]> gcc.gnu.org Git - gcc.git/blob - gcc/dse.c
re PR rtl-optimization/39794 (Miscompile with -O2 -funroll-loops)
[gcc.git] / gcc / dse.c
1 /* RTL dead store elimination.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3
4 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5 and Kenneth Zadeck <zadeck@naturalbridge.com>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #undef BASELINE
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "hashtab.h"
29 #include "tm.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "tm_p.h"
33 #include "regs.h"
34 #include "hard-reg-set.h"
35 #include "flags.h"
36 #include "df.h"
37 #include "cselib.h"
38 #include "timevar.h"
39 #include "tree-pass.h"
40 #include "alloc-pool.h"
41 #include "alias.h"
42 #include "insn-config.h"
43 #include "expr.h"
44 #include "recog.h"
45 #include "dse.h"
46 #include "optabs.h"
47 #include "dbgcnt.h"
48 #include "target.h"
49
50 /* This file contains three techniques for performing Dead Store
51 Elimination (dse).
52
53 * The first technique performs dse locally on any base address. It
54 is based on the cselib which is a local value numbering technique.
55 This technique is local to a basic block but deals with a fairly
56 general addresses.
57
58 * The second technique performs dse globally but is restricted to
59 base addresses that are either constant or are relative to the
60 frame_pointer.
61
62 * The third technique, (which is only done after register allocation)
63 processes the spill spill slots. This differs from the second
64 technique because it takes advantage of the fact that spilling is
65 completely free from the effects of aliasing.
66
67 Logically, dse is a backwards dataflow problem. A store can be
68 deleted if it if cannot be reached in the backward direction by any
69 use of the value being stored. However, the local technique uses a
70 forwards scan of the basic block because cselib requires that the
71 block be processed in that order.
72
73 The pass is logically broken into 7 steps:
74
75 0) Initialization.
76
77 1) The local algorithm, as well as scanning the insns for the two
78 global algorithms.
79
80 2) Analysis to see if the global algs are necessary. In the case
81 of stores base on a constant address, there must be at least two
82 stores to that address, to make it possible to delete some of the
83 stores. In the case of stores off of the frame or spill related
84 stores, only one store to an address is necessary because those
85 stores die at the end of the function.
86
87 3) Set up the global dataflow equations based on processing the
88 info parsed in the first step.
89
90 4) Solve the dataflow equations.
91
92 5) Delete the insns that the global analysis has indicated are
93 unnecessary.
94
95 6) Delete insns that store the same value as preceeding store
96 where the earlier store couldn't be eliminated.
97
98 7) Cleanup.
99
100 This step uses cselib and canon_rtx to build the largest expression
101 possible for each address. This pass is a forwards pass through
102 each basic block. From the point of view of the global technique,
103 the first pass could examine a block in either direction. The
104 forwards ordering is to accommodate cselib.
105
106 We a simplifying assumption: addresses fall into four broad
107 categories:
108
109 1) base has rtx_varies_p == false, offset is constant.
110 2) base has rtx_varies_p == false, offset variable.
111 3) base has rtx_varies_p == true, offset constant.
112 4) base has rtx_varies_p == true, offset variable.
113
114 The local passes are able to process all 4 kinds of addresses. The
115 global pass only handles (1).
116
117 The global problem is formulated as follows:
118
119 A store, S1, to address A, where A is not relative to the stack
120 frame, can be eliminated if all paths from S1 to the end of the
121 of the function contain another store to A before a read to A.
122
123 If the address A is relative to the stack frame, a store S2 to A
124 can be eliminated if there are no paths from S1 that reach the
125 end of the function that read A before another store to A. In
126 this case S2 can be deleted if there are paths to from S2 to the
127 end of the function that have no reads or writes to A. This
128 second case allows stores to the stack frame to be deleted that
129 would otherwise die when the function returns. This cannot be
130 done if stores_off_frame_dead_at_return is not true. See the doc
131 for that variable for when this variable is false.
132
133 The global problem is formulated as a backwards set union
134 dataflow problem where the stores are the gens and reads are the
135 kills. Set union problems are rare and require some special
136 handling given our representation of bitmaps. A straightforward
137 implementation of requires a lot of bitmaps filled with 1s.
138 These are expensive and cumbersome in our bitmap formulation so
139 care has been taken to avoid large vectors filled with 1s. See
140 the comments in bb_info and in the dataflow confluence functions
141 for details.
142
143 There are two places for further enhancements to this algorithm:
144
145 1) The original dse which was embedded in a pass called flow also
146 did local address forwarding. For example in
147
148 A <- r100
149 ... <- A
150
151 flow would replace the right hand side of the second insn with a
152 reference to r100. Most of the information is available to add this
153 to this pass. It has not done it because it is a lot of work in
154 the case that either r100 is assigned to between the first and
155 second insn and/or the second insn is a load of part of the value
156 stored by the first insn.
157
158 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
159 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
160 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
161 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
162
163 2) The cleaning up of spill code is quite profitable. It currently
164 depends on reading tea leaves and chicken entrails left by reload.
165 This pass depends on reload creating a singleton alias set for each
166 spill slot and telling the next dse pass which of these alias sets
167 are the singletons. Rather than analyze the addresses of the
168 spills, dse's spill processing just does analysis of the loads and
169 stores that use those alias sets. There are three cases where this
170 falls short:
171
172 a) Reload sometimes creates the slot for one mode of access, and
173 then inserts loads and/or stores for a smaller mode. In this
174 case, the current code just punts on the slot. The proper thing
175 to do is to back out and use one bit vector position for each
176 byte of the entity associated with the slot. This depends on
177 KNOWING that reload always generates the accesses for each of the
178 bytes in some canonical (read that easy to understand several
179 passes after reload happens) way.
180
181 b) Reload sometimes decides that spill slot it allocated was not
182 large enough for the mode and goes back and allocates more slots
183 with the same mode and alias set. The backout in this case is a
184 little more graceful than (a). In this case the slot is unmarked
185 as being a spill slot and if final address comes out to be based
186 off the frame pointer, the global algorithm handles this slot.
187
188 c) For any pass that may prespill, there is currently no
189 mechanism to tell the dse pass that the slot being used has the
190 special properties that reload uses. It may be that all that is
191 required is to have those passes make the same calls that reload
192 does, assuming that the alias sets can be manipulated in the same
193 way. */
194
195 /* There are limits to the size of constant offsets we model for the
196 global problem. There are certainly test cases, that exceed this
197 limit, however, it is unlikely that there are important programs
198 that really have constant offsets this size. */
199 #define MAX_OFFSET (64 * 1024)
200
201
202 static bitmap scratch = NULL;
203 struct insn_info;
204
205 /* This structure holds information about a candidate store. */
206 struct store_info
207 {
208
209 /* False means this is a clobber. */
210 bool is_set;
211
212 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
213 bool is_large;
214
215 /* The id of the mem group of the base address. If rtx_varies_p is
216 true, this is -1. Otherwise, it is the index into the group
217 table. */
218 int group_id;
219
220 /* This is the cselib value. */
221 cselib_val *cse_base;
222
223 /* This canonized mem. */
224 rtx mem;
225
226 /* Canonized MEM address for use by canon_true_dependence. */
227 rtx mem_addr;
228
229 /* If this is non-zero, it is the alias set of a spill location. */
230 alias_set_type alias_set;
231
232 /* The offset of the first and byte before the last byte associated
233 with the operation. */
234 HOST_WIDE_INT begin, end;
235
236 union
237 {
238 /* A bitmask as wide as the number of bytes in the word that
239 contains a 1 if the byte may be needed. The store is unused if
240 all of the bits are 0. This is used if IS_LARGE is false. */
241 unsigned HOST_WIDE_INT small_bitmask;
242
243 struct
244 {
245 /* A bitmap with one bit per byte. Cleared bit means the position
246 is needed. Used if IS_LARGE is false. */
247 bitmap bitmap;
248
249 /* Number of set bits (i.e. unneeded bytes) in BITMAP. If it is
250 equal to END - BEGIN, the whole store is unused. */
251 int count;
252 } large;
253 } positions_needed;
254
255 /* The next store info for this insn. */
256 struct store_info *next;
257
258 /* The right hand side of the store. This is used if there is a
259 subsequent reload of the mems address somewhere later in the
260 basic block. */
261 rtx rhs;
262
263 /* If rhs is or holds a constant, this contains that constant,
264 otherwise NULL. */
265 rtx const_rhs;
266
267 /* Set if this store stores the same constant value as REDUNDANT_REASON
268 insn stored. These aren't eliminated early, because doing that
269 might prevent the earlier larger store to be eliminated. */
270 struct insn_info *redundant_reason;
271 };
272
273 /* Return a bitmask with the first N low bits set. */
274
275 static unsigned HOST_WIDE_INT
276 lowpart_bitmask (int n)
277 {
278 unsigned HOST_WIDE_INT mask = ~(unsigned HOST_WIDE_INT) 0;
279 return mask >> (HOST_BITS_PER_WIDE_INT - n);
280 }
281
282 typedef struct store_info *store_info_t;
283 static alloc_pool cse_store_info_pool;
284 static alloc_pool rtx_store_info_pool;
285
286 /* This structure holds information about a load. These are only
287 built for rtx bases. */
288 struct read_info
289 {
290 /* The id of the mem group of the base address. */
291 int group_id;
292
293 /* If this is non-zero, it is the alias set of a spill location. */
294 alias_set_type alias_set;
295
296 /* The offset of the first and byte after the last byte associated
297 with the operation. If begin == end == 0, the read did not have
298 a constant offset. */
299 int begin, end;
300
301 /* The mem being read. */
302 rtx mem;
303
304 /* The next read_info for this insn. */
305 struct read_info *next;
306 };
307 typedef struct read_info *read_info_t;
308 static alloc_pool read_info_pool;
309
310
311 /* One of these records is created for each insn. */
312
313 struct insn_info
314 {
315 /* Set true if the insn contains a store but the insn itself cannot
316 be deleted. This is set if the insn is a parallel and there is
317 more than one non dead output or if the insn is in some way
318 volatile. */
319 bool cannot_delete;
320
321 /* This field is only used by the global algorithm. It is set true
322 if the insn contains any read of mem except for a (1). This is
323 also set if the insn is a call or has a clobber mem. If the insn
324 contains a wild read, the use_rec will be null. */
325 bool wild_read;
326
327 /* This field is only used for the processing of const functions.
328 These functions cannot read memory, but they can read the stack
329 because that is where they may get their parms. We need to be
330 this conservative because, like the store motion pass, we don't
331 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
332 Moreover, we need to distinguish two cases:
333 1. Before reload (register elimination), the stores related to
334 outgoing arguments are stack pointer based and thus deemed
335 of non-constant base in this pass. This requires special
336 handling but also means that the frame pointer based stores
337 need not be killed upon encountering a const function call.
338 2. After reload, the stores related to outgoing arguments can be
339 either stack pointer or hard frame pointer based. This means
340 that we have no other choice than also killing all the frame
341 pointer based stores upon encountering a const function call.
342 This field is set after reload for const function calls. Having
343 this set is less severe than a wild read, it just means that all
344 the frame related stores are killed rather than all the stores. */
345 bool frame_read;
346
347 /* This field is only used for the processing of const functions.
348 It is set if the insn may contain a stack pointer based store. */
349 bool stack_pointer_based;
350
351 /* This is true if any of the sets within the store contains a
352 cselib base. Such stores can only be deleted by the local
353 algorithm. */
354 bool contains_cselib_groups;
355
356 /* The insn. */
357 rtx insn;
358
359 /* The list of mem sets or mem clobbers that are contained in this
360 insn. If the insn is deletable, it contains only one mem set.
361 But it could also contain clobbers. Insns that contain more than
362 one mem set are not deletable, but each of those mems are here in
363 order to provide info to delete other insns. */
364 store_info_t store_rec;
365
366 /* The linked list of mem uses in this insn. Only the reads from
367 rtx bases are listed here. The reads to cselib bases are
368 completely processed during the first scan and so are never
369 created. */
370 read_info_t read_rec;
371
372 /* The prev insn in the basic block. */
373 struct insn_info * prev_insn;
374
375 /* The linked list of insns that are in consideration for removal in
376 the forwards pass thru the basic block. This pointer may be
377 trash as it is not cleared when a wild read occurs. The only
378 time it is guaranteed to be correct is when the traversal starts
379 at active_local_stores. */
380 struct insn_info * next_local_store;
381 };
382
383 typedef struct insn_info *insn_info_t;
384 static alloc_pool insn_info_pool;
385
386 /* The linked list of stores that are under consideration in this
387 basic block. */
388 static insn_info_t active_local_stores;
389
390 struct bb_info
391 {
392
393 /* Pointer to the insn info for the last insn in the block. These
394 are linked so this is how all of the insns are reached. During
395 scanning this is the current insn being scanned. */
396 insn_info_t last_insn;
397
398 /* The info for the global dataflow problem. */
399
400
401 /* This is set if the transfer function should and in the wild_read
402 bitmap before applying the kill and gen sets. That vector knocks
403 out most of the bits in the bitmap and thus speeds up the
404 operations. */
405 bool apply_wild_read;
406
407 /* The following 4 bitvectors hold information about which positions
408 of which stores are live or dead. They are indexed by
409 get_bitmap_index. */
410
411 /* The set of store positions that exist in this block before a wild read. */
412 bitmap gen;
413
414 /* The set of load positions that exist in this block above the
415 same position of a store. */
416 bitmap kill;
417
418 /* The set of stores that reach the top of the block without being
419 killed by a read.
420
421 Do not represent the in if it is all ones. Note that this is
422 what the bitvector should logically be initialized to for a set
423 intersection problem. However, like the kill set, this is too
424 expensive. So initially, the in set will only be created for the
425 exit block and any block that contains a wild read. */
426 bitmap in;
427
428 /* The set of stores that reach the bottom of the block from it's
429 successors.
430
431 Do not represent the in if it is all ones. Note that this is
432 what the bitvector should logically be initialized to for a set
433 intersection problem. However, like the kill and in set, this is
434 too expensive. So what is done is that the confluence operator
435 just initializes the vector from one of the out sets of the
436 successors of the block. */
437 bitmap out;
438
439 /* The following bitvector is indexed by the reg number. It
440 contains the set of regs that are live at the current instruction
441 being processed. While it contains info for all of the
442 registers, only the pseudos are actually examined. It is used to
443 assure that shift sequences that are inserted do not accidently
444 clobber live hard regs. */
445 bitmap regs_live;
446 };
447
448 typedef struct bb_info *bb_info_t;
449 static alloc_pool bb_info_pool;
450
451 /* Table to hold all bb_infos. */
452 static bb_info_t *bb_table;
453
454 /* There is a group_info for each rtx base that is used to reference
455 memory. There are also not many of the rtx bases because they are
456 very limited in scope. */
457
458 struct group_info
459 {
460 /* The actual base of the address. */
461 rtx rtx_base;
462
463 /* The sequential id of the base. This allows us to have a
464 canonical ordering of these that is not based on addresses. */
465 int id;
466
467 /* True if there are any positions that are to be processed
468 globally. */
469 bool process_globally;
470
471 /* True if the base of this group is either the frame_pointer or
472 hard_frame_pointer. */
473 bool frame_related;
474
475 /* A mem wrapped around the base pointer for the group in order to
476 do read dependency. */
477 rtx base_mem;
478
479 /* Canonized version of base_mem's address. */
480 rtx canon_base_addr;
481
482 /* These two sets of two bitmaps are used to keep track of how many
483 stores are actually referencing that position from this base. We
484 only do this for rtx bases as this will be used to assign
485 positions in the bitmaps for the global problem. Bit N is set in
486 store1 on the first store for offset N. Bit N is set in store2
487 for the second store to offset N. This is all we need since we
488 only care about offsets that have two or more stores for them.
489
490 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
491 for 0 and greater offsets.
492
493 There is one special case here, for stores into the stack frame,
494 we will or store1 into store2 before deciding which stores look
495 at globally. This is because stores to the stack frame that have
496 no other reads before the end of the function can also be
497 deleted. */
498 bitmap store1_n, store1_p, store2_n, store2_p;
499
500 /* The positions in this bitmap have the same assignments as the in,
501 out, gen and kill bitmaps. This bitmap is all zeros except for
502 the positions that are occupied by stores for this group. */
503 bitmap group_kill;
504
505 /* The offset_map is used to map the offsets from this base into
506 positions in the global bitmaps. It is only created after all of
507 the all of stores have been scanned and we know which ones we
508 care about. */
509 int *offset_map_n, *offset_map_p;
510 int offset_map_size_n, offset_map_size_p;
511 };
512 typedef struct group_info *group_info_t;
513 typedef const struct group_info *const_group_info_t;
514 static alloc_pool rtx_group_info_pool;
515
516 /* Tables of group_info structures, hashed by base value. */
517 static htab_t rtx_group_table;
518
519 /* Index into the rtx_group_vec. */
520 static int rtx_group_next_id;
521
522 DEF_VEC_P(group_info_t);
523 DEF_VEC_ALLOC_P(group_info_t,heap);
524
525 static VEC(group_info_t,heap) *rtx_group_vec;
526
527
528 /* This structure holds the set of changes that are being deferred
529 when removing read operation. See replace_read. */
530 struct deferred_change
531 {
532
533 /* The mem that is being replaced. */
534 rtx *loc;
535
536 /* The reg it is being replaced with. */
537 rtx reg;
538
539 struct deferred_change *next;
540 };
541
542 typedef struct deferred_change *deferred_change_t;
543 static alloc_pool deferred_change_pool;
544
545 static deferred_change_t deferred_change_list = NULL;
546
547 /* This are used to hold the alias sets of spill variables. Since
548 these are never aliased and there may be a lot of them, it makes
549 sense to treat them specially. This bitvector is only allocated in
550 calls from dse_record_singleton_alias_set which currently is only
551 made during reload1. So when dse is called before reload this
552 mechanism does nothing. */
553
554 static bitmap clear_alias_sets = NULL;
555
556 /* The set of clear_alias_sets that have been disqualified because
557 there are loads or stores using a different mode than the alias set
558 was registered with. */
559 static bitmap disqualified_clear_alias_sets = NULL;
560
561 /* The group that holds all of the clear_alias_sets. */
562 static group_info_t clear_alias_group;
563
564 /* The modes of the clear_alias_sets. */
565 static htab_t clear_alias_mode_table;
566
567 /* Hash table element to look up the mode for an alias set. */
568 struct clear_alias_mode_holder
569 {
570 alias_set_type alias_set;
571 enum machine_mode mode;
572 };
573
574 static alloc_pool clear_alias_mode_pool;
575
576 /* This is true except if cfun->stdarg -- i.e. we cannot do
577 this for vararg functions because they play games with the frame. */
578 static bool stores_off_frame_dead_at_return;
579
580 /* Counter for stats. */
581 static int globally_deleted;
582 static int locally_deleted;
583 static int spill_deleted;
584
585 static bitmap all_blocks;
586
587 /* The number of bits used in the global bitmaps. */
588 static unsigned int current_position;
589
590
591 static bool gate_dse (void);
592 static bool gate_dse1 (void);
593 static bool gate_dse2 (void);
594
595 \f
596 /*----------------------------------------------------------------------------
597 Zeroth step.
598
599 Initialization.
600 ----------------------------------------------------------------------------*/
601
602 /* Hashtable callbacks for maintaining the "bases" field of
603 store_group_info, given that the addresses are function invariants. */
604
605 static int
606 clear_alias_mode_eq (const void *p1, const void *p2)
607 {
608 const struct clear_alias_mode_holder * h1
609 = (const struct clear_alias_mode_holder *) p1;
610 const struct clear_alias_mode_holder * h2
611 = (const struct clear_alias_mode_holder *) p2;
612 return h1->alias_set == h2->alias_set;
613 }
614
615
616 static hashval_t
617 clear_alias_mode_hash (const void *p)
618 {
619 const struct clear_alias_mode_holder *holder
620 = (const struct clear_alias_mode_holder *) p;
621 return holder->alias_set;
622 }
623
624
625 /* Find the entry associated with ALIAS_SET. */
626
627 static struct clear_alias_mode_holder *
628 clear_alias_set_lookup (alias_set_type alias_set)
629 {
630 struct clear_alias_mode_holder tmp_holder;
631 void **slot;
632
633 tmp_holder.alias_set = alias_set;
634 slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, NO_INSERT);
635 gcc_assert (*slot);
636
637 return (struct clear_alias_mode_holder *) *slot;
638 }
639
640
641 /* Hashtable callbacks for maintaining the "bases" field of
642 store_group_info, given that the addresses are function invariants. */
643
644 static int
645 invariant_group_base_eq (const void *p1, const void *p2)
646 {
647 const_group_info_t gi1 = (const_group_info_t) p1;
648 const_group_info_t gi2 = (const_group_info_t) p2;
649 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
650 }
651
652
653 static hashval_t
654 invariant_group_base_hash (const void *p)
655 {
656 const_group_info_t gi = (const_group_info_t) p;
657 int do_not_record;
658 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
659 }
660
661
662 /* Get the GROUP for BASE. Add a new group if it is not there. */
663
664 static group_info_t
665 get_group_info (rtx base)
666 {
667 struct group_info tmp_gi;
668 group_info_t gi;
669 void **slot;
670
671 if (base)
672 {
673 /* Find the store_base_info structure for BASE, creating a new one
674 if necessary. */
675 tmp_gi.rtx_base = base;
676 slot = htab_find_slot (rtx_group_table, &tmp_gi, INSERT);
677 gi = (group_info_t) *slot;
678 }
679 else
680 {
681 if (!clear_alias_group)
682 {
683 clear_alias_group = gi =
684 (group_info_t) pool_alloc (rtx_group_info_pool);
685 memset (gi, 0, sizeof (struct group_info));
686 gi->id = rtx_group_next_id++;
687 gi->store1_n = BITMAP_ALLOC (NULL);
688 gi->store1_p = BITMAP_ALLOC (NULL);
689 gi->store2_n = BITMAP_ALLOC (NULL);
690 gi->store2_p = BITMAP_ALLOC (NULL);
691 gi->group_kill = BITMAP_ALLOC (NULL);
692 gi->process_globally = false;
693 gi->offset_map_size_n = 0;
694 gi->offset_map_size_p = 0;
695 gi->offset_map_n = NULL;
696 gi->offset_map_p = NULL;
697 VEC_safe_push (group_info_t, heap, rtx_group_vec, gi);
698 }
699 return clear_alias_group;
700 }
701
702 if (gi == NULL)
703 {
704 *slot = gi = (group_info_t) pool_alloc (rtx_group_info_pool);
705 gi->rtx_base = base;
706 gi->id = rtx_group_next_id++;
707 gi->base_mem = gen_rtx_MEM (QImode, base);
708 gi->canon_base_addr = canon_rtx (base);
709 gi->store1_n = BITMAP_ALLOC (NULL);
710 gi->store1_p = BITMAP_ALLOC (NULL);
711 gi->store2_n = BITMAP_ALLOC (NULL);
712 gi->store2_p = BITMAP_ALLOC (NULL);
713 gi->group_kill = BITMAP_ALLOC (NULL);
714 gi->process_globally = false;
715 gi->frame_related =
716 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
717 gi->offset_map_size_n = 0;
718 gi->offset_map_size_p = 0;
719 gi->offset_map_n = NULL;
720 gi->offset_map_p = NULL;
721 VEC_safe_push (group_info_t, heap, rtx_group_vec, gi);
722 }
723
724 return gi;
725 }
726
727
728 /* Initialization of data structures. */
729
730 static void
731 dse_step0 (void)
732 {
733 locally_deleted = 0;
734 globally_deleted = 0;
735 spill_deleted = 0;
736
737 scratch = BITMAP_ALLOC (NULL);
738
739 rtx_store_info_pool
740 = create_alloc_pool ("rtx_store_info_pool",
741 sizeof (struct store_info), 100);
742 read_info_pool
743 = create_alloc_pool ("read_info_pool",
744 sizeof (struct read_info), 100);
745 insn_info_pool
746 = create_alloc_pool ("insn_info_pool",
747 sizeof (struct insn_info), 100);
748 bb_info_pool
749 = create_alloc_pool ("bb_info_pool",
750 sizeof (struct bb_info), 100);
751 rtx_group_info_pool
752 = create_alloc_pool ("rtx_group_info_pool",
753 sizeof (struct group_info), 100);
754 deferred_change_pool
755 = create_alloc_pool ("deferred_change_pool",
756 sizeof (struct deferred_change), 10);
757
758 rtx_group_table = htab_create (11, invariant_group_base_hash,
759 invariant_group_base_eq, NULL);
760
761 bb_table = XCNEWVEC (bb_info_t, last_basic_block);
762 rtx_group_next_id = 0;
763
764 stores_off_frame_dead_at_return = !cfun->stdarg;
765
766 init_alias_analysis ();
767
768 if (clear_alias_sets)
769 clear_alias_group = get_group_info (NULL);
770 else
771 clear_alias_group = NULL;
772 }
773
774
775 \f
776 /*----------------------------------------------------------------------------
777 First step.
778
779 Scan all of the insns. Any random ordering of the blocks is fine.
780 Each block is scanned in forward order to accommodate cselib which
781 is used to remove stores with non-constant bases.
782 ----------------------------------------------------------------------------*/
783
784 /* Delete all of the store_info recs from INSN_INFO. */
785
786 static void
787 free_store_info (insn_info_t insn_info)
788 {
789 store_info_t store_info = insn_info->store_rec;
790 while (store_info)
791 {
792 store_info_t next = store_info->next;
793 if (store_info->is_large)
794 BITMAP_FREE (store_info->positions_needed.large.bitmap);
795 if (store_info->cse_base)
796 pool_free (cse_store_info_pool, store_info);
797 else
798 pool_free (rtx_store_info_pool, store_info);
799 store_info = next;
800 }
801
802 insn_info->cannot_delete = true;
803 insn_info->contains_cselib_groups = false;
804 insn_info->store_rec = NULL;
805 }
806
807
808 struct insn_size {
809 int size;
810 rtx insn;
811 };
812
813
814 /* Add an insn to do the add inside a x if it is a
815 PRE/POST-INC/DEC/MODIFY. D is an structure containing the insn and
816 the size of the mode of the MEM that this is inside of. */
817
818 static int
819 replace_inc_dec (rtx *r, void *d)
820 {
821 rtx x = *r;
822 struct insn_size *data = (struct insn_size *)d;
823 switch (GET_CODE (x))
824 {
825 case PRE_INC:
826 case POST_INC:
827 {
828 rtx r1 = XEXP (x, 0);
829 rtx c = gen_int_mode (data->size, Pmode);
830 emit_insn_before (gen_rtx_SET (Pmode, r1,
831 gen_rtx_PLUS (Pmode, r1, c)),
832 data->insn);
833 return -1;
834 }
835
836 case PRE_DEC:
837 case POST_DEC:
838 {
839 rtx r1 = XEXP (x, 0);
840 rtx c = gen_int_mode (-data->size, Pmode);
841 emit_insn_before (gen_rtx_SET (Pmode, r1,
842 gen_rtx_PLUS (Pmode, r1, c)),
843 data->insn);
844 return -1;
845 }
846
847 case PRE_MODIFY:
848 case POST_MODIFY:
849 {
850 /* We can reuse the add because we are about to delete the
851 insn that contained it. */
852 rtx add = XEXP (x, 0);
853 rtx r1 = XEXP (add, 0);
854 emit_insn_before (gen_rtx_SET (Pmode, r1, add), data->insn);
855 return -1;
856 }
857
858 default:
859 return 0;
860 }
861 }
862
863
864 /* If X is a MEM, check the address to see if it is PRE/POST-INC/DEC/MODIFY
865 and generate an add to replace that. */
866
867 static int
868 replace_inc_dec_mem (rtx *r, void *d)
869 {
870 rtx x = *r;
871 if (x != NULL_RTX && MEM_P (x))
872 {
873 struct insn_size data;
874
875 data.size = GET_MODE_SIZE (GET_MODE (x));
876 data.insn = (rtx) d;
877
878 for_each_rtx (&XEXP (x, 0), replace_inc_dec, &data);
879
880 return -1;
881 }
882 return 0;
883 }
884
885 /* Before we delete INSN, make sure that the auto inc/dec, if it is
886 there, is split into a separate insn. */
887
888 static void
889 check_for_inc_dec (rtx insn)
890 {
891 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
892 if (note)
893 for_each_rtx (&insn, replace_inc_dec_mem, insn);
894 }
895
896
897 /* Delete the insn and free all of the fields inside INSN_INFO. */
898
899 static void
900 delete_dead_store_insn (insn_info_t insn_info)
901 {
902 read_info_t read_info;
903
904 if (!dbg_cnt (dse))
905 return;
906
907 check_for_inc_dec (insn_info->insn);
908 if (dump_file)
909 {
910 fprintf (dump_file, "Locally deleting insn %d ",
911 INSN_UID (insn_info->insn));
912 if (insn_info->store_rec->alias_set)
913 fprintf (dump_file, "alias set %d\n",
914 (int) insn_info->store_rec->alias_set);
915 else
916 fprintf (dump_file, "\n");
917 }
918
919 free_store_info (insn_info);
920 read_info = insn_info->read_rec;
921
922 while (read_info)
923 {
924 read_info_t next = read_info->next;
925 pool_free (read_info_pool, read_info);
926 read_info = next;
927 }
928 insn_info->read_rec = NULL;
929
930 delete_insn (insn_info->insn);
931 locally_deleted++;
932 insn_info->insn = NULL;
933
934 insn_info->wild_read = false;
935 }
936
937
938 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
939 OFFSET and WIDTH. */
940
941 static void
942 set_usage_bits (group_info_t group, HOST_WIDE_INT offset, HOST_WIDE_INT width)
943 {
944 HOST_WIDE_INT i;
945
946 if (offset > -MAX_OFFSET && offset + width < MAX_OFFSET)
947 for (i=offset; i<offset+width; i++)
948 {
949 bitmap store1;
950 bitmap store2;
951 int ai;
952 if (i < 0)
953 {
954 store1 = group->store1_n;
955 store2 = group->store2_n;
956 ai = -i;
957 }
958 else
959 {
960 store1 = group->store1_p;
961 store2 = group->store2_p;
962 ai = i;
963 }
964
965 if (bitmap_bit_p (store1, ai))
966 bitmap_set_bit (store2, ai);
967 else
968 {
969 bitmap_set_bit (store1, ai);
970 if (i < 0)
971 {
972 if (group->offset_map_size_n < ai)
973 group->offset_map_size_n = ai;
974 }
975 else
976 {
977 if (group->offset_map_size_p < ai)
978 group->offset_map_size_p = ai;
979 }
980 }
981 }
982 }
983
984
985 /* Set the BB_INFO so that the last insn is marked as a wild read. */
986
987 static void
988 add_wild_read (bb_info_t bb_info)
989 {
990 insn_info_t insn_info = bb_info->last_insn;
991 read_info_t *ptr = &insn_info->read_rec;
992
993 while (*ptr)
994 {
995 read_info_t next = (*ptr)->next;
996 if ((*ptr)->alias_set == 0)
997 {
998 pool_free (read_info_pool, *ptr);
999 *ptr = next;
1000 }
1001 else
1002 ptr = &(*ptr)->next;
1003 }
1004 insn_info->wild_read = true;
1005 active_local_stores = NULL;
1006 }
1007
1008
1009 /* Return true if X is a constant or one of the registers that behave
1010 as a constant over the life of a function. This is equivalent to
1011 !rtx_varies_p for memory addresses. */
1012
1013 static bool
1014 const_or_frame_p (rtx x)
1015 {
1016 switch (GET_CODE (x))
1017 {
1018 case MEM:
1019 return MEM_READONLY_P (x);
1020
1021 case CONST:
1022 case CONST_INT:
1023 case CONST_DOUBLE:
1024 case CONST_VECTOR:
1025 case SYMBOL_REF:
1026 case LABEL_REF:
1027 return true;
1028
1029 case REG:
1030 /* Note that we have to test for the actual rtx used for the frame
1031 and arg pointers and not just the register number in case we have
1032 eliminated the frame and/or arg pointer and are using it
1033 for pseudos. */
1034 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1035 /* The arg pointer varies if it is not a fixed register. */
1036 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1037 || x == pic_offset_table_rtx)
1038 return true;
1039 return false;
1040
1041 default:
1042 return false;
1043 }
1044 }
1045
1046 /* Take all reasonable action to put the address of MEM into the form
1047 that we can do analysis on.
1048
1049 The gold standard is to get the address into the form: address +
1050 OFFSET where address is something that rtx_varies_p considers a
1051 constant. When we can get the address in this form, we can do
1052 global analysis on it. Note that for constant bases, address is
1053 not actually returned, only the group_id. The address can be
1054 obtained from that.
1055
1056 If that fails, we try cselib to get a value we can at least use
1057 locally. If that fails we return false.
1058
1059 The GROUP_ID is set to -1 for cselib bases and the index of the
1060 group for non_varying bases.
1061
1062 FOR_READ is true if this is a mem read and false if not. */
1063
1064 static bool
1065 canon_address (rtx mem,
1066 alias_set_type *alias_set_out,
1067 int *group_id,
1068 HOST_WIDE_INT *offset,
1069 cselib_val **base)
1070 {
1071 rtx mem_address = XEXP (mem, 0);
1072 rtx expanded_address, address;
1073 /* Make sure that cselib is has initialized all of the operands of
1074 the address before asking it to do the subst. */
1075
1076 if (clear_alias_sets)
1077 {
1078 /* If this is a spill, do not do any further processing. */
1079 alias_set_type alias_set = MEM_ALIAS_SET (mem);
1080 if (dump_file)
1081 fprintf (dump_file, "found alias set %d\n", (int) alias_set);
1082 if (bitmap_bit_p (clear_alias_sets, alias_set))
1083 {
1084 struct clear_alias_mode_holder *entry
1085 = clear_alias_set_lookup (alias_set);
1086
1087 /* If the modes do not match, we cannot process this set. */
1088 if (entry->mode != GET_MODE (mem))
1089 {
1090 if (dump_file)
1091 fprintf (dump_file,
1092 "disqualifying alias set %d, (%s) != (%s)\n",
1093 (int) alias_set, GET_MODE_NAME (entry->mode),
1094 GET_MODE_NAME (GET_MODE (mem)));
1095
1096 bitmap_set_bit (disqualified_clear_alias_sets, alias_set);
1097 return false;
1098 }
1099
1100 *alias_set_out = alias_set;
1101 *group_id = clear_alias_group->id;
1102 return true;
1103 }
1104 }
1105
1106 *alias_set_out = 0;
1107
1108 cselib_lookup (mem_address, Pmode, 1);
1109
1110 if (dump_file)
1111 {
1112 fprintf (dump_file, " mem: ");
1113 print_inline_rtx (dump_file, mem_address, 0);
1114 fprintf (dump_file, "\n");
1115 }
1116
1117 /* Use cselib to replace all of the reg references with the full
1118 expression. This will take care of the case where we have
1119
1120 r_x = base + offset;
1121 val = *r_x;
1122
1123 by making it into
1124
1125 val = *(base + offset);
1126 */
1127
1128 expanded_address = cselib_expand_value_rtx (mem_address, scratch, 5);
1129
1130 /* If this fails, just go with the mem_address. */
1131 if (!expanded_address)
1132 expanded_address = mem_address;
1133
1134 /* Split the address into canonical BASE + OFFSET terms. */
1135 address = canon_rtx (expanded_address);
1136
1137 *offset = 0;
1138
1139 if (dump_file)
1140 {
1141 fprintf (dump_file, "\n after cselib_expand address: ");
1142 print_inline_rtx (dump_file, expanded_address, 0);
1143 fprintf (dump_file, "\n");
1144
1145 fprintf (dump_file, "\n after canon_rtx address: ");
1146 print_inline_rtx (dump_file, address, 0);
1147 fprintf (dump_file, "\n");
1148 }
1149
1150 if (GET_CODE (address) == CONST)
1151 address = XEXP (address, 0);
1152
1153 if (GET_CODE (address) == PLUS && GET_CODE (XEXP (address, 1)) == CONST_INT)
1154 {
1155 *offset = INTVAL (XEXP (address, 1));
1156 address = XEXP (address, 0);
1157 }
1158
1159 if (const_or_frame_p (address))
1160 {
1161 group_info_t group = get_group_info (address);
1162
1163 if (dump_file)
1164 fprintf (dump_file, " gid=%d offset=%d \n", group->id, (int)*offset);
1165 *base = NULL;
1166 *group_id = group->id;
1167 }
1168 else
1169 {
1170 *base = cselib_lookup (address, Pmode, true);
1171 *group_id = -1;
1172
1173 if (*base == NULL)
1174 {
1175 if (dump_file)
1176 fprintf (dump_file, " no cselib val - should be a wild read.\n");
1177 return false;
1178 }
1179 if (dump_file)
1180 fprintf (dump_file, " varying cselib base=%d offset = %d\n",
1181 (*base)->value, (int)*offset);
1182 }
1183 return true;
1184 }
1185
1186
1187 /* Clear the rhs field from the active_local_stores array. */
1188
1189 static void
1190 clear_rhs_from_active_local_stores (void)
1191 {
1192 insn_info_t ptr = active_local_stores;
1193
1194 while (ptr)
1195 {
1196 store_info_t store_info = ptr->store_rec;
1197 /* Skip the clobbers. */
1198 while (!store_info->is_set)
1199 store_info = store_info->next;
1200
1201 store_info->rhs = NULL;
1202 store_info->const_rhs = NULL;
1203
1204 ptr = ptr->next_local_store;
1205 }
1206 }
1207
1208
1209 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1210
1211 static inline void
1212 set_position_unneeded (store_info_t s_info, int pos)
1213 {
1214 if (__builtin_expect (s_info->is_large, false))
1215 {
1216 if (!bitmap_bit_p (s_info->positions_needed.large.bitmap, pos))
1217 {
1218 s_info->positions_needed.large.count++;
1219 bitmap_set_bit (s_info->positions_needed.large.bitmap, pos);
1220 }
1221 }
1222 else
1223 s_info->positions_needed.small_bitmask
1224 &= ~(((unsigned HOST_WIDE_INT) 1) << pos);
1225 }
1226
1227 /* Mark the whole store S_INFO as unneeded. */
1228
1229 static inline void
1230 set_all_positions_unneeded (store_info_t s_info)
1231 {
1232 if (__builtin_expect (s_info->is_large, false))
1233 {
1234 int pos, end = s_info->end - s_info->begin;
1235 for (pos = 0; pos < end; pos++)
1236 bitmap_set_bit (s_info->positions_needed.large.bitmap, pos);
1237 s_info->positions_needed.large.count = end;
1238 }
1239 else
1240 s_info->positions_needed.small_bitmask = (unsigned HOST_WIDE_INT) 0;
1241 }
1242
1243 /* Return TRUE if any bytes from S_INFO store are needed. */
1244
1245 static inline bool
1246 any_positions_needed_p (store_info_t s_info)
1247 {
1248 if (__builtin_expect (s_info->is_large, false))
1249 return (s_info->positions_needed.large.count
1250 < s_info->end - s_info->begin);
1251 else
1252 return (s_info->positions_needed.small_bitmask
1253 != (unsigned HOST_WIDE_INT) 0);
1254 }
1255
1256 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1257 store are needed. */
1258
1259 static inline bool
1260 all_positions_needed_p (store_info_t s_info, int start, int width)
1261 {
1262 if (__builtin_expect (s_info->is_large, false))
1263 {
1264 int end = start + width;
1265 while (start < end)
1266 if (bitmap_bit_p (s_info->positions_needed.large.bitmap, start++))
1267 return false;
1268 return true;
1269 }
1270 else
1271 {
1272 unsigned HOST_WIDE_INT mask = lowpart_bitmask (width) << start;
1273 return (s_info->positions_needed.small_bitmask & mask) == mask;
1274 }
1275 }
1276
1277
1278 static rtx get_stored_val (store_info_t, enum machine_mode, HOST_WIDE_INT,
1279 HOST_WIDE_INT, basic_block, bool);
1280
1281
1282 /* BODY is an instruction pattern that belongs to INSN. Return 1 if
1283 there is a candidate store, after adding it to the appropriate
1284 local store group if so. */
1285
1286 static int
1287 record_store (rtx body, bb_info_t bb_info)
1288 {
1289 rtx mem, rhs, const_rhs, mem_addr;
1290 HOST_WIDE_INT offset = 0;
1291 HOST_WIDE_INT width = 0;
1292 alias_set_type spill_alias_set;
1293 insn_info_t insn_info = bb_info->last_insn;
1294 store_info_t store_info = NULL;
1295 int group_id;
1296 cselib_val *base = NULL;
1297 insn_info_t ptr, last, redundant_reason;
1298 bool store_is_unused;
1299
1300 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1301 return 0;
1302
1303 mem = SET_DEST (body);
1304
1305 /* If this is not used, then this cannot be used to keep the insn
1306 from being deleted. On the other hand, it does provide something
1307 that can be used to prove that another store is dead. */
1308 store_is_unused
1309 = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
1310
1311 /* Check whether that value is a suitable memory location. */
1312 if (!MEM_P (mem))
1313 {
1314 /* If the set or clobber is unused, then it does not effect our
1315 ability to get rid of the entire insn. */
1316 if (!store_is_unused)
1317 insn_info->cannot_delete = true;
1318 return 0;
1319 }
1320
1321 /* At this point we know mem is a mem. */
1322 if (GET_MODE (mem) == BLKmode)
1323 {
1324 if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1325 {
1326 if (dump_file)
1327 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1328 add_wild_read (bb_info);
1329 insn_info->cannot_delete = true;
1330 return 0;
1331 }
1332 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1333 as memset (addr, 0, 36); */
1334 else if (!MEM_SIZE (mem)
1335 || !CONST_INT_P (MEM_SIZE (mem))
1336 || GET_CODE (body) != SET
1337 || INTVAL (MEM_SIZE (mem)) <= 0
1338 || INTVAL (MEM_SIZE (mem)) > MAX_OFFSET
1339 || !CONST_INT_P (SET_SRC (body)))
1340 {
1341 if (!store_is_unused)
1342 {
1343 /* If the set or clobber is unused, then it does not effect our
1344 ability to get rid of the entire insn. */
1345 insn_info->cannot_delete = true;
1346 clear_rhs_from_active_local_stores ();
1347 }
1348 return 0;
1349 }
1350 }
1351
1352 /* We can still process a volatile mem, we just cannot delete it. */
1353 if (MEM_VOLATILE_P (mem))
1354 insn_info->cannot_delete = true;
1355
1356 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
1357 {
1358 clear_rhs_from_active_local_stores ();
1359 return 0;
1360 }
1361
1362 if (GET_MODE (mem) == BLKmode)
1363 width = INTVAL (MEM_SIZE (mem));
1364 else
1365 {
1366 width = GET_MODE_SIZE (GET_MODE (mem));
1367 gcc_assert ((unsigned) width <= HOST_BITS_PER_WIDE_INT);
1368 }
1369
1370 if (spill_alias_set)
1371 {
1372 bitmap store1 = clear_alias_group->store1_p;
1373 bitmap store2 = clear_alias_group->store2_p;
1374
1375 gcc_assert (GET_MODE (mem) != BLKmode);
1376
1377 if (bitmap_bit_p (store1, spill_alias_set))
1378 bitmap_set_bit (store2, spill_alias_set);
1379 else
1380 bitmap_set_bit (store1, spill_alias_set);
1381
1382 if (clear_alias_group->offset_map_size_p < spill_alias_set)
1383 clear_alias_group->offset_map_size_p = spill_alias_set;
1384
1385 store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1386
1387 if (dump_file)
1388 fprintf (dump_file, " processing spill store %d(%s)\n",
1389 (int) spill_alias_set, GET_MODE_NAME (GET_MODE (mem)));
1390 }
1391 else if (group_id >= 0)
1392 {
1393 /* In the restrictive case where the base is a constant or the
1394 frame pointer we can do global analysis. */
1395
1396 group_info_t group
1397 = VEC_index (group_info_t, rtx_group_vec, group_id);
1398
1399 store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1400 set_usage_bits (group, offset, width);
1401
1402 if (dump_file)
1403 fprintf (dump_file, " processing const base store gid=%d[%d..%d)\n",
1404 group_id, (int)offset, (int)(offset+width));
1405 }
1406 else
1407 {
1408 rtx base_term = find_base_term (XEXP (mem, 0));
1409 if (!base_term
1410 || (GET_CODE (base_term) == ADDRESS
1411 && GET_MODE (base_term) == Pmode
1412 && XEXP (base_term, 0) == stack_pointer_rtx))
1413 insn_info->stack_pointer_based = true;
1414 insn_info->contains_cselib_groups = true;
1415
1416 store_info = (store_info_t) pool_alloc (cse_store_info_pool);
1417 group_id = -1;
1418
1419 if (dump_file)
1420 fprintf (dump_file, " processing cselib store [%d..%d)\n",
1421 (int)offset, (int)(offset+width));
1422 }
1423
1424 const_rhs = rhs = NULL_RTX;
1425 if (GET_CODE (body) == SET
1426 /* No place to keep the value after ra. */
1427 && !reload_completed
1428 && (REG_P (SET_SRC (body))
1429 || GET_CODE (SET_SRC (body)) == SUBREG
1430 || CONSTANT_P (SET_SRC (body)))
1431 && !MEM_VOLATILE_P (mem)
1432 /* Sometimes the store and reload is used for truncation and
1433 rounding. */
1434 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1435 {
1436 rhs = SET_SRC (body);
1437 if (CONSTANT_P (rhs))
1438 const_rhs = rhs;
1439 else if (body == PATTERN (insn_info->insn))
1440 {
1441 rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1442 if (tem && CONSTANT_P (XEXP (tem, 0)))
1443 const_rhs = XEXP (tem, 0);
1444 }
1445 if (const_rhs == NULL_RTX && REG_P (rhs))
1446 {
1447 rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1448
1449 if (tem && CONSTANT_P (tem))
1450 const_rhs = tem;
1451 }
1452 }
1453
1454 /* Check to see if this stores causes some other stores to be
1455 dead. */
1456 ptr = active_local_stores;
1457 last = NULL;
1458 redundant_reason = NULL;
1459 mem = canon_rtx (mem);
1460 /* For alias_set != 0 canon_true_dependence should be never called. */
1461 if (spill_alias_set)
1462 mem_addr = NULL_RTX;
1463 else
1464 {
1465 if (group_id < 0)
1466 mem_addr = base->val_rtx;
1467 else
1468 {
1469 group_info_t group
1470 = VEC_index (group_info_t, rtx_group_vec, group_id);
1471 mem_addr = group->canon_base_addr;
1472 }
1473 if (offset)
1474 mem_addr = plus_constant (mem_addr, offset);
1475 }
1476
1477 while (ptr)
1478 {
1479 insn_info_t next = ptr->next_local_store;
1480 store_info_t s_info = ptr->store_rec;
1481 bool del = true;
1482
1483 /* Skip the clobbers. We delete the active insn if this insn
1484 shadows the set. To have been put on the active list, it
1485 has exactly on set. */
1486 while (!s_info->is_set)
1487 s_info = s_info->next;
1488
1489 if (s_info->alias_set != spill_alias_set)
1490 del = false;
1491 else if (s_info->alias_set)
1492 {
1493 struct clear_alias_mode_holder *entry
1494 = clear_alias_set_lookup (s_info->alias_set);
1495 /* Generally, spills cannot be processed if and of the
1496 references to the slot have a different mode. But if
1497 we are in the same block and mode is exactly the same
1498 between this store and one before in the same block,
1499 we can still delete it. */
1500 if ((GET_MODE (mem) == GET_MODE (s_info->mem))
1501 && (GET_MODE (mem) == entry->mode))
1502 {
1503 del = true;
1504 set_all_positions_unneeded (s_info);
1505 }
1506 if (dump_file)
1507 fprintf (dump_file, " trying spill store in insn=%d alias_set=%d\n",
1508 INSN_UID (ptr->insn), (int) s_info->alias_set);
1509 }
1510 else if ((s_info->group_id == group_id)
1511 && (s_info->cse_base == base))
1512 {
1513 HOST_WIDE_INT i;
1514 if (dump_file)
1515 fprintf (dump_file, " trying store in insn=%d gid=%d[%d..%d)\n",
1516 INSN_UID (ptr->insn), s_info->group_id,
1517 (int)s_info->begin, (int)s_info->end);
1518
1519 /* Even if PTR won't be eliminated as unneeded, if both
1520 PTR and this insn store the same constant value, we might
1521 eliminate this insn instead. */
1522 if (s_info->const_rhs
1523 && const_rhs
1524 && offset >= s_info->begin
1525 && offset + width <= s_info->end
1526 && all_positions_needed_p (s_info, offset - s_info->begin,
1527 width))
1528 {
1529 if (GET_MODE (mem) == BLKmode)
1530 {
1531 if (GET_MODE (s_info->mem) == BLKmode
1532 && s_info->const_rhs == const_rhs)
1533 redundant_reason = ptr;
1534 }
1535 else if (s_info->const_rhs == const0_rtx
1536 && const_rhs == const0_rtx)
1537 redundant_reason = ptr;
1538 else
1539 {
1540 rtx val;
1541 start_sequence ();
1542 val = get_stored_val (s_info, GET_MODE (mem),
1543 offset, offset + width,
1544 BLOCK_FOR_INSN (insn_info->insn),
1545 true);
1546 if (get_insns () != NULL)
1547 val = NULL_RTX;
1548 end_sequence ();
1549 if (val && rtx_equal_p (val, const_rhs))
1550 redundant_reason = ptr;
1551 }
1552 }
1553
1554 for (i = MAX (offset, s_info->begin);
1555 i < offset + width && i < s_info->end;
1556 i++)
1557 set_position_unneeded (s_info, i - s_info->begin);
1558 }
1559 else if (s_info->rhs)
1560 /* Need to see if it is possible for this store to overwrite
1561 the value of store_info. If it is, set the rhs to NULL to
1562 keep it from being used to remove a load. */
1563 {
1564 if (canon_true_dependence (s_info->mem,
1565 GET_MODE (s_info->mem),
1566 s_info->mem_addr,
1567 mem, mem_addr, rtx_varies_p))
1568 {
1569 s_info->rhs = NULL;
1570 s_info->const_rhs = NULL;
1571 }
1572 }
1573
1574 /* An insn can be deleted if every position of every one of
1575 its s_infos is zero. */
1576 if (any_positions_needed_p (s_info)
1577 || ptr->cannot_delete)
1578 del = false;
1579
1580 if (del)
1581 {
1582 insn_info_t insn_to_delete = ptr;
1583
1584 if (last)
1585 last->next_local_store = ptr->next_local_store;
1586 else
1587 active_local_stores = ptr->next_local_store;
1588
1589 delete_dead_store_insn (insn_to_delete);
1590 }
1591 else
1592 last = ptr;
1593
1594 ptr = next;
1595 }
1596
1597 /* Finish filling in the store_info. */
1598 store_info->next = insn_info->store_rec;
1599 insn_info->store_rec = store_info;
1600 store_info->mem = mem;
1601 store_info->alias_set = spill_alias_set;
1602 store_info->mem_addr = mem_addr;
1603 store_info->cse_base = base;
1604 if (width > HOST_BITS_PER_WIDE_INT)
1605 {
1606 store_info->is_large = true;
1607 store_info->positions_needed.large.count = 0;
1608 store_info->positions_needed.large.bitmap = BITMAP_ALLOC (NULL);
1609 }
1610 else
1611 {
1612 store_info->is_large = false;
1613 store_info->positions_needed.small_bitmask = lowpart_bitmask (width);
1614 }
1615 store_info->group_id = group_id;
1616 store_info->begin = offset;
1617 store_info->end = offset + width;
1618 store_info->is_set = GET_CODE (body) == SET;
1619 store_info->rhs = rhs;
1620 store_info->const_rhs = const_rhs;
1621 store_info->redundant_reason = redundant_reason;
1622
1623 /* If this is a clobber, we return 0. We will only be able to
1624 delete this insn if there is only one store USED store, but we
1625 can use the clobber to delete other stores earlier. */
1626 return store_info->is_set ? 1 : 0;
1627 }
1628
1629
1630 static void
1631 dump_insn_info (const char * start, insn_info_t insn_info)
1632 {
1633 fprintf (dump_file, "%s insn=%d %s\n", start,
1634 INSN_UID (insn_info->insn),
1635 insn_info->store_rec ? "has store" : "naked");
1636 }
1637
1638
1639 /* If the modes are different and the value's source and target do not
1640 line up, we need to extract the value from lower part of the rhs of
1641 the store, shift it, and then put it into a form that can be shoved
1642 into the read_insn. This function generates a right SHIFT of a
1643 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1644 shift sequence is returned or NULL if we failed to find a
1645 shift. */
1646
1647 static rtx
1648 find_shift_sequence (int access_size,
1649 store_info_t store_info,
1650 enum machine_mode read_mode,
1651 int shift, bool speed, bool require_cst)
1652 {
1653 enum machine_mode store_mode = GET_MODE (store_info->mem);
1654 enum machine_mode new_mode;
1655 rtx read_reg = NULL;
1656
1657 /* Some machines like the x86 have shift insns for each size of
1658 operand. Other machines like the ppc or the ia-64 may only have
1659 shift insns that shift values within 32 or 64 bit registers.
1660 This loop tries to find the smallest shift insn that will right
1661 justify the value we want to read but is available in one insn on
1662 the machine. */
1663
1664 for (new_mode = smallest_mode_for_size (access_size * BITS_PER_UNIT,
1665 MODE_INT);
1666 GET_MODE_BITSIZE (new_mode) <= BITS_PER_WORD;
1667 new_mode = GET_MODE_WIDER_MODE (new_mode))
1668 {
1669 rtx target, new_reg, shift_seq, insn, new_lhs;
1670 int cost;
1671
1672 /* If a constant was stored into memory, try to simplify it here,
1673 otherwise the cost of the shift might preclude this optimization
1674 e.g. at -Os, even when no actual shift will be needed. */
1675 if (store_info->const_rhs)
1676 {
1677 unsigned int byte = subreg_lowpart_offset (new_mode, store_mode);
1678 rtx ret = simplify_subreg (new_mode, store_info->const_rhs,
1679 store_mode, byte);
1680 if (ret && CONSTANT_P (ret))
1681 {
1682 ret = simplify_const_binary_operation (LSHIFTRT, new_mode,
1683 ret, GEN_INT (shift));
1684 if (ret && CONSTANT_P (ret))
1685 {
1686 byte = subreg_lowpart_offset (read_mode, new_mode);
1687 ret = simplify_subreg (read_mode, ret, new_mode, byte);
1688 if (ret && CONSTANT_P (ret)
1689 && rtx_cost (ret, SET, speed) <= COSTS_N_INSNS (1))
1690 return ret;
1691 }
1692 }
1693 }
1694
1695 if (require_cst)
1696 return NULL_RTX;
1697
1698 /* Try a wider mode if truncating the store mode to NEW_MODE
1699 requires a real instruction. */
1700 if (GET_MODE_BITSIZE (new_mode) < GET_MODE_BITSIZE (store_mode)
1701 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (new_mode),
1702 GET_MODE_BITSIZE (store_mode)))
1703 continue;
1704
1705 /* Also try a wider mode if the necessary punning is either not
1706 desirable or not possible. */
1707 if (!CONSTANT_P (store_info->rhs)
1708 && !MODES_TIEABLE_P (new_mode, store_mode))
1709 continue;
1710
1711 new_reg = gen_reg_rtx (new_mode);
1712
1713 start_sequence ();
1714
1715 /* In theory we could also check for an ashr. Ian Taylor knows
1716 of one dsp where the cost of these two was not the same. But
1717 this really is a rare case anyway. */
1718 target = expand_binop (new_mode, lshr_optab, new_reg,
1719 GEN_INT (shift), new_reg, 1, OPTAB_DIRECT);
1720
1721 shift_seq = get_insns ();
1722 end_sequence ();
1723
1724 if (target != new_reg || shift_seq == NULL)
1725 continue;
1726
1727 cost = 0;
1728 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1729 if (INSN_P (insn))
1730 cost += insn_rtx_cost (PATTERN (insn), speed);
1731
1732 /* The computation up to here is essentially independent
1733 of the arguments and could be precomputed. It may
1734 not be worth doing so. We could precompute if
1735 worthwhile or at least cache the results. The result
1736 technically depends on both SHIFT and ACCESS_SIZE,
1737 but in practice the answer will depend only on ACCESS_SIZE. */
1738
1739 if (cost > COSTS_N_INSNS (1))
1740 continue;
1741
1742 new_lhs = extract_low_bits (new_mode, store_mode,
1743 copy_rtx (store_info->rhs));
1744 if (new_lhs == NULL_RTX)
1745 continue;
1746
1747 /* We found an acceptable shift. Generate a move to
1748 take the value from the store and put it into the
1749 shift pseudo, then shift it, then generate another
1750 move to put in into the target of the read. */
1751 emit_move_insn (new_reg, new_lhs);
1752 emit_insn (shift_seq);
1753 read_reg = extract_low_bits (read_mode, new_mode, new_reg);
1754 break;
1755 }
1756
1757 return read_reg;
1758 }
1759
1760
1761 /* Call back for note_stores to find the hard regs set or clobbered by
1762 insn. Data is a bitmap of the hardregs set so far. */
1763
1764 static void
1765 look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1766 {
1767 bitmap regs_set = (bitmap) data;
1768
1769 if (REG_P (x)
1770 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1771 {
1772 int regno = REGNO (x);
1773 int n = hard_regno_nregs[regno][GET_MODE (x)];
1774 while (--n >= 0)
1775 bitmap_set_bit (regs_set, regno + n);
1776 }
1777 }
1778
1779 /* Helper function for replace_read and record_store.
1780 Attempt to return a value stored in STORE_INFO, from READ_BEGIN
1781 to one before READ_END bytes read in READ_MODE. Return NULL
1782 if not successful. If REQUIRE_CST is true, return always constant. */
1783
1784 static rtx
1785 get_stored_val (store_info_t store_info, enum machine_mode read_mode,
1786 HOST_WIDE_INT read_begin, HOST_WIDE_INT read_end,
1787 basic_block bb, bool require_cst)
1788 {
1789 enum machine_mode store_mode = GET_MODE (store_info->mem);
1790 int shift;
1791 int access_size; /* In bytes. */
1792 rtx read_reg;
1793
1794 /* To get here the read is within the boundaries of the write so
1795 shift will never be negative. Start out with the shift being in
1796 bytes. */
1797 if (store_mode == BLKmode)
1798 shift = 0;
1799 else if (BYTES_BIG_ENDIAN)
1800 shift = store_info->end - read_end;
1801 else
1802 shift = read_begin - store_info->begin;
1803
1804 access_size = shift + GET_MODE_SIZE (read_mode);
1805
1806 /* From now on it is bits. */
1807 shift *= BITS_PER_UNIT;
1808
1809 if (shift)
1810 read_reg = find_shift_sequence (access_size, store_info, read_mode, shift,
1811 optimize_bb_for_speed_p (bb),
1812 require_cst);
1813 else if (store_mode == BLKmode)
1814 {
1815 /* The store is a memset (addr, const_val, const_size). */
1816 gcc_assert (CONST_INT_P (store_info->rhs));
1817 store_mode = int_mode_for_mode (read_mode);
1818 if (store_mode == BLKmode)
1819 read_reg = NULL_RTX;
1820 else if (store_info->rhs == const0_rtx)
1821 read_reg = extract_low_bits (read_mode, store_mode, const0_rtx);
1822 else if (GET_MODE_BITSIZE (store_mode) > HOST_BITS_PER_WIDE_INT
1823 || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1824 read_reg = NULL_RTX;
1825 else
1826 {
1827 unsigned HOST_WIDE_INT c
1828 = INTVAL (store_info->rhs)
1829 & (((HOST_WIDE_INT) 1 << BITS_PER_UNIT) - 1);
1830 int shift = BITS_PER_UNIT;
1831 while (shift < HOST_BITS_PER_WIDE_INT)
1832 {
1833 c |= (c << shift);
1834 shift <<= 1;
1835 }
1836 read_reg = GEN_INT (trunc_int_for_mode (c, store_mode));
1837 read_reg = extract_low_bits (read_mode, store_mode, read_reg);
1838 }
1839 }
1840 else if (store_info->const_rhs
1841 && (require_cst
1842 || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1843 read_reg = extract_low_bits (read_mode, store_mode,
1844 copy_rtx (store_info->const_rhs));
1845 else
1846 read_reg = extract_low_bits (read_mode, store_mode,
1847 copy_rtx (store_info->rhs));
1848 if (require_cst && read_reg && !CONSTANT_P (read_reg))
1849 read_reg = NULL_RTX;
1850 return read_reg;
1851 }
1852
1853 /* Take a sequence of:
1854 A <- r1
1855 ...
1856 ... <- A
1857
1858 and change it into
1859 r2 <- r1
1860 A <- r1
1861 ...
1862 ... <- r2
1863
1864 or
1865
1866 r3 <- extract (r1)
1867 r3 <- r3 >> shift
1868 r2 <- extract (r3)
1869 ... <- r2
1870
1871 or
1872
1873 r2 <- extract (r1)
1874 ... <- r2
1875
1876 Depending on the alignment and the mode of the store and
1877 subsequent load.
1878
1879
1880 The STORE_INFO and STORE_INSN are for the store and READ_INFO
1881 and READ_INSN are for the read. Return true if the replacement
1882 went ok. */
1883
1884 static bool
1885 replace_read (store_info_t store_info, insn_info_t store_insn,
1886 read_info_t read_info, insn_info_t read_insn, rtx *loc,
1887 bitmap regs_live)
1888 {
1889 enum machine_mode store_mode = GET_MODE (store_info->mem);
1890 enum machine_mode read_mode = GET_MODE (read_info->mem);
1891 rtx insns, this_insn, read_reg;
1892 basic_block bb;
1893
1894 if (!dbg_cnt (dse))
1895 return false;
1896
1897 /* Create a sequence of instructions to set up the read register.
1898 This sequence goes immediately before the store and its result
1899 is read by the load.
1900
1901 We need to keep this in perspective. We are replacing a read
1902 with a sequence of insns, but the read will almost certainly be
1903 in cache, so it is not going to be an expensive one. Thus, we
1904 are not willing to do a multi insn shift or worse a subroutine
1905 call to get rid of the read. */
1906 if (dump_file)
1907 fprintf (dump_file, "trying to replace %smode load in insn %d"
1908 " from %smode store in insn %d\n",
1909 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
1910 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
1911 start_sequence ();
1912 bb = BLOCK_FOR_INSN (read_insn->insn);
1913 read_reg = get_stored_val (store_info,
1914 read_mode, read_info->begin, read_info->end,
1915 bb, false);
1916 if (read_reg == NULL_RTX)
1917 {
1918 end_sequence ();
1919 if (dump_file)
1920 fprintf (dump_file, " -- could not extract bits of stored value\n");
1921 return false;
1922 }
1923 /* Force the value into a new register so that it won't be clobbered
1924 between the store and the load. */
1925 read_reg = copy_to_mode_reg (read_mode, read_reg);
1926 insns = get_insns ();
1927 end_sequence ();
1928
1929 if (insns != NULL_RTX)
1930 {
1931 /* Now we have to scan the set of new instructions to see if the
1932 sequence contains and sets of hardregs that happened to be
1933 live at this point. For instance, this can happen if one of
1934 the insns sets the CC and the CC happened to be live at that
1935 point. This does occasionally happen, see PR 37922. */
1936 bitmap regs_set = BITMAP_ALLOC (NULL);
1937
1938 for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
1939 note_stores (PATTERN (this_insn), look_for_hardregs, regs_set);
1940
1941 bitmap_and_into (regs_set, regs_live);
1942 if (!bitmap_empty_p (regs_set))
1943 {
1944 if (dump_file)
1945 {
1946 fprintf (dump_file,
1947 "abandoning replacement because sequence clobbers live hardregs:");
1948 df_print_regset (dump_file, regs_set);
1949 }
1950
1951 BITMAP_FREE (regs_set);
1952 return false;
1953 }
1954 BITMAP_FREE (regs_set);
1955 }
1956
1957 if (validate_change (read_insn->insn, loc, read_reg, 0))
1958 {
1959 deferred_change_t deferred_change =
1960 (deferred_change_t) pool_alloc (deferred_change_pool);
1961
1962 /* Insert this right before the store insn where it will be safe
1963 from later insns that might change it before the read. */
1964 emit_insn_before (insns, store_insn->insn);
1965
1966 /* And now for the kludge part: cselib croaks if you just
1967 return at this point. There are two reasons for this:
1968
1969 1) Cselib has an idea of how many pseudos there are and
1970 that does not include the new ones we just added.
1971
1972 2) Cselib does not know about the move insn we added
1973 above the store_info, and there is no way to tell it
1974 about it, because it has "moved on".
1975
1976 Problem (1) is fixable with a certain amount of engineering.
1977 Problem (2) is requires starting the bb from scratch. This
1978 could be expensive.
1979
1980 So we are just going to have to lie. The move/extraction
1981 insns are not really an issue, cselib did not see them. But
1982 the use of the new pseudo read_insn is a real problem because
1983 cselib has not scanned this insn. The way that we solve this
1984 problem is that we are just going to put the mem back for now
1985 and when we are finished with the block, we undo this. We
1986 keep a table of mems to get rid of. At the end of the basic
1987 block we can put them back. */
1988
1989 *loc = read_info->mem;
1990 deferred_change->next = deferred_change_list;
1991 deferred_change_list = deferred_change;
1992 deferred_change->loc = loc;
1993 deferred_change->reg = read_reg;
1994
1995 /* Get rid of the read_info, from the point of view of the
1996 rest of dse, play like this read never happened. */
1997 read_insn->read_rec = read_info->next;
1998 pool_free (read_info_pool, read_info);
1999 if (dump_file)
2000 {
2001 fprintf (dump_file, " -- replaced the loaded MEM with ");
2002 print_simple_rtl (dump_file, read_reg);
2003 fprintf (dump_file, "\n");
2004 }
2005 return true;
2006 }
2007 else
2008 {
2009 if (dump_file)
2010 {
2011 fprintf (dump_file, " -- replacing the loaded MEM with ");
2012 print_simple_rtl (dump_file, read_reg);
2013 fprintf (dump_file, " led to an invalid instruction\n");
2014 }
2015 return false;
2016 }
2017 }
2018
2019 /* A for_each_rtx callback in which DATA is the bb_info. Check to see
2020 if LOC is a mem and if it is look at the address and kill any
2021 appropriate stores that may be active. */
2022
2023 static int
2024 check_mem_read_rtx (rtx *loc, void *data)
2025 {
2026 rtx mem = *loc, mem_addr;
2027 bb_info_t bb_info;
2028 insn_info_t insn_info;
2029 HOST_WIDE_INT offset = 0;
2030 HOST_WIDE_INT width = 0;
2031 alias_set_type spill_alias_set = 0;
2032 cselib_val *base = NULL;
2033 int group_id;
2034 read_info_t read_info;
2035
2036 if (!mem || !MEM_P (mem))
2037 return 0;
2038
2039 bb_info = (bb_info_t) data;
2040 insn_info = bb_info->last_insn;
2041
2042 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2043 || (MEM_VOLATILE_P (mem)))
2044 {
2045 if (dump_file)
2046 fprintf (dump_file, " adding wild read, volatile or barrier.\n");
2047 add_wild_read (bb_info);
2048 insn_info->cannot_delete = true;
2049 return 0;
2050 }
2051
2052 /* If it is reading readonly mem, then there can be no conflict with
2053 another write. */
2054 if (MEM_READONLY_P (mem))
2055 return 0;
2056
2057 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
2058 {
2059 if (dump_file)
2060 fprintf (dump_file, " adding wild read, canon_address failure.\n");
2061 add_wild_read (bb_info);
2062 return 0;
2063 }
2064
2065 if (GET_MODE (mem) == BLKmode)
2066 width = -1;
2067 else
2068 width = GET_MODE_SIZE (GET_MODE (mem));
2069
2070 read_info = (read_info_t) pool_alloc (read_info_pool);
2071 read_info->group_id = group_id;
2072 read_info->mem = mem;
2073 read_info->alias_set = spill_alias_set;
2074 read_info->begin = offset;
2075 read_info->end = offset + width;
2076 read_info->next = insn_info->read_rec;
2077 insn_info->read_rec = read_info;
2078 /* For alias_set != 0 canon_true_dependence should be never called. */
2079 if (spill_alias_set)
2080 mem_addr = NULL_RTX;
2081 else
2082 {
2083 if (group_id < 0)
2084 mem_addr = base->val_rtx;
2085 else
2086 {
2087 group_info_t group
2088 = VEC_index (group_info_t, rtx_group_vec, group_id);
2089 mem_addr = group->canon_base_addr;
2090 }
2091 if (offset)
2092 mem_addr = plus_constant (mem_addr, offset);
2093 }
2094
2095 /* We ignore the clobbers in store_info. The is mildly aggressive,
2096 but there really should not be a clobber followed by a read. */
2097
2098 if (spill_alias_set)
2099 {
2100 insn_info_t i_ptr = active_local_stores;
2101 insn_info_t last = NULL;
2102
2103 if (dump_file)
2104 fprintf (dump_file, " processing spill load %d\n",
2105 (int) spill_alias_set);
2106
2107 while (i_ptr)
2108 {
2109 store_info_t store_info = i_ptr->store_rec;
2110
2111 /* Skip the clobbers. */
2112 while (!store_info->is_set)
2113 store_info = store_info->next;
2114
2115 if (store_info->alias_set == spill_alias_set)
2116 {
2117 if (dump_file)
2118 dump_insn_info ("removing from active", i_ptr);
2119
2120 if (last)
2121 last->next_local_store = i_ptr->next_local_store;
2122 else
2123 active_local_stores = i_ptr->next_local_store;
2124 }
2125 else
2126 last = i_ptr;
2127 i_ptr = i_ptr->next_local_store;
2128 }
2129 }
2130 else if (group_id >= 0)
2131 {
2132 /* This is the restricted case where the base is a constant or
2133 the frame pointer and offset is a constant. */
2134 insn_info_t i_ptr = active_local_stores;
2135 insn_info_t last = NULL;
2136
2137 if (dump_file)
2138 {
2139 if (width == -1)
2140 fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2141 group_id);
2142 else
2143 fprintf (dump_file, " processing const load gid=%d[%d..%d)\n",
2144 group_id, (int)offset, (int)(offset+width));
2145 }
2146
2147 while (i_ptr)
2148 {
2149 bool remove = false;
2150 store_info_t store_info = i_ptr->store_rec;
2151
2152 /* Skip the clobbers. */
2153 while (!store_info->is_set)
2154 store_info = store_info->next;
2155
2156 /* There are three cases here. */
2157 if (store_info->group_id < 0)
2158 /* We have a cselib store followed by a read from a
2159 const base. */
2160 remove
2161 = canon_true_dependence (store_info->mem,
2162 GET_MODE (store_info->mem),
2163 store_info->mem_addr,
2164 mem, mem_addr, rtx_varies_p);
2165
2166 else if (group_id == store_info->group_id)
2167 {
2168 /* This is a block mode load. We may get lucky and
2169 canon_true_dependence may save the day. */
2170 if (width == -1)
2171 remove
2172 = canon_true_dependence (store_info->mem,
2173 GET_MODE (store_info->mem),
2174 store_info->mem_addr,
2175 mem, mem_addr, rtx_varies_p);
2176
2177 /* If this read is just reading back something that we just
2178 stored, rewrite the read. */
2179 else
2180 {
2181 if (store_info->rhs
2182 && offset >= store_info->begin
2183 && offset + width <= store_info->end
2184 && all_positions_needed_p (store_info,
2185 offset - store_info->begin,
2186 width)
2187 && replace_read (store_info, i_ptr, read_info,
2188 insn_info, loc, bb_info->regs_live))
2189 return 0;
2190
2191 /* The bases are the same, just see if the offsets
2192 overlap. */
2193 if ((offset < store_info->end)
2194 && (offset + width > store_info->begin))
2195 remove = true;
2196 }
2197 }
2198
2199 /* else
2200 The else case that is missing here is that the
2201 bases are constant but different. There is nothing
2202 to do here because there is no overlap. */
2203
2204 if (remove)
2205 {
2206 if (dump_file)
2207 dump_insn_info ("removing from active", i_ptr);
2208
2209 if (last)
2210 last->next_local_store = i_ptr->next_local_store;
2211 else
2212 active_local_stores = i_ptr->next_local_store;
2213 }
2214 else
2215 last = i_ptr;
2216 i_ptr = i_ptr->next_local_store;
2217 }
2218 }
2219 else
2220 {
2221 insn_info_t i_ptr = active_local_stores;
2222 insn_info_t last = NULL;
2223 if (dump_file)
2224 {
2225 fprintf (dump_file, " processing cselib load mem:");
2226 print_inline_rtx (dump_file, mem, 0);
2227 fprintf (dump_file, "\n");
2228 }
2229
2230 while (i_ptr)
2231 {
2232 bool remove = false;
2233 store_info_t store_info = i_ptr->store_rec;
2234
2235 if (dump_file)
2236 fprintf (dump_file, " processing cselib load against insn %d\n",
2237 INSN_UID (i_ptr->insn));
2238
2239 /* Skip the clobbers. */
2240 while (!store_info->is_set)
2241 store_info = store_info->next;
2242
2243 /* If this read is just reading back something that we just
2244 stored, rewrite the read. */
2245 if (store_info->rhs
2246 && store_info->group_id == -1
2247 && store_info->cse_base == base
2248 && offset >= store_info->begin
2249 && offset + width <= store_info->end
2250 && all_positions_needed_p (store_info,
2251 offset - store_info->begin, width)
2252 && replace_read (store_info, i_ptr, read_info, insn_info, loc,
2253 bb_info->regs_live))
2254 return 0;
2255
2256 if (!store_info->alias_set)
2257 remove = canon_true_dependence (store_info->mem,
2258 GET_MODE (store_info->mem),
2259 store_info->mem_addr,
2260 mem, mem_addr, rtx_varies_p);
2261
2262 if (remove)
2263 {
2264 if (dump_file)
2265 dump_insn_info ("removing from active", i_ptr);
2266
2267 if (last)
2268 last->next_local_store = i_ptr->next_local_store;
2269 else
2270 active_local_stores = i_ptr->next_local_store;
2271 }
2272 else
2273 last = i_ptr;
2274 i_ptr = i_ptr->next_local_store;
2275 }
2276 }
2277 return 0;
2278 }
2279
2280 /* A for_each_rtx callback in which DATA points the INSN_INFO for
2281 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2282 true for any part of *LOC. */
2283
2284 static void
2285 check_mem_read_use (rtx *loc, void *data)
2286 {
2287 for_each_rtx (loc, check_mem_read_rtx, data);
2288 }
2289
2290
2291 /* Get arguments passed to CALL_INSN. Return TRUE if successful.
2292 So far it only handles arguments passed in registers. */
2293
2294 static bool
2295 get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2296 {
2297 CUMULATIVE_ARGS args_so_far;
2298 tree arg;
2299 int idx;
2300
2301 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
2302
2303 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2304 for (idx = 0;
2305 arg != void_list_node && idx < nargs;
2306 arg = TREE_CHAIN (arg), idx++)
2307 {
2308 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
2309 rtx reg = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1), link, tmp;
2310 if (!reg || !REG_P (reg) || GET_MODE (reg) != mode
2311 || GET_MODE_CLASS (mode) != MODE_INT)
2312 return false;
2313
2314 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2315 link;
2316 link = XEXP (link, 1))
2317 if (GET_CODE (XEXP (link, 0)) == USE)
2318 {
2319 args[idx] = XEXP (XEXP (link, 0), 0);
2320 if (REG_P (args[idx])
2321 && REGNO (args[idx]) == REGNO (reg)
2322 && (GET_MODE (args[idx]) == mode
2323 || (GET_MODE_CLASS (GET_MODE (args[idx])) == MODE_INT
2324 && (GET_MODE_SIZE (GET_MODE (args[idx]))
2325 <= UNITS_PER_WORD)
2326 && (GET_MODE_SIZE (GET_MODE (args[idx]))
2327 > GET_MODE_SIZE (mode)))))
2328 break;
2329 }
2330 if (!link)
2331 return false;
2332
2333 tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2334 if (GET_MODE (args[idx]) != mode)
2335 {
2336 if (!tmp || !CONST_INT_P (tmp))
2337 return false;
2338 tmp = GEN_INT (trunc_int_for_mode (INTVAL (tmp), mode));
2339 }
2340 if (tmp)
2341 args[idx] = tmp;
2342
2343 FUNCTION_ARG_ADVANCE (args_so_far, mode, NULL_TREE, 1);
2344 }
2345 if (arg != void_list_node || idx != nargs)
2346 return false;
2347 return true;
2348 }
2349
2350
2351 /* Apply record_store to all candidate stores in INSN. Mark INSN
2352 if some part of it is not a candidate store and assigns to a
2353 non-register target. */
2354
2355 static void
2356 scan_insn (bb_info_t bb_info, rtx insn)
2357 {
2358 rtx body;
2359 insn_info_t insn_info = (insn_info_t) pool_alloc (insn_info_pool);
2360 int mems_found = 0;
2361 memset (insn_info, 0, sizeof (struct insn_info));
2362
2363 if (dump_file)
2364 fprintf (dump_file, "\n**scanning insn=%d\n",
2365 INSN_UID (insn));
2366
2367 insn_info->prev_insn = bb_info->last_insn;
2368 insn_info->insn = insn;
2369 bb_info->last_insn = insn_info;
2370
2371
2372 /* Cselib clears the table for this case, so we have to essentially
2373 do the same. */
2374 if (NONJUMP_INSN_P (insn)
2375 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
2376 && MEM_VOLATILE_P (PATTERN (insn)))
2377 {
2378 add_wild_read (bb_info);
2379 insn_info->cannot_delete = true;
2380 return;
2381 }
2382
2383 /* Look at all of the uses in the insn. */
2384 note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2385
2386 if (CALL_P (insn))
2387 {
2388 bool const_call;
2389 tree memset_call = NULL_TREE;
2390
2391 insn_info->cannot_delete = true;
2392
2393 /* Const functions cannot do anything bad i.e. read memory,
2394 however, they can read their parameters which may have
2395 been pushed onto the stack.
2396 memset and bzero don't read memory either. */
2397 const_call = RTL_CONST_CALL_P (insn);
2398 if (!const_call)
2399 {
2400 rtx call = PATTERN (insn);
2401 if (GET_CODE (call) == PARALLEL)
2402 call = XVECEXP (call, 0, 0);
2403 if (GET_CODE (call) == SET)
2404 call = SET_SRC (call);
2405 if (GET_CODE (call) == CALL
2406 && MEM_P (XEXP (call, 0))
2407 && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
2408 {
2409 rtx symbol = XEXP (XEXP (call, 0), 0);
2410 if (SYMBOL_REF_DECL (symbol)
2411 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
2412 {
2413 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
2414 == BUILT_IN_NORMAL
2415 && (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
2416 == BUILT_IN_MEMSET))
2417 || SYMBOL_REF_DECL (symbol) == block_clear_fn)
2418 memset_call = SYMBOL_REF_DECL (symbol);
2419 }
2420 }
2421 }
2422 if (const_call || memset_call)
2423 {
2424 insn_info_t i_ptr = active_local_stores;
2425 insn_info_t last = NULL;
2426
2427 if (dump_file)
2428 fprintf (dump_file, "%s call %d\n",
2429 const_call ? "const" : "memset", INSN_UID (insn));
2430
2431 /* See the head comment of the frame_read field. */
2432 if (reload_completed)
2433 insn_info->frame_read = true;
2434
2435 /* Loop over the active stores and remove those which are
2436 killed by the const function call. */
2437 while (i_ptr)
2438 {
2439 bool remove_store = false;
2440
2441 /* The stack pointer based stores are always killed. */
2442 if (i_ptr->stack_pointer_based)
2443 remove_store = true;
2444
2445 /* If the frame is read, the frame related stores are killed. */
2446 else if (insn_info->frame_read)
2447 {
2448 store_info_t store_info = i_ptr->store_rec;
2449
2450 /* Skip the clobbers. */
2451 while (!store_info->is_set)
2452 store_info = store_info->next;
2453
2454 if (store_info->group_id >= 0
2455 && VEC_index (group_info_t, rtx_group_vec,
2456 store_info->group_id)->frame_related)
2457 remove_store = true;
2458 }
2459
2460 if (remove_store)
2461 {
2462 if (dump_file)
2463 dump_insn_info ("removing from active", i_ptr);
2464
2465 if (last)
2466 last->next_local_store = i_ptr->next_local_store;
2467 else
2468 active_local_stores = i_ptr->next_local_store;
2469 }
2470 else
2471 last = i_ptr;
2472
2473 i_ptr = i_ptr->next_local_store;
2474 }
2475
2476 if (memset_call)
2477 {
2478 rtx args[3];
2479 if (get_call_args (insn, memset_call, args, 3)
2480 && CONST_INT_P (args[1])
2481 && CONST_INT_P (args[2])
2482 && INTVAL (args[2]) > 0)
2483 {
2484 rtx mem = gen_rtx_MEM (BLKmode, args[0]);
2485 set_mem_size (mem, args[2]);
2486 body = gen_rtx_SET (VOIDmode, mem, args[1]);
2487 mems_found += record_store (body, bb_info);
2488 if (dump_file)
2489 fprintf (dump_file, "handling memset as BLKmode store\n");
2490 if (mems_found == 1)
2491 {
2492 insn_info->next_local_store = active_local_stores;
2493 active_local_stores = insn_info;
2494 }
2495 }
2496 }
2497 }
2498
2499 else
2500 /* Every other call, including pure functions, may read memory. */
2501 add_wild_read (bb_info);
2502
2503 return;
2504 }
2505
2506 /* Assuming that there are sets in these insns, we cannot delete
2507 them. */
2508 if ((GET_CODE (PATTERN (insn)) == CLOBBER)
2509 || volatile_refs_p (PATTERN (insn))
2510 || (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))
2511 || (RTX_FRAME_RELATED_P (insn))
2512 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2513 insn_info->cannot_delete = true;
2514
2515 body = PATTERN (insn);
2516 if (GET_CODE (body) == PARALLEL)
2517 {
2518 int i;
2519 for (i = 0; i < XVECLEN (body, 0); i++)
2520 mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2521 }
2522 else
2523 mems_found += record_store (body, bb_info);
2524
2525 if (dump_file)
2526 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2527 mems_found, insn_info->cannot_delete ? "true" : "false");
2528
2529 /* If we found some sets of mems, add it into the active_local_stores so
2530 that it can be locally deleted if found dead or used for
2531 replace_read and redundant constant store elimination. Otherwise mark
2532 it as cannot delete. This simplifies the processing later. */
2533 if (mems_found == 1)
2534 {
2535 insn_info->next_local_store = active_local_stores;
2536 active_local_stores = insn_info;
2537 }
2538 else
2539 insn_info->cannot_delete = true;
2540 }
2541
2542
2543 /* Remove BASE from the set of active_local_stores. This is a
2544 callback from cselib that is used to get rid of the stores in
2545 active_local_stores. */
2546
2547 static void
2548 remove_useless_values (cselib_val *base)
2549 {
2550 insn_info_t insn_info = active_local_stores;
2551 insn_info_t last = NULL;
2552
2553 while (insn_info)
2554 {
2555 store_info_t store_info = insn_info->store_rec;
2556 bool del = false;
2557
2558 /* If ANY of the store_infos match the cselib group that is
2559 being deleted, then the insn can not be deleted. */
2560 while (store_info)
2561 {
2562 if ((store_info->group_id == -1)
2563 && (store_info->cse_base == base))
2564 {
2565 del = true;
2566 break;
2567 }
2568 store_info = store_info->next;
2569 }
2570
2571 if (del)
2572 {
2573 if (last)
2574 last->next_local_store = insn_info->next_local_store;
2575 else
2576 active_local_stores = insn_info->next_local_store;
2577 free_store_info (insn_info);
2578 }
2579 else
2580 last = insn_info;
2581
2582 insn_info = insn_info->next_local_store;
2583 }
2584 }
2585
2586
2587 /* Do all of step 1. */
2588
2589 static void
2590 dse_step1 (void)
2591 {
2592 basic_block bb;
2593 bitmap regs_live = BITMAP_ALLOC (NULL);
2594
2595 cselib_init (false);
2596 all_blocks = BITMAP_ALLOC (NULL);
2597 bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2598 bitmap_set_bit (all_blocks, EXIT_BLOCK);
2599
2600 FOR_ALL_BB (bb)
2601 {
2602 insn_info_t ptr;
2603 bb_info_t bb_info = (bb_info_t) pool_alloc (bb_info_pool);
2604
2605 memset (bb_info, 0, sizeof (struct bb_info));
2606 bitmap_set_bit (all_blocks, bb->index);
2607 bb_info->regs_live = regs_live;
2608
2609 bitmap_copy (regs_live, DF_LR_IN (bb));
2610 df_simulate_initialize_forwards (bb, regs_live);
2611
2612 bb_table[bb->index] = bb_info;
2613 cselib_discard_hook = remove_useless_values;
2614
2615 if (bb->index >= NUM_FIXED_BLOCKS)
2616 {
2617 rtx insn;
2618
2619 cse_store_info_pool
2620 = create_alloc_pool ("cse_store_info_pool",
2621 sizeof (struct store_info), 100);
2622 active_local_stores = NULL;
2623 cselib_clear_table ();
2624
2625 /* Scan the insns. */
2626 FOR_BB_INSNS (bb, insn)
2627 {
2628 if (INSN_P (insn))
2629 scan_insn (bb_info, insn);
2630 cselib_process_insn (insn);
2631 if (INSN_P (insn))
2632 df_simulate_one_insn_forwards (bb, insn, regs_live);
2633 }
2634
2635 /* This is something of a hack, because the global algorithm
2636 is supposed to take care of the case where stores go dead
2637 at the end of the function. However, the global
2638 algorithm must take a more conservative view of block
2639 mode reads than the local alg does. So to get the case
2640 where you have a store to the frame followed by a non
2641 overlapping block more read, we look at the active local
2642 stores at the end of the function and delete all of the
2643 frame and spill based ones. */
2644 if (stores_off_frame_dead_at_return
2645 && (EDGE_COUNT (bb->succs) == 0
2646 || (single_succ_p (bb)
2647 && single_succ (bb) == EXIT_BLOCK_PTR
2648 && ! crtl->calls_eh_return)))
2649 {
2650 insn_info_t i_ptr = active_local_stores;
2651 while (i_ptr)
2652 {
2653 store_info_t store_info = i_ptr->store_rec;
2654
2655 /* Skip the clobbers. */
2656 while (!store_info->is_set)
2657 store_info = store_info->next;
2658 if (store_info->alias_set && !i_ptr->cannot_delete)
2659 delete_dead_store_insn (i_ptr);
2660 else
2661 if (store_info->group_id >= 0)
2662 {
2663 group_info_t group
2664 = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
2665 if (group->frame_related && !i_ptr->cannot_delete)
2666 delete_dead_store_insn (i_ptr);
2667 }
2668
2669 i_ptr = i_ptr->next_local_store;
2670 }
2671 }
2672
2673 /* Get rid of the loads that were discovered in
2674 replace_read. Cselib is finished with this block. */
2675 while (deferred_change_list)
2676 {
2677 deferred_change_t next = deferred_change_list->next;
2678
2679 /* There is no reason to validate this change. That was
2680 done earlier. */
2681 *deferred_change_list->loc = deferred_change_list->reg;
2682 pool_free (deferred_change_pool, deferred_change_list);
2683 deferred_change_list = next;
2684 }
2685
2686 /* Get rid of all of the cselib based store_infos in this
2687 block and mark the containing insns as not being
2688 deletable. */
2689 ptr = bb_info->last_insn;
2690 while (ptr)
2691 {
2692 if (ptr->contains_cselib_groups)
2693 {
2694 store_info_t s_info = ptr->store_rec;
2695 while (s_info && !s_info->is_set)
2696 s_info = s_info->next;
2697 if (s_info
2698 && s_info->redundant_reason
2699 && s_info->redundant_reason->insn
2700 && !ptr->cannot_delete)
2701 {
2702 if (dump_file)
2703 fprintf (dump_file, "Locally deleting insn %d "
2704 "because insn %d stores the "
2705 "same value and couldn't be "
2706 "eliminated\n",
2707 INSN_UID (ptr->insn),
2708 INSN_UID (s_info->redundant_reason->insn));
2709 delete_dead_store_insn (ptr);
2710 }
2711 if (s_info)
2712 s_info->redundant_reason = NULL;
2713 free_store_info (ptr);
2714 }
2715 else
2716 {
2717 store_info_t s_info;
2718
2719 /* Free at least positions_needed bitmaps. */
2720 for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2721 if (s_info->is_large)
2722 {
2723 BITMAP_FREE (s_info->positions_needed.large.bitmap);
2724 s_info->is_large = false;
2725 }
2726 }
2727 ptr = ptr->prev_insn;
2728 }
2729
2730 free_alloc_pool (cse_store_info_pool);
2731 }
2732 bb_info->regs_live = NULL;
2733 }
2734
2735 BITMAP_FREE (regs_live);
2736 cselib_finish ();
2737 htab_empty (rtx_group_table);
2738 }
2739
2740 \f
2741 /*----------------------------------------------------------------------------
2742 Second step.
2743
2744 Assign each byte position in the stores that we are going to
2745 analyze globally to a position in the bitmaps. Returns true if
2746 there are any bit positions assigned.
2747 ----------------------------------------------------------------------------*/
2748
2749 static void
2750 dse_step2_init (void)
2751 {
2752 unsigned int i;
2753 group_info_t group;
2754
2755 for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
2756 {
2757 /* For all non stack related bases, we only consider a store to
2758 be deletable if there are two or more stores for that
2759 position. This is because it takes one store to make the
2760 other store redundant. However, for the stores that are
2761 stack related, we consider them if there is only one store
2762 for the position. We do this because the stack related
2763 stores can be deleted if their is no read between them and
2764 the end of the function.
2765
2766 To make this work in the current framework, we take the stack
2767 related bases add all of the bits from store1 into store2.
2768 This has the effect of making the eligible even if there is
2769 only one store. */
2770
2771 if (stores_off_frame_dead_at_return && group->frame_related)
2772 {
2773 bitmap_ior_into (group->store2_n, group->store1_n);
2774 bitmap_ior_into (group->store2_p, group->store1_p);
2775 if (dump_file)
2776 fprintf (dump_file, "group %d is frame related ", i);
2777 }
2778
2779 group->offset_map_size_n++;
2780 group->offset_map_n = XNEWVEC (int, group->offset_map_size_n);
2781 group->offset_map_size_p++;
2782 group->offset_map_p = XNEWVEC (int, group->offset_map_size_p);
2783 group->process_globally = false;
2784 if (dump_file)
2785 {
2786 fprintf (dump_file, "group %d(%d+%d): ", i,
2787 (int)bitmap_count_bits (group->store2_n),
2788 (int)bitmap_count_bits (group->store2_p));
2789 bitmap_print (dump_file, group->store2_n, "n ", " ");
2790 bitmap_print (dump_file, group->store2_p, "p ", "\n");
2791 }
2792 }
2793 }
2794
2795
2796 /* Init the offset tables for the normal case. */
2797
2798 static bool
2799 dse_step2_nospill (void)
2800 {
2801 unsigned int i;
2802 group_info_t group;
2803 /* Position 0 is unused because 0 is used in the maps to mean
2804 unused. */
2805 current_position = 1;
2806
2807 for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
2808 {
2809 bitmap_iterator bi;
2810 unsigned int j;
2811
2812 if (group == clear_alias_group)
2813 continue;
2814
2815 memset (group->offset_map_n, 0, sizeof(int) * group->offset_map_size_n);
2816 memset (group->offset_map_p, 0, sizeof(int) * group->offset_map_size_p);
2817 bitmap_clear (group->group_kill);
2818
2819 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2820 {
2821 bitmap_set_bit (group->group_kill, current_position);
2822 group->offset_map_n[j] = current_position++;
2823 group->process_globally = true;
2824 }
2825 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2826 {
2827 bitmap_set_bit (group->group_kill, current_position);
2828 group->offset_map_p[j] = current_position++;
2829 group->process_globally = true;
2830 }
2831 }
2832 return current_position != 1;
2833 }
2834
2835
2836 /* Init the offset tables for the spill case. */
2837
2838 static bool
2839 dse_step2_spill (void)
2840 {
2841 unsigned int j;
2842 group_info_t group = clear_alias_group;
2843 bitmap_iterator bi;
2844
2845 /* Position 0 is unused because 0 is used in the maps to mean
2846 unused. */
2847 current_position = 1;
2848
2849 if (dump_file)
2850 {
2851 bitmap_print (dump_file, clear_alias_sets,
2852 "clear alias sets ", "\n");
2853 bitmap_print (dump_file, disqualified_clear_alias_sets,
2854 "disqualified clear alias sets ", "\n");
2855 }
2856
2857 memset (group->offset_map_n, 0, sizeof(int) * group->offset_map_size_n);
2858 memset (group->offset_map_p, 0, sizeof(int) * group->offset_map_size_p);
2859 bitmap_clear (group->group_kill);
2860
2861 /* Remove the disqualified positions from the store2_p set. */
2862 bitmap_and_compl_into (group->store2_p, disqualified_clear_alias_sets);
2863
2864 /* We do not need to process the store2_n set because
2865 alias_sets are always positive. */
2866 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2867 {
2868 bitmap_set_bit (group->group_kill, current_position);
2869 group->offset_map_p[j] = current_position++;
2870 group->process_globally = true;
2871 }
2872
2873 return current_position != 1;
2874 }
2875
2876
2877 \f
2878 /*----------------------------------------------------------------------------
2879 Third step.
2880
2881 Build the bit vectors for the transfer functions.
2882 ----------------------------------------------------------------------------*/
2883
2884
2885 /* Note that this is NOT a general purpose function. Any mem that has
2886 an alias set registered here expected to be COMPLETELY unaliased:
2887 i.e it's addresses are not and need not be examined.
2888
2889 It is known that all references to this address will have this
2890 alias set and there are NO other references to this address in the
2891 function.
2892
2893 Currently the only place that is known to be clean enough to use
2894 this interface is the code that assigns the spill locations.
2895
2896 All of the mems that have alias_sets registered are subjected to a
2897 very powerful form of dse where function calls, volatile reads and
2898 writes, and reads from random location are not taken into account.
2899
2900 It is also assumed that these locations go dead when the function
2901 returns. This assumption could be relaxed if there were found to
2902 be places that this assumption was not correct.
2903
2904 The MODE is passed in and saved. The mode of each load or store to
2905 a mem with ALIAS_SET is checked against MEM. If the size of that
2906 load or store is different from MODE, processing is halted on this
2907 alias set. For the vast majority of aliases sets, all of the loads
2908 and stores will use the same mode. But vectors are treated
2909 differently: the alias set is established for the entire vector,
2910 but reload will insert loads and stores for individual elements and
2911 we do not necessarily have the information to track those separate
2912 elements. So when we see a mode mismatch, we just bail. */
2913
2914
2915 void
2916 dse_record_singleton_alias_set (alias_set_type alias_set,
2917 enum machine_mode mode)
2918 {
2919 struct clear_alias_mode_holder tmp_holder;
2920 struct clear_alias_mode_holder *entry;
2921 void **slot;
2922
2923 /* If we are not going to run dse, we need to return now or there
2924 will be problems with allocating the bitmaps. */
2925 if ((!gate_dse()) || !alias_set)
2926 return;
2927
2928 if (!clear_alias_sets)
2929 {
2930 clear_alias_sets = BITMAP_ALLOC (NULL);
2931 disqualified_clear_alias_sets = BITMAP_ALLOC (NULL);
2932 clear_alias_mode_table = htab_create (11, clear_alias_mode_hash,
2933 clear_alias_mode_eq, NULL);
2934 clear_alias_mode_pool = create_alloc_pool ("clear_alias_mode_pool",
2935 sizeof (struct clear_alias_mode_holder), 100);
2936 }
2937
2938 bitmap_set_bit (clear_alias_sets, alias_set);
2939
2940 tmp_holder.alias_set = alias_set;
2941
2942 slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, INSERT);
2943 gcc_assert (*slot == NULL);
2944
2945 *slot = entry =
2946 (struct clear_alias_mode_holder *) pool_alloc (clear_alias_mode_pool);
2947 entry->alias_set = alias_set;
2948 entry->mode = mode;
2949 }
2950
2951
2952 /* Remove ALIAS_SET from the sets of stack slots being considered. */
2953
2954 void
2955 dse_invalidate_singleton_alias_set (alias_set_type alias_set)
2956 {
2957 if ((!gate_dse()) || !alias_set)
2958 return;
2959
2960 bitmap_clear_bit (clear_alias_sets, alias_set);
2961 }
2962
2963
2964 /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
2965 there, return 0. */
2966
2967 static int
2968 get_bitmap_index (group_info_t group_info, HOST_WIDE_INT offset)
2969 {
2970 if (offset < 0)
2971 {
2972 HOST_WIDE_INT offset_p = -offset;
2973 if (offset_p >= group_info->offset_map_size_n)
2974 return 0;
2975 return group_info->offset_map_n[offset_p];
2976 }
2977 else
2978 {
2979 if (offset >= group_info->offset_map_size_p)
2980 return 0;
2981 return group_info->offset_map_p[offset];
2982 }
2983 }
2984
2985
2986 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
2987 may be NULL. */
2988
2989 static void
2990 scan_stores_nospill (store_info_t store_info, bitmap gen, bitmap kill)
2991 {
2992 while (store_info)
2993 {
2994 HOST_WIDE_INT i;
2995 group_info_t group_info
2996 = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
2997 if (group_info->process_globally)
2998 for (i = store_info->begin; i < store_info->end; i++)
2999 {
3000 int index = get_bitmap_index (group_info, i);
3001 if (index != 0)
3002 {
3003 bitmap_set_bit (gen, index);
3004 if (kill)
3005 bitmap_clear_bit (kill, index);
3006 }
3007 }
3008 store_info = store_info->next;
3009 }
3010 }
3011
3012
3013 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3014 may be NULL. */
3015
3016 static void
3017 scan_stores_spill (store_info_t store_info, bitmap gen, bitmap kill)
3018 {
3019 while (store_info)
3020 {
3021 if (store_info->alias_set)
3022 {
3023 int index = get_bitmap_index (clear_alias_group,
3024 store_info->alias_set);
3025 if (index != 0)
3026 {
3027 bitmap_set_bit (gen, index);
3028 if (kill)
3029 bitmap_clear_bit (kill, index);
3030 }
3031 }
3032 store_info = store_info->next;
3033 }
3034 }
3035
3036
3037 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3038 may be NULL. */
3039
3040 static void
3041 scan_reads_nospill (insn_info_t insn_info, bitmap gen, bitmap kill)
3042 {
3043 read_info_t read_info = insn_info->read_rec;
3044 int i;
3045 group_info_t group;
3046
3047 /* If this insn reads the frame, kill all the frame related stores. */
3048 if (insn_info->frame_read)
3049 {
3050 for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
3051 if (group->process_globally && group->frame_related)
3052 {
3053 if (kill)
3054 bitmap_ior_into (kill, group->group_kill);
3055 bitmap_and_compl_into (gen, group->group_kill);
3056 }
3057 }
3058
3059 while (read_info)
3060 {
3061 for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
3062 {
3063 if (group->process_globally)
3064 {
3065 if (i == read_info->group_id)
3066 {
3067 if (read_info->begin > read_info->end)
3068 {
3069 /* Begin > end for block mode reads. */
3070 if (kill)
3071 bitmap_ior_into (kill, group->group_kill);
3072 bitmap_and_compl_into (gen, group->group_kill);
3073 }
3074 else
3075 {
3076 /* The groups are the same, just process the
3077 offsets. */
3078 HOST_WIDE_INT j;
3079 for (j = read_info->begin; j < read_info->end; j++)
3080 {
3081 int index = get_bitmap_index (group, j);
3082 if (index != 0)
3083 {
3084 if (kill)
3085 bitmap_set_bit (kill, index);
3086 bitmap_clear_bit (gen, index);
3087 }
3088 }
3089 }
3090 }
3091 else
3092 {
3093 /* The groups are different, if the alias sets
3094 conflict, clear the entire group. We only need
3095 to apply this test if the read_info is a cselib
3096 read. Anything with a constant base cannot alias
3097 something else with a different constant
3098 base. */
3099 if ((read_info->group_id < 0)
3100 && canon_true_dependence (group->base_mem,
3101 QImode,
3102 group->canon_base_addr,
3103 read_info->mem, NULL_RTX,
3104 rtx_varies_p))
3105 {
3106 if (kill)
3107 bitmap_ior_into (kill, group->group_kill);
3108 bitmap_and_compl_into (gen, group->group_kill);
3109 }
3110 }
3111 }
3112 }
3113
3114 read_info = read_info->next;
3115 }
3116 }
3117
3118 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3119 may be NULL. */
3120
3121 static void
3122 scan_reads_spill (read_info_t read_info, bitmap gen, bitmap kill)
3123 {
3124 while (read_info)
3125 {
3126 if (read_info->alias_set)
3127 {
3128 int index = get_bitmap_index (clear_alias_group,
3129 read_info->alias_set);
3130 if (index != 0)
3131 {
3132 if (kill)
3133 bitmap_set_bit (kill, index);
3134 bitmap_clear_bit (gen, index);
3135 }
3136 }
3137
3138 read_info = read_info->next;
3139 }
3140 }
3141
3142
3143 /* Return the insn in BB_INFO before the first wild read or if there
3144 are no wild reads in the block, return the last insn. */
3145
3146 static insn_info_t
3147 find_insn_before_first_wild_read (bb_info_t bb_info)
3148 {
3149 insn_info_t insn_info = bb_info->last_insn;
3150 insn_info_t last_wild_read = NULL;
3151
3152 while (insn_info)
3153 {
3154 if (insn_info->wild_read)
3155 {
3156 last_wild_read = insn_info->prev_insn;
3157 /* Block starts with wild read. */
3158 if (!last_wild_read)
3159 return NULL;
3160 }
3161
3162 insn_info = insn_info->prev_insn;
3163 }
3164
3165 if (last_wild_read)
3166 return last_wild_read;
3167 else
3168 return bb_info->last_insn;
3169 }
3170
3171
3172 /* Scan the insns in BB_INFO starting at PTR and going to the top of
3173 the block in order to build the gen and kill sets for the block.
3174 We start at ptr which may be the last insn in the block or may be
3175 the first insn with a wild read. In the latter case we are able to
3176 skip the rest of the block because it just does not matter:
3177 anything that happens is hidden by the wild read. */
3178
3179 static void
3180 dse_step3_scan (bool for_spills, basic_block bb)
3181 {
3182 bb_info_t bb_info = bb_table[bb->index];
3183 insn_info_t insn_info;
3184
3185 if (for_spills)
3186 /* There are no wild reads in the spill case. */
3187 insn_info = bb_info->last_insn;
3188 else
3189 insn_info = find_insn_before_first_wild_read (bb_info);
3190
3191 /* In the spill case or in the no_spill case if there is no wild
3192 read in the block, we will need a kill set. */
3193 if (insn_info == bb_info->last_insn)
3194 {
3195 if (bb_info->kill)
3196 bitmap_clear (bb_info->kill);
3197 else
3198 bb_info->kill = BITMAP_ALLOC (NULL);
3199 }
3200 else
3201 if (bb_info->kill)
3202 BITMAP_FREE (bb_info->kill);
3203
3204 while (insn_info)
3205 {
3206 /* There may have been code deleted by the dce pass run before
3207 this phase. */
3208 if (insn_info->insn && INSN_P (insn_info->insn))
3209 {
3210 /* Process the read(s) last. */
3211 if (for_spills)
3212 {
3213 scan_stores_spill (insn_info->store_rec, bb_info->gen, bb_info->kill);
3214 scan_reads_spill (insn_info->read_rec, bb_info->gen, bb_info->kill);
3215 }
3216 else
3217 {
3218 scan_stores_nospill (insn_info->store_rec, bb_info->gen, bb_info->kill);
3219 scan_reads_nospill (insn_info, bb_info->gen, bb_info->kill);
3220 }
3221 }
3222
3223 insn_info = insn_info->prev_insn;
3224 }
3225 }
3226
3227
3228 /* Set the gen set of the exit block, and also any block with no
3229 successors that does not have a wild read. */
3230
3231 static void
3232 dse_step3_exit_block_scan (bb_info_t bb_info)
3233 {
3234 /* The gen set is all 0's for the exit block except for the
3235 frame_pointer_group. */
3236
3237 if (stores_off_frame_dead_at_return)
3238 {
3239 unsigned int i;
3240 group_info_t group;
3241
3242 for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
3243 {
3244 if (group->process_globally && group->frame_related)
3245 bitmap_ior_into (bb_info->gen, group->group_kill);
3246 }
3247 }
3248 }
3249
3250
3251 /* Find all of the blocks that are not backwards reachable from the
3252 exit block or any block with no successors (BB). These are the
3253 infinite loops or infinite self loops. These blocks will still
3254 have their bits set in UNREACHABLE_BLOCKS. */
3255
3256 static void
3257 mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
3258 {
3259 edge e;
3260 edge_iterator ei;
3261
3262 if (TEST_BIT (unreachable_blocks, bb->index))
3263 {
3264 RESET_BIT (unreachable_blocks, bb->index);
3265 FOR_EACH_EDGE (e, ei, bb->preds)
3266 {
3267 mark_reachable_blocks (unreachable_blocks, e->src);
3268 }
3269 }
3270 }
3271
3272 /* Build the transfer functions for the function. */
3273
3274 static void
3275 dse_step3 (bool for_spills)
3276 {
3277 basic_block bb;
3278 sbitmap unreachable_blocks = sbitmap_alloc (last_basic_block);
3279 sbitmap_iterator sbi;
3280 bitmap all_ones = NULL;
3281 unsigned int i;
3282
3283 sbitmap_ones (unreachable_blocks);
3284
3285 FOR_ALL_BB (bb)
3286 {
3287 bb_info_t bb_info = bb_table[bb->index];
3288 if (bb_info->gen)
3289 bitmap_clear (bb_info->gen);
3290 else
3291 bb_info->gen = BITMAP_ALLOC (NULL);
3292
3293 if (bb->index == ENTRY_BLOCK)
3294 ;
3295 else if (bb->index == EXIT_BLOCK)
3296 dse_step3_exit_block_scan (bb_info);
3297 else
3298 dse_step3_scan (for_spills, bb);
3299 if (EDGE_COUNT (bb->succs) == 0)
3300 mark_reachable_blocks (unreachable_blocks, bb);
3301
3302 /* If this is the second time dataflow is run, delete the old
3303 sets. */
3304 if (bb_info->in)
3305 BITMAP_FREE (bb_info->in);
3306 if (bb_info->out)
3307 BITMAP_FREE (bb_info->out);
3308 }
3309
3310 /* For any block in an infinite loop, we must initialize the out set
3311 to all ones. This could be expensive, but almost never occurs in
3312 practice. However, it is common in regression tests. */
3313 EXECUTE_IF_SET_IN_SBITMAP (unreachable_blocks, 0, i, sbi)
3314 {
3315 if (bitmap_bit_p (all_blocks, i))
3316 {
3317 bb_info_t bb_info = bb_table[i];
3318 if (!all_ones)
3319 {
3320 unsigned int j;
3321 group_info_t group;
3322
3323 all_ones = BITMAP_ALLOC (NULL);
3324 for (j = 0; VEC_iterate (group_info_t, rtx_group_vec, j, group); j++)
3325 bitmap_ior_into (all_ones, group->group_kill);
3326 }
3327 if (!bb_info->out)
3328 {
3329 bb_info->out = BITMAP_ALLOC (NULL);
3330 bitmap_copy (bb_info->out, all_ones);
3331 }
3332 }
3333 }
3334
3335 if (all_ones)
3336 BITMAP_FREE (all_ones);
3337 sbitmap_free (unreachable_blocks);
3338 }
3339
3340
3341 \f
3342 /*----------------------------------------------------------------------------
3343 Fourth step.
3344
3345 Solve the bitvector equations.
3346 ----------------------------------------------------------------------------*/
3347
3348
3349 /* Confluence function for blocks with no successors. Create an out
3350 set from the gen set of the exit block. This block logically has
3351 the exit block as a successor. */
3352
3353
3354
3355 static void
3356 dse_confluence_0 (basic_block bb)
3357 {
3358 bb_info_t bb_info = bb_table[bb->index];
3359
3360 if (bb->index == EXIT_BLOCK)
3361 return;
3362
3363 if (!bb_info->out)
3364 {
3365 bb_info->out = BITMAP_ALLOC (NULL);
3366 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3367 }
3368 }
3369
3370 /* Propagate the information from the in set of the dest of E to the
3371 out set of the src of E. If the various in or out sets are not
3372 there, that means they are all ones. */
3373
3374 static void
3375 dse_confluence_n (edge e)
3376 {
3377 bb_info_t src_info = bb_table[e->src->index];
3378 bb_info_t dest_info = bb_table[e->dest->index];
3379
3380 if (dest_info->in)
3381 {
3382 if (src_info->out)
3383 bitmap_and_into (src_info->out, dest_info->in);
3384 else
3385 {
3386 src_info->out = BITMAP_ALLOC (NULL);
3387 bitmap_copy (src_info->out, dest_info->in);
3388 }
3389 }
3390 }
3391
3392
3393 /* Propagate the info from the out to the in set of BB_INDEX's basic
3394 block. There are three cases:
3395
3396 1) The block has no kill set. In this case the kill set is all
3397 ones. It does not matter what the out set of the block is, none of
3398 the info can reach the top. The only thing that reaches the top is
3399 the gen set and we just copy the set.
3400
3401 2) There is a kill set but no out set and bb has successors. In
3402 this case we just return. Eventually an out set will be created and
3403 it is better to wait than to create a set of ones.
3404
3405 3) There is both a kill and out set. We apply the obvious transfer
3406 function.
3407 */
3408
3409 static bool
3410 dse_transfer_function (int bb_index)
3411 {
3412 bb_info_t bb_info = bb_table[bb_index];
3413
3414 if (bb_info->kill)
3415 {
3416 if (bb_info->out)
3417 {
3418 /* Case 3 above. */
3419 if (bb_info->in)
3420 return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3421 bb_info->out, bb_info->kill);
3422 else
3423 {
3424 bb_info->in = BITMAP_ALLOC (NULL);
3425 bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3426 bb_info->out, bb_info->kill);
3427 return true;
3428 }
3429 }
3430 else
3431 /* Case 2 above. */
3432 return false;
3433 }
3434 else
3435 {
3436 /* Case 1 above. If there is already an in set, nothing
3437 happens. */
3438 if (bb_info->in)
3439 return false;
3440 else
3441 {
3442 bb_info->in = BITMAP_ALLOC (NULL);
3443 bitmap_copy (bb_info->in, bb_info->gen);
3444 return true;
3445 }
3446 }
3447 }
3448
3449 /* Solve the dataflow equations. */
3450
3451 static void
3452 dse_step4 (void)
3453 {
3454 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3455 dse_confluence_n, dse_transfer_function,
3456 all_blocks, df_get_postorder (DF_BACKWARD),
3457 df_get_n_blocks (DF_BACKWARD));
3458 if (dump_file)
3459 {
3460 basic_block bb;
3461
3462 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
3463 FOR_ALL_BB (bb)
3464 {
3465 bb_info_t bb_info = bb_table[bb->index];
3466
3467 df_print_bb_index (bb, dump_file);
3468 if (bb_info->in)
3469 bitmap_print (dump_file, bb_info->in, " in: ", "\n");
3470 else
3471 fprintf (dump_file, " in: *MISSING*\n");
3472 if (bb_info->gen)
3473 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
3474 else
3475 fprintf (dump_file, " gen: *MISSING*\n");
3476 if (bb_info->kill)
3477 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
3478 else
3479 fprintf (dump_file, " kill: *MISSING*\n");
3480 if (bb_info->out)
3481 bitmap_print (dump_file, bb_info->out, " out: ", "\n");
3482 else
3483 fprintf (dump_file, " out: *MISSING*\n\n");
3484 }
3485 }
3486 }
3487
3488
3489 \f
3490 /*----------------------------------------------------------------------------
3491 Fifth step.
3492
3493 Delete the stores that can only be deleted using the global information.
3494 ----------------------------------------------------------------------------*/
3495
3496
3497 static void
3498 dse_step5_nospill (void)
3499 {
3500 basic_block bb;
3501 FOR_EACH_BB (bb)
3502 {
3503 bb_info_t bb_info = bb_table[bb->index];
3504 insn_info_t insn_info = bb_info->last_insn;
3505 bitmap v = bb_info->out;
3506
3507 while (insn_info)
3508 {
3509 bool deleted = false;
3510 if (dump_file && insn_info->insn)
3511 {
3512 fprintf (dump_file, "starting to process insn %d\n",
3513 INSN_UID (insn_info->insn));
3514 bitmap_print (dump_file, v, " v: ", "\n");
3515 }
3516
3517 /* There may have been code deleted by the dce pass run before
3518 this phase. */
3519 if (insn_info->insn
3520 && INSN_P (insn_info->insn)
3521 && (!insn_info->cannot_delete)
3522 && (!bitmap_empty_p (v)))
3523 {
3524 store_info_t store_info = insn_info->store_rec;
3525
3526 /* Try to delete the current insn. */
3527 deleted = true;
3528
3529 /* Skip the clobbers. */
3530 while (!store_info->is_set)
3531 store_info = store_info->next;
3532
3533 if (store_info->alias_set)
3534 deleted = false;
3535 else
3536 {
3537 HOST_WIDE_INT i;
3538 group_info_t group_info
3539 = VEC_index (group_info_t, rtx_group_vec, store_info->group_id);
3540
3541 for (i = store_info->begin; i < store_info->end; i++)
3542 {
3543 int index = get_bitmap_index (group_info, i);
3544
3545 if (dump_file)
3546 fprintf (dump_file, "i = %d, index = %d\n", (int)i, index);
3547 if (index == 0 || !bitmap_bit_p (v, index))
3548 {
3549 if (dump_file)
3550 fprintf (dump_file, "failing at i = %d\n", (int)i);
3551 deleted = false;
3552 break;
3553 }
3554 }
3555 }
3556 if (deleted)
3557 {
3558 if (dbg_cnt (dse))
3559 {
3560 check_for_inc_dec (insn_info->insn);
3561 delete_insn (insn_info->insn);
3562 insn_info->insn = NULL;
3563 globally_deleted++;
3564 }
3565 }
3566 }
3567 /* We do want to process the local info if the insn was
3568 deleted. For instance, if the insn did a wild read, we
3569 no longer need to trash the info. */
3570 if (insn_info->insn
3571 && INSN_P (insn_info->insn)
3572 && (!deleted))
3573 {
3574 scan_stores_nospill (insn_info->store_rec, v, NULL);
3575 if (insn_info->wild_read)
3576 {
3577 if (dump_file)
3578 fprintf (dump_file, "wild read\n");
3579 bitmap_clear (v);
3580 }
3581 else if (insn_info->read_rec)
3582 {
3583 if (dump_file)
3584 fprintf (dump_file, "regular read\n");
3585 scan_reads_nospill (insn_info, v, NULL);
3586 }
3587 }
3588
3589 insn_info = insn_info->prev_insn;
3590 }
3591 }
3592 }
3593
3594
3595 static void
3596 dse_step5_spill (void)
3597 {
3598 basic_block bb;
3599 FOR_EACH_BB (bb)
3600 {
3601 bb_info_t bb_info = bb_table[bb->index];
3602 insn_info_t insn_info = bb_info->last_insn;
3603 bitmap v = bb_info->out;
3604
3605 while (insn_info)
3606 {
3607 bool deleted = false;
3608 /* There may have been code deleted by the dce pass run before
3609 this phase. */
3610 if (insn_info->insn
3611 && INSN_P (insn_info->insn)
3612 && (!insn_info->cannot_delete)
3613 && (!bitmap_empty_p (v)))
3614 {
3615 /* Try to delete the current insn. */
3616 store_info_t store_info = insn_info->store_rec;
3617 deleted = true;
3618
3619 while (store_info)
3620 {
3621 if (store_info->alias_set)
3622 {
3623 int index = get_bitmap_index (clear_alias_group,
3624 store_info->alias_set);
3625 if (index == 0 || !bitmap_bit_p (v, index))
3626 {
3627 deleted = false;
3628 break;
3629 }
3630 }
3631 else
3632 deleted = false;
3633 store_info = store_info->next;
3634 }
3635 if (deleted && dbg_cnt (dse))
3636 {
3637 if (dump_file)
3638 fprintf (dump_file, "Spill deleting insn %d\n",
3639 INSN_UID (insn_info->insn));
3640 check_for_inc_dec (insn_info->insn);
3641 delete_insn (insn_info->insn);
3642 spill_deleted++;
3643 insn_info->insn = NULL;
3644 }
3645 }
3646
3647 if (insn_info->insn
3648 && INSN_P (insn_info->insn)
3649 && (!deleted))
3650 {
3651 scan_stores_spill (insn_info->store_rec, v, NULL);
3652 scan_reads_spill (insn_info->read_rec, v, NULL);
3653 }
3654
3655 insn_info = insn_info->prev_insn;
3656 }
3657 }
3658 }
3659
3660
3661 \f
3662 /*----------------------------------------------------------------------------
3663 Sixth step.
3664
3665 Delete stores made redundant by earlier stores (which store the same
3666 value) that couldn't be eliminated.
3667 ----------------------------------------------------------------------------*/
3668
3669 static void
3670 dse_step6 (void)
3671 {
3672 basic_block bb;
3673
3674 FOR_ALL_BB (bb)
3675 {
3676 bb_info_t bb_info = bb_table[bb->index];
3677 insn_info_t insn_info = bb_info->last_insn;
3678
3679 while (insn_info)
3680 {
3681 /* There may have been code deleted by the dce pass run before
3682 this phase. */
3683 if (insn_info->insn
3684 && INSN_P (insn_info->insn)
3685 && !insn_info->cannot_delete)
3686 {
3687 store_info_t s_info = insn_info->store_rec;
3688
3689 while (s_info && !s_info->is_set)
3690 s_info = s_info->next;
3691 if (s_info
3692 && s_info->redundant_reason
3693 && s_info->redundant_reason->insn
3694 && INSN_P (s_info->redundant_reason->insn))
3695 {
3696 rtx rinsn = s_info->redundant_reason->insn;
3697 if (dump_file)
3698 fprintf (dump_file, "Locally deleting insn %d "
3699 "because insn %d stores the "
3700 "same value and couldn't be "
3701 "eliminated\n",
3702 INSN_UID (insn_info->insn),
3703 INSN_UID (rinsn));
3704 delete_dead_store_insn (insn_info);
3705 }
3706 }
3707 insn_info = insn_info->prev_insn;
3708 }
3709 }
3710 }
3711 \f
3712 /*----------------------------------------------------------------------------
3713 Seventh step.
3714
3715 Destroy everything left standing.
3716 ----------------------------------------------------------------------------*/
3717
3718 static void
3719 dse_step7 (bool global_done)
3720 {
3721 unsigned int i;
3722 group_info_t group;
3723 basic_block bb;
3724
3725 for (i = 0; VEC_iterate (group_info_t, rtx_group_vec, i, group); i++)
3726 {
3727 free (group->offset_map_n);
3728 free (group->offset_map_p);
3729 BITMAP_FREE (group->store1_n);
3730 BITMAP_FREE (group->store1_p);
3731 BITMAP_FREE (group->store2_n);
3732 BITMAP_FREE (group->store2_p);
3733 BITMAP_FREE (group->group_kill);
3734 }
3735
3736 if (global_done)
3737 FOR_ALL_BB (bb)
3738 {
3739 bb_info_t bb_info = bb_table[bb->index];
3740 BITMAP_FREE (bb_info->gen);
3741 if (bb_info->kill)
3742 BITMAP_FREE (bb_info->kill);
3743 if (bb_info->in)
3744 BITMAP_FREE (bb_info->in);
3745 if (bb_info->out)
3746 BITMAP_FREE (bb_info->out);
3747 }
3748
3749 if (clear_alias_sets)
3750 {
3751 BITMAP_FREE (clear_alias_sets);
3752 BITMAP_FREE (disqualified_clear_alias_sets);
3753 free_alloc_pool (clear_alias_mode_pool);
3754 htab_delete (clear_alias_mode_table);
3755 }
3756
3757 end_alias_analysis ();
3758 free (bb_table);
3759 htab_delete (rtx_group_table);
3760 VEC_free (group_info_t, heap, rtx_group_vec);
3761 BITMAP_FREE (all_blocks);
3762 BITMAP_FREE (scratch);
3763
3764 free_alloc_pool (rtx_store_info_pool);
3765 free_alloc_pool (read_info_pool);
3766 free_alloc_pool (insn_info_pool);
3767 free_alloc_pool (bb_info_pool);
3768 free_alloc_pool (rtx_group_info_pool);
3769 free_alloc_pool (deferred_change_pool);
3770 }
3771
3772
3773 /* -------------------------------------------------------------------------
3774 DSE
3775 ------------------------------------------------------------------------- */
3776
3777 /* Callback for running pass_rtl_dse. */
3778
3779 static unsigned int
3780 rest_of_handle_dse (void)
3781 {
3782 bool did_global = false;
3783
3784 df_set_flags (DF_DEFER_INSN_RESCAN);
3785
3786 /* Need the notes since we must track live hardregs in the forwards
3787 direction. */
3788 df_note_add_problem ();
3789 df_analyze ();
3790
3791 dse_step0 ();
3792 dse_step1 ();
3793 dse_step2_init ();
3794 if (dse_step2_nospill ())
3795 {
3796 df_set_flags (DF_LR_RUN_DCE);
3797 df_analyze ();
3798 did_global = true;
3799 if (dump_file)
3800 fprintf (dump_file, "doing global processing\n");
3801 dse_step3 (false);
3802 dse_step4 ();
3803 dse_step5_nospill ();
3804 }
3805
3806 /* For the instance of dse that runs after reload, we make a special
3807 pass to process the spills. These are special in that they are
3808 totally transparent, i.e, there is no aliasing issues that need
3809 to be considered. This means that the wild reads that kill
3810 everything else do not apply here. */
3811 if (clear_alias_sets && dse_step2_spill ())
3812 {
3813 if (!did_global)
3814 {
3815 df_set_flags (DF_LR_RUN_DCE);
3816 df_analyze ();
3817 }
3818 did_global = true;
3819 if (dump_file)
3820 fprintf (dump_file, "doing global spill processing\n");
3821 dse_step3 (true);
3822 dse_step4 ();
3823 dse_step5_spill ();
3824 }
3825
3826 dse_step6 ();
3827 dse_step7 (did_global);
3828
3829 if (dump_file)
3830 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d, spill deletions = %d\n",
3831 locally_deleted, globally_deleted, spill_deleted);
3832 return 0;
3833 }
3834
3835 static bool
3836 gate_dse (void)
3837 {
3838 return gate_dse1 () || gate_dse2 ();
3839 }
3840
3841 static bool
3842 gate_dse1 (void)
3843 {
3844 return optimize > 0 && flag_dse
3845 && dbg_cnt (dse1);
3846 }
3847
3848 static bool
3849 gate_dse2 (void)
3850 {
3851 return optimize > 0 && flag_dse
3852 && dbg_cnt (dse2);
3853 }
3854
3855 struct rtl_opt_pass pass_rtl_dse1 =
3856 {
3857 {
3858 RTL_PASS,
3859 "dse1", /* name */
3860 gate_dse1, /* gate */
3861 rest_of_handle_dse, /* execute */
3862 NULL, /* sub */
3863 NULL, /* next */
3864 0, /* static_pass_number */
3865 TV_DSE1, /* tv_id */
3866 0, /* properties_required */
3867 0, /* properties_provided */
3868 0, /* properties_destroyed */
3869 0, /* todo_flags_start */
3870 TODO_dump_func |
3871 TODO_df_finish | TODO_verify_rtl_sharing |
3872 TODO_ggc_collect /* todo_flags_finish */
3873 }
3874 };
3875
3876 struct rtl_opt_pass pass_rtl_dse2 =
3877 {
3878 {
3879 RTL_PASS,
3880 "dse2", /* name */
3881 gate_dse2, /* gate */
3882 rest_of_handle_dse, /* execute */
3883 NULL, /* sub */
3884 NULL, /* next */
3885 0, /* static_pass_number */
3886 TV_DSE2, /* tv_id */
3887 0, /* properties_required */
3888 0, /* properties_provided */
3889 0, /* properties_destroyed */
3890 0, /* todo_flags_start */
3891 TODO_dump_func |
3892 TODO_df_finish | TODO_verify_rtl_sharing |
3893 TODO_ggc_collect /* todo_flags_finish */
3894 }
3895 };
This page took 0.256338 seconds and 5 git commands to generate.