memory. */
9364 if (! reload_completed)
9365 {
9366 if (rtl
9367 && (CONSTANT_P (rtl)
9368 || (GET_CODE (rtl) == MEM
9369 && CONSTANT_P (XEXP (rtl, 0)))))
9370 {
9371 rtl = (*targetm.delegitimize_address) (rtl);
9372 return rtl;
9373 }
9374 rtl = NULL_RTX;
9375 }
9376 else if (TREE_CODE (decl) == PARM_DECL)
9377 {
9378 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9379 {
9380 tree declared_type = type_main_variant (TREE_TYPE (decl));
9381 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
9382
9383 /* This decl represents a formal parameter which was optimized out.
9384 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9385 all cases where (rtl == NULL_RTX) just below. */
9386 if (declared_type == passed_type)
9387 rtl = DECL_INCOMING_RTL (decl);
9388 else if (! BYTES_BIG_ENDIAN
9389 && TREE_CODE (declared_type) == INTEGER_TYPE
9390 && (GET_MODE_SIZE (TYPE_MODE (declared_type))
9391 <= GET_MODE_SIZE (TYPE_MODE (passed_type))))
9392 rtl = DECL_INCOMING_RTL (decl);
9393 }
9394
9395 /* If the parm was passed in registers, but lives on the stack, then
9396 make a big endian correction if the mode of the type of the
9397 parameter is not the same as the mode of the rtl. */
9398 /* ??? This is the same series of checks that are made in dbxout.c before
9399 we reach the big endian correction code there. It isn't clear if all
9400 of these checks are necessary here, but keeping them all is the safe
9401 thing to do. */
9402 else if (GET_CODE (rtl) == MEM
9403 && XEXP (rtl, 0) != const0_rtx
9404 && ! CONSTANT_P (XEXP (rtl, 0))
9405 /* Not passed in memory. */
9406 && GET_CODE (DECL_INCOMING_RTL (decl)) != MEM
9407 /* Not passed by invisible reference. */
9408 && (GET_CODE (XEXP (rtl, 0)) != REG
9409 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
9410 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
9411 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9412 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
9413 #endif
9414 )
9415 /* Big endian correction check. */
9416 && BYTES_BIG_ENDIAN
9417 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
9418 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
9419 < UNITS_PER_WORD))
9420 {
9421 int offset = (UNITS_PER_WORD
9422 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
9423
9424 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9425 plus_constant (XEXP (rtl, 0), offset));
9426 }
9427 }
9428
9429 if (rtl != NULL_RTX)
9430 {
9431 rtl = eliminate_regs (rtl, 0, NULL_RTX);
9432 #ifdef LEAF_REG_REMAP
9433 if (current_function_uses_only_leaf_regs)
9434 leaf_renumber_regs_insn (rtl);
9435 #endif
9436 }
9437
9438 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
9439 and will have been substituted directly into all expressions that use it.
9440 C does not have such a concept, but C++ and other languages do. */
9441 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
9442 {
9443 /* If a variable is initialized with a string constant without embedded
9444 zeros, build CONST_STRING. */
9445 if (TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
9446 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
9447 {
9448 tree arrtype = TREE_TYPE (decl);
9449 tree enttype = TREE_TYPE (arrtype);
9450 tree domain = TYPE_DOMAIN (arrtype);
9451 tree init = DECL_INITIAL (decl);
9452 enum machine_mode mode = TYPE_MODE (enttype);
9453
9454 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9455 && domain
9456 && integer_zerop (TYPE_MIN_VALUE (domain))
9457 && compare_tree_int (TYPE_MAX_VALUE (domain),
9458 TREE_STRING_LENGTH (init) - 1) == 0
9459 && ((size_t) TREE_STRING_LENGTH (init)
9460 == strlen (TREE_STRING_POINTER (init)) + 1))
9461 rtl = gen_rtx_CONST_STRING (VOIDmode, TREE_STRING_POINTER (init));
9462 }
9463 /* If the initializer is something that we know will expand into an
9464 immediate RTL constant, expand it now. Expanding anything else
9465 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9466 else if (TREE_CODE (DECL_INITIAL (decl)) == INTEGER_CST
9467 || TREE_CODE (DECL_INITIAL (decl)) == REAL_CST)
9468 {
9469 rtl = expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
9470 EXPAND_INITIALIZER);
9471 /* If expand_expr returns a MEM, it wasn't immediate. */
9472 if (rtl && GET_CODE (rtl) == MEM)
9473 abort ();
9474 }
9475 }
9476
9477 if (rtl)
9478 rtl = (*targetm.delegitimize_address) (rtl);
9479
9480 /* If we don't look past the constant pool, we risk emitting a
9481 reference to a constant pool entry that isn't referenced from
9482 code, and thus is not emitted. */
9483 if (rtl)
9484 rtl = avoid_constant_pool_reference (rtl);
9485
9486 return rtl;
9487 }
9488
9489 /* Generate *either* an DW_AT_location attribute or else an DW_AT_const_value
9490 data attribute for a variable or a parameter. We generate the
9491 DW_AT_const_value attribute only in those cases where the given variable
9492 or parameter does not have a true "location" either in memory or in a
9493 register. This can happen (for example) when a constant is passed as an
9494 actual argument in a call to an inline function. (It's possible that
9495 these things can crop up in other ways also.) Note that one type of
9496 constant value which can be passed into an inlined function is a constant
9497 pointer. This can happen for example if an actual argument in an inlined
9498 function call evaluates to a compile-time constant address. */
9499
9500 static void
9501 add_location_or_const_value_attribute (die, decl)
9502 dw_die_ref die;
9503 tree decl;
9504 {
9505 rtx rtl;
9506 dw_loc_descr_ref descr;
9507
9508 if (TREE_CODE (decl) == ERROR_MARK)
9509 return;
9510 else if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != PARM_DECL)
9511 abort ();
9512
9513 rtl = rtl_for_decl_location (decl);
9514 if (rtl == NULL_RTX)
9515 return;
9516
9517 switch (GET_CODE (rtl))
9518 {
9519 case ADDRESSOF:
9520 /* The address of a variable that was optimized away;
9521 don't emit anything. */
9522 break;
9523
9524 case CONST_INT:
9525 case CONST_DOUBLE:
9526 case CONST_STRING:
9527 case SYMBOL_REF:
9528 case LABEL_REF:
9529 case CONST:
9530 case PLUS:
9531 /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
9532 add_const_value_attribute (die, rtl);
9533 break;
9534
9535 case MEM:
9536 if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL (decl))
9537 {
9538 /* Need loc_descriptor_from_tree since that's where we know
9539 how to handle TLS variables. Want the object's address
9540 since the top-level DW_AT_location assumes such. See
9541 the confusion in loc_descriptor for reference. */
9542 descr = loc_descriptor_from_tree (decl, 1);
9543 }
9544 else
9545 {
9546 case REG:
9547 case SUBREG:
9548 case CONCAT:
9549 descr = loc_descriptor (rtl);
9550 }
9551 add_AT_location_description (die, DW_AT_location, descr);
9552 break;
9553
9554 default:
9555 abort ();
9556 }
9557 }
9558
9559 /* If we don't have a copy of this variable in memory for some reason (such
9560 as a C++ member constant that doesn't have an out-of-line definition),
9561 we should tell the debugger about the constant value. */
9562
9563 static void
9564 tree_add_const_value_attribute (var_die, decl)
9565 dw_die_ref var_die;
9566 tree decl;
9567 {
9568 tree init = DECL_INITIAL (decl);
9569 tree type = TREE_TYPE (decl);
9570
9571 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
9572 && initializer_constant_valid_p (init, type) == null_pointer_node)
9573 /* OK */;
9574 else
9575 return;
9576
9577 switch (TREE_CODE (type))
9578 {
9579 case INTEGER_TYPE:
9580 if (host_integerp (init, 0))
9581 add_AT_unsigned (var_die, DW_AT_const_value,
9582 tree_low_cst (init, 0));
9583 else
9584 add_AT_long_long (var_die, DW_AT_const_value,
9585 TREE_INT_CST_HIGH (init),
9586 TREE_INT_CST_LOW (init));
9587 break;
9588
9589 default:;
9590 }
9591 }
9592
9593 /* Generate an DW_AT_name attribute given some string value to be included as
9594 the value of the attribute. */
9595
9596 static void
9597 add_name_attribute (die, name_string)
9598 dw_die_ref die;
9599 const char *name_string;
9600 {
9601 if (name_string != NULL && *name_string != 0)
9602 {
9603 if (demangle_name_func)
9604 name_string = (*demangle_name_func) (name_string);
9605
9606 add_AT_string (die, DW_AT_name, name_string);
9607 }
9608 }
9609
9610 /* Generate an DW_AT_comp_dir attribute for DIE. */
9611
9612 static void
9613 add_comp_dir_attribute (die)
9614 dw_die_ref die;
9615 {
9616 const char *wd = getpwd ();
9617 if (wd != NULL)
9618 add_AT_string (die, DW_AT_comp_dir, wd);
9619 }
9620
9621 /* Given a tree node describing an array bound (either lower or upper) output
9622 a representation for that bound. */
9623
9624 static void
9625 add_bound_info (subrange_die, bound_attr, bound)
9626 dw_die_ref subrange_die;
9627 enum dwarf_attribute bound_attr;
9628 tree bound;
9629 {
9630 switch (TREE_CODE (bound))
9631 {
9632 case ERROR_MARK:
9633 return;
9634
9635 /* All fixed-bounds are represented by INTEGER_CST nodes. */
9636 case INTEGER_CST:
9637 if (! host_integerp (bound, 0)
9638 || (bound_attr == DW_AT_lower_bound
9639 && (((is_c_family () || is_java ()) && integer_zerop (bound))
9640 || (is_fortran () && integer_onep (bound)))))
9641 /* use the default */
9642 ;
9643 else
9644 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
9645 break;
9646
9647 case CONVERT_EXPR:
9648 case NOP_EXPR:
9649 case NON_LVALUE_EXPR:
9650 case VIEW_CONVERT_EXPR:
9651 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
9652 break;
9653
9654 case SAVE_EXPR:
9655 /* If optimization is turned on, the SAVE_EXPRs that describe how to
9656 access the upper bound values may be bogus. If they refer to a
9657 register, they may only describe how to get at these values at the
9658 points in the generated code right after they have just been
9659 computed. Worse yet, in the typical case, the upper bound values
9660 will not even *be* computed in the optimized code (though the
9661 number of elements will), so these SAVE_EXPRs are entirely
9662 bogus. In order to compensate for this fact, we check here to see
9663 if optimization is enabled, and if so, we don't add an attribute
9664 for the (unknown and unknowable) upper bound. This should not
9665 cause too much trouble for existing (stupid?) debuggers because
9666 they have to deal with empty upper bounds location descriptions
9667 anyway in order to be able to deal with incomplete array types.
9668 Of course an intelligent debugger (GDB?) should be able to
9669 comprehend that a missing upper bound specification in an array
9670 type used for a storage class `auto' local array variable
9671 indicates that the upper bound is both unknown (at compile- time)
9672 and unknowable (at run-time) due to optimization.
9673
9674 We assume that a MEM rtx is safe because gcc wouldn't put the
9675 value there unless it was going to be used repeatedly in the
9676 function, i.e. for cleanups. */
9677 if (SAVE_EXPR_RTL (bound)
9678 && (! optimize || GET_CODE (SAVE_EXPR_RTL (bound)) == MEM))
9679 {
9680 dw_die_ref ctx = lookup_decl_die (current_function_decl);
9681 dw_die_ref decl_die = new_die (DW_TAG_variable, ctx, bound);
9682 rtx loc = SAVE_EXPR_RTL (bound);
9683
9684 /* If the RTL for the SAVE_EXPR is memory, handle the case where
9685 it references an outer function's frame. */
9686 if (GET_CODE (loc) == MEM)
9687 {
9688 rtx new_addr = fix_lexical_addr (XEXP (loc, 0), bound);
9689
9690 if (XEXP (loc, 0) != new_addr)
9691 loc = gen_rtx_MEM (GET_MODE (loc), new_addr);
9692 }
9693
9694 add_AT_flag (decl_die, DW_AT_artificial, 1);
9695 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9696 add_AT_location_description (decl_die, DW_AT_location,
9697 loc_descriptor (loc));
9698 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9699 }
9700
9701 /* Else leave out the attribute. */
9702 break;
9703
9704 case VAR_DECL:
9705 case PARM_DECL:
9706 {
9707 dw_die_ref decl_die = lookup_decl_die (bound);
9708
9709 /* ??? Can this happen, or should the variable have been bound
9710 first? Probably it can, since I imagine that we try to create
9711 the types of parameters in the order in which they exist in
9712 the list, and won't have created a forward reference to a
9713 later parameter. */
9714 if (decl_die != NULL)
9715 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9716 break;
9717 }
9718
9719 default:
9720 {
9721 /* Otherwise try to create a stack operation procedure to
9722 evaluate the value of the array bound. */
9723
9724 dw_die_ref ctx, decl_die;
9725 dw_loc_descr_ref loc;
9726
9727 loc = loc_descriptor_from_tree (bound, 0);
9728 if (loc == NULL)
9729 break;
9730
9731 if (current_function_decl == 0)
9732 ctx = comp_unit_die;
9733 else
9734 ctx = lookup_decl_die (current_function_decl);
9735
9736 /* If we weren't able to find a context, it's most likely the case
9737 that we are processing the return type of the function. So
9738 make a SAVE_EXPR to point to it and have the limbo DIE code
9739 find the proper die. The save_expr function doesn't always
9740 make a SAVE_EXPR, so do it ourselves. */
9741 if (ctx == 0)
9742 bound = build (SAVE_EXPR, TREE_TYPE (bound), bound,
9743 current_function_decl, NULL_TREE);
9744
9745 decl_die = new_die (DW_TAG_variable, ctx, bound);
9746 add_AT_flag (decl_die, DW_AT_artificial, 1);
9747 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9748 add_AT_loc (decl_die, DW_AT_location, loc);
9749
9750 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9751 break;
9752 }
9753 }
9754 }
9755
9756 /* Note that the block of subscript information for an array type also
9757 includes information about the element type of type given array type. */
9758
9759 static void
9760 add_subscript_info (type_die, type)
9761 dw_die_ref type_die;
9762 tree type;
9763 {
9764 #ifndef MIPS_DEBUGGING_INFO
9765 unsigned dimension_number;
9766 #endif
9767 tree lower, upper;
9768 dw_die_ref subrange_die;
9769
9770 /* The GNU compilers represent multidimensional array types as sequences of
9771 one dimensional array types whose element types are themselves array
9772 types. Here we squish that down, so that each multidimensional array
9773 type gets only one array_type DIE in the Dwarf debugging info. The draft
9774 Dwarf specification say that we are allowed to do this kind of
9775 compression in C (because there is no difference between an array or
9776 arrays and a multidimensional array in C) but for other source languages
9777 (e.g. Ada) we probably shouldn't do this. */
9778
9779 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
9780 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
9781 We work around this by disabling this feature. See also
9782 gen_array_type_die. */
9783 #ifndef MIPS_DEBUGGING_INFO
9784 for (dimension_number = 0;
9785 TREE_CODE (type) == ARRAY_TYPE;
9786 type = TREE_TYPE (type), dimension_number++)
9787 #endif
9788 {
9789 tree domain = TYPE_DOMAIN (type);
9790
9791 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
9792 and (in GNU C only) variable bounds. Handle all three forms
9793 here. */
9794 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
9795 if (domain)
9796 {
9797 /* We have an array type with specified bounds. */
9798 lower = TYPE_MIN_VALUE (domain);
9799 upper = TYPE_MAX_VALUE (domain);
9800
9801 /* define the index type. */
9802 if (TREE_TYPE (domain))
9803 {
9804 /* ??? This is probably an Ada unnamed subrange type. Ignore the
9805 TREE_TYPE field. We can't emit debug info for this
9806 because it is an unnamed integral type. */
9807 if (TREE_CODE (domain) == INTEGER_TYPE
9808 && TYPE_NAME (domain) == NULL_TREE
9809 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
9810 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
9811 ;
9812 else
9813 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
9814 type_die);
9815 }
9816
9817 /* ??? If upper is NULL, the array has unspecified length,
9818 but it does have a lower bound. This happens with Fortran
9819 dimension arr(N:*)
9820 Since the debugger is definitely going to need to know N
9821 to produce useful results, go ahead and output the lower
9822 bound solo, and hope the debugger can cope. */
9823
9824 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
9825 if (upper)
9826 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
9827 }
9828
9829 /* Otherwise we have an array type with an unspecified length. The
9830 DWARF-2 spec does not say how to handle this; let's just leave out the
9831 bounds. */
9832 }
9833 }
9834
9835 static void
9836 add_byte_size_attribute (die, tree_node)
9837 dw_die_ref die;
9838 tree tree_node;
9839 {
9840 unsigned size;
9841
9842 switch (TREE_CODE (tree_node))
9843 {
9844 case ERROR_MARK:
9845 size = 0;
9846 break;
9847 case ENUMERAL_TYPE:
9848 case RECORD_TYPE:
9849 case UNION_TYPE:
9850 case QUAL_UNION_TYPE:
9851 size = int_size_in_bytes (tree_node);
9852 break;
9853 case FIELD_DECL:
9854 /* For a data member of a struct or union, the DW_AT_byte_size is
9855 generally given as the number of bytes normally allocated for an
9856 object of the *declared* type of the member itself. This is true
9857 even for bit-fields. */
9858 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
9859 break;
9860 default:
9861 abort ();
9862 }
9863
9864 /* Note that `size' might be -1 when we get to this point. If it is, that
9865 indicates that the byte size of the entity in question is variable. We
9866 have no good way of expressing this fact in Dwarf at the present time,
9867 so just let the -1 pass on through. */
9868 add_AT_unsigned (die, DW_AT_byte_size, size);
9869 }
9870
9871 /* For a FIELD_DECL node which represents a bit-field, output an attribute
9872 which specifies the distance in bits from the highest order bit of the
9873 "containing object" for the bit-field to the highest order bit of the
9874 bit-field itself.
9875
9876 For any given bit-field, the "containing object" is a hypothetical object
9877 (of some integral or enum type) within which the given bit-field lives. The
9878 type of this hypothetical "containing object" is always the same as the
9879 declared type of the individual bit-field itself. The determination of the
9880 exact location of the "containing object" for a bit-field is rather
9881 complicated. It's handled by the `field_byte_offset' function (above).
9882
9883 Note that it is the size (in bytes) of the hypothetical "containing object"
9884 which will be given in the DW_AT_byte_size attribute for this bit-field.
9885 (See `byte_size_attribute' above). */
9886
9887 static inline void
9888 add_bit_offset_attribute (die, decl)
9889 dw_die_ref die;
9890 tree decl;
9891 {
9892 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
9893 tree type = DECL_BIT_FIELD_TYPE (decl);
9894 HOST_WIDE_INT bitpos_int;
9895 HOST_WIDE_INT highest_order_object_bit_offset;
9896 HOST_WIDE_INT highest_order_field_bit_offset;
9897 HOST_WIDE_INT unsigned bit_offset;
9898
9899 /* Must be a field and a bit field. */
9900 if (!type
9901 || TREE_CODE (decl) != FIELD_DECL)
9902 abort ();
9903
9904 /* We can't yet handle bit-fields whose offsets are variable, so if we
9905 encounter such things, just return without generating any attribute
9906 whatsoever. Likewise for variable or too large size. */
9907 if (! host_integerp (bit_position (decl), 0)
9908 || ! host_integerp (DECL_SIZE (decl), 1))
9909 return;
9910
9911 bitpos_int = int_bit_position (decl);
9912
9913 /* Note that the bit offset is always the distance (in bits) from the
9914 highest-order bit of the "containing object" to the highest-order bit of
9915 the bit-field itself. Since the "high-order end" of any object or field
9916 is different on big-endian and little-endian machines, the computation
9917 below must take account of these differences. */
9918 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
9919 highest_order_field_bit_offset = bitpos_int;
9920
9921 if (! BYTES_BIG_ENDIAN)
9922 {
9923 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
9924 highest_order_object_bit_offset += simple_type_size_in_bits (type);
9925 }
9926
9927 bit_offset
9928 = (! BYTES_BIG_ENDIAN
9929 ? highest_order_object_bit_offset - highest_order_field_bit_offset
9930 : highest_order_field_bit_offset - highest_order_object_bit_offset);
9931
9932 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
9933 }
9934
9935 /* For a FIELD_DECL node which represents a bit field, output an attribute
9936 which specifies the length in bits of the given field. */
9937
9938 static inline void
9939 add_bit_size_attribute (die, decl)
9940 dw_die_ref die;
9941 tree decl;
9942 {
9943 /* Must be a field and a bit field. */
9944 if (TREE_CODE (decl) != FIELD_DECL
9945 || ! DECL_BIT_FIELD_TYPE (decl))
9946 abort ();
9947
9948 if (host_integerp (DECL_SIZE (decl), 1))
9949 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
9950 }
9951
9952 /* If the compiled language is ANSI C, then add a 'prototyped'
9953 attribute, if arg types are given for the parameters of a function. */
9954
9955 static inline void
9956 add_prototyped_attribute (die, func_type)
9957 dw_die_ref die;
9958 tree func_type;
9959 {
9960 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
9961 && TYPE_ARG_TYPES (func_type) != NULL)
9962 add_AT_flag (die, DW_AT_prototyped, 1);
9963 }
9964
9965 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
9966 by looking in either the type declaration or object declaration
9967 equate table. */
9968
9969 static inline void
9970 add_abstract_origin_attribute (die, origin)
9971 dw_die_ref die;
9972 tree origin;
9973 {
9974 dw_die_ref origin_die = NULL;
9975
9976 if (TREE_CODE (origin) != FUNCTION_DECL)
9977 {
9978 /* We may have gotten separated from the block for the inlined
9979 function, if we're in an exception handler or some such; make
9980 sure that the abstract function has been written out.
9981
9982 Doing this for nested functions is wrong, however; functions are
9983 distinct units, and our context might not even be inline. */
9984 tree fn = origin;
9985
9986 if (TYPE_P (fn))
9987 fn = TYPE_STUB_DECL (fn);
9988
9989 fn = decl_function_context (fn);
9990 if (fn)
9991 dwarf2out_abstract_function (fn);
9992 }
9993
9994 if (DECL_P (origin))
9995 origin_die = lookup_decl_die (origin);
9996 else if (TYPE_P (origin))
9997 origin_die = lookup_type_die (origin);
9998
9999 if (origin_die == NULL)
10000 abort ();
10001
10002 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10003 }
10004
10005 /* We do not currently support the pure_virtual attribute. */
10006
10007 static inline void
10008 add_pure_or_virtual_attribute (die, func_decl)
10009 dw_die_ref die;
10010 tree func_decl;
10011 {
10012 if (DECL_VINDEX (func_decl))
10013 {
10014 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10015
10016 if (host_integerp (DECL_VINDEX (func_decl), 0))
10017 add_AT_loc (die, DW_AT_vtable_elem_location,
10018 new_loc_descr (DW_OP_constu,
10019 tree_low_cst (DECL_VINDEX (func_decl), 0),
10020 0));
10021
10022 /* GNU extension: Record what type this method came from originally. */
10023 if (debug_info_level > DINFO_LEVEL_TERSE)
10024 add_AT_die_ref (die, DW_AT_containing_type,
10025 lookup_type_die (DECL_CONTEXT (func_decl)));
10026 }
10027 }
10028 \f
10029 /* Add source coordinate attributes for the given decl. */
10030
10031 static void
10032 add_src_coords_attributes (die, decl)
10033 dw_die_ref die;
10034 tree decl;
10035 {
10036 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10037
10038 add_AT_unsigned (die, DW_AT_decl_file, file_index);
10039 add_AT_unsigned (die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10040 }
10041
10042 /* Add an DW_AT_name attribute and source coordinate attribute for the
10043 given decl, but only if it actually has a name. */
10044
10045 static void
10046 add_name_and_src_coords_attributes (die, decl)
10047 dw_die_ref die;
10048 tree decl;
10049 {
10050 tree decl_name;
10051
10052 decl_name = DECL_NAME (decl);
10053 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10054 {
10055 add_name_attribute (die, dwarf2_name (decl, 0));
10056 if (! DECL_ARTIFICIAL (decl))
10057 add_src_coords_attributes (die, decl);
10058
10059 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10060 && TREE_PUBLIC (decl)
10061 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10062 && !DECL_ABSTRACT (decl))
10063 add_AT_string (die, DW_AT_MIPS_linkage_name,
10064 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10065 }
10066
10067 #ifdef VMS_DEBUGGING_INFO
10068 /* Get the function's name, as described by its RTL. This may be different
10069 from the DECL_NAME name used in the source file. */
10070 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10071 {
10072 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10073 XEXP (DECL_RTL (decl), 0));
10074 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
10075 }
10076 #endif
10077 }
10078
10079 /* Push a new declaration scope. */
10080
10081 static void
10082 push_decl_scope (scope)
10083 tree scope;
10084 {
10085 VARRAY_PUSH_TREE (decl_scope_table, scope);
10086 }
10087
10088 /* Pop a declaration scope. */
10089
10090 static inline void
10091 pop_decl_scope ()
10092 {
10093 if (VARRAY_ACTIVE_SIZE (decl_scope_table) <= 0)
10094 abort ();
10095
10096 VARRAY_POP (decl_scope_table);
10097 }
10098
10099 /* Return the DIE for the scope that immediately contains this type.
10100 Non-named types get global scope. Named types nested in other
10101 types get their containing scope if it's open, or global scope
10102 otherwise. All other types (i.e. function-local named types) get
10103 the current active scope. */
10104
10105 static dw_die_ref
10106 scope_die_for (t, context_die)
10107 tree t;
10108 dw_die_ref context_die;
10109 {
10110 dw_die_ref scope_die = NULL;
10111 tree containing_scope;
10112 int i;
10113
10114 /* Non-types always go in the current scope. */
10115 if (! TYPE_P (t))
10116 abort ();
10117
10118 containing_scope = TYPE_CONTEXT (t);
10119
10120 /* Ignore namespaces for the moment. */
10121 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10122 containing_scope = NULL_TREE;
10123
10124 /* Ignore function type "scopes" from the C frontend. They mean that
10125 a tagged type is local to a parmlist of a function declarator, but
10126 that isn't useful to DWARF. */
10127 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10128 containing_scope = NULL_TREE;
10129
10130 if (containing_scope == NULL_TREE)
10131 scope_die = comp_unit_die;
10132 else if (TYPE_P (containing_scope))
10133 {
10134 /* For types, we can just look up the appropriate DIE. But
10135 first we check to see if we're in the middle of emitting it
10136 so we know where the new DIE should go. */
10137 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
10138 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
10139 break;
10140
10141 if (i < 0)
10142 {
10143 if (debug_info_level > DINFO_LEVEL_TERSE
10144 && !TREE_ASM_WRITTEN (containing_scope))
10145 abort ();
10146
10147 /* If none of the current dies are suitable, we get file scope. */
10148 scope_die = comp_unit_die;
10149 }
10150 else
10151 scope_die = lookup_type_die (containing_scope);
10152 }
10153 else
10154 scope_die = context_die;
10155
10156 return scope_die;
10157 }
10158
10159 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10160
10161 static inline int
10162 local_scope_p (context_die)
10163 dw_die_ref context_die;
10164 {
10165 for (; context_die; context_die = context_die->die_parent)
10166 if (context_die->die_tag == DW_TAG_inlined_subroutine
10167 || context_die->die_tag == DW_TAG_subprogram)
10168 return 1;
10169
10170 return 0;
10171 }
10172
10173 /* Returns nonzero if CONTEXT_DIE is a class. */
10174
10175 static inline int
10176 class_scope_p (context_die)
10177 dw_die_ref context_die;
10178 {
10179 return (context_die
10180 && (context_die->die_tag == DW_TAG_structure_type
10181 || context_die->die_tag == DW_TAG_union_type));
10182 }
10183
10184 /* Many forms of DIEs require a "type description" attribute. This
10185 routine locates the proper "type descriptor" die for the type given
10186 by 'type', and adds an DW_AT_type attribute below the given die. */
10187
10188 static void
10189 add_type_attribute (object_die, type, decl_const, decl_volatile, context_die)
10190 dw_die_ref object_die;
10191 tree type;
10192 int decl_const;
10193 int decl_volatile;
10194 dw_die_ref context_die;
10195 {
10196 enum tree_code code = TREE_CODE (type);
10197 dw_die_ref type_die = NULL;
10198
10199 /* ??? If this type is an unnamed subrange type of an integral or
10200 floating-point type, use the inner type. This is because we have no
10201 support for unnamed types in base_type_die. This can happen if this is
10202 an Ada subrange type. Correct solution is emit a subrange type die. */
10203 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10204 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10205 type = TREE_TYPE (type), code = TREE_CODE (type);
10206
10207 if (code == ERROR_MARK
10208 /* Handle a special case. For functions whose return type is void, we
10209 generate *no* type attribute. (Note that no object may have type
10210 `void', so this only applies to function return types). */
10211 || code == VOID_TYPE)
10212 return;
10213
10214 type_die = modified_type_die (type,
10215 decl_const || TYPE_READONLY (type),
10216 decl_volatile || TYPE_VOLATILE (type),
10217 context_die);
10218
10219 if (type_die != NULL)
10220 add_AT_die_ref (object_die, DW_AT_type, type_die);
10221 }
10222
10223 /* Given a tree pointer to a struct, class, union, or enum type node, return
10224 a pointer to the (string) tag name for the given type, or zero if the type
10225 was declared without a tag. */
10226
10227 static const char *
10228 type_tag (type)
10229 tree type;
10230 {
10231 const char *name = 0;
10232
10233 if (TYPE_NAME (type) != 0)
10234 {
10235 tree t = 0;
10236
10237 /* Find the IDENTIFIER_NODE for the type name. */
10238 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10239 t = TYPE_NAME (type);
10240
10241 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10242 a TYPE_DECL node, regardless of whether or not a `typedef' was
10243 involved. */
10244 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10245 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10246 t = DECL_NAME (TYPE_NAME (type));
10247
10248 /* Now get the name as a string, or invent one. */
10249 if (t != 0)
10250 name = IDENTIFIER_POINTER (t);
10251 }
10252
10253 return (name == 0 || *name == '\0') ? 0 : name;
10254 }
10255
10256 /* Return the type associated with a data member, make a special check
10257 for bit field types. */
10258
10259 static inline tree
10260 member_declared_type (member)
10261 tree member;
10262 {
10263 return (DECL_BIT_FIELD_TYPE (member)
10264 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10265 }
10266
10267 /* Get the decl's label, as described by its RTL. This may be different
10268 from the DECL_NAME name used in the source file. */
10269
10270 #if 0
10271 static const char *
10272 decl_start_label (decl)
10273 tree decl;
10274 {
10275 rtx x;
10276 const char *fnname;
10277
10278 x = DECL_RTL (decl);
10279 if (GET_CODE (x) != MEM)
10280 abort ();
10281
10282 x = XEXP (x, 0);
10283 if (GET_CODE (x) != SYMBOL_REF)
10284 abort ();
10285
10286 fnname = XSTR (x, 0);
10287 return fnname;
10288 }
10289 #endif
10290 \f
10291 /* These routines generate the internal representation of the DIE's for
10292 the compilation unit. Debugging information is collected by walking
10293 the declaration trees passed in from dwarf2out_decl(). */
10294
10295 static void
10296 gen_array_type_die (type, context_die)
10297 tree type;
10298 dw_die_ref context_die;
10299 {
10300 dw_die_ref scope_die = scope_die_for (type, context_die);
10301 dw_die_ref array_die;
10302 tree element_type;
10303
10304 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10305 the inner array type comes before the outer array type. Thus we must
10306 call gen_type_die before we call new_die. See below also. */
10307 #ifdef MIPS_DEBUGGING_INFO
10308 gen_type_die (TREE_TYPE (type), context_die);
10309 #endif
10310
10311 array_die = new_die (DW_TAG_array_type, scope_die, type);
10312 add_name_attribute (array_die, type_tag (type));
10313 equate_type_number_to_die (type, array_die);
10314
10315 if (TREE_CODE (type) == VECTOR_TYPE)
10316 {
10317 /* The frontend feeds us a representation for the vector as a struct
10318 containing an array. Pull out the array type. */
10319 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10320 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10321 }
10322
10323 #if 0
10324 /* We default the array ordering. SDB will probably do
10325 the right things even if DW_AT_ordering is not present. It's not even
10326 an issue until we start to get into multidimensional arrays anyway. If
10327 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10328 then we'll have to put the DW_AT_ordering attribute back in. (But if
10329 and when we find out that we need to put these in, we will only do so
10330 for multidimensional arrays. */
10331 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10332 #endif
10333
10334 #ifdef MIPS_DEBUGGING_INFO
10335 /* The SGI compilers handle arrays of unknown bound by setting
10336 AT_declaration and not emitting any subrange DIEs. */
10337 if (! TYPE_DOMAIN (type))
10338 add_AT_unsigned (array_die, DW_AT_declaration, 1);
10339 else
10340 #endif
10341 add_subscript_info (array_die, type);
10342
10343 /* Add representation of the type of the elements of this array type. */
10344 element_type = TREE_TYPE (type);
10345
10346 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10347 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10348 We work around this by disabling this feature. See also
10349 add_subscript_info. */
10350 #ifndef MIPS_DEBUGGING_INFO
10351 while (TREE_CODE (element_type) == ARRAY_TYPE)
10352 element_type = TREE_TYPE (element_type);
10353
10354 gen_type_die (element_type, context_die);
10355 #endif
10356
10357 add_type_attribute (array_die, element_type, 0, 0, context_die);
10358 }
10359
10360 static void
10361 gen_set_type_die (type, context_die)
10362 tree type;
10363 dw_die_ref context_die;
10364 {
10365 dw_die_ref type_die
10366 = new_die (DW_TAG_set_type, scope_die_for (type, context_die), type);
10367
10368 equate_type_number_to_die (type, type_die);
10369 add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
10370 }
10371
10372 #if 0
10373 static void
10374 gen_entry_point_die (decl, context_die)
10375 tree decl;
10376 dw_die_ref context_die;
10377 {
10378 tree origin = decl_ultimate_origin (decl);
10379 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10380
10381 if (origin != NULL)
10382 add_abstract_origin_attribute (decl_die, origin);
10383 else
10384 {
10385 add_name_and_src_coords_attributes (decl_die, decl);
10386 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10387 0, 0, context_die);
10388 }
10389
10390 if (DECL_ABSTRACT (decl))
10391 equate_decl_number_to_die (decl, decl_die);
10392 else
10393 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10394 }
10395 #endif
10396
10397 /* Walk through the list of incomplete types again, trying once more to
10398 emit full debugging info for them. */
10399
10400 static void
10401 retry_incomplete_types ()
10402 {
10403 int i;
10404
10405 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
10406 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
10407 }
10408
10409 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10410
10411 static void
10412 gen_inlined_enumeration_type_die (type, context_die)
10413 tree type;
10414 dw_die_ref context_die;
10415 {
10416 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
10417
10418 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10419 be incomplete and such types are not marked. */
10420 add_abstract_origin_attribute (type_die, type);
10421 }
10422
10423 /* Generate a DIE to represent an inlined instance of a structure type. */
10424
10425 static void
10426 gen_inlined_structure_type_die (type, context_die)
10427 tree type;
10428 dw_die_ref context_die;
10429 {
10430 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
10431
10432 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10433 be incomplete and such types are not marked. */
10434 add_abstract_origin_attribute (type_die, type);
10435 }
10436
10437 /* Generate a DIE to represent an inlined instance of a union type. */
10438
10439 static void
10440 gen_inlined_union_type_die (type, context_die)
10441 tree type;
10442 dw_die_ref context_die;
10443 {
10444 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
10445
10446 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10447 be incomplete and such types are not marked. */
10448 add_abstract_origin_attribute (type_die, type);
10449 }
10450
10451 /* Generate a DIE to represent an enumeration type. Note that these DIEs
10452 include all of the information about the enumeration values also. Each
10453 enumerated type name/value is listed as a child of the enumerated type
10454 DIE. */
10455
10456 static void
10457 gen_enumeration_type_die (type, context_die)
10458 tree type;
10459 dw_die_ref context_die;
10460 {
10461 dw_die_ref type_die = lookup_type_die (type);
10462
10463 if (type_die == NULL)
10464 {
10465 type_die = new_die (DW_TAG_enumeration_type,
10466 scope_die_for (type, context_die), type);
10467 equate_type_number_to_die (type, type_die);
10468 add_name_attribute (type_die, type_tag (type));
10469 }
10470 else if (! TYPE_SIZE (type))
10471 return;
10472 else
10473 remove_AT (type_die, DW_AT_declaration);
10474
10475 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
10476 given enum type is incomplete, do not generate the DW_AT_byte_size
10477 attribute or the DW_AT_element_list attribute. */
10478 if (TYPE_SIZE (type))
10479 {
10480 tree link;
10481
10482 TREE_ASM_WRITTEN (type) = 1;
10483 add_byte_size_attribute (type_die, type);
10484 if (TYPE_STUB_DECL (type) != NULL_TREE)
10485 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
10486
10487 /* If the first reference to this type was as the return type of an
10488 inline function, then it may not have a parent. Fix this now. */
10489 if (type_die->die_parent == NULL)
10490 add_child_die (scope_die_for (type, context_die), type_die);
10491
10492 for (link = TYPE_FIELDS (type);
10493 link != NULL; link = TREE_CHAIN (link))
10494 {
10495 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
10496
10497 add_name_attribute (enum_die,
10498 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
10499
10500 if (host_integerp (TREE_VALUE (link), 0))
10501 {
10502 if (tree_int_cst_sgn (TREE_VALUE (link)) < 0)
10503 add_AT_int (enum_die, DW_AT_const_value,
10504 tree_low_cst (TREE_VALUE (link), 0));
10505 else
10506 add_AT_unsigned (enum_die, DW_AT_const_value,
10507 tree_low_cst (TREE_VALUE (link), 0));
10508 }
10509 }
10510 }
10511 else
10512 add_AT_flag (type_die, DW_AT_declaration, 1);
10513 }
10514
10515 /* Generate a DIE to represent either a real live formal parameter decl or to
10516 represent just the type of some formal parameter position in some function
10517 type.
10518
10519 Note that this routine is a bit unusual because its argument may be a
10520 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
10521 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
10522 node. If it's the former then this function is being called to output a
10523 DIE to represent a formal parameter object (or some inlining thereof). If
10524 it's the latter, then this function is only being called to output a
10525 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
10526 argument type of some subprogram type. */
10527
10528 static dw_die_ref
10529 gen_formal_parameter_die (node, context_die)
10530 tree node;
10531 dw_die_ref context_die;
10532 {
10533 dw_die_ref parm_die
10534 = new_die (DW_TAG_formal_parameter, context_die, node);
10535 tree origin;
10536
10537 switch (TREE_CODE_CLASS (TREE_CODE (node)))
10538 {
10539 case 'd':
10540 origin = decl_ultimate_origin (node);
10541 if (origin != NULL)
10542 add_abstract_origin_attribute (parm_die, origin);
10543 else
10544 {
10545 add_name_and_src_coords_attributes (parm_die, node);
10546 add_type_attribute (parm_die, TREE_TYPE (node),
10547 TREE_READONLY (node),
10548 TREE_THIS_VOLATILE (node),
10549 context_die);
10550 if (DECL_ARTIFICIAL (node))
10551 add_AT_flag (parm_die, DW_AT_artificial, 1);
10552 }
10553
10554 equate_decl_number_to_die (node, parm_die);
10555 if (! DECL_ABSTRACT (node))
10556 add_location_or_const_value_attribute (parm_die, node);
10557
10558 break;
10559
10560 case 't':
10561 /* We were called with some kind of a ..._TYPE node. */
10562 add_type_attribute (parm_die, node, 0, 0, context_die);
10563 break;
10564
10565 default:
10566 abort ();
10567 }
10568
10569 return parm_die;
10570 }
10571
10572 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
10573 at the end of an (ANSI prototyped) formal parameters list. */
10574
10575 static void
10576 gen_unspecified_parameters_die (decl_or_type, context_die)
10577 tree decl_or_type;
10578 dw_die_ref context_die;
10579 {
10580 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
10581 }
10582
10583 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
10584 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
10585 parameters as specified in some function type specification (except for
10586 those which appear as part of a function *definition*). */
10587
10588 static void
10589 gen_formal_types_die (function_or_method_type, context_die)
10590 tree function_or_method_type;
10591 dw_die_ref context_die;
10592 {
10593 tree link;
10594 tree formal_type = NULL;
10595 tree first_parm_type;
10596 tree arg;
10597
10598 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
10599 {
10600 arg = DECL_ARGUMENTS (function_or_method_type);
10601 function_or_method_type = TREE_TYPE (function_or_method_type);
10602 }
10603 else
10604 arg = NULL_TREE;
10605
10606 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
10607
10608 /* Make our first pass over the list of formal parameter types and output a
10609 DW_TAG_formal_parameter DIE for each one. */
10610 for (link = first_parm_type; link; )
10611 {
10612 dw_die_ref parm_die;
10613
10614 formal_type = TREE_VALUE (link);
10615 if (formal_type == void_type_node)
10616 break;
10617
10618 /* Output a (nameless) DIE to represent the formal parameter itself. */
10619 parm_die = gen_formal_parameter_die (formal_type, context_die);
10620 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
10621 && link == first_parm_type)
10622 || (arg && DECL_ARTIFICIAL (arg)))
10623 add_AT_flag (parm_die, DW_AT_artificial, 1);
10624
10625 link = TREE_CHAIN (link);
10626 if (arg)
10627 arg = TREE_CHAIN (arg);
10628 }
10629
10630 /* If this function type has an ellipsis, add a
10631 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
10632 if (formal_type != void_type_node)
10633 gen_unspecified_parameters_die (function_or_method_type, context_die);
10634
10635 /* Make our second (and final) pass over the list of formal parameter types
10636 and output DIEs to represent those types (as necessary). */
10637 for (link = TYPE_ARG_TYPES (function_or_method_type);
10638 link && TREE_VALUE (link);
10639 link = TREE_CHAIN (link))
10640 gen_type_die (TREE_VALUE (link), context_die);
10641 }
10642
10643 /* We want to generate the DIE for TYPE so that we can generate the
10644 die for MEMBER, which has been defined; we will need to refer back
10645 to the member declaration nested within TYPE. If we're trying to
10646 generate minimal debug info for TYPE, processing TYPE won't do the
10647 trick; we need to attach the member declaration by hand. */
10648
10649 static void
10650 gen_type_die_for_member (type, member, context_die)
10651 tree type, member;
10652 dw_die_ref context_die;
10653 {
10654 gen_type_die (type, context_die);
10655
10656 /* If we're trying to avoid duplicate debug info, we may not have
10657 emitted the member decl for this function. Emit it now. */
10658 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
10659 && ! lookup_decl_die (member))
10660 {
10661 if (decl_ultimate_origin (member))
10662 abort ();
10663
10664 push_decl_scope (type);
10665 if (TREE_CODE (member) == FUNCTION_DECL)
10666 gen_subprogram_die (member, lookup_type_die (type));
10667 else
10668 gen_variable_die (member, lookup_type_die (type));
10669
10670 pop_decl_scope ();
10671 }
10672 }
10673
10674 /* Generate the DWARF2 info for the "abstract" instance of a function which we
10675 may later generate inlined and/or out-of-line instances of. */
10676
10677 static void
10678 dwarf2out_abstract_function (decl)
10679 tree decl;
10680 {
10681 dw_die_ref old_die;
10682 tree save_fn;
10683 tree context;
10684 int was_abstract = DECL_ABSTRACT (decl);
10685
10686 /* Make sure we have the actual abstract inline, not a clone. */
10687 decl = DECL_ORIGIN (decl);
10688
10689 old_die = lookup_decl_die (decl);
10690 if (old_die && get_AT_unsigned (old_die, DW_AT_inline))
10691 /* We've already generated the abstract instance. */
10692 return;
10693
10694 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
10695 we don't get confused by DECL_ABSTRACT. */
10696 if (debug_info_level > DINFO_LEVEL_TERSE)
10697 {
10698 context = decl_class_context (decl);
10699 if (context)
10700 gen_type_die_for_member
10701 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
10702 }
10703
10704 /* Pretend we've just finished compiling this function. */
10705 save_fn = current_function_decl;
10706 current_function_decl = decl;
10707
10708 set_decl_abstract_flags (decl, 1);
10709 dwarf2out_decl (decl);
10710 if (! was_abstract)
10711 set_decl_abstract_flags (decl, 0);
10712
10713 current_function_decl = save_fn;
10714 }
10715
10716 /* Generate a DIE to represent a declared function (either file-scope or
10717 block-local). */
10718
10719 static void
10720 gen_subprogram_die (decl, context_die)
10721 tree decl;
10722 dw_die_ref context_die;
10723 {
10724 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10725 tree origin = decl_ultimate_origin (decl);
10726 dw_die_ref subr_die;
10727 rtx fp_reg;
10728 tree fn_arg_types;
10729 tree outer_scope;
10730 dw_die_ref old_die = lookup_decl_die (decl);
10731 int declaration = (current_function_decl != decl
10732 || class_scope_p (context_die));
10733
10734 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
10735 started to generate the abstract instance of an inline, decided to output
10736 its containing class, and proceeded to emit the declaration of the inline
10737 from the member list for the class. If so, DECLARATION takes priority;
10738 we'll get back to the abstract instance when done with the class. */
10739
10740 /* The class-scope declaration DIE must be the primary DIE. */
10741 if (origin && declaration && class_scope_p (context_die))
10742 {
10743 origin = NULL;
10744 if (old_die)
10745 abort ();
10746 }
10747
10748 if (origin != NULL)
10749 {
10750 if (declaration && ! local_scope_p (context_die))
10751 abort ();
10752
10753 /* Fixup die_parent for the abstract instance of a nested
10754 inline function. */
10755 if (old_die && old_die->die_parent == NULL)
10756 add_child_die (context_die, old_die);
10757
10758 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10759 add_abstract_origin_attribute (subr_die, origin);
10760 }
10761 else if (old_die)
10762 {
10763 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10764
10765 if (!get_AT_flag (old_die, DW_AT_declaration)
10766 /* We can have a normal definition following an inline one in the
10767 case of redefinition of GNU C extern inlines.
10768 It seems reasonable to use AT_specification in this case. */
10769 && !get_AT_unsigned (old_die, DW_AT_inline))
10770 {
10771 /* ??? This can happen if there is a bug in the program, for
10772 instance, if it has duplicate function definitions. Ideally,
10773 we should detect this case and ignore it. For now, if we have
10774 already reported an error, any error at all, then assume that
10775 we got here because of an input error, not a dwarf2 bug. */
10776 if (errorcount)
10777 return;
10778 abort ();
10779 }
10780
10781 /* If the definition comes from the same place as the declaration,
10782 maybe use the old DIE. We always want the DIE for this function
10783 that has the *_pc attributes to be under comp_unit_die so the
10784 debugger can find it. We also need to do this for abstract
10785 instances of inlines, since the spec requires the out-of-line copy
10786 to have the same parent. For local class methods, this doesn't
10787 apply; we just use the old DIE. */
10788 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
10789 && (DECL_ARTIFICIAL (decl)
10790 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
10791 && (get_AT_unsigned (old_die, DW_AT_decl_line)
10792 == (unsigned) DECL_SOURCE_LINE (decl)))))
10793 {
10794 subr_die = old_die;
10795
10796 /* Clear out the declaration attribute and the parm types. */
10797 remove_AT (subr_die, DW_AT_declaration);
10798 remove_children (subr_die);
10799 }
10800 else
10801 {
10802 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10803 add_AT_die_ref (subr_die, DW_AT_specification, old_die);
10804 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10805 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
10806 if (get_AT_unsigned (old_die, DW_AT_decl_line)
10807 != (unsigned) DECL_SOURCE_LINE (decl))
10808 add_AT_unsigned
10809 (subr_die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10810 }
10811 }
10812 else
10813 {
10814 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10815
10816 if (TREE_PUBLIC (decl))
10817 add_AT_flag (subr_die, DW_AT_external, 1);
10818
10819 add_name_and_src_coords_attributes (subr_die, decl);
10820 if (debug_info_level > DINFO_LEVEL_TERSE)
10821 {
10822 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
10823 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
10824 0, 0, context_die);
10825 }
10826
10827 add_pure_or_virtual_attribute (subr_die, decl);
10828 if (DECL_ARTIFICIAL (decl))
10829 add_AT_flag (subr_die, DW_AT_artificial, 1);
10830
10831 if (TREE_PROTECTED (decl))
10832 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
10833 else if (TREE_PRIVATE (decl))
10834 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
10835 }
10836
10837 if (declaration)
10838 {
10839 if (!old_die || !get_AT_unsigned (old_die, DW_AT_inline))
10840 {
10841 add_AT_flag (subr_die, DW_AT_declaration, 1);
10842
10843 /* The first time we see a member function, it is in the context of
10844 the class to which it belongs. We make sure of this by emitting
10845 the class first. The next time is the definition, which is
10846 handled above. The two may come from the same source text. */
10847 if (DECL_CONTEXT (decl) || DECL_ABSTRACT (decl))
10848 equate_decl_number_to_die (decl, subr_die);
10849 }
10850 }
10851 else if (DECL_ABSTRACT (decl))
10852 {
10853 if (DECL_INLINE (decl) && !flag_no_inline)
10854 {
10855 /* ??? Checking DECL_DEFER_OUTPUT is correct for static
10856 inline functions, but not for extern inline functions.
10857 We can't get this completely correct because information
10858 about whether the function was declared inline is not
10859 saved anywhere. */
10860 if (DECL_DEFER_OUTPUT (decl))
10861 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
10862 else
10863 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
10864 }
10865 else
10866 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
10867
10868 equate_decl_number_to_die (decl, subr_die);
10869 }
10870 else if (!DECL_EXTERNAL (decl))
10871 {
10872 if (!old_die || !get_AT_unsigned (old_die, DW_AT_inline))
10873 equate_decl_number_to_die (decl, subr_die);
10874
10875 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
10876 current_function_funcdef_no);
10877 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
10878 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10879 current_function_funcdef_no);
10880 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
10881
10882 add_pubname (decl, subr_die);
10883 add_arange (decl, subr_die);
10884
10885 #ifdef MIPS_DEBUGGING_INFO
10886 /* Add a reference to the FDE for this routine. */
10887 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
10888 #endif
10889
10890 /* Define the "frame base" location for this routine. We use the
10891 frame pointer or stack pointer registers, since the RTL for local
10892 variables is relative to one of them. */
10893 fp_reg
10894 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
10895 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
10896
10897 #if 0
10898 /* ??? This fails for nested inline functions, because context_display
10899 is not part of the state saved/restored for inline functions. */
10900 if (current_function_needs_context)
10901 add_AT_location_description (subr_die, DW_AT_static_link,
10902 loc_descriptor (lookup_static_chain (decl)));
10903 #endif
10904 }
10905
10906 /* Now output descriptions of the arguments for this function. This gets
10907 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
10908 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
10909 `...' at the end of the formal parameter list. In order to find out if
10910 there was a trailing ellipsis or not, we must instead look at the type
10911 associated with the FUNCTION_DECL. This will be a node of type
10912 FUNCTION_TYPE. If the chain of type nodes hanging off of this
10913 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
10914 an ellipsis at the end. */
10915
10916 /* In the case where we are describing a mere function declaration, all we
10917 need to do here (and all we *can* do here) is to describe the *types* of
10918 its formal parameters. */
10919 if (debug_info_level <= DINFO_LEVEL_TERSE)
10920 ;
10921 else if (declaration)
10922 gen_formal_types_die (decl, subr_die);
10923 else
10924 {
10925 /* Generate DIEs to represent all known formal parameters */
10926 tree arg_decls = DECL_ARGUMENTS (decl);
10927 tree parm;
10928
10929 /* When generating DIEs, generate the unspecified_parameters DIE
10930 instead if we come across the arg "__builtin_va_alist" */
10931 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
10932 if (TREE_CODE (parm) == PARM_DECL)
10933 {
10934 if (DECL_NAME (parm)
10935 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
10936 "__builtin_va_alist"))
10937 gen_unspecified_parameters_die (parm, subr_die);
10938 else
10939 gen_decl_die (parm, subr_die);
10940 }
10941
10942 /* Decide whether we need an unspecified_parameters DIE at the end.
10943 There are 2 more cases to do this for: 1) the ansi ... declaration -
10944 this is detectable when the end of the arg list is not a
10945 void_type_node 2) an unprototyped function declaration (not a
10946 definition). This just means that we have no info about the
10947 parameters at all. */
10948 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
10949 if (fn_arg_types != NULL)
10950 {
10951 /* this is the prototyped case, check for ... */
10952 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
10953 gen_unspecified_parameters_die (decl, subr_die);
10954 }
10955 else if (DECL_INITIAL (decl) == NULL_TREE)
10956 gen_unspecified_parameters_die (decl, subr_die);
10957 }
10958
10959 /* Output Dwarf info for all of the stuff within the body of the function
10960 (if it has one - it may be just a declaration). */
10961 outer_scope = DECL_INITIAL (decl);
10962
10963 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
10964 a function. This BLOCK actually represents the outermost binding contour
10965 for the function, i.e. the contour in which the function's formal
10966 parameters and labels get declared. Curiously, it appears that the front
10967 end doesn't actually put the PARM_DECL nodes for the current function onto
10968 the BLOCK_VARS list for this outer scope, but are strung off of the
10969 DECL_ARGUMENTS list for the function instead.
10970
10971 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
10972 the LABEL_DECL nodes for the function however, and we output DWARF info
10973 for those in decls_for_scope. Just within the `outer_scope' there will be
10974 a BLOCK node representing the function's outermost pair of curly braces,
10975 and any blocks used for the base and member initializers of a C++
10976 constructor function. */
10977 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
10978 {
10979 current_function_has_inlines = 0;
10980 decls_for_scope (outer_scope, subr_die, 0);
10981
10982 #if 0 && defined (MIPS_DEBUGGING_INFO)
10983 if (current_function_has_inlines)
10984 {
10985 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
10986 if (! comp_unit_has_inlines)
10987 {
10988 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
10989 comp_unit_has_inlines = 1;
10990 }
10991 }
10992 #endif
10993 }
10994 }
10995
10996 /* Generate a DIE to represent a declared data object. */
10997
10998 static void
10999 gen_variable_die (decl, context_die)
11000 tree decl;
11001 dw_die_ref context_die;
11002 {
11003 tree origin = decl_ultimate_origin (decl);
11004 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11005
11006 dw_die_ref old_die = lookup_decl_die (decl);
11007 int declaration = (DECL_EXTERNAL (decl)
11008 || class_scope_p (context_die));
11009
11010 if (origin != NULL)
11011 add_abstract_origin_attribute (var_die, origin);
11012
11013 /* Loop unrolling can create multiple blocks that refer to the same
11014 static variable, so we must test for the DW_AT_declaration flag.
11015
11016 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11017 copy decls and set the DECL_ABSTRACT flag on them instead of
11018 sharing them.
11019
11020 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
11021 else if (old_die && TREE_STATIC (decl)
11022 && get_AT_flag (old_die, DW_AT_declaration) == 1)
11023 {
11024 /* This is a definition of a C++ class level static. */
11025 add_AT_die_ref (var_die, DW_AT_specification, old_die);
11026 if (DECL_NAME (decl))
11027 {
11028 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
11029
11030 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11031 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
11032
11033 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11034 != (unsigned) DECL_SOURCE_LINE (decl))
11035
11036 add_AT_unsigned (var_die, DW_AT_decl_line,
11037 DECL_SOURCE_LINE (decl));
11038 }
11039 }
11040 else
11041 {
11042 add_name_and_src_coords_attributes (var_die, decl);
11043 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
11044 TREE_THIS_VOLATILE (decl), context_die);
11045
11046 if (TREE_PUBLIC (decl))
11047 add_AT_flag (var_die, DW_AT_external, 1);
11048
11049 if (DECL_ARTIFICIAL (decl))
11050 add_AT_flag (var_die, DW_AT_artificial, 1);
11051
11052 if (TREE_PROTECTED (decl))
11053 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
11054 else if (TREE_PRIVATE (decl))
11055 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
11056 }
11057
11058 if (declaration)
11059 add_AT_flag (var_die, DW_AT_declaration, 1);
11060
11061 if (class_scope_p (context_die) || DECL_ABSTRACT (decl))
11062 equate_decl_number_to_die (decl, var_die);
11063
11064 if (! declaration && ! DECL_ABSTRACT (decl))
11065 {
11066 add_location_or_const_value_attribute (var_die, decl);
11067 add_pubname (decl, var_die);
11068 }
11069 else
11070 tree_add_const_value_attribute (var_die, decl);
11071 }
11072
11073 /* Generate a DIE to represent a label identifier. */
11074
11075 static void
11076 gen_label_die (decl, context_die)
11077 tree decl;
11078 dw_die_ref context_die;
11079 {
11080 tree origin = decl_ultimate_origin (decl);
11081 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
11082 rtx insn;
11083 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11084
11085 if (origin != NULL)
11086 add_abstract_origin_attribute (lbl_die, origin);
11087 else
11088 add_name_and_src_coords_attributes (lbl_die, decl);
11089
11090 if (DECL_ABSTRACT (decl))
11091 equate_decl_number_to_die (decl, lbl_die);
11092 else
11093 {
11094 insn = DECL_RTL (decl);
11095
11096 /* Deleted labels are programmer specified labels which have been
11097 eliminated because of various optimisations. We still emit them
11098 here so that it is possible to put breakpoints on them. */
11099 if (GET_CODE (insn) == CODE_LABEL
11100 || ((GET_CODE (insn) == NOTE
11101 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL)))
11102 {
11103 /* When optimization is enabled (via -O) some parts of the compiler
11104 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11105 represent source-level labels which were explicitly declared by
11106 the user. This really shouldn't be happening though, so catch
11107 it if it ever does happen. */
11108 if (INSN_DELETED_P (insn))
11109 abort ();
11110
11111 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11112 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11113 }
11114 }
11115 }
11116
11117 /* Generate a DIE for a lexical block. */
11118
11119 static void
11120 gen_lexical_block_die (stmt, context_die, depth)
11121 tree stmt;
11122 dw_die_ref context_die;
11123 int depth;
11124 {
11125 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11126 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11127
11128 if (! BLOCK_ABSTRACT (stmt))
11129 {
11130 if (BLOCK_FRAGMENT_CHAIN (stmt))
11131 {
11132 tree chain;
11133
11134 add_AT_range_list (stmt_die, DW_AT_ranges, add_ranges (stmt));
11135
11136 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11137 do
11138 {
11139 add_ranges (chain);
11140 chain = BLOCK_FRAGMENT_CHAIN (chain);
11141 }
11142 while (chain);
11143 add_ranges (NULL);
11144 }
11145 else
11146 {
11147 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11148 BLOCK_NUMBER (stmt));
11149 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
11150 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11151 BLOCK_NUMBER (stmt));
11152 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
11153 }
11154 }
11155
11156 decls_for_scope (stmt, stmt_die, depth);
11157 }
11158
11159 /* Generate a DIE for an inlined subprogram. */
11160
11161 static void
11162 gen_inlined_subroutine_die (stmt, context_die, depth)
11163 tree stmt;
11164 dw_die_ref context_die;
11165 int depth;
11166 {
11167 if (! BLOCK_ABSTRACT (stmt))
11168 {
11169 dw_die_ref subr_die
11170 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11171 tree decl = block_ultimate_origin (stmt);
11172 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11173
11174 /* Emit info for the abstract instance first, if we haven't yet. */
11175 dwarf2out_abstract_function (decl);
11176
11177 add_abstract_origin_attribute (subr_die, decl);
11178 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11179 BLOCK_NUMBER (stmt));
11180 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
11181 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11182 BLOCK_NUMBER (stmt));
11183 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
11184 decls_for_scope (stmt, subr_die, depth);
11185 current_function_has_inlines = 1;
11186 }
11187 else
11188 /* We may get here if we're the outer block of function A that was
11189 inlined into function B that was inlined into function C. When
11190 generating debugging info for C, dwarf2out_abstract_function(B)
11191 would mark all inlined blocks as abstract, including this one.
11192 So, we wouldn't (and shouldn't) expect labels to be generated
11193 for this one. Instead, just emit debugging info for
11194 declarations within the block. This is particularly important
11195 in the case of initializers of arguments passed from B to us:
11196 if they're statement expressions containing declarations, we
11197 wouldn't generate dies for their abstract variables, and then,
11198 when generating dies for the real variables, we'd die (pun
11199 intended :-) */
11200 gen_lexical_block_die (stmt, context_die, depth);
11201 }
11202
11203 /* Generate a DIE for a field in a record, or structure. */
11204
11205 static void
11206 gen_field_die (decl, context_die)
11207 tree decl;
11208 dw_die_ref context_die;
11209 {
11210 dw_die_ref decl_die = new_die (DW_TAG_member, context_die, decl);
11211
11212 add_name_and_src_coords_attributes (decl_die, decl);
11213 add_type_attribute (decl_die, member_declared_type (decl),
11214 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11215 context_die);
11216
11217 if (DECL_BIT_FIELD_TYPE (decl))
11218 {
11219 add_byte_size_attribute (decl_die, decl);
11220 add_bit_size_attribute (decl_die, decl);
11221 add_bit_offset_attribute (decl_die, decl);
11222 }
11223
11224 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11225 add_data_member_location_attribute (decl_die, decl);
11226
11227 if (DECL_ARTIFICIAL (decl))
11228 add_AT_flag (decl_die, DW_AT_artificial, 1);
11229
11230 if (TREE_PROTECTED (decl))
11231 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11232 else if (TREE_PRIVATE (decl))
11233 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11234 }
11235
11236 #if 0
11237 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11238 Use modified_type_die instead.
11239 We keep this code here just in case these types of DIEs may be needed to
11240 represent certain things in other languages (e.g. Pascal) someday. */
11241
11242 static void
11243 gen_pointer_type_die (type, context_die)
11244 tree type;
11245 dw_die_ref context_die;
11246 {
11247 dw_die_ref ptr_die
11248 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11249
11250 equate_type_number_to_die (type, ptr_die);
11251 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11252 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11253 }
11254
11255 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11256 Use modified_type_die instead.
11257 We keep this code here just in case these types of DIEs may be needed to
11258 represent certain things in other languages (e.g. Pascal) someday. */
11259
11260 static void
11261 gen_reference_type_die (type, context_die)
11262 tree type;
11263 dw_die_ref context_die;
11264 {
11265 dw_die_ref ref_die
11266 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11267
11268 equate_type_number_to_die (type, ref_die);
11269 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11270 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11271 }
11272 #endif
11273
11274 /* Generate a DIE for a pointer to a member type. */
11275
11276 static void
11277 gen_ptr_to_mbr_type_die (type, context_die)
11278 tree type;
11279 dw_die_ref context_die;
11280 {
11281 dw_die_ref ptr_die
11282 = new_die (DW_TAG_ptr_to_member_type,
11283 scope_die_for (type, context_die), type);
11284
11285 equate_type_number_to_die (type, ptr_die);
11286 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11287 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11288 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11289 }
11290
11291 /* Generate the DIE for the compilation unit. */
11292
11293 static dw_die_ref
11294 gen_compile_unit_die (filename)
11295 const char *filename;
11296 {
11297 dw_die_ref die;
11298 char producer[250];
11299 const char *language_string = lang_hooks.name;
11300 int language;
11301
11302 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11303
11304 if (filename)
11305 {
11306 add_name_attribute (die, filename);
11307 if (filename[0] != DIR_SEPARATOR)
11308 add_comp_dir_attribute (die);
11309 }
11310
11311 sprintf (producer, "%s %s", language_string, version_string);
11312
11313 #ifdef MIPS_DEBUGGING_INFO
11314 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11315 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11316 not appear in the producer string, the debugger reaches the conclusion
11317 that the object file is stripped and has no debugging information.
11318 To get the MIPS/SGI debugger to believe that there is debugging
11319 information in the object file, we add a -g to the producer string. */
11320 if (debug_info_level > DINFO_LEVEL_TERSE)
11321 strcat (producer, " -g");
11322 #endif
11323
11324 add_AT_string (die, DW_AT_producer, producer);
11325
11326 if (strcmp (language_string, "GNU C++") == 0)
11327 language = DW_LANG_C_plus_plus;
11328 else if (strcmp (language_string, "GNU Ada") == 0)
11329 language = DW_LANG_Ada83;
11330 else if (strcmp (language_string, "GNU F77") == 0)
11331 language = DW_LANG_Fortran77;
11332 else if (strcmp (language_string, "GNU Pascal") == 0)
11333 language = DW_LANG_Pascal83;
11334 else if (strcmp (language_string, "GNU Java") == 0)
11335 language = DW_LANG_Java;
11336 else
11337 language = DW_LANG_C89;
11338
11339 add_AT_unsigned (die, DW_AT_language, language);
11340 return die;
11341 }
11342
11343 /* Generate a DIE for a string type. */
11344
11345 static void
11346 gen_string_type_die (type, context_die)
11347 tree type;
11348 dw_die_ref context_die;
11349 {
11350 dw_die_ref type_die
11351 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11352
11353 equate_type_number_to_die (type, type_die);
11354
11355 /* ??? Fudge the string length attribute for now.
11356 TODO: add string length info. */
11357 #if 0
11358 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11359 bound_representation (upper_bound, 0, 'u');
11360 #endif
11361 }
11362
11363 /* Generate the DIE for a base class. */
11364
11365 static void
11366 gen_inheritance_die (binfo, access, context_die)
11367 tree binfo, access;
11368 dw_die_ref context_die;
11369 {
11370 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11371
11372 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11373 add_data_member_location_attribute (die, binfo);
11374
11375 if (TREE_VIA_VIRTUAL (binfo))
11376 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11377
11378 if (access == access_public_node)
11379 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11380 else if (access == access_protected_node)
11381 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
11382 }
11383
11384 /* Generate a DIE for a class member. */
11385
11386 static void
11387 gen_member_die (type, context_die)
11388 tree type;
11389 dw_die_ref context_die;
11390 {
11391 tree member;
11392 tree binfo = TYPE_BINFO (type);
11393 dw_die_ref child;
11394
11395 /* If this is not an incomplete type, output descriptions of each of its
11396 members. Note that as we output the DIEs necessary to represent the
11397 members of this record or union type, we will also be trying to output
11398 DIEs to represent the *types* of those members. However the `type'
11399 function (above) will specifically avoid generating type DIEs for member
11400 types *within* the list of member DIEs for this (containing) type except
11401 for those types (of members) which are explicitly marked as also being
11402 members of this (containing) type themselves. The g++ front- end can
11403 force any given type to be treated as a member of some other (containing)
11404 type by setting the TYPE_CONTEXT of the given (member) type to point to
11405 the TREE node representing the appropriate (containing) type. */
11406
11407 /* First output info about the base classes. */
11408 if (binfo && BINFO_BASETYPES (binfo))
11409 {
11410 tree bases = BINFO_BASETYPES (binfo);
11411 tree accesses = BINFO_BASEACCESSES (binfo);
11412 int n_bases = TREE_VEC_LENGTH (bases);
11413 int i;
11414
11415 for (i = 0; i < n_bases; i++)
11416 gen_inheritance_die (TREE_VEC_ELT (bases, i),
11417 (accesses ? TREE_VEC_ELT (accesses, i)
11418 : access_public_node), context_die);
11419 }
11420
11421 /* Now output info about the data members and type members. */
11422 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
11423 {
11424 /* If we thought we were generating minimal debug info for TYPE
11425 and then changed our minds, some of the member declarations
11426 may have already been defined. Don't define them again, but
11427 do put them in the right order. */
11428
11429 child = lookup_decl_die (member);
11430 if (child)
11431 splice_child_die (context_die, child);
11432 else
11433 gen_decl_die (member, context_die);
11434 }
11435
11436 /* Now output info about the function members (if any). */
11437 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
11438 {
11439 /* Don't include clones in the member list. */
11440 if (DECL_ABSTRACT_ORIGIN (member))
11441 continue;
11442
11443 child = lookup_decl_die (member);
11444 if (child)
11445 splice_child_die (context_die, child);
11446 else
11447 gen_decl_die (member, context_die);
11448 }
11449 }
11450
11451 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
11452 is set, we pretend that the type was never defined, so we only get the
11453 member DIEs needed by later specification DIEs. */
11454
11455 static void
11456 gen_struct_or_union_type_die (type, context_die)
11457 tree type;
11458 dw_die_ref context_die;
11459 {
11460 dw_die_ref type_die = lookup_type_die (type);
11461 dw_die_ref scope_die = 0;
11462 int nested = 0;
11463 int complete = (TYPE_SIZE (type)
11464 && (! TYPE_STUB_DECL (type)
11465 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
11466
11467 if (type_die && ! complete)
11468 return;
11469
11470 if (TYPE_CONTEXT (type) != NULL_TREE
11471 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type)))
11472 nested = 1;
11473
11474 scope_die = scope_die_for (type, context_die);
11475
11476 if (! type_die || (nested && scope_die == comp_unit_die))
11477 /* First occurrence of type or toplevel definition of nested class. */
11478 {
11479 dw_die_ref old_die = type_die;
11480
11481 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
11482 ? DW_TAG_structure_type : DW_TAG_union_type,
11483 scope_die, type);
11484 equate_type_number_to_die (type, type_die);
11485 if (old_die)
11486 add_AT_die_ref (type_die, DW_AT_specification, old_die);
11487 else
11488 add_name_attribute (type_die, type_tag (type));
11489 }
11490 else
11491 remove_AT (type_die, DW_AT_declaration);
11492
11493 /* If this type has been completed, then give it a byte_size attribute and
11494 then give a list of members. */
11495 if (complete)
11496 {
11497 /* Prevent infinite recursion in cases where the type of some member of
11498 this type is expressed in terms of this type itself. */
11499 TREE_ASM_WRITTEN (type) = 1;
11500 add_byte_size_attribute (type_die, type);
11501 if (TYPE_STUB_DECL (type) != NULL_TREE)
11502 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11503
11504 /* If the first reference to this type was as the return type of an
11505 inline function, then it may not have a parent. Fix this now. */
11506 if (type_die->die_parent == NULL)
11507 add_child_die (scope_die, type_die);
11508
11509 push_decl_scope (type);
11510 gen_member_die (type, type_die);
11511 pop_decl_scope ();
11512
11513 /* GNU extension: Record what type our vtable lives in. */
11514 if (TYPE_VFIELD (type))
11515 {
11516 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
11517
11518 gen_type_die (vtype, context_die);
11519 add_AT_die_ref (type_die, DW_AT_containing_type,
11520 lookup_type_die (vtype));
11521 }
11522 }
11523 else
11524 {
11525 add_AT_flag (type_die, DW_AT_declaration, 1);
11526
11527 /* We don't need to do this for function-local types. */
11528 if (TYPE_STUB_DECL (type)
11529 && ! decl_function_context (TYPE_STUB_DECL (type)))
11530 VARRAY_PUSH_TREE (incomplete_types, type);
11531 }
11532 }
11533
11534 /* Generate a DIE for a subroutine _type_. */
11535
11536 static void
11537 gen_subroutine_type_die (type, context_die)
11538 tree type;
11539 dw_die_ref context_die;
11540 {
11541 tree return_type = TREE_TYPE (type);
11542 dw_die_ref subr_die
11543 = new_die (DW_TAG_subroutine_type,
11544 scope_die_for (type, context_die), type);
11545
11546 equate_type_number_to_die (type, subr_die);
11547 add_prototyped_attribute (subr_die, type);
11548 add_type_attribute (subr_die, return_type, 0, 0, context_die);
11549 gen_formal_types_die (type, subr_die);
11550 }
11551
11552 /* Generate a DIE for a type definition */
11553
11554 static void
11555 gen_typedef_die (decl, context_die)
11556 tree decl;
11557 dw_die_ref context_die;
11558 {
11559 dw_die_ref type_die;
11560 tree origin;
11561
11562 if (TREE_ASM_WRITTEN (decl))
11563 return;
11564
11565 TREE_ASM_WRITTEN (decl) = 1;
11566 type_die = new_die (DW_TAG_typedef, context_die, decl);
11567 origin = decl_ultimate_origin (decl);
11568 if (origin != NULL)
11569 add_abstract_origin_attribute (type_die, origin);
11570 else
11571 {
11572 tree type;
11573
11574 add_name_and_src_coords_attributes (type_die, decl);
11575 if (DECL_ORIGINAL_TYPE (decl))
11576 {
11577 type = DECL_ORIGINAL_TYPE (decl);
11578
11579 if (type == TREE_TYPE (decl))
11580 abort ();
11581 else
11582 equate_type_number_to_die (TREE_TYPE (decl), type_die);
11583 }
11584 else
11585 type = TREE_TYPE (decl);
11586
11587 add_type_attribute (type_die, type, TREE_READONLY (decl),
11588 TREE_THIS_VOLATILE (decl), context_die);
11589 }
11590
11591 if (DECL_ABSTRACT (decl))
11592 equate_decl_number_to_die (decl, type_die);
11593 }
11594
11595 /* Generate a type description DIE. */
11596
11597 static void
11598 gen_type_die (type, context_die)
11599 tree type;
11600 dw_die_ref context_die;
11601 {
11602 int need_pop;
11603
11604 if (type == NULL_TREE || type == error_mark_node)
11605 return;
11606
11607 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11608 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
11609 {
11610 if (TREE_ASM_WRITTEN (type))
11611 return;
11612
11613 /* Prevent broken recursion; we can't hand off to the same type. */
11614 if (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) == type)
11615 abort ();
11616
11617 TREE_ASM_WRITTEN (type) = 1;
11618 gen_decl_die (TYPE_NAME (type), context_die);
11619 return;
11620 }
11621
11622 /* We are going to output a DIE to represent the unqualified version
11623 of this type (i.e. without any const or volatile qualifiers) so
11624 get the main variant (i.e. the unqualified version) of this type
11625 now. (Vectors are special because the debugging info is in the
11626 cloned type itself). */
11627 if (TREE_CODE (type) != VECTOR_TYPE)
11628 type = type_main_variant (type);
11629
11630 if (TREE_ASM_WRITTEN (type))
11631 return;
11632
11633 switch (TREE_CODE (type))
11634 {
11635 case ERROR_MARK:
11636 break;
11637
11638 case POINTER_TYPE:
11639 case REFERENCE_TYPE:
11640 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
11641 ensures that the gen_type_die recursion will terminate even if the
11642 type is recursive. Recursive types are possible in Ada. */
11643 /* ??? We could perhaps do this for all types before the switch
11644 statement. */
11645 TREE_ASM_WRITTEN (type) = 1;
11646
11647 /* For these types, all that is required is that we output a DIE (or a
11648 set of DIEs) to represent the "basis" type. */
11649 gen_type_die (TREE_TYPE (type), context_die);
11650 break;
11651
11652 case OFFSET_TYPE:
11653 /* This code is used for C++ pointer-to-data-member types.
11654 Output a description of the relevant class type. */
11655 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
11656
11657 /* Output a description of the type of the object pointed to. */
11658 gen_type_die (TREE_TYPE (type), context_die);
11659
11660 /* Now output a DIE to represent this pointer-to-data-member type
11661 itself. */
11662 gen_ptr_to_mbr_type_die (type, context_die);
11663 break;
11664
11665 case SET_TYPE:
11666 gen_type_die (TYPE_DOMAIN (type), context_die);
11667 gen_set_type_die (type, context_die);
11668 break;
11669
11670 case FILE_TYPE:
11671 gen_type_die (TREE_TYPE (type), context_die);
11672 abort (); /* No way to represent these in Dwarf yet! */
11673 break;
11674
11675 case FUNCTION_TYPE:
11676 /* Force out return type (in case it wasn't forced out already). */
11677 gen_type_die (TREE_TYPE (type), context_die);
11678 gen_subroutine_type_die (type, context_die);
11679 break;
11680
11681 case METHOD_TYPE:
11682 /* Force out return type (in case it wasn't forced out already). */
11683 gen_type_die (TREE_TYPE (type), context_die);
11684 gen_subroutine_type_die (type, context_die);
11685 break;
11686
11687 case ARRAY_TYPE:
11688 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
11689 {
11690 gen_type_die (TREE_TYPE (type), context_die);
11691 gen_string_type_die (type, context_die);
11692 }
11693 else
11694 gen_array_type_die (type, context_die);
11695 break;
11696
11697 case VECTOR_TYPE:
11698 gen_array_type_die (type, context_die);
11699 break;
11700
11701 case ENUMERAL_TYPE:
11702 case RECORD_TYPE:
11703 case UNION_TYPE:
11704 case QUAL_UNION_TYPE:
11705 /* If this is a nested type whose containing class hasn't been written
11706 out yet, writing it out will cover this one, too. This does not apply
11707 to instantiations of member class templates; they need to be added to
11708 the containing class as they are generated. FIXME: This hurts the
11709 idea of combining type decls from multiple TUs, since we can't predict
11710 what set of template instantiations we'll get. */
11711 if (TYPE_CONTEXT (type)
11712 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11713 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
11714 {
11715 gen_type_die (TYPE_CONTEXT (type), context_die);
11716
11717 if (TREE_ASM_WRITTEN (type))
11718 return;
11719
11720 /* If that failed, attach ourselves to the stub. */
11721 push_decl_scope (TYPE_CONTEXT (type));
11722 context_die = lookup_type_die (TYPE_CONTEXT (type));
11723 need_pop = 1;
11724 }
11725 else
11726 need_pop = 0;
11727
11728 if (TREE_CODE (type) == ENUMERAL_TYPE)
11729 gen_enumeration_type_die (type, context_die);
11730 else
11731 gen_struct_or_union_type_die (type, context_die);
11732
11733 if (need_pop)
11734 pop_decl_scope ();
11735
11736 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
11737 it up if it is ever completed. gen_*_type_die will set it for us
11738 when appropriate. */
11739 return;
11740
11741 case VOID_TYPE:
11742 case INTEGER_TYPE:
11743 case REAL_TYPE:
11744 case COMPLEX_TYPE:
11745 case BOOLEAN_TYPE:
11746 case CHAR_TYPE:
11747 /* No DIEs needed for fundamental types. */
11748 break;
11749
11750 case LANG_TYPE:
11751 /* No Dwarf representation currently defined. */
11752 break;
11753
11754 default:
11755 abort ();
11756 }
11757
11758 TREE_ASM_WRITTEN (type) = 1;
11759 }
11760
11761 /* Generate a DIE for a tagged type instantiation. */
11762
11763 static void
11764 gen_tagged_type_instantiation_die (type, context_die)
11765 tree type;
11766 dw_die_ref context_die;
11767 {
11768 if (type == NULL_TREE || type == error_mark_node)
11769 return;
11770
11771 /* We are going to output a DIE to represent the unqualified version of
11772 this type (i.e. without any const or volatile qualifiers) so make sure
11773 that we have the main variant (i.e. the unqualified version) of this
11774 type now. */
11775 if (type != type_main_variant (type))
11776 abort ();
11777
11778 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
11779 an instance of an unresolved type. */
11780
11781 switch (TREE_CODE (type))
11782 {
11783 case ERROR_MARK:
11784 break;
11785
11786 case ENUMERAL_TYPE:
11787 gen_inlined_enumeration_type_die (type, context_die);
11788 break;
11789
11790 case RECORD_TYPE:
11791 gen_inlined_structure_type_die (type, context_die);
11792 break;
11793
11794 case UNION_TYPE:
11795 case QUAL_UNION_TYPE:
11796 gen_inlined_union_type_die (type, context_die);
11797 break;
11798
11799 default:
11800 abort ();
11801 }
11802 }
11803
11804 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
11805 things which are local to the given block. */
11806
11807 static void
11808 gen_block_die (stmt, context_die, depth)
11809 tree stmt;
11810 dw_die_ref context_die;
11811 int depth;
11812 {
11813 int must_output_die = 0;
11814 tree origin;
11815 tree decl;
11816 enum tree_code origin_code;
11817
11818 /* Ignore blocks never really used to make RTL. */
11819 if (stmt == NULL_TREE || !TREE_USED (stmt)
11820 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
11821 return;
11822
11823 /* If the block is one fragment of a non-contiguous block, do not
11824 process the variables, since they will have been done by the
11825 origin block. Do process subblocks. */
11826 if (BLOCK_FRAGMENT_ORIGIN (stmt))
11827 {
11828 tree sub;
11829
11830 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
11831 gen_block_die (sub, context_die, depth + 1);
11832
11833 return;
11834 }
11835
11836 /* Determine the "ultimate origin" of this block. This block may be an
11837 inlined instance of an inlined instance of inline function, so we have
11838 to trace all of the way back through the origin chain to find out what
11839 sort of node actually served as the original seed for the creation of
11840 the current block. */
11841 origin = block_ultimate_origin (stmt);
11842 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
11843
11844 /* Determine if we need to output any Dwarf DIEs at all to represent this
11845 block. */
11846 if (origin_code == FUNCTION_DECL)
11847 /* The outer scopes for inlinings *must* always be represented. We
11848 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
11849 must_output_die = 1;
11850 else
11851 {
11852 /* In the case where the current block represents an inlining of the
11853 "body block" of an inline function, we must *NOT* output any DIE for
11854 this block because we have already output a DIE to represent the whole
11855 inlined function scope and the "body block" of any function doesn't
11856 really represent a different scope according to ANSI C rules. So we
11857 check here to make sure that this block does not represent a "body
11858 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
11859 if (! is_body_block (origin ? origin : stmt))
11860 {
11861 /* Determine if this block directly contains any "significant"
11862 local declarations which we will need to output DIEs for. */
11863 if (debug_info_level > DINFO_LEVEL_TERSE)
11864 /* We are not in terse mode so *any* local declaration counts
11865 as being a "significant" one. */
11866 must_output_die = (BLOCK_VARS (stmt) != NULL);
11867 else
11868 /* We are in terse mode, so only local (nested) function
11869 definitions count as "significant" local declarations. */
11870 for (decl = BLOCK_VARS (stmt);
11871 decl != NULL; decl = TREE_CHAIN (decl))
11872 if (TREE_CODE (decl) == FUNCTION_DECL
11873 && DECL_INITIAL (decl))
11874 {
11875 must_output_die = 1;
11876 break;
11877 }
11878 }
11879 }
11880
11881 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
11882 DIE for any block which contains no significant local declarations at
11883 all. Rather, in such cases we just call `decls_for_scope' so that any
11884 needed Dwarf info for any sub-blocks will get properly generated. Note
11885 that in terse mode, our definition of what constitutes a "significant"
11886 local declaration gets restricted to include only inlined function
11887 instances and local (nested) function definitions. */
11888 if (must_output_die)
11889 {
11890 if (origin_code == FUNCTION_DECL)
11891 gen_inlined_subroutine_die (stmt, context_die, depth);
11892 else
11893 gen_lexical_block_die (stmt, context_die, depth);
11894 }
11895 else
11896 decls_for_scope (stmt, context_die, depth);
11897 }
11898
11899 /* Generate all of the decls declared within a given scope and (recursively)
11900 all of its sub-blocks. */
11901
11902 static void
11903 decls_for_scope (stmt, context_die, depth)
11904 tree stmt;
11905 dw_die_ref context_die;
11906 int depth;
11907 {
11908 tree decl;
11909 tree subblocks;
11910
11911 /* Ignore blocks never really used to make RTL. */
11912 if (stmt == NULL_TREE || ! TREE_USED (stmt))
11913 return;
11914
11915 /* Output the DIEs to represent all of the data objects and typedefs
11916 declared directly within this block but not within any nested
11917 sub-blocks. Also, nested function and tag DIEs have been
11918 generated with a parent of NULL; fix that up now. */
11919 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
11920 {
11921 dw_die_ref die;
11922
11923 if (TREE_CODE (decl) == FUNCTION_DECL)
11924 die = lookup_decl_die (decl);
11925 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
11926 die = lookup_type_die (TREE_TYPE (decl));
11927 else
11928 die = NULL;
11929
11930 if (die != NULL && die->die_parent == NULL)
11931 add_child_die (context_die, die);
11932 else
11933 gen_decl_die (decl, context_die);
11934 }
11935
11936 /* Output the DIEs to represent all sub-blocks (and the items declared
11937 therein) of this block. */
11938 for (subblocks = BLOCK_SUBBLOCKS (stmt);
11939 subblocks != NULL;
11940 subblocks = BLOCK_CHAIN (subblocks))
11941 gen_block_die (subblocks, context_die, depth + 1);
11942 }
11943
11944 /* Is this a typedef we can avoid emitting? */
11945
11946 static inline int
11947 is_redundant_typedef (decl)
11948 tree decl;
11949 {
11950 if (TYPE_DECL_IS_STUB (decl))
11951 return 1;
11952
11953 if (DECL_ARTIFICIAL (decl)
11954 && DECL_CONTEXT (decl)
11955 && is_tagged_type (DECL_CONTEXT (decl))
11956 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
11957 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
11958 /* Also ignore the artificial member typedef for the class name. */
11959 return 1;
11960
11961 return 0;
11962 }
11963
11964 /* Generate Dwarf debug information for a decl described by DECL. */
11965
11966 static void
11967 gen_decl_die (decl, context_die)
11968 tree decl;
11969 dw_die_ref context_die;
11970 {
11971 tree origin;
11972
11973 if (DECL_P (decl) && DECL_IGNORED_P (decl))
11974 return;
11975
11976 switch (TREE_CODE (decl))
11977 {
11978 case ERROR_MARK:
11979 break;
11980
11981 case CONST_DECL:
11982 /* The individual enumerators of an enum type get output when we output
11983 the Dwarf representation of the relevant enum type itself. */
11984 break;
11985
11986 case FUNCTION_DECL:
11987 /* Don't output any DIEs to represent mere function declarations,
11988 unless they are class members or explicit block externs. */
11989 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
11990 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
11991 break;
11992
11993 /* If we're emitting a clone, emit info for the abstract instance. */
11994 if (DECL_ORIGIN (decl) != decl)
11995 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
11996
11997 /* If we're emitting an out-of-line copy of an inline function,
11998 emit info for the abstract instance and set up to refer to it. */
11999 else if (DECL_INLINE (decl) && ! DECL_ABSTRACT (decl)
12000 && ! class_scope_p (context_die)
12001 /* dwarf2out_abstract_function won't emit a die if this is just
12002 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
12003 that case, because that works only if we have a die. */
12004 && DECL_INITIAL (decl) != NULL_TREE)
12005 {
12006 dwarf2out_abstract_function (decl);
12007 set_decl_origin_self (decl);
12008 }
12009
12010 /* Otherwise we're emitting the primary DIE for this decl. */
12011 else if (debug_info_level > DINFO_LEVEL_TERSE)
12012 {
12013 /* Before we describe the FUNCTION_DECL itself, make sure that we
12014 have described its return type. */
12015 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
12016
12017 /* And its virtual context. */
12018 if (DECL_VINDEX (decl) != NULL_TREE)
12019 gen_type_die (DECL_CONTEXT (decl), context_die);
12020
12021 /* And its containing type. */
12022 origin = decl_class_context (decl);
12023 if (origin != NULL_TREE)
12024 gen_type_die_for_member (origin, decl, context_die);
12025 }
12026
12027 /* Now output a DIE to represent the function itself. */
12028 gen_subprogram_die (decl, context_die);
12029 break;
12030
12031 case TYPE_DECL:
12032 /* If we are in terse mode, don't generate any DIEs to represent any
12033 actual typedefs. */
12034 if (debug_info_level <= DINFO_LEVEL_TERSE)
12035 break;
12036
12037 /* In the special case of a TYPE_DECL node representing the declaration
12038 of some type tag, if the given TYPE_DECL is marked as having been
12039 instantiated from some other (original) TYPE_DECL node (e.g. one which
12040 was generated within the original definition of an inline function) we
12041 have to generate a special (abbreviated) DW_TAG_structure_type,
12042 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
12043 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
12044 {
12045 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
12046 break;
12047 }
12048
12049 if (is_redundant_typedef (decl))
12050 gen_type_die (TREE_TYPE (decl), context_die);
12051 else
12052 /* Output a DIE to represent the typedef itself. */
12053 gen_typedef_die (decl, context_die);
12054 break;
12055
12056 case LABEL_DECL:
12057 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12058 gen_label_die (decl, context_die);
12059 break;
12060
12061 case VAR_DECL:
12062 /* If we are in terse mode, don't generate any DIEs to represent any
12063 variable declarations or definitions. */
12064 if (debug_info_level <= DINFO_LEVEL_TERSE)
12065 break;
12066
12067 /* Output any DIEs that are needed to specify the type of this data
12068 object. */
12069 gen_type_die (TREE_TYPE (decl), context_die);
12070
12071 /* And its containing type. */
12072 origin = decl_class_context (decl);
12073 if (origin != NULL_TREE)
12074 gen_type_die_for_member (origin, decl, context_die);
12075
12076 /* Now output the DIE to represent the data object itself. This gets
12077 complicated because of the possibility that the VAR_DECL really
12078 represents an inlined instance of a formal parameter for an inline
12079 function. */
12080 origin = decl_ultimate_origin (decl);
12081 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
12082 gen_formal_parameter_die (decl, context_die);
12083 else
12084 gen_variable_die (decl, context_die);
12085 break;
12086
12087 case FIELD_DECL:
12088 /* Ignore the nameless fields that are used to skip bits but handle C++
12089 anonymous unions. */
12090 if (DECL_NAME (decl) != NULL_TREE
12091 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
12092 {
12093 gen_type_die (member_declared_type (decl), context_die);
12094 gen_field_die (decl, context_die);
12095 }
12096 break;
12097
12098 case PARM_DECL:
12099 gen_type_die (TREE_TYPE (decl), context_die);
12100 gen_formal_parameter_die (decl, context_die);
12101 break;
12102
12103 case NAMESPACE_DECL:
12104 /* Ignore for now. */
12105 break;
12106
12107 default:
12108 abort ();
12109 }
12110 }
12111 \f
12112 /* Add Ada "use" clause information for SGI Workshop debugger. */
12113
12114 void
12115 dwarf2out_add_library_unit_info (filename, context_list)
12116 const char *filename;
12117 const char *context_list;
12118 {
12119 unsigned int file_index;
12120
12121 if (filename != NULL)
12122 {
12123 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
12124 tree context_list_decl
12125 = build_decl (LABEL_DECL, get_identifier (context_list),
12126 void_type_node);
12127
12128 TREE_PUBLIC (context_list_decl) = TRUE;
12129 add_name_attribute (unit_die, context_list);
12130 file_index = lookup_filename (filename);
12131 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
12132 add_pubname (context_list_decl, unit_die);
12133 }
12134 }
12135
12136 /* Output debug information for global decl DECL. Called from toplev.c after
12137 compilation proper has finished. */
12138
12139 static void
12140 dwarf2out_global_decl (decl)
12141 tree decl;
12142 {
12143 /* Output DWARF2 information for file-scope tentative data object
12144 declarations, file-scope (extern) function declarations (which had no
12145 corresponding body) and file-scope tagged type declarations and
12146 definitions which have not yet been forced out. */
12147 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
12148 dwarf2out_decl (decl);
12149 }
12150
12151 /* Write the debugging output for DECL. */
12152
12153 void
12154 dwarf2out_decl (decl)
12155 tree decl;
12156 {
12157 dw_die_ref context_die = comp_unit_die;
12158
12159 switch (TREE_CODE (decl))
12160 {
12161 case ERROR_MARK:
12162 return;
12163
12164 case FUNCTION_DECL:
12165 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of a
12166 builtin function. Explicit programmer-supplied declarations of
12167 these same functions should NOT be ignored however. */
12168 if (DECL_EXTERNAL (decl) && DECL_BUILT_IN (decl))
12169 return;
12170
12171 /* What we would really like to do here is to filter out all mere
12172 file-scope declarations of file-scope functions which are never
12173 referenced later within this translation unit (and keep all of ones
12174 that *are* referenced later on) but we aren't clairvoyant, so we have
12175 no idea which functions will be referenced in the future (i.e. later
12176 on within the current translation unit). So here we just ignore all
12177 file-scope function declarations which are not also definitions. If
12178 and when the debugger needs to know something about these functions,
12179 it will have to hunt around and find the DWARF information associated
12180 with the definition of the function.
12181
12182 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
12183 nodes represent definitions and which ones represent mere
12184 declarations. We have to check DECL_INITIAL instead. That's because
12185 the C front-end supports some weird semantics for "extern inline"
12186 function definitions. These can get inlined within the current
12187 translation unit (an thus, we need to generate Dwarf info for their
12188 abstract instances so that the Dwarf info for the concrete inlined
12189 instances can have something to refer to) but the compiler never
12190 generates any out-of-lines instances of such things (despite the fact
12191 that they *are* definitions).
12192
12193 The important point is that the C front-end marks these "extern
12194 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
12195 them anyway. Note that the C++ front-end also plays some similar games
12196 for inline function definitions appearing within include files which
12197 also contain `#pragma interface' pragmas. */
12198 if (DECL_INITIAL (decl) == NULL_TREE)
12199 return;
12200
12201 /* If we're a nested function, initially use a parent of NULL; if we're
12202 a plain function, this will be fixed up in decls_for_scope. If
12203 we're a method, it will be ignored, since we already have a DIE. */
12204 if (decl_function_context (decl))
12205 context_die = NULL;
12206 break;
12207
12208 case VAR_DECL:
12209 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
12210 declaration and if the declaration was never even referenced from
12211 within this entire compilation unit. We suppress these DIEs in
12212 order to save space in the .debug section (by eliminating entries
12213 which are probably useless). Note that we must not suppress
12214 block-local extern declarations (whether used or not) because that
12215 would screw-up the debugger's name lookup mechanism and cause it to
12216 miss things which really ought to be in scope at a given point. */
12217 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
12218 return;
12219
12220 /* If we are in terse mode, don't generate any DIEs to represent any
12221 variable declarations or definitions. */
12222 if (debug_info_level <= DINFO_LEVEL_TERSE)
12223 return;
12224 break;
12225
12226 case TYPE_DECL:
12227 /* Don't emit stubs for types unless they are needed by other DIEs. */
12228 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
12229 return;
12230
12231 /* Don't bother trying to generate any DIEs to represent any of the
12232 normal built-in types for the language we are compiling. */
12233 if (DECL_SOURCE_LINE (decl) == 0)
12234 {
12235 /* OK, we need to generate one for `bool' so GDB knows what type
12236 comparisons have. */
12237 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
12238 == DW_LANG_C_plus_plus)
12239 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
12240 && ! DECL_IGNORED_P (decl))
12241 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
12242
12243 return;
12244 }
12245
12246 /* If we are in terse mode, don't generate any DIEs for types. */
12247 if (debug_info_level <= DINFO_LEVEL_TERSE)
12248 return;
12249
12250 /* If we're a function-scope tag, initially use a parent of NULL;
12251 this will be fixed up in decls_for_scope. */
12252 if (decl_function_context (decl))
12253 context_die = NULL;
12254
12255 break;
12256
12257 default:
12258 return;
12259 }
12260
12261 gen_decl_die (decl, context_die);
12262 }
12263
12264 /* Output a marker (i.e. a label) for the beginning of the generated code for
12265 a lexical block. */
12266
12267 static void
12268 dwarf2out_begin_block (line, blocknum)
12269 unsigned int line ATTRIBUTE_UNUSED;
12270 unsigned int blocknum;
12271 {
12272 function_section (current_function_decl);
12273 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
12274 }
12275
12276 /* Output a marker (i.e. a label) for the end of the generated code for a
12277 lexical block. */
12278
12279 static void
12280 dwarf2out_end_block (line, blocknum)
12281 unsigned int line ATTRIBUTE_UNUSED;
12282 unsigned int blocknum;
12283 {
12284 function_section (current_function_decl);
12285 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
12286 }
12287
12288 /* Returns nonzero if it is appropriate not to emit any debugging
12289 information for BLOCK, because it doesn't contain any instructions.
12290
12291 Don't allow this for blocks with nested functions or local classes
12292 as we would end up with orphans, and in the presence of scheduling
12293 we may end up calling them anyway. */
12294
12295 static bool
12296 dwarf2out_ignore_block (block)
12297 tree block;
12298 {
12299 tree decl;
12300
12301 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
12302 if (TREE_CODE (decl) == FUNCTION_DECL
12303 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
12304 return 0;
12305
12306 return 1;
12307 }
12308
12309 /* Lookup FILE_NAME (in the list of filenames that we know about here in
12310 dwarf2out.c) and return its "index". The index of each (known) filename is
12311 just a unique number which is associated with only that one filename. We
12312 need such numbers for the sake of generating labels (in the .debug_sfnames
12313 section) and references to those files numbers (in the .debug_srcinfo
12314 and.debug_macinfo sections). If the filename given as an argument is not
12315 found in our current list, add it to the list and assign it the next
12316 available unique index number. In order to speed up searches, we remember
12317 the index of the filename was looked up last. This handles the majority of
12318 all searches. */
12319
12320 static unsigned
12321 lookup_filename (file_name)
12322 const char *file_name;
12323 {
12324 size_t i, n;
12325 char *save_file_name;
12326
12327 /* ??? Why isn't DECL_SOURCE_FILE left null instead. */
12328 if (strcmp (file_name, "<internal>") == 0
12329 || strcmp (file_name, "<built-in>") == 0)
12330 return 0;
12331
12332 /* Check to see if the file name that was searched on the previous
12333 call matches this file name. If so, return the index. */
12334 if (file_table_last_lookup_index != 0)
12335 {
12336 const char *last
12337 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
12338 if (strcmp (file_name, last) == 0)
12339 return file_table_last_lookup_index;
12340 }
12341
12342 /* Didn't match the previous lookup, search the table */
12343 n = VARRAY_ACTIVE_SIZE (file_table);
12344 for (i = 1; i < n; i++)
12345 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
12346 {
12347 file_table_last_lookup_index = i;
12348 return i;
12349 }
12350
12351 /* Add the new entry to the end of the filename table. */
12352 file_table_last_lookup_index = n;
12353 save_file_name = (char *) ggc_strdup (file_name);
12354 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
12355
12356 if (DWARF2_ASM_LINE_DEBUG_INFO)
12357 {
12358 fprintf (asm_out_file, "\t.file %lu ", (unsigned long) i);
12359 output_quoted_string (asm_out_file, file_name);
12360 fputc ('\n', asm_out_file);
12361 }
12362
12363 return i;
12364 }
12365
12366 static void
12367 init_file_table ()
12368 {
12369 /* Allocate the initial hunk of the file_table. */
12370 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
12371
12372 /* Skip the first entry - file numbers begin at 1. */
12373 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
12374 file_table_last_lookup_index = 0;
12375 }
12376
12377 /* Output a label to mark the beginning of a source code line entry
12378 and record information relating to this source line, in
12379 'line_info_table' for later output of the .debug_line section. */
12380
12381 static void
12382 dwarf2out_source_line (line, filename)
12383 unsigned int line;
12384 const char *filename;
12385 {
12386 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12387 {
12388 function_section (current_function_decl);
12389
12390 /* If requested, emit something human-readable. */
12391 if (flag_debug_asm)
12392 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
12393 filename, line);
12394
12395 if (DWARF2_ASM_LINE_DEBUG_INFO)
12396 {
12397 unsigned file_num = lookup_filename (filename);
12398
12399 /* Emit the .loc directive understood by GNU as. */
12400 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
12401
12402 /* Indicate that line number info exists. */
12403 line_info_table_in_use++;
12404
12405 /* Indicate that multiple line number tables exist. */
12406 if (DECL_SECTION_NAME (current_function_decl))
12407 separate_line_info_table_in_use++;
12408 }
12409 else if (DECL_SECTION_NAME (current_function_decl))
12410 {
12411 dw_separate_line_info_ref line_info;
12412 (*targetm.asm_out.internal_label) (asm_out_file, SEPARATE_LINE_CODE_LABEL,
12413 separate_line_info_table_in_use);
12414
12415 /* expand the line info table if necessary */
12416 if (separate_line_info_table_in_use
12417 == separate_line_info_table_allocated)
12418 {
12419 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12420 separate_line_info_table
12421 = (dw_separate_line_info_ref)
12422 ggc_realloc (separate_line_info_table,
12423 separate_line_info_table_allocated
12424 * sizeof (dw_separate_line_info_entry));
12425 memset ((separate_line_info_table
12426 + separate_line_info_table_in_use),
12427 0,
12428 (LINE_INFO_TABLE_INCREMENT
12429 * sizeof (dw_separate_line_info_entry)));
12430 }
12431
12432 /* Add the new entry at the end of the line_info_table. */
12433 line_info
12434 = &separate_line_info_table[separate_line_info_table_in_use++];
12435 line_info->dw_file_num = lookup_filename (filename);
12436 line_info->dw_line_num = line;
12437 line_info->function = current_function_funcdef_no;
12438 }
12439 else
12440 {
12441 dw_line_info_ref line_info;
12442
12443 (*targetm.asm_out.internal_label) (asm_out_file, LINE_CODE_LABEL,
12444 line_info_table_in_use);
12445
12446 /* Expand the line info table if necessary. */
12447 if (line_info_table_in_use == line_info_table_allocated)
12448 {
12449 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12450 line_info_table
12451 = ggc_realloc (line_info_table,
12452 (line_info_table_allocated
12453 * sizeof (dw_line_info_entry)));
12454 memset (line_info_table + line_info_table_in_use, 0,
12455 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
12456 }
12457
12458 /* Add the new entry at the end of the line_info_table. */
12459 line_info = &line_info_table[line_info_table_in_use++];
12460 line_info->dw_file_num = lookup_filename (filename);
12461 line_info->dw_line_num = line;
12462 }
12463 }
12464 }
12465
12466 /* Record the beginning of a new source file. */
12467
12468 static void
12469 dwarf2out_start_source_file (lineno, filename)
12470 unsigned int lineno;
12471 const char *filename;
12472 {
12473 if (flag_eliminate_dwarf2_dups && !is_main_source)
12474 {
12475 /* Record the beginning of the file for break_out_includes. */
12476 dw_die_ref bincl_die;
12477
12478 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
12479 add_AT_string (bincl_die, DW_AT_name, filename);
12480 }
12481
12482 is_main_source = 0;
12483
12484 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12485 {
12486 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12487 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
12488 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
12489 lineno);
12490 dw2_asm_output_data_uleb128 (lookup_filename (filename),
12491 "Filename we just started");
12492 }
12493 }
12494
12495 /* Record the end of a source file. */
12496
12497 static void
12498 dwarf2out_end_source_file (lineno)
12499 unsigned int lineno ATTRIBUTE_UNUSED;
12500 {
12501 if (flag_eliminate_dwarf2_dups)
12502 /* Record the end of the file for break_out_includes. */
12503 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
12504
12505 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12506 {
12507 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12508 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
12509 }
12510 }
12511
12512 /* Called from debug_define in toplev.c. The `buffer' parameter contains
12513 the tail part of the directive line, i.e. the part which is past the
12514 initial whitespace, #, whitespace, directive-name, whitespace part. */
12515
12516 static void
12517 dwarf2out_define (lineno, buffer)
12518 unsigned lineno ATTRIBUTE_UNUSED;
12519 const char *buffer ATTRIBUTE_UNUSED;
12520 {
12521 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12522 {
12523 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12524 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
12525 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12526 dw2_asm_output_nstring (buffer, -1, "The macro");
12527 }
12528 }
12529
12530 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
12531 the tail part of the directive line, i.e. the part which is past the
12532 initial whitespace, #, whitespace, directive-name, whitespace part. */
12533
12534 static void
12535 dwarf2out_undef (lineno, buffer)
12536 unsigned lineno ATTRIBUTE_UNUSED;
12537 const char *buffer ATTRIBUTE_UNUSED;
12538 {
12539 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12540 {
12541 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12542 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
12543 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12544 dw2_asm_output_nstring (buffer, -1, "The macro");
12545 }
12546 }
12547
12548 /* Set up for Dwarf output at the start of compilation. */
12549
12550 static void
12551 dwarf2out_init (input_filename)
12552 const char *input_filename ATTRIBUTE_UNUSED;
12553 {
12554 init_file_table ();
12555
12556 /* Allocate the initial hunk of the decl_die_table. */
12557 decl_die_table = ggc_alloc_cleared (DECL_DIE_TABLE_INCREMENT
12558 * sizeof (dw_die_ref));
12559 decl_die_table_allocated = DECL_DIE_TABLE_INCREMENT;
12560 decl_die_table_in_use = 0;
12561
12562 /* Allocate the initial hunk of the decl_scope_table. */
12563 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
12564
12565 /* Allocate the initial hunk of the abbrev_die_table. */
12566 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
12567 * sizeof (dw_die_ref));
12568 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
12569 /* Zero-th entry is allocated, but unused */
12570 abbrev_die_table_in_use = 1;
12571
12572 /* Allocate the initial hunk of the line_info_table. */
12573 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
12574 * sizeof (dw_line_info_entry));
12575 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
12576
12577 /* Zero-th entry is allocated, but unused */
12578 line_info_table_in_use = 1;
12579
12580 /* Generate the initial DIE for the .debug section. Note that the (string)
12581 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
12582 will (typically) be a relative pathname and that this pathname should be
12583 taken as being relative to the directory from which the compiler was
12584 invoked when the given (base) source file was compiled. We will fill
12585 in this value in dwarf2out_finish. */
12586 comp_unit_die = gen_compile_unit_die (NULL);
12587 is_main_source = 1;
12588
12589 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
12590
12591 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
12592
12593 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
12594 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
12595 DEBUG_ABBREV_SECTION_LABEL, 0);
12596 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12597 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
12598 else
12599 strcpy (text_section_label, stripattributes (TEXT_SECTION_NAME));
12600
12601 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
12602 DEBUG_INFO_SECTION_LABEL, 0);
12603 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
12604 DEBUG_LINE_SECTION_LABEL, 0);
12605 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
12606 DEBUG_RANGES_SECTION_LABEL, 0);
12607 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
12608 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
12609 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
12610 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
12611 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
12612 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
12613
12614 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12615 {
12616 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12617 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
12618 DEBUG_MACINFO_SECTION_LABEL, 0);
12619 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
12620 }
12621
12622 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12623 {
12624 text_section ();
12625 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
12626 }
12627 }
12628
12629 /* A helper function for dwarf2out_finish called through
12630 ht_forall. Emit one queued .debug_str string. */
12631
12632 static int
12633 output_indirect_string (h, v)
12634 void **h;
12635 void *v ATTRIBUTE_UNUSED;
12636 {
12637 struct indirect_string_node *node = (struct indirect_string_node *) *h;
12638
12639 if (node->form == DW_FORM_strp)
12640 {
12641 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
12642 ASM_OUTPUT_LABEL (asm_out_file, node->label);
12643 assemble_string (node->str, strlen (node->str) + 1);
12644 }
12645
12646 return 1;
12647 }
12648
12649 /* Output stuff that dwarf requires at the end of every file,
12650 and generate the DWARF-2 debugging info. */
12651
12652 static void
12653 dwarf2out_finish (input_filename)
12654 const char *input_filename;
12655 {
12656 limbo_die_node *node, *next_node;
12657 dw_die_ref die = 0;
12658
12659 /* Add the name for the main input file now. We delayed this from
12660 dwarf2out_init to avoid complications with PCH. */
12661 add_name_attribute (comp_unit_die, input_filename);
12662 if (input_filename[0] != DIR_SEPARATOR)
12663 add_comp_dir_attribute (comp_unit_die);
12664 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
12665 {
12666 size_t i;
12667 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
12668 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR)
12669 {
12670 add_comp_dir_attribute (comp_unit_die);
12671 break;
12672 }
12673 }
12674
12675 /* Traverse the limbo die list, and add parent/child links. The only
12676 dies without parents that should be here are concrete instances of
12677 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
12678 For concrete instances, we can get the parent die from the abstract
12679 instance. */
12680 for (node = limbo_die_list; node; node = next_node)
12681 {
12682 next_node = node->next;
12683 die = node->die;
12684
12685 if (die->die_parent == NULL)
12686 {
12687 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
12688 tree context;
12689
12690 if (origin)
12691 add_child_die (origin->die_parent, die);
12692 else if (die == comp_unit_die)
12693 ;
12694 /* If this was an expression for a bound involved in a function
12695 return type, it may be a SAVE_EXPR for which we weren't able
12696 to find a DIE previously. So try now. */
12697 else if (node->created_for
12698 && TREE_CODE (node->created_for) == SAVE_EXPR
12699 && 0 != (origin = (lookup_decl_die
12700 (SAVE_EXPR_CONTEXT
12701 (node->created_for)))))
12702 add_child_die (origin, die);
12703 else if (errorcount > 0 || sorrycount > 0)
12704 /* It's OK to be confused by errors in the input. */
12705 add_child_die (comp_unit_die, die);
12706 else if (node->created_for
12707 && ((DECL_P (node->created_for)
12708 && (context = DECL_CONTEXT (node->created_for)))
12709 || (TYPE_P (node->created_for)
12710 && (context = TYPE_CONTEXT (node->created_for))))
12711 && TREE_CODE (context) == FUNCTION_DECL)
12712 {
12713 /* In certain situations, the lexical block containing a
12714 nested function can be optimized away, which results
12715 in the nested function die being orphaned. Likewise
12716 with the return type of that nested function. Force
12717 this to be a child of the containing function. */
12718 origin = lookup_decl_die (context);
12719 if (! origin)
12720 abort ();
12721 add_child_die (origin, die);
12722 }
12723 else
12724 abort ();
12725 }
12726 }
12727
12728 limbo_die_list = NULL;
12729
12730 /* Walk through the list of incomplete types again, trying once more to
12731 emit full debugging info for them. */
12732 retry_incomplete_types ();
12733
12734 /* We need to reverse all the dies before break_out_includes, or
12735 we'll see the end of an include file before the beginning. */
12736 reverse_all_dies (comp_unit_die);
12737
12738 /* Generate separate CUs for each of the include files we've seen.
12739 They will go into limbo_die_list. */
12740 if (flag_eliminate_dwarf2_dups)
12741 break_out_includes (comp_unit_die);
12742
12743 /* Traverse the DIE's and add add sibling attributes to those DIE's
12744 that have children. */
12745 add_sibling_attributes (comp_unit_die);
12746 for (node = limbo_die_list; node; node = node->next)
12747 add_sibling_attributes (node->die);
12748
12749 /* Output a terminator label for the .text section. */
12750 text_section ();
12751 (*targetm.asm_out.internal_label) (asm_out_file, TEXT_END_LABEL, 0);
12752
12753 /* Output the source line correspondence table. We must do this
12754 even if there is no line information. Otherwise, on an empty
12755 translation unit, we will generate a present, but empty,
12756 .debug_info section. IRIX 6.5 `nm' will then complain when
12757 examining the file. */
12758 if (! DWARF2_ASM_LINE_DEBUG_INFO)
12759 {
12760 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
12761 output_line_info ();
12762 }
12763
12764 /* Output location list section if necessary. */
12765 if (have_location_lists)
12766 {
12767 /* Output the location lists info. */
12768 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
12769 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
12770 DEBUG_LOC_SECTION_LABEL, 0);
12771 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
12772 output_location_lists (die);
12773 have_location_lists = 0;
12774 }
12775
12776 /* We can only use the low/high_pc attributes if all of the code was
12777 in .text. */
12778 if (separate_line_info_table_in_use == 0)
12779 {
12780 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
12781 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
12782 }
12783
12784 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
12785 "base address". Use zero so that these addresses become absolute. */
12786 else if (have_location_lists || ranges_table_in_use)
12787 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
12788
12789 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12790 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
12791 debug_line_section_label);
12792
12793 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12794 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
12795
12796 /* Output all of the compilation units. We put the main one last so that
12797 the offsets are available to output_pubnames. */
12798 for (node = limbo_die_list; node; node = node->next)
12799 output_comp_unit (node->die, 0);
12800
12801 output_comp_unit (comp_unit_die, 0);
12802
12803 /* Output the abbreviation table. */
12804 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
12805 output_abbrev_section ();
12806
12807 /* Output public names table if necessary. */
12808 if (pubname_table_in_use)
12809 {
12810 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
12811 output_pubnames ();
12812 }
12813
12814 /* Output the address range information. We only put functions in the arange
12815 table, so don't write it out if we don't have any. */
12816 if (fde_table_in_use)
12817 {
12818 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
12819 output_aranges ();
12820 }
12821
12822 /* Output ranges section if necessary. */
12823 if (ranges_table_in_use)
12824 {
12825 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
12826 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
12827 output_ranges ();
12828 }
12829
12830 /* Have to end the primary source file. */
12831 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12832 {
12833 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12834 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
12835 dw2_asm_output_data (1, 0, "End compilation unit");
12836 }
12837
12838 /* If we emitted any DW_FORM_strp form attribute, output the string
12839 table too. */
12840 if (debug_str_hash)
12841 htab_traverse (debug_str_hash, output_indirect_string, NULL);
12842 }
12843 #else
12844
12845 /* This should never be used, but its address is needed for comparisons. */
12846 const struct gcc_debug_hooks dwarf2_debug_hooks;
12847
12848 #endif /* DWARF2_DEBUGGING_INFO */
12849
12850 #include "gt-dwarf2out.h"
This page took 0.628312 seconds and 5 git commands to generate.