]> gcc.gnu.org Git - gcc.git/blob - gcc/dse.cc
Rename .c files to .cc files.
[gcc.git] / gcc / dse.cc
1 /* RTL dead store elimination.
2 Copyright (C) 2005-2022 Free Software Foundation, Inc.
3
4 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5 and Kenneth Zadeck <zadeck@naturalbridge.com>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #undef BASELINE
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "backend.h"
29 #include "target.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "gimple.h"
33 #include "predict.h"
34 #include "df.h"
35 #include "memmodel.h"
36 #include "tm_p.h"
37 #include "gimple-ssa.h"
38 #include "expmed.h"
39 #include "optabs.h"
40 #include "emit-rtl.h"
41 #include "recog.h"
42 #include "alias.h"
43 #include "stor-layout.h"
44 #include "cfgrtl.h"
45 #include "cselib.h"
46 #include "tree-pass.h"
47 #include "explow.h"
48 #include "expr.h"
49 #include "dbgcnt.h"
50 #include "rtl-iter.h"
51 #include "cfgcleanup.h"
52 #include "calls.h"
53
54 /* This file contains three techniques for performing Dead Store
55 Elimination (dse).
56
57 * The first technique performs dse locally on any base address. It
58 is based on the cselib which is a local value numbering technique.
59 This technique is local to a basic block but deals with a fairly
60 general addresses.
61
62 * The second technique performs dse globally but is restricted to
63 base addresses that are either constant or are relative to the
64 frame_pointer.
65
66 * The third technique, (which is only done after register allocation)
67 processes the spill slots. This differs from the second
68 technique because it takes advantage of the fact that spilling is
69 completely free from the effects of aliasing.
70
71 Logically, dse is a backwards dataflow problem. A store can be
72 deleted if it if cannot be reached in the backward direction by any
73 use of the value being stored. However, the local technique uses a
74 forwards scan of the basic block because cselib requires that the
75 block be processed in that order.
76
77 The pass is logically broken into 7 steps:
78
79 0) Initialization.
80
81 1) The local algorithm, as well as scanning the insns for the two
82 global algorithms.
83
84 2) Analysis to see if the global algs are necessary. In the case
85 of stores base on a constant address, there must be at least two
86 stores to that address, to make it possible to delete some of the
87 stores. In the case of stores off of the frame or spill related
88 stores, only one store to an address is necessary because those
89 stores die at the end of the function.
90
91 3) Set up the global dataflow equations based on processing the
92 info parsed in the first step.
93
94 4) Solve the dataflow equations.
95
96 5) Delete the insns that the global analysis has indicated are
97 unnecessary.
98
99 6) Delete insns that store the same value as preceding store
100 where the earlier store couldn't be eliminated.
101
102 7) Cleanup.
103
104 This step uses cselib and canon_rtx to build the largest expression
105 possible for each address. This pass is a forwards pass through
106 each basic block. From the point of view of the global technique,
107 the first pass could examine a block in either direction. The
108 forwards ordering is to accommodate cselib.
109
110 We make a simplifying assumption: addresses fall into four broad
111 categories:
112
113 1) base has rtx_varies_p == false, offset is constant.
114 2) base has rtx_varies_p == false, offset variable.
115 3) base has rtx_varies_p == true, offset constant.
116 4) base has rtx_varies_p == true, offset variable.
117
118 The local passes are able to process all 4 kinds of addresses. The
119 global pass only handles 1).
120
121 The global problem is formulated as follows:
122
123 A store, S1, to address A, where A is not relative to the stack
124 frame, can be eliminated if all paths from S1 to the end of the
125 function contain another store to A before a read to A.
126
127 If the address A is relative to the stack frame, a store S2 to A
128 can be eliminated if there are no paths from S2 that reach the
129 end of the function that read A before another store to A. In
130 this case S2 can be deleted if there are paths from S2 to the
131 end of the function that have no reads or writes to A. This
132 second case allows stores to the stack frame to be deleted that
133 would otherwise die when the function returns. This cannot be
134 done if stores_off_frame_dead_at_return is not true. See the doc
135 for that variable for when this variable is false.
136
137 The global problem is formulated as a backwards set union
138 dataflow problem where the stores are the gens and reads are the
139 kills. Set union problems are rare and require some special
140 handling given our representation of bitmaps. A straightforward
141 implementation requires a lot of bitmaps filled with 1s.
142 These are expensive and cumbersome in our bitmap formulation so
143 care has been taken to avoid large vectors filled with 1s. See
144 the comments in bb_info and in the dataflow confluence functions
145 for details.
146
147 There are two places for further enhancements to this algorithm:
148
149 1) The original dse which was embedded in a pass called flow also
150 did local address forwarding. For example in
151
152 A <- r100
153 ... <- A
154
155 flow would replace the right hand side of the second insn with a
156 reference to r100. Most of the information is available to add this
157 to this pass. It has not done it because it is a lot of work in
158 the case that either r100 is assigned to between the first and
159 second insn and/or the second insn is a load of part of the value
160 stored by the first insn.
161
162 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
163 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
164 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
165 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
166
167 2) The cleaning up of spill code is quite profitable. It currently
168 depends on reading tea leaves and chicken entrails left by reload.
169 This pass depends on reload creating a singleton alias set for each
170 spill slot and telling the next dse pass which of these alias sets
171 are the singletons. Rather than analyze the addresses of the
172 spills, dse's spill processing just does analysis of the loads and
173 stores that use those alias sets. There are three cases where this
174 falls short:
175
176 a) Reload sometimes creates the slot for one mode of access, and
177 then inserts loads and/or stores for a smaller mode. In this
178 case, the current code just punts on the slot. The proper thing
179 to do is to back out and use one bit vector position for each
180 byte of the entity associated with the slot. This depends on
181 KNOWING that reload always generates the accesses for each of the
182 bytes in some canonical (read that easy to understand several
183 passes after reload happens) way.
184
185 b) Reload sometimes decides that spill slot it allocated was not
186 large enough for the mode and goes back and allocates more slots
187 with the same mode and alias set. The backout in this case is a
188 little more graceful than (a). In this case the slot is unmarked
189 as being a spill slot and if final address comes out to be based
190 off the frame pointer, the global algorithm handles this slot.
191
192 c) For any pass that may prespill, there is currently no
193 mechanism to tell the dse pass that the slot being used has the
194 special properties that reload uses. It may be that all that is
195 required is to have those passes make the same calls that reload
196 does, assuming that the alias sets can be manipulated in the same
197 way. */
198
199 /* There are limits to the size of constant offsets we model for the
200 global problem. There are certainly test cases, that exceed this
201 limit, however, it is unlikely that there are important programs
202 that really have constant offsets this size. */
203 #define MAX_OFFSET (64 * 1024)
204
205 /* Obstack for the DSE dataflow bitmaps. We don't want to put these
206 on the default obstack because these bitmaps can grow quite large
207 (~2GB for the small (!) test case of PR54146) and we'll hold on to
208 all that memory until the end of the compiler run.
209 As a bonus, delete_tree_live_info can destroy all the bitmaps by just
210 releasing the whole obstack. */
211 static bitmap_obstack dse_bitmap_obstack;
212
213 /* Obstack for other data. As for above: Kinda nice to be able to
214 throw it all away at the end in one big sweep. */
215 static struct obstack dse_obstack;
216
217 /* Scratch bitmap for cselib's cselib_expand_value_rtx. */
218 static bitmap scratch = NULL;
219
220 struct insn_info_type;
221
222 /* This structure holds information about a candidate store. */
223 class store_info
224 {
225 public:
226
227 /* False means this is a clobber. */
228 bool is_set;
229
230 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
231 bool is_large;
232
233 /* The id of the mem group of the base address. If rtx_varies_p is
234 true, this is -1. Otherwise, it is the index into the group
235 table. */
236 int group_id;
237
238 /* This is the cselib value. */
239 cselib_val *cse_base;
240
241 /* This canonized mem. */
242 rtx mem;
243
244 /* Canonized MEM address for use by canon_true_dependence. */
245 rtx mem_addr;
246
247 /* The offset of the first byte associated with the operation. */
248 poly_int64 offset;
249
250 /* The number of bytes covered by the operation. This is always exact
251 and known (rather than -1). */
252 poly_int64 width;
253
254 union
255 {
256 /* A bitmask as wide as the number of bytes in the word that
257 contains a 1 if the byte may be needed. The store is unused if
258 all of the bits are 0. This is used if IS_LARGE is false. */
259 unsigned HOST_WIDE_INT small_bitmask;
260
261 struct
262 {
263 /* A bitmap with one bit per byte, or null if the number of
264 bytes isn't known at compile time. A cleared bit means
265 the position is needed. Used if IS_LARGE is true. */
266 bitmap bmap;
267
268 /* When BITMAP is nonnull, this counts the number of set bits
269 (i.e. unneeded bytes) in the bitmap. If it is equal to
270 WIDTH, the whole store is unused.
271
272 When BITMAP is null:
273 - the store is definitely not needed when COUNT == 1
274 - all the store is needed when COUNT == 0 and RHS is nonnull
275 - otherwise we don't know which parts of the store are needed. */
276 int count;
277 } large;
278 } positions_needed;
279
280 /* The next store info for this insn. */
281 class store_info *next;
282
283 /* The right hand side of the store. This is used if there is a
284 subsequent reload of the mems address somewhere later in the
285 basic block. */
286 rtx rhs;
287
288 /* If rhs is or holds a constant, this contains that constant,
289 otherwise NULL. */
290 rtx const_rhs;
291
292 /* Set if this store stores the same constant value as REDUNDANT_REASON
293 insn stored. These aren't eliminated early, because doing that
294 might prevent the earlier larger store to be eliminated. */
295 struct insn_info_type *redundant_reason;
296 };
297
298 /* Return a bitmask with the first N low bits set. */
299
300 static unsigned HOST_WIDE_INT
301 lowpart_bitmask (int n)
302 {
303 unsigned HOST_WIDE_INT mask = HOST_WIDE_INT_M1U;
304 return mask >> (HOST_BITS_PER_WIDE_INT - n);
305 }
306
307 static object_allocator<store_info> cse_store_info_pool ("cse_store_info_pool");
308
309 static object_allocator<store_info> rtx_store_info_pool ("rtx_store_info_pool");
310
311 /* This structure holds information about a load. These are only
312 built for rtx bases. */
313 class read_info_type
314 {
315 public:
316 /* The id of the mem group of the base address. */
317 int group_id;
318
319 /* The offset of the first byte associated with the operation. */
320 poly_int64 offset;
321
322 /* The number of bytes covered by the operation, or -1 if not known. */
323 poly_int64 width;
324
325 /* The mem being read. */
326 rtx mem;
327
328 /* The next read_info for this insn. */
329 class read_info_type *next;
330 };
331 typedef class read_info_type *read_info_t;
332
333 static object_allocator<read_info_type> read_info_type_pool ("read_info_pool");
334
335 /* One of these records is created for each insn. */
336
337 struct insn_info_type
338 {
339 /* Set true if the insn contains a store but the insn itself cannot
340 be deleted. This is set if the insn is a parallel and there is
341 more than one non dead output or if the insn is in some way
342 volatile. */
343 bool cannot_delete;
344
345 /* This field is only used by the global algorithm. It is set true
346 if the insn contains any read of mem except for a (1). This is
347 also set if the insn is a call or has a clobber mem. If the insn
348 contains a wild read, the use_rec will be null. */
349 bool wild_read;
350
351 /* This is true only for CALL instructions which could potentially read
352 any non-frame memory location. This field is used by the global
353 algorithm. */
354 bool non_frame_wild_read;
355
356 /* This field is only used for the processing of const functions.
357 These functions cannot read memory, but they can read the stack
358 because that is where they may get their parms. We need to be
359 this conservative because, like the store motion pass, we don't
360 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
361 Moreover, we need to distinguish two cases:
362 1. Before reload (register elimination), the stores related to
363 outgoing arguments are stack pointer based and thus deemed
364 of non-constant base in this pass. This requires special
365 handling but also means that the frame pointer based stores
366 need not be killed upon encountering a const function call.
367 2. After reload, the stores related to outgoing arguments can be
368 either stack pointer or hard frame pointer based. This means
369 that we have no other choice than also killing all the frame
370 pointer based stores upon encountering a const function call.
371 This field is set after reload for const function calls and before
372 reload for const tail function calls on targets where arg pointer
373 is the frame pointer. Having this set is less severe than a wild
374 read, it just means that all the frame related stores are killed
375 rather than all the stores. */
376 bool frame_read;
377
378 /* This field is only used for the processing of const functions.
379 It is set if the insn may contain a stack pointer based store. */
380 bool stack_pointer_based;
381
382 /* This is true if any of the sets within the store contains a
383 cselib base. Such stores can only be deleted by the local
384 algorithm. */
385 bool contains_cselib_groups;
386
387 /* The insn. */
388 rtx_insn *insn;
389
390 /* The list of mem sets or mem clobbers that are contained in this
391 insn. If the insn is deletable, it contains only one mem set.
392 But it could also contain clobbers. Insns that contain more than
393 one mem set are not deletable, but each of those mems are here in
394 order to provide info to delete other insns. */
395 store_info *store_rec;
396
397 /* The linked list of mem uses in this insn. Only the reads from
398 rtx bases are listed here. The reads to cselib bases are
399 completely processed during the first scan and so are never
400 created. */
401 read_info_t read_rec;
402
403 /* The live fixed registers. We assume only fixed registers can
404 cause trouble by being clobbered from an expanded pattern;
405 storing only the live fixed registers (rather than all registers)
406 means less memory needs to be allocated / copied for the individual
407 stores. */
408 regset fixed_regs_live;
409
410 /* The prev insn in the basic block. */
411 struct insn_info_type * prev_insn;
412
413 /* The linked list of insns that are in consideration for removal in
414 the forwards pass through the basic block. This pointer may be
415 trash as it is not cleared when a wild read occurs. The only
416 time it is guaranteed to be correct is when the traversal starts
417 at active_local_stores. */
418 struct insn_info_type * next_local_store;
419 };
420 typedef struct insn_info_type *insn_info_t;
421
422 static object_allocator<insn_info_type> insn_info_type_pool ("insn_info_pool");
423
424 /* The linked list of stores that are under consideration in this
425 basic block. */
426 static insn_info_t active_local_stores;
427 static int active_local_stores_len;
428
429 struct dse_bb_info_type
430 {
431 /* Pointer to the insn info for the last insn in the block. These
432 are linked so this is how all of the insns are reached. During
433 scanning this is the current insn being scanned. */
434 insn_info_t last_insn;
435
436 /* The info for the global dataflow problem. */
437
438
439 /* This is set if the transfer function should and in the wild_read
440 bitmap before applying the kill and gen sets. That vector knocks
441 out most of the bits in the bitmap and thus speeds up the
442 operations. */
443 bool apply_wild_read;
444
445 /* The following 4 bitvectors hold information about which positions
446 of which stores are live or dead. They are indexed by
447 get_bitmap_index. */
448
449 /* The set of store positions that exist in this block before a wild read. */
450 bitmap gen;
451
452 /* The set of load positions that exist in this block above the
453 same position of a store. */
454 bitmap kill;
455
456 /* The set of stores that reach the top of the block without being
457 killed by a read.
458
459 Do not represent the in if it is all ones. Note that this is
460 what the bitvector should logically be initialized to for a set
461 intersection problem. However, like the kill set, this is too
462 expensive. So initially, the in set will only be created for the
463 exit block and any block that contains a wild read. */
464 bitmap in;
465
466 /* The set of stores that reach the bottom of the block from it's
467 successors.
468
469 Do not represent the in if it is all ones. Note that this is
470 what the bitvector should logically be initialized to for a set
471 intersection problem. However, like the kill and in set, this is
472 too expensive. So what is done is that the confluence operator
473 just initializes the vector from one of the out sets of the
474 successors of the block. */
475 bitmap out;
476
477 /* The following bitvector is indexed by the reg number. It
478 contains the set of regs that are live at the current instruction
479 being processed. While it contains info for all of the
480 registers, only the hard registers are actually examined. It is used
481 to assure that shift and/or add sequences that are inserted do not
482 accidentally clobber live hard regs. */
483 bitmap regs_live;
484 };
485
486 typedef struct dse_bb_info_type *bb_info_t;
487
488 static object_allocator<dse_bb_info_type> dse_bb_info_type_pool
489 ("bb_info_pool");
490
491 /* Table to hold all bb_infos. */
492 static bb_info_t *bb_table;
493
494 /* There is a group_info for each rtx base that is used to reference
495 memory. There are also not many of the rtx bases because they are
496 very limited in scope. */
497
498 struct group_info
499 {
500 /* The actual base of the address. */
501 rtx rtx_base;
502
503 /* The sequential id of the base. This allows us to have a
504 canonical ordering of these that is not based on addresses. */
505 int id;
506
507 /* True if there are any positions that are to be processed
508 globally. */
509 bool process_globally;
510
511 /* True if the base of this group is either the frame_pointer or
512 hard_frame_pointer. */
513 bool frame_related;
514
515 /* A mem wrapped around the base pointer for the group in order to do
516 read dependency. It must be given BLKmode in order to encompass all
517 the possible offsets from the base. */
518 rtx base_mem;
519
520 /* Canonized version of base_mem's address. */
521 rtx canon_base_addr;
522
523 /* These two sets of two bitmaps are used to keep track of how many
524 stores are actually referencing that position from this base. We
525 only do this for rtx bases as this will be used to assign
526 positions in the bitmaps for the global problem. Bit N is set in
527 store1 on the first store for offset N. Bit N is set in store2
528 for the second store to offset N. This is all we need since we
529 only care about offsets that have two or more stores for them.
530
531 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
532 for 0 and greater offsets.
533
534 There is one special case here, for stores into the stack frame,
535 we will or store1 into store2 before deciding which stores look
536 at globally. This is because stores to the stack frame that have
537 no other reads before the end of the function can also be
538 deleted. */
539 bitmap store1_n, store1_p, store2_n, store2_p;
540
541 /* These bitmaps keep track of offsets in this group escape this function.
542 An offset escapes if it corresponds to a named variable whose
543 addressable flag is set. */
544 bitmap escaped_n, escaped_p;
545
546 /* The positions in this bitmap have the same assignments as the in,
547 out, gen and kill bitmaps. This bitmap is all zeros except for
548 the positions that are occupied by stores for this group. */
549 bitmap group_kill;
550
551 /* The offset_map is used to map the offsets from this base into
552 positions in the global bitmaps. It is only created after all of
553 the all of stores have been scanned and we know which ones we
554 care about. */
555 int *offset_map_n, *offset_map_p;
556 int offset_map_size_n, offset_map_size_p;
557 };
558
559 static object_allocator<group_info> group_info_pool ("rtx_group_info_pool");
560
561 /* Index into the rtx_group_vec. */
562 static int rtx_group_next_id;
563
564
565 static vec<group_info *> rtx_group_vec;
566
567
568 /* This structure holds the set of changes that are being deferred
569 when removing read operation. See replace_read. */
570 struct deferred_change
571 {
572
573 /* The mem that is being replaced. */
574 rtx *loc;
575
576 /* The reg it is being replaced with. */
577 rtx reg;
578
579 struct deferred_change *next;
580 };
581
582 static object_allocator<deferred_change> deferred_change_pool
583 ("deferred_change_pool");
584
585 static deferred_change *deferred_change_list = NULL;
586
587 /* This is true except if cfun->stdarg -- i.e. we cannot do
588 this for vararg functions because they play games with the frame. */
589 static bool stores_off_frame_dead_at_return;
590
591 /* Counter for stats. */
592 static int globally_deleted;
593 static int locally_deleted;
594
595 static bitmap all_blocks;
596
597 /* Locations that are killed by calls in the global phase. */
598 static bitmap kill_on_calls;
599
600 /* The number of bits used in the global bitmaps. */
601 static unsigned int current_position;
602
603 /* Print offset range [OFFSET, OFFSET + WIDTH) to FILE. */
604
605 static void
606 print_range (FILE *file, poly_int64 offset, poly_int64 width)
607 {
608 fprintf (file, "[");
609 print_dec (offset, file, SIGNED);
610 fprintf (file, "..");
611 print_dec (offset + width, file, SIGNED);
612 fprintf (file, ")");
613 }
614 \f
615 /*----------------------------------------------------------------------------
616 Zeroth step.
617
618 Initialization.
619 ----------------------------------------------------------------------------*/
620
621
622 /* Hashtable callbacks for maintaining the "bases" field of
623 store_group_info, given that the addresses are function invariants. */
624
625 struct invariant_group_base_hasher : nofree_ptr_hash <group_info>
626 {
627 static inline hashval_t hash (const group_info *);
628 static inline bool equal (const group_info *, const group_info *);
629 };
630
631 inline bool
632 invariant_group_base_hasher::equal (const group_info *gi1,
633 const group_info *gi2)
634 {
635 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
636 }
637
638 inline hashval_t
639 invariant_group_base_hasher::hash (const group_info *gi)
640 {
641 int do_not_record;
642 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
643 }
644
645 /* Tables of group_info structures, hashed by base value. */
646 static hash_table<invariant_group_base_hasher> *rtx_group_table;
647
648
649 /* Get the GROUP for BASE. Add a new group if it is not there. */
650
651 static group_info *
652 get_group_info (rtx base)
653 {
654 struct group_info tmp_gi;
655 group_info *gi;
656 group_info **slot;
657
658 gcc_assert (base != NULL_RTX);
659
660 /* Find the store_base_info structure for BASE, creating a new one
661 if necessary. */
662 tmp_gi.rtx_base = base;
663 slot = rtx_group_table->find_slot (&tmp_gi, INSERT);
664 gi = *slot;
665
666 if (gi == NULL)
667 {
668 *slot = gi = group_info_pool.allocate ();
669 gi->rtx_base = base;
670 gi->id = rtx_group_next_id++;
671 gi->base_mem = gen_rtx_MEM (BLKmode, base);
672 gi->canon_base_addr = canon_rtx (base);
673 gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
674 gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
675 gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
676 gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
677 gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
678 gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
679 gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
680 gi->process_globally = false;
681 gi->frame_related =
682 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
683 gi->offset_map_size_n = 0;
684 gi->offset_map_size_p = 0;
685 gi->offset_map_n = NULL;
686 gi->offset_map_p = NULL;
687 rtx_group_vec.safe_push (gi);
688 }
689
690 return gi;
691 }
692
693
694 /* Initialization of data structures. */
695
696 static void
697 dse_step0 (void)
698 {
699 locally_deleted = 0;
700 globally_deleted = 0;
701
702 bitmap_obstack_initialize (&dse_bitmap_obstack);
703 gcc_obstack_init (&dse_obstack);
704
705 scratch = BITMAP_ALLOC (&reg_obstack);
706 kill_on_calls = BITMAP_ALLOC (&dse_bitmap_obstack);
707
708
709 rtx_group_table = new hash_table<invariant_group_base_hasher> (11);
710
711 bb_table = XNEWVEC (bb_info_t, last_basic_block_for_fn (cfun));
712 rtx_group_next_id = 0;
713
714 stores_off_frame_dead_at_return = !cfun->stdarg;
715
716 init_alias_analysis ();
717 }
718
719
720 \f
721 /*----------------------------------------------------------------------------
722 First step.
723
724 Scan all of the insns. Any random ordering of the blocks is fine.
725 Each block is scanned in forward order to accommodate cselib which
726 is used to remove stores with non-constant bases.
727 ----------------------------------------------------------------------------*/
728
729 /* Delete all of the store_info recs from INSN_INFO. */
730
731 static void
732 free_store_info (insn_info_t insn_info)
733 {
734 store_info *cur = insn_info->store_rec;
735 while (cur)
736 {
737 store_info *next = cur->next;
738 if (cur->is_large)
739 BITMAP_FREE (cur->positions_needed.large.bmap);
740 if (cur->cse_base)
741 cse_store_info_pool.remove (cur);
742 else
743 rtx_store_info_pool.remove (cur);
744 cur = next;
745 }
746
747 insn_info->cannot_delete = true;
748 insn_info->contains_cselib_groups = false;
749 insn_info->store_rec = NULL;
750 }
751
752 struct note_add_store_info
753 {
754 rtx_insn *first, *current;
755 regset fixed_regs_live;
756 bool failure;
757 };
758
759 /* Callback for emit_inc_dec_insn_before via note_stores.
760 Check if a register is clobbered which is live afterwards. */
761
762 static void
763 note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
764 {
765 rtx_insn *insn;
766 note_add_store_info *info = (note_add_store_info *) data;
767
768 if (!REG_P (loc))
769 return;
770
771 /* If this register is referenced by the current or an earlier insn,
772 that's OK. E.g. this applies to the register that is being incremented
773 with this addition. */
774 for (insn = info->first;
775 insn != NEXT_INSN (info->current);
776 insn = NEXT_INSN (insn))
777 if (reg_referenced_p (loc, PATTERN (insn)))
778 return;
779
780 /* If we come here, we have a clobber of a register that's only OK
781 if that register is not live. If we don't have liveness information
782 available, fail now. */
783 if (!info->fixed_regs_live)
784 {
785 info->failure = true;
786 return;
787 }
788 /* Now check if this is a live fixed register. */
789 unsigned int end_regno = END_REGNO (loc);
790 for (unsigned int regno = REGNO (loc); regno < end_regno; ++regno)
791 if (REGNO_REG_SET_P (info->fixed_regs_live, regno))
792 info->failure = true;
793 }
794
795 /* Callback for for_each_inc_dec that emits an INSN that sets DEST to
796 SRC + SRCOFF before insn ARG. */
797
798 static int
799 emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
800 rtx op ATTRIBUTE_UNUSED,
801 rtx dest, rtx src, rtx srcoff, void *arg)
802 {
803 insn_info_t insn_info = (insn_info_t) arg;
804 rtx_insn *insn = insn_info->insn, *new_insn, *cur;
805 note_add_store_info info;
806
807 /* We can reuse all operands without copying, because we are about
808 to delete the insn that contained it. */
809 if (srcoff)
810 {
811 start_sequence ();
812 emit_insn (gen_add3_insn (dest, src, srcoff));
813 new_insn = get_insns ();
814 end_sequence ();
815 }
816 else
817 new_insn = gen_move_insn (dest, src);
818 info.first = new_insn;
819 info.fixed_regs_live = insn_info->fixed_regs_live;
820 info.failure = false;
821 for (cur = new_insn; cur; cur = NEXT_INSN (cur))
822 {
823 info.current = cur;
824 note_stores (cur, note_add_store, &info);
825 }
826
827 /* If a failure was flagged above, return 1 so that for_each_inc_dec will
828 return it immediately, communicating the failure to its caller. */
829 if (info.failure)
830 return 1;
831
832 emit_insn_before (new_insn, insn);
833
834 return 0;
835 }
836
837 /* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
838 is there, is split into a separate insn.
839 Return true on success (or if there was nothing to do), false on failure. */
840
841 static bool
842 check_for_inc_dec_1 (insn_info_t insn_info)
843 {
844 rtx_insn *insn = insn_info->insn;
845 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
846 if (note)
847 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
848 insn_info) == 0;
849
850 /* Punt on stack pushes, those don't have REG_INC notes and we are
851 unprepared to deal with distribution of REG_ARGS_SIZE notes etc. */
852 subrtx_iterator::array_type array;
853 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
854 {
855 const_rtx x = *iter;
856 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
857 return false;
858 }
859
860 return true;
861 }
862
863
864 /* Entry point for postreload. If you work on reload_cse, or you need this
865 anywhere else, consider if you can provide register liveness information
866 and add a parameter to this function so that it can be passed down in
867 insn_info.fixed_regs_live. */
868 bool
869 check_for_inc_dec (rtx_insn *insn)
870 {
871 insn_info_type insn_info;
872 rtx note;
873
874 insn_info.insn = insn;
875 insn_info.fixed_regs_live = NULL;
876 note = find_reg_note (insn, REG_INC, NULL_RTX);
877 if (note)
878 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
879 &insn_info) == 0;
880
881 /* Punt on stack pushes, those don't have REG_INC notes and we are
882 unprepared to deal with distribution of REG_ARGS_SIZE notes etc. */
883 subrtx_iterator::array_type array;
884 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
885 {
886 const_rtx x = *iter;
887 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
888 return false;
889 }
890
891 return true;
892 }
893
894 /* Delete the insn and free all of the fields inside INSN_INFO. */
895
896 static void
897 delete_dead_store_insn (insn_info_t insn_info)
898 {
899 read_info_t read_info;
900
901 if (!dbg_cnt (dse))
902 return;
903
904 if (!check_for_inc_dec_1 (insn_info))
905 return;
906 if (dump_file && (dump_flags & TDF_DETAILS))
907 fprintf (dump_file, "Locally deleting insn %d\n",
908 INSN_UID (insn_info->insn));
909
910 free_store_info (insn_info);
911 read_info = insn_info->read_rec;
912
913 while (read_info)
914 {
915 read_info_t next = read_info->next;
916 read_info_type_pool.remove (read_info);
917 read_info = next;
918 }
919 insn_info->read_rec = NULL;
920
921 delete_insn (insn_info->insn);
922 locally_deleted++;
923 insn_info->insn = NULL;
924
925 insn_info->wild_read = false;
926 }
927
928 /* Return whether DECL, a local variable, can possibly escape the current
929 function scope. */
930
931 static bool
932 local_variable_can_escape (tree decl)
933 {
934 if (TREE_ADDRESSABLE (decl))
935 return true;
936
937 /* If this is a partitioned variable, we need to consider all the variables
938 in the partition. This is necessary because a store into one of them can
939 be replaced with a store into another and this may not change the outcome
940 of the escape analysis. */
941 if (cfun->gimple_df->decls_to_pointers != NULL)
942 {
943 tree *namep = cfun->gimple_df->decls_to_pointers->get (decl);
944 if (namep)
945 return TREE_ADDRESSABLE (*namep);
946 }
947
948 return false;
949 }
950
951 /* Return whether EXPR can possibly escape the current function scope. */
952
953 static bool
954 can_escape (tree expr)
955 {
956 tree base;
957 if (!expr)
958 return true;
959 base = get_base_address (expr);
960 if (DECL_P (base)
961 && !may_be_aliased (base)
962 && !(VAR_P (base)
963 && !DECL_EXTERNAL (base)
964 && !TREE_STATIC (base)
965 && local_variable_can_escape (base)))
966 return false;
967 return true;
968 }
969
970 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
971 OFFSET and WIDTH. */
972
973 static void
974 set_usage_bits (group_info *group, poly_int64 offset, poly_int64 width,
975 tree expr)
976 {
977 /* Non-constant offsets and widths act as global kills, so there's no point
978 trying to use them to derive global DSE candidates. */
979 HOST_WIDE_INT i, const_offset, const_width;
980 bool expr_escapes = can_escape (expr);
981 if (offset.is_constant (&const_offset)
982 && width.is_constant (&const_width)
983 && const_offset > -MAX_OFFSET
984 && const_offset + const_width < MAX_OFFSET)
985 for (i = const_offset; i < const_offset + const_width; ++i)
986 {
987 bitmap store1;
988 bitmap store2;
989 bitmap escaped;
990 int ai;
991 if (i < 0)
992 {
993 store1 = group->store1_n;
994 store2 = group->store2_n;
995 escaped = group->escaped_n;
996 ai = -i;
997 }
998 else
999 {
1000 store1 = group->store1_p;
1001 store2 = group->store2_p;
1002 escaped = group->escaped_p;
1003 ai = i;
1004 }
1005
1006 if (!bitmap_set_bit (store1, ai))
1007 bitmap_set_bit (store2, ai);
1008 else
1009 {
1010 if (i < 0)
1011 {
1012 if (group->offset_map_size_n < ai)
1013 group->offset_map_size_n = ai;
1014 }
1015 else
1016 {
1017 if (group->offset_map_size_p < ai)
1018 group->offset_map_size_p = ai;
1019 }
1020 }
1021 if (expr_escapes)
1022 bitmap_set_bit (escaped, ai);
1023 }
1024 }
1025
1026 static void
1027 reset_active_stores (void)
1028 {
1029 active_local_stores = NULL;
1030 active_local_stores_len = 0;
1031 }
1032
1033 /* Free all READ_REC of the LAST_INSN of BB_INFO. */
1034
1035 static void
1036 free_read_records (bb_info_t bb_info)
1037 {
1038 insn_info_t insn_info = bb_info->last_insn;
1039 read_info_t *ptr = &insn_info->read_rec;
1040 while (*ptr)
1041 {
1042 read_info_t next = (*ptr)->next;
1043 read_info_type_pool.remove (*ptr);
1044 *ptr = next;
1045 }
1046 }
1047
1048 /* Set the BB_INFO so that the last insn is marked as a wild read. */
1049
1050 static void
1051 add_wild_read (bb_info_t bb_info)
1052 {
1053 insn_info_t insn_info = bb_info->last_insn;
1054 insn_info->wild_read = true;
1055 free_read_records (bb_info);
1056 reset_active_stores ();
1057 }
1058
1059 /* Set the BB_INFO so that the last insn is marked as a wild read of
1060 non-frame locations. */
1061
1062 static void
1063 add_non_frame_wild_read (bb_info_t bb_info)
1064 {
1065 insn_info_t insn_info = bb_info->last_insn;
1066 insn_info->non_frame_wild_read = true;
1067 free_read_records (bb_info);
1068 reset_active_stores ();
1069 }
1070
1071 /* Return true if X is a constant or one of the registers that behave
1072 as a constant over the life of a function. This is equivalent to
1073 !rtx_varies_p for memory addresses. */
1074
1075 static bool
1076 const_or_frame_p (rtx x)
1077 {
1078 if (CONSTANT_P (x))
1079 return true;
1080
1081 if (GET_CODE (x) == REG)
1082 {
1083 /* Note that we have to test for the actual rtx used for the frame
1084 and arg pointers and not just the register number in case we have
1085 eliminated the frame and/or arg pointer and are using it
1086 for pseudos. */
1087 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1088 /* The arg pointer varies if it is not a fixed register. */
1089 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1090 || x == pic_offset_table_rtx)
1091 return true;
1092 return false;
1093 }
1094
1095 return false;
1096 }
1097
1098 /* Take all reasonable action to put the address of MEM into the form
1099 that we can do analysis on.
1100
1101 The gold standard is to get the address into the form: address +
1102 OFFSET where address is something that rtx_varies_p considers a
1103 constant. When we can get the address in this form, we can do
1104 global analysis on it. Note that for constant bases, address is
1105 not actually returned, only the group_id. The address can be
1106 obtained from that.
1107
1108 If that fails, we try cselib to get a value we can at least use
1109 locally. If that fails we return false.
1110
1111 The GROUP_ID is set to -1 for cselib bases and the index of the
1112 group for non_varying bases.
1113
1114 FOR_READ is true if this is a mem read and false if not. */
1115
1116 static bool
1117 canon_address (rtx mem,
1118 int *group_id,
1119 poly_int64 *offset,
1120 cselib_val **base)
1121 {
1122 machine_mode address_mode = get_address_mode (mem);
1123 rtx mem_address = XEXP (mem, 0);
1124 rtx expanded_address, address;
1125 int expanded;
1126
1127 cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
1128
1129 if (dump_file && (dump_flags & TDF_DETAILS))
1130 {
1131 fprintf (dump_file, " mem: ");
1132 print_inline_rtx (dump_file, mem_address, 0);
1133 fprintf (dump_file, "\n");
1134 }
1135
1136 /* First see if just canon_rtx (mem_address) is const or frame,
1137 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1138 address = NULL_RTX;
1139 for (expanded = 0; expanded < 2; expanded++)
1140 {
1141 if (expanded)
1142 {
1143 /* Use cselib to replace all of the reg references with the full
1144 expression. This will take care of the case where we have
1145
1146 r_x = base + offset;
1147 val = *r_x;
1148
1149 by making it into
1150
1151 val = *(base + offset); */
1152
1153 expanded_address = cselib_expand_value_rtx (mem_address,
1154 scratch, 5);
1155
1156 /* If this fails, just go with the address from first
1157 iteration. */
1158 if (!expanded_address)
1159 break;
1160 }
1161 else
1162 expanded_address = mem_address;
1163
1164 /* Split the address into canonical BASE + OFFSET terms. */
1165 address = canon_rtx (expanded_address);
1166
1167 *offset = 0;
1168
1169 if (dump_file && (dump_flags & TDF_DETAILS))
1170 {
1171 if (expanded)
1172 {
1173 fprintf (dump_file, "\n after cselib_expand address: ");
1174 print_inline_rtx (dump_file, expanded_address, 0);
1175 fprintf (dump_file, "\n");
1176 }
1177
1178 fprintf (dump_file, "\n after canon_rtx address: ");
1179 print_inline_rtx (dump_file, address, 0);
1180 fprintf (dump_file, "\n");
1181 }
1182
1183 if (GET_CODE (address) == CONST)
1184 address = XEXP (address, 0);
1185
1186 address = strip_offset_and_add (address, offset);
1187
1188 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
1189 && const_or_frame_p (address))
1190 {
1191 group_info *group = get_group_info (address);
1192
1193 if (dump_file && (dump_flags & TDF_DETAILS))
1194 {
1195 fprintf (dump_file, " gid=%d offset=", group->id);
1196 print_dec (*offset, dump_file);
1197 fprintf (dump_file, "\n");
1198 }
1199 *base = NULL;
1200 *group_id = group->id;
1201 return true;
1202 }
1203 }
1204
1205 *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
1206 *group_id = -1;
1207
1208 if (*base == NULL)
1209 {
1210 if (dump_file && (dump_flags & TDF_DETAILS))
1211 fprintf (dump_file, " no cselib val - should be a wild read.\n");
1212 return false;
1213 }
1214 if (dump_file && (dump_flags & TDF_DETAILS))
1215 {
1216 fprintf (dump_file, " varying cselib base=%u:%u offset = ",
1217 (*base)->uid, (*base)->hash);
1218 print_dec (*offset, dump_file);
1219 fprintf (dump_file, "\n");
1220 }
1221 return true;
1222 }
1223
1224
1225 /* Clear the rhs field from the active_local_stores array. */
1226
1227 static void
1228 clear_rhs_from_active_local_stores (void)
1229 {
1230 insn_info_t ptr = active_local_stores;
1231
1232 while (ptr)
1233 {
1234 store_info *store_info = ptr->store_rec;
1235 /* Skip the clobbers. */
1236 while (!store_info->is_set)
1237 store_info = store_info->next;
1238
1239 store_info->rhs = NULL;
1240 store_info->const_rhs = NULL;
1241
1242 ptr = ptr->next_local_store;
1243 }
1244 }
1245
1246
1247 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1248
1249 static inline void
1250 set_position_unneeded (store_info *s_info, int pos)
1251 {
1252 if (__builtin_expect (s_info->is_large, false))
1253 {
1254 if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
1255 s_info->positions_needed.large.count++;
1256 }
1257 else
1258 s_info->positions_needed.small_bitmask
1259 &= ~(HOST_WIDE_INT_1U << pos);
1260 }
1261
1262 /* Mark the whole store S_INFO as unneeded. */
1263
1264 static inline void
1265 set_all_positions_unneeded (store_info *s_info)
1266 {
1267 if (__builtin_expect (s_info->is_large, false))
1268 {
1269 HOST_WIDE_INT width;
1270 if (s_info->width.is_constant (&width))
1271 {
1272 bitmap_set_range (s_info->positions_needed.large.bmap, 0, width);
1273 s_info->positions_needed.large.count = width;
1274 }
1275 else
1276 {
1277 gcc_checking_assert (!s_info->positions_needed.large.bmap);
1278 s_info->positions_needed.large.count = 1;
1279 }
1280 }
1281 else
1282 s_info->positions_needed.small_bitmask = HOST_WIDE_INT_0U;
1283 }
1284
1285 /* Return TRUE if any bytes from S_INFO store are needed. */
1286
1287 static inline bool
1288 any_positions_needed_p (store_info *s_info)
1289 {
1290 if (__builtin_expect (s_info->is_large, false))
1291 {
1292 HOST_WIDE_INT width;
1293 if (s_info->width.is_constant (&width))
1294 {
1295 gcc_checking_assert (s_info->positions_needed.large.bmap);
1296 return s_info->positions_needed.large.count < width;
1297 }
1298 else
1299 {
1300 gcc_checking_assert (!s_info->positions_needed.large.bmap);
1301 return s_info->positions_needed.large.count == 0;
1302 }
1303 }
1304 else
1305 return (s_info->positions_needed.small_bitmask != HOST_WIDE_INT_0U);
1306 }
1307
1308 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1309 store are known to be needed. */
1310
1311 static inline bool
1312 all_positions_needed_p (store_info *s_info, poly_int64 start,
1313 poly_int64 width)
1314 {
1315 gcc_assert (s_info->rhs);
1316 if (!s_info->width.is_constant ())
1317 {
1318 gcc_assert (s_info->is_large
1319 && !s_info->positions_needed.large.bmap);
1320 return s_info->positions_needed.large.count == 0;
1321 }
1322
1323 /* Otherwise, if START and WIDTH are non-constant, we're asking about
1324 a non-constant region of a constant-sized store. We can't say for
1325 sure that all positions are needed. */
1326 HOST_WIDE_INT const_start, const_width;
1327 if (!start.is_constant (&const_start)
1328 || !width.is_constant (&const_width))
1329 return false;
1330
1331 if (__builtin_expect (s_info->is_large, false))
1332 {
1333 for (HOST_WIDE_INT i = const_start; i < const_start + const_width; ++i)
1334 if (bitmap_bit_p (s_info->positions_needed.large.bmap, i))
1335 return false;
1336 return true;
1337 }
1338 else
1339 {
1340 unsigned HOST_WIDE_INT mask
1341 = lowpart_bitmask (const_width) << const_start;
1342 return (s_info->positions_needed.small_bitmask & mask) == mask;
1343 }
1344 }
1345
1346
1347 static rtx get_stored_val (store_info *, machine_mode, poly_int64,
1348 poly_int64, basic_block, bool);
1349
1350
1351 /* BODY is an instruction pattern that belongs to INSN. Return 1 if
1352 there is a candidate store, after adding it to the appropriate
1353 local store group if so. */
1354
1355 static int
1356 record_store (rtx body, bb_info_t bb_info)
1357 {
1358 rtx mem, rhs, const_rhs, mem_addr;
1359 poly_int64 offset = 0;
1360 poly_int64 width = 0;
1361 insn_info_t insn_info = bb_info->last_insn;
1362 store_info *store_info = NULL;
1363 int group_id;
1364 cselib_val *base = NULL;
1365 insn_info_t ptr, last, redundant_reason;
1366 bool store_is_unused;
1367
1368 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1369 return 0;
1370
1371 mem = SET_DEST (body);
1372
1373 /* If this is not used, then this cannot be used to keep the insn
1374 from being deleted. On the other hand, it does provide something
1375 that can be used to prove that another store is dead. */
1376 store_is_unused
1377 = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
1378
1379 /* Check whether that value is a suitable memory location. */
1380 if (!MEM_P (mem))
1381 {
1382 /* If the set or clobber is unused, then it does not effect our
1383 ability to get rid of the entire insn. */
1384 if (!store_is_unused)
1385 insn_info->cannot_delete = true;
1386 return 0;
1387 }
1388
1389 /* At this point we know mem is a mem. */
1390 if (GET_MODE (mem) == BLKmode)
1391 {
1392 HOST_WIDE_INT const_size;
1393 if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1394 {
1395 if (dump_file && (dump_flags & TDF_DETAILS))
1396 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1397 add_wild_read (bb_info);
1398 insn_info->cannot_delete = true;
1399 return 0;
1400 }
1401 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1402 as memset (addr, 0, 36); */
1403 else if (!MEM_SIZE_KNOWN_P (mem)
1404 || maybe_le (MEM_SIZE (mem), 0)
1405 /* This is a limit on the bitmap size, which is only relevant
1406 for constant-sized MEMs. */
1407 || (MEM_SIZE (mem).is_constant (&const_size)
1408 && const_size > MAX_OFFSET)
1409 || GET_CODE (body) != SET
1410 || !CONST_INT_P (SET_SRC (body)))
1411 {
1412 if (!store_is_unused)
1413 {
1414 /* If the set or clobber is unused, then it does not effect our
1415 ability to get rid of the entire insn. */
1416 insn_info->cannot_delete = true;
1417 clear_rhs_from_active_local_stores ();
1418 }
1419 return 0;
1420 }
1421 }
1422
1423 /* We can still process a volatile mem, we just cannot delete it. */
1424 if (MEM_VOLATILE_P (mem))
1425 insn_info->cannot_delete = true;
1426
1427 if (!canon_address (mem, &group_id, &offset, &base))
1428 {
1429 clear_rhs_from_active_local_stores ();
1430 return 0;
1431 }
1432
1433 if (GET_MODE (mem) == BLKmode)
1434 width = MEM_SIZE (mem);
1435 else
1436 width = GET_MODE_SIZE (GET_MODE (mem));
1437
1438 if (!endpoint_representable_p (offset, width))
1439 {
1440 clear_rhs_from_active_local_stores ();
1441 return 0;
1442 }
1443
1444 if (known_eq (width, 0))
1445 return 0;
1446
1447 if (group_id >= 0)
1448 {
1449 /* In the restrictive case where the base is a constant or the
1450 frame pointer we can do global analysis. */
1451
1452 group_info *group
1453 = rtx_group_vec[group_id];
1454 tree expr = MEM_EXPR (mem);
1455
1456 store_info = rtx_store_info_pool.allocate ();
1457 set_usage_bits (group, offset, width, expr);
1458
1459 if (dump_file && (dump_flags & TDF_DETAILS))
1460 {
1461 fprintf (dump_file, " processing const base store gid=%d",
1462 group_id);
1463 print_range (dump_file, offset, width);
1464 fprintf (dump_file, "\n");
1465 }
1466 }
1467 else
1468 {
1469 if (may_be_sp_based_p (XEXP (mem, 0)))
1470 insn_info->stack_pointer_based = true;
1471 insn_info->contains_cselib_groups = true;
1472
1473 store_info = cse_store_info_pool.allocate ();
1474 group_id = -1;
1475
1476 if (dump_file && (dump_flags & TDF_DETAILS))
1477 {
1478 fprintf (dump_file, " processing cselib store ");
1479 print_range (dump_file, offset, width);
1480 fprintf (dump_file, "\n");
1481 }
1482 }
1483
1484 const_rhs = rhs = NULL_RTX;
1485 if (GET_CODE (body) == SET
1486 /* No place to keep the value after ra. */
1487 && !reload_completed
1488 && (REG_P (SET_SRC (body))
1489 || GET_CODE (SET_SRC (body)) == SUBREG
1490 || CONSTANT_P (SET_SRC (body)))
1491 && !MEM_VOLATILE_P (mem)
1492 /* Sometimes the store and reload is used for truncation and
1493 rounding. */
1494 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1495 {
1496 rhs = SET_SRC (body);
1497 if (CONSTANT_P (rhs))
1498 const_rhs = rhs;
1499 else if (body == PATTERN (insn_info->insn))
1500 {
1501 rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1502 if (tem && CONSTANT_P (XEXP (tem, 0)))
1503 const_rhs = XEXP (tem, 0);
1504 }
1505 if (const_rhs == NULL_RTX && REG_P (rhs))
1506 {
1507 rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1508
1509 if (tem && CONSTANT_P (tem))
1510 const_rhs = tem;
1511 }
1512 }
1513
1514 /* Check to see if this stores causes some other stores to be
1515 dead. */
1516 ptr = active_local_stores;
1517 last = NULL;
1518 redundant_reason = NULL;
1519 mem = canon_rtx (mem);
1520
1521 if (group_id < 0)
1522 mem_addr = base->val_rtx;
1523 else
1524 {
1525 group_info *group = rtx_group_vec[group_id];
1526 mem_addr = group->canon_base_addr;
1527 }
1528 if (maybe_ne (offset, 0))
1529 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
1530
1531 while (ptr)
1532 {
1533 insn_info_t next = ptr->next_local_store;
1534 class store_info *s_info = ptr->store_rec;
1535 bool del = true;
1536
1537 /* Skip the clobbers. We delete the active insn if this insn
1538 shadows the set. To have been put on the active list, it
1539 has exactly on set. */
1540 while (!s_info->is_set)
1541 s_info = s_info->next;
1542
1543 if (s_info->group_id == group_id && s_info->cse_base == base)
1544 {
1545 HOST_WIDE_INT i;
1546 if (dump_file && (dump_flags & TDF_DETAILS))
1547 {
1548 fprintf (dump_file, " trying store in insn=%d gid=%d",
1549 INSN_UID (ptr->insn), s_info->group_id);
1550 print_range (dump_file, s_info->offset, s_info->width);
1551 fprintf (dump_file, "\n");
1552 }
1553
1554 /* Even if PTR won't be eliminated as unneeded, if both
1555 PTR and this insn store the same constant value, we might
1556 eliminate this insn instead. */
1557 if (s_info->const_rhs
1558 && const_rhs
1559 && known_subrange_p (offset, width,
1560 s_info->offset, s_info->width)
1561 && all_positions_needed_p (s_info, offset - s_info->offset,
1562 width)
1563 /* We can only remove the later store if the earlier aliases
1564 at least all accesses the later one. */
1565 && ((MEM_ALIAS_SET (mem) == MEM_ALIAS_SET (s_info->mem)
1566 || alias_set_subset_of (MEM_ALIAS_SET (mem),
1567 MEM_ALIAS_SET (s_info->mem)))
1568 && (!MEM_EXPR (s_info->mem)
1569 || refs_same_for_tbaa_p (MEM_EXPR (s_info->mem),
1570 MEM_EXPR (mem)))))
1571 {
1572 if (GET_MODE (mem) == BLKmode)
1573 {
1574 if (GET_MODE (s_info->mem) == BLKmode
1575 && s_info->const_rhs == const_rhs)
1576 redundant_reason = ptr;
1577 }
1578 else if (s_info->const_rhs == const0_rtx
1579 && const_rhs == const0_rtx)
1580 redundant_reason = ptr;
1581 else
1582 {
1583 rtx val;
1584 start_sequence ();
1585 val = get_stored_val (s_info, GET_MODE (mem), offset, width,
1586 BLOCK_FOR_INSN (insn_info->insn),
1587 true);
1588 if (get_insns () != NULL)
1589 val = NULL_RTX;
1590 end_sequence ();
1591 if (val && rtx_equal_p (val, const_rhs))
1592 redundant_reason = ptr;
1593 }
1594 }
1595
1596 HOST_WIDE_INT begin_unneeded, const_s_width, const_width;
1597 if (known_subrange_p (s_info->offset, s_info->width, offset, width))
1598 /* The new store touches every byte that S_INFO does. */
1599 set_all_positions_unneeded (s_info);
1600 else if ((offset - s_info->offset).is_constant (&begin_unneeded)
1601 && s_info->width.is_constant (&const_s_width)
1602 && width.is_constant (&const_width))
1603 {
1604 HOST_WIDE_INT end_unneeded = begin_unneeded + const_width;
1605 begin_unneeded = MAX (begin_unneeded, 0);
1606 end_unneeded = MIN (end_unneeded, const_s_width);
1607 for (i = begin_unneeded; i < end_unneeded; ++i)
1608 set_position_unneeded (s_info, i);
1609 }
1610 else
1611 {
1612 /* We don't know which parts of S_INFO are needed and
1613 which aren't, so invalidate the RHS. */
1614 s_info->rhs = NULL;
1615 s_info->const_rhs = NULL;
1616 }
1617 }
1618 else if (s_info->rhs)
1619 /* Need to see if it is possible for this store to overwrite
1620 the value of store_info. If it is, set the rhs to NULL to
1621 keep it from being used to remove a load. */
1622 {
1623 if (canon_output_dependence (s_info->mem, true,
1624 mem, GET_MODE (mem),
1625 mem_addr))
1626 {
1627 s_info->rhs = NULL;
1628 s_info->const_rhs = NULL;
1629 }
1630 }
1631
1632 /* An insn can be deleted if every position of every one of
1633 its s_infos is zero. */
1634 if (any_positions_needed_p (s_info))
1635 del = false;
1636
1637 if (del)
1638 {
1639 insn_info_t insn_to_delete = ptr;
1640
1641 active_local_stores_len--;
1642 if (last)
1643 last->next_local_store = ptr->next_local_store;
1644 else
1645 active_local_stores = ptr->next_local_store;
1646
1647 if (!insn_to_delete->cannot_delete)
1648 delete_dead_store_insn (insn_to_delete);
1649 }
1650 else
1651 last = ptr;
1652
1653 ptr = next;
1654 }
1655
1656 /* Finish filling in the store_info. */
1657 store_info->next = insn_info->store_rec;
1658 insn_info->store_rec = store_info;
1659 store_info->mem = mem;
1660 store_info->mem_addr = mem_addr;
1661 store_info->cse_base = base;
1662 HOST_WIDE_INT const_width;
1663 if (!width.is_constant (&const_width))
1664 {
1665 store_info->is_large = true;
1666 store_info->positions_needed.large.count = 0;
1667 store_info->positions_needed.large.bmap = NULL;
1668 }
1669 else if (const_width > HOST_BITS_PER_WIDE_INT)
1670 {
1671 store_info->is_large = true;
1672 store_info->positions_needed.large.count = 0;
1673 store_info->positions_needed.large.bmap = BITMAP_ALLOC (&dse_bitmap_obstack);
1674 }
1675 else
1676 {
1677 store_info->is_large = false;
1678 store_info->positions_needed.small_bitmask
1679 = lowpart_bitmask (const_width);
1680 }
1681 store_info->group_id = group_id;
1682 store_info->offset = offset;
1683 store_info->width = width;
1684 store_info->is_set = GET_CODE (body) == SET;
1685 store_info->rhs = rhs;
1686 store_info->const_rhs = const_rhs;
1687 store_info->redundant_reason = redundant_reason;
1688
1689 /* If this is a clobber, we return 0. We will only be able to
1690 delete this insn if there is only one store USED store, but we
1691 can use the clobber to delete other stores earlier. */
1692 return store_info->is_set ? 1 : 0;
1693 }
1694
1695
1696 static void
1697 dump_insn_info (const char * start, insn_info_t insn_info)
1698 {
1699 fprintf (dump_file, "%s insn=%d %s\n", start,
1700 INSN_UID (insn_info->insn),
1701 insn_info->store_rec ? "has store" : "naked");
1702 }
1703
1704
1705 /* If the modes are different and the value's source and target do not
1706 line up, we need to extract the value from lower part of the rhs of
1707 the store, shift it, and then put it into a form that can be shoved
1708 into the read_insn. This function generates a right SHIFT of a
1709 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1710 shift sequence is returned or NULL if we failed to find a
1711 shift. */
1712
1713 static rtx
1714 find_shift_sequence (poly_int64 access_size,
1715 store_info *store_info,
1716 machine_mode read_mode,
1717 poly_int64 shift, bool speed, bool require_cst)
1718 {
1719 machine_mode store_mode = GET_MODE (store_info->mem);
1720 scalar_int_mode new_mode;
1721 rtx read_reg = NULL;
1722
1723 /* If a constant was stored into memory, try to simplify it here,
1724 otherwise the cost of the shift might preclude this optimization
1725 e.g. at -Os, even when no actual shift will be needed. */
1726 if (store_info->const_rhs)
1727 {
1728 auto new_mode = smallest_int_mode_for_size (access_size * BITS_PER_UNIT);
1729 auto byte = subreg_lowpart_offset (new_mode, store_mode);
1730 rtx ret
1731 = simplify_subreg (new_mode, store_info->const_rhs, store_mode, byte);
1732 if (ret && CONSTANT_P (ret))
1733 {
1734 rtx shift_rtx = gen_int_shift_amount (new_mode, shift);
1735 ret = simplify_const_binary_operation (LSHIFTRT, new_mode, ret,
1736 shift_rtx);
1737 if (ret && CONSTANT_P (ret))
1738 {
1739 byte = subreg_lowpart_offset (read_mode, new_mode);
1740 ret = simplify_subreg (read_mode, ret, new_mode, byte);
1741 if (ret && CONSTANT_P (ret)
1742 && (set_src_cost (ret, read_mode, speed)
1743 <= COSTS_N_INSNS (1)))
1744 return ret;
1745 }
1746 }
1747 }
1748
1749 if (require_cst)
1750 return NULL_RTX;
1751
1752 /* Some machines like the x86 have shift insns for each size of
1753 operand. Other machines like the ppc or the ia-64 may only have
1754 shift insns that shift values within 32 or 64 bit registers.
1755 This loop tries to find the smallest shift insn that will right
1756 justify the value we want to read but is available in one insn on
1757 the machine. */
1758
1759 opt_scalar_int_mode new_mode_iter;
1760 FOR_EACH_MODE_IN_CLASS (new_mode_iter, MODE_INT)
1761 {
1762 rtx target, new_reg, new_lhs;
1763 rtx_insn *shift_seq, *insn;
1764 int cost;
1765
1766 new_mode = new_mode_iter.require ();
1767 if (GET_MODE_BITSIZE (new_mode) > BITS_PER_WORD)
1768 break;
1769 if (maybe_lt (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (read_mode)))
1770 continue;
1771
1772 /* Try a wider mode if truncating the store mode to NEW_MODE
1773 requires a real instruction. */
1774 if (maybe_lt (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (store_mode))
1775 && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
1776 continue;
1777
1778 /* Also try a wider mode if the necessary punning is either not
1779 desirable or not possible. */
1780 if (!CONSTANT_P (store_info->rhs)
1781 && !targetm.modes_tieable_p (new_mode, store_mode))
1782 continue;
1783
1784 if (multiple_p (shift, GET_MODE_BITSIZE (new_mode))
1785 && known_le (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (store_mode)))
1786 {
1787 /* Try to implement the shift using a subreg. */
1788 poly_int64 offset
1789 = subreg_offset_from_lsb (new_mode, store_mode, shift);
1790 rtx rhs_subreg = simplify_gen_subreg (new_mode, store_info->rhs,
1791 store_mode, offset);
1792 if (rhs_subreg)
1793 {
1794 read_reg
1795 = extract_low_bits (read_mode, new_mode, copy_rtx (rhs_subreg));
1796 break;
1797 }
1798 }
1799
1800 if (maybe_lt (GET_MODE_SIZE (new_mode), access_size))
1801 continue;
1802
1803 new_reg = gen_reg_rtx (new_mode);
1804
1805 start_sequence ();
1806
1807 /* In theory we could also check for an ashr. Ian Taylor knows
1808 of one dsp where the cost of these two was not the same. But
1809 this really is a rare case anyway. */
1810 target = expand_binop (new_mode, lshr_optab, new_reg,
1811 gen_int_shift_amount (new_mode, shift),
1812 new_reg, 1, OPTAB_DIRECT);
1813
1814 shift_seq = get_insns ();
1815 end_sequence ();
1816
1817 if (target != new_reg || shift_seq == NULL)
1818 continue;
1819
1820 cost = 0;
1821 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1822 if (INSN_P (insn))
1823 cost += insn_cost (insn, speed);
1824
1825 /* The computation up to here is essentially independent
1826 of the arguments and could be precomputed. It may
1827 not be worth doing so. We could precompute if
1828 worthwhile or at least cache the results. The result
1829 technically depends on both SHIFT and ACCESS_SIZE,
1830 but in practice the answer will depend only on ACCESS_SIZE. */
1831
1832 if (cost > COSTS_N_INSNS (1))
1833 continue;
1834
1835 new_lhs = extract_low_bits (new_mode, store_mode,
1836 copy_rtx (store_info->rhs));
1837 if (new_lhs == NULL_RTX)
1838 continue;
1839
1840 /* We found an acceptable shift. Generate a move to
1841 take the value from the store and put it into the
1842 shift pseudo, then shift it, then generate another
1843 move to put in into the target of the read. */
1844 emit_move_insn (new_reg, new_lhs);
1845 emit_insn (shift_seq);
1846 read_reg = extract_low_bits (read_mode, new_mode, new_reg);
1847 break;
1848 }
1849
1850 return read_reg;
1851 }
1852
1853
1854 /* Call back for note_stores to find the hard regs set or clobbered by
1855 insn. Data is a bitmap of the hardregs set so far. */
1856
1857 static void
1858 look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1859 {
1860 bitmap regs_set = (bitmap) data;
1861
1862 if (REG_P (x)
1863 && HARD_REGISTER_P (x))
1864 bitmap_set_range (regs_set, REGNO (x), REG_NREGS (x));
1865 }
1866
1867 /* Helper function for replace_read and record_store.
1868 Attempt to return a value of mode READ_MODE stored in STORE_INFO,
1869 consisting of READ_WIDTH bytes starting from READ_OFFSET. Return NULL
1870 if not successful. If REQUIRE_CST is true, return always constant. */
1871
1872 static rtx
1873 get_stored_val (store_info *store_info, machine_mode read_mode,
1874 poly_int64 read_offset, poly_int64 read_width,
1875 basic_block bb, bool require_cst)
1876 {
1877 machine_mode store_mode = GET_MODE (store_info->mem);
1878 poly_int64 gap;
1879 rtx read_reg;
1880
1881 /* To get here the read is within the boundaries of the write so
1882 shift will never be negative. Start out with the shift being in
1883 bytes. */
1884 if (store_mode == BLKmode)
1885 gap = 0;
1886 else if (BYTES_BIG_ENDIAN)
1887 gap = ((store_info->offset + store_info->width)
1888 - (read_offset + read_width));
1889 else
1890 gap = read_offset - store_info->offset;
1891
1892 if (gap.is_constant () && maybe_ne (gap, 0))
1893 {
1894 poly_int64 shift = gap * BITS_PER_UNIT;
1895 poly_int64 access_size = GET_MODE_SIZE (read_mode) + gap;
1896 read_reg = find_shift_sequence (access_size, store_info, read_mode,
1897 shift, optimize_bb_for_speed_p (bb),
1898 require_cst);
1899 }
1900 else if (store_mode == BLKmode)
1901 {
1902 /* The store is a memset (addr, const_val, const_size). */
1903 gcc_assert (CONST_INT_P (store_info->rhs));
1904 scalar_int_mode int_store_mode;
1905 if (!int_mode_for_mode (read_mode).exists (&int_store_mode))
1906 read_reg = NULL_RTX;
1907 else if (store_info->rhs == const0_rtx)
1908 read_reg = extract_low_bits (read_mode, int_store_mode, const0_rtx);
1909 else if (GET_MODE_BITSIZE (int_store_mode) > HOST_BITS_PER_WIDE_INT
1910 || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1911 read_reg = NULL_RTX;
1912 else
1913 {
1914 unsigned HOST_WIDE_INT c
1915 = INTVAL (store_info->rhs)
1916 & ((HOST_WIDE_INT_1 << BITS_PER_UNIT) - 1);
1917 int shift = BITS_PER_UNIT;
1918 while (shift < HOST_BITS_PER_WIDE_INT)
1919 {
1920 c |= (c << shift);
1921 shift <<= 1;
1922 }
1923 read_reg = gen_int_mode (c, int_store_mode);
1924 read_reg = extract_low_bits (read_mode, int_store_mode, read_reg);
1925 }
1926 }
1927 else if (store_info->const_rhs
1928 && (require_cst
1929 || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1930 read_reg = extract_low_bits (read_mode, store_mode,
1931 copy_rtx (store_info->const_rhs));
1932 else
1933 read_reg = extract_low_bits (read_mode, store_mode,
1934 copy_rtx (store_info->rhs));
1935 if (require_cst && read_reg && !CONSTANT_P (read_reg))
1936 read_reg = NULL_RTX;
1937 return read_reg;
1938 }
1939
1940 /* Take a sequence of:
1941 A <- r1
1942 ...
1943 ... <- A
1944
1945 and change it into
1946 r2 <- r1
1947 A <- r1
1948 ...
1949 ... <- r2
1950
1951 or
1952
1953 r3 <- extract (r1)
1954 r3 <- r3 >> shift
1955 r2 <- extract (r3)
1956 ... <- r2
1957
1958 or
1959
1960 r2 <- extract (r1)
1961 ... <- r2
1962
1963 Depending on the alignment and the mode of the store and
1964 subsequent load.
1965
1966
1967 The STORE_INFO and STORE_INSN are for the store and READ_INFO
1968 and READ_INSN are for the read. Return true if the replacement
1969 went ok. */
1970
1971 static bool
1972 replace_read (store_info *store_info, insn_info_t store_insn,
1973 read_info_t read_info, insn_info_t read_insn, rtx *loc)
1974 {
1975 machine_mode store_mode = GET_MODE (store_info->mem);
1976 machine_mode read_mode = GET_MODE (read_info->mem);
1977 rtx_insn *insns, *this_insn;
1978 rtx read_reg;
1979 basic_block bb;
1980
1981 if (!dbg_cnt (dse))
1982 return false;
1983
1984 /* Create a sequence of instructions to set up the read register.
1985 This sequence goes immediately before the store and its result
1986 is read by the load.
1987
1988 We need to keep this in perspective. We are replacing a read
1989 with a sequence of insns, but the read will almost certainly be
1990 in cache, so it is not going to be an expensive one. Thus, we
1991 are not willing to do a multi insn shift or worse a subroutine
1992 call to get rid of the read. */
1993 if (dump_file && (dump_flags & TDF_DETAILS))
1994 fprintf (dump_file, "trying to replace %smode load in insn %d"
1995 " from %smode store in insn %d\n",
1996 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
1997 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
1998 start_sequence ();
1999 bb = BLOCK_FOR_INSN (read_insn->insn);
2000 read_reg = get_stored_val (store_info,
2001 read_mode, read_info->offset, read_info->width,
2002 bb, false);
2003 if (read_reg == NULL_RTX)
2004 {
2005 end_sequence ();
2006 if (dump_file && (dump_flags & TDF_DETAILS))
2007 fprintf (dump_file, " -- could not extract bits of stored value\n");
2008 return false;
2009 }
2010 /* Force the value into a new register so that it won't be clobbered
2011 between the store and the load. */
2012 read_reg = copy_to_mode_reg (read_mode, read_reg);
2013 insns = get_insns ();
2014 end_sequence ();
2015
2016 if (insns != NULL_RTX)
2017 {
2018 /* Now we have to scan the set of new instructions to see if the
2019 sequence contains and sets of hardregs that happened to be
2020 live at this point. For instance, this can happen if one of
2021 the insns sets the CC and the CC happened to be live at that
2022 point. This does occasionally happen, see PR 37922. */
2023 bitmap regs_set = BITMAP_ALLOC (&reg_obstack);
2024
2025 for (this_insn = insns;
2026 this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
2027 {
2028 if (insn_invalid_p (this_insn, false))
2029 {
2030 if (dump_file && (dump_flags & TDF_DETAILS))
2031 {
2032 fprintf (dump_file, " -- replacing the loaded MEM with ");
2033 print_simple_rtl (dump_file, read_reg);
2034 fprintf (dump_file, " led to an invalid instruction\n");
2035 }
2036 BITMAP_FREE (regs_set);
2037 return false;
2038 }
2039 note_stores (this_insn, look_for_hardregs, regs_set);
2040 }
2041
2042 if (store_insn->fixed_regs_live)
2043 bitmap_and_into (regs_set, store_insn->fixed_regs_live);
2044 if (!bitmap_empty_p (regs_set))
2045 {
2046 if (dump_file && (dump_flags & TDF_DETAILS))
2047 {
2048 fprintf (dump_file, "abandoning replacement because sequence "
2049 "clobbers live hardregs:");
2050 df_print_regset (dump_file, regs_set);
2051 }
2052
2053 BITMAP_FREE (regs_set);
2054 return false;
2055 }
2056 BITMAP_FREE (regs_set);
2057 }
2058
2059 subrtx_iterator::array_type array;
2060 FOR_EACH_SUBRTX (iter, array, *loc, NONCONST)
2061 {
2062 const_rtx x = *iter;
2063 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
2064 {
2065 if (dump_file && (dump_flags & TDF_DETAILS))
2066 fprintf (dump_file, " -- replacing the MEM failed due to address "
2067 "side-effects\n");
2068 return false;
2069 }
2070 }
2071
2072 if (validate_change (read_insn->insn, loc, read_reg, 0))
2073 {
2074 deferred_change *change = deferred_change_pool.allocate ();
2075
2076 /* Insert this right before the store insn where it will be safe
2077 from later insns that might change it before the read. */
2078 emit_insn_before (insns, store_insn->insn);
2079
2080 /* And now for the kludge part: cselib croaks if you just
2081 return at this point. There are two reasons for this:
2082
2083 1) Cselib has an idea of how many pseudos there are and
2084 that does not include the new ones we just added.
2085
2086 2) Cselib does not know about the move insn we added
2087 above the store_info, and there is no way to tell it
2088 about it, because it has "moved on".
2089
2090 Problem (1) is fixable with a certain amount of engineering.
2091 Problem (2) is requires starting the bb from scratch. This
2092 could be expensive.
2093
2094 So we are just going to have to lie. The move/extraction
2095 insns are not really an issue, cselib did not see them. But
2096 the use of the new pseudo read_insn is a real problem because
2097 cselib has not scanned this insn. The way that we solve this
2098 problem is that we are just going to put the mem back for now
2099 and when we are finished with the block, we undo this. We
2100 keep a table of mems to get rid of. At the end of the basic
2101 block we can put them back. */
2102
2103 *loc = read_info->mem;
2104 change->next = deferred_change_list;
2105 deferred_change_list = change;
2106 change->loc = loc;
2107 change->reg = read_reg;
2108
2109 /* Get rid of the read_info, from the point of view of the
2110 rest of dse, play like this read never happened. */
2111 read_insn->read_rec = read_info->next;
2112 read_info_type_pool.remove (read_info);
2113 if (dump_file && (dump_flags & TDF_DETAILS))
2114 {
2115 fprintf (dump_file, " -- replaced the loaded MEM with ");
2116 print_simple_rtl (dump_file, read_reg);
2117 fprintf (dump_file, "\n");
2118 }
2119 return true;
2120 }
2121 else
2122 {
2123 if (dump_file && (dump_flags & TDF_DETAILS))
2124 {
2125 fprintf (dump_file, " -- replacing the loaded MEM with ");
2126 print_simple_rtl (dump_file, read_reg);
2127 fprintf (dump_file, " led to an invalid instruction\n");
2128 }
2129 return false;
2130 }
2131 }
2132
2133 /* Check the address of MEM *LOC and kill any appropriate stores that may
2134 be active. */
2135
2136 static void
2137 check_mem_read_rtx (rtx *loc, bb_info_t bb_info)
2138 {
2139 rtx mem = *loc, mem_addr;
2140 insn_info_t insn_info;
2141 poly_int64 offset = 0;
2142 poly_int64 width = 0;
2143 cselib_val *base = NULL;
2144 int group_id;
2145 read_info_t read_info;
2146
2147 insn_info = bb_info->last_insn;
2148
2149 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2150 || MEM_VOLATILE_P (mem))
2151 {
2152 if (crtl->stack_protect_guard
2153 && (MEM_EXPR (mem) == crtl->stack_protect_guard
2154 || (crtl->stack_protect_guard_decl
2155 && MEM_EXPR (mem) == crtl->stack_protect_guard_decl))
2156 && MEM_VOLATILE_P (mem))
2157 {
2158 /* This is either the stack protector canary on the stack,
2159 which ought to be written by a MEM_VOLATILE_P store and
2160 thus shouldn't be deleted and is read at the very end of
2161 function, but shouldn't conflict with any other store.
2162 Or it is __stack_chk_guard variable or TLS or whatever else
2163 MEM holding the canary value, which really shouldn't be
2164 ever modified in -fstack-protector* protected functions,
2165 otherwise the prologue store wouldn't match the epilogue
2166 check. */
2167 if (dump_file && (dump_flags & TDF_DETAILS))
2168 fprintf (dump_file, " stack protector canary read ignored.\n");
2169 insn_info->cannot_delete = true;
2170 return;
2171 }
2172
2173 if (dump_file && (dump_flags & TDF_DETAILS))
2174 fprintf (dump_file, " adding wild read, volatile or barrier.\n");
2175 add_wild_read (bb_info);
2176 insn_info->cannot_delete = true;
2177 return;
2178 }
2179
2180 /* If it is reading readonly mem, then there can be no conflict with
2181 another write. */
2182 if (MEM_READONLY_P (mem))
2183 return;
2184
2185 if (!canon_address (mem, &group_id, &offset, &base))
2186 {
2187 if (dump_file && (dump_flags & TDF_DETAILS))
2188 fprintf (dump_file, " adding wild read, canon_address failure.\n");
2189 add_wild_read (bb_info);
2190 return;
2191 }
2192
2193 if (GET_MODE (mem) == BLKmode)
2194 width = -1;
2195 else
2196 width = GET_MODE_SIZE (GET_MODE (mem));
2197
2198 if (!endpoint_representable_p (offset, known_eq (width, -1) ? 1 : width))
2199 {
2200 if (dump_file && (dump_flags & TDF_DETAILS))
2201 fprintf (dump_file, " adding wild read, due to overflow.\n");
2202 add_wild_read (bb_info);
2203 return;
2204 }
2205
2206 read_info = read_info_type_pool.allocate ();
2207 read_info->group_id = group_id;
2208 read_info->mem = mem;
2209 read_info->offset = offset;
2210 read_info->width = width;
2211 read_info->next = insn_info->read_rec;
2212 insn_info->read_rec = read_info;
2213 if (group_id < 0)
2214 mem_addr = base->val_rtx;
2215 else
2216 {
2217 group_info *group = rtx_group_vec[group_id];
2218 mem_addr = group->canon_base_addr;
2219 }
2220 if (maybe_ne (offset, 0))
2221 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
2222 /* Avoid passing VALUE RTXen as mem_addr to canon_true_dependence
2223 which will over and over re-create proper RTL and re-apply the
2224 offset above. See PR80960 where we almost allocate 1.6GB of PLUS
2225 RTXen that way. */
2226 mem_addr = get_addr (mem_addr);
2227
2228 if (group_id >= 0)
2229 {
2230 /* This is the restricted case where the base is a constant or
2231 the frame pointer and offset is a constant. */
2232 insn_info_t i_ptr = active_local_stores;
2233 insn_info_t last = NULL;
2234
2235 if (dump_file && (dump_flags & TDF_DETAILS))
2236 {
2237 if (!known_size_p (width))
2238 fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2239 group_id);
2240 else
2241 {
2242 fprintf (dump_file, " processing const load gid=%d", group_id);
2243 print_range (dump_file, offset, width);
2244 fprintf (dump_file, "\n");
2245 }
2246 }
2247
2248 while (i_ptr)
2249 {
2250 bool remove = false;
2251 store_info *store_info = i_ptr->store_rec;
2252
2253 /* Skip the clobbers. */
2254 while (!store_info->is_set)
2255 store_info = store_info->next;
2256
2257 /* There are three cases here. */
2258 if (store_info->group_id < 0)
2259 /* We have a cselib store followed by a read from a
2260 const base. */
2261 remove
2262 = canon_true_dependence (store_info->mem,
2263 GET_MODE (store_info->mem),
2264 store_info->mem_addr,
2265 mem, mem_addr);
2266
2267 else if (group_id == store_info->group_id)
2268 {
2269 /* This is a block mode load. We may get lucky and
2270 canon_true_dependence may save the day. */
2271 if (!known_size_p (width))
2272 remove
2273 = canon_true_dependence (store_info->mem,
2274 GET_MODE (store_info->mem),
2275 store_info->mem_addr,
2276 mem, mem_addr);
2277
2278 /* If this read is just reading back something that we just
2279 stored, rewrite the read. */
2280 else
2281 {
2282 if (store_info->rhs
2283 && known_subrange_p (offset, width, store_info->offset,
2284 store_info->width)
2285 && all_positions_needed_p (store_info,
2286 offset - store_info->offset,
2287 width)
2288 && replace_read (store_info, i_ptr, read_info,
2289 insn_info, loc))
2290 return;
2291
2292 /* The bases are the same, just see if the offsets
2293 could overlap. */
2294 if (ranges_maybe_overlap_p (offset, width,
2295 store_info->offset,
2296 store_info->width))
2297 remove = true;
2298 }
2299 }
2300
2301 /* else
2302 The else case that is missing here is that the
2303 bases are constant but different. There is nothing
2304 to do here because there is no overlap. */
2305
2306 if (remove)
2307 {
2308 if (dump_file && (dump_flags & TDF_DETAILS))
2309 dump_insn_info ("removing from active", i_ptr);
2310
2311 active_local_stores_len--;
2312 if (last)
2313 last->next_local_store = i_ptr->next_local_store;
2314 else
2315 active_local_stores = i_ptr->next_local_store;
2316 }
2317 else
2318 last = i_ptr;
2319 i_ptr = i_ptr->next_local_store;
2320 }
2321 }
2322 else
2323 {
2324 insn_info_t i_ptr = active_local_stores;
2325 insn_info_t last = NULL;
2326 if (dump_file && (dump_flags & TDF_DETAILS))
2327 {
2328 fprintf (dump_file, " processing cselib load mem:");
2329 print_inline_rtx (dump_file, mem, 0);
2330 fprintf (dump_file, "\n");
2331 }
2332
2333 while (i_ptr)
2334 {
2335 bool remove = false;
2336 store_info *store_info = i_ptr->store_rec;
2337
2338 if (dump_file && (dump_flags & TDF_DETAILS))
2339 fprintf (dump_file, " processing cselib load against insn %d\n",
2340 INSN_UID (i_ptr->insn));
2341
2342 /* Skip the clobbers. */
2343 while (!store_info->is_set)
2344 store_info = store_info->next;
2345
2346 /* If this read is just reading back something that we just
2347 stored, rewrite the read. */
2348 if (store_info->rhs
2349 && store_info->group_id == -1
2350 && store_info->cse_base == base
2351 && known_subrange_p (offset, width, store_info->offset,
2352 store_info->width)
2353 && all_positions_needed_p (store_info,
2354 offset - store_info->offset, width)
2355 && replace_read (store_info, i_ptr, read_info, insn_info, loc))
2356 return;
2357
2358 remove = canon_true_dependence (store_info->mem,
2359 GET_MODE (store_info->mem),
2360 store_info->mem_addr,
2361 mem, mem_addr);
2362
2363 if (remove)
2364 {
2365 if (dump_file && (dump_flags & TDF_DETAILS))
2366 dump_insn_info ("removing from active", i_ptr);
2367
2368 active_local_stores_len--;
2369 if (last)
2370 last->next_local_store = i_ptr->next_local_store;
2371 else
2372 active_local_stores = i_ptr->next_local_store;
2373 }
2374 else
2375 last = i_ptr;
2376 i_ptr = i_ptr->next_local_store;
2377 }
2378 }
2379 }
2380
2381 /* A note_uses callback in which DATA points the INSN_INFO for
2382 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2383 true for any part of *LOC. */
2384
2385 static void
2386 check_mem_read_use (rtx *loc, void *data)
2387 {
2388 subrtx_ptr_iterator::array_type array;
2389 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
2390 {
2391 rtx *loc = *iter;
2392 if (MEM_P (*loc))
2393 check_mem_read_rtx (loc, (bb_info_t) data);
2394 }
2395 }
2396
2397
2398 /* Get arguments passed to CALL_INSN. Return TRUE if successful.
2399 So far it only handles arguments passed in registers. */
2400
2401 static bool
2402 get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2403 {
2404 CUMULATIVE_ARGS args_so_far_v;
2405 cumulative_args_t args_so_far;
2406 tree arg;
2407 int idx;
2408
2409 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2410 args_so_far = pack_cumulative_args (&args_so_far_v);
2411
2412 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2413 for (idx = 0;
2414 arg != void_list_node && idx < nargs;
2415 arg = TREE_CHAIN (arg), idx++)
2416 {
2417 scalar_int_mode mode;
2418 rtx reg, link, tmp;
2419
2420 if (!is_int_mode (TYPE_MODE (TREE_VALUE (arg)), &mode))
2421 return false;
2422
2423 function_arg_info arg (mode, /*named=*/true);
2424 reg = targetm.calls.function_arg (args_so_far, arg);
2425 if (!reg || !REG_P (reg) || GET_MODE (reg) != mode)
2426 return false;
2427
2428 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2429 link;
2430 link = XEXP (link, 1))
2431 if (GET_CODE (XEXP (link, 0)) == USE)
2432 {
2433 scalar_int_mode arg_mode;
2434 args[idx] = XEXP (XEXP (link, 0), 0);
2435 if (REG_P (args[idx])
2436 && REGNO (args[idx]) == REGNO (reg)
2437 && (GET_MODE (args[idx]) == mode
2438 || (is_int_mode (GET_MODE (args[idx]), &arg_mode)
2439 && (GET_MODE_SIZE (arg_mode) <= UNITS_PER_WORD)
2440 && (GET_MODE_SIZE (arg_mode) > GET_MODE_SIZE (mode)))))
2441 break;
2442 }
2443 if (!link)
2444 return false;
2445
2446 tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2447 if (GET_MODE (args[idx]) != mode)
2448 {
2449 if (!tmp || !CONST_INT_P (tmp))
2450 return false;
2451 tmp = gen_int_mode (INTVAL (tmp), mode);
2452 }
2453 if (tmp)
2454 args[idx] = tmp;
2455
2456 targetm.calls.function_arg_advance (args_so_far, arg);
2457 }
2458 if (arg != void_list_node || idx != nargs)
2459 return false;
2460 return true;
2461 }
2462
2463 /* Return a bitmap of the fixed registers contained in IN. */
2464
2465 static bitmap
2466 copy_fixed_regs (const_bitmap in)
2467 {
2468 bitmap ret;
2469
2470 ret = ALLOC_REG_SET (NULL);
2471 bitmap_and (ret, in, bitmap_view<HARD_REG_SET> (fixed_reg_set));
2472 return ret;
2473 }
2474
2475 /* Apply record_store to all candidate stores in INSN. Mark INSN
2476 if some part of it is not a candidate store and assigns to a
2477 non-register target. */
2478
2479 static void
2480 scan_insn (bb_info_t bb_info, rtx_insn *insn, int max_active_local_stores)
2481 {
2482 rtx body;
2483 insn_info_type *insn_info = insn_info_type_pool.allocate ();
2484 int mems_found = 0;
2485 memset (insn_info, 0, sizeof (struct insn_info_type));
2486
2487 if (dump_file && (dump_flags & TDF_DETAILS))
2488 fprintf (dump_file, "\n**scanning insn=%d\n",
2489 INSN_UID (insn));
2490
2491 insn_info->prev_insn = bb_info->last_insn;
2492 insn_info->insn = insn;
2493 bb_info->last_insn = insn_info;
2494
2495 if (DEBUG_INSN_P (insn))
2496 {
2497 insn_info->cannot_delete = true;
2498 return;
2499 }
2500
2501 /* Look at all of the uses in the insn. */
2502 note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2503
2504 if (CALL_P (insn))
2505 {
2506 bool const_call;
2507 rtx call, sym;
2508 tree memset_call = NULL_TREE;
2509
2510 insn_info->cannot_delete = true;
2511
2512 /* Const functions cannot do anything bad i.e. read memory,
2513 however, they can read their parameters which may have
2514 been pushed onto the stack.
2515 memset and bzero don't read memory either. */
2516 const_call = RTL_CONST_CALL_P (insn);
2517 if (!const_call
2518 && (call = get_call_rtx_from (insn))
2519 && (sym = XEXP (XEXP (call, 0), 0))
2520 && GET_CODE (sym) == SYMBOL_REF
2521 && SYMBOL_REF_DECL (sym)
2522 && TREE_CODE (SYMBOL_REF_DECL (sym)) == FUNCTION_DECL
2523 && fndecl_built_in_p (SYMBOL_REF_DECL (sym), BUILT_IN_MEMSET))
2524 memset_call = SYMBOL_REF_DECL (sym);
2525
2526 if (const_call || memset_call)
2527 {
2528 insn_info_t i_ptr = active_local_stores;
2529 insn_info_t last = NULL;
2530
2531 if (dump_file && (dump_flags & TDF_DETAILS))
2532 fprintf (dump_file, "%s call %d\n",
2533 const_call ? "const" : "memset", INSN_UID (insn));
2534
2535 /* See the head comment of the frame_read field. */
2536 if (reload_completed
2537 /* Tail calls are storing their arguments using
2538 arg pointer. If it is a frame pointer on the target,
2539 even before reload we need to kill frame pointer based
2540 stores. */
2541 || (SIBLING_CALL_P (insn)
2542 && HARD_FRAME_POINTER_IS_ARG_POINTER))
2543 insn_info->frame_read = true;
2544
2545 /* Loop over the active stores and remove those which are
2546 killed by the const function call. */
2547 while (i_ptr)
2548 {
2549 bool remove_store = false;
2550
2551 /* The stack pointer based stores are always killed. */
2552 if (i_ptr->stack_pointer_based)
2553 remove_store = true;
2554
2555 /* If the frame is read, the frame related stores are killed. */
2556 else if (insn_info->frame_read)
2557 {
2558 store_info *store_info = i_ptr->store_rec;
2559
2560 /* Skip the clobbers. */
2561 while (!store_info->is_set)
2562 store_info = store_info->next;
2563
2564 if (store_info->group_id >= 0
2565 && rtx_group_vec[store_info->group_id]->frame_related)
2566 remove_store = true;
2567 }
2568
2569 if (remove_store)
2570 {
2571 if (dump_file && (dump_flags & TDF_DETAILS))
2572 dump_insn_info ("removing from active", i_ptr);
2573
2574 active_local_stores_len--;
2575 if (last)
2576 last->next_local_store = i_ptr->next_local_store;
2577 else
2578 active_local_stores = i_ptr->next_local_store;
2579 }
2580 else
2581 last = i_ptr;
2582
2583 i_ptr = i_ptr->next_local_store;
2584 }
2585
2586 if (memset_call)
2587 {
2588 rtx args[3];
2589 if (get_call_args (insn, memset_call, args, 3)
2590 && CONST_INT_P (args[1])
2591 && CONST_INT_P (args[2])
2592 && INTVAL (args[2]) > 0)
2593 {
2594 rtx mem = gen_rtx_MEM (BLKmode, args[0]);
2595 set_mem_size (mem, INTVAL (args[2]));
2596 body = gen_rtx_SET (mem, args[1]);
2597 mems_found += record_store (body, bb_info);
2598 if (dump_file && (dump_flags & TDF_DETAILS))
2599 fprintf (dump_file, "handling memset as BLKmode store\n");
2600 if (mems_found == 1)
2601 {
2602 if (active_local_stores_len++ >= max_active_local_stores)
2603 {
2604 active_local_stores_len = 1;
2605 active_local_stores = NULL;
2606 }
2607 insn_info->fixed_regs_live
2608 = copy_fixed_regs (bb_info->regs_live);
2609 insn_info->next_local_store = active_local_stores;
2610 active_local_stores = insn_info;
2611 }
2612 }
2613 else
2614 clear_rhs_from_active_local_stores ();
2615 }
2616 }
2617 else if (SIBLING_CALL_P (insn)
2618 && (reload_completed || HARD_FRAME_POINTER_IS_ARG_POINTER))
2619 /* Arguments for a sibling call that are pushed to memory are passed
2620 using the incoming argument pointer of the current function. After
2621 reload that might be (and likely is) frame pointer based. And, if
2622 it is a frame pointer on the target, even before reload we need to
2623 kill frame pointer based stores. */
2624 add_wild_read (bb_info);
2625 else
2626 /* Every other call, including pure functions, may read any memory
2627 that is not relative to the frame. */
2628 add_non_frame_wild_read (bb_info);
2629
2630 return;
2631 }
2632
2633 /* Assuming that there are sets in these insns, we cannot delete
2634 them. */
2635 if ((GET_CODE (PATTERN (insn)) == CLOBBER)
2636 || volatile_refs_p (PATTERN (insn))
2637 || (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
2638 || (RTX_FRAME_RELATED_P (insn))
2639 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2640 insn_info->cannot_delete = true;
2641
2642 body = PATTERN (insn);
2643 if (GET_CODE (body) == PARALLEL)
2644 {
2645 int i;
2646 for (i = 0; i < XVECLEN (body, 0); i++)
2647 mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2648 }
2649 else
2650 mems_found += record_store (body, bb_info);
2651
2652 if (dump_file && (dump_flags & TDF_DETAILS))
2653 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2654 mems_found, insn_info->cannot_delete ? "true" : "false");
2655
2656 /* If we found some sets of mems, add it into the active_local_stores so
2657 that it can be locally deleted if found dead or used for
2658 replace_read and redundant constant store elimination. Otherwise mark
2659 it as cannot delete. This simplifies the processing later. */
2660 if (mems_found == 1)
2661 {
2662 if (active_local_stores_len++ >= max_active_local_stores)
2663 {
2664 active_local_stores_len = 1;
2665 active_local_stores = NULL;
2666 }
2667 insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
2668 insn_info->next_local_store = active_local_stores;
2669 active_local_stores = insn_info;
2670 }
2671 else
2672 insn_info->cannot_delete = true;
2673 }
2674
2675
2676 /* Remove BASE from the set of active_local_stores. This is a
2677 callback from cselib that is used to get rid of the stores in
2678 active_local_stores. */
2679
2680 static void
2681 remove_useless_values (cselib_val *base)
2682 {
2683 insn_info_t insn_info = active_local_stores;
2684 insn_info_t last = NULL;
2685
2686 while (insn_info)
2687 {
2688 store_info *store_info = insn_info->store_rec;
2689 bool del = false;
2690
2691 /* If ANY of the store_infos match the cselib group that is
2692 being deleted, then the insn cannot be deleted. */
2693 while (store_info)
2694 {
2695 if ((store_info->group_id == -1)
2696 && (store_info->cse_base == base))
2697 {
2698 del = true;
2699 break;
2700 }
2701 store_info = store_info->next;
2702 }
2703
2704 if (del)
2705 {
2706 active_local_stores_len--;
2707 if (last)
2708 last->next_local_store = insn_info->next_local_store;
2709 else
2710 active_local_stores = insn_info->next_local_store;
2711 free_store_info (insn_info);
2712 }
2713 else
2714 last = insn_info;
2715
2716 insn_info = insn_info->next_local_store;
2717 }
2718 }
2719
2720
2721 /* Do all of step 1. */
2722
2723 static void
2724 dse_step1 (void)
2725 {
2726 basic_block bb;
2727 bitmap regs_live = BITMAP_ALLOC (&reg_obstack);
2728
2729 cselib_init (0);
2730 all_blocks = BITMAP_ALLOC (NULL);
2731 bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2732 bitmap_set_bit (all_blocks, EXIT_BLOCK);
2733
2734 /* For -O1 reduce the maximum number of active local stores for RTL DSE
2735 since this can consume huge amounts of memory (PR89115). */
2736 int max_active_local_stores = param_max_dse_active_local_stores;
2737 if (optimize < 2)
2738 max_active_local_stores /= 10;
2739
2740 FOR_ALL_BB_FN (bb, cfun)
2741 {
2742 insn_info_t ptr;
2743 bb_info_t bb_info = dse_bb_info_type_pool.allocate ();
2744
2745 memset (bb_info, 0, sizeof (dse_bb_info_type));
2746 bitmap_set_bit (all_blocks, bb->index);
2747 bb_info->regs_live = regs_live;
2748
2749 bitmap_copy (regs_live, DF_LR_IN (bb));
2750 df_simulate_initialize_forwards (bb, regs_live);
2751
2752 bb_table[bb->index] = bb_info;
2753 cselib_discard_hook = remove_useless_values;
2754
2755 if (bb->index >= NUM_FIXED_BLOCKS)
2756 {
2757 rtx_insn *insn;
2758
2759 active_local_stores = NULL;
2760 active_local_stores_len = 0;
2761 cselib_clear_table ();
2762
2763 /* Scan the insns. */
2764 FOR_BB_INSNS (bb, insn)
2765 {
2766 if (INSN_P (insn))
2767 scan_insn (bb_info, insn, max_active_local_stores);
2768 cselib_process_insn (insn);
2769 if (INSN_P (insn))
2770 df_simulate_one_insn_forwards (bb, insn, regs_live);
2771 }
2772
2773 /* This is something of a hack, because the global algorithm
2774 is supposed to take care of the case where stores go dead
2775 at the end of the function. However, the global
2776 algorithm must take a more conservative view of block
2777 mode reads than the local alg does. So to get the case
2778 where you have a store to the frame followed by a non
2779 overlapping block more read, we look at the active local
2780 stores at the end of the function and delete all of the
2781 frame and spill based ones. */
2782 if (stores_off_frame_dead_at_return
2783 && (EDGE_COUNT (bb->succs) == 0
2784 || (single_succ_p (bb)
2785 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
2786 && ! crtl->calls_eh_return)))
2787 {
2788 insn_info_t i_ptr = active_local_stores;
2789 while (i_ptr)
2790 {
2791 store_info *store_info = i_ptr->store_rec;
2792
2793 /* Skip the clobbers. */
2794 while (!store_info->is_set)
2795 store_info = store_info->next;
2796 if (store_info->group_id >= 0)
2797 {
2798 group_info *group = rtx_group_vec[store_info->group_id];
2799 if (group->frame_related && !i_ptr->cannot_delete)
2800 delete_dead_store_insn (i_ptr);
2801 }
2802
2803 i_ptr = i_ptr->next_local_store;
2804 }
2805 }
2806
2807 /* Get rid of the loads that were discovered in
2808 replace_read. Cselib is finished with this block. */
2809 while (deferred_change_list)
2810 {
2811 deferred_change *next = deferred_change_list->next;
2812
2813 /* There is no reason to validate this change. That was
2814 done earlier. */
2815 *deferred_change_list->loc = deferred_change_list->reg;
2816 deferred_change_pool.remove (deferred_change_list);
2817 deferred_change_list = next;
2818 }
2819
2820 /* Get rid of all of the cselib based store_infos in this
2821 block and mark the containing insns as not being
2822 deletable. */
2823 ptr = bb_info->last_insn;
2824 while (ptr)
2825 {
2826 if (ptr->contains_cselib_groups)
2827 {
2828 store_info *s_info = ptr->store_rec;
2829 while (s_info && !s_info->is_set)
2830 s_info = s_info->next;
2831 if (s_info
2832 && s_info->redundant_reason
2833 && s_info->redundant_reason->insn
2834 && !ptr->cannot_delete)
2835 {
2836 if (dump_file && (dump_flags & TDF_DETAILS))
2837 fprintf (dump_file, "Locally deleting insn %d "
2838 "because insn %d stores the "
2839 "same value and couldn't be "
2840 "eliminated\n",
2841 INSN_UID (ptr->insn),
2842 INSN_UID (s_info->redundant_reason->insn));
2843 delete_dead_store_insn (ptr);
2844 }
2845 free_store_info (ptr);
2846 }
2847 else
2848 {
2849 store_info *s_info;
2850
2851 /* Free at least positions_needed bitmaps. */
2852 for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2853 if (s_info->is_large)
2854 {
2855 BITMAP_FREE (s_info->positions_needed.large.bmap);
2856 s_info->is_large = false;
2857 }
2858 }
2859 ptr = ptr->prev_insn;
2860 }
2861
2862 cse_store_info_pool.release ();
2863 }
2864 bb_info->regs_live = NULL;
2865 }
2866
2867 BITMAP_FREE (regs_live);
2868 cselib_finish ();
2869 rtx_group_table->empty ();
2870 }
2871
2872 \f
2873 /*----------------------------------------------------------------------------
2874 Second step.
2875
2876 Assign each byte position in the stores that we are going to
2877 analyze globally to a position in the bitmaps. Returns true if
2878 there are any bit positions assigned.
2879 ----------------------------------------------------------------------------*/
2880
2881 static void
2882 dse_step2_init (void)
2883 {
2884 unsigned int i;
2885 group_info *group;
2886
2887 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2888 {
2889 /* For all non stack related bases, we only consider a store to
2890 be deletable if there are two or more stores for that
2891 position. This is because it takes one store to make the
2892 other store redundant. However, for the stores that are
2893 stack related, we consider them if there is only one store
2894 for the position. We do this because the stack related
2895 stores can be deleted if their is no read between them and
2896 the end of the function.
2897
2898 To make this work in the current framework, we take the stack
2899 related bases add all of the bits from store1 into store2.
2900 This has the effect of making the eligible even if there is
2901 only one store. */
2902
2903 if (stores_off_frame_dead_at_return && group->frame_related)
2904 {
2905 bitmap_ior_into (group->store2_n, group->store1_n);
2906 bitmap_ior_into (group->store2_p, group->store1_p);
2907 if (dump_file && (dump_flags & TDF_DETAILS))
2908 fprintf (dump_file, "group %d is frame related ", i);
2909 }
2910
2911 group->offset_map_size_n++;
2912 group->offset_map_n = XOBNEWVEC (&dse_obstack, int,
2913 group->offset_map_size_n);
2914 group->offset_map_size_p++;
2915 group->offset_map_p = XOBNEWVEC (&dse_obstack, int,
2916 group->offset_map_size_p);
2917 group->process_globally = false;
2918 if (dump_file && (dump_flags & TDF_DETAILS))
2919 {
2920 fprintf (dump_file, "group %d(%d+%d): ", i,
2921 (int)bitmap_count_bits (group->store2_n),
2922 (int)bitmap_count_bits (group->store2_p));
2923 bitmap_print (dump_file, group->store2_n, "n ", " ");
2924 bitmap_print (dump_file, group->store2_p, "p ", "\n");
2925 }
2926 }
2927 }
2928
2929
2930 /* Init the offset tables. */
2931
2932 static bool
2933 dse_step2 (void)
2934 {
2935 unsigned int i;
2936 group_info *group;
2937 /* Position 0 is unused because 0 is used in the maps to mean
2938 unused. */
2939 current_position = 1;
2940 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2941 {
2942 bitmap_iterator bi;
2943 unsigned int j;
2944
2945 memset (group->offset_map_n, 0, sizeof (int) * group->offset_map_size_n);
2946 memset (group->offset_map_p, 0, sizeof (int) * group->offset_map_size_p);
2947 bitmap_clear (group->group_kill);
2948
2949 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2950 {
2951 bitmap_set_bit (group->group_kill, current_position);
2952 if (bitmap_bit_p (group->escaped_n, j))
2953 bitmap_set_bit (kill_on_calls, current_position);
2954 group->offset_map_n[j] = current_position++;
2955 group->process_globally = true;
2956 }
2957 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2958 {
2959 bitmap_set_bit (group->group_kill, current_position);
2960 if (bitmap_bit_p (group->escaped_p, j))
2961 bitmap_set_bit (kill_on_calls, current_position);
2962 group->offset_map_p[j] = current_position++;
2963 group->process_globally = true;
2964 }
2965 }
2966 return current_position != 1;
2967 }
2968
2969
2970 \f
2971 /*----------------------------------------------------------------------------
2972 Third step.
2973
2974 Build the bit vectors for the transfer functions.
2975 ----------------------------------------------------------------------------*/
2976
2977
2978 /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
2979 there, return 0. */
2980
2981 static int
2982 get_bitmap_index (group_info *group_info, HOST_WIDE_INT offset)
2983 {
2984 if (offset < 0)
2985 {
2986 HOST_WIDE_INT offset_p = -offset;
2987 if (offset_p >= group_info->offset_map_size_n)
2988 return 0;
2989 return group_info->offset_map_n[offset_p];
2990 }
2991 else
2992 {
2993 if (offset >= group_info->offset_map_size_p)
2994 return 0;
2995 return group_info->offset_map_p[offset];
2996 }
2997 }
2998
2999
3000 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3001 may be NULL. */
3002
3003 static void
3004 scan_stores (store_info *store_info, bitmap gen, bitmap kill)
3005 {
3006 while (store_info)
3007 {
3008 HOST_WIDE_INT i, offset, width;
3009 group_info *group_info
3010 = rtx_group_vec[store_info->group_id];
3011 /* We can (conservatively) ignore stores whose bounds aren't known;
3012 they simply don't generate new global dse opportunities. */
3013 if (group_info->process_globally
3014 && store_info->offset.is_constant (&offset)
3015 && store_info->width.is_constant (&width))
3016 {
3017 HOST_WIDE_INT end = offset + width;
3018 for (i = offset; i < end; i++)
3019 {
3020 int index = get_bitmap_index (group_info, i);
3021 if (index != 0)
3022 {
3023 bitmap_set_bit (gen, index);
3024 if (kill)
3025 bitmap_clear_bit (kill, index);
3026 }
3027 }
3028 }
3029 store_info = store_info->next;
3030 }
3031 }
3032
3033
3034 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3035 may be NULL. */
3036
3037 static void
3038 scan_reads (insn_info_t insn_info, bitmap gen, bitmap kill)
3039 {
3040 read_info_t read_info = insn_info->read_rec;
3041 int i;
3042 group_info *group;
3043
3044 /* If this insn reads the frame, kill all the frame related stores. */
3045 if (insn_info->frame_read)
3046 {
3047 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3048 if (group->process_globally && group->frame_related)
3049 {
3050 if (kill)
3051 bitmap_ior_into (kill, group->group_kill);
3052 bitmap_and_compl_into (gen, group->group_kill);
3053 }
3054 }
3055 if (insn_info->non_frame_wild_read)
3056 {
3057 /* Kill all non-frame related stores. Kill all stores of variables that
3058 escape. */
3059 if (kill)
3060 bitmap_ior_into (kill, kill_on_calls);
3061 bitmap_and_compl_into (gen, kill_on_calls);
3062 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3063 if (group->process_globally && !group->frame_related)
3064 {
3065 if (kill)
3066 bitmap_ior_into (kill, group->group_kill);
3067 bitmap_and_compl_into (gen, group->group_kill);
3068 }
3069 }
3070 while (read_info)
3071 {
3072 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3073 {
3074 if (group->process_globally)
3075 {
3076 if (i == read_info->group_id)
3077 {
3078 HOST_WIDE_INT offset, width;
3079 /* Reads with non-constant size kill all DSE opportunities
3080 in the group. */
3081 if (!read_info->offset.is_constant (&offset)
3082 || !read_info->width.is_constant (&width)
3083 || !known_size_p (width))
3084 {
3085 /* Handle block mode reads. */
3086 if (kill)
3087 bitmap_ior_into (kill, group->group_kill);
3088 bitmap_and_compl_into (gen, group->group_kill);
3089 }
3090 else
3091 {
3092 /* The groups are the same, just process the
3093 offsets. */
3094 HOST_WIDE_INT j;
3095 HOST_WIDE_INT end = offset + width;
3096 for (j = offset; j < end; j++)
3097 {
3098 int index = get_bitmap_index (group, j);
3099 if (index != 0)
3100 {
3101 if (kill)
3102 bitmap_set_bit (kill, index);
3103 bitmap_clear_bit (gen, index);
3104 }
3105 }
3106 }
3107 }
3108 else
3109 {
3110 /* The groups are different, if the alias sets
3111 conflict, clear the entire group. We only need
3112 to apply this test if the read_info is a cselib
3113 read. Anything with a constant base cannot alias
3114 something else with a different constant
3115 base. */
3116 if ((read_info->group_id < 0)
3117 && canon_true_dependence (group->base_mem,
3118 GET_MODE (group->base_mem),
3119 group->canon_base_addr,
3120 read_info->mem, NULL_RTX))
3121 {
3122 if (kill)
3123 bitmap_ior_into (kill, group->group_kill);
3124 bitmap_and_compl_into (gen, group->group_kill);
3125 }
3126 }
3127 }
3128 }
3129
3130 read_info = read_info->next;
3131 }
3132 }
3133
3134
3135 /* Return the insn in BB_INFO before the first wild read or if there
3136 are no wild reads in the block, return the last insn. */
3137
3138 static insn_info_t
3139 find_insn_before_first_wild_read (bb_info_t bb_info)
3140 {
3141 insn_info_t insn_info = bb_info->last_insn;
3142 insn_info_t last_wild_read = NULL;
3143
3144 while (insn_info)
3145 {
3146 if (insn_info->wild_read)
3147 {
3148 last_wild_read = insn_info->prev_insn;
3149 /* Block starts with wild read. */
3150 if (!last_wild_read)
3151 return NULL;
3152 }
3153
3154 insn_info = insn_info->prev_insn;
3155 }
3156
3157 if (last_wild_read)
3158 return last_wild_read;
3159 else
3160 return bb_info->last_insn;
3161 }
3162
3163
3164 /* Scan the insns in BB_INFO starting at PTR and going to the top of
3165 the block in order to build the gen and kill sets for the block.
3166 We start at ptr which may be the last insn in the block or may be
3167 the first insn with a wild read. In the latter case we are able to
3168 skip the rest of the block because it just does not matter:
3169 anything that happens is hidden by the wild read. */
3170
3171 static void
3172 dse_step3_scan (basic_block bb)
3173 {
3174 bb_info_t bb_info = bb_table[bb->index];
3175 insn_info_t insn_info;
3176
3177 insn_info = find_insn_before_first_wild_read (bb_info);
3178
3179 /* In the spill case or in the no_spill case if there is no wild
3180 read in the block, we will need a kill set. */
3181 if (insn_info == bb_info->last_insn)
3182 {
3183 if (bb_info->kill)
3184 bitmap_clear (bb_info->kill);
3185 else
3186 bb_info->kill = BITMAP_ALLOC (&dse_bitmap_obstack);
3187 }
3188 else
3189 if (bb_info->kill)
3190 BITMAP_FREE (bb_info->kill);
3191
3192 while (insn_info)
3193 {
3194 /* There may have been code deleted by the dce pass run before
3195 this phase. */
3196 if (insn_info->insn && INSN_P (insn_info->insn))
3197 {
3198 scan_stores (insn_info->store_rec, bb_info->gen, bb_info->kill);
3199 scan_reads (insn_info, bb_info->gen, bb_info->kill);
3200 }
3201
3202 insn_info = insn_info->prev_insn;
3203 }
3204 }
3205
3206
3207 /* Set the gen set of the exit block, and also any block with no
3208 successors that does not have a wild read. */
3209
3210 static void
3211 dse_step3_exit_block_scan (bb_info_t bb_info)
3212 {
3213 /* The gen set is all 0's for the exit block except for the
3214 frame_pointer_group. */
3215
3216 if (stores_off_frame_dead_at_return)
3217 {
3218 unsigned int i;
3219 group_info *group;
3220
3221 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3222 {
3223 if (group->process_globally && group->frame_related)
3224 bitmap_ior_into (bb_info->gen, group->group_kill);
3225 }
3226 }
3227 }
3228
3229
3230 /* Find all of the blocks that are not backwards reachable from the
3231 exit block or any block with no successors (BB). These are the
3232 infinite loops or infinite self loops. These blocks will still
3233 have their bits set in UNREACHABLE_BLOCKS. */
3234
3235 static void
3236 mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
3237 {
3238 edge e;
3239 edge_iterator ei;
3240
3241 if (bitmap_bit_p (unreachable_blocks, bb->index))
3242 {
3243 bitmap_clear_bit (unreachable_blocks, bb->index);
3244 FOR_EACH_EDGE (e, ei, bb->preds)
3245 {
3246 mark_reachable_blocks (unreachable_blocks, e->src);
3247 }
3248 }
3249 }
3250
3251 /* Build the transfer functions for the function. */
3252
3253 static void
3254 dse_step3 ()
3255 {
3256 basic_block bb;
3257 sbitmap_iterator sbi;
3258 bitmap all_ones = NULL;
3259 unsigned int i;
3260
3261 auto_sbitmap unreachable_blocks (last_basic_block_for_fn (cfun));
3262 bitmap_ones (unreachable_blocks);
3263
3264 FOR_ALL_BB_FN (bb, cfun)
3265 {
3266 bb_info_t bb_info = bb_table[bb->index];
3267 if (bb_info->gen)
3268 bitmap_clear (bb_info->gen);
3269 else
3270 bb_info->gen = BITMAP_ALLOC (&dse_bitmap_obstack);
3271
3272 if (bb->index == ENTRY_BLOCK)
3273 ;
3274 else if (bb->index == EXIT_BLOCK)
3275 dse_step3_exit_block_scan (bb_info);
3276 else
3277 dse_step3_scan (bb);
3278 if (EDGE_COUNT (bb->succs) == 0)
3279 mark_reachable_blocks (unreachable_blocks, bb);
3280
3281 /* If this is the second time dataflow is run, delete the old
3282 sets. */
3283 if (bb_info->in)
3284 BITMAP_FREE (bb_info->in);
3285 if (bb_info->out)
3286 BITMAP_FREE (bb_info->out);
3287 }
3288
3289 /* For any block in an infinite loop, we must initialize the out set
3290 to all ones. This could be expensive, but almost never occurs in
3291 practice. However, it is common in regression tests. */
3292 EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks, 0, i, sbi)
3293 {
3294 if (bitmap_bit_p (all_blocks, i))
3295 {
3296 bb_info_t bb_info = bb_table[i];
3297 if (!all_ones)
3298 {
3299 unsigned int j;
3300 group_info *group;
3301
3302 all_ones = BITMAP_ALLOC (&dse_bitmap_obstack);
3303 FOR_EACH_VEC_ELT (rtx_group_vec, j, group)
3304 bitmap_ior_into (all_ones, group->group_kill);
3305 }
3306 if (!bb_info->out)
3307 {
3308 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3309 bitmap_copy (bb_info->out, all_ones);
3310 }
3311 }
3312 }
3313
3314 if (all_ones)
3315 BITMAP_FREE (all_ones);
3316 }
3317
3318
3319 \f
3320 /*----------------------------------------------------------------------------
3321 Fourth step.
3322
3323 Solve the bitvector equations.
3324 ----------------------------------------------------------------------------*/
3325
3326
3327 /* Confluence function for blocks with no successors. Create an out
3328 set from the gen set of the exit block. This block logically has
3329 the exit block as a successor. */
3330
3331
3332
3333 static void
3334 dse_confluence_0 (basic_block bb)
3335 {
3336 bb_info_t bb_info = bb_table[bb->index];
3337
3338 if (bb->index == EXIT_BLOCK)
3339 return;
3340
3341 if (!bb_info->out)
3342 {
3343 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3344 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3345 }
3346 }
3347
3348 /* Propagate the information from the in set of the dest of E to the
3349 out set of the src of E. If the various in or out sets are not
3350 there, that means they are all ones. */
3351
3352 static bool
3353 dse_confluence_n (edge e)
3354 {
3355 bb_info_t src_info = bb_table[e->src->index];
3356 bb_info_t dest_info = bb_table[e->dest->index];
3357
3358 if (dest_info->in)
3359 {
3360 if (src_info->out)
3361 bitmap_and_into (src_info->out, dest_info->in);
3362 else
3363 {
3364 src_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3365 bitmap_copy (src_info->out, dest_info->in);
3366 }
3367 }
3368 return true;
3369 }
3370
3371
3372 /* Propagate the info from the out to the in set of BB_INDEX's basic
3373 block. There are three cases:
3374
3375 1) The block has no kill set. In this case the kill set is all
3376 ones. It does not matter what the out set of the block is, none of
3377 the info can reach the top. The only thing that reaches the top is
3378 the gen set and we just copy the set.
3379
3380 2) There is a kill set but no out set and bb has successors. In
3381 this case we just return. Eventually an out set will be created and
3382 it is better to wait than to create a set of ones.
3383
3384 3) There is both a kill and out set. We apply the obvious transfer
3385 function.
3386 */
3387
3388 static bool
3389 dse_transfer_function (int bb_index)
3390 {
3391 bb_info_t bb_info = bb_table[bb_index];
3392
3393 if (bb_info->kill)
3394 {
3395 if (bb_info->out)
3396 {
3397 /* Case 3 above. */
3398 if (bb_info->in)
3399 return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3400 bb_info->out, bb_info->kill);
3401 else
3402 {
3403 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3404 bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3405 bb_info->out, bb_info->kill);
3406 return true;
3407 }
3408 }
3409 else
3410 /* Case 2 above. */
3411 return false;
3412 }
3413 else
3414 {
3415 /* Case 1 above. If there is already an in set, nothing
3416 happens. */
3417 if (bb_info->in)
3418 return false;
3419 else
3420 {
3421 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3422 bitmap_copy (bb_info->in, bb_info->gen);
3423 return true;
3424 }
3425 }
3426 }
3427
3428 /* Solve the dataflow equations. */
3429
3430 static void
3431 dse_step4 (void)
3432 {
3433 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3434 dse_confluence_n, dse_transfer_function,
3435 all_blocks, df_get_postorder (DF_BACKWARD),
3436 df_get_n_blocks (DF_BACKWARD));
3437 if (dump_file && (dump_flags & TDF_DETAILS))
3438 {
3439 basic_block bb;
3440
3441 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
3442 FOR_ALL_BB_FN (bb, cfun)
3443 {
3444 bb_info_t bb_info = bb_table[bb->index];
3445
3446 df_print_bb_index (bb, dump_file);
3447 if (bb_info->in)
3448 bitmap_print (dump_file, bb_info->in, " in: ", "\n");
3449 else
3450 fprintf (dump_file, " in: *MISSING*\n");
3451 if (bb_info->gen)
3452 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
3453 else
3454 fprintf (dump_file, " gen: *MISSING*\n");
3455 if (bb_info->kill)
3456 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
3457 else
3458 fprintf (dump_file, " kill: *MISSING*\n");
3459 if (bb_info->out)
3460 bitmap_print (dump_file, bb_info->out, " out: ", "\n");
3461 else
3462 fprintf (dump_file, " out: *MISSING*\n\n");
3463 }
3464 }
3465 }
3466
3467
3468 \f
3469 /*----------------------------------------------------------------------------
3470 Fifth step.
3471
3472 Delete the stores that can only be deleted using the global information.
3473 ----------------------------------------------------------------------------*/
3474
3475
3476 static void
3477 dse_step5 (void)
3478 {
3479 basic_block bb;
3480 FOR_EACH_BB_FN (bb, cfun)
3481 {
3482 bb_info_t bb_info = bb_table[bb->index];
3483 insn_info_t insn_info = bb_info->last_insn;
3484 bitmap v = bb_info->out;
3485
3486 while (insn_info)
3487 {
3488 bool deleted = false;
3489 if (dump_file && insn_info->insn)
3490 {
3491 fprintf (dump_file, "starting to process insn %d\n",
3492 INSN_UID (insn_info->insn));
3493 bitmap_print (dump_file, v, " v: ", "\n");
3494 }
3495
3496 /* There may have been code deleted by the dce pass run before
3497 this phase. */
3498 if (insn_info->insn
3499 && INSN_P (insn_info->insn)
3500 && (!insn_info->cannot_delete)
3501 && (!bitmap_empty_p (v)))
3502 {
3503 store_info *store_info = insn_info->store_rec;
3504
3505 /* Try to delete the current insn. */
3506 deleted = true;
3507
3508 /* Skip the clobbers. */
3509 while (!store_info->is_set)
3510 store_info = store_info->next;
3511
3512 HOST_WIDE_INT i, offset, width;
3513 group_info *group_info = rtx_group_vec[store_info->group_id];
3514
3515 if (!store_info->offset.is_constant (&offset)
3516 || !store_info->width.is_constant (&width))
3517 deleted = false;
3518 else
3519 {
3520 HOST_WIDE_INT end = offset + width;
3521 for (i = offset; i < end; i++)
3522 {
3523 int index = get_bitmap_index (group_info, i);
3524
3525 if (dump_file && (dump_flags & TDF_DETAILS))
3526 fprintf (dump_file, "i = %d, index = %d\n",
3527 (int) i, index);
3528 if (index == 0 || !bitmap_bit_p (v, index))
3529 {
3530 if (dump_file && (dump_flags & TDF_DETAILS))
3531 fprintf (dump_file, "failing at i = %d\n",
3532 (int) i);
3533 deleted = false;
3534 break;
3535 }
3536 }
3537 }
3538 if (deleted)
3539 {
3540 if (dbg_cnt (dse)
3541 && check_for_inc_dec_1 (insn_info))
3542 {
3543 delete_insn (insn_info->insn);
3544 insn_info->insn = NULL;
3545 globally_deleted++;
3546 }
3547 }
3548 }
3549 /* We do want to process the local info if the insn was
3550 deleted. For instance, if the insn did a wild read, we
3551 no longer need to trash the info. */
3552 if (insn_info->insn
3553 && INSN_P (insn_info->insn)
3554 && (!deleted))
3555 {
3556 scan_stores (insn_info->store_rec, v, NULL);
3557 if (insn_info->wild_read)
3558 {
3559 if (dump_file && (dump_flags & TDF_DETAILS))
3560 fprintf (dump_file, "wild read\n");
3561 bitmap_clear (v);
3562 }
3563 else if (insn_info->read_rec
3564 || insn_info->non_frame_wild_read
3565 || insn_info->frame_read)
3566 {
3567 if (dump_file && (dump_flags & TDF_DETAILS))
3568 {
3569 if (!insn_info->non_frame_wild_read
3570 && !insn_info->frame_read)
3571 fprintf (dump_file, "regular read\n");
3572 if (insn_info->non_frame_wild_read)
3573 fprintf (dump_file, "non-frame wild read\n");
3574 if (insn_info->frame_read)
3575 fprintf (dump_file, "frame read\n");
3576 }
3577 scan_reads (insn_info, v, NULL);
3578 }
3579 }
3580
3581 insn_info = insn_info->prev_insn;
3582 }
3583 }
3584 }
3585
3586
3587 \f
3588 /*----------------------------------------------------------------------------
3589 Sixth step.
3590
3591 Delete stores made redundant by earlier stores (which store the same
3592 value) that couldn't be eliminated.
3593 ----------------------------------------------------------------------------*/
3594
3595 static void
3596 dse_step6 (void)
3597 {
3598 basic_block bb;
3599
3600 FOR_ALL_BB_FN (bb, cfun)
3601 {
3602 bb_info_t bb_info = bb_table[bb->index];
3603 insn_info_t insn_info = bb_info->last_insn;
3604
3605 while (insn_info)
3606 {
3607 /* There may have been code deleted by the dce pass run before
3608 this phase. */
3609 if (insn_info->insn
3610 && INSN_P (insn_info->insn)
3611 && !insn_info->cannot_delete)
3612 {
3613 store_info *s_info = insn_info->store_rec;
3614
3615 while (s_info && !s_info->is_set)
3616 s_info = s_info->next;
3617 if (s_info
3618 && s_info->redundant_reason
3619 && s_info->redundant_reason->insn
3620 && INSN_P (s_info->redundant_reason->insn))
3621 {
3622 rtx_insn *rinsn = s_info->redundant_reason->insn;
3623 if (dump_file && (dump_flags & TDF_DETAILS))
3624 fprintf (dump_file, "Locally deleting insn %d "
3625 "because insn %d stores the "
3626 "same value and couldn't be "
3627 "eliminated\n",
3628 INSN_UID (insn_info->insn),
3629 INSN_UID (rinsn));
3630 delete_dead_store_insn (insn_info);
3631 }
3632 }
3633 insn_info = insn_info->prev_insn;
3634 }
3635 }
3636 }
3637 \f
3638 /*----------------------------------------------------------------------------
3639 Seventh step.
3640
3641 Destroy everything left standing.
3642 ----------------------------------------------------------------------------*/
3643
3644 static void
3645 dse_step7 (void)
3646 {
3647 bitmap_obstack_release (&dse_bitmap_obstack);
3648 obstack_free (&dse_obstack, NULL);
3649
3650 end_alias_analysis ();
3651 free (bb_table);
3652 delete rtx_group_table;
3653 rtx_group_table = NULL;
3654 rtx_group_vec.release ();
3655 BITMAP_FREE (all_blocks);
3656 BITMAP_FREE (scratch);
3657
3658 rtx_store_info_pool.release ();
3659 read_info_type_pool.release ();
3660 insn_info_type_pool.release ();
3661 dse_bb_info_type_pool.release ();
3662 group_info_pool.release ();
3663 deferred_change_pool.release ();
3664 }
3665
3666
3667 /* -------------------------------------------------------------------------
3668 DSE
3669 ------------------------------------------------------------------------- */
3670
3671 /* Callback for running pass_rtl_dse. */
3672
3673 static unsigned int
3674 rest_of_handle_dse (void)
3675 {
3676 df_set_flags (DF_DEFER_INSN_RESCAN);
3677
3678 /* Need the notes since we must track live hardregs in the forwards
3679 direction. */
3680 df_note_add_problem ();
3681 df_analyze ();
3682
3683 dse_step0 ();
3684 dse_step1 ();
3685 dse_step2_init ();
3686 if (dse_step2 ())
3687 {
3688 df_set_flags (DF_LR_RUN_DCE);
3689 df_analyze ();
3690 if (dump_file && (dump_flags & TDF_DETAILS))
3691 fprintf (dump_file, "doing global processing\n");
3692 dse_step3 ();
3693 dse_step4 ();
3694 dse_step5 ();
3695 }
3696
3697 dse_step6 ();
3698 dse_step7 ();
3699
3700 if (dump_file)
3701 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d\n",
3702 locally_deleted, globally_deleted);
3703
3704 /* DSE can eliminate potentially-trapping MEMs.
3705 Remove any EH edges associated with them. */
3706 if ((locally_deleted || globally_deleted)
3707 && cfun->can_throw_non_call_exceptions
3708 && purge_all_dead_edges ())
3709 {
3710 free_dominance_info (CDI_DOMINATORS);
3711 cleanup_cfg (0);
3712 }
3713
3714 return 0;
3715 }
3716
3717 namespace {
3718
3719 const pass_data pass_data_rtl_dse1 =
3720 {
3721 RTL_PASS, /* type */
3722 "dse1", /* name */
3723 OPTGROUP_NONE, /* optinfo_flags */
3724 TV_DSE1, /* tv_id */
3725 0, /* properties_required */
3726 0, /* properties_provided */
3727 0, /* properties_destroyed */
3728 0, /* todo_flags_start */
3729 TODO_df_finish, /* todo_flags_finish */
3730 };
3731
3732 class pass_rtl_dse1 : public rtl_opt_pass
3733 {
3734 public:
3735 pass_rtl_dse1 (gcc::context *ctxt)
3736 : rtl_opt_pass (pass_data_rtl_dse1, ctxt)
3737 {}
3738
3739 /* opt_pass methods: */
3740 virtual bool gate (function *)
3741 {
3742 return optimize > 0 && flag_dse && dbg_cnt (dse1);
3743 }
3744
3745 virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
3746
3747 }; // class pass_rtl_dse1
3748
3749 } // anon namespace
3750
3751 rtl_opt_pass *
3752 make_pass_rtl_dse1 (gcc::context *ctxt)
3753 {
3754 return new pass_rtl_dse1 (ctxt);
3755 }
3756
3757 namespace {
3758
3759 const pass_data pass_data_rtl_dse2 =
3760 {
3761 RTL_PASS, /* type */
3762 "dse2", /* name */
3763 OPTGROUP_NONE, /* optinfo_flags */
3764 TV_DSE2, /* tv_id */
3765 0, /* properties_required */
3766 0, /* properties_provided */
3767 0, /* properties_destroyed */
3768 0, /* todo_flags_start */
3769 TODO_df_finish, /* todo_flags_finish */
3770 };
3771
3772 class pass_rtl_dse2 : public rtl_opt_pass
3773 {
3774 public:
3775 pass_rtl_dse2 (gcc::context *ctxt)
3776 : rtl_opt_pass (pass_data_rtl_dse2, ctxt)
3777 {}
3778
3779 /* opt_pass methods: */
3780 virtual bool gate (function *)
3781 {
3782 return optimize > 0 && flag_dse && dbg_cnt (dse2);
3783 }
3784
3785 virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
3786
3787 }; // class pass_rtl_dse2
3788
3789 } // anon namespace
3790
3791 rtl_opt_pass *
3792 make_pass_rtl_dse2 (gcc::context *ctxt)
3793 {
3794 return new pass_rtl_dse2 (ctxt);
3795 }
This page took 0.207108 seconds and 6 git commands to generate.