]> gcc.gnu.org Git - gcc.git/blob - gcc/doc/invoke.texi
driver-i386.c (host_detect_local_cpu): Set PROCESSOR_K8 for signature_CENTAUR_ebx...
[gcc.git] / gcc / doc / invoke.texi
1 @c Copyright (C) 1988-2016 Free Software Foundation, Inc.
2 @c This is part of the GCC manual.
3 @c For copying conditions, see the file gcc.texi.
4
5 @ignore
6 @c man begin INCLUDE
7 @include gcc-vers.texi
8 @c man end
9
10 @c man begin COPYRIGHT
11 Copyright @copyright{} 1988-2016 Free Software Foundation, Inc.
12
13 Permission is granted to copy, distribute and/or modify this document
14 under the terms of the GNU Free Documentation License, Version 1.3 or
15 any later version published by the Free Software Foundation; with the
16 Invariant Sections being ``GNU General Public License'' and ``Funding
17 Free Software'', the Front-Cover texts being (a) (see below), and with
18 the Back-Cover Texts being (b) (see below). A copy of the license is
19 included in the gfdl(7) man page.
20
21 (a) The FSF's Front-Cover Text is:
22
23 A GNU Manual
24
25 (b) The FSF's Back-Cover Text is:
26
27 You have freedom to copy and modify this GNU Manual, like GNU
28 software. Copies published by the Free Software Foundation raise
29 funds for GNU development.
30 @c man end
31 @c Set file name and title for the man page.
32 @setfilename gcc
33 @settitle GNU project C and C++ compiler
34 @c man begin SYNOPSIS
35 gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
36 [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
37 [@option{-W}@var{warn}@dots{}] [@option{-Wpedantic}]
38 [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
39 [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
40 [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
41 [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
42
43 Only the most useful options are listed here; see below for the
44 remainder. @command{g++} accepts mostly the same options as @command{gcc}.
45 @c man end
46 @c man begin SEEALSO
47 gpl(7), gfdl(7), fsf-funding(7),
48 cpp(1), gcov(1), as(1), ld(1), gdb(1), adb(1), dbx(1), sdb(1)
49 and the Info entries for @file{gcc}, @file{cpp}, @file{as},
50 @file{ld}, @file{binutils} and @file{gdb}.
51 @c man end
52 @c man begin BUGS
53 For instructions on reporting bugs, see
54 @w{@value{BUGURL}}.
55 @c man end
56 @c man begin AUTHOR
57 See the Info entry for @command{gcc}, or
58 @w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
59 for contributors to GCC@.
60 @c man end
61 @end ignore
62
63 @node Invoking GCC
64 @chapter GCC Command Options
65 @cindex GCC command options
66 @cindex command options
67 @cindex options, GCC command
68
69 @c man begin DESCRIPTION
70 When you invoke GCC, it normally does preprocessing, compilation,
71 assembly and linking. The ``overall options'' allow you to stop this
72 process at an intermediate stage. For example, the @option{-c} option
73 says not to run the linker. Then the output consists of object files
74 output by the assembler.
75 @xref{Overall Options,,Options Controlling the Kind of Output}.
76
77 Other options are passed on to one or more stages of processing. Some options
78 control the preprocessor and others the compiler itself. Yet other
79 options control the assembler and linker; most of these are not
80 documented here, since you rarely need to use any of them.
81
82 @cindex C compilation options
83 Most of the command-line options that you can use with GCC are useful
84 for C programs; when an option is only useful with another language
85 (usually C++), the explanation says so explicitly. If the description
86 for a particular option does not mention a source language, you can use
87 that option with all supported languages.
88
89 @cindex cross compiling
90 @cindex specifying machine version
91 @cindex specifying compiler version and target machine
92 @cindex compiler version, specifying
93 @cindex target machine, specifying
94 The usual way to run GCC is to run the executable called @command{gcc}, or
95 @command{@var{machine}-gcc} when cross-compiling, or
96 @command{@var{machine}-gcc-@var{version}} to run a specific version of GCC.
97 When you compile C++ programs, you should invoke GCC as @command{g++}
98 instead. @xref{Invoking G++,,Compiling C++ Programs},
99 for information about the differences in behavior between @command{gcc}
100 and @code{g++} when compiling C++ programs.
101
102 @cindex grouping options
103 @cindex options, grouping
104 The @command{gcc} program accepts options and file names as operands. Many
105 options have multi-letter names; therefore multiple single-letter options
106 may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d
107 -v}}.
108
109 @cindex order of options
110 @cindex options, order
111 You can mix options and other arguments. For the most part, the order
112 you use doesn't matter. Order does matter when you use several
113 options of the same kind; for example, if you specify @option{-L} more
114 than once, the directories are searched in the order specified. Also,
115 the placement of the @option{-l} option is significant.
116
117 Many options have long names starting with @samp{-f} or with
118 @samp{-W}---for example,
119 @option{-fmove-loop-invariants}, @option{-Wformat} and so on. Most of
120 these have both positive and negative forms; the negative form of
121 @option{-ffoo} is @option{-fno-foo}. This manual documents
122 only one of these two forms, whichever one is not the default.
123
124 @c man end
125
126 @xref{Option Index}, for an index to GCC's options.
127
128 @menu
129 * Option Summary:: Brief list of all options, without explanations.
130 * Overall Options:: Controlling the kind of output:
131 an executable, object files, assembler files,
132 or preprocessed source.
133 * Invoking G++:: Compiling C++ programs.
134 * C Dialect Options:: Controlling the variant of C language compiled.
135 * C++ Dialect Options:: Variations on C++.
136 * Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
137 and Objective-C++.
138 * Diagnostic Message Formatting Options:: Controlling how diagnostics should
139 be formatted.
140 * Warning Options:: How picky should the compiler be?
141 * Debugging Options:: Producing debuggable code.
142 * Optimize Options:: How much optimization?
143 * Instrumentation Options:: Enabling profiling and extra run-time error checking.
144 * Preprocessor Options:: Controlling header files and macro definitions.
145 Also, getting dependency information for Make.
146 * Assembler Options:: Passing options to the assembler.
147 * Link Options:: Specifying libraries and so on.
148 * Directory Options:: Where to find header files and libraries.
149 Where to find the compiler executable files.
150 * Code Gen Options:: Specifying conventions for function calls, data layout
151 and register usage.
152 * Developer Options:: Printing GCC configuration info, statistics, and
153 debugging dumps.
154 * Submodel Options:: Target-specific options, such as compiling for a
155 specific processor variant.
156 * Spec Files:: How to pass switches to sub-processes.
157 * Environment Variables:: Env vars that affect GCC.
158 * Precompiled Headers:: Compiling a header once, and using it many times.
159 @end menu
160
161 @c man begin OPTIONS
162
163 @node Option Summary
164 @section Option Summary
165
166 Here is a summary of all the options, grouped by type. Explanations are
167 in the following sections.
168
169 @table @emph
170 @item Overall Options
171 @xref{Overall Options,,Options Controlling the Kind of Output}.
172 @gccoptlist{-c -S -E -o @var{file} -x @var{language} @gol
173 -v -### --help@r{[}=@var{class}@r{[},@dots{}@r{]]} --target-help --version @gol
174 -pass-exit-codes -pipe -specs=@var{file} -wrapper @gol
175 @@@var{file} -fplugin=@var{file} -fplugin-arg-@var{name}=@var{arg} @gol
176 -fdump-ada-spec@r{[}-slim@r{]} -fada-spec-parent=@var{unit} -fdump-go-spec=@var{file}}
177
178 @item C Language Options
179 @xref{C Dialect Options,,Options Controlling C Dialect}.
180 @gccoptlist{-ansi -std=@var{standard} -fgnu89-inline @gol
181 -aux-info @var{filename} -fallow-parameterless-variadic-functions @gol
182 -fno-asm -fno-builtin -fno-builtin-@var{function} @gol
183 -fhosted -ffreestanding -fopenacc -fopenmp -fopenmp-simd @gol
184 -fms-extensions -fplan9-extensions -fsso-struct=@var{endianness}
185 -fallow-single-precision -fcond-mismatch -flax-vector-conversions @gol
186 -fsigned-bitfields -fsigned-char @gol
187 -funsigned-bitfields -funsigned-char @gol
188 -trigraphs -traditional -traditional-cpp}
189
190 @item C++ Language Options
191 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
192 @gccoptlist{-fabi-version=@var{n} -fno-access-control @gol
193 -fargs-in-order=@var{n} -fcheck-new @gol
194 -fconstexpr-depth=@var{n} -ffriend-injection @gol
195 -fno-elide-constructors @gol
196 -fno-enforce-eh-specs @gol
197 -ffor-scope -fno-for-scope -fno-gnu-keywords @gol
198 -fno-implicit-templates @gol
199 -fno-implicit-inline-templates @gol
200 -fno-implement-inlines -fms-extensions @gol
201 -fno-nonansi-builtins -fnothrow-opt -fno-operator-names @gol
202 -fno-optional-diags -fpermissive @gol
203 -fno-pretty-templates @gol
204 -frepo -fno-rtti -fsized-deallocation @gol
205 -ftemplate-backtrace-limit=@var{n} @gol
206 -ftemplate-depth=@var{n} @gol
207 -fno-threadsafe-statics -fuse-cxa-atexit @gol
208 -fno-weak -nostdinc++ @gol
209 -fvisibility-inlines-hidden @gol
210 -fvisibility-ms-compat @gol
211 -fext-numeric-literals @gol
212 -Wabi=@var{n} -Wabi-tag -Wconversion-null -Wctor-dtor-privacy @gol
213 -Wdelete-non-virtual-dtor -Wliteral-suffix -Wmultiple-inheritance @gol
214 -Wnamespaces -Wnarrowing @gol
215 -Wnoexcept -Wnon-virtual-dtor -Wreorder @gol
216 -Weffc++ -Wstrict-null-sentinel -Wtemplates @gol
217 -Wno-non-template-friend -Wold-style-cast @gol
218 -Woverloaded-virtual -Wno-pmf-conversions @gol
219 -Wsign-promo -Wvirtual-inheritance}
220
221 @item Objective-C and Objective-C++ Language Options
222 @xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
223 Objective-C and Objective-C++ Dialects}.
224 @gccoptlist{-fconstant-string-class=@var{class-name} @gol
225 -fgnu-runtime -fnext-runtime @gol
226 -fno-nil-receivers @gol
227 -fobjc-abi-version=@var{n} @gol
228 -fobjc-call-cxx-cdtors @gol
229 -fobjc-direct-dispatch @gol
230 -fobjc-exceptions @gol
231 -fobjc-gc @gol
232 -fobjc-nilcheck @gol
233 -fobjc-std=objc1 @gol
234 -fno-local-ivars @gol
235 -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]} @gol
236 -freplace-objc-classes @gol
237 -fzero-link @gol
238 -gen-decls @gol
239 -Wassign-intercept @gol
240 -Wno-protocol -Wselector @gol
241 -Wstrict-selector-match @gol
242 -Wundeclared-selector}
243
244 @item Diagnostic Message Formatting Options
245 @xref{Diagnostic Message Formatting Options,,Options to Control Diagnostic Messages Formatting}.
246 @gccoptlist{-fmessage-length=@var{n} @gol
247 -fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]} @gol
248 -fdiagnostics-color=@r{[}auto@r{|}never@r{|}always@r{]} @gol
249 -fno-diagnostics-show-option -fno-diagnostics-show-caret}
250
251 @item Warning Options
252 @xref{Warning Options,,Options to Request or Suppress Warnings}.
253 @gccoptlist{-fsyntax-only -fmax-errors=@var{n} -Wpedantic @gol
254 -pedantic-errors @gol
255 -w -Wextra -Wall -Waddress -Waggregate-return @gol
256 -Wno-aggressive-loop-optimizations -Warray-bounds -Warray-bounds=@var{n} @gol
257 -Wno-attributes -Wbool-compare -Wno-builtin-macro-redefined @gol
258 -Wc90-c99-compat -Wc99-c11-compat @gol
259 -Wc++-compat -Wc++11-compat -Wc++14-compat -Wcast-align -Wcast-qual @gol
260 -Wchar-subscripts -Wclobbered -Wcomment -Wconditionally-supported @gol
261 -Wconversion -Wcoverage-mismatch -Wno-cpp -Wdangling-else -Wdate-time @gol
262 -Wdelete-incomplete @gol
263 -Wno-deprecated -Wno-deprecated-declarations -Wno-designated-init @gol
264 -Wdisabled-optimization @gol
265 -Wno-discarded-qualifiers -Wno-discarded-array-qualifiers @gol
266 -Wno-div-by-zero -Wdouble-promotion -Wduplicated-cond @gol
267 -Wempty-body -Wenum-compare -Wno-endif-labels @gol
268 -Werror -Werror=* -Wfatal-errors -Wfloat-equal -Wformat -Wformat=2 @gol
269 -Wno-format-contains-nul -Wno-format-extra-args -Wformat-nonliteral @gol
270 -Wformat-security -Wformat-signedness -Wformat-y2k -Wframe-address @gol
271 -Wframe-larger-than=@var{len} -Wno-free-nonheap-object -Wjump-misses-init @gol
272 -Wignored-qualifiers -Wignored-attributes -Wincompatible-pointer-types @gol
273 -Wimplicit -Wimplicit-function-declaration -Wimplicit-int @gol
274 -Winit-self -Winline -Wno-int-conversion @gol
275 -Wno-int-to-pointer-cast -Winvalid-memory-model -Wno-invalid-offsetof @gol
276 -Winvalid-pch -Wlarger-than=@var{len} @gol
277 -Wlogical-op -Wlogical-not-parentheses -Wlong-long @gol
278 -Wmain -Wmaybe-uninitialized -Wmemset-elt-size -Wmemset-transposed-args @gol
279 -Wmisleading-indentation -Wmissing-braces @gol
280 -Wmissing-field-initializers -Wmissing-include-dirs @gol
281 -Wno-multichar -Wnonnull -Wnonnull-compare @gol
282 -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]} @gol
283 -Wnull-dereference -Wodr -Wno-overflow -Wopenmp-simd @gol
284 -Woverride-init-side-effects -Woverlength-strings @gol
285 -Wpacked -Wpacked-bitfield-compat -Wpadded @gol
286 -Wparentheses -Wno-pedantic-ms-format @gol
287 -Wplacement-new -Wplacement-new=@var{n} @gol
288 -Wpointer-arith -Wno-pointer-to-int-cast @gol
289 -Wno-pragmas -Wredundant-decls -Wno-return-local-addr @gol
290 -Wreturn-type -Wsequence-point -Wshadow -Wno-shadow-ivar @gol
291 -Wshift-overflow -Wshift-overflow=@var{n} @gol
292 -Wshift-count-negative -Wshift-count-overflow -Wshift-negative-value @gol
293 -Wsign-compare -Wsign-conversion -Wfloat-conversion @gol
294 -Wno-scalar-storage-order @gol
295 -Wsizeof-pointer-memaccess -Wsizeof-array-argument @gol
296 -Wstack-protector -Wstack-usage=@var{len} -Wstrict-aliasing @gol
297 -Wstrict-aliasing=n -Wstrict-overflow -Wstrict-overflow=@var{n} @gol
298 -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]} @gol
299 -Wsuggest-final-types @gol -Wsuggest-final-methods -Wsuggest-override @gol
300 -Wmissing-format-attribute -Wsubobject-linkage @gol
301 -Wswitch -Wswitch-bool -Wswitch-default -Wswitch-enum @gol
302 -Wswitch-unreachable -Wsync-nand @gol
303 -Wsystem-headers -Wtautological-compare -Wtrampolines -Wtrigraphs @gol
304 -Wtype-limits -Wundef @gol
305 -Wuninitialized -Wunknown-pragmas -Wunsafe-loop-optimizations @gol
306 -Wunsuffixed-float-constants -Wunused -Wunused-function @gol
307 -Wunused-label -Wunused-local-typedefs -Wunused-parameter @gol
308 -Wno-unused-result -Wunused-value @gol -Wunused-variable @gol
309 -Wunused-const-variable -Wunused-const-variable=@var{n} @gol
310 -Wunused-but-set-parameter -Wunused-but-set-variable @gol
311 -Wuseless-cast -Wvariadic-macros -Wvector-operation-performance @gol
312 -Wvla -Wvolatile-register-var -Wwrite-strings @gol
313 -Wzero-as-null-pointer-constant -Whsa}
314
315 @item C and Objective-C-only Warning Options
316 @gccoptlist{-Wbad-function-cast -Wmissing-declarations @gol
317 -Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs @gol
318 -Wold-style-declaration -Wold-style-definition @gol
319 -Wstrict-prototypes -Wtraditional -Wtraditional-conversion @gol
320 -Wdeclaration-after-statement -Wpointer-sign}
321
322 @item Debugging Options
323 @xref{Debugging Options,,Options for Debugging Your Program}.
324 @gccoptlist{-g -g@var{level} -gcoff -gdwarf -gdwarf-@var{version} @gol
325 -ggdb -grecord-gcc-switches -gno-record-gcc-switches @gol
326 -gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf @gol
327 -gvms -gxcoff -gxcoff+ -gz@r{[}=@var{type}@r{]} @gol
328 -fdebug-prefix-map=@var{old}=@var{new} -fdebug-types-section @gol
329 -feliminate-dwarf2-dups -fno-eliminate-unused-debug-types @gol
330 -femit-struct-debug-baseonly -femit-struct-debug-reduced @gol
331 -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} @gol
332 -feliminate-unused-debug-symbols -femit-class-debug-always @gol
333 -fno-merge-debug-strings -fno-dwarf2-cfi-asm @gol
334 -fvar-tracking -fvar-tracking-assignments}
335
336 @item Optimization Options
337 @xref{Optimize Options,,Options that Control Optimization}.
338 @gccoptlist{-faggressive-loop-optimizations -falign-functions[=@var{n}] @gol
339 -falign-jumps[=@var{n}] @gol
340 -falign-labels[=@var{n}] -falign-loops[=@var{n}] @gol
341 -fassociative-math -fauto-profile -fauto-profile[=@var{path}] @gol
342 -fauto-inc-dec -fbranch-probabilities @gol
343 -fbranch-target-load-optimize -fbranch-target-load-optimize2 @gol
344 -fbtr-bb-exclusive -fcaller-saves @gol
345 -fcombine-stack-adjustments -fconserve-stack @gol
346 -fcompare-elim -fcprop-registers -fcrossjumping @gol
347 -fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules @gol
348 -fcx-limited-range @gol
349 -fdata-sections -fdce -fdelayed-branch @gol
350 -fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively @gol
351 -fdevirtualize-at-ltrans -fdse @gol
352 -fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects @gol
353 -ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=@var{style} @gol
354 -fforward-propagate -ffp-contract=@var{style} -ffunction-sections @gol
355 -fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity @gol
356 -fgcse-sm -fhoist-adjacent-loads -fif-conversion @gol
357 -fif-conversion2 -findirect-inlining @gol
358 -finline-functions -finline-functions-called-once -finline-limit=@var{n} @gol
359 -finline-small-functions -fipa-cp -fipa-cp-clone -fipa-cp-alignment @gol
360 -fipa-pta -fipa-profile -fipa-pure-const -fipa-reference -fipa-icf @gol
361 -fira-algorithm=@var{algorithm} @gol
362 -fira-region=@var{region} -fira-hoist-pressure @gol
363 -fira-loop-pressure -fno-ira-share-save-slots @gol
364 -fno-ira-share-spill-slots @gol
365 -fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute @gol
366 -fivopts -fkeep-inline-functions -fkeep-static-functions @gol
367 -fkeep-static-consts -flive-range-shrinkage @gol
368 -floop-block -floop-interchange -floop-strip-mine @gol
369 -floop-unroll-and-jam -floop-nest-optimize @gol
370 -floop-parallelize-all -flra-remat -flto -flto-compression-level @gol
371 -flto-partition=@var{alg} -fmerge-all-constants @gol
372 -fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves @gol
373 -fmove-loop-invariants -fno-branch-count-reg @gol
374 -fno-defer-pop -fno-fp-int-builtin-inexact -fno-function-cse @gol
375 -fno-guess-branch-probability -fno-inline -fno-math-errno -fno-peephole @gol
376 -fno-peephole2 -fno-sched-interblock -fno-sched-spec -fno-signed-zeros @gol
377 -fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss @gol
378 -fomit-frame-pointer -foptimize-sibling-calls @gol
379 -fpartial-inlining -fpeel-loops -fpredictive-commoning @gol
380 -fprefetch-loop-arrays @gol
381 -fprofile-correction @gol
382 -fprofile-use -fprofile-use=@var{path} -fprofile-values @gol
383 -fprofile-reorder-functions @gol
384 -freciprocal-math -free -frename-registers -freorder-blocks @gol
385 -freorder-blocks-algorithm=@var{algorithm} @gol
386 -freorder-blocks-and-partition -freorder-functions @gol
387 -frerun-cse-after-loop -freschedule-modulo-scheduled-loops @gol
388 -frounding-math -fsched2-use-superblocks -fsched-pressure @gol
389 -fsched-spec-load -fsched-spec-load-dangerous @gol
390 -fsched-stalled-insns-dep[=@var{n}] -fsched-stalled-insns[=@var{n}] @gol
391 -fsched-group-heuristic -fsched-critical-path-heuristic @gol
392 -fsched-spec-insn-heuristic -fsched-rank-heuristic @gol
393 -fsched-last-insn-heuristic -fsched-dep-count-heuristic @gol
394 -fschedule-fusion @gol
395 -fschedule-insns -fschedule-insns2 -fsection-anchors @gol
396 -fselective-scheduling -fselective-scheduling2 @gol
397 -fsel-sched-pipelining -fsel-sched-pipelining-outer-loops @gol
398 -fsemantic-interposition -fshrink-wrap -fsignaling-nans @gol
399 -fsingle-precision-constant -fsplit-ivs-in-unroller @gol
400 -fsplit-paths @gol
401 -fsplit-wide-types -fssa-backprop -fssa-phiopt @gol
402 -fstdarg-opt -fstrict-aliasing @gol
403 -fstrict-overflow -fthread-jumps -ftracer -ftree-bit-ccp @gol
404 -ftree-builtin-call-dce -ftree-ccp -ftree-ch @gol
405 -ftree-coalesce-vars -ftree-copy-prop -ftree-dce -ftree-dominator-opts @gol
406 -ftree-dse -ftree-forwprop -ftree-fre -ftree-loop-if-convert @gol
407 -ftree-loop-if-convert-stores -ftree-loop-im @gol
408 -ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns @gol
409 -ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize @gol
410 -ftree-loop-vectorize @gol
411 -ftree-parallelize-loops=@var{n} -ftree-pre -ftree-partial-pre -ftree-pta @gol
412 -ftree-reassoc -ftree-sink -ftree-slsr -ftree-sra @gol
413 -ftree-switch-conversion -ftree-tail-merge -ftree-ter @gol
414 -ftree-vectorize -ftree-vrp -funconstrained-commons @gol
415 -funit-at-a-time -funroll-all-loops -funroll-loops @gol
416 -funsafe-loop-optimizations -funsafe-math-optimizations -funswitch-loops @gol
417 -fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model -fvpt @gol
418 -fweb -fwhole-program -fwpa -fuse-linker-plugin @gol
419 --param @var{name}=@var{value}
420 -O -O0 -O1 -O2 -O3 -Os -Ofast -Og}
421
422 @item Program Instrumentation Options
423 @xref{Instrumentation Options,,Program Instrumentation Options}.
424 @gccoptlist{-p -pg -fprofile-arcs --coverage -ftest-coverage @gol
425 -fprofile-dir=@var{path} -fprofile-generate -fprofile-generate=@var{path} @gol
426 -fsanitize=@var{style} -fsanitize-recover -fsanitize-recover=@var{style} @gol
427 -fasan-shadow-offset=@var{number} -fsanitize-sections=@var{s1},@var{s2},... @gol
428 -fsanitize-undefined-trap-on-error -fbounds-check @gol
429 -fcheck-pointer-bounds -fchkp-check-incomplete-type @gol
430 -fchkp-first-field-has-own-bounds -fchkp-narrow-bounds @gol
431 -fchkp-narrow-to-innermost-array -fchkp-optimize @gol
432 -fchkp-use-fast-string-functions -fchkp-use-nochk-string-functions @gol
433 -fchkp-use-static-bounds -fchkp-use-static-const-bounds @gol
434 -fchkp-treat-zero-dynamic-size-as-infinite -fchkp-check-read @gol
435 -fchkp-check-read -fchkp-check-write -fchkp-store-bounds @gol
436 -fchkp-instrument-calls -fchkp-instrument-marked-only @gol
437 -fchkp-use-wrappers @gol
438 -fstack-protector -fstack-protector-all -fstack-protector-strong @gol
439 -fstack-protector-explicit -fstack-check @gol
440 -fstack-limit-register=@var{reg} -fstack-limit-symbol=@var{sym} @gol
441 -fno-stack-limit -fsplit-stack @gol
442 -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]} @gol
443 -fvtv-counts -fvtv-debug @gol
444 -finstrument-functions @gol
445 -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} @gol
446 -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}}
447
448 @item Preprocessor Options
449 @xref{Preprocessor Options,,Options Controlling the Preprocessor}.
450 @gccoptlist{-A@var{question}=@var{answer} @gol
451 -A-@var{question}@r{[}=@var{answer}@r{]} @gol
452 -C -dD -dI -dM -dN @gol
453 -D@var{macro}@r{[}=@var{defn}@r{]} -E -H @gol
454 -idirafter @var{dir} @gol
455 -include @var{file} -imacros @var{file} @gol
456 -iprefix @var{file} -iwithprefix @var{dir} @gol
457 -iwithprefixbefore @var{dir} -isystem @var{dir} @gol
458 -imultilib @var{dir} -isysroot @var{dir} @gol
459 -M -MM -MF -MG -MP -MQ -MT -nostdinc @gol
460 -P -fdebug-cpp -ftrack-macro-expansion -fworking-directory @gol
461 -remap -trigraphs -undef -U@var{macro} @gol
462 -Wp,@var{option} -Xpreprocessor @var{option} -no-integrated-cpp}
463
464 @item Assembler Option
465 @xref{Assembler Options,,Passing Options to the Assembler}.
466 @gccoptlist{-Wa,@var{option} -Xassembler @var{option}}
467
468 @item Linker Options
469 @xref{Link Options,,Options for Linking}.
470 @gccoptlist{@var{object-file-name} -fuse-ld=@var{linker} -l@var{library} @gol
471 -nostartfiles -nodefaultlibs -nostdlib -pie -rdynamic @gol
472 -s -static -static-libgcc -static-libstdc++ @gol
473 -static-libasan -static-libtsan -static-liblsan -static-libubsan @gol
474 -static-libmpx -static-libmpxwrappers @gol
475 -shared -shared-libgcc -symbolic @gol
476 -T @var{script} -Wl,@var{option} -Xlinker @var{option} @gol
477 -u @var{symbol} -z @var{keyword}}
478
479 @item Directory Options
480 @xref{Directory Options,,Options for Directory Search}.
481 @gccoptlist{-B@var{prefix} -I@var{dir} -iplugindir=@var{dir} @gol
482 -iquote@var{dir} -L@var{dir} -no-canonical-prefixes -I- @gol
483 --sysroot=@var{dir} --no-sysroot-suffix}
484
485 @item Code Generation Options
486 @xref{Code Gen Options,,Options for Code Generation Conventions}.
487 @gccoptlist{-fcall-saved-@var{reg} -fcall-used-@var{reg} @gol
488 -ffixed-@var{reg} -fexceptions @gol
489 -fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables @gol
490 -fasynchronous-unwind-tables @gol
491 -fno-gnu-unique @gol
492 -finhibit-size-directive -fno-common -fno-ident @gol
493 -fpcc-struct-return -fpic -fPIC -fpie -fPIE -fno-plt @gol
494 -fno-jump-tables @gol
495 -frecord-gcc-switches @gol
496 -freg-struct-return -fshort-enums -fshort-wchar @gol
497 -fverbose-asm -fpack-struct[=@var{n}] @gol
498 -fleading-underscore -ftls-model=@var{model} @gol
499 -fstack-reuse=@var{reuse_level} @gol
500 -ftrapv -fwrapv @gol
501 -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]} @gol
502 -fstrict-volatile-bitfields -fsync-libcalls}
503
504 @item Developer Options
505 @xref{Developer Options,,GCC Developer Options}.
506 @gccoptlist{-d@var{letters} -dumpspecs -dumpmachine -dumpversion @gol
507 -fchecking -fchecking=@var{n} -fdbg-cnt-list @gol
508 -fdbg-cnt=@var{counter-value-list} @gol
509 -fdisable-ipa-@var{pass_name} @gol
510 -fdisable-rtl-@var{pass_name} @gol
511 -fdisable-rtl-@var{pass-name}=@var{range-list} @gol
512 -fdisable-tree-@var{pass_name} @gol
513 -fdisable-tree-@var{pass-name}=@var{range-list} @gol
514 -fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links @gol
515 -fdump-translation-unit@r{[}-@var{n}@r{]} @gol
516 -fdump-class-hierarchy@r{[}-@var{n}@r{]} @gol
517 -fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline @gol
518 -fdump-passes @gol
519 -fdump-rtl-@var{pass} -fdump-rtl-@var{pass}=@var{filename} @gol
520 -fdump-statistics @gol
521 -fdump-tree-all @gol
522 -fdump-tree-original@r{[}-@var{n}@r{]} @gol
523 -fdump-tree-optimized@r{[}-@var{n}@r{]} @gol
524 -fdump-tree-cfg -fdump-tree-alias @gol
525 -fdump-tree-ch @gol
526 -fdump-tree-ssa@r{[}-@var{n}@r{]} -fdump-tree-pre@r{[}-@var{n}@r{]} @gol
527 -fdump-tree-ccp@r{[}-@var{n}@r{]} -fdump-tree-dce@r{[}-@var{n}@r{]} @gol
528 -fdump-tree-gimple@r{[}-raw@r{]} @gol
529 -fdump-tree-dom@r{[}-@var{n}@r{]} @gol
530 -fdump-tree-dse@r{[}-@var{n}@r{]} @gol
531 -fdump-tree-phiprop@r{[}-@var{n}@r{]} @gol
532 -fdump-tree-phiopt@r{[}-@var{n}@r{]} @gol
533 -fdump-tree-backprop@r{[}-@var{n}@r{]} @gol
534 -fdump-tree-forwprop@r{[}-@var{n}@r{]} @gol
535 -fdump-tree-nrv -fdump-tree-vect @gol
536 -fdump-tree-sink @gol
537 -fdump-tree-sra@r{[}-@var{n}@r{]} @gol
538 -fdump-tree-forwprop@r{[}-@var{n}@r{]} @gol
539 -fdump-tree-fre@r{[}-@var{n}@r{]} @gol
540 -fdump-tree-vtable-verify @gol
541 -fdump-tree-vrp@r{[}-@var{n}@r{]} @gol
542 -fdump-tree-split-paths@r{[}-@var{n}@r{]} @gol
543 -fdump-tree-storeccp@r{[}-@var{n}@r{]} @gol
544 -fdump-final-insns=@var{file} @gol
545 -fcompare-debug@r{[}=@var{opts}@r{]} -fcompare-debug-second @gol
546 -fenable-@var{kind}-@var{pass} @gol
547 -fenable-@var{kind}-@var{pass}=@var{range-list} @gol
548 -fira-verbose=@var{n} @gol
549 -flto-report -flto-report-wpa -fmem-report-wpa @gol
550 -fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report @gol
551 -fopt-info -fopt-info-@var{options}@r{[}=@var{file}@r{]} @gol
552 -fprofile-report @gol
553 -frandom-seed=@var{string} -fsched-verbose=@var{n} @gol
554 -fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose @gol
555 -fstats -fstack-usage -ftime-report @gol
556 -fvar-tracking-assignments-toggle -gtoggle @gol
557 -print-file-name=@var{library} -print-libgcc-file-name @gol
558 -print-multi-directory -print-multi-lib -print-multi-os-directory @gol
559 -print-prog-name=@var{program} -print-search-dirs -Q @gol
560 -print-sysroot -print-sysroot-headers-suffix @gol
561 -save-temps -save-temps=cwd -save-temps=obj -time@r{[}=@var{file}@r{]}}
562
563 @item Machine-Dependent Options
564 @xref{Submodel Options,,Machine-Dependent Options}.
565 @c This list is ordered alphanumerically by subsection name.
566 @c Try and put the significant identifier (CPU or system) first,
567 @c so users have a clue at guessing where the ones they want will be.
568
569 @emph{AArch64 Options}
570 @gccoptlist{-mabi=@var{name} -mbig-endian -mlittle-endian @gol
571 -mgeneral-regs-only @gol
572 -mcmodel=tiny -mcmodel=small -mcmodel=large @gol
573 -mstrict-align @gol
574 -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
575 -mtls-dialect=desc -mtls-dialect=traditional @gol
576 -mtls-size=@var{size} @gol
577 -mfix-cortex-a53-835769 -mno-fix-cortex-a53-835769 @gol
578 -mfix-cortex-a53-843419 -mno-fix-cortex-a53-843419 @gol
579 -mlow-precision-recip-sqrt -mno-low-precision-recip-sqrt@gol
580 -mlow-precision-sqrt -mno-low-precision-sqrt@gol
581 -mlow-precision-div -mno-low-precision-div @gol
582 -march=@var{name} -mcpu=@var{name} -mtune=@var{name}}
583
584 @emph{Adapteva Epiphany Options}
585 @gccoptlist{-mhalf-reg-file -mprefer-short-insn-regs @gol
586 -mbranch-cost=@var{num} -mcmove -mnops=@var{num} -msoft-cmpsf @gol
587 -msplit-lohi -mpost-inc -mpost-modify -mstack-offset=@var{num} @gol
588 -mround-nearest -mlong-calls -mshort-calls -msmall16 @gol
589 -mfp-mode=@var{mode} -mvect-double -max-vect-align=@var{num} @gol
590 -msplit-vecmove-early -m1reg-@var{reg}}
591
592 @emph{ARC Options}
593 @gccoptlist{-mbarrel-shifter @gol
594 -mcpu=@var{cpu} -mA6 -mARC600 -mA7 -mARC700 @gol
595 -mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr @gol
596 -mea -mno-mpy -mmul32x16 -mmul64 -matomic @gol
597 -mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap @gol
598 -mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape @gol
599 -mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof @gol
600 -mlong-calls -mmedium-calls -msdata @gol
601 -mucb-mcount -mvolatile-cache -mtp-regno=@var{regno} @gol
602 -malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc @gol
603 -mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi @gol
604 -mexpand-adddi -mindexed-loads -mlra -mlra-priority-none @gol
605 -mlra-priority-compact mlra-priority-noncompact -mno-millicode @gol
606 -mmixed-code -mq-class -mRcq -mRcw -msize-level=@var{level} @gol
607 -mtune=@var{cpu} -mmultcost=@var{num} @gol
608 -munalign-prob-threshold=@var{probability} -mmpy-option=@var{multo} @gol
609 -mdiv-rem -mcode-density -mll64 -mfpu=@var{fpu}}
610
611 @emph{ARM Options}
612 @gccoptlist{-mapcs-frame -mno-apcs-frame @gol
613 -mabi=@var{name} @gol
614 -mapcs-stack-check -mno-apcs-stack-check @gol
615 -mapcs-float -mno-apcs-float @gol
616 -mapcs-reentrant -mno-apcs-reentrant @gol
617 -msched-prolog -mno-sched-prolog @gol
618 -mlittle-endian -mbig-endian @gol
619 -mfloat-abi=@var{name} @gol
620 -mfp16-format=@var{name}
621 -mthumb-interwork -mno-thumb-interwork @gol
622 -mcpu=@var{name} -march=@var{name} -mfpu=@var{name} @gol
623 -mtune=@var{name} -mprint-tune-info @gol
624 -mstructure-size-boundary=@var{n} @gol
625 -mabort-on-noreturn @gol
626 -mlong-calls -mno-long-calls @gol
627 -msingle-pic-base -mno-single-pic-base @gol
628 -mpic-register=@var{reg} @gol
629 -mnop-fun-dllimport @gol
630 -mpoke-function-name @gol
631 -mthumb -marm @gol
632 -mtpcs-frame -mtpcs-leaf-frame @gol
633 -mcaller-super-interworking -mcallee-super-interworking @gol
634 -mtp=@var{name} -mtls-dialect=@var{dialect} @gol
635 -mword-relocations @gol
636 -mfix-cortex-m3-ldrd @gol
637 -munaligned-access @gol
638 -mneon-for-64bits @gol
639 -mslow-flash-data @gol
640 -masm-syntax-unified @gol
641 -mrestrict-it}
642
643 @emph{AVR Options}
644 @gccoptlist{-mmcu=@var{mcu} -maccumulate-args -mbranch-cost=@var{cost} @gol
645 -mcall-prologues -mint8 -mn_flash=@var{size} -mno-interrupts @gol
646 -mrelax -mrmw -mstrict-X -mtiny-stack -nodevicelib -Waddr-space-convert @gol
647 -Wmisspelled-isr}
648
649 @emph{Blackfin Options}
650 @gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} @gol
651 -msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
652 -mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly @gol
653 -mlow-64k -mno-low64k -mstack-check-l1 -mid-shared-library @gol
654 -mno-id-shared-library -mshared-library-id=@var{n} @gol
655 -mleaf-id-shared-library -mno-leaf-id-shared-library @gol
656 -msep-data -mno-sep-data -mlong-calls -mno-long-calls @gol
657 -mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram @gol
658 -micplb}
659
660 @emph{C6X Options}
661 @gccoptlist{-mbig-endian -mlittle-endian -march=@var{cpu} @gol
662 -msim -msdata=@var{sdata-type}}
663
664 @emph{CRIS Options}
665 @gccoptlist{-mcpu=@var{cpu} -march=@var{cpu} -mtune=@var{cpu} @gol
666 -mmax-stack-frame=@var{n} -melinux-stacksize=@var{n} @gol
667 -metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects @gol
668 -mstack-align -mdata-align -mconst-align @gol
669 -m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt @gol
670 -melf -maout -melinux -mlinux -sim -sim2 @gol
671 -mmul-bug-workaround -mno-mul-bug-workaround}
672
673 @emph{CR16 Options}
674 @gccoptlist{-mmac @gol
675 -mcr16cplus -mcr16c @gol
676 -msim -mint32 -mbit-ops
677 -mdata-model=@var{model}}
678
679 @emph{Darwin Options}
680 @gccoptlist{-all_load -allowable_client -arch -arch_errors_fatal @gol
681 -arch_only -bind_at_load -bundle -bundle_loader @gol
682 -client_name -compatibility_version -current_version @gol
683 -dead_strip @gol
684 -dependency-file -dylib_file -dylinker_install_name @gol
685 -dynamic -dynamiclib -exported_symbols_list @gol
686 -filelist -flat_namespace -force_cpusubtype_ALL @gol
687 -force_flat_namespace -headerpad_max_install_names @gol
688 -iframework @gol
689 -image_base -init -install_name -keep_private_externs @gol
690 -multi_module -multiply_defined -multiply_defined_unused @gol
691 -noall_load -no_dead_strip_inits_and_terms @gol
692 -nofixprebinding -nomultidefs -noprebind -noseglinkedit @gol
693 -pagezero_size -prebind -prebind_all_twolevel_modules @gol
694 -private_bundle -read_only_relocs -sectalign @gol
695 -sectobjectsymbols -whyload -seg1addr @gol
696 -sectcreate -sectobjectsymbols -sectorder @gol
697 -segaddr -segs_read_only_addr -segs_read_write_addr @gol
698 -seg_addr_table -seg_addr_table_filename -seglinkedit @gol
699 -segprot -segs_read_only_addr -segs_read_write_addr @gol
700 -single_module -static -sub_library -sub_umbrella @gol
701 -twolevel_namespace -umbrella -undefined @gol
702 -unexported_symbols_list -weak_reference_mismatches @gol
703 -whatsloaded -F -gused -gfull -mmacosx-version-min=@var{version} @gol
704 -mkernel -mone-byte-bool}
705
706 @emph{DEC Alpha Options}
707 @gccoptlist{-mno-fp-regs -msoft-float @gol
708 -mieee -mieee-with-inexact -mieee-conformant @gol
709 -mfp-trap-mode=@var{mode} -mfp-rounding-mode=@var{mode} @gol
710 -mtrap-precision=@var{mode} -mbuild-constants @gol
711 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} @gol
712 -mbwx -mmax -mfix -mcix @gol
713 -mfloat-vax -mfloat-ieee @gol
714 -mexplicit-relocs -msmall-data -mlarge-data @gol
715 -msmall-text -mlarge-text @gol
716 -mmemory-latency=@var{time}}
717
718 @emph{FR30 Options}
719 @gccoptlist{-msmall-model -mno-lsim}
720
721 @emph{FT32 Options}
722 @gccoptlist{-msim -mlra -mnodiv}
723
724 @emph{FRV Options}
725 @gccoptlist{-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64 @gol
726 -mhard-float -msoft-float @gol
727 -malloc-cc -mfixed-cc -mdword -mno-dword @gol
728 -mdouble -mno-double @gol
729 -mmedia -mno-media -mmuladd -mno-muladd @gol
730 -mfdpic -minline-plt -mgprel-ro -multilib-library-pic @gol
731 -mlinked-fp -mlong-calls -malign-labels @gol
732 -mlibrary-pic -macc-4 -macc-8 @gol
733 -mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move @gol
734 -moptimize-membar -mno-optimize-membar @gol
735 -mscc -mno-scc -mcond-exec -mno-cond-exec @gol
736 -mvliw-branch -mno-vliw-branch @gol
737 -mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec @gol
738 -mno-nested-cond-exec -mtomcat-stats @gol
739 -mTLS -mtls @gol
740 -mcpu=@var{cpu}}
741
742 @emph{GNU/Linux Options}
743 @gccoptlist{-mglibc -muclibc -mmusl -mbionic -mandroid @gol
744 -tno-android-cc -tno-android-ld}
745
746 @emph{H8/300 Options}
747 @gccoptlist{-mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300}
748
749 @emph{HPPA Options}
750 @gccoptlist{-march=@var{architecture-type} @gol
751 -mdisable-fpregs -mdisable-indexing @gol
752 -mfast-indirect-calls -mgas -mgnu-ld -mhp-ld @gol
753 -mfixed-range=@var{register-range} @gol
754 -mjump-in-delay -mlinker-opt -mlong-calls @gol
755 -mlong-load-store -mno-disable-fpregs @gol
756 -mno-disable-indexing -mno-fast-indirect-calls -mno-gas @gol
757 -mno-jump-in-delay -mno-long-load-store @gol
758 -mno-portable-runtime -mno-soft-float @gol
759 -mno-space-regs -msoft-float -mpa-risc-1-0 @gol
760 -mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime @gol
761 -mschedule=@var{cpu-type} -mspace-regs -msio -mwsio @gol
762 -munix=@var{unix-std} -nolibdld -static -threads}
763
764 @emph{IA-64 Options}
765 @gccoptlist{-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic @gol
766 -mvolatile-asm-stop -mregister-names -msdata -mno-sdata @gol
767 -mconstant-gp -mauto-pic -mfused-madd @gol
768 -minline-float-divide-min-latency @gol
769 -minline-float-divide-max-throughput @gol
770 -mno-inline-float-divide @gol
771 -minline-int-divide-min-latency @gol
772 -minline-int-divide-max-throughput @gol
773 -mno-inline-int-divide @gol
774 -minline-sqrt-min-latency -minline-sqrt-max-throughput @gol
775 -mno-inline-sqrt @gol
776 -mdwarf2-asm -mearly-stop-bits @gol
777 -mfixed-range=@var{register-range} -mtls-size=@var{tls-size} @gol
778 -mtune=@var{cpu-type} -milp32 -mlp64 @gol
779 -msched-br-data-spec -msched-ar-data-spec -msched-control-spec @gol
780 -msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec @gol
781 -msched-spec-ldc -msched-spec-control-ldc @gol
782 -msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns @gol
783 -msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path @gol
784 -msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost @gol
785 -msched-max-memory-insns-hard-limit -msched-max-memory-insns=@var{max-insns}}
786
787 @emph{LM32 Options}
788 @gccoptlist{-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled @gol
789 -msign-extend-enabled -muser-enabled}
790
791 @emph{M32R/D Options}
792 @gccoptlist{-m32r2 -m32rx -m32r @gol
793 -mdebug @gol
794 -malign-loops -mno-align-loops @gol
795 -missue-rate=@var{number} @gol
796 -mbranch-cost=@var{number} @gol
797 -mmodel=@var{code-size-model-type} @gol
798 -msdata=@var{sdata-type} @gol
799 -mno-flush-func -mflush-func=@var{name} @gol
800 -mno-flush-trap -mflush-trap=@var{number} @gol
801 -G @var{num}}
802
803 @emph{M32C Options}
804 @gccoptlist{-mcpu=@var{cpu} -msim -memregs=@var{number}}
805
806 @emph{M680x0 Options}
807 @gccoptlist{-march=@var{arch} -mcpu=@var{cpu} -mtune=@var{tune} @gol
808 -m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040 @gol
809 -m68060 -mcpu32 -m5200 -m5206e -m528x -m5307 -m5407 @gol
810 -mcfv4e -mbitfield -mno-bitfield -mc68000 -mc68020 @gol
811 -mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort @gol
812 -mno-short -mhard-float -m68881 -msoft-float -mpcrel @gol
813 -malign-int -mstrict-align -msep-data -mno-sep-data @gol
814 -mshared-library-id=n -mid-shared-library -mno-id-shared-library @gol
815 -mxgot -mno-xgot}
816
817 @emph{MCore Options}
818 @gccoptlist{-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates @gol
819 -mno-relax-immediates -mwide-bitfields -mno-wide-bitfields @gol
820 -m4byte-functions -mno-4byte-functions -mcallgraph-data @gol
821 -mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim @gol
822 -mlittle-endian -mbig-endian -m210 -m340 -mstack-increment}
823
824 @emph{MeP Options}
825 @gccoptlist{-mabsdiff -mall-opts -maverage -mbased=@var{n} -mbitops @gol
826 -mc=@var{n} -mclip -mconfig=@var{name} -mcop -mcop32 -mcop64 -mivc2 @gol
827 -mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax @gol
828 -mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf @gol
829 -mtiny=@var{n}}
830
831 @emph{MicroBlaze Options}
832 @gccoptlist{-msoft-float -mhard-float -msmall-divides -mcpu=@var{cpu} @gol
833 -mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift @gol
834 -mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss @gol
835 -mxl-multiply-high -mxl-float-convert -mxl-float-sqrt @gol
836 -mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-@var{app-model}}
837
838 @emph{MIPS Options}
839 @gccoptlist{-EL -EB -march=@var{arch} -mtune=@var{arch} @gol
840 -mips1 -mips2 -mips3 -mips4 -mips32 -mips32r2 -mips32r3 -mips32r5 @gol
841 -mips32r6 -mips64 -mips64r2 -mips64r3 -mips64r5 -mips64r6 @gol
842 -mips16 -mno-mips16 -mflip-mips16 @gol
843 -minterlink-compressed -mno-interlink-compressed @gol
844 -minterlink-mips16 -mno-interlink-mips16 @gol
845 -mabi=@var{abi} -mabicalls -mno-abicalls @gol
846 -mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot @gol
847 -mgp32 -mgp64 -mfp32 -mfpxx -mfp64 -mhard-float -msoft-float @gol
848 -mno-float -msingle-float -mdouble-float @gol
849 -modd-spreg -mno-odd-spreg @gol
850 -mabs=@var{mode} -mnan=@var{encoding} @gol
851 -mdsp -mno-dsp -mdspr2 -mno-dspr2 @gol
852 -mmcu -mmno-mcu @gol
853 -meva -mno-eva @gol
854 -mvirt -mno-virt @gol
855 -mxpa -mno-xpa @gol
856 -mmicromips -mno-micromips @gol
857 -mmsa -mno-msa @gol
858 -mfpu=@var{fpu-type} @gol
859 -msmartmips -mno-smartmips @gol
860 -mpaired-single -mno-paired-single -mdmx -mno-mdmx @gol
861 -mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc @gol
862 -mlong64 -mlong32 -msym32 -mno-sym32 @gol
863 -G@var{num} -mlocal-sdata -mno-local-sdata @gol
864 -mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt @gol
865 -membedded-data -mno-embedded-data @gol
866 -muninit-const-in-rodata -mno-uninit-const-in-rodata @gol
867 -mcode-readable=@var{setting} @gol
868 -msplit-addresses -mno-split-addresses @gol
869 -mexplicit-relocs -mno-explicit-relocs @gol
870 -mcheck-zero-division -mno-check-zero-division @gol
871 -mdivide-traps -mdivide-breaks @gol
872 -mmemcpy -mno-memcpy -mlong-calls -mno-long-calls @gol
873 -mmad -mno-mad -mimadd -mno-imadd -mfused-madd -mno-fused-madd -nocpp @gol
874 -mfix-24k -mno-fix-24k @gol
875 -mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400 @gol
876 -mfix-r10000 -mno-fix-r10000 -mfix-rm7000 -mno-fix-rm7000 @gol
877 -mfix-vr4120 -mno-fix-vr4120 @gol
878 -mfix-vr4130 -mno-fix-vr4130 -mfix-sb1 -mno-fix-sb1 @gol
879 -mflush-func=@var{func} -mno-flush-func @gol
880 -mbranch-cost=@var{num} -mbranch-likely -mno-branch-likely @gol
881 -mcompact-branches=@var{policy} @gol
882 -mfp-exceptions -mno-fp-exceptions @gol
883 -mvr4130-align -mno-vr4130-align -msynci -mno-synci @gol
884 -mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address @gol
885 -mframe-header-opt -mno-frame-header-opt}
886
887 @emph{MMIX Options}
888 @gccoptlist{-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu @gol
889 -mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols @gol
890 -melf -mbranch-predict -mno-branch-predict -mbase-addresses @gol
891 -mno-base-addresses -msingle-exit -mno-single-exit}
892
893 @emph{MN10300 Options}
894 @gccoptlist{-mmult-bug -mno-mult-bug @gol
895 -mno-am33 -mam33 -mam33-2 -mam34 @gol
896 -mtune=@var{cpu-type} @gol
897 -mreturn-pointer-on-d0 @gol
898 -mno-crt0 -mrelax -mliw -msetlb}
899
900 @emph{Moxie Options}
901 @gccoptlist{-meb -mel -mmul.x -mno-crt0}
902
903 @emph{MSP430 Options}
904 @gccoptlist{-msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax @gol
905 -mwarn-mcu @gol
906 -mcode-region= -mdata-region= @gol
907 -msilicon-errata= -msilicon-errata-warn= @gol
908 -mhwmult= -minrt}
909
910 @emph{NDS32 Options}
911 @gccoptlist{-mbig-endian -mlittle-endian @gol
912 -mreduced-regs -mfull-regs @gol
913 -mcmov -mno-cmov @gol
914 -mperf-ext -mno-perf-ext @gol
915 -mv3push -mno-v3push @gol
916 -m16bit -mno-16bit @gol
917 -misr-vector-size=@var{num} @gol
918 -mcache-block-size=@var{num} @gol
919 -march=@var{arch} @gol
920 -mcmodel=@var{code-model} @gol
921 -mctor-dtor -mrelax}
922
923 @emph{Nios II Options}
924 @gccoptlist{-G @var{num} -mgpopt=@var{option} -mgpopt -mno-gpopt @gol
925 -mel -meb @gol
926 -mno-bypass-cache -mbypass-cache @gol
927 -mno-cache-volatile -mcache-volatile @gol
928 -mno-fast-sw-div -mfast-sw-div @gol
929 -mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div @gol
930 -mcustom-@var{insn}=@var{N} -mno-custom-@var{insn} @gol
931 -mcustom-fpu-cfg=@var{name} @gol
932 -mhal -msmallc -msys-crt0=@var{name} -msys-lib=@var{name} @gol
933 -march=@var{arch} -mbmx -mno-bmx -mcdx -mno-cdx}
934
935 @emph{Nvidia PTX Options}
936 @gccoptlist{-m32 -m64 -mmainkernel -moptimize}
937
938 @emph{PDP-11 Options}
939 @gccoptlist{-mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10 @gol
940 -mbcopy -mbcopy-builtin -mint32 -mno-int16 @gol
941 -mint16 -mno-int32 -mfloat32 -mno-float64 @gol
942 -mfloat64 -mno-float32 -mabshi -mno-abshi @gol
943 -mbranch-expensive -mbranch-cheap @gol
944 -munix-asm -mdec-asm}
945
946 @emph{picoChip Options}
947 @gccoptlist{-mae=@var{ae_type} -mvliw-lookahead=@var{N} @gol
948 -msymbol-as-address -mno-inefficient-warnings}
949
950 @emph{PowerPC Options}
951 See RS/6000 and PowerPC Options.
952
953 @emph{RL78 Options}
954 @gccoptlist{-msim -mmul=none -mmul=g13 -mmul=g14 -mallregs @gol
955 -mcpu=g10 -mcpu=g13 -mcpu=g14 -mg10 -mg13 -mg14 @gol
956 -m64bit-doubles -m32bit-doubles -msave-mduc-in-interrupts}
957
958 @emph{RS/6000 and PowerPC Options}
959 @gccoptlist{-mcpu=@var{cpu-type} @gol
960 -mtune=@var{cpu-type} @gol
961 -mcmodel=@var{code-model} @gol
962 -mpowerpc64 @gol
963 -maltivec -mno-altivec @gol
964 -mpowerpc-gpopt -mno-powerpc-gpopt @gol
965 -mpowerpc-gfxopt -mno-powerpc-gfxopt @gol
966 -mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd @gol
967 -mfprnd -mno-fprnd @gol
968 -mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp @gol
969 -mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc @gol
970 -m64 -m32 -mxl-compat -mno-xl-compat -mpe @gol
971 -malign-power -malign-natural @gol
972 -msoft-float -mhard-float -mmultiple -mno-multiple @gol
973 -msingle-float -mdouble-float -msimple-fpu @gol
974 -mstring -mno-string -mupdate -mno-update @gol
975 -mavoid-indexed-addresses -mno-avoid-indexed-addresses @gol
976 -mfused-madd -mno-fused-madd -mbit-align -mno-bit-align @gol
977 -mstrict-align -mno-strict-align -mrelocatable @gol
978 -mno-relocatable -mrelocatable-lib -mno-relocatable-lib @gol
979 -mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian @gol
980 -mdynamic-no-pic -maltivec -mswdiv -msingle-pic-base @gol
981 -mprioritize-restricted-insns=@var{priority} @gol
982 -msched-costly-dep=@var{dependence_type} @gol
983 -minsert-sched-nops=@var{scheme} @gol
984 -mcall-sysv -mcall-netbsd @gol
985 -maix-struct-return -msvr4-struct-return @gol
986 -mabi=@var{abi-type} -msecure-plt -mbss-plt @gol
987 -mblock-move-inline-limit=@var{num} @gol
988 -misel -mno-isel @gol
989 -misel=yes -misel=no @gol
990 -mspe -mno-spe @gol
991 -mspe=yes -mspe=no @gol
992 -mpaired @gol
993 -mgen-cell-microcode -mwarn-cell-microcode @gol
994 -mvrsave -mno-vrsave @gol
995 -mmulhw -mno-mulhw @gol
996 -mdlmzb -mno-dlmzb @gol
997 -mfloat-gprs=yes -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double @gol
998 -mprototype -mno-prototype @gol
999 -msim -mmvme -mads -myellowknife -memb -msdata @gol
1000 -msdata=@var{opt} -mvxworks -G @var{num} -pthread @gol
1001 -mrecip -mrecip=@var{opt} -mno-recip -mrecip-precision @gol
1002 -mno-recip-precision @gol
1003 -mveclibabi=@var{type} -mfriz -mno-friz @gol
1004 -mpointers-to-nested-functions -mno-pointers-to-nested-functions @gol
1005 -msave-toc-indirect -mno-save-toc-indirect @gol
1006 -mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector @gol
1007 -mcrypto -mno-crypto -mhtm -mno-htm -mdirect-move -mno-direct-move @gol
1008 -mquad-memory -mno-quad-memory @gol
1009 -mquad-memory-atomic -mno-quad-memory-atomic @gol
1010 -mcompat-align-parm -mno-compat-align-parm @gol
1011 -mupper-regs-df -mno-upper-regs-df -mupper-regs-sf -mno-upper-regs-sf @gol
1012 -mupper-regs-di -mno-upper-regs-di @gol
1013 -mupper-regs -mno-upper-regs -mmodulo -mno-modulo @gol
1014 -mfloat128 -mno-float128 -mfloat128-hardware -mno-float128-hardware @gol
1015 -mpower9-fusion -mno-mpower9-fusion -mpower9-vector -mno-power9-vector @gol
1016 -mpower9-dform -mno-power9-dform -mlra -mno-lra}
1017
1018 @emph{RX Options}
1019 @gccoptlist{-m64bit-doubles -m32bit-doubles -fpu -nofpu@gol
1020 -mcpu=@gol
1021 -mbig-endian-data -mlittle-endian-data @gol
1022 -msmall-data @gol
1023 -msim -mno-sim@gol
1024 -mas100-syntax -mno-as100-syntax@gol
1025 -mrelax@gol
1026 -mmax-constant-size=@gol
1027 -mint-register=@gol
1028 -mpid@gol
1029 -mallow-string-insns -mno-allow-string-insns@gol
1030 -mjsr@gol
1031 -mno-warn-multiple-fast-interrupts@gol
1032 -msave-acc-in-interrupts}
1033
1034 @emph{S/390 and zSeries Options}
1035 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1036 -mhard-float -msoft-float -mhard-dfp -mno-hard-dfp @gol
1037 -mlong-double-64 -mlong-double-128 @gol
1038 -mbackchain -mno-backchain -mpacked-stack -mno-packed-stack @gol
1039 -msmall-exec -mno-small-exec -mmvcle -mno-mvcle @gol
1040 -m64 -m31 -mdebug -mno-debug -mesa -mzarch @gol
1041 -mhtm -mvx -mzvector @gol
1042 -mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd @gol
1043 -mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard @gol
1044 -mhotpatch=@var{halfwords},@var{halfwords}}
1045
1046 @emph{Score Options}
1047 @gccoptlist{-meb -mel @gol
1048 -mnhwloop @gol
1049 -muls @gol
1050 -mmac @gol
1051 -mscore5 -mscore5u -mscore7 -mscore7d}
1052
1053 @emph{SH Options}
1054 @gccoptlist{-m1 -m2 -m2e @gol
1055 -m2a-nofpu -m2a-single-only -m2a-single -m2a @gol
1056 -m3 -m3e @gol
1057 -m4-nofpu -m4-single-only -m4-single -m4 @gol
1058 -m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al @gol
1059 -mb -ml -mdalign -mrelax @gol
1060 -mbigtable -mfmovd -mrenesas -mno-renesas -mnomacsave @gol
1061 -mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct @gol
1062 -mprefergot -musermode -multcost=@var{number} -mdiv=@var{strategy} @gol
1063 -mdivsi3_libfunc=@var{name} -mfixed-range=@var{register-range} @gol
1064 -maccumulate-outgoing-args @gol
1065 -matomic-model=@var{atomic-model} @gol
1066 -mbranch-cost=@var{num} -mzdcbranch -mno-zdcbranch @gol
1067 -mcbranch-force-delay-slot @gol
1068 -mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra @gol
1069 -mpretend-cmove -mtas}
1070
1071 @emph{Solaris 2 Options}
1072 @gccoptlist{-mclear-hwcap -mno-clear-hwcap -mimpure-text -mno-impure-text @gol
1073 -pthreads -pthread}
1074
1075 @emph{SPARC Options}
1076 @gccoptlist{-mcpu=@var{cpu-type} @gol
1077 -mtune=@var{cpu-type} @gol
1078 -mcmodel=@var{code-model} @gol
1079 -mmemory-model=@var{mem-model} @gol
1080 -m32 -m64 -mapp-regs -mno-app-regs @gol
1081 -mfaster-structs -mno-faster-structs -mflat -mno-flat @gol
1082 -mfpu -mno-fpu -mhard-float -msoft-float @gol
1083 -mhard-quad-float -msoft-quad-float @gol
1084 -mstack-bias -mno-stack-bias @gol
1085 -mstd-struct-return -mno-std-struct-return @gol
1086 -munaligned-doubles -mno-unaligned-doubles @gol
1087 -muser-mode -mno-user-mode @gol
1088 -mv8plus -mno-v8plus -mvis -mno-vis @gol
1089 -mvis2 -mno-vis2 -mvis3 -mno-vis3 @gol
1090 -mcbcond -mno-cbcond @gol
1091 -mfmaf -mno-fmaf -mpopc -mno-popc @gol
1092 -mfix-at697f -mfix-ut699}
1093
1094 @emph{SPU Options}
1095 @gccoptlist{-mwarn-reloc -merror-reloc @gol
1096 -msafe-dma -munsafe-dma @gol
1097 -mbranch-hints @gol
1098 -msmall-mem -mlarge-mem -mstdmain @gol
1099 -mfixed-range=@var{register-range} @gol
1100 -mea32 -mea64 @gol
1101 -maddress-space-conversion -mno-address-space-conversion @gol
1102 -mcache-size=@var{cache-size} @gol
1103 -matomic-updates -mno-atomic-updates}
1104
1105 @emph{System V Options}
1106 @gccoptlist{-Qy -Qn -YP,@var{paths} -Ym,@var{dir}}
1107
1108 @emph{TILE-Gx Options}
1109 @gccoptlist{-mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian @gol
1110 -mcmodel=@var{code-model}}
1111
1112 @emph{TILEPro Options}
1113 @gccoptlist{-mcpu=@var{cpu} -m32}
1114
1115 @emph{V850 Options}
1116 @gccoptlist{-mlong-calls -mno-long-calls -mep -mno-ep @gol
1117 -mprolog-function -mno-prolog-function -mspace @gol
1118 -mtda=@var{n} -msda=@var{n} -mzda=@var{n} @gol
1119 -mapp-regs -mno-app-regs @gol
1120 -mdisable-callt -mno-disable-callt @gol
1121 -mv850e2v3 -mv850e2 -mv850e1 -mv850es @gol
1122 -mv850e -mv850 -mv850e3v5 @gol
1123 -mloop @gol
1124 -mrelax @gol
1125 -mlong-jumps @gol
1126 -msoft-float @gol
1127 -mhard-float @gol
1128 -mgcc-abi @gol
1129 -mrh850-abi @gol
1130 -mbig-switch}
1131
1132 @emph{VAX Options}
1133 @gccoptlist{-mg -mgnu -munix}
1134
1135 @emph{Visium Options}
1136 @gccoptlist{-mdebug -msim -mfpu -mno-fpu -mhard-float -msoft-float @gol
1137 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} -msv-mode -muser-mode}
1138
1139 @emph{VMS Options}
1140 @gccoptlist{-mvms-return-codes -mdebug-main=@var{prefix} -mmalloc64 @gol
1141 -mpointer-size=@var{size}}
1142
1143 @emph{VxWorks Options}
1144 @gccoptlist{-mrtp -non-static -Bstatic -Bdynamic @gol
1145 -Xbind-lazy -Xbind-now}
1146
1147 @emph{x86 Options}
1148 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1149 -mtune-ctrl=@var{feature-list} -mdump-tune-features -mno-default @gol
1150 -mfpmath=@var{unit} @gol
1151 -masm=@var{dialect} -mno-fancy-math-387 @gol
1152 -mno-fp-ret-in-387 -msoft-float @gol
1153 -mno-wide-multiply -mrtd -malign-double @gol
1154 -mpreferred-stack-boundary=@var{num} @gol
1155 -mincoming-stack-boundary=@var{num} @gol
1156 -mcld -mcx16 -msahf -mmovbe -mcrc32 @gol
1157 -mrecip -mrecip=@var{opt} @gol
1158 -mvzeroupper -mprefer-avx128 @gol
1159 -mmmx -msse -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx @gol
1160 -mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd -mavx512vl @gol
1161 -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi -msha -maes @gol
1162 -mpclmul -mfsgsbase -mrdrnd -mf16c -mfma @gol
1163 -mprefetchwt1 -mclflushopt -mxsavec -mxsaves @gol
1164 -msse4a -m3dnow -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop -mlzcnt @gol
1165 -mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mlwp -mmpx -mmwaitx -mclzero
1166 -mpku -mthreads @gol
1167 -mms-bitfields -mno-align-stringops -minline-all-stringops @gol
1168 -minline-stringops-dynamically -mstringop-strategy=@var{alg} @gol
1169 -mmemcpy-strategy=@var{strategy} -mmemset-strategy=@var{strategy} @gol
1170 -mpush-args -maccumulate-outgoing-args -m128bit-long-double @gol
1171 -m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128 @gol
1172 -mregparm=@var{num} -msseregparm @gol
1173 -mveclibabi=@var{type} -mvect8-ret-in-mem @gol
1174 -mpc32 -mpc64 -mpc80 -mstackrealign @gol
1175 -momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs @gol
1176 -mcmodel=@var{code-model} -mabi=@var{name} -maddress-mode=@var{mode} @gol
1177 -m32 -m64 -mx32 -m16 -miamcu -mlarge-data-threshold=@var{num} @gol
1178 -msse2avx -mfentry -mrecord-mcount -mnop-mcount -m8bit-idiv @gol
1179 -mavx256-split-unaligned-load -mavx256-split-unaligned-store @gol
1180 -malign-data=@var{type} -mstack-protector-guard=@var{guard} @gol
1181 -mmitigate-rop -mgeneral-regs-only}
1182
1183 @emph{x86 Windows Options}
1184 @gccoptlist{-mconsole -mcygwin -mno-cygwin -mdll @gol
1185 -mnop-fun-dllimport -mthread @gol
1186 -municode -mwin32 -mwindows -fno-set-stack-executable}
1187
1188 @emph{Xstormy16 Options}
1189 @gccoptlist{-msim}
1190
1191 @emph{Xtensa Options}
1192 @gccoptlist{-mconst16 -mno-const16 @gol
1193 -mfused-madd -mno-fused-madd @gol
1194 -mforce-no-pic @gol
1195 -mserialize-volatile -mno-serialize-volatile @gol
1196 -mtext-section-literals -mno-text-section-literals @gol
1197 -mauto-litpools -mno-auto-litpools @gol
1198 -mtarget-align -mno-target-align @gol
1199 -mlongcalls -mno-longcalls}
1200
1201 @emph{zSeries Options}
1202 See S/390 and zSeries Options.
1203 @end table
1204
1205
1206 @node Overall Options
1207 @section Options Controlling the Kind of Output
1208
1209 Compilation can involve up to four stages: preprocessing, compilation
1210 proper, assembly and linking, always in that order. GCC is capable of
1211 preprocessing and compiling several files either into several
1212 assembler input files, or into one assembler input file; then each
1213 assembler input file produces an object file, and linking combines all
1214 the object files (those newly compiled, and those specified as input)
1215 into an executable file.
1216
1217 @cindex file name suffix
1218 For any given input file, the file name suffix determines what kind of
1219 compilation is done:
1220
1221 @table @gcctabopt
1222 @item @var{file}.c
1223 C source code that must be preprocessed.
1224
1225 @item @var{file}.i
1226 C source code that should not be preprocessed.
1227
1228 @item @var{file}.ii
1229 C++ source code that should not be preprocessed.
1230
1231 @item @var{file}.m
1232 Objective-C source code. Note that you must link with the @file{libobjc}
1233 library to make an Objective-C program work.
1234
1235 @item @var{file}.mi
1236 Objective-C source code that should not be preprocessed.
1237
1238 @item @var{file}.mm
1239 @itemx @var{file}.M
1240 Objective-C++ source code. Note that you must link with the @file{libobjc}
1241 library to make an Objective-C++ program work. Note that @samp{.M} refers
1242 to a literal capital M@.
1243
1244 @item @var{file}.mii
1245 Objective-C++ source code that should not be preprocessed.
1246
1247 @item @var{file}.h
1248 C, C++, Objective-C or Objective-C++ header file to be turned into a
1249 precompiled header (default), or C, C++ header file to be turned into an
1250 Ada spec (via the @option{-fdump-ada-spec} switch).
1251
1252 @item @var{file}.cc
1253 @itemx @var{file}.cp
1254 @itemx @var{file}.cxx
1255 @itemx @var{file}.cpp
1256 @itemx @var{file}.CPP
1257 @itemx @var{file}.c++
1258 @itemx @var{file}.C
1259 C++ source code that must be preprocessed. Note that in @samp{.cxx},
1260 the last two letters must both be literally @samp{x}. Likewise,
1261 @samp{.C} refers to a literal capital C@.
1262
1263 @item @var{file}.mm
1264 @itemx @var{file}.M
1265 Objective-C++ source code that must be preprocessed.
1266
1267 @item @var{file}.mii
1268 Objective-C++ source code that should not be preprocessed.
1269
1270 @item @var{file}.hh
1271 @itemx @var{file}.H
1272 @itemx @var{file}.hp
1273 @itemx @var{file}.hxx
1274 @itemx @var{file}.hpp
1275 @itemx @var{file}.HPP
1276 @itemx @var{file}.h++
1277 @itemx @var{file}.tcc
1278 C++ header file to be turned into a precompiled header or Ada spec.
1279
1280 @item @var{file}.f
1281 @itemx @var{file}.for
1282 @itemx @var{file}.ftn
1283 Fixed form Fortran source code that should not be preprocessed.
1284
1285 @item @var{file}.F
1286 @itemx @var{file}.FOR
1287 @itemx @var{file}.fpp
1288 @itemx @var{file}.FPP
1289 @itemx @var{file}.FTN
1290 Fixed form Fortran source code that must be preprocessed (with the traditional
1291 preprocessor).
1292
1293 @item @var{file}.f90
1294 @itemx @var{file}.f95
1295 @itemx @var{file}.f03
1296 @itemx @var{file}.f08
1297 Free form Fortran source code that should not be preprocessed.
1298
1299 @item @var{file}.F90
1300 @itemx @var{file}.F95
1301 @itemx @var{file}.F03
1302 @itemx @var{file}.F08
1303 Free form Fortran source code that must be preprocessed (with the
1304 traditional preprocessor).
1305
1306 @item @var{file}.go
1307 Go source code.
1308
1309 @c FIXME: Descriptions of Java file types.
1310 @c @var{file}.java
1311 @c @var{file}.class
1312 @c @var{file}.zip
1313 @c @var{file}.jar
1314
1315 @item @var{file}.ads
1316 Ada source code file that contains a library unit declaration (a
1317 declaration of a package, subprogram, or generic, or a generic
1318 instantiation), or a library unit renaming declaration (a package,
1319 generic, or subprogram renaming declaration). Such files are also
1320 called @dfn{specs}.
1321
1322 @item @var{file}.adb
1323 Ada source code file containing a library unit body (a subprogram or
1324 package body). Such files are also called @dfn{bodies}.
1325
1326 @c GCC also knows about some suffixes for languages not yet included:
1327 @c Pascal:
1328 @c @var{file}.p
1329 @c @var{file}.pas
1330 @c Ratfor:
1331 @c @var{file}.r
1332
1333 @item @var{file}.s
1334 Assembler code.
1335
1336 @item @var{file}.S
1337 @itemx @var{file}.sx
1338 Assembler code that must be preprocessed.
1339
1340 @item @var{other}
1341 An object file to be fed straight into linking.
1342 Any file name with no recognized suffix is treated this way.
1343 @end table
1344
1345 @opindex x
1346 You can specify the input language explicitly with the @option{-x} option:
1347
1348 @table @gcctabopt
1349 @item -x @var{language}
1350 Specify explicitly the @var{language} for the following input files
1351 (rather than letting the compiler choose a default based on the file
1352 name suffix). This option applies to all following input files until
1353 the next @option{-x} option. Possible values for @var{language} are:
1354 @smallexample
1355 c c-header cpp-output
1356 c++ c++-header c++-cpp-output
1357 objective-c objective-c-header objective-c-cpp-output
1358 objective-c++ objective-c++-header objective-c++-cpp-output
1359 assembler assembler-with-cpp
1360 ada
1361 f77 f77-cpp-input f95 f95-cpp-input
1362 go
1363 java
1364 @end smallexample
1365
1366 @item -x none
1367 Turn off any specification of a language, so that subsequent files are
1368 handled according to their file name suffixes (as they are if @option{-x}
1369 has not been used at all).
1370 @end table
1371
1372 If you only want some of the stages of compilation, you can use
1373 @option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
1374 one of the options @option{-c}, @option{-S}, or @option{-E} to say where
1375 @command{gcc} is to stop. Note that some combinations (for example,
1376 @samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
1377
1378 @table @gcctabopt
1379 @item -c
1380 @opindex c
1381 Compile or assemble the source files, but do not link. The linking
1382 stage simply is not done. The ultimate output is in the form of an
1383 object file for each source file.
1384
1385 By default, the object file name for a source file is made by replacing
1386 the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
1387
1388 Unrecognized input files, not requiring compilation or assembly, are
1389 ignored.
1390
1391 @item -S
1392 @opindex S
1393 Stop after the stage of compilation proper; do not assemble. The output
1394 is in the form of an assembler code file for each non-assembler input
1395 file specified.
1396
1397 By default, the assembler file name for a source file is made by
1398 replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
1399
1400 Input files that don't require compilation are ignored.
1401
1402 @item -E
1403 @opindex E
1404 Stop after the preprocessing stage; do not run the compiler proper. The
1405 output is in the form of preprocessed source code, which is sent to the
1406 standard output.
1407
1408 Input files that don't require preprocessing are ignored.
1409
1410 @cindex output file option
1411 @item -o @var{file}
1412 @opindex o
1413 Place output in file @var{file}. This applies to whatever
1414 sort of output is being produced, whether it be an executable file,
1415 an object file, an assembler file or preprocessed C code.
1416
1417 If @option{-o} is not specified, the default is to put an executable
1418 file in @file{a.out}, the object file for
1419 @file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
1420 assembler file in @file{@var{source}.s}, a precompiled header file in
1421 @file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
1422 standard output.
1423
1424 @item -v
1425 @opindex v
1426 Print (on standard error output) the commands executed to run the stages
1427 of compilation. Also print the version number of the compiler driver
1428 program and of the preprocessor and the compiler proper.
1429
1430 @item -###
1431 @opindex ###
1432 Like @option{-v} except the commands are not executed and arguments
1433 are quoted unless they contain only alphanumeric characters or @code{./-_}.
1434 This is useful for shell scripts to capture the driver-generated command lines.
1435
1436 @item --help
1437 @opindex help
1438 Print (on the standard output) a description of the command-line options
1439 understood by @command{gcc}. If the @option{-v} option is also specified
1440 then @option{--help} is also passed on to the various processes
1441 invoked by @command{gcc}, so that they can display the command-line options
1442 they accept. If the @option{-Wextra} option has also been specified
1443 (prior to the @option{--help} option), then command-line options that
1444 have no documentation associated with them are also displayed.
1445
1446 @item --target-help
1447 @opindex target-help
1448 Print (on the standard output) a description of target-specific command-line
1449 options for each tool. For some targets extra target-specific
1450 information may also be printed.
1451
1452 @item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]}
1453 Print (on the standard output) a description of the command-line
1454 options understood by the compiler that fit into all specified classes
1455 and qualifiers. These are the supported classes:
1456
1457 @table @asis
1458 @item @samp{optimizers}
1459 Display all of the optimization options supported by the
1460 compiler.
1461
1462 @item @samp{warnings}
1463 Display all of the options controlling warning messages
1464 produced by the compiler.
1465
1466 @item @samp{target}
1467 Display target-specific options. Unlike the
1468 @option{--target-help} option however, target-specific options of the
1469 linker and assembler are not displayed. This is because those
1470 tools do not currently support the extended @option{--help=} syntax.
1471
1472 @item @samp{params}
1473 Display the values recognized by the @option{--param}
1474 option.
1475
1476 @item @var{language}
1477 Display the options supported for @var{language}, where
1478 @var{language} is the name of one of the languages supported in this
1479 version of GCC@.
1480
1481 @item @samp{common}
1482 Display the options that are common to all languages.
1483 @end table
1484
1485 These are the supported qualifiers:
1486
1487 @table @asis
1488 @item @samp{undocumented}
1489 Display only those options that are undocumented.
1490
1491 @item @samp{joined}
1492 Display options taking an argument that appears after an equal
1493 sign in the same continuous piece of text, such as:
1494 @samp{--help=target}.
1495
1496 @item @samp{separate}
1497 Display options taking an argument that appears as a separate word
1498 following the original option, such as: @samp{-o output-file}.
1499 @end table
1500
1501 Thus for example to display all the undocumented target-specific
1502 switches supported by the compiler, use:
1503
1504 @smallexample
1505 --help=target,undocumented
1506 @end smallexample
1507
1508 The sense of a qualifier can be inverted by prefixing it with the
1509 @samp{^} character, so for example to display all binary warning
1510 options (i.e., ones that are either on or off and that do not take an
1511 argument) that have a description, use:
1512
1513 @smallexample
1514 --help=warnings,^joined,^undocumented
1515 @end smallexample
1516
1517 The argument to @option{--help=} should not consist solely of inverted
1518 qualifiers.
1519
1520 Combining several classes is possible, although this usually
1521 restricts the output so much that there is nothing to display. One
1522 case where it does work, however, is when one of the classes is
1523 @var{target}. For example, to display all the target-specific
1524 optimization options, use:
1525
1526 @smallexample
1527 --help=target,optimizers
1528 @end smallexample
1529
1530 The @option{--help=} option can be repeated on the command line. Each
1531 successive use displays its requested class of options, skipping
1532 those that have already been displayed.
1533
1534 If the @option{-Q} option appears on the command line before the
1535 @option{--help=} option, then the descriptive text displayed by
1536 @option{--help=} is changed. Instead of describing the displayed
1537 options, an indication is given as to whether the option is enabled,
1538 disabled or set to a specific value (assuming that the compiler
1539 knows this at the point where the @option{--help=} option is used).
1540
1541 Here is a truncated example from the ARM port of @command{gcc}:
1542
1543 @smallexample
1544 % gcc -Q -mabi=2 --help=target -c
1545 The following options are target specific:
1546 -mabi= 2
1547 -mabort-on-noreturn [disabled]
1548 -mapcs [disabled]
1549 @end smallexample
1550
1551 The output is sensitive to the effects of previous command-line
1552 options, so for example it is possible to find out which optimizations
1553 are enabled at @option{-O2} by using:
1554
1555 @smallexample
1556 -Q -O2 --help=optimizers
1557 @end smallexample
1558
1559 Alternatively you can discover which binary optimizations are enabled
1560 by @option{-O3} by using:
1561
1562 @smallexample
1563 gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
1564 gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
1565 diff /tmp/O2-opts /tmp/O3-opts | grep enabled
1566 @end smallexample
1567
1568 @item --version
1569 @opindex version
1570 Display the version number and copyrights of the invoked GCC@.
1571
1572 @item -pass-exit-codes
1573 @opindex pass-exit-codes
1574 Normally the @command{gcc} program exits with the code of 1 if any
1575 phase of the compiler returns a non-success return code. If you specify
1576 @option{-pass-exit-codes}, the @command{gcc} program instead returns with
1577 the numerically highest error produced by any phase returning an error
1578 indication. The C, C++, and Fortran front ends return 4 if an internal
1579 compiler error is encountered.
1580
1581 @item -pipe
1582 @opindex pipe
1583 Use pipes rather than temporary files for communication between the
1584 various stages of compilation. This fails to work on some systems where
1585 the assembler is unable to read from a pipe; but the GNU assembler has
1586 no trouble.
1587
1588 @item -specs=@var{file}
1589 @opindex specs
1590 Process @var{file} after the compiler reads in the standard @file{specs}
1591 file, in order to override the defaults which the @command{gcc} driver
1592 program uses when determining what switches to pass to @command{cc1},
1593 @command{cc1plus}, @command{as}, @command{ld}, etc. More than one
1594 @option{-specs=@var{file}} can be specified on the command line, and they
1595 are processed in order, from left to right. @xref{Spec Files}, for
1596 information about the format of the @var{file}.
1597
1598 @item -wrapper
1599 @opindex wrapper
1600 Invoke all subcommands under a wrapper program. The name of the
1601 wrapper program and its parameters are passed as a comma separated
1602 list.
1603
1604 @smallexample
1605 gcc -c t.c -wrapper gdb,--args
1606 @end smallexample
1607
1608 @noindent
1609 This invokes all subprograms of @command{gcc} under
1610 @samp{gdb --args}, thus the invocation of @command{cc1} is
1611 @samp{gdb --args cc1 @dots{}}.
1612
1613 @item -fplugin=@var{name}.so
1614 @opindex fplugin
1615 Load the plugin code in file @var{name}.so, assumed to be a
1616 shared object to be dlopen'd by the compiler. The base name of
1617 the shared object file is used to identify the plugin for the
1618 purposes of argument parsing (See
1619 @option{-fplugin-arg-@var{name}-@var{key}=@var{value}} below).
1620 Each plugin should define the callback functions specified in the
1621 Plugins API.
1622
1623 @item -fplugin-arg-@var{name}-@var{key}=@var{value}
1624 @opindex fplugin-arg
1625 Define an argument called @var{key} with a value of @var{value}
1626 for the plugin called @var{name}.
1627
1628 @item -fdump-ada-spec@r{[}-slim@r{]}
1629 @opindex fdump-ada-spec
1630 For C and C++ source and include files, generate corresponding Ada specs.
1631 @xref{Generating Ada Bindings for C and C++ headers,,, gnat_ugn,
1632 GNAT User's Guide}, which provides detailed documentation on this feature.
1633
1634 @item -fada-spec-parent=@var{unit}
1635 @opindex fada-spec-parent
1636 In conjunction with @option{-fdump-ada-spec@r{[}-slim@r{]}} above, generate
1637 Ada specs as child units of parent @var{unit}.
1638
1639 @item -fdump-go-spec=@var{file}
1640 @opindex fdump-go-spec
1641 For input files in any language, generate corresponding Go
1642 declarations in @var{file}. This generates Go @code{const},
1643 @code{type}, @code{var}, and @code{func} declarations which may be a
1644 useful way to start writing a Go interface to code written in some
1645 other language.
1646
1647 @include @value{srcdir}/../libiberty/at-file.texi
1648 @end table
1649
1650 @node Invoking G++
1651 @section Compiling C++ Programs
1652
1653 @cindex suffixes for C++ source
1654 @cindex C++ source file suffixes
1655 C++ source files conventionally use one of the suffixes @samp{.C},
1656 @samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
1657 @samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp},
1658 @samp{.H}, or (for shared template code) @samp{.tcc}; and
1659 preprocessed C++ files use the suffix @samp{.ii}. GCC recognizes
1660 files with these names and compiles them as C++ programs even if you
1661 call the compiler the same way as for compiling C programs (usually
1662 with the name @command{gcc}).
1663
1664 @findex g++
1665 @findex c++
1666 However, the use of @command{gcc} does not add the C++ library.
1667 @command{g++} is a program that calls GCC and automatically specifies linking
1668 against the C++ library. It treats @samp{.c},
1669 @samp{.h} and @samp{.i} files as C++ source files instead of C source
1670 files unless @option{-x} is used. This program is also useful when
1671 precompiling a C header file with a @samp{.h} extension for use in C++
1672 compilations. On many systems, @command{g++} is also installed with
1673 the name @command{c++}.
1674
1675 @cindex invoking @command{g++}
1676 When you compile C++ programs, you may specify many of the same
1677 command-line options that you use for compiling programs in any
1678 language; or command-line options meaningful for C and related
1679 languages; or options that are meaningful only for C++ programs.
1680 @xref{C Dialect Options,,Options Controlling C Dialect}, for
1681 explanations of options for languages related to C@.
1682 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
1683 explanations of options that are meaningful only for C++ programs.
1684
1685 @node C Dialect Options
1686 @section Options Controlling C Dialect
1687 @cindex dialect options
1688 @cindex language dialect options
1689 @cindex options, dialect
1690
1691 The following options control the dialect of C (or languages derived
1692 from C, such as C++, Objective-C and Objective-C++) that the compiler
1693 accepts:
1694
1695 @table @gcctabopt
1696 @cindex ANSI support
1697 @cindex ISO support
1698 @item -ansi
1699 @opindex ansi
1700 In C mode, this is equivalent to @option{-std=c90}. In C++ mode, it is
1701 equivalent to @option{-std=c++98}.
1702
1703 This turns off certain features of GCC that are incompatible with ISO
1704 C90 (when compiling C code), or of standard C++ (when compiling C++ code),
1705 such as the @code{asm} and @code{typeof} keywords, and
1706 predefined macros such as @code{unix} and @code{vax} that identify the
1707 type of system you are using. It also enables the undesirable and
1708 rarely used ISO trigraph feature. For the C compiler,
1709 it disables recognition of C++ style @samp{//} comments as well as
1710 the @code{inline} keyword.
1711
1712 The alternate keywords @code{__asm__}, @code{__extension__},
1713 @code{__inline__} and @code{__typeof__} continue to work despite
1714 @option{-ansi}. You would not want to use them in an ISO C program, of
1715 course, but it is useful to put them in header files that might be included
1716 in compilations done with @option{-ansi}. Alternate predefined macros
1717 such as @code{__unix__} and @code{__vax__} are also available, with or
1718 without @option{-ansi}.
1719
1720 The @option{-ansi} option does not cause non-ISO programs to be
1721 rejected gratuitously. For that, @option{-Wpedantic} is required in
1722 addition to @option{-ansi}. @xref{Warning Options}.
1723
1724 The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
1725 option is used. Some header files may notice this macro and refrain
1726 from declaring certain functions or defining certain macros that the
1727 ISO standard doesn't call for; this is to avoid interfering with any
1728 programs that might use these names for other things.
1729
1730 Functions that are normally built in but do not have semantics
1731 defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
1732 functions when @option{-ansi} is used. @xref{Other Builtins,,Other
1733 built-in functions provided by GCC}, for details of the functions
1734 affected.
1735
1736 @item -std=
1737 @opindex std
1738 Determine the language standard. @xref{Standards,,Language Standards
1739 Supported by GCC}, for details of these standard versions. This option
1740 is currently only supported when compiling C or C++.
1741
1742 The compiler can accept several base standards, such as @samp{c90} or
1743 @samp{c++98}, and GNU dialects of those standards, such as
1744 @samp{gnu90} or @samp{gnu++98}. When a base standard is specified, the
1745 compiler accepts all programs following that standard plus those
1746 using GNU extensions that do not contradict it. For example,
1747 @option{-std=c90} turns off certain features of GCC that are
1748 incompatible with ISO C90, such as the @code{asm} and @code{typeof}
1749 keywords, but not other GNU extensions that do not have a meaning in
1750 ISO C90, such as omitting the middle term of a @code{?:}
1751 expression. On the other hand, when a GNU dialect of a standard is
1752 specified, all features supported by the compiler are enabled, even when
1753 those features change the meaning of the base standard. As a result, some
1754 strict-conforming programs may be rejected. The particular standard
1755 is used by @option{-Wpedantic} to identify which features are GNU
1756 extensions given that version of the standard. For example
1757 @option{-std=gnu90 -Wpedantic} warns about C++ style @samp{//}
1758 comments, while @option{-std=gnu99 -Wpedantic} does not.
1759
1760 A value for this option must be provided; possible values are
1761
1762 @table @samp
1763 @item c90
1764 @itemx c89
1765 @itemx iso9899:1990
1766 Support all ISO C90 programs (certain GNU extensions that conflict
1767 with ISO C90 are disabled). Same as @option{-ansi} for C code.
1768
1769 @item iso9899:199409
1770 ISO C90 as modified in amendment 1.
1771
1772 @item c99
1773 @itemx c9x
1774 @itemx iso9899:1999
1775 @itemx iso9899:199x
1776 ISO C99. This standard is substantially completely supported, modulo
1777 bugs and floating-point issues
1778 (mainly but not entirely relating to optional C99 features from
1779 Annexes F and G). See
1780 @w{@uref{http://gcc.gnu.org/c99status.html}} for more information. The
1781 names @samp{c9x} and @samp{iso9899:199x} are deprecated.
1782
1783 @item c11
1784 @itemx c1x
1785 @itemx iso9899:2011
1786 ISO C11, the 2011 revision of the ISO C standard. This standard is
1787 substantially completely supported, modulo bugs, floating-point issues
1788 (mainly but not entirely relating to optional C11 features from
1789 Annexes F and G) and the optional Annexes K (Bounds-checking
1790 interfaces) and L (Analyzability). The name @samp{c1x} is deprecated.
1791
1792 @item gnu90
1793 @itemx gnu89
1794 GNU dialect of ISO C90 (including some C99 features).
1795
1796 @item gnu99
1797 @itemx gnu9x
1798 GNU dialect of ISO C99. The name @samp{gnu9x} is deprecated.
1799
1800 @item gnu11
1801 @itemx gnu1x
1802 GNU dialect of ISO C11. This is the default for C code.
1803 The name @samp{gnu1x} is deprecated.
1804
1805 @item c++98
1806 @itemx c++03
1807 The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
1808 additional defect reports. Same as @option{-ansi} for C++ code.
1809
1810 @item gnu++98
1811 @itemx gnu++03
1812 GNU dialect of @option{-std=c++98}.
1813
1814 @item c++11
1815 @itemx c++0x
1816 The 2011 ISO C++ standard plus amendments.
1817 The name @samp{c++0x} is deprecated.
1818
1819 @item gnu++11
1820 @itemx gnu++0x
1821 GNU dialect of @option{-std=c++11}.
1822 The name @samp{gnu++0x} is deprecated.
1823
1824 @item c++14
1825 @itemx c++1y
1826 The 2014 ISO C++ standard plus amendments.
1827 The name @samp{c++1y} is deprecated.
1828
1829 @item gnu++14
1830 @itemx gnu++1y
1831 GNU dialect of @option{-std=c++14}.
1832 This is the default for C++ code.
1833 The name @samp{gnu++1y} is deprecated.
1834
1835 @item c++1z
1836 The next revision of the ISO C++ standard, tentatively planned for
1837 2017. Support is highly experimental, and will almost certainly
1838 change in incompatible ways in future releases.
1839
1840 @item gnu++1z
1841 GNU dialect of @option{-std=c++1z}. Support is highly experimental,
1842 and will almost certainly change in incompatible ways in future
1843 releases.
1844 @end table
1845
1846 @item -fgnu89-inline
1847 @opindex fgnu89-inline
1848 The option @option{-fgnu89-inline} tells GCC to use the traditional
1849 GNU semantics for @code{inline} functions when in C99 mode.
1850 @xref{Inline,,An Inline Function is As Fast As a Macro}.
1851 Using this option is roughly equivalent to adding the
1852 @code{gnu_inline} function attribute to all inline functions
1853 (@pxref{Function Attributes}).
1854
1855 The option @option{-fno-gnu89-inline} explicitly tells GCC to use the
1856 C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it
1857 specifies the default behavior).
1858 This option is not supported in @option{-std=c90} or
1859 @option{-std=gnu90} mode.
1860
1861 The preprocessor macros @code{__GNUC_GNU_INLINE__} and
1862 @code{__GNUC_STDC_INLINE__} may be used to check which semantics are
1863 in effect for @code{inline} functions. @xref{Common Predefined
1864 Macros,,,cpp,The C Preprocessor}.
1865
1866 @item -aux-info @var{filename}
1867 @opindex aux-info
1868 Output to the given filename prototyped declarations for all functions
1869 declared and/or defined in a translation unit, including those in header
1870 files. This option is silently ignored in any language other than C@.
1871
1872 Besides declarations, the file indicates, in comments, the origin of
1873 each declaration (source file and line), whether the declaration was
1874 implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
1875 @samp{O} for old, respectively, in the first character after the line
1876 number and the colon), and whether it came from a declaration or a
1877 definition (@samp{C} or @samp{F}, respectively, in the following
1878 character). In the case of function definitions, a K&R-style list of
1879 arguments followed by their declarations is also provided, inside
1880 comments, after the declaration.
1881
1882 @item -fallow-parameterless-variadic-functions
1883 @opindex fallow-parameterless-variadic-functions
1884 Accept variadic functions without named parameters.
1885
1886 Although it is possible to define such a function, this is not very
1887 useful as it is not possible to read the arguments. This is only
1888 supported for C as this construct is allowed by C++.
1889
1890 @item -fno-asm
1891 @opindex fno-asm
1892 Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
1893 keyword, so that code can use these words as identifiers. You can use
1894 the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
1895 instead. @option{-ansi} implies @option{-fno-asm}.
1896
1897 In C++, this switch only affects the @code{typeof} keyword, since
1898 @code{asm} and @code{inline} are standard keywords. You may want to
1899 use the @option{-fno-gnu-keywords} flag instead, which has the same
1900 effect. In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
1901 switch only affects the @code{asm} and @code{typeof} keywords, since
1902 @code{inline} is a standard keyword in ISO C99.
1903
1904 @item -fno-builtin
1905 @itemx -fno-builtin-@var{function}
1906 @opindex fno-builtin
1907 @cindex built-in functions
1908 Don't recognize built-in functions that do not begin with
1909 @samp{__builtin_} as prefix. @xref{Other Builtins,,Other built-in
1910 functions provided by GCC}, for details of the functions affected,
1911 including those which are not built-in functions when @option{-ansi} or
1912 @option{-std} options for strict ISO C conformance are used because they
1913 do not have an ISO standard meaning.
1914
1915 GCC normally generates special code to handle certain built-in functions
1916 more efficiently; for instance, calls to @code{alloca} may become single
1917 instructions which adjust the stack directly, and calls to @code{memcpy}
1918 may become inline copy loops. The resulting code is often both smaller
1919 and faster, but since the function calls no longer appear as such, you
1920 cannot set a breakpoint on those calls, nor can you change the behavior
1921 of the functions by linking with a different library. In addition,
1922 when a function is recognized as a built-in function, GCC may use
1923 information about that function to warn about problems with calls to
1924 that function, or to generate more efficient code, even if the
1925 resulting code still contains calls to that function. For example,
1926 warnings are given with @option{-Wformat} for bad calls to
1927 @code{printf} when @code{printf} is built in and @code{strlen} is
1928 known not to modify global memory.
1929
1930 With the @option{-fno-builtin-@var{function}} option
1931 only the built-in function @var{function} is
1932 disabled. @var{function} must not begin with @samp{__builtin_}. If a
1933 function is named that is not built-in in this version of GCC, this
1934 option is ignored. There is no corresponding
1935 @option{-fbuiltin-@var{function}} option; if you wish to enable
1936 built-in functions selectively when using @option{-fno-builtin} or
1937 @option{-ffreestanding}, you may define macros such as:
1938
1939 @smallexample
1940 #define abs(n) __builtin_abs ((n))
1941 #define strcpy(d, s) __builtin_strcpy ((d), (s))
1942 @end smallexample
1943
1944 @item -fhosted
1945 @opindex fhosted
1946 @cindex hosted environment
1947
1948 Assert that compilation targets a hosted environment. This implies
1949 @option{-fbuiltin}. A hosted environment is one in which the
1950 entire standard library is available, and in which @code{main} has a return
1951 type of @code{int}. Examples are nearly everything except a kernel.
1952 This is equivalent to @option{-fno-freestanding}.
1953
1954 @item -ffreestanding
1955 @opindex ffreestanding
1956 @cindex hosted environment
1957
1958 Assert that compilation targets a freestanding environment. This
1959 implies @option{-fno-builtin}. A freestanding environment
1960 is one in which the standard library may not exist, and program startup may
1961 not necessarily be at @code{main}. The most obvious example is an OS kernel.
1962 This is equivalent to @option{-fno-hosted}.
1963
1964 @xref{Standards,,Language Standards Supported by GCC}, for details of
1965 freestanding and hosted environments.
1966
1967 @item -fopenacc
1968 @opindex fopenacc
1969 @cindex OpenACC accelerator programming
1970 Enable handling of OpenACC directives @code{#pragma acc} in C/C++ and
1971 @code{!$acc} in Fortran. When @option{-fopenacc} is specified, the
1972 compiler generates accelerated code according to the OpenACC Application
1973 Programming Interface v2.0 @w{@uref{http://www.openacc.org/}}. This option
1974 implies @option{-pthread}, and thus is only supported on targets that
1975 have support for @option{-pthread}.
1976
1977 @item -fopenacc-dim=@var{geom}
1978 @opindex fopenacc-dim
1979 @cindex OpenACC accelerator programming
1980 Specify default compute dimensions for parallel offload regions that do
1981 not explicitly specify. The @var{geom} value is a triple of
1982 ':'-separated sizes, in order 'gang', 'worker' and, 'vector'. A size
1983 can be omitted, to use a target-specific default value.
1984
1985 @item -fopenmp
1986 @opindex fopenmp
1987 @cindex OpenMP parallel
1988 Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and
1989 @code{!$omp} in Fortran. When @option{-fopenmp} is specified, the
1990 compiler generates parallel code according to the OpenMP Application
1991 Program Interface v4.0 @w{@uref{http://www.openmp.org/}}. This option
1992 implies @option{-pthread}, and thus is only supported on targets that
1993 have support for @option{-pthread}. @option{-fopenmp} implies
1994 @option{-fopenmp-simd}.
1995
1996 @item -fopenmp-simd
1997 @opindex fopenmp-simd
1998 @cindex OpenMP SIMD
1999 @cindex SIMD
2000 Enable handling of OpenMP's SIMD directives with @code{#pragma omp}
2001 in C/C++ and @code{!$omp} in Fortran. Other OpenMP directives
2002 are ignored.
2003
2004 @item -fcilkplus
2005 @opindex fcilkplus
2006 @cindex Enable Cilk Plus
2007 Enable the usage of Cilk Plus language extension features for C/C++.
2008 When the option @option{-fcilkplus} is specified, enable the usage of
2009 the Cilk Plus Language extension features for C/C++. The present
2010 implementation follows ABI version 1.2. This is an experimental
2011 feature that is only partially complete, and whose interface may
2012 change in future versions of GCC as the official specification
2013 changes. Currently, all features but @code{_Cilk_for} have been
2014 implemented.
2015
2016 @item -fgnu-tm
2017 @opindex fgnu-tm
2018 When the option @option{-fgnu-tm} is specified, the compiler
2019 generates code for the Linux variant of Intel's current Transactional
2020 Memory ABI specification document (Revision 1.1, May 6 2009). This is
2021 an experimental feature whose interface may change in future versions
2022 of GCC, as the official specification changes. Please note that not
2023 all architectures are supported for this feature.
2024
2025 For more information on GCC's support for transactional memory,
2026 @xref{Enabling libitm,,The GNU Transactional Memory Library,libitm,GNU
2027 Transactional Memory Library}.
2028
2029 Note that the transactional memory feature is not supported with
2030 non-call exceptions (@option{-fnon-call-exceptions}).
2031
2032 @item -fms-extensions
2033 @opindex fms-extensions
2034 Accept some non-standard constructs used in Microsoft header files.
2035
2036 In C++ code, this allows member names in structures to be similar
2037 to previous types declarations.
2038
2039 @smallexample
2040 typedef int UOW;
2041 struct ABC @{
2042 UOW UOW;
2043 @};
2044 @end smallexample
2045
2046 Some cases of unnamed fields in structures and unions are only
2047 accepted with this option. @xref{Unnamed Fields,,Unnamed struct/union
2048 fields within structs/unions}, for details.
2049
2050 Note that this option is off for all targets but x86
2051 targets using ms-abi.
2052
2053 @item -fplan9-extensions
2054 @opindex fplan9-extensions
2055 Accept some non-standard constructs used in Plan 9 code.
2056
2057 This enables @option{-fms-extensions}, permits passing pointers to
2058 structures with anonymous fields to functions that expect pointers to
2059 elements of the type of the field, and permits referring to anonymous
2060 fields declared using a typedef. @xref{Unnamed Fields,,Unnamed
2061 struct/union fields within structs/unions}, for details. This is only
2062 supported for C, not C++.
2063
2064 @item -trigraphs
2065 @opindex trigraphs
2066 Support ISO C trigraphs. The @option{-ansi} option (and @option{-std}
2067 options for strict ISO C conformance) implies @option{-trigraphs}.
2068
2069 @cindex traditional C language
2070 @cindex C language, traditional
2071 @item -traditional
2072 @itemx -traditional-cpp
2073 @opindex traditional-cpp
2074 @opindex traditional
2075 Formerly, these options caused GCC to attempt to emulate a pre-standard
2076 C compiler. They are now only supported with the @option{-E} switch.
2077 The preprocessor continues to support a pre-standard mode. See the GNU
2078 CPP manual for details.
2079
2080 @item -fcond-mismatch
2081 @opindex fcond-mismatch
2082 Allow conditional expressions with mismatched types in the second and
2083 third arguments. The value of such an expression is void. This option
2084 is not supported for C++.
2085
2086 @item -flax-vector-conversions
2087 @opindex flax-vector-conversions
2088 Allow implicit conversions between vectors with differing numbers of
2089 elements and/or incompatible element types. This option should not be
2090 used for new code.
2091
2092 @item -funsigned-char
2093 @opindex funsigned-char
2094 Let the type @code{char} be unsigned, like @code{unsigned char}.
2095
2096 Each kind of machine has a default for what @code{char} should
2097 be. It is either like @code{unsigned char} by default or like
2098 @code{signed char} by default.
2099
2100 Ideally, a portable program should always use @code{signed char} or
2101 @code{unsigned char} when it depends on the signedness of an object.
2102 But many programs have been written to use plain @code{char} and
2103 expect it to be signed, or expect it to be unsigned, depending on the
2104 machines they were written for. This option, and its inverse, let you
2105 make such a program work with the opposite default.
2106
2107 The type @code{char} is always a distinct type from each of
2108 @code{signed char} or @code{unsigned char}, even though its behavior
2109 is always just like one of those two.
2110
2111 @item -fsigned-char
2112 @opindex fsigned-char
2113 Let the type @code{char} be signed, like @code{signed char}.
2114
2115 Note that this is equivalent to @option{-fno-unsigned-char}, which is
2116 the negative form of @option{-funsigned-char}. Likewise, the option
2117 @option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
2118
2119 @item -fsigned-bitfields
2120 @itemx -funsigned-bitfields
2121 @itemx -fno-signed-bitfields
2122 @itemx -fno-unsigned-bitfields
2123 @opindex fsigned-bitfields
2124 @opindex funsigned-bitfields
2125 @opindex fno-signed-bitfields
2126 @opindex fno-unsigned-bitfields
2127 These options control whether a bit-field is signed or unsigned, when the
2128 declaration does not use either @code{signed} or @code{unsigned}. By
2129 default, such a bit-field is signed, because this is consistent: the
2130 basic integer types such as @code{int} are signed types.
2131
2132 @item -fsso-struct=@var{endianness}
2133 @opindex fsso-struct
2134 Set the default scalar storage order of structures and unions to the
2135 specified endianness. The accepted values are @samp{big-endian} and
2136 @samp{little-endian}. If the option is not passed, the compiler uses
2137 the native endianness of the target. This option is not supported for C++.
2138
2139 @strong{Warning:} the @option{-fsso-struct} switch causes GCC to generate
2140 code that is not binary compatible with code generated without it if the
2141 specified endianness is not the native endianness of the target.
2142 @end table
2143
2144 @node C++ Dialect Options
2145 @section Options Controlling C++ Dialect
2146
2147 @cindex compiler options, C++
2148 @cindex C++ options, command-line
2149 @cindex options, C++
2150 This section describes the command-line options that are only meaningful
2151 for C++ programs. You can also use most of the GNU compiler options
2152 regardless of what language your program is in. For example, you
2153 might compile a file @file{firstClass.C} like this:
2154
2155 @smallexample
2156 g++ -g -fstrict-enums -O -c firstClass.C
2157 @end smallexample
2158
2159 @noindent
2160 In this example, only @option{-fstrict-enums} is an option meant
2161 only for C++ programs; you can use the other options with any
2162 language supported by GCC@.
2163
2164 Some options for compiling C programs, such as @option{-std}, are also
2165 relevant for C++ programs.
2166 @xref{C Dialect Options,,Options Controlling C Dialect}.
2167
2168 Here is a list of options that are @emph{only} for compiling C++ programs:
2169
2170 @table @gcctabopt
2171
2172 @item -fabi-version=@var{n}
2173 @opindex fabi-version
2174 Use version @var{n} of the C++ ABI@. The default is version 0.
2175
2176 Version 0 refers to the version conforming most closely to
2177 the C++ ABI specification. Therefore, the ABI obtained using version 0
2178 will change in different versions of G++ as ABI bugs are fixed.
2179
2180 Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
2181
2182 Version 2 is the version of the C++ ABI that first appeared in G++
2183 3.4, and was the default through G++ 4.9.
2184
2185 Version 3 corrects an error in mangling a constant address as a
2186 template argument.
2187
2188 Version 4, which first appeared in G++ 4.5, implements a standard
2189 mangling for vector types.
2190
2191 Version 5, which first appeared in G++ 4.6, corrects the mangling of
2192 attribute const/volatile on function pointer types, decltype of a
2193 plain decl, and use of a function parameter in the declaration of
2194 another parameter.
2195
2196 Version 6, which first appeared in G++ 4.7, corrects the promotion
2197 behavior of C++11 scoped enums and the mangling of template argument
2198 packs, const/static_cast, prefix ++ and --, and a class scope function
2199 used as a template argument.
2200
2201 Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a
2202 builtin type and corrects the mangling of lambdas in default argument
2203 scope.
2204
2205 Version 8, which first appeared in G++ 4.9, corrects the substitution
2206 behavior of function types with function-cv-qualifiers.
2207
2208 Version 9, which first appeared in G++ 5.2, corrects the alignment of
2209 @code{nullptr_t}.
2210
2211 Version 10, which first appeared in G++ 6.1, adds mangling of
2212 attributes that affect type identity, such as ia32 calling convention
2213 attributes (e.g. @samp{stdcall}).
2214
2215 See also @option{-Wabi}.
2216
2217 @item -fabi-compat-version=@var{n}
2218 @opindex fabi-compat-version
2219 On targets that support strong aliases, G++
2220 works around mangling changes by creating an alias with the correct
2221 mangled name when defining a symbol with an incorrect mangled name.
2222 This switch specifies which ABI version to use for the alias.
2223
2224 With @option{-fabi-version=0} (the default), this defaults to 8 (GCC 5
2225 compatibility). If another ABI version is explicitly selected, this
2226 defaults to 0. For compatibility with GCC versions 3.2 through 4.9,
2227 use @option{-fabi-compat-version=2}.
2228
2229 If this option is not provided but @option{-Wabi=@var{n}} is, that
2230 version is used for compatibility aliases. If this option is provided
2231 along with @option{-Wabi} (without the version), the version from this
2232 option is used for the warning.
2233
2234 @item -fno-access-control
2235 @opindex fno-access-control
2236 Turn off all access checking. This switch is mainly useful for working
2237 around bugs in the access control code.
2238
2239 @item -fargs-in-order
2240 @opindex fargs-in-order
2241 Evaluate function arguments and operands of some binary expressions in
2242 left-to-right order, and evaluate the right side of an assignment
2243 before the left side, as proposed in P0145R2. Enabled by default with
2244 @option{-std=c++1z}. @option{-fargs-in-order=1} implements all of the
2245 ordering requirements except function arguments.
2246
2247 @item -fcheck-new
2248 @opindex fcheck-new
2249 Check that the pointer returned by @code{operator new} is non-null
2250 before attempting to modify the storage allocated. This check is
2251 normally unnecessary because the C++ standard specifies that
2252 @code{operator new} only returns @code{0} if it is declared
2253 @code{throw()}, in which case the compiler always checks the
2254 return value even without this option. In all other cases, when
2255 @code{operator new} has a non-empty exception specification, memory
2256 exhaustion is signalled by throwing @code{std::bad_alloc}. See also
2257 @samp{new (nothrow)}.
2258
2259 @item -fconcepts
2260 @opindex fconcepts
2261 Enable support for the C++ Extensions for Concepts Technical
2262 Specification, ISO 19217 (2015), which allows code like
2263
2264 @smallexample
2265 template <class T> concept bool Addable = requires (T t) @{ t + t; @};
2266 template <Addable T> T add (T a, T b) @{ return a + b; @}
2267 @end smallexample
2268
2269 @item -fconstexpr-depth=@var{n}
2270 @opindex fconstexpr-depth
2271 Set the maximum nested evaluation depth for C++11 constexpr functions
2272 to @var{n}. A limit is needed to detect endless recursion during
2273 constant expression evaluation. The minimum specified by the standard
2274 is 512.
2275
2276 @item -fdeduce-init-list
2277 @opindex fdeduce-init-list
2278 Enable deduction of a template type parameter as
2279 @code{std::initializer_list} from a brace-enclosed initializer list, i.e.@:
2280
2281 @smallexample
2282 template <class T> auto forward(T t) -> decltype (realfn (t))
2283 @{
2284 return realfn (t);
2285 @}
2286
2287 void f()
2288 @{
2289 forward(@{1,2@}); // call forward<std::initializer_list<int>>
2290 @}
2291 @end smallexample
2292
2293 This deduction was implemented as a possible extension to the
2294 originally proposed semantics for the C++11 standard, but was not part
2295 of the final standard, so it is disabled by default. This option is
2296 deprecated, and may be removed in a future version of G++.
2297
2298 @item -ffriend-injection
2299 @opindex ffriend-injection
2300 Inject friend functions into the enclosing namespace, so that they are
2301 visible outside the scope of the class in which they are declared.
2302 Friend functions were documented to work this way in the old Annotated
2303 C++ Reference Manual.
2304 However, in ISO C++ a friend function that is not declared
2305 in an enclosing scope can only be found using argument dependent
2306 lookup. GCC defaults to the standard behavior.
2307
2308 This option is for compatibility, and may be removed in a future
2309 release of G++.
2310
2311 @item -fno-elide-constructors
2312 @opindex fno-elide-constructors
2313 The C++ standard allows an implementation to omit creating a temporary
2314 that is only used to initialize another object of the same type.
2315 Specifying this option disables that optimization, and forces G++ to
2316 call the copy constructor in all cases.
2317
2318 @item -fno-enforce-eh-specs
2319 @opindex fno-enforce-eh-specs
2320 Don't generate code to check for violation of exception specifications
2321 at run time. This option violates the C++ standard, but may be useful
2322 for reducing code size in production builds, much like defining
2323 @code{NDEBUG}. This does not give user code permission to throw
2324 exceptions in violation of the exception specifications; the compiler
2325 still optimizes based on the specifications, so throwing an
2326 unexpected exception results in undefined behavior at run time.
2327
2328 @item -fextern-tls-init
2329 @itemx -fno-extern-tls-init
2330 @opindex fextern-tls-init
2331 @opindex fno-extern-tls-init
2332 The C++11 and OpenMP standards allow @code{thread_local} and
2333 @code{threadprivate} variables to have dynamic (runtime)
2334 initialization. To support this, any use of such a variable goes
2335 through a wrapper function that performs any necessary initialization.
2336 When the use and definition of the variable are in the same
2337 translation unit, this overhead can be optimized away, but when the
2338 use is in a different translation unit there is significant overhead
2339 even if the variable doesn't actually need dynamic initialization. If
2340 the programmer can be sure that no use of the variable in a
2341 non-defining TU needs to trigger dynamic initialization (either
2342 because the variable is statically initialized, or a use of the
2343 variable in the defining TU will be executed before any uses in
2344 another TU), they can avoid this overhead with the
2345 @option{-fno-extern-tls-init} option.
2346
2347 On targets that support symbol aliases, the default is
2348 @option{-fextern-tls-init}. On targets that do not support symbol
2349 aliases, the default is @option{-fno-extern-tls-init}.
2350
2351 @item -ffor-scope
2352 @itemx -fno-for-scope
2353 @opindex ffor-scope
2354 @opindex fno-for-scope
2355 If @option{-ffor-scope} is specified, the scope of variables declared in
2356 a @i{for-init-statement} is limited to the @code{for} loop itself,
2357 as specified by the C++ standard.
2358 If @option{-fno-for-scope} is specified, the scope of variables declared in
2359 a @i{for-init-statement} extends to the end of the enclosing scope,
2360 as was the case in old versions of G++, and other (traditional)
2361 implementations of C++.
2362
2363 If neither flag is given, the default is to follow the standard,
2364 but to allow and give a warning for old-style code that would
2365 otherwise be invalid, or have different behavior.
2366
2367 @item -fno-gnu-keywords
2368 @opindex fno-gnu-keywords
2369 Do not recognize @code{typeof} as a keyword, so that code can use this
2370 word as an identifier. You can use the keyword @code{__typeof__} instead.
2371 This option is implied by the strict ISO C++ dialects: @option{-ansi},
2372 @option{-std=c++98}, @option{-std=c++11}, etc.
2373
2374 @item -fno-implicit-templates
2375 @opindex fno-implicit-templates
2376 Never emit code for non-inline templates that are instantiated
2377 implicitly (i.e.@: by use); only emit code for explicit instantiations.
2378 @xref{Template Instantiation}, for more information.
2379
2380 @item -fno-implicit-inline-templates
2381 @opindex fno-implicit-inline-templates
2382 Don't emit code for implicit instantiations of inline templates, either.
2383 The default is to handle inlines differently so that compiles with and
2384 without optimization need the same set of explicit instantiations.
2385
2386 @item -fno-implement-inlines
2387 @opindex fno-implement-inlines
2388 To save space, do not emit out-of-line copies of inline functions
2389 controlled by @code{#pragma implementation}. This causes linker
2390 errors if these functions are not inlined everywhere they are called.
2391
2392 @item -fms-extensions
2393 @opindex fms-extensions
2394 Disable Wpedantic warnings about constructs used in MFC, such as implicit
2395 int and getting a pointer to member function via non-standard syntax.
2396
2397 @item -fno-nonansi-builtins
2398 @opindex fno-nonansi-builtins
2399 Disable built-in declarations of functions that are not mandated by
2400 ANSI/ISO C@. These include @code{ffs}, @code{alloca}, @code{_exit},
2401 @code{index}, @code{bzero}, @code{conjf}, and other related functions.
2402
2403 @item -fnothrow-opt
2404 @opindex fnothrow-opt
2405 Treat a @code{throw()} exception specification as if it were a
2406 @code{noexcept} specification to reduce or eliminate the text size
2407 overhead relative to a function with no exception specification. If
2408 the function has local variables of types with non-trivial
2409 destructors, the exception specification actually makes the
2410 function smaller because the EH cleanups for those variables can be
2411 optimized away. The semantic effect is that an exception thrown out of
2412 a function with such an exception specification results in a call
2413 to @code{terminate} rather than @code{unexpected}.
2414
2415 @item -fno-operator-names
2416 @opindex fno-operator-names
2417 Do not treat the operator name keywords @code{and}, @code{bitand},
2418 @code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
2419 synonyms as keywords.
2420
2421 @item -fno-optional-diags
2422 @opindex fno-optional-diags
2423 Disable diagnostics that the standard says a compiler does not need to
2424 issue. Currently, the only such diagnostic issued by G++ is the one for
2425 a name having multiple meanings within a class.
2426
2427 @item -fpermissive
2428 @opindex fpermissive
2429 Downgrade some diagnostics about nonconformant code from errors to
2430 warnings. Thus, using @option{-fpermissive} allows some
2431 nonconforming code to compile.
2432
2433 @item -fno-pretty-templates
2434 @opindex fno-pretty-templates
2435 When an error message refers to a specialization of a function
2436 template, the compiler normally prints the signature of the
2437 template followed by the template arguments and any typedefs or
2438 typenames in the signature (e.g. @code{void f(T) [with T = int]}
2439 rather than @code{void f(int)}) so that it's clear which template is
2440 involved. When an error message refers to a specialization of a class
2441 template, the compiler omits any template arguments that match
2442 the default template arguments for that template. If either of these
2443 behaviors make it harder to understand the error message rather than
2444 easier, you can use @option{-fno-pretty-templates} to disable them.
2445
2446 @item -frepo
2447 @opindex frepo
2448 Enable automatic template instantiation at link time. This option also
2449 implies @option{-fno-implicit-templates}. @xref{Template
2450 Instantiation}, for more information.
2451
2452 @item -fno-rtti
2453 @opindex fno-rtti
2454 Disable generation of information about every class with virtual
2455 functions for use by the C++ run-time type identification features
2456 (@code{dynamic_cast} and @code{typeid}). If you don't use those parts
2457 of the language, you can save some space by using this flag. Note that
2458 exception handling uses the same information, but G++ generates it as
2459 needed. The @code{dynamic_cast} operator can still be used for casts that
2460 do not require run-time type information, i.e.@: casts to @code{void *} or to
2461 unambiguous base classes.
2462
2463 @item -fsized-deallocation
2464 @opindex fsized-deallocation
2465 Enable the built-in global declarations
2466 @smallexample
2467 void operator delete (void *, std::size_t) noexcept;
2468 void operator delete[] (void *, std::size_t) noexcept;
2469 @end smallexample
2470 as introduced in C++14. This is useful for user-defined replacement
2471 deallocation functions that, for example, use the size of the object
2472 to make deallocation faster. Enabled by default under
2473 @option{-std=c++14} and above. The flag @option{-Wsized-deallocation}
2474 warns about places that might want to add a definition.
2475
2476 @item -fstrict-enums
2477 @opindex fstrict-enums
2478 Allow the compiler to optimize using the assumption that a value of
2479 enumerated type can only be one of the values of the enumeration (as
2480 defined in the C++ standard; basically, a value that can be
2481 represented in the minimum number of bits needed to represent all the
2482 enumerators). This assumption may not be valid if the program uses a
2483 cast to convert an arbitrary integer value to the enumerated type.
2484
2485 @item -ftemplate-backtrace-limit=@var{n}
2486 @opindex ftemplate-backtrace-limit
2487 Set the maximum number of template instantiation notes for a single
2488 warning or error to @var{n}. The default value is 10.
2489
2490 @item -ftemplate-depth=@var{n}
2491 @opindex ftemplate-depth
2492 Set the maximum instantiation depth for template classes to @var{n}.
2493 A limit on the template instantiation depth is needed to detect
2494 endless recursions during template class instantiation. ANSI/ISO C++
2495 conforming programs must not rely on a maximum depth greater than 17
2496 (changed to 1024 in C++11). The default value is 900, as the compiler
2497 can run out of stack space before hitting 1024 in some situations.
2498
2499 @item -fno-threadsafe-statics
2500 @opindex fno-threadsafe-statics
2501 Do not emit the extra code to use the routines specified in the C++
2502 ABI for thread-safe initialization of local statics. You can use this
2503 option to reduce code size slightly in code that doesn't need to be
2504 thread-safe.
2505
2506 @item -fuse-cxa-atexit
2507 @opindex fuse-cxa-atexit
2508 Register destructors for objects with static storage duration with the
2509 @code{__cxa_atexit} function rather than the @code{atexit} function.
2510 This option is required for fully standards-compliant handling of static
2511 destructors, but only works if your C library supports
2512 @code{__cxa_atexit}.
2513
2514 @item -fno-use-cxa-get-exception-ptr
2515 @opindex fno-use-cxa-get-exception-ptr
2516 Don't use the @code{__cxa_get_exception_ptr} runtime routine. This
2517 causes @code{std::uncaught_exception} to be incorrect, but is necessary
2518 if the runtime routine is not available.
2519
2520 @item -fvisibility-inlines-hidden
2521 @opindex fvisibility-inlines-hidden
2522 This switch declares that the user does not attempt to compare
2523 pointers to inline functions or methods where the addresses of the two functions
2524 are taken in different shared objects.
2525
2526 The effect of this is that GCC may, effectively, mark inline methods with
2527 @code{__attribute__ ((visibility ("hidden")))} so that they do not
2528 appear in the export table of a DSO and do not require a PLT indirection
2529 when used within the DSO@. Enabling this option can have a dramatic effect
2530 on load and link times of a DSO as it massively reduces the size of the
2531 dynamic export table when the library makes heavy use of templates.
2532
2533 The behavior of this switch is not quite the same as marking the
2534 methods as hidden directly, because it does not affect static variables
2535 local to the function or cause the compiler to deduce that
2536 the function is defined in only one shared object.
2537
2538 You may mark a method as having a visibility explicitly to negate the
2539 effect of the switch for that method. For example, if you do want to
2540 compare pointers to a particular inline method, you might mark it as
2541 having default visibility. Marking the enclosing class with explicit
2542 visibility has no effect.
2543
2544 Explicitly instantiated inline methods are unaffected by this option
2545 as their linkage might otherwise cross a shared library boundary.
2546 @xref{Template Instantiation}.
2547
2548 @item -fvisibility-ms-compat
2549 @opindex fvisibility-ms-compat
2550 This flag attempts to use visibility settings to make GCC's C++
2551 linkage model compatible with that of Microsoft Visual Studio.
2552
2553 The flag makes these changes to GCC's linkage model:
2554
2555 @enumerate
2556 @item
2557 It sets the default visibility to @code{hidden}, like
2558 @option{-fvisibility=hidden}.
2559
2560 @item
2561 Types, but not their members, are not hidden by default.
2562
2563 @item
2564 The One Definition Rule is relaxed for types without explicit
2565 visibility specifications that are defined in more than one
2566 shared object: those declarations are permitted if they are
2567 permitted when this option is not used.
2568 @end enumerate
2569
2570 In new code it is better to use @option{-fvisibility=hidden} and
2571 export those classes that are intended to be externally visible.
2572 Unfortunately it is possible for code to rely, perhaps accidentally,
2573 on the Visual Studio behavior.
2574
2575 Among the consequences of these changes are that static data members
2576 of the same type with the same name but defined in different shared
2577 objects are different, so changing one does not change the other;
2578 and that pointers to function members defined in different shared
2579 objects may not compare equal. When this flag is given, it is a
2580 violation of the ODR to define types with the same name differently.
2581
2582 @item -fno-weak
2583 @opindex fno-weak
2584 Do not use weak symbol support, even if it is provided by the linker.
2585 By default, G++ uses weak symbols if they are available. This
2586 option exists only for testing, and should not be used by end-users;
2587 it results in inferior code and has no benefits. This option may
2588 be removed in a future release of G++.
2589
2590 @item -nostdinc++
2591 @opindex nostdinc++
2592 Do not search for header files in the standard directories specific to
2593 C++, but do still search the other standard directories. (This option
2594 is used when building the C++ library.)
2595 @end table
2596
2597 In addition, these optimization, warning, and code generation options
2598 have meanings only for C++ programs:
2599
2600 @table @gcctabopt
2601 @item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)}
2602 @opindex Wabi
2603 @opindex Wno-abi
2604 Warn when G++ it generates code that is probably not compatible with
2605 the vendor-neutral C++ ABI@. Since G++ now defaults to updating the
2606 ABI with each major release, normally @option{-Wabi} will warn only if
2607 there is a check added later in a release series for an ABI issue
2608 discovered since the initial release. @option{-Wabi} will warn about
2609 more things if an older ABI version is selected (with
2610 @option{-fabi-version=@var{n}}).
2611
2612 @option{-Wabi} can also be used with an explicit version number to
2613 warn about compatibility with a particular @option{-fabi-version}
2614 level, e.g. @option{-Wabi=2} to warn about changes relative to
2615 @option{-fabi-version=2}.
2616
2617 If an explicit version number is provided and
2618 @option{-fabi-compat-version} is not specified, the version number
2619 from this option is used for compatibility aliases. If no explicit
2620 version number is provided with this option, but
2621 @option{-fabi-compat-version} is specified, that version number is
2622 used for ABI warnings.
2623
2624 Although an effort has been made to warn about
2625 all such cases, there are probably some cases that are not warned about,
2626 even though G++ is generating incompatible code. There may also be
2627 cases where warnings are emitted even though the code that is generated
2628 is compatible.
2629
2630 You should rewrite your code to avoid these warnings if you are
2631 concerned about the fact that code generated by G++ may not be binary
2632 compatible with code generated by other compilers.
2633
2634 Known incompatibilities in @option{-fabi-version=2} (which was the
2635 default from GCC 3.4 to 4.9) include:
2636
2637 @itemize @bullet
2638
2639 @item
2640 A template with a non-type template parameter of reference type was
2641 mangled incorrectly:
2642 @smallexample
2643 extern int N;
2644 template <int &> struct S @{@};
2645 void n (S<N>) @{2@}
2646 @end smallexample
2647
2648 This was fixed in @option{-fabi-version=3}.
2649
2650 @item
2651 SIMD vector types declared using @code{__attribute ((vector_size))} were
2652 mangled in a non-standard way that does not allow for overloading of
2653 functions taking vectors of different sizes.
2654
2655 The mangling was changed in @option{-fabi-version=4}.
2656
2657 @item
2658 @code{__attribute ((const))} and @code{noreturn} were mangled as type
2659 qualifiers, and @code{decltype} of a plain declaration was folded away.
2660
2661 These mangling issues were fixed in @option{-fabi-version=5}.
2662
2663 @item
2664 Scoped enumerators passed as arguments to a variadic function are
2665 promoted like unscoped enumerators, causing @code{va_arg} to complain.
2666 On most targets this does not actually affect the parameter passing
2667 ABI, as there is no way to pass an argument smaller than @code{int}.
2668
2669 Also, the ABI changed the mangling of template argument packs,
2670 @code{const_cast}, @code{static_cast}, prefix increment/decrement, and
2671 a class scope function used as a template argument.
2672
2673 These issues were corrected in @option{-fabi-version=6}.
2674
2675 @item
2676 Lambdas in default argument scope were mangled incorrectly, and the
2677 ABI changed the mangling of @code{nullptr_t}.
2678
2679 These issues were corrected in @option{-fabi-version=7}.
2680
2681 @item
2682 When mangling a function type with function-cv-qualifiers, the
2683 un-qualified function type was incorrectly treated as a substitution
2684 candidate.
2685
2686 This was fixed in @option{-fabi-version=8}, the default for GCC 5.1.
2687
2688 @item
2689 @code{decltype(nullptr)} incorrectly had an alignment of 1, leading to
2690 unaligned accesses. Note that this did not affect the ABI of a
2691 function with a @code{nullptr_t} parameter, as parameters have a
2692 minimum alignment.
2693
2694 This was fixed in @option{-fabi-version=9}, the default for GCC 5.2.
2695
2696 @item
2697 Target-specific attributes that affect the identity of a type, such as
2698 ia32 calling conventions on a function type (stdcall, regparm, etc.),
2699 did not affect the mangled name, leading to name collisions when
2700 function pointers were used as template arguments.
2701
2702 This was fixed in @option{-fabi-version=10}, the default for GCC 6.1.
2703
2704 @end itemize
2705
2706 It also warns about psABI-related changes. The known psABI changes at this
2707 point include:
2708
2709 @itemize @bullet
2710
2711 @item
2712 For SysV/x86-64, unions with @code{long double} members are
2713 passed in memory as specified in psABI. For example:
2714
2715 @smallexample
2716 union U @{
2717 long double ld;
2718 int i;
2719 @};
2720 @end smallexample
2721
2722 @noindent
2723 @code{union U} is always passed in memory.
2724
2725 @end itemize
2726
2727 @item -Wabi-tag @r{(C++ and Objective-C++ only)}
2728 @opindex Wabi-tag
2729 @opindex -Wabi-tag
2730 Warn when a type with an ABI tag is used in a context that does not
2731 have that ABI tag. See @ref{C++ Attributes} for more information
2732 about ABI tags.
2733
2734 @item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)}
2735 @opindex Wctor-dtor-privacy
2736 @opindex Wno-ctor-dtor-privacy
2737 Warn when a class seems unusable because all the constructors or
2738 destructors in that class are private, and it has neither friends nor
2739 public static member functions. Also warn if there are no non-private
2740 methods, and there's at least one private member function that isn't
2741 a constructor or destructor.
2742
2743 @item -Wdelete-non-virtual-dtor @r{(C++ and Objective-C++ only)}
2744 @opindex Wdelete-non-virtual-dtor
2745 @opindex Wno-delete-non-virtual-dtor
2746 Warn when @code{delete} is used to destroy an instance of a class that
2747 has virtual functions and non-virtual destructor. It is unsafe to delete
2748 an instance of a derived class through a pointer to a base class if the
2749 base class does not have a virtual destructor. This warning is enabled
2750 by @option{-Wall}.
2751
2752 @item -Wliteral-suffix @r{(C++ and Objective-C++ only)}
2753 @opindex Wliteral-suffix
2754 @opindex Wno-literal-suffix
2755 Warn when a string or character literal is followed by a ud-suffix which does
2756 not begin with an underscore. As a conforming extension, GCC treats such
2757 suffixes as separate preprocessing tokens in order to maintain backwards
2758 compatibility with code that uses formatting macros from @code{<inttypes.h>}.
2759 For example:
2760
2761 @smallexample
2762 #define __STDC_FORMAT_MACROS
2763 #include <inttypes.h>
2764 #include <stdio.h>
2765
2766 int main() @{
2767 int64_t i64 = 123;
2768 printf("My int64: %" PRId64"\n", i64);
2769 @}
2770 @end smallexample
2771
2772 In this case, @code{PRId64} is treated as a separate preprocessing token.
2773
2774 This warning is enabled by default.
2775
2776 @item -Wlto-type-mismatch
2777 @opindex Wlto-type-mismatch
2778 @opindex Wno-lto-type-mismatch
2779
2780 During the link-time optimization warn about type mismatches in
2781 global declarations from different compilation units.
2782 Requires @option{-flto} to be enabled. Enabled by default.
2783
2784 @item -Wnarrowing @r{(C++ and Objective-C++ only)}
2785 @opindex Wnarrowing
2786 @opindex Wno-narrowing
2787 With @option{-std=gnu++98} or @option{-std=c++98}, warn when a narrowing
2788 conversion prohibited by C++11 occurs within
2789 @samp{@{ @}}, e.g.
2790
2791 @smallexample
2792 int i = @{ 2.2 @}; // error: narrowing from double to int
2793 @end smallexample
2794
2795 This flag is included in @option{-Wall} and @option{-Wc++11-compat}.
2796
2797 When a later standard is in effect, e.g. when using @option{-std=c++11},
2798 narrowing conversions are diagnosed by default, as required by the standard.
2799 A narrowing conversion from a constant produces an error,
2800 and a narrowing conversion from a non-constant produces a warning,
2801 but @option{-Wno-narrowing} suppresses the diagnostic.
2802 Note that this does not affect the meaning of well-formed code;
2803 narrowing conversions are still considered ill-formed in SFINAE contexts.
2804
2805 @item -Wnoexcept @r{(C++ and Objective-C++ only)}
2806 @opindex Wnoexcept
2807 @opindex Wno-noexcept
2808 Warn when a noexcept-expression evaluates to false because of a call
2809 to a function that does not have a non-throwing exception
2810 specification (i.e. @code{throw()} or @code{noexcept}) but is known by
2811 the compiler to never throw an exception.
2812
2813 @item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)}
2814 @opindex Wnon-virtual-dtor
2815 @opindex Wno-non-virtual-dtor
2816 Warn when a class has virtual functions and an accessible non-virtual
2817 destructor itself or in an accessible polymorphic base class, in which
2818 case it is possible but unsafe to delete an instance of a derived
2819 class through a pointer to the class itself or base class. This
2820 warning is automatically enabled if @option{-Weffc++} is specified.
2821
2822 @item -Wreorder @r{(C++ and Objective-C++ only)}
2823 @opindex Wreorder
2824 @opindex Wno-reorder
2825 @cindex reordering, warning
2826 @cindex warning for reordering of member initializers
2827 Warn when the order of member initializers given in the code does not
2828 match the order in which they must be executed. For instance:
2829
2830 @smallexample
2831 struct A @{
2832 int i;
2833 int j;
2834 A(): j (0), i (1) @{ @}
2835 @};
2836 @end smallexample
2837
2838 @noindent
2839 The compiler rearranges the member initializers for @code{i}
2840 and @code{j} to match the declaration order of the members, emitting
2841 a warning to that effect. This warning is enabled by @option{-Wall}.
2842
2843 @item -fext-numeric-literals @r{(C++ and Objective-C++ only)}
2844 @opindex fext-numeric-literals
2845 @opindex fno-ext-numeric-literals
2846 Accept imaginary, fixed-point, or machine-defined
2847 literal number suffixes as GNU extensions.
2848 When this option is turned off these suffixes are treated
2849 as C++11 user-defined literal numeric suffixes.
2850 This is on by default for all pre-C++11 dialects and all GNU dialects:
2851 @option{-std=c++98}, @option{-std=gnu++98}, @option{-std=gnu++11},
2852 @option{-std=gnu++14}.
2853 This option is off by default
2854 for ISO C++11 onwards (@option{-std=c++11}, ...).
2855 @end table
2856
2857 The following @option{-W@dots{}} options are not affected by @option{-Wall}.
2858
2859 @table @gcctabopt
2860 @item -Weffc++ @r{(C++ and Objective-C++ only)}
2861 @opindex Weffc++
2862 @opindex Wno-effc++
2863 Warn about violations of the following style guidelines from Scott Meyers'
2864 @cite{Effective C++} series of books:
2865
2866 @itemize @bullet
2867 @item
2868 Define a copy constructor and an assignment operator for classes
2869 with dynamically-allocated memory.
2870
2871 @item
2872 Prefer initialization to assignment in constructors.
2873
2874 @item
2875 Have @code{operator=} return a reference to @code{*this}.
2876
2877 @item
2878 Don't try to return a reference when you must return an object.
2879
2880 @item
2881 Distinguish between prefix and postfix forms of increment and
2882 decrement operators.
2883
2884 @item
2885 Never overload @code{&&}, @code{||}, or @code{,}.
2886
2887 @end itemize
2888
2889 This option also enables @option{-Wnon-virtual-dtor}, which is also
2890 one of the effective C++ recommendations. However, the check is
2891 extended to warn about the lack of virtual destructor in accessible
2892 non-polymorphic bases classes too.
2893
2894 When selecting this option, be aware that the standard library
2895 headers do not obey all of these guidelines; use @samp{grep -v}
2896 to filter out those warnings.
2897
2898 @item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)}
2899 @opindex Wstrict-null-sentinel
2900 @opindex Wno-strict-null-sentinel
2901 Warn about the use of an uncasted @code{NULL} as sentinel. When
2902 compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
2903 to @code{__null}. Although it is a null pointer constant rather than a
2904 null pointer, it is guaranteed to be of the same size as a pointer.
2905 But this use is not portable across different compilers.
2906
2907 @item -Wno-non-template-friend @r{(C++ and Objective-C++ only)}
2908 @opindex Wno-non-template-friend
2909 @opindex Wnon-template-friend
2910 Disable warnings when non-templatized friend functions are declared
2911 within a template. Since the advent of explicit template specification
2912 support in G++, if the name of the friend is an unqualified-id (i.e.,
2913 @samp{friend foo(int)}), the C++ language specification demands that the
2914 friend declare or define an ordinary, nontemplate function. (Section
2915 14.5.3). Before G++ implemented explicit specification, unqualified-ids
2916 could be interpreted as a particular specialization of a templatized
2917 function. Because this non-conforming behavior is no longer the default
2918 behavior for G++, @option{-Wnon-template-friend} allows the compiler to
2919 check existing code for potential trouble spots and is on by default.
2920 This new compiler behavior can be turned off with
2921 @option{-Wno-non-template-friend}, which keeps the conformant compiler code
2922 but disables the helpful warning.
2923
2924 @item -Wold-style-cast @r{(C++ and Objective-C++ only)}
2925 @opindex Wold-style-cast
2926 @opindex Wno-old-style-cast
2927 Warn if an old-style (C-style) cast to a non-void type is used within
2928 a C++ program. The new-style casts (@code{dynamic_cast},
2929 @code{static_cast}, @code{reinterpret_cast}, and @code{const_cast}) are
2930 less vulnerable to unintended effects and much easier to search for.
2931
2932 @item -Woverloaded-virtual @r{(C++ and Objective-C++ only)}
2933 @opindex Woverloaded-virtual
2934 @opindex Wno-overloaded-virtual
2935 @cindex overloaded virtual function, warning
2936 @cindex warning for overloaded virtual function
2937 Warn when a function declaration hides virtual functions from a
2938 base class. For example, in:
2939
2940 @smallexample
2941 struct A @{
2942 virtual void f();
2943 @};
2944
2945 struct B: public A @{
2946 void f(int);
2947 @};
2948 @end smallexample
2949
2950 the @code{A} class version of @code{f} is hidden in @code{B}, and code
2951 like:
2952
2953 @smallexample
2954 B* b;
2955 b->f();
2956 @end smallexample
2957
2958 @noindent
2959 fails to compile.
2960
2961 @item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)}
2962 @opindex Wno-pmf-conversions
2963 @opindex Wpmf-conversions
2964 Disable the diagnostic for converting a bound pointer to member function
2965 to a plain pointer.
2966
2967 @item -Wsign-promo @r{(C++ and Objective-C++ only)}
2968 @opindex Wsign-promo
2969 @opindex Wno-sign-promo
2970 Warn when overload resolution chooses a promotion from unsigned or
2971 enumerated type to a signed type, over a conversion to an unsigned type of
2972 the same size. Previous versions of G++ tried to preserve
2973 unsignedness, but the standard mandates the current behavior.
2974
2975 @item -Wtemplates @r{(C++ and Objective-C++ only)}
2976 @opindex Wtemplates
2977 Warn when a primary template declaration is encountered. Some coding
2978 rules disallow templates, and this may be used to enforce that rule.
2979 The warning is inactive inside a system header file, such as the STL, so
2980 one can still use the STL. One may also instantiate or specialize
2981 templates.
2982
2983 @item -Wmultiple-inheritance @r{(C++ and Objective-C++ only)}
2984 @opindex Wmultiple-inheritance
2985 Warn when a class is defined with multiple direct base classes. Some
2986 coding rules disallow multiple inheritance, and this may be used to
2987 enforce that rule. The warning is inactive inside a system header file,
2988 such as the STL, so one can still use the STL. One may also define
2989 classes that indirectly use multiple inheritance.
2990
2991 @item -Wvirtual-inheritance
2992 @opindex Wvirtual-inheritance
2993 Warn when a class is defined with a virtual direct base classe. Some
2994 coding rules disallow multiple inheritance, and this may be used to
2995 enforce that rule. The warning is inactive inside a system header file,
2996 such as the STL, so one can still use the STL. One may also define
2997 classes that indirectly use virtual inheritance.
2998
2999 @item -Wnamespaces
3000 @opindex Wnamespaces
3001 Warn when a namespace definition is opened. Some coding rules disallow
3002 namespaces, and this may be used to enforce that rule. The warning is
3003 inactive inside a system header file, such as the STL, so one can still
3004 use the STL. One may also use using directives and qualified names.
3005
3006 @item -Wno-terminate @r{(C++ and Objective-C++ only)}
3007 @opindex Wterminate
3008 @opindex Wno-terminate
3009 Disable the warning about a throw-expression that will immediately
3010 result in a call to @code{terminate}.
3011 @end table
3012
3013 @node Objective-C and Objective-C++ Dialect Options
3014 @section Options Controlling Objective-C and Objective-C++ Dialects
3015
3016 @cindex compiler options, Objective-C and Objective-C++
3017 @cindex Objective-C and Objective-C++ options, command-line
3018 @cindex options, Objective-C and Objective-C++
3019 (NOTE: This manual does not describe the Objective-C and Objective-C++
3020 languages themselves. @xref{Standards,,Language Standards
3021 Supported by GCC}, for references.)
3022
3023 This section describes the command-line options that are only meaningful
3024 for Objective-C and Objective-C++ programs. You can also use most of
3025 the language-independent GNU compiler options.
3026 For example, you might compile a file @file{some_class.m} like this:
3027
3028 @smallexample
3029 gcc -g -fgnu-runtime -O -c some_class.m
3030 @end smallexample
3031
3032 @noindent
3033 In this example, @option{-fgnu-runtime} is an option meant only for
3034 Objective-C and Objective-C++ programs; you can use the other options with
3035 any language supported by GCC@.
3036
3037 Note that since Objective-C is an extension of the C language, Objective-C
3038 compilations may also use options specific to the C front-end (e.g.,
3039 @option{-Wtraditional}). Similarly, Objective-C++ compilations may use
3040 C++-specific options (e.g., @option{-Wabi}).
3041
3042 Here is a list of options that are @emph{only} for compiling Objective-C
3043 and Objective-C++ programs:
3044
3045 @table @gcctabopt
3046 @item -fconstant-string-class=@var{class-name}
3047 @opindex fconstant-string-class
3048 Use @var{class-name} as the name of the class to instantiate for each
3049 literal string specified with the syntax @code{@@"@dots{}"}. The default
3050 class name is @code{NXConstantString} if the GNU runtime is being used, and
3051 @code{NSConstantString} if the NeXT runtime is being used (see below). The
3052 @option{-fconstant-cfstrings} option, if also present, overrides the
3053 @option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals
3054 to be laid out as constant CoreFoundation strings.
3055
3056 @item -fgnu-runtime
3057 @opindex fgnu-runtime
3058 Generate object code compatible with the standard GNU Objective-C
3059 runtime. This is the default for most types of systems.
3060
3061 @item -fnext-runtime
3062 @opindex fnext-runtime
3063 Generate output compatible with the NeXT runtime. This is the default
3064 for NeXT-based systems, including Darwin and Mac OS X@. The macro
3065 @code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
3066 used.
3067
3068 @item -fno-nil-receivers
3069 @opindex fno-nil-receivers
3070 Assume that all Objective-C message dispatches (@code{[receiver
3071 message:arg]}) in this translation unit ensure that the receiver is
3072 not @code{nil}. This allows for more efficient entry points in the
3073 runtime to be used. This option is only available in conjunction with
3074 the NeXT runtime and ABI version 0 or 1.
3075
3076 @item -fobjc-abi-version=@var{n}
3077 @opindex fobjc-abi-version
3078 Use version @var{n} of the Objective-C ABI for the selected runtime.
3079 This option is currently supported only for the NeXT runtime. In that
3080 case, Version 0 is the traditional (32-bit) ABI without support for
3081 properties and other Objective-C 2.0 additions. Version 1 is the
3082 traditional (32-bit) ABI with support for properties and other
3083 Objective-C 2.0 additions. Version 2 is the modern (64-bit) ABI. If
3084 nothing is specified, the default is Version 0 on 32-bit target
3085 machines, and Version 2 on 64-bit target machines.
3086
3087 @item -fobjc-call-cxx-cdtors
3088 @opindex fobjc-call-cxx-cdtors
3089 For each Objective-C class, check if any of its instance variables is a
3090 C++ object with a non-trivial default constructor. If so, synthesize a
3091 special @code{- (id) .cxx_construct} instance method which runs
3092 non-trivial default constructors on any such instance variables, in order,
3093 and then return @code{self}. Similarly, check if any instance variable
3094 is a C++ object with a non-trivial destructor, and if so, synthesize a
3095 special @code{- (void) .cxx_destruct} method which runs
3096 all such default destructors, in reverse order.
3097
3098 The @code{- (id) .cxx_construct} and @code{- (void) .cxx_destruct}
3099 methods thusly generated only operate on instance variables
3100 declared in the current Objective-C class, and not those inherited
3101 from superclasses. It is the responsibility of the Objective-C
3102 runtime to invoke all such methods in an object's inheritance
3103 hierarchy. The @code{- (id) .cxx_construct} methods are invoked
3104 by the runtime immediately after a new object instance is allocated;
3105 the @code{- (void) .cxx_destruct} methods are invoked immediately
3106 before the runtime deallocates an object instance.
3107
3108 As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
3109 support for invoking the @code{- (id) .cxx_construct} and
3110 @code{- (void) .cxx_destruct} methods.
3111
3112 @item -fobjc-direct-dispatch
3113 @opindex fobjc-direct-dispatch
3114 Allow fast jumps to the message dispatcher. On Darwin this is
3115 accomplished via the comm page.
3116
3117 @item -fobjc-exceptions
3118 @opindex fobjc-exceptions
3119 Enable syntactic support for structured exception handling in
3120 Objective-C, similar to what is offered by C++ and Java. This option
3121 is required to use the Objective-C keywords @code{@@try},
3122 @code{@@throw}, @code{@@catch}, @code{@@finally} and
3123 @code{@@synchronized}. This option is available with both the GNU
3124 runtime and the NeXT runtime (but not available in conjunction with
3125 the NeXT runtime on Mac OS X 10.2 and earlier).
3126
3127 @item -fobjc-gc
3128 @opindex fobjc-gc
3129 Enable garbage collection (GC) in Objective-C and Objective-C++
3130 programs. This option is only available with the NeXT runtime; the
3131 GNU runtime has a different garbage collection implementation that
3132 does not require special compiler flags.
3133
3134 @item -fobjc-nilcheck
3135 @opindex fobjc-nilcheck
3136 For the NeXT runtime with version 2 of the ABI, check for a nil
3137 receiver in method invocations before doing the actual method call.
3138 This is the default and can be disabled using
3139 @option{-fno-objc-nilcheck}. Class methods and super calls are never
3140 checked for nil in this way no matter what this flag is set to.
3141 Currently this flag does nothing when the GNU runtime, or an older
3142 version of the NeXT runtime ABI, is used.
3143
3144 @item -fobjc-std=objc1
3145 @opindex fobjc-std
3146 Conform to the language syntax of Objective-C 1.0, the language
3147 recognized by GCC 4.0. This only affects the Objective-C additions to
3148 the C/C++ language; it does not affect conformance to C/C++ standards,
3149 which is controlled by the separate C/C++ dialect option flags. When
3150 this option is used with the Objective-C or Objective-C++ compiler,
3151 any Objective-C syntax that is not recognized by GCC 4.0 is rejected.
3152 This is useful if you need to make sure that your Objective-C code can
3153 be compiled with older versions of GCC@.
3154
3155 @item -freplace-objc-classes
3156 @opindex freplace-objc-classes
3157 Emit a special marker instructing @command{ld(1)} not to statically link in
3158 the resulting object file, and allow @command{dyld(1)} to load it in at
3159 run time instead. This is used in conjunction with the Fix-and-Continue
3160 debugging mode, where the object file in question may be recompiled and
3161 dynamically reloaded in the course of program execution, without the need
3162 to restart the program itself. Currently, Fix-and-Continue functionality
3163 is only available in conjunction with the NeXT runtime on Mac OS X 10.3
3164 and later.
3165
3166 @item -fzero-link
3167 @opindex fzero-link
3168 When compiling for the NeXT runtime, the compiler ordinarily replaces calls
3169 to @code{objc_getClass("@dots{}")} (when the name of the class is known at
3170 compile time) with static class references that get initialized at load time,
3171 which improves run-time performance. Specifying the @option{-fzero-link} flag
3172 suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
3173 to be retained. This is useful in Zero-Link debugging mode, since it allows
3174 for individual class implementations to be modified during program execution.
3175 The GNU runtime currently always retains calls to @code{objc_get_class("@dots{}")}
3176 regardless of command-line options.
3177
3178 @item -fno-local-ivars
3179 @opindex fno-local-ivars
3180 @opindex flocal-ivars
3181 By default instance variables in Objective-C can be accessed as if
3182 they were local variables from within the methods of the class they're
3183 declared in. This can lead to shadowing between instance variables
3184 and other variables declared either locally inside a class method or
3185 globally with the same name. Specifying the @option{-fno-local-ivars}
3186 flag disables this behavior thus avoiding variable shadowing issues.
3187
3188 @item -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]}
3189 @opindex fivar-visibility
3190 Set the default instance variable visibility to the specified option
3191 so that instance variables declared outside the scope of any access
3192 modifier directives default to the specified visibility.
3193
3194 @item -gen-decls
3195 @opindex gen-decls
3196 Dump interface declarations for all classes seen in the source file to a
3197 file named @file{@var{sourcename}.decl}.
3198
3199 @item -Wassign-intercept @r{(Objective-C and Objective-C++ only)}
3200 @opindex Wassign-intercept
3201 @opindex Wno-assign-intercept
3202 Warn whenever an Objective-C assignment is being intercepted by the
3203 garbage collector.
3204
3205 @item -Wno-protocol @r{(Objective-C and Objective-C++ only)}
3206 @opindex Wno-protocol
3207 @opindex Wprotocol
3208 If a class is declared to implement a protocol, a warning is issued for
3209 every method in the protocol that is not implemented by the class. The
3210 default behavior is to issue a warning for every method not explicitly
3211 implemented in the class, even if a method implementation is inherited
3212 from the superclass. If you use the @option{-Wno-protocol} option, then
3213 methods inherited from the superclass are considered to be implemented,
3214 and no warning is issued for them.
3215
3216 @item -Wselector @r{(Objective-C and Objective-C++ only)}
3217 @opindex Wselector
3218 @opindex Wno-selector
3219 Warn if multiple methods of different types for the same selector are
3220 found during compilation. The check is performed on the list of methods
3221 in the final stage of compilation. Additionally, a check is performed
3222 for each selector appearing in a @code{@@selector(@dots{})}
3223 expression, and a corresponding method for that selector has been found
3224 during compilation. Because these checks scan the method table only at
3225 the end of compilation, these warnings are not produced if the final
3226 stage of compilation is not reached, for example because an error is
3227 found during compilation, or because the @option{-fsyntax-only} option is
3228 being used.
3229
3230 @item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)}
3231 @opindex Wstrict-selector-match
3232 @opindex Wno-strict-selector-match
3233 Warn if multiple methods with differing argument and/or return types are
3234 found for a given selector when attempting to send a message using this
3235 selector to a receiver of type @code{id} or @code{Class}. When this flag
3236 is off (which is the default behavior), the compiler omits such warnings
3237 if any differences found are confined to types that share the same size
3238 and alignment.
3239
3240 @item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)}
3241 @opindex Wundeclared-selector
3242 @opindex Wno-undeclared-selector
3243 Warn if a @code{@@selector(@dots{})} expression referring to an
3244 undeclared selector is found. A selector is considered undeclared if no
3245 method with that name has been declared before the
3246 @code{@@selector(@dots{})} expression, either explicitly in an
3247 @code{@@interface} or @code{@@protocol} declaration, or implicitly in
3248 an @code{@@implementation} section. This option always performs its
3249 checks as soon as a @code{@@selector(@dots{})} expression is found,
3250 while @option{-Wselector} only performs its checks in the final stage of
3251 compilation. This also enforces the coding style convention
3252 that methods and selectors must be declared before being used.
3253
3254 @item -print-objc-runtime-info
3255 @opindex print-objc-runtime-info
3256 Generate C header describing the largest structure that is passed by
3257 value, if any.
3258
3259 @end table
3260
3261 @node Diagnostic Message Formatting Options
3262 @section Options to Control Diagnostic Messages Formatting
3263 @cindex options to control diagnostics formatting
3264 @cindex diagnostic messages
3265 @cindex message formatting
3266
3267 Traditionally, diagnostic messages have been formatted irrespective of
3268 the output device's aspect (e.g.@: its width, @dots{}). You can use the
3269 options described below
3270 to control the formatting algorithm for diagnostic messages,
3271 e.g.@: how many characters per line, how often source location
3272 information should be reported. Note that some language front ends may not
3273 honor these options.
3274
3275 @table @gcctabopt
3276 @item -fmessage-length=@var{n}
3277 @opindex fmessage-length
3278 Try to format error messages so that they fit on lines of about
3279 @var{n} characters. If @var{n} is zero, then no line-wrapping is
3280 done; each error message appears on a single line. This is the
3281 default for all front ends.
3282
3283 @item -fdiagnostics-show-location=once
3284 @opindex fdiagnostics-show-location
3285 Only meaningful in line-wrapping mode. Instructs the diagnostic messages
3286 reporter to emit source location information @emph{once}; that is, in
3287 case the message is too long to fit on a single physical line and has to
3288 be wrapped, the source location won't be emitted (as prefix) again,
3289 over and over, in subsequent continuation lines. This is the default
3290 behavior.
3291
3292 @item -fdiagnostics-show-location=every-line
3293 Only meaningful in line-wrapping mode. Instructs the diagnostic
3294 messages reporter to emit the same source location information (as
3295 prefix) for physical lines that result from the process of breaking
3296 a message which is too long to fit on a single line.
3297
3298 @item -fdiagnostics-color[=@var{WHEN}]
3299 @itemx -fno-diagnostics-color
3300 @opindex fdiagnostics-color
3301 @cindex highlight, color
3302 @vindex GCC_COLORS @r{environment variable}
3303 Use color in diagnostics. @var{WHEN} is @samp{never}, @samp{always},
3304 or @samp{auto}. The default depends on how the compiler has been configured,
3305 it can be any of the above @var{WHEN} options or also @samp{never}
3306 if @env{GCC_COLORS} environment variable isn't present in the environment,
3307 and @samp{auto} otherwise.
3308 @samp{auto} means to use color only when the standard error is a terminal.
3309 The forms @option{-fdiagnostics-color} and @option{-fno-diagnostics-color} are
3310 aliases for @option{-fdiagnostics-color=always} and
3311 @option{-fdiagnostics-color=never}, respectively.
3312
3313 The colors are defined by the environment variable @env{GCC_COLORS}.
3314 Its value is a colon-separated list of capabilities and Select Graphic
3315 Rendition (SGR) substrings. SGR commands are interpreted by the
3316 terminal or terminal emulator. (See the section in the documentation
3317 of your text terminal for permitted values and their meanings as
3318 character attributes.) These substring values are integers in decimal
3319 representation and can be concatenated with semicolons.
3320 Common values to concatenate include
3321 @samp{1} for bold,
3322 @samp{4} for underline,
3323 @samp{5} for blink,
3324 @samp{7} for inverse,
3325 @samp{39} for default foreground color,
3326 @samp{30} to @samp{37} for foreground colors,
3327 @samp{90} to @samp{97} for 16-color mode foreground colors,
3328 @samp{38;5;0} to @samp{38;5;255}
3329 for 88-color and 256-color modes foreground colors,
3330 @samp{49} for default background color,
3331 @samp{40} to @samp{47} for background colors,
3332 @samp{100} to @samp{107} for 16-color mode background colors,
3333 and @samp{48;5;0} to @samp{48;5;255}
3334 for 88-color and 256-color modes background colors.
3335
3336 The default @env{GCC_COLORS} is
3337 @smallexample
3338 error=01;31:warning=01;35:note=01;36:caret=01;32:locus=01:quote=01
3339 @end smallexample
3340 @noindent
3341 where @samp{01;31} is bold red, @samp{01;35} is bold magenta,
3342 @samp{01;36} is bold cyan, @samp{01;32} is bold green and
3343 @samp{01} is bold. Setting @env{GCC_COLORS} to the empty
3344 string disables colors.
3345 Supported capabilities are as follows.
3346
3347 @table @code
3348 @item error=
3349 @vindex error GCC_COLORS @r{capability}
3350 SGR substring for error: markers.
3351
3352 @item warning=
3353 @vindex warning GCC_COLORS @r{capability}
3354 SGR substring for warning: markers.
3355
3356 @item note=
3357 @vindex note GCC_COLORS @r{capability}
3358 SGR substring for note: markers.
3359
3360 @item caret=
3361 @vindex caret GCC_COLORS @r{capability}
3362 SGR substring for caret line.
3363
3364 @item locus=
3365 @vindex locus GCC_COLORS @r{capability}
3366 SGR substring for location information, @samp{file:line} or
3367 @samp{file:line:column} etc.
3368
3369 @item quote=
3370 @vindex quote GCC_COLORS @r{capability}
3371 SGR substring for information printed within quotes.
3372 @end table
3373
3374 @item -fno-diagnostics-show-option
3375 @opindex fno-diagnostics-show-option
3376 @opindex fdiagnostics-show-option
3377 By default, each diagnostic emitted includes text indicating the
3378 command-line option that directly controls the diagnostic (if such an
3379 option is known to the diagnostic machinery). Specifying the
3380 @option{-fno-diagnostics-show-option} flag suppresses that behavior.
3381
3382 @item -fno-diagnostics-show-caret
3383 @opindex fno-diagnostics-show-caret
3384 @opindex fdiagnostics-show-caret
3385 By default, each diagnostic emitted includes the original source line
3386 and a caret @samp{^} indicating the column. This option suppresses this
3387 information. The source line is truncated to @var{n} characters, if
3388 the @option{-fmessage-length=n} option is given. When the output is done
3389 to the terminal, the width is limited to the width given by the
3390 @env{COLUMNS} environment variable or, if not set, to the terminal width.
3391
3392 @end table
3393
3394 @node Warning Options
3395 @section Options to Request or Suppress Warnings
3396 @cindex options to control warnings
3397 @cindex warning messages
3398 @cindex messages, warning
3399 @cindex suppressing warnings
3400
3401 Warnings are diagnostic messages that report constructions that
3402 are not inherently erroneous but that are risky or suggest there
3403 may have been an error.
3404
3405 The following language-independent options do not enable specific
3406 warnings but control the kinds of diagnostics produced by GCC@.
3407
3408 @table @gcctabopt
3409 @cindex syntax checking
3410 @item -fsyntax-only
3411 @opindex fsyntax-only
3412 Check the code for syntax errors, but don't do anything beyond that.
3413
3414 @item -fmax-errors=@var{n}
3415 @opindex fmax-errors
3416 Limits the maximum number of error messages to @var{n}, at which point
3417 GCC bails out rather than attempting to continue processing the source
3418 code. If @var{n} is 0 (the default), there is no limit on the number
3419 of error messages produced. If @option{-Wfatal-errors} is also
3420 specified, then @option{-Wfatal-errors} takes precedence over this
3421 option.
3422
3423 @item -w
3424 @opindex w
3425 Inhibit all warning messages.
3426
3427 @item -Werror
3428 @opindex Werror
3429 @opindex Wno-error
3430 Make all warnings into errors.
3431
3432 @item -Werror=
3433 @opindex Werror=
3434 @opindex Wno-error=
3435 Make the specified warning into an error. The specifier for a warning
3436 is appended; for example @option{-Werror=switch} turns the warnings
3437 controlled by @option{-Wswitch} into errors. This switch takes a
3438 negative form, to be used to negate @option{-Werror} for specific
3439 warnings; for example @option{-Wno-error=switch} makes
3440 @option{-Wswitch} warnings not be errors, even when @option{-Werror}
3441 is in effect.
3442
3443 The warning message for each controllable warning includes the
3444 option that controls the warning. That option can then be used with
3445 @option{-Werror=} and @option{-Wno-error=} as described above.
3446 (Printing of the option in the warning message can be disabled using the
3447 @option{-fno-diagnostics-show-option} flag.)
3448
3449 Note that specifying @option{-Werror=}@var{foo} automatically implies
3450 @option{-W}@var{foo}. However, @option{-Wno-error=}@var{foo} does not
3451 imply anything.
3452
3453 @item -Wfatal-errors
3454 @opindex Wfatal-errors
3455 @opindex Wno-fatal-errors
3456 This option causes the compiler to abort compilation on the first error
3457 occurred rather than trying to keep going and printing further error
3458 messages.
3459
3460 @end table
3461
3462 You can request many specific warnings with options beginning with
3463 @samp{-W}, for example @option{-Wimplicit} to request warnings on
3464 implicit declarations. Each of these specific warning options also
3465 has a negative form beginning @samp{-Wno-} to turn off warnings; for
3466 example, @option{-Wno-implicit}. This manual lists only one of the
3467 two forms, whichever is not the default. For further
3468 language-specific options also refer to @ref{C++ Dialect Options} and
3469 @ref{Objective-C and Objective-C++ Dialect Options}.
3470
3471 Some options, such as @option{-Wall} and @option{-Wextra}, turn on other
3472 options, such as @option{-Wunused}, which may turn on further options,
3473 such as @option{-Wunused-value}. The combined effect of positive and
3474 negative forms is that more specific options have priority over less
3475 specific ones, independently of their position in the command-line. For
3476 options of the same specificity, the last one takes effect. Options
3477 enabled or disabled via pragmas (@pxref{Diagnostic Pragmas}) take effect
3478 as if they appeared at the end of the command-line.
3479
3480 When an unrecognized warning option is requested (e.g.,
3481 @option{-Wunknown-warning}), GCC emits a diagnostic stating
3482 that the option is not recognized. However, if the @option{-Wno-} form
3483 is used, the behavior is slightly different: no diagnostic is
3484 produced for @option{-Wno-unknown-warning} unless other diagnostics
3485 are being produced. This allows the use of new @option{-Wno-} options
3486 with old compilers, but if something goes wrong, the compiler
3487 warns that an unrecognized option is present.
3488
3489 @table @gcctabopt
3490 @item -Wpedantic
3491 @itemx -pedantic
3492 @opindex pedantic
3493 @opindex Wpedantic
3494 Issue all the warnings demanded by strict ISO C and ISO C++;
3495 reject all programs that use forbidden extensions, and some other
3496 programs that do not follow ISO C and ISO C++. For ISO C, follows the
3497 version of the ISO C standard specified by any @option{-std} option used.
3498
3499 Valid ISO C and ISO C++ programs should compile properly with or without
3500 this option (though a rare few require @option{-ansi} or a
3501 @option{-std} option specifying the required version of ISO C)@. However,
3502 without this option, certain GNU extensions and traditional C and C++
3503 features are supported as well. With this option, they are rejected.
3504
3505 @option{-Wpedantic} does not cause warning messages for use of the
3506 alternate keywords whose names begin and end with @samp{__}. Pedantic
3507 warnings are also disabled in the expression that follows
3508 @code{__extension__}. However, only system header files should use
3509 these escape routes; application programs should avoid them.
3510 @xref{Alternate Keywords}.
3511
3512 Some users try to use @option{-Wpedantic} to check programs for strict ISO
3513 C conformance. They soon find that it does not do quite what they want:
3514 it finds some non-ISO practices, but not all---only those for which
3515 ISO C @emph{requires} a diagnostic, and some others for which
3516 diagnostics have been added.
3517
3518 A feature to report any failure to conform to ISO C might be useful in
3519 some instances, but would require considerable additional work and would
3520 be quite different from @option{-Wpedantic}. We don't have plans to
3521 support such a feature in the near future.
3522
3523 Where the standard specified with @option{-std} represents a GNU
3524 extended dialect of C, such as @samp{gnu90} or @samp{gnu99}, there is a
3525 corresponding @dfn{base standard}, the version of ISO C on which the GNU
3526 extended dialect is based. Warnings from @option{-Wpedantic} are given
3527 where they are required by the base standard. (It does not make sense
3528 for such warnings to be given only for features not in the specified GNU
3529 C dialect, since by definition the GNU dialects of C include all
3530 features the compiler supports with the given option, and there would be
3531 nothing to warn about.)
3532
3533 @item -pedantic-errors
3534 @opindex pedantic-errors
3535 Give an error whenever the @dfn{base standard} (see @option{-Wpedantic})
3536 requires a diagnostic, in some cases where there is undefined behavior
3537 at compile-time and in some other cases that do not prevent compilation
3538 of programs that are valid according to the standard. This is not
3539 equivalent to @option{-Werror=pedantic}, since there are errors enabled
3540 by this option and not enabled by the latter and vice versa.
3541
3542 @item -Wall
3543 @opindex Wall
3544 @opindex Wno-all
3545 This enables all the warnings about constructions that some users
3546 consider questionable, and that are easy to avoid (or modify to
3547 prevent the warning), even in conjunction with macros. This also
3548 enables some language-specific warnings described in @ref{C++ Dialect
3549 Options} and @ref{Objective-C and Objective-C++ Dialect Options}.
3550
3551 @option{-Wall} turns on the following warning flags:
3552
3553 @gccoptlist{-Waddress @gol
3554 -Warray-bounds=1 @r{(only with} @option{-O2}@r{)} @gol
3555 -Wbool-compare @gol
3556 -Wc++11-compat -Wc++14-compat@gol
3557 -Wchar-subscripts @gol
3558 -Wcomment @gol
3559 -Wduplicate-decl-specifier @r{(C and Objective-C only)} @gol
3560 -Wenum-compare @r{(in C/ObjC; this is on by default in C++)} @gol
3561 -Wformat @gol
3562 -Wimplicit @r{(C and Objective-C only)} @gol
3563 -Wimplicit-int @r{(C and Objective-C only)} @gol
3564 -Wimplicit-function-declaration @r{(C and Objective-C only)} @gol
3565 -Winit-self @r{(only for C++)} @gol
3566 -Wlogical-not-parentheses
3567 -Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)} @gol
3568 -Wmaybe-uninitialized @gol
3569 -Wmemset-elt-size @gol
3570 -Wmemset-transposed-args @gol
3571 -Wmisleading-indentation @r{(only for C/C++)} @gol
3572 -Wmissing-braces @r{(only for C/ObjC)} @gol
3573 -Wnarrowing @r{(only for C++)} @gol
3574 -Wnonnull @gol
3575 -Wnonnull-compare @gol
3576 -Wopenmp-simd @gol
3577 -Wparentheses @gol
3578 -Wpointer-sign @gol
3579 -Wreorder @gol
3580 -Wreturn-type @gol
3581 -Wsequence-point @gol
3582 -Wsign-compare @r{(only in C++)} @gol
3583 -Wsizeof-pointer-memaccess @gol
3584 -Wstrict-aliasing @gol
3585 -Wstrict-overflow=1 @gol
3586 -Wswitch @gol
3587 -Wtautological-compare @gol
3588 -Wtrigraphs @gol
3589 -Wuninitialized @gol
3590 -Wunknown-pragmas @gol
3591 -Wunused-function @gol
3592 -Wunused-label @gol
3593 -Wunused-value @gol
3594 -Wunused-variable @gol
3595 -Wvolatile-register-var @gol
3596 }
3597
3598 Note that some warning flags are not implied by @option{-Wall}. Some of
3599 them warn about constructions that users generally do not consider
3600 questionable, but which occasionally you might wish to check for;
3601 others warn about constructions that are necessary or hard to avoid in
3602 some cases, and there is no simple way to modify the code to suppress
3603 the warning. Some of them are enabled by @option{-Wextra} but many of
3604 them must be enabled individually.
3605
3606 @item -Wextra
3607 @opindex W
3608 @opindex Wextra
3609 @opindex Wno-extra
3610 This enables some extra warning flags that are not enabled by
3611 @option{-Wall}. (This option used to be called @option{-W}. The older
3612 name is still supported, but the newer name is more descriptive.)
3613
3614 @gccoptlist{-Wclobbered @gol
3615 -Wempty-body @gol
3616 -Wignored-qualifiers @gol
3617 -Wmissing-field-initializers @gol
3618 -Wmissing-parameter-type @r{(C only)} @gol
3619 -Wold-style-declaration @r{(C only)} @gol
3620 -Woverride-init @gol
3621 -Wsign-compare @r{(C only)} @gol
3622 -Wtype-limits @gol
3623 -Wuninitialized @gol
3624 -Wshift-negative-value @r{(in C++03 and in C99 and newer)} @gol
3625 -Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3626 -Wunused-but-set-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3627 }
3628
3629 The option @option{-Wextra} also prints warning messages for the
3630 following cases:
3631
3632 @itemize @bullet
3633
3634 @item
3635 A pointer is compared against integer zero with @code{<}, @code{<=},
3636 @code{>}, or @code{>=}.
3637
3638 @item
3639 (C++ only) An enumerator and a non-enumerator both appear in a
3640 conditional expression.
3641
3642 @item
3643 (C++ only) Ambiguous virtual bases.
3644
3645 @item
3646 (C++ only) Subscripting an array that has been declared @code{register}.
3647
3648 @item
3649 (C++ only) Taking the address of a variable that has been declared
3650 @code{register}.
3651
3652 @item
3653 (C++ only) A base class is not initialized in a derived class's copy
3654 constructor.
3655
3656 @end itemize
3657
3658 @item -Wchar-subscripts
3659 @opindex Wchar-subscripts
3660 @opindex Wno-char-subscripts
3661 Warn if an array subscript has type @code{char}. This is a common cause
3662 of error, as programmers often forget that this type is signed on some
3663 machines.
3664 This warning is enabled by @option{-Wall}.
3665
3666 @item -Wcomment
3667 @opindex Wcomment
3668 @opindex Wno-comment
3669 Warn whenever a comment-start sequence @samp{/*} appears in a @samp{/*}
3670 comment, or whenever a Backslash-Newline appears in a @samp{//} comment.
3671 This warning is enabled by @option{-Wall}.
3672
3673 @item -Wno-coverage-mismatch
3674 @opindex Wno-coverage-mismatch
3675 Warn if feedback profiles do not match when using the
3676 @option{-fprofile-use} option.
3677 If a source file is changed between compiling with @option{-fprofile-gen} and
3678 with @option{-fprofile-use}, the files with the profile feedback can fail
3679 to match the source file and GCC cannot use the profile feedback
3680 information. By default, this warning is enabled and is treated as an
3681 error. @option{-Wno-coverage-mismatch} can be used to disable the
3682 warning or @option{-Wno-error=coverage-mismatch} can be used to
3683 disable the error. Disabling the error for this warning can result in
3684 poorly optimized code and is useful only in the
3685 case of very minor changes such as bug fixes to an existing code-base.
3686 Completely disabling the warning is not recommended.
3687
3688 @item -Wno-cpp
3689 @r{(C, Objective-C, C++, Objective-C++ and Fortran only)}
3690
3691 Suppress warning messages emitted by @code{#warning} directives.
3692
3693 @item -Wdouble-promotion @r{(C, C++, Objective-C and Objective-C++ only)}
3694 @opindex Wdouble-promotion
3695 @opindex Wno-double-promotion
3696 Give a warning when a value of type @code{float} is implicitly
3697 promoted to @code{double}. CPUs with a 32-bit ``single-precision''
3698 floating-point unit implement @code{float} in hardware, but emulate
3699 @code{double} in software. On such a machine, doing computations
3700 using @code{double} values is much more expensive because of the
3701 overhead required for software emulation.
3702
3703 It is easy to accidentally do computations with @code{double} because
3704 floating-point literals are implicitly of type @code{double}. For
3705 example, in:
3706 @smallexample
3707 @group
3708 float area(float radius)
3709 @{
3710 return 3.14159 * radius * radius;
3711 @}
3712 @end group
3713 @end smallexample
3714 the compiler performs the entire computation with @code{double}
3715 because the floating-point literal is a @code{double}.
3716
3717 @item -Wduplicate-decl-specifier @r{(C and Objective-C only)}
3718 @opindex Wduplicate-decl-specifier
3719 @opindex Wno-duplicate-decl-specifier
3720 Warn if a declaration has duplicate @code{const}, @code{volatile},
3721 @code{restrict} or @code{_Atomic} specifier. This warning is enabled by
3722 @option{-Wall}.
3723
3724 @item -Wformat
3725 @itemx -Wformat=@var{n}
3726 @opindex Wformat
3727 @opindex Wno-format
3728 @opindex ffreestanding
3729 @opindex fno-builtin
3730 @opindex Wformat=
3731 Check calls to @code{printf} and @code{scanf}, etc., to make sure that
3732 the arguments supplied have types appropriate to the format string
3733 specified, and that the conversions specified in the format string make
3734 sense. This includes standard functions, and others specified by format
3735 attributes (@pxref{Function Attributes}), in the @code{printf},
3736 @code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
3737 not in the C standard) families (or other target-specific families).
3738 Which functions are checked without format attributes having been
3739 specified depends on the standard version selected, and such checks of
3740 functions without the attribute specified are disabled by
3741 @option{-ffreestanding} or @option{-fno-builtin}.
3742
3743 The formats are checked against the format features supported by GNU
3744 libc version 2.2. These include all ISO C90 and C99 features, as well
3745 as features from the Single Unix Specification and some BSD and GNU
3746 extensions. Other library implementations may not support all these
3747 features; GCC does not support warning about features that go beyond a
3748 particular library's limitations. However, if @option{-Wpedantic} is used
3749 with @option{-Wformat}, warnings are given about format features not
3750 in the selected standard version (but not for @code{strfmon} formats,
3751 since those are not in any version of the C standard). @xref{C Dialect
3752 Options,,Options Controlling C Dialect}.
3753
3754 @table @gcctabopt
3755 @item -Wformat=1
3756 @itemx -Wformat
3757 @opindex Wformat
3758 @opindex Wformat=1
3759 Option @option{-Wformat} is equivalent to @option{-Wformat=1}, and
3760 @option{-Wno-format} is equivalent to @option{-Wformat=0}. Since
3761 @option{-Wformat} also checks for null format arguments for several
3762 functions, @option{-Wformat} also implies @option{-Wnonnull}. Some
3763 aspects of this level of format checking can be disabled by the
3764 options: @option{-Wno-format-contains-nul},
3765 @option{-Wno-format-extra-args}, and @option{-Wno-format-zero-length}.
3766 @option{-Wformat} is enabled by @option{-Wall}.
3767
3768 @item -Wno-format-contains-nul
3769 @opindex Wno-format-contains-nul
3770 @opindex Wformat-contains-nul
3771 If @option{-Wformat} is specified, do not warn about format strings that
3772 contain NUL bytes.
3773
3774 @item -Wno-format-extra-args
3775 @opindex Wno-format-extra-args
3776 @opindex Wformat-extra-args
3777 If @option{-Wformat} is specified, do not warn about excess arguments to a
3778 @code{printf} or @code{scanf} format function. The C standard specifies
3779 that such arguments are ignored.
3780
3781 Where the unused arguments lie between used arguments that are
3782 specified with @samp{$} operand number specifications, normally
3783 warnings are still given, since the implementation could not know what
3784 type to pass to @code{va_arg} to skip the unused arguments. However,
3785 in the case of @code{scanf} formats, this option suppresses the
3786 warning if the unused arguments are all pointers, since the Single
3787 Unix Specification says that such unused arguments are allowed.
3788
3789 @item -Wno-format-zero-length
3790 @opindex Wno-format-zero-length
3791 @opindex Wformat-zero-length
3792 If @option{-Wformat} is specified, do not warn about zero-length formats.
3793 The C standard specifies that zero-length formats are allowed.
3794
3795
3796 @item -Wformat=2
3797 @opindex Wformat=2
3798 Enable @option{-Wformat} plus additional format checks. Currently
3799 equivalent to @option{-Wformat -Wformat-nonliteral -Wformat-security
3800 -Wformat-y2k}.
3801
3802 @item -Wformat-nonliteral
3803 @opindex Wformat-nonliteral
3804 @opindex Wno-format-nonliteral
3805 If @option{-Wformat} is specified, also warn if the format string is not a
3806 string literal and so cannot be checked, unless the format function
3807 takes its format arguments as a @code{va_list}.
3808
3809 @item -Wformat-security
3810 @opindex Wformat-security
3811 @opindex Wno-format-security
3812 If @option{-Wformat} is specified, also warn about uses of format
3813 functions that represent possible security problems. At present, this
3814 warns about calls to @code{printf} and @code{scanf} functions where the
3815 format string is not a string literal and there are no format arguments,
3816 as in @code{printf (foo);}. This may be a security hole if the format
3817 string came from untrusted input and contains @samp{%n}. (This is
3818 currently a subset of what @option{-Wformat-nonliteral} warns about, but
3819 in future warnings may be added to @option{-Wformat-security} that are not
3820 included in @option{-Wformat-nonliteral}.)
3821
3822 @item -Wformat-signedness
3823 @opindex Wformat-signedness
3824 @opindex Wno-format-signedness
3825 If @option{-Wformat} is specified, also warn if the format string
3826 requires an unsigned argument and the argument is signed and vice versa.
3827
3828 @item -Wformat-y2k
3829 @opindex Wformat-y2k
3830 @opindex Wno-format-y2k
3831 If @option{-Wformat} is specified, also warn about @code{strftime}
3832 formats that may yield only a two-digit year.
3833 @end table
3834
3835 @item -Wnonnull
3836 @opindex Wnonnull
3837 @opindex Wno-nonnull
3838 Warn about passing a null pointer for arguments marked as
3839 requiring a non-null value by the @code{nonnull} function attribute.
3840
3841 @option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}. It
3842 can be disabled with the @option{-Wno-nonnull} option.
3843
3844 @item -Wnonnull-compare
3845 @opindex Wnonnull-compare
3846 @opindex Wno-nonnull-compare
3847 Warn when comparing an argument marked with the @code{nonnull}
3848 function attribute against null inside the function.
3849
3850 @option{-Wnonnull-compare} is included in @option{-Wall}. It
3851 can be disabled with the @option{-Wno-nonnull-compare} option.
3852
3853 @item -Wnull-dereference
3854 @opindex Wnull-dereference
3855 @opindex Wno-null-dereference
3856 Warn if the compiler detects paths that trigger erroneous or
3857 undefined behavior due to dereferencing a null pointer. This option
3858 is only active when @option{-fdelete-null-pointer-checks} is active,
3859 which is enabled by optimizations in most targets. The precision of
3860 the warnings depends on the optimization options used.
3861
3862 @item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
3863 @opindex Winit-self
3864 @opindex Wno-init-self
3865 Warn about uninitialized variables that are initialized with themselves.
3866 Note this option can only be used with the @option{-Wuninitialized} option.
3867
3868 For example, GCC warns about @code{i} being uninitialized in the
3869 following snippet only when @option{-Winit-self} has been specified:
3870 @smallexample
3871 @group
3872 int f()
3873 @{
3874 int i = i;
3875 return i;
3876 @}
3877 @end group
3878 @end smallexample
3879
3880 This warning is enabled by @option{-Wall} in C++.
3881
3882 @item -Wimplicit-int @r{(C and Objective-C only)}
3883 @opindex Wimplicit-int
3884 @opindex Wno-implicit-int
3885 Warn when a declaration does not specify a type.
3886 This warning is enabled by @option{-Wall}.
3887
3888 @item -Wimplicit-function-declaration @r{(C and Objective-C only)}
3889 @opindex Wimplicit-function-declaration
3890 @opindex Wno-implicit-function-declaration
3891 Give a warning whenever a function is used before being declared. In
3892 C99 mode (@option{-std=c99} or @option{-std=gnu99}), this warning is
3893 enabled by default and it is made into an error by
3894 @option{-pedantic-errors}. This warning is also enabled by
3895 @option{-Wall}.
3896
3897 @item -Wimplicit @r{(C and Objective-C only)}
3898 @opindex Wimplicit
3899 @opindex Wno-implicit
3900 Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
3901 This warning is enabled by @option{-Wall}.
3902
3903 @item -Wignored-qualifiers @r{(C and C++ only)}
3904 @opindex Wignored-qualifiers
3905 @opindex Wno-ignored-qualifiers
3906 Warn if the return type of a function has a type qualifier
3907 such as @code{const}. For ISO C such a type qualifier has no effect,
3908 since the value returned by a function is not an lvalue.
3909 For C++, the warning is only emitted for scalar types or @code{void}.
3910 ISO C prohibits qualified @code{void} return types on function
3911 definitions, so such return types always receive a warning
3912 even without this option.
3913
3914 This warning is also enabled by @option{-Wextra}.
3915
3916 @item -Wignored-attributes @r{(C and C++ only)}
3917 @opindex Wignored-attributes
3918 @opindex Wno-ignored-attributes
3919 Warn when an attribute is ignored. This is different from the
3920 @option{-Wattributes} option in that it warns whenever the compiler decides
3921 to drop an attribute, not that the attribute is either unknown, used in a
3922 wrong place, etc. This warning is enabled by default.
3923
3924 @item -Wmain
3925 @opindex Wmain
3926 @opindex Wno-main
3927 Warn if the type of @code{main} is suspicious. @code{main} should be
3928 a function with external linkage, returning int, taking either zero
3929 arguments, two, or three arguments of appropriate types. This warning
3930 is enabled by default in C++ and is enabled by either @option{-Wall}
3931 or @option{-Wpedantic}.
3932
3933 @item -Wmisleading-indentation @r{(C and C++ only)}
3934 @opindex Wmisleading-indentation
3935 @opindex Wno-misleading-indentation
3936 Warn when the indentation of the code does not reflect the block structure.
3937 Specifically, a warning is issued for @code{if}, @code{else}, @code{while}, and
3938 @code{for} clauses with a guarded statement that does not use braces,
3939 followed by an unguarded statement with the same indentation.
3940
3941 In the following example, the call to ``bar'' is misleadingly indented as
3942 if it were guarded by the ``if'' conditional.
3943
3944 @smallexample
3945 if (some_condition ())
3946 foo ();
3947 bar (); /* Gotcha: this is not guarded by the "if". */
3948 @end smallexample
3949
3950 In the case of mixed tabs and spaces, the warning uses the
3951 @option{-ftabstop=} option to determine if the statements line up
3952 (defaulting to 8).
3953
3954 The warning is not issued for code involving multiline preprocessor logic
3955 such as the following example.
3956
3957 @smallexample
3958 if (flagA)
3959 foo (0);
3960 #if SOME_CONDITION_THAT_DOES_NOT_HOLD
3961 if (flagB)
3962 #endif
3963 foo (1);
3964 @end smallexample
3965
3966 The warning is not issued after a @code{#line} directive, since this
3967 typically indicates autogenerated code, and no assumptions can be made
3968 about the layout of the file that the directive references.
3969
3970 This warning is enabled by @option{-Wall} in C and C++.
3971
3972 @item -Wmissing-braces
3973 @opindex Wmissing-braces
3974 @opindex Wno-missing-braces
3975 Warn if an aggregate or union initializer is not fully bracketed. In
3976 the following example, the initializer for @code{a} is not fully
3977 bracketed, but that for @code{b} is fully bracketed. This warning is
3978 enabled by @option{-Wall} in C.
3979
3980 @smallexample
3981 int a[2][2] = @{ 0, 1, 2, 3 @};
3982 int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
3983 @end smallexample
3984
3985 This warning is enabled by @option{-Wall}.
3986
3987 @item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
3988 @opindex Wmissing-include-dirs
3989 @opindex Wno-missing-include-dirs
3990 Warn if a user-supplied include directory does not exist.
3991
3992 @item -Wparentheses
3993 @opindex Wparentheses
3994 @opindex Wno-parentheses
3995 Warn if parentheses are omitted in certain contexts, such
3996 as when there is an assignment in a context where a truth value
3997 is expected, or when operators are nested whose precedence people
3998 often get confused about.
3999
4000 Also warn if a comparison like @code{x<=y<=z} appears; this is
4001 equivalent to @code{(x<=y ? 1 : 0) <= z}, which is a different
4002 interpretation from that of ordinary mathematical notation.
4003
4004 Also warn for dangerous uses of the GNU extension to
4005 @code{?:} with omitted middle operand. When the condition
4006 in the @code{?}: operator is a boolean expression, the omitted value is
4007 always 1. Often programmers expect it to be a value computed
4008 inside the conditional expression instead.
4009
4010 This warning is enabled by @option{-Wall}.
4011
4012 @item -Wsequence-point
4013 @opindex Wsequence-point
4014 @opindex Wno-sequence-point
4015 Warn about code that may have undefined semantics because of violations
4016 of sequence point rules in the C and C++ standards.
4017
4018 The C and C++ standards define the order in which expressions in a C/C++
4019 program are evaluated in terms of @dfn{sequence points}, which represent
4020 a partial ordering between the execution of parts of the program: those
4021 executed before the sequence point, and those executed after it. These
4022 occur after the evaluation of a full expression (one which is not part
4023 of a larger expression), after the evaluation of the first operand of a
4024 @code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
4025 function is called (but after the evaluation of its arguments and the
4026 expression denoting the called function), and in certain other places.
4027 Other than as expressed by the sequence point rules, the order of
4028 evaluation of subexpressions of an expression is not specified. All
4029 these rules describe only a partial order rather than a total order,
4030 since, for example, if two functions are called within one expression
4031 with no sequence point between them, the order in which the functions
4032 are called is not specified. However, the standards committee have
4033 ruled that function calls do not overlap.
4034
4035 It is not specified when between sequence points modifications to the
4036 values of objects take effect. Programs whose behavior depends on this
4037 have undefined behavior; the C and C++ standards specify that ``Between
4038 the previous and next sequence point an object shall have its stored
4039 value modified at most once by the evaluation of an expression.
4040 Furthermore, the prior value shall be read only to determine the value
4041 to be stored.''. If a program breaks these rules, the results on any
4042 particular implementation are entirely unpredictable.
4043
4044 Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
4045 = b[n++]} and @code{a[i++] = i;}. Some more complicated cases are not
4046 diagnosed by this option, and it may give an occasional false positive
4047 result, but in general it has been found fairly effective at detecting
4048 this sort of problem in programs.
4049
4050 The standard is worded confusingly, therefore there is some debate
4051 over the precise meaning of the sequence point rules in subtle cases.
4052 Links to discussions of the problem, including proposed formal
4053 definitions, may be found on the GCC readings page, at
4054 @uref{http://gcc.gnu.org/@/readings.html}.
4055
4056 This warning is enabled by @option{-Wall} for C and C++.
4057
4058 @item -Wno-return-local-addr
4059 @opindex Wno-return-local-addr
4060 @opindex Wreturn-local-addr
4061 Do not warn about returning a pointer (or in C++, a reference) to a
4062 variable that goes out of scope after the function returns.
4063
4064 @item -Wreturn-type
4065 @opindex Wreturn-type
4066 @opindex Wno-return-type
4067 Warn whenever a function is defined with a return type that defaults
4068 to @code{int}. Also warn about any @code{return} statement with no
4069 return value in a function whose return type is not @code{void}
4070 (falling off the end of the function body is considered returning
4071 without a value).
4072
4073 For C only, warn about a @code{return} statement with an expression in a
4074 function whose return type is @code{void}, unless the expression type is
4075 also @code{void}. As a GNU extension, the latter case is accepted
4076 without a warning unless @option{-Wpedantic} is used.
4077
4078 For C++, a function without return type always produces a diagnostic
4079 message, even when @option{-Wno-return-type} is specified. The only
4080 exceptions are @code{main} and functions defined in system headers.
4081
4082 This warning is enabled by @option{-Wall}.
4083
4084 @item -Wshift-count-negative
4085 @opindex Wshift-count-negative
4086 @opindex Wno-shift-count-negative
4087 Warn if shift count is negative. This warning is enabled by default.
4088
4089 @item -Wshift-count-overflow
4090 @opindex Wshift-count-overflow
4091 @opindex Wno-shift-count-overflow
4092 Warn if shift count >= width of type. This warning is enabled by default.
4093
4094 @item -Wshift-negative-value
4095 @opindex Wshift-negative-value
4096 @opindex Wno-shift-negative-value
4097 Warn if left shifting a negative value. This warning is enabled by
4098 @option{-Wextra} in C99 and C++11 modes (and newer).
4099
4100 @item -Wshift-overflow
4101 @itemx -Wshift-overflow=@var{n}
4102 @opindex Wshift-overflow
4103 @opindex Wno-shift-overflow
4104 Warn about left shift overflows. This warning is enabled by
4105 default in C99 and C++11 modes (and newer).
4106
4107 @table @gcctabopt
4108 @item -Wshift-overflow=1
4109 This is the warning level of @option{-Wshift-overflow} and is enabled
4110 by default in C99 and C++11 modes (and newer). This warning level does
4111 not warn about left-shifting 1 into the sign bit. (However, in C, such
4112 an overflow is still rejected in contexts where an integer constant expression
4113 is required.)
4114
4115 @item -Wshift-overflow=2
4116 This warning level also warns about left-shifting 1 into the sign bit,
4117 unless C++14 mode is active.
4118 @end table
4119
4120 @item -Wswitch
4121 @opindex Wswitch
4122 @opindex Wno-switch
4123 Warn whenever a @code{switch} statement has an index of enumerated type
4124 and lacks a @code{case} for one or more of the named codes of that
4125 enumeration. (The presence of a @code{default} label prevents this
4126 warning.) @code{case} labels outside the enumeration range also
4127 provoke warnings when this option is used (even if there is a
4128 @code{default} label).
4129 This warning is enabled by @option{-Wall}.
4130
4131 @item -Wswitch-default
4132 @opindex Wswitch-default
4133 @opindex Wno-switch-default
4134 Warn whenever a @code{switch} statement does not have a @code{default}
4135 case.
4136
4137 @item -Wswitch-enum
4138 @opindex Wswitch-enum
4139 @opindex Wno-switch-enum
4140 Warn whenever a @code{switch} statement has an index of enumerated type
4141 and lacks a @code{case} for one or more of the named codes of that
4142 enumeration. @code{case} labels outside the enumeration range also
4143 provoke warnings when this option is used. The only difference
4144 between @option{-Wswitch} and this option is that this option gives a
4145 warning about an omitted enumeration code even if there is a
4146 @code{default} label.
4147
4148 @item -Wswitch-bool
4149 @opindex Wswitch-bool
4150 @opindex Wno-switch-bool
4151 Warn whenever a @code{switch} statement has an index of boolean type
4152 and the case values are outside the range of a boolean type.
4153 It is possible to suppress this warning by casting the controlling
4154 expression to a type other than @code{bool}. For example:
4155 @smallexample
4156 @group
4157 switch ((int) (a == 4))
4158 @{
4159 @dots{}
4160 @}
4161 @end group
4162 @end smallexample
4163 This warning is enabled by default for C and C++ programs.
4164
4165 @item -Wswitch-unreachable
4166 @opindex Wswitch-unreachable
4167 @opindex Wno-switch-unreachable
4168 Warn whenever a @code{switch} statement contains statements between the
4169 controlling expression and the first case label, which will never be
4170 executed. For example:
4171 @smallexample
4172 @group
4173 switch (cond)
4174 @{
4175 i = 15;
4176 @dots{}
4177 case 5:
4178 @dots{}
4179 @}
4180 @end group
4181 @end smallexample
4182 @option{-Wswitch-unreachable} does not warn if the statement between the
4183 controlling expression and the first case label is just a declaration:
4184 @smallexample
4185 @group
4186 switch (cond)
4187 @{
4188 int i;
4189 @dots{}
4190 case 5:
4191 i = 5;
4192 @dots{}
4193 @}
4194 @end group
4195 @end smallexample
4196 This warning is enabled by default for C and C++ programs.
4197
4198 @item -Wsync-nand @r{(C and C++ only)}
4199 @opindex Wsync-nand
4200 @opindex Wno-sync-nand
4201 Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
4202 built-in functions are used. These functions changed semantics in GCC 4.4.
4203
4204 @item -Wtrigraphs
4205 @opindex Wtrigraphs
4206 @opindex Wno-trigraphs
4207 Warn if any trigraphs are encountered that might change the meaning of
4208 the program (trigraphs within comments are not warned about).
4209 This warning is enabled by @option{-Wall}.
4210
4211 @item -Wunused-but-set-parameter
4212 @opindex Wunused-but-set-parameter
4213 @opindex Wno-unused-but-set-parameter
4214 Warn whenever a function parameter is assigned to, but otherwise unused
4215 (aside from its declaration).
4216
4217 To suppress this warning use the @code{unused} attribute
4218 (@pxref{Variable Attributes}).
4219
4220 This warning is also enabled by @option{-Wunused} together with
4221 @option{-Wextra}.
4222
4223 @item -Wunused-but-set-variable
4224 @opindex Wunused-but-set-variable
4225 @opindex Wno-unused-but-set-variable
4226 Warn whenever a local variable is assigned to, but otherwise unused
4227 (aside from its declaration).
4228 This warning is enabled by @option{-Wall}.
4229
4230 To suppress this warning use the @code{unused} attribute
4231 (@pxref{Variable Attributes}).
4232
4233 This warning is also enabled by @option{-Wunused}, which is enabled
4234 by @option{-Wall}.
4235
4236 @item -Wunused-function
4237 @opindex Wunused-function
4238 @opindex Wno-unused-function
4239 Warn whenever a static function is declared but not defined or a
4240 non-inline static function is unused.
4241 This warning is enabled by @option{-Wall}.
4242
4243 @item -Wunused-label
4244 @opindex Wunused-label
4245 @opindex Wno-unused-label
4246 Warn whenever a label is declared but not used.
4247 This warning is enabled by @option{-Wall}.
4248
4249 To suppress this warning use the @code{unused} attribute
4250 (@pxref{Variable Attributes}).
4251
4252 @item -Wunused-local-typedefs @r{(C, Objective-C, C++ and Objective-C++ only)}
4253 @opindex Wunused-local-typedefs
4254 Warn when a typedef locally defined in a function is not used.
4255 This warning is enabled by @option{-Wall}.
4256
4257 @item -Wunused-parameter
4258 @opindex Wunused-parameter
4259 @opindex Wno-unused-parameter
4260 Warn whenever a function parameter is unused aside from its declaration.
4261
4262 To suppress this warning use the @code{unused} attribute
4263 (@pxref{Variable Attributes}).
4264
4265 @item -Wno-unused-result
4266 @opindex Wunused-result
4267 @opindex Wno-unused-result
4268 Do not warn if a caller of a function marked with attribute
4269 @code{warn_unused_result} (@pxref{Function Attributes}) does not use
4270 its return value. The default is @option{-Wunused-result}.
4271
4272 @item -Wunused-variable
4273 @opindex Wunused-variable
4274 @opindex Wno-unused-variable
4275 Warn whenever a local or static variable is unused aside from its
4276 declaration. This option implies @option{-Wunused-const-variable=1} for C,
4277 but not for C++. This warning is enabled by @option{-Wall}.
4278
4279 To suppress this warning use the @code{unused} attribute
4280 (@pxref{Variable Attributes}).
4281
4282 @item -Wunused-const-variable
4283 @itemx -Wunused-const-variable=@var{n}
4284 @opindex Wunused-const-variable
4285 @opindex Wno-unused-const-variable
4286 Warn whenever a constant static variable is unused aside from its declaration.
4287 @option{-Wunused-const-variable=1} is enabled by @option{-Wunused-variable}
4288 for C, but not for C++. In C this declares variable storage, but in C++ this
4289 is not an error since const variables take the place of @code{#define}s.
4290
4291 To suppress this warning use the @code{unused} attribute
4292 (@pxref{Variable Attributes}).
4293
4294 @table @gcctabopt
4295 @item -Wunused-const-variable=1
4296 This is the warning level that is enabled by @option{-Wunused-variable} for
4297 C. It warns only about unused static const variables defined in the main
4298 compilation unit, but not about static const variables declared in any
4299 header included.
4300
4301 @item -Wunused-const-variable=2
4302 This warning level also warns for unused constant static variables in
4303 headers (excluding system headers). This is the warning level of
4304 @option{-Wunused-const-variable} and must be explicitly requested since
4305 in C++ this isn't an error and in C it might be harder to clean up all
4306 headers included.
4307 @end table
4308
4309 @item -Wunused-value
4310 @opindex Wunused-value
4311 @opindex Wno-unused-value
4312 Warn whenever a statement computes a result that is explicitly not
4313 used. To suppress this warning cast the unused expression to
4314 @code{void}. This includes an expression-statement or the left-hand
4315 side of a comma expression that contains no side effects. For example,
4316 an expression such as @code{x[i,j]} causes a warning, while
4317 @code{x[(void)i,j]} does not.
4318
4319 This warning is enabled by @option{-Wall}.
4320
4321 @item -Wunused
4322 @opindex Wunused
4323 @opindex Wno-unused
4324 All the above @option{-Wunused} options combined.
4325
4326 In order to get a warning about an unused function parameter, you must
4327 either specify @option{-Wextra -Wunused} (note that @option{-Wall} implies
4328 @option{-Wunused}), or separately specify @option{-Wunused-parameter}.
4329
4330 @item -Wuninitialized
4331 @opindex Wuninitialized
4332 @opindex Wno-uninitialized
4333 Warn if an automatic variable is used without first being initialized
4334 or if a variable may be clobbered by a @code{setjmp} call. In C++,
4335 warn if a non-static reference or non-static @code{const} member
4336 appears in a class without constructors.
4337
4338 If you want to warn about code that uses the uninitialized value of the
4339 variable in its own initializer, use the @option{-Winit-self} option.
4340
4341 These warnings occur for individual uninitialized or clobbered
4342 elements of structure, union or array variables as well as for
4343 variables that are uninitialized or clobbered as a whole. They do
4344 not occur for variables or elements declared @code{volatile}. Because
4345 these warnings depend on optimization, the exact variables or elements
4346 for which there are warnings depends on the precise optimization
4347 options and version of GCC used.
4348
4349 Note that there may be no warning about a variable that is used only
4350 to compute a value that itself is never used, because such
4351 computations may be deleted by data flow analysis before the warnings
4352 are printed.
4353
4354 @item -Winvalid-memory-model
4355 @opindex Winvalid-memory-model
4356 @opindex Wno-invalid-memory-model
4357 Warn for invocations of @ref{__atomic Builtins}, @ref{__sync Builtins},
4358 and the C11 atomic generic functions with a memory consistency argument
4359 that is either invalid for the operation or outside the range of values
4360 of the @code{memory_order} enumeration. For example, since the
4361 @code{__atomic_store} and @code{__atomic_store_n} built-ins are only
4362 defined for the relaxed, release, and sequentially consistent memory
4363 orders the following code is diagnosed:
4364
4365 @smallexample
4366 void store (int *i)
4367 @{
4368 __atomic_store_n (i, 0, memory_order_consume);
4369 @}
4370 @end smallexample
4371
4372 @option{-Winvalid-memory-model} is enabled by default.
4373
4374 @item -Wmaybe-uninitialized
4375 @opindex Wmaybe-uninitialized
4376 @opindex Wno-maybe-uninitialized
4377 For an automatic variable, if there exists a path from the function
4378 entry to a use of the variable that is initialized, but there exist
4379 some other paths for which the variable is not initialized, the compiler
4380 emits a warning if it cannot prove the uninitialized paths are not
4381 executed at run time. These warnings are made optional because GCC is
4382 not smart enough to see all the reasons why the code might be correct
4383 in spite of appearing to have an error. Here is one example of how
4384 this can happen:
4385
4386 @smallexample
4387 @group
4388 @{
4389 int x;
4390 switch (y)
4391 @{
4392 case 1: x = 1;
4393 break;
4394 case 2: x = 4;
4395 break;
4396 case 3: x = 5;
4397 @}
4398 foo (x);
4399 @}
4400 @end group
4401 @end smallexample
4402
4403 @noindent
4404 If the value of @code{y} is always 1, 2 or 3, then @code{x} is
4405 always initialized, but GCC doesn't know this. To suppress the
4406 warning, you need to provide a default case with assert(0) or
4407 similar code.
4408
4409 @cindex @code{longjmp} warnings
4410 This option also warns when a non-volatile automatic variable might be
4411 changed by a call to @code{longjmp}. These warnings as well are possible
4412 only in optimizing compilation.
4413
4414 The compiler sees only the calls to @code{setjmp}. It cannot know
4415 where @code{longjmp} will be called; in fact, a signal handler could
4416 call it at any point in the code. As a result, you may get a warning
4417 even when there is in fact no problem because @code{longjmp} cannot
4418 in fact be called at the place that would cause a problem.
4419
4420 Some spurious warnings can be avoided if you declare all the functions
4421 you use that never return as @code{noreturn}. @xref{Function
4422 Attributes}.
4423
4424 This warning is enabled by @option{-Wall} or @option{-Wextra}.
4425
4426 @item -Wunknown-pragmas
4427 @opindex Wunknown-pragmas
4428 @opindex Wno-unknown-pragmas
4429 @cindex warning for unknown pragmas
4430 @cindex unknown pragmas, warning
4431 @cindex pragmas, warning of unknown
4432 Warn when a @code{#pragma} directive is encountered that is not understood by
4433 GCC@. If this command-line option is used, warnings are even issued
4434 for unknown pragmas in system header files. This is not the case if
4435 the warnings are only enabled by the @option{-Wall} command-line option.
4436
4437 @item -Wno-pragmas
4438 @opindex Wno-pragmas
4439 @opindex Wpragmas
4440 Do not warn about misuses of pragmas, such as incorrect parameters,
4441 invalid syntax, or conflicts between pragmas. See also
4442 @option{-Wunknown-pragmas}.
4443
4444 @item -Wstrict-aliasing
4445 @opindex Wstrict-aliasing
4446 @opindex Wno-strict-aliasing
4447 This option is only active when @option{-fstrict-aliasing} is active.
4448 It warns about code that might break the strict aliasing rules that the
4449 compiler is using for optimization. The warning does not catch all
4450 cases, but does attempt to catch the more common pitfalls. It is
4451 included in @option{-Wall}.
4452 It is equivalent to @option{-Wstrict-aliasing=3}
4453
4454 @item -Wstrict-aliasing=n
4455 @opindex Wstrict-aliasing=n
4456 This option is only active when @option{-fstrict-aliasing} is active.
4457 It warns about code that might break the strict aliasing rules that the
4458 compiler is using for optimization.
4459 Higher levels correspond to higher accuracy (fewer false positives).
4460 Higher levels also correspond to more effort, similar to the way @option{-O}
4461 works.
4462 @option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=3}.
4463
4464 Level 1: Most aggressive, quick, least accurate.
4465 Possibly useful when higher levels
4466 do not warn but @option{-fstrict-aliasing} still breaks the code, as it has very few
4467 false negatives. However, it has many false positives.
4468 Warns for all pointer conversions between possibly incompatible types,
4469 even if never dereferenced. Runs in the front end only.
4470
4471 Level 2: Aggressive, quick, not too precise.
4472 May still have many false positives (not as many as level 1 though),
4473 and few false negatives (but possibly more than level 1).
4474 Unlike level 1, it only warns when an address is taken. Warns about
4475 incomplete types. Runs in the front end only.
4476
4477 Level 3 (default for @option{-Wstrict-aliasing}):
4478 Should have very few false positives and few false
4479 negatives. Slightly slower than levels 1 or 2 when optimization is enabled.
4480 Takes care of the common pun+dereference pattern in the front end:
4481 @code{*(int*)&some_float}.
4482 If optimization is enabled, it also runs in the back end, where it deals
4483 with multiple statement cases using flow-sensitive points-to information.
4484 Only warns when the converted pointer is dereferenced.
4485 Does not warn about incomplete types.
4486
4487 @item -Wstrict-overflow
4488 @itemx -Wstrict-overflow=@var{n}
4489 @opindex Wstrict-overflow
4490 @opindex Wno-strict-overflow
4491 This option is only active when @option{-fstrict-overflow} is active.
4492 It warns about cases where the compiler optimizes based on the
4493 assumption that signed overflow does not occur. Note that it does not
4494 warn about all cases where the code might overflow: it only warns
4495 about cases where the compiler implements some optimization. Thus
4496 this warning depends on the optimization level.
4497
4498 An optimization that assumes that signed overflow does not occur is
4499 perfectly safe if the values of the variables involved are such that
4500 overflow never does, in fact, occur. Therefore this warning can
4501 easily give a false positive: a warning about code that is not
4502 actually a problem. To help focus on important issues, several
4503 warning levels are defined. No warnings are issued for the use of
4504 undefined signed overflow when estimating how many iterations a loop
4505 requires, in particular when determining whether a loop will be
4506 executed at all.
4507
4508 @table @gcctabopt
4509 @item -Wstrict-overflow=1
4510 Warn about cases that are both questionable and easy to avoid. For
4511 example, with @option{-fstrict-overflow}, the compiler simplifies
4512 @code{x + 1 > x} to @code{1}. This level of
4513 @option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
4514 are not, and must be explicitly requested.
4515
4516 @item -Wstrict-overflow=2
4517 Also warn about other cases where a comparison is simplified to a
4518 constant. For example: @code{abs (x) >= 0}. This can only be
4519 simplified when @option{-fstrict-overflow} is in effect, because
4520 @code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
4521 zero. @option{-Wstrict-overflow} (with no level) is the same as
4522 @option{-Wstrict-overflow=2}.
4523
4524 @item -Wstrict-overflow=3
4525 Also warn about other cases where a comparison is simplified. For
4526 example: @code{x + 1 > 1} is simplified to @code{x > 0}.
4527
4528 @item -Wstrict-overflow=4
4529 Also warn about other simplifications not covered by the above cases.
4530 For example: @code{(x * 10) / 5} is simplified to @code{x * 2}.
4531
4532 @item -Wstrict-overflow=5
4533 Also warn about cases where the compiler reduces the magnitude of a
4534 constant involved in a comparison. For example: @code{x + 2 > y} is
4535 simplified to @code{x + 1 >= y}. This is reported only at the
4536 highest warning level because this simplification applies to many
4537 comparisons, so this warning level gives a very large number of
4538 false positives.
4539 @end table
4540
4541 @item -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]}
4542 @opindex Wsuggest-attribute=
4543 @opindex Wno-suggest-attribute=
4544 Warn for cases where adding an attribute may be beneficial. The
4545 attributes currently supported are listed below.
4546
4547 @table @gcctabopt
4548 @item -Wsuggest-attribute=pure
4549 @itemx -Wsuggest-attribute=const
4550 @itemx -Wsuggest-attribute=noreturn
4551 @opindex Wsuggest-attribute=pure
4552 @opindex Wno-suggest-attribute=pure
4553 @opindex Wsuggest-attribute=const
4554 @opindex Wno-suggest-attribute=const
4555 @opindex Wsuggest-attribute=noreturn
4556 @opindex Wno-suggest-attribute=noreturn
4557
4558 Warn about functions that might be candidates for attributes
4559 @code{pure}, @code{const} or @code{noreturn}. The compiler only warns for
4560 functions visible in other compilation units or (in the case of @code{pure} and
4561 @code{const}) if it cannot prove that the function returns normally. A function
4562 returns normally if it doesn't contain an infinite loop or return abnormally
4563 by throwing, calling @code{abort} or trapping. This analysis requires option
4564 @option{-fipa-pure-const}, which is enabled by default at @option{-O} and
4565 higher. Higher optimization levels improve the accuracy of the analysis.
4566
4567 @item -Wsuggest-attribute=format
4568 @itemx -Wmissing-format-attribute
4569 @opindex Wsuggest-attribute=format
4570 @opindex Wmissing-format-attribute
4571 @opindex Wno-suggest-attribute=format
4572 @opindex Wno-missing-format-attribute
4573 @opindex Wformat
4574 @opindex Wno-format
4575
4576 Warn about function pointers that might be candidates for @code{format}
4577 attributes. Note these are only possible candidates, not absolute ones.
4578 GCC guesses that function pointers with @code{format} attributes that
4579 are used in assignment, initialization, parameter passing or return
4580 statements should have a corresponding @code{format} attribute in the
4581 resulting type. I.e.@: the left-hand side of the assignment or
4582 initialization, the type of the parameter variable, or the return type
4583 of the containing function respectively should also have a @code{format}
4584 attribute to avoid the warning.
4585
4586 GCC also warns about function definitions that might be
4587 candidates for @code{format} attributes. Again, these are only
4588 possible candidates. GCC guesses that @code{format} attributes
4589 might be appropriate for any function that calls a function like
4590 @code{vprintf} or @code{vscanf}, but this might not always be the
4591 case, and some functions for which @code{format} attributes are
4592 appropriate may not be detected.
4593 @end table
4594
4595 @item -Wsuggest-final-types
4596 @opindex Wno-suggest-final-types
4597 @opindex Wsuggest-final-types
4598 Warn about types with virtual methods where code quality would be improved
4599 if the type were declared with the C++11 @code{final} specifier,
4600 or, if possible,
4601 declared in an anonymous namespace. This allows GCC to more aggressively
4602 devirtualize the polymorphic calls. This warning is more effective with link
4603 time optimization, where the information about the class hierarchy graph is
4604 more complete.
4605
4606 @item -Wsuggest-final-methods
4607 @opindex Wno-suggest-final-methods
4608 @opindex Wsuggest-final-methods
4609 Warn about virtual methods where code quality would be improved if the method
4610 were declared with the C++11 @code{final} specifier,
4611 or, if possible, its type were
4612 declared in an anonymous namespace or with the @code{final} specifier.
4613 This warning is
4614 more effective with link time optimization, where the information about the
4615 class hierarchy graph is more complete. It is recommended to first consider
4616 suggestions of @option{-Wsuggest-final-types} and then rebuild with new
4617 annotations.
4618
4619 @item -Wsuggest-override
4620 Warn about overriding virtual functions that are not marked with the override
4621 keyword.
4622
4623 @item -Warray-bounds
4624 @itemx -Warray-bounds=@var{n}
4625 @opindex Wno-array-bounds
4626 @opindex Warray-bounds
4627 This option is only active when @option{-ftree-vrp} is active
4628 (default for @option{-O2} and above). It warns about subscripts to arrays
4629 that are always out of bounds. This warning is enabled by @option{-Wall}.
4630
4631 @table @gcctabopt
4632 @item -Warray-bounds=1
4633 This is the warning level of @option{-Warray-bounds} and is enabled
4634 by @option{-Wall}; higher levels are not, and must be explicitly requested.
4635
4636 @item -Warray-bounds=2
4637 This warning level also warns about out of bounds access for
4638 arrays at the end of a struct and for arrays accessed through
4639 pointers. This warning level may give a larger number of
4640 false positives and is deactivated by default.
4641 @end table
4642
4643 @item -Wbool-compare
4644 @opindex Wno-bool-compare
4645 @opindex Wbool-compare
4646 Warn about boolean expression compared with an integer value different from
4647 @code{true}/@code{false}. For instance, the following comparison is
4648 always false:
4649 @smallexample
4650 int n = 5;
4651 @dots{}
4652 if ((n > 1) == 2) @{ @dots{} @}
4653 @end smallexample
4654 This warning is enabled by @option{-Wall}.
4655
4656 @item -Wduplicated-cond
4657 @opindex Wno-duplicated-cond
4658 @opindex Wduplicated-cond
4659 Warn about duplicated conditions in an if-else-if chain. For instance,
4660 warn for the following code:
4661 @smallexample
4662 if (p->q != NULL) @{ @dots{} @}
4663 else if (p->q != NULL) @{ @dots{} @}
4664 @end smallexample
4665
4666 @item -Wframe-address
4667 @opindex Wno-frame-address
4668 @opindex Wframe-address
4669 Warn when the @samp{__builtin_frame_address} or @samp{__builtin_return_address}
4670 is called with an argument greater than 0. Such calls may return indeterminate
4671 values or crash the program. The warning is included in @option{-Wall}.
4672
4673 @item -Wno-discarded-qualifiers @r{(C and Objective-C only)}
4674 @opindex Wno-discarded-qualifiers
4675 @opindex Wdiscarded-qualifiers
4676 Do not warn if type qualifiers on pointers are being discarded.
4677 Typically, the compiler warns if a @code{const char *} variable is
4678 passed to a function that takes a @code{char *} parameter. This option
4679 can be used to suppress such a warning.
4680
4681 @item -Wno-discarded-array-qualifiers @r{(C and Objective-C only)}
4682 @opindex Wno-discarded-array-qualifiers
4683 @opindex Wdiscarded-array-qualifiers
4684 Do not warn if type qualifiers on arrays which are pointer targets
4685 are being discarded. Typically, the compiler warns if a
4686 @code{const int (*)[]} variable is passed to a function that
4687 takes a @code{int (*)[]} parameter. This option can be used to
4688 suppress such a warning.
4689
4690 @item -Wno-incompatible-pointer-types @r{(C and Objective-C only)}
4691 @opindex Wno-incompatible-pointer-types
4692 @opindex Wincompatible-pointer-types
4693 Do not warn when there is a conversion between pointers that have incompatible
4694 types. This warning is for cases not covered by @option{-Wno-pointer-sign},
4695 which warns for pointer argument passing or assignment with different
4696 signedness.
4697
4698 @item -Wno-int-conversion @r{(C and Objective-C only)}
4699 @opindex Wno-int-conversion
4700 @opindex Wint-conversion
4701 Do not warn about incompatible integer to pointer and pointer to integer
4702 conversions. This warning is about implicit conversions; for explicit
4703 conversions the warnings @option{-Wno-int-to-pointer-cast} and
4704 @option{-Wno-pointer-to-int-cast} may be used.
4705
4706 @item -Wno-div-by-zero
4707 @opindex Wno-div-by-zero
4708 @opindex Wdiv-by-zero
4709 Do not warn about compile-time integer division by zero. Floating-point
4710 division by zero is not warned about, as it can be a legitimate way of
4711 obtaining infinities and NaNs.
4712
4713 @item -Wsystem-headers
4714 @opindex Wsystem-headers
4715 @opindex Wno-system-headers
4716 @cindex warnings from system headers
4717 @cindex system headers, warnings from
4718 Print warning messages for constructs found in system header files.
4719 Warnings from system headers are normally suppressed, on the assumption
4720 that they usually do not indicate real problems and would only make the
4721 compiler output harder to read. Using this command-line option tells
4722 GCC to emit warnings from system headers as if they occurred in user
4723 code. However, note that using @option{-Wall} in conjunction with this
4724 option does @emph{not} warn about unknown pragmas in system
4725 headers---for that, @option{-Wunknown-pragmas} must also be used.
4726
4727 @item -Wtautological-compare
4728 @opindex Wtautological-compare
4729 @opindex Wno-tautological-compare
4730 Warn if a self-comparison always evaluates to true or false. This
4731 warning detects various mistakes such as:
4732 @smallexample
4733 int i = 1;
4734 @dots{}
4735 if (i > i) @{ @dots{} @}
4736 @end smallexample
4737 This warning is enabled by @option{-Wall}.
4738
4739 @item -Wtrampolines
4740 @opindex Wtrampolines
4741 @opindex Wno-trampolines
4742 Warn about trampolines generated for pointers to nested functions.
4743 A trampoline is a small piece of data or code that is created at run
4744 time on the stack when the address of a nested function is taken, and is
4745 used to call the nested function indirectly. For some targets, it is
4746 made up of data only and thus requires no special treatment. But, for
4747 most targets, it is made up of code and thus requires the stack to be
4748 made executable in order for the program to work properly.
4749
4750 @item -Wfloat-equal
4751 @opindex Wfloat-equal
4752 @opindex Wno-float-equal
4753 Warn if floating-point values are used in equality comparisons.
4754
4755 The idea behind this is that sometimes it is convenient (for the
4756 programmer) to consider floating-point values as approximations to
4757 infinitely precise real numbers. If you are doing this, then you need
4758 to compute (by analyzing the code, or in some other way) the maximum or
4759 likely maximum error that the computation introduces, and allow for it
4760 when performing comparisons (and when producing output, but that's a
4761 different problem). In particular, instead of testing for equality, you
4762 should check to see whether the two values have ranges that overlap; and
4763 this is done with the relational operators, so equality comparisons are
4764 probably mistaken.
4765
4766 @item -Wtraditional @r{(C and Objective-C only)}
4767 @opindex Wtraditional
4768 @opindex Wno-traditional
4769 Warn about certain constructs that behave differently in traditional and
4770 ISO C@. Also warn about ISO C constructs that have no traditional C
4771 equivalent, and/or problematic constructs that should be avoided.
4772
4773 @itemize @bullet
4774 @item
4775 Macro parameters that appear within string literals in the macro body.
4776 In traditional C macro replacement takes place within string literals,
4777 but in ISO C it does not.
4778
4779 @item
4780 In traditional C, some preprocessor directives did not exist.
4781 Traditional preprocessors only considered a line to be a directive
4782 if the @samp{#} appeared in column 1 on the line. Therefore
4783 @option{-Wtraditional} warns about directives that traditional C
4784 understands but ignores because the @samp{#} does not appear as the
4785 first character on the line. It also suggests you hide directives like
4786 @code{#pragma} not understood by traditional C by indenting them. Some
4787 traditional implementations do not recognize @code{#elif}, so this option
4788 suggests avoiding it altogether.
4789
4790 @item
4791 A function-like macro that appears without arguments.
4792
4793 @item
4794 The unary plus operator.
4795
4796 @item
4797 The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating-point
4798 constant suffixes. (Traditional C does support the @samp{L} suffix on integer
4799 constants.) Note, these suffixes appear in macros defined in the system
4800 headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
4801 Use of these macros in user code might normally lead to spurious
4802 warnings, however GCC's integrated preprocessor has enough context to
4803 avoid warning in these cases.
4804
4805 @item
4806 A function declared external in one block and then used after the end of
4807 the block.
4808
4809 @item
4810 A @code{switch} statement has an operand of type @code{long}.
4811
4812 @item
4813 A non-@code{static} function declaration follows a @code{static} one.
4814 This construct is not accepted by some traditional C compilers.
4815
4816 @item
4817 The ISO type of an integer constant has a different width or
4818 signedness from its traditional type. This warning is only issued if
4819 the base of the constant is ten. I.e.@: hexadecimal or octal values, which
4820 typically represent bit patterns, are not warned about.
4821
4822 @item
4823 Usage of ISO string concatenation is detected.
4824
4825 @item
4826 Initialization of automatic aggregates.
4827
4828 @item
4829 Identifier conflicts with labels. Traditional C lacks a separate
4830 namespace for labels.
4831
4832 @item
4833 Initialization of unions. If the initializer is zero, the warning is
4834 omitted. This is done under the assumption that the zero initializer in
4835 user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
4836 initializer warnings and relies on default initialization to zero in the
4837 traditional C case.
4838
4839 @item
4840 Conversions by prototypes between fixed/floating-point values and vice
4841 versa. The absence of these prototypes when compiling with traditional
4842 C causes serious problems. This is a subset of the possible
4843 conversion warnings; for the full set use @option{-Wtraditional-conversion}.
4844
4845 @item
4846 Use of ISO C style function definitions. This warning intentionally is
4847 @emph{not} issued for prototype declarations or variadic functions
4848 because these ISO C features appear in your code when using
4849 libiberty's traditional C compatibility macros, @code{PARAMS} and
4850 @code{VPARAMS}. This warning is also bypassed for nested functions
4851 because that feature is already a GCC extension and thus not relevant to
4852 traditional C compatibility.
4853 @end itemize
4854
4855 @item -Wtraditional-conversion @r{(C and Objective-C only)}
4856 @opindex Wtraditional-conversion
4857 @opindex Wno-traditional-conversion
4858 Warn if a prototype causes a type conversion that is different from what
4859 would happen to the same argument in the absence of a prototype. This
4860 includes conversions of fixed point to floating and vice versa, and
4861 conversions changing the width or signedness of a fixed-point argument
4862 except when the same as the default promotion.
4863
4864 @item -Wdeclaration-after-statement @r{(C and Objective-C only)}
4865 @opindex Wdeclaration-after-statement
4866 @opindex Wno-declaration-after-statement
4867 Warn when a declaration is found after a statement in a block. This
4868 construct, known from C++, was introduced with ISO C99 and is by default
4869 allowed in GCC@. It is not supported by ISO C90. @xref{Mixed Declarations}.
4870
4871 @item -Wundef
4872 @opindex Wundef
4873 @opindex Wno-undef
4874 Warn if an undefined identifier is evaluated in an @code{#if} directive.
4875
4876 @item -Wno-endif-labels
4877 @opindex Wno-endif-labels
4878 @opindex Wendif-labels
4879 Do not warn whenever an @code{#else} or an @code{#endif} are followed by text.
4880
4881 @item -Wshadow
4882 @opindex Wshadow
4883 @opindex Wno-shadow
4884 Warn whenever a local variable or type declaration shadows another
4885 variable, parameter, type, class member (in C++), or instance variable
4886 (in Objective-C) or whenever a built-in function is shadowed. Note
4887 that in C++, the compiler warns if a local variable shadows an
4888 explicit typedef, but not if it shadows a struct/class/enum.
4889
4890 @item -Wno-shadow-ivar @r{(Objective-C only)}
4891 @opindex Wno-shadow-ivar
4892 @opindex Wshadow-ivar
4893 Do not warn whenever a local variable shadows an instance variable in an
4894 Objective-C method.
4895
4896 @item -Wlarger-than=@var{len}
4897 @opindex Wlarger-than=@var{len}
4898 @opindex Wlarger-than-@var{len}
4899 Warn whenever an object of larger than @var{len} bytes is defined.
4900
4901 @item -Wframe-larger-than=@var{len}
4902 @opindex Wframe-larger-than
4903 Warn if the size of a function frame is larger than @var{len} bytes.
4904 The computation done to determine the stack frame size is approximate
4905 and not conservative.
4906 The actual requirements may be somewhat greater than @var{len}
4907 even if you do not get a warning. In addition, any space allocated
4908 via @code{alloca}, variable-length arrays, or related constructs
4909 is not included by the compiler when determining
4910 whether or not to issue a warning.
4911
4912 @item -Wno-free-nonheap-object
4913 @opindex Wno-free-nonheap-object
4914 @opindex Wfree-nonheap-object
4915 Do not warn when attempting to free an object that was not allocated
4916 on the heap.
4917
4918 @item -Wstack-usage=@var{len}
4919 @opindex Wstack-usage
4920 Warn if the stack usage of a function might be larger than @var{len} bytes.
4921 The computation done to determine the stack usage is conservative.
4922 Any space allocated via @code{alloca}, variable-length arrays, or related
4923 constructs is included by the compiler when determining whether or not to
4924 issue a warning.
4925
4926 The message is in keeping with the output of @option{-fstack-usage}.
4927
4928 @itemize
4929 @item
4930 If the stack usage is fully static but exceeds the specified amount, it's:
4931
4932 @smallexample
4933 warning: stack usage is 1120 bytes
4934 @end smallexample
4935 @item
4936 If the stack usage is (partly) dynamic but bounded, it's:
4937
4938 @smallexample
4939 warning: stack usage might be 1648 bytes
4940 @end smallexample
4941 @item
4942 If the stack usage is (partly) dynamic and not bounded, it's:
4943
4944 @smallexample
4945 warning: stack usage might be unbounded
4946 @end smallexample
4947 @end itemize
4948
4949 @item -Wunsafe-loop-optimizations
4950 @opindex Wunsafe-loop-optimizations
4951 @opindex Wno-unsafe-loop-optimizations
4952 Warn if the loop cannot be optimized because the compiler cannot
4953 assume anything on the bounds of the loop indices. With
4954 @option{-funsafe-loop-optimizations} warn if the compiler makes
4955 such assumptions.
4956
4957 @item -Wno-pedantic-ms-format @r{(MinGW targets only)}
4958 @opindex Wno-pedantic-ms-format
4959 @opindex Wpedantic-ms-format
4960 When used in combination with @option{-Wformat}
4961 and @option{-pedantic} without GNU extensions, this option
4962 disables the warnings about non-ISO @code{printf} / @code{scanf} format
4963 width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets,
4964 which depend on the MS runtime.
4965
4966 @item -Wplacement-new
4967 @itemx -Wplacement-new=@var{n}
4968 @opindex Wplacement-new
4969 @opindex Wno-placement-new
4970 Warn about placement new expressions with undefined behavior, such as
4971 constructing an object in a buffer that is smaller than the type of
4972 the object. For example, the placement new expression below is diagnosed
4973 because it attempts to construct an array of 64 integers in a buffer only
4974 64 bytes large.
4975 @smallexample
4976 char buf [64];
4977 new (buf) int[64];
4978 @end smallexample
4979 This warning is enabled by default.
4980
4981 @table @gcctabopt
4982 @item -Wplacement-new=1
4983 This is the default warning level of @option{-Wplacement-new}. At this
4984 level the warning is not issued for some strictly undefined constructs that
4985 GCC allows as extensions for compatibility with legacy code. For example,
4986 the following @code{new} expression is not diagnosed at this level even
4987 though it has undefined behavior according to the C++ standard because
4988 it writes past the end of the one-element array.
4989 @smallexample
4990 struct S @{ int n, a[1]; @};
4991 S *s = (S *)malloc (sizeof *s + 31 * sizeof s->a[0]);
4992 new (s->a)int [32]();
4993 @end smallexample
4994
4995 @item -Wplacement-new=2
4996 At this level, in addition to diagnosing all the same constructs as at level
4997 1, a diagnostic is also issued for placement new expressions that construct
4998 an object in the last member of structure whose type is an array of a single
4999 element and whose size is less than the size of the object being constructed.
5000 While the previous example would be diagnosed, the following construct makes
5001 use of the flexible member array extension to avoid the warning at level 2.
5002 @smallexample
5003 struct S @{ int n, a[]; @};
5004 S *s = (S *)malloc (sizeof *s + 32 * sizeof s->a[0]);
5005 new (s->a)int [32]();
5006 @end smallexample
5007
5008 @end table
5009
5010 @item -Wpointer-arith
5011 @opindex Wpointer-arith
5012 @opindex Wno-pointer-arith
5013 Warn about anything that depends on the ``size of'' a function type or
5014 of @code{void}. GNU C assigns these types a size of 1, for
5015 convenience in calculations with @code{void *} pointers and pointers
5016 to functions. In C++, warn also when an arithmetic operation involves
5017 @code{NULL}. This warning is also enabled by @option{-Wpedantic}.
5018
5019 @item -Wtype-limits
5020 @opindex Wtype-limits
5021 @opindex Wno-type-limits
5022 Warn if a comparison is always true or always false due to the limited
5023 range of the data type, but do not warn for constant expressions. For
5024 example, warn if an unsigned variable is compared against zero with
5025 @code{<} or @code{>=}. This warning is also enabled by
5026 @option{-Wextra}.
5027
5028 @item -Wbad-function-cast @r{(C and Objective-C only)}
5029 @opindex Wbad-function-cast
5030 @opindex Wno-bad-function-cast
5031 Warn when a function call is cast to a non-matching type.
5032 For example, warn if a call to a function returning an integer type
5033 is cast to a pointer type.
5034
5035 @item -Wc90-c99-compat @r{(C and Objective-C only)}
5036 @opindex Wc90-c99-compat
5037 @opindex Wno-c90-c99-compat
5038 Warn about features not present in ISO C90, but present in ISO C99.
5039 For instance, warn about use of variable length arrays, @code{long long}
5040 type, @code{bool} type, compound literals, designated initializers, and so
5041 on. This option is independent of the standards mode. Warnings are disabled
5042 in the expression that follows @code{__extension__}.
5043
5044 @item -Wc99-c11-compat @r{(C and Objective-C only)}
5045 @opindex Wc99-c11-compat
5046 @opindex Wno-c99-c11-compat
5047 Warn about features not present in ISO C99, but present in ISO C11.
5048 For instance, warn about use of anonymous structures and unions,
5049 @code{_Atomic} type qualifier, @code{_Thread_local} storage-class specifier,
5050 @code{_Alignas} specifier, @code{Alignof} operator, @code{_Generic} keyword,
5051 and so on. This option is independent of the standards mode. Warnings are
5052 disabled in the expression that follows @code{__extension__}.
5053
5054 @item -Wc++-compat @r{(C and Objective-C only)}
5055 @opindex Wc++-compat
5056 Warn about ISO C constructs that are outside of the common subset of
5057 ISO C and ISO C++, e.g.@: request for implicit conversion from
5058 @code{void *} to a pointer to non-@code{void} type.
5059
5060 @item -Wc++11-compat @r{(C++ and Objective-C++ only)}
5061 @opindex Wc++11-compat
5062 Warn about C++ constructs whose meaning differs between ISO C++ 1998
5063 and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords
5064 in ISO C++ 2011. This warning turns on @option{-Wnarrowing} and is
5065 enabled by @option{-Wall}.
5066
5067 @item -Wc++14-compat @r{(C++ and Objective-C++ only)}
5068 @opindex Wc++14-compat
5069 Warn about C++ constructs whose meaning differs between ISO C++ 2011
5070 and ISO C++ 2014. This warning is enabled by @option{-Wall}.
5071
5072 @item -Wcast-qual
5073 @opindex Wcast-qual
5074 @opindex Wno-cast-qual
5075 Warn whenever a pointer is cast so as to remove a type qualifier from
5076 the target type. For example, warn if a @code{const char *} is cast
5077 to an ordinary @code{char *}.
5078
5079 Also warn when making a cast that introduces a type qualifier in an
5080 unsafe way. For example, casting @code{char **} to @code{const char **}
5081 is unsafe, as in this example:
5082
5083 @smallexample
5084 /* p is char ** value. */
5085 const char **q = (const char **) p;
5086 /* Assignment of readonly string to const char * is OK. */
5087 *q = "string";
5088 /* Now char** pointer points to read-only memory. */
5089 **p = 'b';
5090 @end smallexample
5091
5092 @item -Wcast-align
5093 @opindex Wcast-align
5094 @opindex Wno-cast-align
5095 Warn whenever a pointer is cast such that the required alignment of the
5096 target is increased. For example, warn if a @code{char *} is cast to
5097 an @code{int *} on machines where integers can only be accessed at
5098 two- or four-byte boundaries.
5099
5100 @item -Wwrite-strings
5101 @opindex Wwrite-strings
5102 @opindex Wno-write-strings
5103 When compiling C, give string constants the type @code{const
5104 char[@var{length}]} so that copying the address of one into a
5105 non-@code{const} @code{char *} pointer produces a warning. These
5106 warnings help you find at compile time code that can try to write
5107 into a string constant, but only if you have been very careful about
5108 using @code{const} in declarations and prototypes. Otherwise, it is
5109 just a nuisance. This is why we did not make @option{-Wall} request
5110 these warnings.
5111
5112 When compiling C++, warn about the deprecated conversion from string
5113 literals to @code{char *}. This warning is enabled by default for C++
5114 programs.
5115
5116 @item -Wclobbered
5117 @opindex Wclobbered
5118 @opindex Wno-clobbered
5119 Warn for variables that might be changed by @code{longjmp} or
5120 @code{vfork}. This warning is also enabled by @option{-Wextra}.
5121
5122 @item -Wconditionally-supported @r{(C++ and Objective-C++ only)}
5123 @opindex Wconditionally-supported
5124 @opindex Wno-conditionally-supported
5125 Warn for conditionally-supported (C++11 [intro.defs]) constructs.
5126
5127 @item -Wconversion
5128 @opindex Wconversion
5129 @opindex Wno-conversion
5130 Warn for implicit conversions that may alter a value. This includes
5131 conversions between real and integer, like @code{abs (x)} when
5132 @code{x} is @code{double}; conversions between signed and unsigned,
5133 like @code{unsigned ui = -1}; and conversions to smaller types, like
5134 @code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
5135 ((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
5136 changed by the conversion like in @code{abs (2.0)}. Warnings about
5137 conversions between signed and unsigned integers can be disabled by
5138 using @option{-Wno-sign-conversion}.
5139
5140 For C++, also warn for confusing overload resolution for user-defined
5141 conversions; and conversions that never use a type conversion
5142 operator: conversions to @code{void}, the same type, a base class or a
5143 reference to them. Warnings about conversions between signed and
5144 unsigned integers are disabled by default in C++ unless
5145 @option{-Wsign-conversion} is explicitly enabled.
5146
5147 @item -Wno-conversion-null @r{(C++ and Objective-C++ only)}
5148 @opindex Wconversion-null
5149 @opindex Wno-conversion-null
5150 Do not warn for conversions between @code{NULL} and non-pointer
5151 types. @option{-Wconversion-null} is enabled by default.
5152
5153 @item -Wzero-as-null-pointer-constant @r{(C++ and Objective-C++ only)}
5154 @opindex Wzero-as-null-pointer-constant
5155 @opindex Wno-zero-as-null-pointer-constant
5156 Warn when a literal @samp{0} is used as null pointer constant. This can
5157 be useful to facilitate the conversion to @code{nullptr} in C++11.
5158
5159 @item -Wsubobject-linkage @r{(C++ and Objective-C++ only)}
5160 @opindex Wsubobject-linkage
5161 @opindex Wno-subobject-linkage
5162 Warn if a class type has a base or a field whose type uses the anonymous
5163 namespace or depends on a type with no linkage. If a type A depends on
5164 a type B with no or internal linkage, defining it in multiple
5165 translation units would be an ODR violation because the meaning of B
5166 is different in each translation unit. If A only appears in a single
5167 translation unit, the best way to silence the warning is to give it
5168 internal linkage by putting it in an anonymous namespace as well. The
5169 compiler doesn't give this warning for types defined in the main .C
5170 file, as those are unlikely to have multiple definitions.
5171 @option{-Wsubobject-linkage} is enabled by default.
5172
5173 @item -Wdangling-else
5174 @opindex Wdangling-else
5175 @opindex Wno-dangling-else
5176 Warn about constructions where there may be confusion to which
5177 @code{if} statement an @code{else} branch belongs. Here is an example of
5178 such a case:
5179
5180 @smallexample
5181 @group
5182 @{
5183 if (a)
5184 if (b)
5185 foo ();
5186 else
5187 bar ();
5188 @}
5189 @end group
5190 @end smallexample
5191
5192 In C/C++, every @code{else} branch belongs to the innermost possible
5193 @code{if} statement, which in this example is @code{if (b)}. This is
5194 often not what the programmer expected, as illustrated in the above
5195 example by indentation the programmer chose. When there is the
5196 potential for this confusion, GCC issues a warning when this flag
5197 is specified. To eliminate the warning, add explicit braces around
5198 the innermost @code{if} statement so there is no way the @code{else}
5199 can belong to the enclosing @code{if}. The resulting code
5200 looks like this:
5201
5202 @smallexample
5203 @group
5204 @{
5205 if (a)
5206 @{
5207 if (b)
5208 foo ();
5209 else
5210 bar ();
5211 @}
5212 @}
5213 @end group
5214 @end smallexample
5215
5216 This warning is enabled by @option{-Wparentheses}.
5217
5218 @item -Wdate-time
5219 @opindex Wdate-time
5220 @opindex Wno-date-time
5221 Warn when macros @code{__TIME__}, @code{__DATE__} or @code{__TIMESTAMP__}
5222 are encountered as they might prevent bit-wise-identical reproducible
5223 compilations.
5224
5225 @item -Wdelete-incomplete @r{(C++ and Objective-C++ only)}
5226 @opindex Wdelete-incomplete
5227 @opindex Wno-delete-incomplete
5228 Warn when deleting a pointer to incomplete type, which may cause
5229 undefined behavior at runtime. This warning is enabled by default.
5230
5231 @item -Wuseless-cast @r{(C++ and Objective-C++ only)}
5232 @opindex Wuseless-cast
5233 @opindex Wno-useless-cast
5234 Warn when an expression is casted to its own type.
5235
5236 @item -Wempty-body
5237 @opindex Wempty-body
5238 @opindex Wno-empty-body
5239 Warn if an empty body occurs in an @code{if}, @code{else} or @code{do
5240 while} statement. This warning is also enabled by @option{-Wextra}.
5241
5242 @item -Wenum-compare
5243 @opindex Wenum-compare
5244 @opindex Wno-enum-compare
5245 Warn about a comparison between values of different enumerated types.
5246 In C++ enumeral mismatches in conditional expressions are also
5247 diagnosed and the warning is enabled by default. In C this warning is
5248 enabled by @option{-Wall}.
5249
5250 @item -Wjump-misses-init @r{(C, Objective-C only)}
5251 @opindex Wjump-misses-init
5252 @opindex Wno-jump-misses-init
5253 Warn if a @code{goto} statement or a @code{switch} statement jumps
5254 forward across the initialization of a variable, or jumps backward to a
5255 label after the variable has been initialized. This only warns about
5256 variables that are initialized when they are declared. This warning is
5257 only supported for C and Objective-C; in C++ this sort of branch is an
5258 error in any case.
5259
5260 @option{-Wjump-misses-init} is included in @option{-Wc++-compat}. It
5261 can be disabled with the @option{-Wno-jump-misses-init} option.
5262
5263 @item -Wsign-compare
5264 @opindex Wsign-compare
5265 @opindex Wno-sign-compare
5266 @cindex warning for comparison of signed and unsigned values
5267 @cindex comparison of signed and unsigned values, warning
5268 @cindex signed and unsigned values, comparison warning
5269 Warn when a comparison between signed and unsigned values could produce
5270 an incorrect result when the signed value is converted to unsigned.
5271 In C++, this warning is also enabled by @option{-Wall}. In C, it is
5272 also enabled by @option{-Wextra}.
5273
5274 @item -Wsign-conversion
5275 @opindex Wsign-conversion
5276 @opindex Wno-sign-conversion
5277 Warn for implicit conversions that may change the sign of an integer
5278 value, like assigning a signed integer expression to an unsigned
5279 integer variable. An explicit cast silences the warning. In C, this
5280 option is enabled also by @option{-Wconversion}.
5281
5282 @item -Wfloat-conversion
5283 @opindex Wfloat-conversion
5284 @opindex Wno-float-conversion
5285 Warn for implicit conversions that reduce the precision of a real value.
5286 This includes conversions from real to integer, and from higher precision
5287 real to lower precision real values. This option is also enabled by
5288 @option{-Wconversion}.
5289
5290 @item -Wno-scalar-storage-order
5291 @opindex -Wno-scalar-storage-order
5292 @opindex -Wscalar-storage-order
5293 Do not warn on suspicious constructs involving reverse scalar storage order.
5294
5295 @item -Wsized-deallocation @r{(C++ and Objective-C++ only)}
5296 @opindex Wsized-deallocation
5297 @opindex Wno-sized-deallocation
5298 Warn about a definition of an unsized deallocation function
5299 @smallexample
5300 void operator delete (void *) noexcept;
5301 void operator delete[] (void *) noexcept;
5302 @end smallexample
5303 without a definition of the corresponding sized deallocation function
5304 @smallexample
5305 void operator delete (void *, std::size_t) noexcept;
5306 void operator delete[] (void *, std::size_t) noexcept;
5307 @end smallexample
5308 or vice versa. Enabled by @option{-Wextra} along with
5309 @option{-fsized-deallocation}.
5310
5311 @item -Wsizeof-pointer-memaccess
5312 @opindex Wsizeof-pointer-memaccess
5313 @opindex Wno-sizeof-pointer-memaccess
5314 Warn for suspicious length parameters to certain string and memory built-in
5315 functions if the argument uses @code{sizeof}. This warning warns e.g.@:
5316 about @code{memset (ptr, 0, sizeof (ptr));} if @code{ptr} is not an array,
5317 but a pointer, and suggests a possible fix, or about
5318 @code{memcpy (&foo, ptr, sizeof (&foo));}. This warning is enabled by
5319 @option{-Wall}.
5320
5321 @item -Wsizeof-array-argument
5322 @opindex Wsizeof-array-argument
5323 @opindex Wno-sizeof-array-argument
5324 Warn when the @code{sizeof} operator is applied to a parameter that is
5325 declared as an array in a function definition. This warning is enabled by
5326 default for C and C++ programs.
5327
5328 @item -Wmemset-elt-size
5329 @opindex Wmemset-elt-size
5330 @opindex Wno-memset-elt-size
5331 Warn for suspicious calls to the @code{memset} built-in function, if the
5332 first argument references an array, and the third argument is a number
5333 equal to the number of elements, but not equal to the size of the array
5334 in memory. This indicates that the user has omitted a multiplication by
5335 the element size. This warning is enabled by @option{-Wall}.
5336
5337 @item -Wmemset-transposed-args
5338 @opindex Wmemset-transposed-args
5339 @opindex Wno-memset-transposed-args
5340 Warn for suspicious calls to the @code{memset} built-in function, if the
5341 second argument is not zero and the third argument is zero. This warns e.g.@
5342 about @code{memset (buf, sizeof buf, 0)} where most probably
5343 @code{memset (buf, 0, sizeof buf)} was meant instead. The diagnostics
5344 is only emitted if the third argument is literal zero. If it is some
5345 expression that is folded to zero, a cast of zero to some type, etc.,
5346 it is far less likely that the user has mistakenly exchanged the arguments
5347 and no warning is emitted. This warning is enabled by @option{-Wall}.
5348
5349 @item -Waddress
5350 @opindex Waddress
5351 @opindex Wno-address
5352 Warn about suspicious uses of memory addresses. These include using
5353 the address of a function in a conditional expression, such as
5354 @code{void func(void); if (func)}, and comparisons against the memory
5355 address of a string literal, such as @code{if (x == "abc")}. Such
5356 uses typically indicate a programmer error: the address of a function
5357 always evaluates to true, so their use in a conditional usually
5358 indicate that the programmer forgot the parentheses in a function
5359 call; and comparisons against string literals result in unspecified
5360 behavior and are not portable in C, so they usually indicate that the
5361 programmer intended to use @code{strcmp}. This warning is enabled by
5362 @option{-Wall}.
5363
5364 @item -Wlogical-op
5365 @opindex Wlogical-op
5366 @opindex Wno-logical-op
5367 Warn about suspicious uses of logical operators in expressions.
5368 This includes using logical operators in contexts where a
5369 bit-wise operator is likely to be expected. Also warns when
5370 the operands of a logical operator are the same:
5371 @smallexample
5372 extern int a;
5373 if (a < 0 && a < 0) @{ @dots{} @}
5374 @end smallexample
5375
5376 @item -Wlogical-not-parentheses
5377 @opindex Wlogical-not-parentheses
5378 @opindex Wno-logical-not-parentheses
5379 Warn about logical not used on the left hand side operand of a comparison.
5380 This option does not warn if the RHS operand is of a boolean type. Its
5381 purpose is to detect suspicious code like the following:
5382 @smallexample
5383 int a;
5384 @dots{}
5385 if (!a > 1) @{ @dots{} @}
5386 @end smallexample
5387
5388 It is possible to suppress the warning by wrapping the LHS into
5389 parentheses:
5390 @smallexample
5391 if ((!a) > 1) @{ @dots{} @}
5392 @end smallexample
5393
5394 This warning is enabled by @option{-Wall}.
5395
5396 @item -Waggregate-return
5397 @opindex Waggregate-return
5398 @opindex Wno-aggregate-return
5399 Warn if any functions that return structures or unions are defined or
5400 called. (In languages where you can return an array, this also elicits
5401 a warning.)
5402
5403 @item -Wno-aggressive-loop-optimizations
5404 @opindex Wno-aggressive-loop-optimizations
5405 @opindex Waggressive-loop-optimizations
5406 Warn if in a loop with constant number of iterations the compiler detects
5407 undefined behavior in some statement during one or more of the iterations.
5408
5409 @item -Wno-attributes
5410 @opindex Wno-attributes
5411 @opindex Wattributes
5412 Do not warn if an unexpected @code{__attribute__} is used, such as
5413 unrecognized attributes, function attributes applied to variables,
5414 etc. This does not stop errors for incorrect use of supported
5415 attributes.
5416
5417 @item -Wno-builtin-macro-redefined
5418 @opindex Wno-builtin-macro-redefined
5419 @opindex Wbuiltin-macro-redefined
5420 Do not warn if certain built-in macros are redefined. This suppresses
5421 warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
5422 @code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.
5423
5424 @item -Wstrict-prototypes @r{(C and Objective-C only)}
5425 @opindex Wstrict-prototypes
5426 @opindex Wno-strict-prototypes
5427 Warn if a function is declared or defined without specifying the
5428 argument types. (An old-style function definition is permitted without
5429 a warning if preceded by a declaration that specifies the argument
5430 types.)
5431
5432 @item -Wold-style-declaration @r{(C and Objective-C only)}
5433 @opindex Wold-style-declaration
5434 @opindex Wno-old-style-declaration
5435 Warn for obsolescent usages, according to the C Standard, in a
5436 declaration. For example, warn if storage-class specifiers like
5437 @code{static} are not the first things in a declaration. This warning
5438 is also enabled by @option{-Wextra}.
5439
5440 @item -Wold-style-definition @r{(C and Objective-C only)}
5441 @opindex Wold-style-definition
5442 @opindex Wno-old-style-definition
5443 Warn if an old-style function definition is used. A warning is given
5444 even if there is a previous prototype.
5445
5446 @item -Wmissing-parameter-type @r{(C and Objective-C only)}
5447 @opindex Wmissing-parameter-type
5448 @opindex Wno-missing-parameter-type
5449 A function parameter is declared without a type specifier in K&R-style
5450 functions:
5451
5452 @smallexample
5453 void foo(bar) @{ @}
5454 @end smallexample
5455
5456 This warning is also enabled by @option{-Wextra}.
5457
5458 @item -Wmissing-prototypes @r{(C and Objective-C only)}
5459 @opindex Wmissing-prototypes
5460 @opindex Wno-missing-prototypes
5461 Warn if a global function is defined without a previous prototype
5462 declaration. This warning is issued even if the definition itself
5463 provides a prototype. Use this option to detect global functions
5464 that do not have a matching prototype declaration in a header file.
5465 This option is not valid for C++ because all function declarations
5466 provide prototypes and a non-matching declaration declares an
5467 overload rather than conflict with an earlier declaration.
5468 Use @option{-Wmissing-declarations} to detect missing declarations in C++.
5469
5470 @item -Wmissing-declarations
5471 @opindex Wmissing-declarations
5472 @opindex Wno-missing-declarations
5473 Warn if a global function is defined without a previous declaration.
5474 Do so even if the definition itself provides a prototype.
5475 Use this option to detect global functions that are not declared in
5476 header files. In C, no warnings are issued for functions with previous
5477 non-prototype declarations; use @option{-Wmissing-prototypes} to detect
5478 missing prototypes. In C++, no warnings are issued for function templates,
5479 or for inline functions, or for functions in anonymous namespaces.
5480
5481 @item -Wmissing-field-initializers
5482 @opindex Wmissing-field-initializers
5483 @opindex Wno-missing-field-initializers
5484 @opindex W
5485 @opindex Wextra
5486 @opindex Wno-extra
5487 Warn if a structure's initializer has some fields missing. For
5488 example, the following code causes such a warning, because
5489 @code{x.h} is implicitly zero:
5490
5491 @smallexample
5492 struct s @{ int f, g, h; @};
5493 struct s x = @{ 3, 4 @};
5494 @end smallexample
5495
5496 This option does not warn about designated initializers, so the following
5497 modification does not trigger a warning:
5498
5499 @smallexample
5500 struct s @{ int f, g, h; @};
5501 struct s x = @{ .f = 3, .g = 4 @};
5502 @end smallexample
5503
5504 In C++ this option does not warn either about the empty @{ @}
5505 initializer, for example:
5506
5507 @smallexample
5508 struct s @{ int f, g, h; @};
5509 s x = @{ @};
5510 @end smallexample
5511
5512 This warning is included in @option{-Wextra}. To get other @option{-Wextra}
5513 warnings without this one, use @option{-Wextra -Wno-missing-field-initializers}.
5514
5515 @item -Wno-multichar
5516 @opindex Wno-multichar
5517 @opindex Wmultichar
5518 Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
5519 Usually they indicate a typo in the user's code, as they have
5520 implementation-defined values, and should not be used in portable code.
5521
5522 @item -Wnormalized@r{[}=@r{<}none@r{|}id@r{|}nfc@r{|}nfkc@r{>]}
5523 @opindex Wnormalized=
5524 @opindex Wnormalized
5525 @opindex Wno-normalized
5526 @cindex NFC
5527 @cindex NFKC
5528 @cindex character set, input normalization
5529 In ISO C and ISO C++, two identifiers are different if they are
5530 different sequences of characters. However, sometimes when characters
5531 outside the basic ASCII character set are used, you can have two
5532 different character sequences that look the same. To avoid confusion,
5533 the ISO 10646 standard sets out some @dfn{normalization rules} which
5534 when applied ensure that two sequences that look the same are turned into
5535 the same sequence. GCC can warn you if you are using identifiers that
5536 have not been normalized; this option controls that warning.
5537
5538 There are four levels of warning supported by GCC@. The default is
5539 @option{-Wnormalized=nfc}, which warns about any identifier that is
5540 not in the ISO 10646 ``C'' normalized form, @dfn{NFC}. NFC is the
5541 recommended form for most uses. It is equivalent to
5542 @option{-Wnormalized}.
5543
5544 Unfortunately, there are some characters allowed in identifiers by
5545 ISO C and ISO C++ that, when turned into NFC, are not allowed in
5546 identifiers. That is, there's no way to use these symbols in portable
5547 ISO C or C++ and have all your identifiers in NFC@.
5548 @option{-Wnormalized=id} suppresses the warning for these characters.
5549 It is hoped that future versions of the standards involved will correct
5550 this, which is why this option is not the default.
5551
5552 You can switch the warning off for all characters by writing
5553 @option{-Wnormalized=none} or @option{-Wno-normalized}. You should
5554 only do this if you are using some other normalization scheme (like
5555 ``D''), because otherwise you can easily create bugs that are
5556 literally impossible to see.
5557
5558 Some characters in ISO 10646 have distinct meanings but look identical
5559 in some fonts or display methodologies, especially once formatting has
5560 been applied. For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
5561 LETTER N'', displays just like a regular @code{n} that has been
5562 placed in a superscript. ISO 10646 defines the @dfn{NFKC}
5563 normalization scheme to convert all these into a standard form as
5564 well, and GCC warns if your code is not in NFKC if you use
5565 @option{-Wnormalized=nfkc}. This warning is comparable to warning
5566 about every identifier that contains the letter O because it might be
5567 confused with the digit 0, and so is not the default, but may be
5568 useful as a local coding convention if the programming environment
5569 cannot be fixed to display these characters distinctly.
5570
5571 @item -Wno-deprecated
5572 @opindex Wno-deprecated
5573 @opindex Wdeprecated
5574 Do not warn about usage of deprecated features. @xref{Deprecated Features}.
5575
5576 @item -Wno-deprecated-declarations
5577 @opindex Wno-deprecated-declarations
5578 @opindex Wdeprecated-declarations
5579 Do not warn about uses of functions (@pxref{Function Attributes}),
5580 variables (@pxref{Variable Attributes}), and types (@pxref{Type
5581 Attributes}) marked as deprecated by using the @code{deprecated}
5582 attribute.
5583
5584 @item -Wno-overflow
5585 @opindex Wno-overflow
5586 @opindex Woverflow
5587 Do not warn about compile-time overflow in constant expressions.
5588
5589 @item -Wno-odr
5590 @opindex Wno-odr
5591 @opindex Wodr
5592 Warn about One Definition Rule violations during link-time optimization.
5593 Requires @option{-flto-odr-type-merging} to be enabled. Enabled by default.
5594
5595 @item -Wopenmp-simd
5596 @opindex Wopenm-simd
5597 Warn if the vectorizer cost model overrides the OpenMP or the Cilk Plus
5598 simd directive set by user. The @option{-fsimd-cost-model=unlimited}
5599 option can be used to relax the cost model.
5600
5601 @item -Woverride-init @r{(C and Objective-C only)}
5602 @opindex Woverride-init
5603 @opindex Wno-override-init
5604 @opindex W
5605 @opindex Wextra
5606 @opindex Wno-extra
5607 Warn if an initialized field without side effects is overridden when
5608 using designated initializers (@pxref{Designated Inits, , Designated
5609 Initializers}).
5610
5611 This warning is included in @option{-Wextra}. To get other
5612 @option{-Wextra} warnings without this one, use @option{-Wextra
5613 -Wno-override-init}.
5614
5615 @item -Woverride-init-side-effects @r{(C and Objective-C only)}
5616 @opindex Woverride-init-side-effects
5617 @opindex Wno-override-init-side-effects
5618 Warn if an initialized field with side effects is overridden when
5619 using designated initializers (@pxref{Designated Inits, , Designated
5620 Initializers}). This warning is enabled by default.
5621
5622 @item -Wpacked
5623 @opindex Wpacked
5624 @opindex Wno-packed
5625 Warn if a structure is given the packed attribute, but the packed
5626 attribute has no effect on the layout or size of the structure.
5627 Such structures may be mis-aligned for little benefit. For
5628 instance, in this code, the variable @code{f.x} in @code{struct bar}
5629 is misaligned even though @code{struct bar} does not itself
5630 have the packed attribute:
5631
5632 @smallexample
5633 @group
5634 struct foo @{
5635 int x;
5636 char a, b, c, d;
5637 @} __attribute__((packed));
5638 struct bar @{
5639 char z;
5640 struct foo f;
5641 @};
5642 @end group
5643 @end smallexample
5644
5645 @item -Wpacked-bitfield-compat
5646 @opindex Wpacked-bitfield-compat
5647 @opindex Wno-packed-bitfield-compat
5648 The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
5649 on bit-fields of type @code{char}. This has been fixed in GCC 4.4 but
5650 the change can lead to differences in the structure layout. GCC
5651 informs you when the offset of such a field has changed in GCC 4.4.
5652 For example there is no longer a 4-bit padding between field @code{a}
5653 and @code{b} in this structure:
5654
5655 @smallexample
5656 struct foo
5657 @{
5658 char a:4;
5659 char b:8;
5660 @} __attribute__ ((packed));
5661 @end smallexample
5662
5663 This warning is enabled by default. Use
5664 @option{-Wno-packed-bitfield-compat} to disable this warning.
5665
5666 @item -Wpadded
5667 @opindex Wpadded
5668 @opindex Wno-padded
5669 Warn if padding is included in a structure, either to align an element
5670 of the structure or to align the whole structure. Sometimes when this
5671 happens it is possible to rearrange the fields of the structure to
5672 reduce the padding and so make the structure smaller.
5673
5674 @item -Wredundant-decls
5675 @opindex Wredundant-decls
5676 @opindex Wno-redundant-decls
5677 Warn if anything is declared more than once in the same scope, even in
5678 cases where multiple declaration is valid and changes nothing.
5679
5680 @item -Wnested-externs @r{(C and Objective-C only)}
5681 @opindex Wnested-externs
5682 @opindex Wno-nested-externs
5683 Warn if an @code{extern} declaration is encountered within a function.
5684
5685 @item -Wno-inherited-variadic-ctor
5686 @opindex Winherited-variadic-ctor
5687 @opindex Wno-inherited-variadic-ctor
5688 Suppress warnings about use of C++11 inheriting constructors when the
5689 base class inherited from has a C variadic constructor; the warning is
5690 on by default because the ellipsis is not inherited.
5691
5692 @item -Winline
5693 @opindex Winline
5694 @opindex Wno-inline
5695 Warn if a function that is declared as inline cannot be inlined.
5696 Even with this option, the compiler does not warn about failures to
5697 inline functions declared in system headers.
5698
5699 The compiler uses a variety of heuristics to determine whether or not
5700 to inline a function. For example, the compiler takes into account
5701 the size of the function being inlined and the amount of inlining
5702 that has already been done in the current function. Therefore,
5703 seemingly insignificant changes in the source program can cause the
5704 warnings produced by @option{-Winline} to appear or disappear.
5705
5706 @item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
5707 @opindex Wno-invalid-offsetof
5708 @opindex Winvalid-offsetof
5709 Suppress warnings from applying the @code{offsetof} macro to a non-POD
5710 type. According to the 2014 ISO C++ standard, applying @code{offsetof}
5711 to a non-standard-layout type is undefined. In existing C++ implementations,
5712 however, @code{offsetof} typically gives meaningful results.
5713 This flag is for users who are aware that they are
5714 writing nonportable code and who have deliberately chosen to ignore the
5715 warning about it.
5716
5717 The restrictions on @code{offsetof} may be relaxed in a future version
5718 of the C++ standard.
5719
5720 @item -Wno-int-to-pointer-cast
5721 @opindex Wno-int-to-pointer-cast
5722 @opindex Wint-to-pointer-cast
5723 Suppress warnings from casts to pointer type of an integer of a
5724 different size. In C++, casting to a pointer type of smaller size is
5725 an error. @option{Wint-to-pointer-cast} is enabled by default.
5726
5727
5728 @item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
5729 @opindex Wno-pointer-to-int-cast
5730 @opindex Wpointer-to-int-cast
5731 Suppress warnings from casts from a pointer to an integer type of a
5732 different size.
5733
5734 @item -Winvalid-pch
5735 @opindex Winvalid-pch
5736 @opindex Wno-invalid-pch
5737 Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
5738 the search path but can't be used.
5739
5740 @item -Wlong-long
5741 @opindex Wlong-long
5742 @opindex Wno-long-long
5743 Warn if @code{long long} type is used. This is enabled by either
5744 @option{-Wpedantic} or @option{-Wtraditional} in ISO C90 and C++98
5745 modes. To inhibit the warning messages, use @option{-Wno-long-long}.
5746
5747 @item -Wvariadic-macros
5748 @opindex Wvariadic-macros
5749 @opindex Wno-variadic-macros
5750 Warn if variadic macros are used in ISO C90 mode, or if the GNU
5751 alternate syntax is used in ISO C99 mode. This is enabled by either
5752 @option{-Wpedantic} or @option{-Wtraditional}. To inhibit the warning
5753 messages, use @option{-Wno-variadic-macros}.
5754
5755 @item -Wvarargs
5756 @opindex Wvarargs
5757 @opindex Wno-varargs
5758 Warn upon questionable usage of the macros used to handle variable
5759 arguments like @code{va_start}. This is default. To inhibit the
5760 warning messages, use @option{-Wno-varargs}.
5761
5762 @item -Wvector-operation-performance
5763 @opindex Wvector-operation-performance
5764 @opindex Wno-vector-operation-performance
5765 Warn if vector operation is not implemented via SIMD capabilities of the
5766 architecture. Mainly useful for the performance tuning.
5767 Vector operation can be implemented @code{piecewise}, which means that the
5768 scalar operation is performed on every vector element;
5769 @code{in parallel}, which means that the vector operation is implemented
5770 using scalars of wider type, which normally is more performance efficient;
5771 and @code{as a single scalar}, which means that vector fits into a
5772 scalar type.
5773
5774 @item -Wno-virtual-move-assign
5775 @opindex Wvirtual-move-assign
5776 @opindex Wno-virtual-move-assign
5777 Suppress warnings about inheriting from a virtual base with a
5778 non-trivial C++11 move assignment operator. This is dangerous because
5779 if the virtual base is reachable along more than one path, it is
5780 moved multiple times, which can mean both objects end up in the
5781 moved-from state. If the move assignment operator is written to avoid
5782 moving from a moved-from object, this warning can be disabled.
5783
5784 @item -Wvla
5785 @opindex Wvla
5786 @opindex Wno-vla
5787 Warn if variable length array is used in the code.
5788 @option{-Wno-vla} prevents the @option{-Wpedantic} warning of
5789 the variable length array.
5790
5791 @item -Wvolatile-register-var
5792 @opindex Wvolatile-register-var
5793 @opindex Wno-volatile-register-var
5794 Warn if a register variable is declared volatile. The volatile
5795 modifier does not inhibit all optimizations that may eliminate reads
5796 and/or writes to register variables. This warning is enabled by
5797 @option{-Wall}.
5798
5799 @item -Wdisabled-optimization
5800 @opindex Wdisabled-optimization
5801 @opindex Wno-disabled-optimization
5802 Warn if a requested optimization pass is disabled. This warning does
5803 not generally indicate that there is anything wrong with your code; it
5804 merely indicates that GCC's optimizers are unable to handle the code
5805 effectively. Often, the problem is that your code is too big or too
5806 complex; GCC refuses to optimize programs when the optimization
5807 itself is likely to take inordinate amounts of time.
5808
5809 @item -Wpointer-sign @r{(C and Objective-C only)}
5810 @opindex Wpointer-sign
5811 @opindex Wno-pointer-sign
5812 Warn for pointer argument passing or assignment with different signedness.
5813 This option is only supported for C and Objective-C@. It is implied by
5814 @option{-Wall} and by @option{-Wpedantic}, which can be disabled with
5815 @option{-Wno-pointer-sign}.
5816
5817 @item -Wstack-protector
5818 @opindex Wstack-protector
5819 @opindex Wno-stack-protector
5820 This option is only active when @option{-fstack-protector} is active. It
5821 warns about functions that are not protected against stack smashing.
5822
5823 @item -Woverlength-strings
5824 @opindex Woverlength-strings
5825 @opindex Wno-overlength-strings
5826 Warn about string constants that are longer than the ``minimum
5827 maximum'' length specified in the C standard. Modern compilers
5828 generally allow string constants that are much longer than the
5829 standard's minimum limit, but very portable programs should avoid
5830 using longer strings.
5831
5832 The limit applies @emph{after} string constant concatenation, and does
5833 not count the trailing NUL@. In C90, the limit was 509 characters; in
5834 C99, it was raised to 4095. C++98 does not specify a normative
5835 minimum maximum, so we do not diagnose overlength strings in C++@.
5836
5837 This option is implied by @option{-Wpedantic}, and can be disabled with
5838 @option{-Wno-overlength-strings}.
5839
5840 @item -Wunsuffixed-float-constants @r{(C and Objective-C only)}
5841 @opindex Wunsuffixed-float-constants
5842
5843 Issue a warning for any floating constant that does not have
5844 a suffix. When used together with @option{-Wsystem-headers} it
5845 warns about such constants in system header files. This can be useful
5846 when preparing code to use with the @code{FLOAT_CONST_DECIMAL64} pragma
5847 from the decimal floating-point extension to C99.
5848
5849 @item -Wno-designated-init @r{(C and Objective-C only)}
5850 Suppress warnings when a positional initializer is used to initialize
5851 a structure that has been marked with the @code{designated_init}
5852 attribute.
5853
5854 @item -Whsa
5855 Issue a warning when HSAIL cannot be emitted for the compiled function or
5856 OpenMP construct.
5857
5858 @end table
5859
5860 @node Debugging Options
5861 @section Options for Debugging Your Program
5862 @cindex options, debugging
5863 @cindex debugging information options
5864
5865 To tell GCC to emit extra information for use by a debugger, in almost
5866 all cases you need only to add @option{-g} to your other options.
5867
5868 GCC allows you to use @option{-g} with
5869 @option{-O}. The shortcuts taken by optimized code may occasionally
5870 be surprising: some variables you declared may not exist
5871 at all; flow of control may briefly move where you did not expect it;
5872 some statements may not be executed because they compute constant
5873 results or their values are already at hand; some statements may
5874 execute in different places because they have been moved out of loops.
5875 Nevertheless it is possible to debug optimized output. This makes
5876 it reasonable to use the optimizer for programs that might have bugs.
5877
5878 If you are not using some other optimization option, consider
5879 using @option{-Og} (@pxref{Optimize Options}) with @option{-g}.
5880 With no @option{-O} option at all, some compiler passes that collect
5881 information useful for debugging do not run at all, so that
5882 @option{-Og} may result in a better debugging experience.
5883
5884 @table @gcctabopt
5885 @item -g
5886 @opindex g
5887 Produce debugging information in the operating system's native format
5888 (stabs, COFF, XCOFF, or DWARF)@. GDB can work with this debugging
5889 information.
5890
5891 On most systems that use stabs format, @option{-g} enables use of extra
5892 debugging information that only GDB can use; this extra information
5893 makes debugging work better in GDB but probably makes other debuggers
5894 crash or
5895 refuse to read the program. If you want to control for certain whether
5896 to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
5897 @option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).
5898
5899 @item -ggdb
5900 @opindex ggdb
5901 Produce debugging information for use by GDB@. This means to use the
5902 most expressive format available (DWARF, stabs, or the native format
5903 if neither of those are supported), including GDB extensions if at all
5904 possible.
5905
5906 @item -gdwarf
5907 @itemx -gdwarf-@var{version}
5908 @opindex gdwarf
5909 Produce debugging information in DWARF format (if that is supported).
5910 The value of @var{version} may be either 2, 3, 4 or 5; the default version
5911 for most targets is 4. DWARF Version 5 is only experimental.
5912
5913 Note that with DWARF Version 2, some ports require and always
5914 use some non-conflicting DWARF 3 extensions in the unwind tables.
5915
5916 Version 4 may require GDB 7.0 and @option{-fvar-tracking-assignments}
5917 for maximum benefit.
5918
5919 GCC no longer supports DWARF Version 1, which is substantially
5920 different than Version 2 and later. For historical reasons, some
5921 other DWARF-related options (including @option{-feliminate-dwarf2-dups}
5922 and @option{-fno-dwarf2-cfi-asm}) retain a reference to DWARF Version 2
5923 in their names, but apply to all currently-supported versions of DWARF.
5924
5925 @item -gstabs
5926 @opindex gstabs
5927 Produce debugging information in stabs format (if that is supported),
5928 without GDB extensions. This is the format used by DBX on most BSD
5929 systems. On MIPS, Alpha and System V Release 4 systems this option
5930 produces stabs debugging output that is not understood by DBX or SDB@.
5931 On System V Release 4 systems this option requires the GNU assembler.
5932
5933 @item -gstabs+
5934 @opindex gstabs+
5935 Produce debugging information in stabs format (if that is supported),
5936 using GNU extensions understood only by the GNU debugger (GDB)@. The
5937 use of these extensions is likely to make other debuggers crash or
5938 refuse to read the program.
5939
5940 @item -gcoff
5941 @opindex gcoff
5942 Produce debugging information in COFF format (if that is supported).
5943 This is the format used by SDB on most System V systems prior to
5944 System V Release 4.
5945
5946 @item -gxcoff
5947 @opindex gxcoff
5948 Produce debugging information in XCOFF format (if that is supported).
5949 This is the format used by the DBX debugger on IBM RS/6000 systems.
5950
5951 @item -gxcoff+
5952 @opindex gxcoff+
5953 Produce debugging information in XCOFF format (if that is supported),
5954 using GNU extensions understood only by the GNU debugger (GDB)@. The
5955 use of these extensions is likely to make other debuggers crash or
5956 refuse to read the program, and may cause assemblers other than the GNU
5957 assembler (GAS) to fail with an error.
5958
5959 @item -gvms
5960 @opindex gvms
5961 Produce debugging information in Alpha/VMS debug format (if that is
5962 supported). This is the format used by DEBUG on Alpha/VMS systems.
5963
5964 @item -g@var{level}
5965 @itemx -ggdb@var{level}
5966 @itemx -gstabs@var{level}
5967 @itemx -gcoff@var{level}
5968 @itemx -gxcoff@var{level}
5969 @itemx -gvms@var{level}
5970 Request debugging information and also use @var{level} to specify how
5971 much information. The default level is 2.
5972
5973 Level 0 produces no debug information at all. Thus, @option{-g0} negates
5974 @option{-g}.
5975
5976 Level 1 produces minimal information, enough for making backtraces in
5977 parts of the program that you don't plan to debug. This includes
5978 descriptions of functions and external variables, and line number
5979 tables, but no information about local variables.
5980
5981 Level 3 includes extra information, such as all the macro definitions
5982 present in the program. Some debuggers support macro expansion when
5983 you use @option{-g3}.
5984
5985 @option{-gdwarf} does not accept a concatenated debug level, to avoid
5986 confusion with @option{-gdwarf-@var{level}}.
5987 Instead use an additional @option{-g@var{level}} option to change the
5988 debug level for DWARF.
5989
5990 @item -feliminate-unused-debug-symbols
5991 @opindex feliminate-unused-debug-symbols
5992 Produce debugging information in stabs format (if that is supported),
5993 for only symbols that are actually used.
5994
5995 @item -femit-class-debug-always
5996 @opindex femit-class-debug-always
5997 Instead of emitting debugging information for a C++ class in only one
5998 object file, emit it in all object files using the class. This option
5999 should be used only with debuggers that are unable to handle the way GCC
6000 normally emits debugging information for classes because using this
6001 option increases the size of debugging information by as much as a
6002 factor of two.
6003
6004 @item -fno-merge-debug-strings
6005 @opindex fmerge-debug-strings
6006 @opindex fno-merge-debug-strings
6007 Direct the linker to not merge together strings in the debugging
6008 information that are identical in different object files. Merging is
6009 not supported by all assemblers or linkers. Merging decreases the size
6010 of the debug information in the output file at the cost of increasing
6011 link processing time. Merging is enabled by default.
6012
6013 @item -fdebug-prefix-map=@var{old}=@var{new}
6014 @opindex fdebug-prefix-map
6015 When compiling files in directory @file{@var{old}}, record debugging
6016 information describing them as in @file{@var{new}} instead.
6017
6018 @item -fvar-tracking
6019 @opindex fvar-tracking
6020 Run variable tracking pass. It computes where variables are stored at each
6021 position in code. Better debugging information is then generated
6022 (if the debugging information format supports this information).
6023
6024 It is enabled by default when compiling with optimization (@option{-Os},
6025 @option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
6026 the debug info format supports it.
6027
6028 @item -fvar-tracking-assignments
6029 @opindex fvar-tracking-assignments
6030 @opindex fno-var-tracking-assignments
6031 Annotate assignments to user variables early in the compilation and
6032 attempt to carry the annotations over throughout the compilation all the
6033 way to the end, in an attempt to improve debug information while
6034 optimizing. Use of @option{-gdwarf-4} is recommended along with it.
6035
6036 It can be enabled even if var-tracking is disabled, in which case
6037 annotations are created and maintained, but discarded at the end.
6038 By default, this flag is enabled together with @option{-fvar-tracking},
6039 except when selective scheduling is enabled.
6040
6041 @item -gsplit-dwarf
6042 @opindex gsplit-dwarf
6043 Separate as much DWARF debugging information as possible into a
6044 separate output file with the extension @file{.dwo}. This option allows
6045 the build system to avoid linking files with debug information. To
6046 be useful, this option requires a debugger capable of reading @file{.dwo}
6047 files.
6048
6049 @item -gpubnames
6050 @opindex gpubnames
6051 Generate DWARF @code{.debug_pubnames} and @code{.debug_pubtypes} sections.
6052
6053 @item -ggnu-pubnames
6054 @opindex ggnu-pubnames
6055 Generate @code{.debug_pubnames} and @code{.debug_pubtypes} sections in a format
6056 suitable for conversion into a GDB@ index. This option is only useful
6057 with a linker that can produce GDB@ index version 7.
6058
6059 @item -fdebug-types-section
6060 @opindex fdebug-types-section
6061 @opindex fno-debug-types-section
6062 When using DWARF Version 4 or higher, type DIEs can be put into
6063 their own @code{.debug_types} section instead of making them part of the
6064 @code{.debug_info} section. It is more efficient to put them in a separate
6065 comdat sections since the linker can then remove duplicates.
6066 But not all DWARF consumers support @code{.debug_types} sections yet
6067 and on some objects @code{.debug_types} produces larger instead of smaller
6068 debugging information.
6069
6070 @item -grecord-gcc-switches
6071 @item -gno-record-gcc-switches
6072 @opindex grecord-gcc-switches
6073 @opindex gno-record-gcc-switches
6074 This switch causes the command-line options used to invoke the
6075 compiler that may affect code generation to be appended to the
6076 DW_AT_producer attribute in DWARF debugging information. The options
6077 are concatenated with spaces separating them from each other and from
6078 the compiler version.
6079 It is enabled by default.
6080 See also @option{-frecord-gcc-switches} for another
6081 way of storing compiler options into the object file.
6082
6083 @item -gstrict-dwarf
6084 @opindex gstrict-dwarf
6085 Disallow using extensions of later DWARF standard version than selected
6086 with @option{-gdwarf-@var{version}}. On most targets using non-conflicting
6087 DWARF extensions from later standard versions is allowed.
6088
6089 @item -gno-strict-dwarf
6090 @opindex gno-strict-dwarf
6091 Allow using extensions of later DWARF standard version than selected with
6092 @option{-gdwarf-@var{version}}.
6093
6094 @item -gz@r{[}=@var{type}@r{]}
6095 @opindex gz
6096 Produce compressed debug sections in DWARF format, if that is supported.
6097 If @var{type} is not given, the default type depends on the capabilities
6098 of the assembler and linker used. @var{type} may be one of
6099 @samp{none} (don't compress debug sections), @samp{zlib} (use zlib
6100 compression in ELF gABI format), or @samp{zlib-gnu} (use zlib
6101 compression in traditional GNU format). If the linker doesn't support
6102 writing compressed debug sections, the option is rejected. Otherwise,
6103 if the assembler does not support them, @option{-gz} is silently ignored
6104 when producing object files.
6105
6106 @item -feliminate-dwarf2-dups
6107 @opindex feliminate-dwarf2-dups
6108 Compress DWARF debugging information by eliminating duplicated
6109 information about each symbol. This option only makes sense when
6110 generating DWARF debugging information.
6111
6112 @item -femit-struct-debug-baseonly
6113 @opindex femit-struct-debug-baseonly
6114 Emit debug information for struct-like types
6115 only when the base name of the compilation source file
6116 matches the base name of file in which the struct is defined.
6117
6118 This option substantially reduces the size of debugging information,
6119 but at significant potential loss in type information to the debugger.
6120 See @option{-femit-struct-debug-reduced} for a less aggressive option.
6121 See @option{-femit-struct-debug-detailed} for more detailed control.
6122
6123 This option works only with DWARF debug output.
6124
6125 @item -femit-struct-debug-reduced
6126 @opindex femit-struct-debug-reduced
6127 Emit debug information for struct-like types
6128 only when the base name of the compilation source file
6129 matches the base name of file in which the type is defined,
6130 unless the struct is a template or defined in a system header.
6131
6132 This option significantly reduces the size of debugging information,
6133 with some potential loss in type information to the debugger.
6134 See @option{-femit-struct-debug-baseonly} for a more aggressive option.
6135 See @option{-femit-struct-debug-detailed} for more detailed control.
6136
6137 This option works only with DWARF debug output.
6138
6139 @item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
6140 @opindex femit-struct-debug-detailed
6141 Specify the struct-like types
6142 for which the compiler generates debug information.
6143 The intent is to reduce duplicate struct debug information
6144 between different object files within the same program.
6145
6146 This option is a detailed version of
6147 @option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
6148 which serves for most needs.
6149
6150 A specification has the syntax@*
6151 [@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none})
6152
6153 The optional first word limits the specification to
6154 structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
6155 A struct type is used directly when it is the type of a variable, member.
6156 Indirect uses arise through pointers to structs.
6157 That is, when use of an incomplete struct is valid, the use is indirect.
6158 An example is
6159 @samp{struct one direct; struct two * indirect;}.
6160
6161 The optional second word limits the specification to
6162 ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
6163 Generic structs are a bit complicated to explain.
6164 For C++, these are non-explicit specializations of template classes,
6165 or non-template classes within the above.
6166 Other programming languages have generics,
6167 but @option{-femit-struct-debug-detailed} does not yet implement them.
6168
6169 The third word specifies the source files for those
6170 structs for which the compiler should emit debug information.
6171 The values @samp{none} and @samp{any} have the normal meaning.
6172 The value @samp{base} means that
6173 the base of name of the file in which the type declaration appears
6174 must match the base of the name of the main compilation file.
6175 In practice, this means that when compiling @file{foo.c}, debug information
6176 is generated for types declared in that file and @file{foo.h},
6177 but not other header files.
6178 The value @samp{sys} means those types satisfying @samp{base}
6179 or declared in system or compiler headers.
6180
6181 You may need to experiment to determine the best settings for your application.
6182
6183 The default is @option{-femit-struct-debug-detailed=all}.
6184
6185 This option works only with DWARF debug output.
6186
6187 @item -fno-dwarf2-cfi-asm
6188 @opindex fdwarf2-cfi-asm
6189 @opindex fno-dwarf2-cfi-asm
6190 Emit DWARF unwind info as compiler generated @code{.eh_frame} section
6191 instead of using GAS @code{.cfi_*} directives.
6192
6193 @item -fno-eliminate-unused-debug-types
6194 @opindex feliminate-unused-debug-types
6195 @opindex fno-eliminate-unused-debug-types
6196 Normally, when producing DWARF output, GCC avoids producing debug symbol
6197 output for types that are nowhere used in the source file being compiled.
6198 Sometimes it is useful to have GCC emit debugging
6199 information for all types declared in a compilation
6200 unit, regardless of whether or not they are actually used
6201 in that compilation unit, for example
6202 if, in the debugger, you want to cast a value to a type that is
6203 not actually used in your program (but is declared). More often,
6204 however, this results in a significant amount of wasted space.
6205 @end table
6206
6207 @node Optimize Options
6208 @section Options That Control Optimization
6209 @cindex optimize options
6210 @cindex options, optimization
6211
6212 These options control various sorts of optimizations.
6213
6214 Without any optimization option, the compiler's goal is to reduce the
6215 cost of compilation and to make debugging produce the expected
6216 results. Statements are independent: if you stop the program with a
6217 breakpoint between statements, you can then assign a new value to any
6218 variable or change the program counter to any other statement in the
6219 function and get exactly the results you expect from the source
6220 code.
6221
6222 Turning on optimization flags makes the compiler attempt to improve
6223 the performance and/or code size at the expense of compilation time
6224 and possibly the ability to debug the program.
6225
6226 The compiler performs optimization based on the knowledge it has of the
6227 program. Compiling multiple files at once to a single output file mode allows
6228 the compiler to use information gained from all of the files when compiling
6229 each of them.
6230
6231 Not all optimizations are controlled directly by a flag. Only
6232 optimizations that have a flag are listed in this section.
6233
6234 Most optimizations are only enabled if an @option{-O} level is set on
6235 the command line. Otherwise they are disabled, even if individual
6236 optimization flags are specified.
6237
6238 Depending on the target and how GCC was configured, a slightly different
6239 set of optimizations may be enabled at each @option{-O} level than
6240 those listed here. You can invoke GCC with @option{-Q --help=optimizers}
6241 to find out the exact set of optimizations that are enabled at each level.
6242 @xref{Overall Options}, for examples.
6243
6244 @table @gcctabopt
6245 @item -O
6246 @itemx -O1
6247 @opindex O
6248 @opindex O1
6249 Optimize. Optimizing compilation takes somewhat more time, and a lot
6250 more memory for a large function.
6251
6252 With @option{-O}, the compiler tries to reduce code size and execution
6253 time, without performing any optimizations that take a great deal of
6254 compilation time.
6255
6256 @option{-O} turns on the following optimization flags:
6257 @gccoptlist{
6258 -fauto-inc-dec @gol
6259 -fbranch-count-reg @gol
6260 -fcombine-stack-adjustments @gol
6261 -fcompare-elim @gol
6262 -fcprop-registers @gol
6263 -fdce @gol
6264 -fdefer-pop @gol
6265 -fdelayed-branch @gol
6266 -fdse @gol
6267 -fforward-propagate @gol
6268 -fguess-branch-probability @gol
6269 -fif-conversion2 @gol
6270 -fif-conversion @gol
6271 -finline-functions-called-once @gol
6272 -fipa-pure-const @gol
6273 -fipa-profile @gol
6274 -fipa-reference @gol
6275 -fmerge-constants @gol
6276 -fmove-loop-invariants @gol
6277 -freorder-blocks @gol
6278 -fshrink-wrap @gol
6279 -fsplit-wide-types @gol
6280 -fssa-backprop @gol
6281 -fssa-phiopt @gol
6282 -ftree-bit-ccp @gol
6283 -ftree-ccp @gol
6284 -ftree-ch @gol
6285 -ftree-coalesce-vars @gol
6286 -ftree-copy-prop @gol
6287 -ftree-dce @gol
6288 -ftree-dominator-opts @gol
6289 -ftree-dse @gol
6290 -ftree-forwprop @gol
6291 -ftree-fre @gol
6292 -ftree-phiprop @gol
6293 -ftree-sink @gol
6294 -ftree-slsr @gol
6295 -ftree-sra @gol
6296 -ftree-pta @gol
6297 -ftree-ter @gol
6298 -funit-at-a-time}
6299
6300 @option{-O} also turns on @option{-fomit-frame-pointer} on machines
6301 where doing so does not interfere with debugging.
6302
6303 @item -O2
6304 @opindex O2
6305 Optimize even more. GCC performs nearly all supported optimizations
6306 that do not involve a space-speed tradeoff.
6307 As compared to @option{-O}, this option increases both compilation time
6308 and the performance of the generated code.
6309
6310 @option{-O2} turns on all optimization flags specified by @option{-O}. It
6311 also turns on the following optimization flags:
6312 @gccoptlist{-fthread-jumps @gol
6313 -falign-functions -falign-jumps @gol
6314 -falign-loops -falign-labels @gol
6315 -fcaller-saves @gol
6316 -fcrossjumping @gol
6317 -fcse-follow-jumps -fcse-skip-blocks @gol
6318 -fdelete-null-pointer-checks @gol
6319 -fdevirtualize -fdevirtualize-speculatively @gol
6320 -fexpensive-optimizations @gol
6321 -fgcse -fgcse-lm @gol
6322 -fhoist-adjacent-loads @gol
6323 -finline-small-functions @gol
6324 -findirect-inlining @gol
6325 -fipa-cp @gol
6326 -fipa-cp-alignment @gol
6327 -fipa-sra @gol
6328 -fipa-icf @gol
6329 -fisolate-erroneous-paths-dereference @gol
6330 -flra-remat @gol
6331 -foptimize-sibling-calls @gol
6332 -foptimize-strlen @gol
6333 -fpartial-inlining @gol
6334 -fpeephole2 @gol
6335 -freorder-blocks-algorithm=stc @gol
6336 -freorder-blocks-and-partition -freorder-functions @gol
6337 -frerun-cse-after-loop @gol
6338 -fsched-interblock -fsched-spec @gol
6339 -fschedule-insns -fschedule-insns2 @gol
6340 -fstrict-aliasing -fstrict-overflow @gol
6341 -ftree-builtin-call-dce @gol
6342 -ftree-switch-conversion -ftree-tail-merge @gol
6343 -ftree-pre @gol
6344 -ftree-vrp @gol
6345 -fipa-ra}
6346
6347 Please note the warning under @option{-fgcse} about
6348 invoking @option{-O2} on programs that use computed gotos.
6349
6350 @item -O3
6351 @opindex O3
6352 Optimize yet more. @option{-O3} turns on all optimizations specified
6353 by @option{-O2} and also turns on the @option{-finline-functions},
6354 @option{-funswitch-loops}, @option{-fpredictive-commoning},
6355 @option{-fgcse-after-reload}, @option{-ftree-loop-vectorize},
6356 @option{-ftree-loop-distribute-patterns}, @option{-fsplit-paths}
6357 @option{-ftree-slp-vectorize}, @option{-fvect-cost-model},
6358 @option{-ftree-partial-pre}, @option{-fpeel-loops}
6359 and @option{-fipa-cp-clone} options.
6360
6361 @item -O0
6362 @opindex O0
6363 Reduce compilation time and make debugging produce the expected
6364 results. This is the default.
6365
6366 @item -Os
6367 @opindex Os
6368 Optimize for size. @option{-Os} enables all @option{-O2} optimizations that
6369 do not typically increase code size. It also performs further
6370 optimizations designed to reduce code size.
6371
6372 @option{-Os} disables the following optimization flags:
6373 @gccoptlist{-falign-functions -falign-jumps -falign-loops @gol
6374 -falign-labels -freorder-blocks -freorder-blocks-algorithm=stc @gol
6375 -freorder-blocks-and-partition -fprefetch-loop-arrays}
6376
6377 @item -Ofast
6378 @opindex Ofast
6379 Disregard strict standards compliance. @option{-Ofast} enables all
6380 @option{-O3} optimizations. It also enables optimizations that are not
6381 valid for all standard-compliant programs.
6382 It turns on @option{-ffast-math} and the Fortran-specific
6383 @option{-fno-protect-parens} and @option{-fstack-arrays}.
6384
6385 @item -Og
6386 @opindex Og
6387 Optimize debugging experience. @option{-Og} enables optimizations
6388 that do not interfere with debugging. It should be the optimization
6389 level of choice for the standard edit-compile-debug cycle, offering
6390 a reasonable level of optimization while maintaining fast compilation
6391 and a good debugging experience.
6392 @end table
6393
6394 If you use multiple @option{-O} options, with or without level numbers,
6395 the last such option is the one that is effective.
6396
6397 Options of the form @option{-f@var{flag}} specify machine-independent
6398 flags. Most flags have both positive and negative forms; the negative
6399 form of @option{-ffoo} is @option{-fno-foo}. In the table
6400 below, only one of the forms is listed---the one you typically
6401 use. You can figure out the other form by either removing @samp{no-}
6402 or adding it.
6403
6404 The following options control specific optimizations. They are either
6405 activated by @option{-O} options or are related to ones that are. You
6406 can use the following flags in the rare cases when ``fine-tuning'' of
6407 optimizations to be performed is desired.
6408
6409 @table @gcctabopt
6410 @item -fno-defer-pop
6411 @opindex fno-defer-pop
6412 Always pop the arguments to each function call as soon as that function
6413 returns. For machines that must pop arguments after a function call,
6414 the compiler normally lets arguments accumulate on the stack for several
6415 function calls and pops them all at once.
6416
6417 Disabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
6418
6419 @item -fforward-propagate
6420 @opindex fforward-propagate
6421 Perform a forward propagation pass on RTL@. The pass tries to combine two
6422 instructions and checks if the result can be simplified. If loop unrolling
6423 is active, two passes are performed and the second is scheduled after
6424 loop unrolling.
6425
6426 This option is enabled by default at optimization levels @option{-O},
6427 @option{-O2}, @option{-O3}, @option{-Os}.
6428
6429 @item -ffp-contract=@var{style}
6430 @opindex ffp-contract
6431 @option{-ffp-contract=off} disables floating-point expression contraction.
6432 @option{-ffp-contract=fast} enables floating-point expression contraction
6433 such as forming of fused multiply-add operations if the target has
6434 native support for them.
6435 @option{-ffp-contract=on} enables floating-point expression contraction
6436 if allowed by the language standard. This is currently not implemented
6437 and treated equal to @option{-ffp-contract=off}.
6438
6439 The default is @option{-ffp-contract=fast}.
6440
6441 @item -fomit-frame-pointer
6442 @opindex fomit-frame-pointer
6443 Don't keep the frame pointer in a register for functions that
6444 don't need one. This avoids the instructions to save, set up and
6445 restore frame pointers; it also makes an extra register available
6446 in many functions. @strong{It also makes debugging impossible on
6447 some machines.}
6448
6449 On some machines, such as the VAX, this flag has no effect, because
6450 the standard calling sequence automatically handles the frame pointer
6451 and nothing is saved by pretending it doesn't exist. The
6452 machine-description macro @code{FRAME_POINTER_REQUIRED} controls
6453 whether a target machine supports this flag. @xref{Registers,,Register
6454 Usage, gccint, GNU Compiler Collection (GCC) Internals}.
6455
6456 The default setting (when not optimizing for
6457 size) for 32-bit GNU/Linux x86 and 32-bit Darwin x86 targets is
6458 @option{-fomit-frame-pointer}. You can configure GCC with the
6459 @option{--enable-frame-pointer} configure option to change the default.
6460
6461 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
6462
6463 @item -foptimize-sibling-calls
6464 @opindex foptimize-sibling-calls
6465 Optimize sibling and tail recursive calls.
6466
6467 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
6468
6469 @item -foptimize-strlen
6470 @opindex foptimize-strlen
6471 Optimize various standard C string functions (e.g. @code{strlen},
6472 @code{strchr} or @code{strcpy}) and
6473 their @code{_FORTIFY_SOURCE} counterparts into faster alternatives.
6474
6475 Enabled at levels @option{-O2}, @option{-O3}.
6476
6477 @item -fno-inline
6478 @opindex fno-inline
6479 Do not expand any functions inline apart from those marked with
6480 the @code{always_inline} attribute. This is the default when not
6481 optimizing.
6482
6483 Single functions can be exempted from inlining by marking them
6484 with the @code{noinline} attribute.
6485
6486 @item -finline-small-functions
6487 @opindex finline-small-functions
6488 Integrate functions into their callers when their body is smaller than expected
6489 function call code (so overall size of program gets smaller). The compiler
6490 heuristically decides which functions are simple enough to be worth integrating
6491 in this way. This inlining applies to all functions, even those not declared
6492 inline.
6493
6494 Enabled at level @option{-O2}.
6495
6496 @item -findirect-inlining
6497 @opindex findirect-inlining
6498 Inline also indirect calls that are discovered to be known at compile
6499 time thanks to previous inlining. This option has any effect only
6500 when inlining itself is turned on by the @option{-finline-functions}
6501 or @option{-finline-small-functions} options.
6502
6503 Enabled at level @option{-O2}.
6504
6505 @item -finline-functions
6506 @opindex finline-functions
6507 Consider all functions for inlining, even if they are not declared inline.
6508 The compiler heuristically decides which functions are worth integrating
6509 in this way.
6510
6511 If all calls to a given function are integrated, and the function is
6512 declared @code{static}, then the function is normally not output as
6513 assembler code in its own right.
6514
6515 Enabled at level @option{-O3}.
6516
6517 @item -finline-functions-called-once
6518 @opindex finline-functions-called-once
6519 Consider all @code{static} functions called once for inlining into their
6520 caller even if they are not marked @code{inline}. If a call to a given
6521 function is integrated, then the function is not output as assembler code
6522 in its own right.
6523
6524 Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os}.
6525
6526 @item -fearly-inlining
6527 @opindex fearly-inlining
6528 Inline functions marked by @code{always_inline} and functions whose body seems
6529 smaller than the function call overhead early before doing
6530 @option{-fprofile-generate} instrumentation and real inlining pass. Doing so
6531 makes profiling significantly cheaper and usually inlining faster on programs
6532 having large chains of nested wrapper functions.
6533
6534 Enabled by default.
6535
6536 @item -fipa-sra
6537 @opindex fipa-sra
6538 Perform interprocedural scalar replacement of aggregates, removal of
6539 unused parameters and replacement of parameters passed by reference
6540 by parameters passed by value.
6541
6542 Enabled at levels @option{-O2}, @option{-O3} and @option{-Os}.
6543
6544 @item -finline-limit=@var{n}
6545 @opindex finline-limit
6546 By default, GCC limits the size of functions that can be inlined. This flag
6547 allows coarse control of this limit. @var{n} is the size of functions that
6548 can be inlined in number of pseudo instructions.
6549
6550 Inlining is actually controlled by a number of parameters, which may be
6551 specified individually by using @option{--param @var{name}=@var{value}}.
6552 The @option{-finline-limit=@var{n}} option sets some of these parameters
6553 as follows:
6554
6555 @table @gcctabopt
6556 @item max-inline-insns-single
6557 is set to @var{n}/2.
6558 @item max-inline-insns-auto
6559 is set to @var{n}/2.
6560 @end table
6561
6562 See below for a documentation of the individual
6563 parameters controlling inlining and for the defaults of these parameters.
6564
6565 @emph{Note:} there may be no value to @option{-finline-limit} that results
6566 in default behavior.
6567
6568 @emph{Note:} pseudo instruction represents, in this particular context, an
6569 abstract measurement of function's size. In no way does it represent a count
6570 of assembly instructions and as such its exact meaning might change from one
6571 release to an another.
6572
6573 @item -fno-keep-inline-dllexport
6574 @opindex fno-keep-inline-dllexport
6575 This is a more fine-grained version of @option{-fkeep-inline-functions},
6576 which applies only to functions that are declared using the @code{dllexport}
6577 attribute or declspec (@xref{Function Attributes,,Declaring Attributes of
6578 Functions}.)
6579
6580 @item -fkeep-inline-functions
6581 @opindex fkeep-inline-functions
6582 In C, emit @code{static} functions that are declared @code{inline}
6583 into the object file, even if the function has been inlined into all
6584 of its callers. This switch does not affect functions using the
6585 @code{extern inline} extension in GNU C90@. In C++, emit any and all
6586 inline functions into the object file.
6587
6588 @item -fkeep-static-functions
6589 @opindex fkeep-static-functions
6590 Emit @code{static} functions into the object file, even if the function
6591 is never used.
6592
6593 @item -fkeep-static-consts
6594 @opindex fkeep-static-consts
6595 Emit variables declared @code{static const} when optimization isn't turned
6596 on, even if the variables aren't referenced.
6597
6598 GCC enables this option by default. If you want to force the compiler to
6599 check if a variable is referenced, regardless of whether or not
6600 optimization is turned on, use the @option{-fno-keep-static-consts} option.
6601
6602 @item -fmerge-constants
6603 @opindex fmerge-constants
6604 Attempt to merge identical constants (string constants and floating-point
6605 constants) across compilation units.
6606
6607 This option is the default for optimized compilation if the assembler and
6608 linker support it. Use @option{-fno-merge-constants} to inhibit this
6609 behavior.
6610
6611 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
6612
6613 @item -fmerge-all-constants
6614 @opindex fmerge-all-constants
6615 Attempt to merge identical constants and identical variables.
6616
6617 This option implies @option{-fmerge-constants}. In addition to
6618 @option{-fmerge-constants} this considers e.g.@: even constant initialized
6619 arrays or initialized constant variables with integral or floating-point
6620 types. Languages like C or C++ require each variable, including multiple
6621 instances of the same variable in recursive calls, to have distinct locations,
6622 so using this option results in non-conforming
6623 behavior.
6624
6625 @item -fmodulo-sched
6626 @opindex fmodulo-sched
6627 Perform swing modulo scheduling immediately before the first scheduling
6628 pass. This pass looks at innermost loops and reorders their
6629 instructions by overlapping different iterations.
6630
6631 @item -fmodulo-sched-allow-regmoves
6632 @opindex fmodulo-sched-allow-regmoves
6633 Perform more aggressive SMS-based modulo scheduling with register moves
6634 allowed. By setting this flag certain anti-dependences edges are
6635 deleted, which triggers the generation of reg-moves based on the
6636 life-range analysis. This option is effective only with
6637 @option{-fmodulo-sched} enabled.
6638
6639 @item -fno-branch-count-reg
6640 @opindex fno-branch-count-reg
6641 Avoid running a pass scanning for opportunities to use ``decrement and
6642 branch'' instructions on a count register instead of generating sequences
6643 of instructions that decrement a register, compare it against zero, and
6644 then branch based upon the result. This option is only meaningful on
6645 architectures that support such instructions, which include x86, PowerPC,
6646 IA-64 and S/390. Note that the @option{-fno-branch-count-reg} option
6647 doesn't remove the decrement and branch instructions from the generated
6648 instruction stream introduced by other optimization passes.
6649
6650 Enabled by default at @option{-O1} and higher.
6651
6652 The default is @option{-fbranch-count-reg}.
6653
6654 @item -fno-function-cse
6655 @opindex fno-function-cse
6656 Do not put function addresses in registers; make each instruction that
6657 calls a constant function contain the function's address explicitly.
6658
6659 This option results in less efficient code, but some strange hacks
6660 that alter the assembler output may be confused by the optimizations
6661 performed when this option is not used.
6662
6663 The default is @option{-ffunction-cse}
6664
6665 @item -fno-zero-initialized-in-bss
6666 @opindex fno-zero-initialized-in-bss
6667 If the target supports a BSS section, GCC by default puts variables that
6668 are initialized to zero into BSS@. This can save space in the resulting
6669 code.
6670
6671 This option turns off this behavior because some programs explicitly
6672 rely on variables going to the data section---e.g., so that the
6673 resulting executable can find the beginning of that section and/or make
6674 assumptions based on that.
6675
6676 The default is @option{-fzero-initialized-in-bss}.
6677
6678 @item -fthread-jumps
6679 @opindex fthread-jumps
6680 Perform optimizations that check to see if a jump branches to a
6681 location where another comparison subsumed by the first is found. If
6682 so, the first branch is redirected to either the destination of the
6683 second branch or a point immediately following it, depending on whether
6684 the condition is known to be true or false.
6685
6686 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
6687
6688 @item -fsplit-wide-types
6689 @opindex fsplit-wide-types
6690 When using a type that occupies multiple registers, such as @code{long
6691 long} on a 32-bit system, split the registers apart and allocate them
6692 independently. This normally generates better code for those types,
6693 but may make debugging more difficult.
6694
6695 Enabled at levels @option{-O}, @option{-O2}, @option{-O3},
6696 @option{-Os}.
6697
6698 @item -fcse-follow-jumps
6699 @opindex fcse-follow-jumps
6700 In common subexpression elimination (CSE), scan through jump instructions
6701 when the target of the jump is not reached by any other path. For
6702 example, when CSE encounters an @code{if} statement with an
6703 @code{else} clause, CSE follows the jump when the condition
6704 tested is false.
6705
6706 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
6707
6708 @item -fcse-skip-blocks
6709 @opindex fcse-skip-blocks
6710 This is similar to @option{-fcse-follow-jumps}, but causes CSE to
6711 follow jumps that conditionally skip over blocks. When CSE
6712 encounters a simple @code{if} statement with no else clause,
6713 @option{-fcse-skip-blocks} causes CSE to follow the jump around the
6714 body of the @code{if}.
6715
6716 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
6717
6718 @item -frerun-cse-after-loop
6719 @opindex frerun-cse-after-loop
6720 Re-run common subexpression elimination after loop optimizations are
6721 performed.
6722
6723 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
6724
6725 @item -fgcse
6726 @opindex fgcse
6727 Perform a global common subexpression elimination pass.
6728 This pass also performs global constant and copy propagation.
6729
6730 @emph{Note:} When compiling a program using computed gotos, a GCC
6731 extension, you may get better run-time performance if you disable
6732 the global common subexpression elimination pass by adding
6733 @option{-fno-gcse} to the command line.
6734
6735 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
6736
6737 @item -fgcse-lm
6738 @opindex fgcse-lm
6739 When @option{-fgcse-lm} is enabled, global common subexpression elimination
6740 attempts to move loads that are only killed by stores into themselves. This
6741 allows a loop containing a load/store sequence to be changed to a load outside
6742 the loop, and a copy/store within the loop.
6743
6744 Enabled by default when @option{-fgcse} is enabled.
6745
6746 @item -fgcse-sm
6747 @opindex fgcse-sm
6748 When @option{-fgcse-sm} is enabled, a store motion pass is run after
6749 global common subexpression elimination. This pass attempts to move
6750 stores out of loops. When used in conjunction with @option{-fgcse-lm},
6751 loops containing a load/store sequence can be changed to a load before
6752 the loop and a store after the loop.
6753
6754 Not enabled at any optimization level.
6755
6756 @item -fgcse-las
6757 @opindex fgcse-las
6758 When @option{-fgcse-las} is enabled, the global common subexpression
6759 elimination pass eliminates redundant loads that come after stores to the
6760 same memory location (both partial and full redundancies).
6761
6762 Not enabled at any optimization level.
6763
6764 @item -fgcse-after-reload
6765 @opindex fgcse-after-reload
6766 When @option{-fgcse-after-reload} is enabled, a redundant load elimination
6767 pass is performed after reload. The purpose of this pass is to clean up
6768 redundant spilling.
6769
6770 @item -faggressive-loop-optimizations
6771 @opindex faggressive-loop-optimizations
6772 This option tells the loop optimizer to use language constraints to
6773 derive bounds for the number of iterations of a loop. This assumes that
6774 loop code does not invoke undefined behavior by for example causing signed
6775 integer overflows or out-of-bound array accesses. The bounds for the
6776 number of iterations of a loop are used to guide loop unrolling and peeling
6777 and loop exit test optimizations.
6778 This option is enabled by default.
6779
6780 @item -funsafe-loop-optimizations
6781 @opindex funsafe-loop-optimizations
6782 This option tells the loop optimizer to assume that loop indices do not
6783 overflow, and that loops with nontrivial exit condition are not
6784 infinite. This enables a wider range of loop optimizations even if
6785 the loop optimizer itself cannot prove that these assumptions are valid.
6786 If you use @option{-Wunsafe-loop-optimizations}, the compiler warns you
6787 if it finds this kind of loop.
6788
6789 @item -funconstrained-commons
6790 @opindex funconstrained-commons
6791 This option tells the compiler that variables declared in common blocks
6792 (e.g. Fortran) may later be overridden with longer trailing arrays. This
6793 prevents certain optimizations that depend on knowing the array bounds.
6794
6795 @item -fcrossjumping
6796 @opindex fcrossjumping
6797 Perform cross-jumping transformation.
6798 This transformation unifies equivalent code and saves code size. The
6799 resulting code may or may not perform better than without cross-jumping.
6800
6801 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
6802
6803 @item -fauto-inc-dec
6804 @opindex fauto-inc-dec
6805 Combine increments or decrements of addresses with memory accesses.
6806 This pass is always skipped on architectures that do not have
6807 instructions to support this. Enabled by default at @option{-O} and
6808 higher on architectures that support this.
6809
6810 @item -fdce
6811 @opindex fdce
6812 Perform dead code elimination (DCE) on RTL@.
6813 Enabled by default at @option{-O} and higher.
6814
6815 @item -fdse
6816 @opindex fdse
6817 Perform dead store elimination (DSE) on RTL@.
6818 Enabled by default at @option{-O} and higher.
6819
6820 @item -fif-conversion
6821 @opindex fif-conversion
6822 Attempt to transform conditional jumps into branch-less equivalents. This
6823 includes use of conditional moves, min, max, set flags and abs instructions, and
6824 some tricks doable by standard arithmetics. The use of conditional execution
6825 on chips where it is available is controlled by @option{-fif-conversion2}.
6826
6827 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
6828
6829 @item -fif-conversion2
6830 @opindex fif-conversion2
6831 Use conditional execution (where available) to transform conditional jumps into
6832 branch-less equivalents.
6833
6834 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
6835
6836 @item -fdeclone-ctor-dtor
6837 @opindex fdeclone-ctor-dtor
6838 The C++ ABI requires multiple entry points for constructors and
6839 destructors: one for a base subobject, one for a complete object, and
6840 one for a virtual destructor that calls operator delete afterwards.
6841 For a hierarchy with virtual bases, the base and complete variants are
6842 clones, which means two copies of the function. With this option, the
6843 base and complete variants are changed to be thunks that call a common
6844 implementation.
6845
6846 Enabled by @option{-Os}.
6847
6848 @item -fdelete-null-pointer-checks
6849 @opindex fdelete-null-pointer-checks
6850 Assume that programs cannot safely dereference null pointers, and that
6851 no code or data element resides at address zero.
6852 This option enables simple constant
6853 folding optimizations at all optimization levels. In addition, other
6854 optimization passes in GCC use this flag to control global dataflow
6855 analyses that eliminate useless checks for null pointers; these assume
6856 that a memory access to address zero always results in a trap, so
6857 that if a pointer is checked after it has already been dereferenced,
6858 it cannot be null.
6859
6860 Note however that in some environments this assumption is not true.
6861 Use @option{-fno-delete-null-pointer-checks} to disable this optimization
6862 for programs that depend on that behavior.
6863
6864 This option is enabled by default on most targets. On Nios II ELF, it
6865 defaults to off. On AVR and CR16, this option is completely disabled.
6866
6867 Passes that use the dataflow information
6868 are enabled independently at different optimization levels.
6869
6870 @item -fdevirtualize
6871 @opindex fdevirtualize
6872 Attempt to convert calls to virtual functions to direct calls. This
6873 is done both within a procedure and interprocedurally as part of
6874 indirect inlining (@option{-findirect-inlining}) and interprocedural constant
6875 propagation (@option{-fipa-cp}).
6876 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
6877
6878 @item -fdevirtualize-speculatively
6879 @opindex fdevirtualize-speculatively
6880 Attempt to convert calls to virtual functions to speculative direct calls.
6881 Based on the analysis of the type inheritance graph, determine for a given call
6882 the set of likely targets. If the set is small, preferably of size 1, change
6883 the call into a conditional deciding between direct and indirect calls. The
6884 speculative calls enable more optimizations, such as inlining. When they seem
6885 useless after further optimization, they are converted back into original form.
6886
6887 @item -fdevirtualize-at-ltrans
6888 @opindex fdevirtualize-at-ltrans
6889 Stream extra information needed for aggressive devirtualization when running
6890 the link-time optimizer in local transformation mode.
6891 This option enables more devirtualization but
6892 significantly increases the size of streamed data. For this reason it is
6893 disabled by default.
6894
6895 @item -fexpensive-optimizations
6896 @opindex fexpensive-optimizations
6897 Perform a number of minor optimizations that are relatively expensive.
6898
6899 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
6900
6901 @item -free
6902 @opindex free
6903 Attempt to remove redundant extension instructions. This is especially
6904 helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
6905 registers after writing to their lower 32-bit half.
6906
6907 Enabled for Alpha, AArch64 and x86 at levels @option{-O2},
6908 @option{-O3}, @option{-Os}.
6909
6910 @item -fno-lifetime-dse
6911 @opindex fno-lifetime-dse
6912 In C++ the value of an object is only affected by changes within its
6913 lifetime: when the constructor begins, the object has an indeterminate
6914 value, and any changes during the lifetime of the object are dead when
6915 the object is destroyed. Normally dead store elimination will take
6916 advantage of this; if your code relies on the value of the object
6917 storage persisting beyond the lifetime of the object, you can use this
6918 flag to disable this optimization. To preserve stores before the
6919 constructor starts (e.g. because your operator new clears the object
6920 storage) but still treat the object as dead after the destructor you,
6921 can use @option{-flifetime-dse=1}. The default behavior can be
6922 explicitly selected with @option{-flifetime-dse=2}.
6923 @option{-flifetime-dse=0} is equivalent to @option{-fno-lifetime-dse}.
6924
6925 @item -flive-range-shrinkage
6926 @opindex flive-range-shrinkage
6927 Attempt to decrease register pressure through register live range
6928 shrinkage. This is helpful for fast processors with small or moderate
6929 size register sets.
6930
6931 @item -fira-algorithm=@var{algorithm}
6932 @opindex fira-algorithm
6933 Use the specified coloring algorithm for the integrated register
6934 allocator. The @var{algorithm} argument can be @samp{priority}, which
6935 specifies Chow's priority coloring, or @samp{CB}, which specifies
6936 Chaitin-Briggs coloring. Chaitin-Briggs coloring is not implemented
6937 for all architectures, but for those targets that do support it, it is
6938 the default because it generates better code.
6939
6940 @item -fira-region=@var{region}
6941 @opindex fira-region
6942 Use specified regions for the integrated register allocator. The
6943 @var{region} argument should be one of the following:
6944
6945 @table @samp
6946
6947 @item all
6948 Use all loops as register allocation regions.
6949 This can give the best results for machines with a small and/or
6950 irregular register set.
6951
6952 @item mixed
6953 Use all loops except for loops with small register pressure
6954 as the regions. This value usually gives
6955 the best results in most cases and for most architectures,
6956 and is enabled by default when compiling with optimization for speed
6957 (@option{-O}, @option{-O2}, @dots{}).
6958
6959 @item one
6960 Use all functions as a single region.
6961 This typically results in the smallest code size, and is enabled by default for
6962 @option{-Os} or @option{-O0}.
6963
6964 @end table
6965
6966 @item -fira-hoist-pressure
6967 @opindex fira-hoist-pressure
6968 Use IRA to evaluate register pressure in the code hoisting pass for
6969 decisions to hoist expressions. This option usually results in smaller
6970 code, but it can slow the compiler down.
6971
6972 This option is enabled at level @option{-Os} for all targets.
6973
6974 @item -fira-loop-pressure
6975 @opindex fira-loop-pressure
6976 Use IRA to evaluate register pressure in loops for decisions to move
6977 loop invariants. This option usually results in generation
6978 of faster and smaller code on machines with large register files (>= 32
6979 registers), but it can slow the compiler down.
6980
6981 This option is enabled at level @option{-O3} for some targets.
6982
6983 @item -fno-ira-share-save-slots
6984 @opindex fno-ira-share-save-slots
6985 Disable sharing of stack slots used for saving call-used hard
6986 registers living through a call. Each hard register gets a
6987 separate stack slot, and as a result function stack frames are
6988 larger.
6989
6990 @item -fno-ira-share-spill-slots
6991 @opindex fno-ira-share-spill-slots
6992 Disable sharing of stack slots allocated for pseudo-registers. Each
6993 pseudo-register that does not get a hard register gets a separate
6994 stack slot, and as a result function stack frames are larger.
6995
6996 @item -flra-remat
6997 @opindex flra-remat
6998 Enable CFG-sensitive rematerialization in LRA. Instead of loading
6999 values of spilled pseudos, LRA tries to rematerialize (recalculate)
7000 values if it is profitable.
7001
7002 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7003
7004 @item -fdelayed-branch
7005 @opindex fdelayed-branch
7006 If supported for the target machine, attempt to reorder instructions
7007 to exploit instruction slots available after delayed branch
7008 instructions.
7009
7010 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7011
7012 @item -fschedule-insns
7013 @opindex fschedule-insns
7014 If supported for the target machine, attempt to reorder instructions to
7015 eliminate execution stalls due to required data being unavailable. This
7016 helps machines that have slow floating point or memory load instructions
7017 by allowing other instructions to be issued until the result of the load
7018 or floating-point instruction is required.
7019
7020 Enabled at levels @option{-O2}, @option{-O3}.
7021
7022 @item -fschedule-insns2
7023 @opindex fschedule-insns2
7024 Similar to @option{-fschedule-insns}, but requests an additional pass of
7025 instruction scheduling after register allocation has been done. This is
7026 especially useful on machines with a relatively small number of
7027 registers and where memory load instructions take more than one cycle.
7028
7029 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7030
7031 @item -fno-sched-interblock
7032 @opindex fno-sched-interblock
7033 Don't schedule instructions across basic blocks. This is normally
7034 enabled by default when scheduling before register allocation, i.e.@:
7035 with @option{-fschedule-insns} or at @option{-O2} or higher.
7036
7037 @item -fno-sched-spec
7038 @opindex fno-sched-spec
7039 Don't allow speculative motion of non-load instructions. This is normally
7040 enabled by default when scheduling before register allocation, i.e.@:
7041 with @option{-fschedule-insns} or at @option{-O2} or higher.
7042
7043 @item -fsched-pressure
7044 @opindex fsched-pressure
7045 Enable register pressure sensitive insn scheduling before register
7046 allocation. This only makes sense when scheduling before register
7047 allocation is enabled, i.e.@: with @option{-fschedule-insns} or at
7048 @option{-O2} or higher. Usage of this option can improve the
7049 generated code and decrease its size by preventing register pressure
7050 increase above the number of available hard registers and subsequent
7051 spills in register allocation.
7052
7053 @item -fsched-spec-load
7054 @opindex fsched-spec-load
7055 Allow speculative motion of some load instructions. This only makes
7056 sense when scheduling before register allocation, i.e.@: with
7057 @option{-fschedule-insns} or at @option{-O2} or higher.
7058
7059 @item -fsched-spec-load-dangerous
7060 @opindex fsched-spec-load-dangerous
7061 Allow speculative motion of more load instructions. This only makes
7062 sense when scheduling before register allocation, i.e.@: with
7063 @option{-fschedule-insns} or at @option{-O2} or higher.
7064
7065 @item -fsched-stalled-insns
7066 @itemx -fsched-stalled-insns=@var{n}
7067 @opindex fsched-stalled-insns
7068 Define how many insns (if any) can be moved prematurely from the queue
7069 of stalled insns into the ready list during the second scheduling pass.
7070 @option{-fno-sched-stalled-insns} means that no insns are moved
7071 prematurely, @option{-fsched-stalled-insns=0} means there is no limit
7072 on how many queued insns can be moved prematurely.
7073 @option{-fsched-stalled-insns} without a value is equivalent to
7074 @option{-fsched-stalled-insns=1}.
7075
7076 @item -fsched-stalled-insns-dep
7077 @itemx -fsched-stalled-insns-dep=@var{n}
7078 @opindex fsched-stalled-insns-dep
7079 Define how many insn groups (cycles) are examined for a dependency
7080 on a stalled insn that is a candidate for premature removal from the queue
7081 of stalled insns. This has an effect only during the second scheduling pass,
7082 and only if @option{-fsched-stalled-insns} is used.
7083 @option{-fno-sched-stalled-insns-dep} is equivalent to
7084 @option{-fsched-stalled-insns-dep=0}.
7085 @option{-fsched-stalled-insns-dep} without a value is equivalent to
7086 @option{-fsched-stalled-insns-dep=1}.
7087
7088 @item -fsched2-use-superblocks
7089 @opindex fsched2-use-superblocks
7090 When scheduling after register allocation, use superblock scheduling.
7091 This allows motion across basic block boundaries,
7092 resulting in faster schedules. This option is experimental, as not all machine
7093 descriptions used by GCC model the CPU closely enough to avoid unreliable
7094 results from the algorithm.
7095
7096 This only makes sense when scheduling after register allocation, i.e.@: with
7097 @option{-fschedule-insns2} or at @option{-O2} or higher.
7098
7099 @item -fsched-group-heuristic
7100 @opindex fsched-group-heuristic
7101 Enable the group heuristic in the scheduler. This heuristic favors
7102 the instruction that belongs to a schedule group. This is enabled
7103 by default when scheduling is enabled, i.e.@: with @option{-fschedule-insns}
7104 or @option{-fschedule-insns2} or at @option{-O2} or higher.
7105
7106 @item -fsched-critical-path-heuristic
7107 @opindex fsched-critical-path-heuristic
7108 Enable the critical-path heuristic in the scheduler. This heuristic favors
7109 instructions on the critical path. This is enabled by default when
7110 scheduling is enabled, i.e.@: with @option{-fschedule-insns}
7111 or @option{-fschedule-insns2} or at @option{-O2} or higher.
7112
7113 @item -fsched-spec-insn-heuristic
7114 @opindex fsched-spec-insn-heuristic
7115 Enable the speculative instruction heuristic in the scheduler. This
7116 heuristic favors speculative instructions with greater dependency weakness.
7117 This is enabled by default when scheduling is enabled, i.e.@:
7118 with @option{-fschedule-insns} or @option{-fschedule-insns2}
7119 or at @option{-O2} or higher.
7120
7121 @item -fsched-rank-heuristic
7122 @opindex fsched-rank-heuristic
7123 Enable the rank heuristic in the scheduler. This heuristic favors
7124 the instruction belonging to a basic block with greater size or frequency.
7125 This is enabled by default when scheduling is enabled, i.e.@:
7126 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
7127 at @option{-O2} or higher.
7128
7129 @item -fsched-last-insn-heuristic
7130 @opindex fsched-last-insn-heuristic
7131 Enable the last-instruction heuristic in the scheduler. This heuristic
7132 favors the instruction that is less dependent on the last instruction
7133 scheduled. This is enabled by default when scheduling is enabled,
7134 i.e.@: with @option{-fschedule-insns} or @option{-fschedule-insns2} or
7135 at @option{-O2} or higher.
7136
7137 @item -fsched-dep-count-heuristic
7138 @opindex fsched-dep-count-heuristic
7139 Enable the dependent-count heuristic in the scheduler. This heuristic
7140 favors the instruction that has more instructions depending on it.
7141 This is enabled by default when scheduling is enabled, i.e.@:
7142 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
7143 at @option{-O2} or higher.
7144
7145 @item -freschedule-modulo-scheduled-loops
7146 @opindex freschedule-modulo-scheduled-loops
7147 Modulo scheduling is performed before traditional scheduling. If a loop
7148 is modulo scheduled, later scheduling passes may change its schedule.
7149 Use this option to control that behavior.
7150
7151 @item -fselective-scheduling
7152 @opindex fselective-scheduling
7153 Schedule instructions using selective scheduling algorithm. Selective
7154 scheduling runs instead of the first scheduler pass.
7155
7156 @item -fselective-scheduling2
7157 @opindex fselective-scheduling2
7158 Schedule instructions using selective scheduling algorithm. Selective
7159 scheduling runs instead of the second scheduler pass.
7160
7161 @item -fsel-sched-pipelining
7162 @opindex fsel-sched-pipelining
7163 Enable software pipelining of innermost loops during selective scheduling.
7164 This option has no effect unless one of @option{-fselective-scheduling} or
7165 @option{-fselective-scheduling2} is turned on.
7166
7167 @item -fsel-sched-pipelining-outer-loops
7168 @opindex fsel-sched-pipelining-outer-loops
7169 When pipelining loops during selective scheduling, also pipeline outer loops.
7170 This option has no effect unless @option{-fsel-sched-pipelining} is turned on.
7171
7172 @item -fsemantic-interposition
7173 @opindex fsemantic-interposition
7174 Some object formats, like ELF, allow interposing of symbols by the
7175 dynamic linker.
7176 This means that for symbols exported from the DSO, the compiler cannot perform
7177 interprocedural propagation, inlining and other optimizations in anticipation
7178 that the function or variable in question may change. While this feature is
7179 useful, for example, to rewrite memory allocation functions by a debugging
7180 implementation, it is expensive in the terms of code quality.
7181 With @option{-fno-semantic-interposition} the compiler assumes that
7182 if interposition happens for functions the overwriting function will have
7183 precisely the same semantics (and side effects).
7184 Similarly if interposition happens
7185 for variables, the constructor of the variable will be the same. The flag
7186 has no effect for functions explicitly declared inline
7187 (where it is never allowed for interposition to change semantics)
7188 and for symbols explicitly declared weak.
7189
7190 @item -fshrink-wrap
7191 @opindex fshrink-wrap
7192 Emit function prologues only before parts of the function that need it,
7193 rather than at the top of the function. This flag is enabled by default at
7194 @option{-O} and higher.
7195
7196 @item -fcaller-saves
7197 @opindex fcaller-saves
7198 Enable allocation of values to registers that are clobbered by
7199 function calls, by emitting extra instructions to save and restore the
7200 registers around such calls. Such allocation is done only when it
7201 seems to result in better code.
7202
7203 This option is always enabled by default on certain machines, usually
7204 those which have no call-preserved registers to use instead.
7205
7206 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7207
7208 @item -fcombine-stack-adjustments
7209 @opindex fcombine-stack-adjustments
7210 Tracks stack adjustments (pushes and pops) and stack memory references
7211 and then tries to find ways to combine them.
7212
7213 Enabled by default at @option{-O1} and higher.
7214
7215 @item -fipa-ra
7216 @opindex fipa-ra
7217 Use caller save registers for allocation if those registers are not used by
7218 any called function. In that case it is not necessary to save and restore
7219 them around calls. This is only possible if called functions are part of
7220 same compilation unit as current function and they are compiled before it.
7221
7222 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7223
7224 @item -fconserve-stack
7225 @opindex fconserve-stack
7226 Attempt to minimize stack usage. The compiler attempts to use less
7227 stack space, even if that makes the program slower. This option
7228 implies setting the @option{large-stack-frame} parameter to 100
7229 and the @option{large-stack-frame-growth} parameter to 400.
7230
7231 @item -ftree-reassoc
7232 @opindex ftree-reassoc
7233 Perform reassociation on trees. This flag is enabled by default
7234 at @option{-O} and higher.
7235
7236 @item -ftree-pre
7237 @opindex ftree-pre
7238 Perform partial redundancy elimination (PRE) on trees. This flag is
7239 enabled by default at @option{-O2} and @option{-O3}.
7240
7241 @item -ftree-partial-pre
7242 @opindex ftree-partial-pre
7243 Make partial redundancy elimination (PRE) more aggressive. This flag is
7244 enabled by default at @option{-O3}.
7245
7246 @item -ftree-forwprop
7247 @opindex ftree-forwprop
7248 Perform forward propagation on trees. This flag is enabled by default
7249 at @option{-O} and higher.
7250
7251 @item -ftree-fre
7252 @opindex ftree-fre
7253 Perform full redundancy elimination (FRE) on trees. The difference
7254 between FRE and PRE is that FRE only considers expressions
7255 that are computed on all paths leading to the redundant computation.
7256 This analysis is faster than PRE, though it exposes fewer redundancies.
7257 This flag is enabled by default at @option{-O} and higher.
7258
7259 @item -ftree-phiprop
7260 @opindex ftree-phiprop
7261 Perform hoisting of loads from conditional pointers on trees. This
7262 pass is enabled by default at @option{-O} and higher.
7263
7264 @item -fhoist-adjacent-loads
7265 @opindex fhoist-adjacent-loads
7266 Speculatively hoist loads from both branches of an if-then-else if the
7267 loads are from adjacent locations in the same structure and the target
7268 architecture has a conditional move instruction. This flag is enabled
7269 by default at @option{-O2} and higher.
7270
7271 @item -ftree-copy-prop
7272 @opindex ftree-copy-prop
7273 Perform copy propagation on trees. This pass eliminates unnecessary
7274 copy operations. This flag is enabled by default at @option{-O} and
7275 higher.
7276
7277 @item -fipa-pure-const
7278 @opindex fipa-pure-const
7279 Discover which functions are pure or constant.
7280 Enabled by default at @option{-O} and higher.
7281
7282 @item -fipa-reference
7283 @opindex fipa-reference
7284 Discover which static variables do not escape the
7285 compilation unit.
7286 Enabled by default at @option{-O} and higher.
7287
7288 @item -fipa-pta
7289 @opindex fipa-pta
7290 Perform interprocedural pointer analysis and interprocedural modification
7291 and reference analysis. This option can cause excessive memory and
7292 compile-time usage on large compilation units. It is not enabled by
7293 default at any optimization level.
7294
7295 @item -fipa-profile
7296 @opindex fipa-profile
7297 Perform interprocedural profile propagation. The functions called only from
7298 cold functions are marked as cold. Also functions executed once (such as
7299 @code{cold}, @code{noreturn}, static constructors or destructors) are identified. Cold
7300 functions and loop less parts of functions executed once are then optimized for
7301 size.
7302 Enabled by default at @option{-O} and higher.
7303
7304 @item -fipa-cp
7305 @opindex fipa-cp
7306 Perform interprocedural constant propagation.
7307 This optimization analyzes the program to determine when values passed
7308 to functions are constants and then optimizes accordingly.
7309 This optimization can substantially increase performance
7310 if the application has constants passed to functions.
7311 This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.
7312
7313 @item -fipa-cp-clone
7314 @opindex fipa-cp-clone
7315 Perform function cloning to make interprocedural constant propagation stronger.
7316 When enabled, interprocedural constant propagation performs function cloning
7317 when externally visible function can be called with constant arguments.
7318 Because this optimization can create multiple copies of functions,
7319 it may significantly increase code size
7320 (see @option{--param ipcp-unit-growth=@var{value}}).
7321 This flag is enabled by default at @option{-O3}.
7322
7323 @item -fipa-cp-alignment
7324 @opindex -fipa-cp-alignment
7325 When enabled, this optimization propagates alignment of function
7326 parameters to support better vectorization and string operations.
7327
7328 This flag is enabled by default at @option{-O2} and @option{-Os}. It
7329 requires that @option{-fipa-cp} is enabled.
7330
7331 @item -fipa-icf
7332 @opindex fipa-icf
7333 Perform Identical Code Folding for functions and read-only variables.
7334 The optimization reduces code size and may disturb unwind stacks by replacing
7335 a function by equivalent one with a different name. The optimization works
7336 more effectively with link time optimization enabled.
7337
7338 Nevertheless the behavior is similar to Gold Linker ICF optimization, GCC ICF
7339 works on different levels and thus the optimizations are not same - there are
7340 equivalences that are found only by GCC and equivalences found only by Gold.
7341
7342 This flag is enabled by default at @option{-O2} and @option{-Os}.
7343
7344 @item -fisolate-erroneous-paths-dereference
7345 @opindex fisolate-erroneous-paths-dereference
7346 Detect paths that trigger erroneous or undefined behavior due to
7347 dereferencing a null pointer. Isolate those paths from the main control
7348 flow and turn the statement with erroneous or undefined behavior into a trap.
7349 This flag is enabled by default at @option{-O2} and higher and depends on
7350 @option{-fdelete-null-pointer-checks} also being enabled.
7351
7352 @item -fisolate-erroneous-paths-attribute
7353 @opindex fisolate-erroneous-paths-attribute
7354 Detect paths that trigger erroneous or undefined behavior due a null value
7355 being used in a way forbidden by a @code{returns_nonnull} or @code{nonnull}
7356 attribute. Isolate those paths from the main control flow and turn the
7357 statement with erroneous or undefined behavior into a trap. This is not
7358 currently enabled, but may be enabled by @option{-O2} in the future.
7359
7360 @item -ftree-sink
7361 @opindex ftree-sink
7362 Perform forward store motion on trees. This flag is
7363 enabled by default at @option{-O} and higher.
7364
7365 @item -ftree-bit-ccp
7366 @opindex ftree-bit-ccp
7367 Perform sparse conditional bit constant propagation on trees and propagate
7368 pointer alignment information.
7369 This pass only operates on local scalar variables and is enabled by default
7370 at @option{-O} and higher. It requires that @option{-ftree-ccp} is enabled.
7371
7372 @item -ftree-ccp
7373 @opindex ftree-ccp
7374 Perform sparse conditional constant propagation (CCP) on trees. This
7375 pass only operates on local scalar variables and is enabled by default
7376 at @option{-O} and higher.
7377
7378 @item -fssa-backprop
7379 @opindex fssa-backprop
7380 Propagate information about uses of a value up the definition chain
7381 in order to simplify the definitions. For example, this pass strips
7382 sign operations if the sign of a value never matters. The flag is
7383 enabled by default at @option{-O} and higher.
7384
7385 @item -fssa-phiopt
7386 @opindex fssa-phiopt
7387 Perform pattern matching on SSA PHI nodes to optimize conditional
7388 code. This pass is enabled by default at @option{-O} and higher.
7389
7390 @item -ftree-switch-conversion
7391 @opindex ftree-switch-conversion
7392 Perform conversion of simple initializations in a switch to
7393 initializations from a scalar array. This flag is enabled by default
7394 at @option{-O2} and higher.
7395
7396 @item -ftree-tail-merge
7397 @opindex ftree-tail-merge
7398 Look for identical code sequences. When found, replace one with a jump to the
7399 other. This optimization is known as tail merging or cross jumping. This flag
7400 is enabled by default at @option{-O2} and higher. The compilation time
7401 in this pass can
7402 be limited using @option{max-tail-merge-comparisons} parameter and
7403 @option{max-tail-merge-iterations} parameter.
7404
7405 @item -ftree-dce
7406 @opindex ftree-dce
7407 Perform dead code elimination (DCE) on trees. This flag is enabled by
7408 default at @option{-O} and higher.
7409
7410 @item -ftree-builtin-call-dce
7411 @opindex ftree-builtin-call-dce
7412 Perform conditional dead code elimination (DCE) for calls to built-in functions
7413 that may set @code{errno} but are otherwise side-effect free. This flag is
7414 enabled by default at @option{-O2} and higher if @option{-Os} is not also
7415 specified.
7416
7417 @item -ftree-dominator-opts
7418 @opindex ftree-dominator-opts
7419 Perform a variety of simple scalar cleanups (constant/copy
7420 propagation, redundancy elimination, range propagation and expression
7421 simplification) based on a dominator tree traversal. This also
7422 performs jump threading (to reduce jumps to jumps). This flag is
7423 enabled by default at @option{-O} and higher.
7424
7425 @item -ftree-dse
7426 @opindex ftree-dse
7427 Perform dead store elimination (DSE) on trees. A dead store is a store into
7428 a memory location that is later overwritten by another store without
7429 any intervening loads. In this case the earlier store can be deleted. This
7430 flag is enabled by default at @option{-O} and higher.
7431
7432 @item -ftree-ch
7433 @opindex ftree-ch
7434 Perform loop header copying on trees. This is beneficial since it increases
7435 effectiveness of code motion optimizations. It also saves one jump. This flag
7436 is enabled by default at @option{-O} and higher. It is not enabled
7437 for @option{-Os}, since it usually increases code size.
7438
7439 @item -ftree-loop-optimize
7440 @opindex ftree-loop-optimize
7441 Perform loop optimizations on trees. This flag is enabled by default
7442 at @option{-O} and higher.
7443
7444 @item -ftree-loop-linear
7445 @itemx -floop-interchange
7446 @itemx -floop-strip-mine
7447 @itemx -floop-block
7448 @itemx -floop-unroll-and-jam
7449 @opindex ftree-loop-linear
7450 @opindex floop-interchange
7451 @opindex floop-strip-mine
7452 @opindex floop-block
7453 @opindex floop-unroll-and-jam
7454 Perform loop nest optimizations. Same as
7455 @option{-floop-nest-optimize}. To use this code transformation, GCC has
7456 to be configured with @option{--with-isl} to enable the Graphite loop
7457 transformation infrastructure.
7458
7459 @item -fgraphite-identity
7460 @opindex fgraphite-identity
7461 Enable the identity transformation for graphite. For every SCoP we generate
7462 the polyhedral representation and transform it back to gimple. Using
7463 @option{-fgraphite-identity} we can check the costs or benefits of the
7464 GIMPLE -> GRAPHITE -> GIMPLE transformation. Some minimal optimizations
7465 are also performed by the code generator isl, like index splitting and
7466 dead code elimination in loops.
7467
7468 @item -floop-nest-optimize
7469 @opindex floop-nest-optimize
7470 Enable the isl based loop nest optimizer. This is a generic loop nest
7471 optimizer based on the Pluto optimization algorithms. It calculates a loop
7472 structure optimized for data-locality and parallelism. This option
7473 is experimental.
7474
7475 @item -floop-parallelize-all
7476 @opindex floop-parallelize-all
7477 Use the Graphite data dependence analysis to identify loops that can
7478 be parallelized. Parallelize all the loops that can be analyzed to
7479 not contain loop carried dependences without checking that it is
7480 profitable to parallelize the loops.
7481
7482 @item -ftree-coalesce-vars
7483 @opindex ftree-coalesce-vars
7484 While transforming the program out of the SSA representation, attempt to
7485 reduce copying by coalescing versions of different user-defined
7486 variables, instead of just compiler temporaries. This may severely
7487 limit the ability to debug an optimized program compiled with
7488 @option{-fno-var-tracking-assignments}. In the negated form, this flag
7489 prevents SSA coalescing of user variables. This option is enabled by
7490 default if optimization is enabled, and it does very little otherwise.
7491
7492 @item -ftree-loop-if-convert
7493 @opindex ftree-loop-if-convert
7494 Attempt to transform conditional jumps in the innermost loops to
7495 branch-less equivalents. The intent is to remove control-flow from
7496 the innermost loops in order to improve the ability of the
7497 vectorization pass to handle these loops. This is enabled by default
7498 if vectorization is enabled.
7499
7500 @item -ftree-loop-if-convert-stores
7501 @opindex ftree-loop-if-convert-stores
7502 Attempt to also if-convert conditional jumps containing memory writes.
7503 This transformation can be unsafe for multi-threaded programs as it
7504 transforms conditional memory writes into unconditional memory writes.
7505 For example,
7506 @smallexample
7507 for (i = 0; i < N; i++)
7508 if (cond)
7509 A[i] = expr;
7510 @end smallexample
7511 is transformed to
7512 @smallexample
7513 for (i = 0; i < N; i++)
7514 A[i] = cond ? expr : A[i];
7515 @end smallexample
7516 potentially producing data races.
7517
7518 @item -ftree-loop-distribution
7519 @opindex ftree-loop-distribution
7520 Perform loop distribution. This flag can improve cache performance on
7521 big loop bodies and allow further loop optimizations, like
7522 parallelization or vectorization, to take place. For example, the loop
7523 @smallexample
7524 DO I = 1, N
7525 A(I) = B(I) + C
7526 D(I) = E(I) * F
7527 ENDDO
7528 @end smallexample
7529 is transformed to
7530 @smallexample
7531 DO I = 1, N
7532 A(I) = B(I) + C
7533 ENDDO
7534 DO I = 1, N
7535 D(I) = E(I) * F
7536 ENDDO
7537 @end smallexample
7538
7539 @item -ftree-loop-distribute-patterns
7540 @opindex ftree-loop-distribute-patterns
7541 Perform loop distribution of patterns that can be code generated with
7542 calls to a library. This flag is enabled by default at @option{-O3}.
7543
7544 This pass distributes the initialization loops and generates a call to
7545 memset zero. For example, the loop
7546 @smallexample
7547 DO I = 1, N
7548 A(I) = 0
7549 B(I) = A(I) + I
7550 ENDDO
7551 @end smallexample
7552 is transformed to
7553 @smallexample
7554 DO I = 1, N
7555 A(I) = 0
7556 ENDDO
7557 DO I = 1, N
7558 B(I) = A(I) + I
7559 ENDDO
7560 @end smallexample
7561 and the initialization loop is transformed into a call to memset zero.
7562
7563 @item -ftree-loop-im
7564 @opindex ftree-loop-im
7565 Perform loop invariant motion on trees. This pass moves only invariants that
7566 are hard to handle at RTL level (function calls, operations that expand to
7567 nontrivial sequences of insns). With @option{-funswitch-loops} it also moves
7568 operands of conditions that are invariant out of the loop, so that we can use
7569 just trivial invariantness analysis in loop unswitching. The pass also includes
7570 store motion.
7571
7572 @item -ftree-loop-ivcanon
7573 @opindex ftree-loop-ivcanon
7574 Create a canonical counter for number of iterations in loops for which
7575 determining number of iterations requires complicated analysis. Later
7576 optimizations then may determine the number easily. Useful especially
7577 in connection with unrolling.
7578
7579 @item -fivopts
7580 @opindex fivopts
7581 Perform induction variable optimizations (strength reduction, induction
7582 variable merging and induction variable elimination) on trees.
7583
7584 @item -ftree-parallelize-loops=n
7585 @opindex ftree-parallelize-loops
7586 Parallelize loops, i.e., split their iteration space to run in n threads.
7587 This is only possible for loops whose iterations are independent
7588 and can be arbitrarily reordered. The optimization is only
7589 profitable on multiprocessor machines, for loops that are CPU-intensive,
7590 rather than constrained e.g.@: by memory bandwidth. This option
7591 implies @option{-pthread}, and thus is only supported on targets
7592 that have support for @option{-pthread}.
7593
7594 @item -ftree-pta
7595 @opindex ftree-pta
7596 Perform function-local points-to analysis on trees. This flag is
7597 enabled by default at @option{-O} and higher.
7598
7599 @item -ftree-sra
7600 @opindex ftree-sra
7601 Perform scalar replacement of aggregates. This pass replaces structure
7602 references with scalars to prevent committing structures to memory too
7603 early. This flag is enabled by default at @option{-O} and higher.
7604
7605 @item -ftree-ter
7606 @opindex ftree-ter
7607 Perform temporary expression replacement during the SSA->normal phase. Single
7608 use/single def temporaries are replaced at their use location with their
7609 defining expression. This results in non-GIMPLE code, but gives the expanders
7610 much more complex trees to work on resulting in better RTL generation. This is
7611 enabled by default at @option{-O} and higher.
7612
7613 @item -ftree-slsr
7614 @opindex ftree-slsr
7615 Perform straight-line strength reduction on trees. This recognizes related
7616 expressions involving multiplications and replaces them by less expensive
7617 calculations when possible. This is enabled by default at @option{-O} and
7618 higher.
7619
7620 @item -ftree-vectorize
7621 @opindex ftree-vectorize
7622 Perform vectorization on trees. This flag enables @option{-ftree-loop-vectorize}
7623 and @option{-ftree-slp-vectorize} if not explicitly specified.
7624
7625 @item -ftree-loop-vectorize
7626 @opindex ftree-loop-vectorize
7627 Perform loop vectorization on trees. This flag is enabled by default at
7628 @option{-O3} and when @option{-ftree-vectorize} is enabled.
7629
7630 @item -ftree-slp-vectorize
7631 @opindex ftree-slp-vectorize
7632 Perform basic block vectorization on trees. This flag is enabled by default at
7633 @option{-O3} and when @option{-ftree-vectorize} is enabled.
7634
7635 @item -fvect-cost-model=@var{model}
7636 @opindex fvect-cost-model
7637 Alter the cost model used for vectorization. The @var{model} argument
7638 should be one of @samp{unlimited}, @samp{dynamic} or @samp{cheap}.
7639 With the @samp{unlimited} model the vectorized code-path is assumed
7640 to be profitable while with the @samp{dynamic} model a runtime check
7641 guards the vectorized code-path to enable it only for iteration
7642 counts that will likely execute faster than when executing the original
7643 scalar loop. The @samp{cheap} model disables vectorization of
7644 loops where doing so would be cost prohibitive for example due to
7645 required runtime checks for data dependence or alignment but otherwise
7646 is equal to the @samp{dynamic} model.
7647 The default cost model depends on other optimization flags and is
7648 either @samp{dynamic} or @samp{cheap}.
7649
7650 @item -fsimd-cost-model=@var{model}
7651 @opindex fsimd-cost-model
7652 Alter the cost model used for vectorization of loops marked with the OpenMP
7653 or Cilk Plus simd directive. The @var{model} argument should be one of
7654 @samp{unlimited}, @samp{dynamic}, @samp{cheap}. All values of @var{model}
7655 have the same meaning as described in @option{-fvect-cost-model} and by
7656 default a cost model defined with @option{-fvect-cost-model} is used.
7657
7658 @item -ftree-vrp
7659 @opindex ftree-vrp
7660 Perform Value Range Propagation on trees. This is similar to the
7661 constant propagation pass, but instead of values, ranges of values are
7662 propagated. This allows the optimizers to remove unnecessary range
7663 checks like array bound checks and null pointer checks. This is
7664 enabled by default at @option{-O2} and higher. Null pointer check
7665 elimination is only done if @option{-fdelete-null-pointer-checks} is
7666 enabled.
7667
7668 @item -fsplit-paths
7669 @opindex fsplit-paths
7670 Split paths leading to loop backedges. This can improve dead code
7671 elimination and common subexpression elimination. This is enabled by
7672 default at @option{-O2} and above.
7673
7674 @item -fsplit-ivs-in-unroller
7675 @opindex fsplit-ivs-in-unroller
7676 Enables expression of values of induction variables in later iterations
7677 of the unrolled loop using the value in the first iteration. This breaks
7678 long dependency chains, thus improving efficiency of the scheduling passes.
7679
7680 A combination of @option{-fweb} and CSE is often sufficient to obtain the
7681 same effect. However, that is not reliable in cases where the loop body
7682 is more complicated than a single basic block. It also does not work at all
7683 on some architectures due to restrictions in the CSE pass.
7684
7685 This optimization is enabled by default.
7686
7687 @item -fvariable-expansion-in-unroller
7688 @opindex fvariable-expansion-in-unroller
7689 With this option, the compiler creates multiple copies of some
7690 local variables when unrolling a loop, which can result in superior code.
7691
7692 @item -fpartial-inlining
7693 @opindex fpartial-inlining
7694 Inline parts of functions. This option has any effect only
7695 when inlining itself is turned on by the @option{-finline-functions}
7696 or @option{-finline-small-functions} options.
7697
7698 Enabled at level @option{-O2}.
7699
7700 @item -fpredictive-commoning
7701 @opindex fpredictive-commoning
7702 Perform predictive commoning optimization, i.e., reusing computations
7703 (especially memory loads and stores) performed in previous
7704 iterations of loops.
7705
7706 This option is enabled at level @option{-O3}.
7707
7708 @item -fprefetch-loop-arrays
7709 @opindex fprefetch-loop-arrays
7710 If supported by the target machine, generate instructions to prefetch
7711 memory to improve the performance of loops that access large arrays.
7712
7713 This option may generate better or worse code; results are highly
7714 dependent on the structure of loops within the source code.
7715
7716 Disabled at level @option{-Os}.
7717
7718 @item -fno-peephole
7719 @itemx -fno-peephole2
7720 @opindex fno-peephole
7721 @opindex fno-peephole2
7722 Disable any machine-specific peephole optimizations. The difference
7723 between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
7724 are implemented in the compiler; some targets use one, some use the
7725 other, a few use both.
7726
7727 @option{-fpeephole} is enabled by default.
7728 @option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7729
7730 @item -fno-guess-branch-probability
7731 @opindex fno-guess-branch-probability
7732 Do not guess branch probabilities using heuristics.
7733
7734 GCC uses heuristics to guess branch probabilities if they are
7735 not provided by profiling feedback (@option{-fprofile-arcs}). These
7736 heuristics are based on the control flow graph. If some branch probabilities
7737 are specified by @code{__builtin_expect}, then the heuristics are
7738 used to guess branch probabilities for the rest of the control flow graph,
7739 taking the @code{__builtin_expect} info into account. The interactions
7740 between the heuristics and @code{__builtin_expect} can be complex, and in
7741 some cases, it may be useful to disable the heuristics so that the effects
7742 of @code{__builtin_expect} are easier to understand.
7743
7744 The default is @option{-fguess-branch-probability} at levels
7745 @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7746
7747 @item -freorder-blocks
7748 @opindex freorder-blocks
7749 Reorder basic blocks in the compiled function in order to reduce number of
7750 taken branches and improve code locality.
7751
7752 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7753
7754 @item -freorder-blocks-algorithm=@var{algorithm}
7755 @opindex freorder-blocks-algorithm
7756 Use the specified algorithm for basic block reordering. The
7757 @var{algorithm} argument can be @samp{simple}, which does not increase
7758 code size (except sometimes due to secondary effects like alignment),
7759 or @samp{stc}, the ``software trace cache'' algorithm, which tries to
7760 put all often executed code together, minimizing the number of branches
7761 executed by making extra copies of code.
7762
7763 The default is @samp{simple} at levels @option{-O}, @option{-Os}, and
7764 @samp{stc} at levels @option{-O2}, @option{-O3}.
7765
7766 @item -freorder-blocks-and-partition
7767 @opindex freorder-blocks-and-partition
7768 In addition to reordering basic blocks in the compiled function, in order
7769 to reduce number of taken branches, partitions hot and cold basic blocks
7770 into separate sections of the assembly and @file{.o} files, to improve
7771 paging and cache locality performance.
7772
7773 This optimization is automatically turned off in the presence of
7774 exception handling, for linkonce sections, for functions with a user-defined
7775 section attribute and on any architecture that does not support named
7776 sections.
7777
7778 Enabled for x86 at levels @option{-O2}, @option{-O3}.
7779
7780 @item -freorder-functions
7781 @opindex freorder-functions
7782 Reorder functions in the object file in order to
7783 improve code locality. This is implemented by using special
7784 subsections @code{.text.hot} for most frequently executed functions and
7785 @code{.text.unlikely} for unlikely executed functions. Reordering is done by
7786 the linker so object file format must support named sections and linker must
7787 place them in a reasonable way.
7788
7789 Also profile feedback must be available to make this option effective. See
7790 @option{-fprofile-arcs} for details.
7791
7792 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7793
7794 @item -fstrict-aliasing
7795 @opindex fstrict-aliasing
7796 Allow the compiler to assume the strictest aliasing rules applicable to
7797 the language being compiled. For C (and C++), this activates
7798 optimizations based on the type of expressions. In particular, an
7799 object of one type is assumed never to reside at the same address as an
7800 object of a different type, unless the types are almost the same. For
7801 example, an @code{unsigned int} can alias an @code{int}, but not a
7802 @code{void*} or a @code{double}. A character type may alias any other
7803 type.
7804
7805 @anchor{Type-punning}Pay special attention to code like this:
7806 @smallexample
7807 union a_union @{
7808 int i;
7809 double d;
7810 @};
7811
7812 int f() @{
7813 union a_union t;
7814 t.d = 3.0;
7815 return t.i;
7816 @}
7817 @end smallexample
7818 The practice of reading from a different union member than the one most
7819 recently written to (called ``type-punning'') is common. Even with
7820 @option{-fstrict-aliasing}, type-punning is allowed, provided the memory
7821 is accessed through the union type. So, the code above works as
7822 expected. @xref{Structures unions enumerations and bit-fields
7823 implementation}. However, this code might not:
7824 @smallexample
7825 int f() @{
7826 union a_union t;
7827 int* ip;
7828 t.d = 3.0;
7829 ip = &t.i;
7830 return *ip;
7831 @}
7832 @end smallexample
7833
7834 Similarly, access by taking the address, casting the resulting pointer
7835 and dereferencing the result has undefined behavior, even if the cast
7836 uses a union type, e.g.:
7837 @smallexample
7838 int f() @{
7839 double d = 3.0;
7840 return ((union a_union *) &d)->i;
7841 @}
7842 @end smallexample
7843
7844 The @option{-fstrict-aliasing} option is enabled at levels
7845 @option{-O2}, @option{-O3}, @option{-Os}.
7846
7847 @item -fstrict-overflow
7848 @opindex fstrict-overflow
7849 Allow the compiler to assume strict signed overflow rules, depending
7850 on the language being compiled. For C (and C++) this means that
7851 overflow when doing arithmetic with signed numbers is undefined, which
7852 means that the compiler may assume that it does not happen. This
7853 permits various optimizations. For example, the compiler assumes
7854 that an expression like @code{i + 10 > i} is always true for
7855 signed @code{i}. This assumption is only valid if signed overflow is
7856 undefined, as the expression is false if @code{i + 10} overflows when
7857 using twos complement arithmetic. When this option is in effect any
7858 attempt to determine whether an operation on signed numbers
7859 overflows must be written carefully to not actually involve overflow.
7860
7861 This option also allows the compiler to assume strict pointer
7862 semantics: given a pointer to an object, if adding an offset to that
7863 pointer does not produce a pointer to the same object, the addition is
7864 undefined. This permits the compiler to conclude that @code{p + u >
7865 p} is always true for a pointer @code{p} and unsigned integer
7866 @code{u}. This assumption is only valid because pointer wraparound is
7867 undefined, as the expression is false if @code{p + u} overflows using
7868 twos complement arithmetic.
7869
7870 See also the @option{-fwrapv} option. Using @option{-fwrapv} means
7871 that integer signed overflow is fully defined: it wraps. When
7872 @option{-fwrapv} is used, there is no difference between
7873 @option{-fstrict-overflow} and @option{-fno-strict-overflow} for
7874 integers. With @option{-fwrapv} certain types of overflow are
7875 permitted. For example, if the compiler gets an overflow when doing
7876 arithmetic on constants, the overflowed value can still be used with
7877 @option{-fwrapv}, but not otherwise.
7878
7879 The @option{-fstrict-overflow} option is enabled at levels
7880 @option{-O2}, @option{-O3}, @option{-Os}.
7881
7882 @item -falign-functions
7883 @itemx -falign-functions=@var{n}
7884 @opindex falign-functions
7885 Align the start of functions to the next power-of-two greater than
7886 @var{n}, skipping up to @var{n} bytes. For instance,
7887 @option{-falign-functions=32} aligns functions to the next 32-byte
7888 boundary, but @option{-falign-functions=24} aligns to the next
7889 32-byte boundary only if this can be done by skipping 23 bytes or less.
7890
7891 @option{-fno-align-functions} and @option{-falign-functions=1} are
7892 equivalent and mean that functions are not aligned.
7893
7894 Some assemblers only support this flag when @var{n} is a power of two;
7895 in that case, it is rounded up.
7896
7897 If @var{n} is not specified or is zero, use a machine-dependent default.
7898
7899 Enabled at levels @option{-O2}, @option{-O3}.
7900
7901 @item -falign-labels
7902 @itemx -falign-labels=@var{n}
7903 @opindex falign-labels
7904 Align all branch targets to a power-of-two boundary, skipping up to
7905 @var{n} bytes like @option{-falign-functions}. This option can easily
7906 make code slower, because it must insert dummy operations for when the
7907 branch target is reached in the usual flow of the code.
7908
7909 @option{-fno-align-labels} and @option{-falign-labels=1} are
7910 equivalent and mean that labels are not aligned.
7911
7912 If @option{-falign-loops} or @option{-falign-jumps} are applicable and
7913 are greater than this value, then their values are used instead.
7914
7915 If @var{n} is not specified or is zero, use a machine-dependent default
7916 which is very likely to be @samp{1}, meaning no alignment.
7917
7918 Enabled at levels @option{-O2}, @option{-O3}.
7919
7920 @item -falign-loops
7921 @itemx -falign-loops=@var{n}
7922 @opindex falign-loops
7923 Align loops to a power-of-two boundary, skipping up to @var{n} bytes
7924 like @option{-falign-functions}. If the loops are
7925 executed many times, this makes up for any execution of the dummy
7926 operations.
7927
7928 @option{-fno-align-loops} and @option{-falign-loops=1} are
7929 equivalent and mean that loops are not aligned.
7930
7931 If @var{n} is not specified or is zero, use a machine-dependent default.
7932
7933 Enabled at levels @option{-O2}, @option{-O3}.
7934
7935 @item -falign-jumps
7936 @itemx -falign-jumps=@var{n}
7937 @opindex falign-jumps
7938 Align branch targets to a power-of-two boundary, for branch targets
7939 where the targets can only be reached by jumping, skipping up to @var{n}
7940 bytes like @option{-falign-functions}. In this case, no dummy operations
7941 need be executed.
7942
7943 @option{-fno-align-jumps} and @option{-falign-jumps=1} are
7944 equivalent and mean that loops are not aligned.
7945
7946 If @var{n} is not specified or is zero, use a machine-dependent default.
7947
7948 Enabled at levels @option{-O2}, @option{-O3}.
7949
7950 @item -funit-at-a-time
7951 @opindex funit-at-a-time
7952 This option is left for compatibility reasons. @option{-funit-at-a-time}
7953 has no effect, while @option{-fno-unit-at-a-time} implies
7954 @option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.
7955
7956 Enabled by default.
7957
7958 @item -fno-toplevel-reorder
7959 @opindex fno-toplevel-reorder
7960 Do not reorder top-level functions, variables, and @code{asm}
7961 statements. Output them in the same order that they appear in the
7962 input file. When this option is used, unreferenced static variables
7963 are not removed. This option is intended to support existing code
7964 that relies on a particular ordering. For new code, it is better to
7965 use attributes when possible.
7966
7967 Enabled at level @option{-O0}. When disabled explicitly, it also implies
7968 @option{-fno-section-anchors}, which is otherwise enabled at @option{-O0} on some
7969 targets.
7970
7971 @item -fweb
7972 @opindex fweb
7973 Constructs webs as commonly used for register allocation purposes and assign
7974 each web individual pseudo register. This allows the register allocation pass
7975 to operate on pseudos directly, but also strengthens several other optimization
7976 passes, such as CSE, loop optimizer and trivial dead code remover. It can,
7977 however, make debugging impossible, since variables no longer stay in a
7978 ``home register''.
7979
7980 Enabled by default with @option{-funroll-loops}.
7981
7982 @item -fwhole-program
7983 @opindex fwhole-program
7984 Assume that the current compilation unit represents the whole program being
7985 compiled. All public functions and variables with the exception of @code{main}
7986 and those merged by attribute @code{externally_visible} become static functions
7987 and in effect are optimized more aggressively by interprocedural optimizers.
7988
7989 This option should not be used in combination with @option{-flto}.
7990 Instead relying on a linker plugin should provide safer and more precise
7991 information.
7992
7993 @item -flto[=@var{n}]
7994 @opindex flto
7995 This option runs the standard link-time optimizer. When invoked
7996 with source code, it generates GIMPLE (one of GCC's internal
7997 representations) and writes it to special ELF sections in the object
7998 file. When the object files are linked together, all the function
7999 bodies are read from these ELF sections and instantiated as if they
8000 had been part of the same translation unit.
8001
8002 To use the link-time optimizer, @option{-flto} and optimization
8003 options should be specified at compile time and during the final link.
8004 It is recommended that you compile all the files participating in the
8005 same link with the same options and also specify those options at
8006 link time.
8007 For example:
8008
8009 @smallexample
8010 gcc -c -O2 -flto foo.c
8011 gcc -c -O2 -flto bar.c
8012 gcc -o myprog -flto -O2 foo.o bar.o
8013 @end smallexample
8014
8015 The first two invocations to GCC save a bytecode representation
8016 of GIMPLE into special ELF sections inside @file{foo.o} and
8017 @file{bar.o}. The final invocation reads the GIMPLE bytecode from
8018 @file{foo.o} and @file{bar.o}, merges the two files into a single
8019 internal image, and compiles the result as usual. Since both
8020 @file{foo.o} and @file{bar.o} are merged into a single image, this
8021 causes all the interprocedural analyses and optimizations in GCC to
8022 work across the two files as if they were a single one. This means,
8023 for example, that the inliner is able to inline functions in
8024 @file{bar.o} into functions in @file{foo.o} and vice-versa.
8025
8026 Another (simpler) way to enable link-time optimization is:
8027
8028 @smallexample
8029 gcc -o myprog -flto -O2 foo.c bar.c
8030 @end smallexample
8031
8032 The above generates bytecode for @file{foo.c} and @file{bar.c},
8033 merges them together into a single GIMPLE representation and optimizes
8034 them as usual to produce @file{myprog}.
8035
8036 The only important thing to keep in mind is that to enable link-time
8037 optimizations you need to use the GCC driver to perform the link step.
8038 GCC then automatically performs link-time optimization if any of the
8039 objects involved were compiled with the @option{-flto} command-line option.
8040 You generally
8041 should specify the optimization options to be used for link-time
8042 optimization though GCC tries to be clever at guessing an
8043 optimization level to use from the options used at compile time
8044 if you fail to specify one at link time. You can always override
8045 the automatic decision to do link-time optimization at link time
8046 by passing @option{-fno-lto} to the link command.
8047
8048 To make whole program optimization effective, it is necessary to make
8049 certain whole program assumptions. The compiler needs to know
8050 what functions and variables can be accessed by libraries and runtime
8051 outside of the link-time optimized unit. When supported by the linker,
8052 the linker plugin (see @option{-fuse-linker-plugin}) passes information
8053 to the compiler about used and externally visible symbols. When
8054 the linker plugin is not available, @option{-fwhole-program} should be
8055 used to allow the compiler to make these assumptions, which leads
8056 to more aggressive optimization decisions.
8057
8058 When @option{-fuse-linker-plugin} is not enabled, when a file is
8059 compiled with @option{-flto}, the generated object file is larger than
8060 a regular object file because it contains GIMPLE bytecodes and the usual
8061 final code (see @option{-ffat-lto-objects}. This means that
8062 object files with LTO information can be linked as normal object
8063 files; if @option{-fno-lto} is passed to the linker, no
8064 interprocedural optimizations are applied. Note that when
8065 @option{-fno-fat-lto-objects} is enabled the compile stage is faster
8066 but you cannot perform a regular, non-LTO link on them.
8067
8068 Additionally, the optimization flags used to compile individual files
8069 are not necessarily related to those used at link time. For instance,
8070
8071 @smallexample
8072 gcc -c -O0 -ffat-lto-objects -flto foo.c
8073 gcc -c -O0 -ffat-lto-objects -flto bar.c
8074 gcc -o myprog -O3 foo.o bar.o
8075 @end smallexample
8076
8077 This produces individual object files with unoptimized assembler
8078 code, but the resulting binary @file{myprog} is optimized at
8079 @option{-O3}. If, instead, the final binary is generated with
8080 @option{-fno-lto}, then @file{myprog} is not optimized.
8081
8082 When producing the final binary, GCC only
8083 applies link-time optimizations to those files that contain bytecode.
8084 Therefore, you can mix and match object files and libraries with
8085 GIMPLE bytecodes and final object code. GCC automatically selects
8086 which files to optimize in LTO mode and which files to link without
8087 further processing.
8088
8089 There are some code generation flags preserved by GCC when
8090 generating bytecodes, as they need to be used during the final link
8091 stage. Generally options specified at link time override those
8092 specified at compile time.
8093
8094 If you do not specify an optimization level option @option{-O} at
8095 link time, then GCC uses the highest optimization level
8096 used when compiling the object files.
8097
8098 Currently, the following options and their settings are taken from
8099 the first object file that explicitly specifies them:
8100 @option{-fPIC}, @option{-fpic}, @option{-fpie}, @option{-fcommon},
8101 @option{-fexceptions}, @option{-fnon-call-exceptions}, @option{-fgnu-tm}
8102 and all the @option{-m} target flags.
8103
8104 Certain ABI-changing flags are required to match in all compilation units,
8105 and trying to override this at link time with a conflicting value
8106 is ignored. This includes options such as @option{-freg-struct-return}
8107 and @option{-fpcc-struct-return}.
8108
8109 Other options such as @option{-ffp-contract}, @option{-fno-strict-overflow},
8110 @option{-fwrapv}, @option{-fno-trapv} or @option{-fno-strict-aliasing}
8111 are passed through to the link stage and merged conservatively for
8112 conflicting translation units. Specifically
8113 @option{-fno-strict-overflow}, @option{-fwrapv} and @option{-fno-trapv} take
8114 precedence; and for example @option{-ffp-contract=off} takes precedence
8115 over @option{-ffp-contract=fast}. You can override them at link time.
8116
8117 If LTO encounters objects with C linkage declared with incompatible
8118 types in separate translation units to be linked together (undefined
8119 behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
8120 issued. The behavior is still undefined at run time. Similar
8121 diagnostics may be raised for other languages.
8122
8123 Another feature of LTO is that it is possible to apply interprocedural
8124 optimizations on files written in different languages:
8125
8126 @smallexample
8127 gcc -c -flto foo.c
8128 g++ -c -flto bar.cc
8129 gfortran -c -flto baz.f90
8130 g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
8131 @end smallexample
8132
8133 Notice that the final link is done with @command{g++} to get the C++
8134 runtime libraries and @option{-lgfortran} is added to get the Fortran
8135 runtime libraries. In general, when mixing languages in LTO mode, you
8136 should use the same link command options as when mixing languages in a
8137 regular (non-LTO) compilation.
8138
8139 If object files containing GIMPLE bytecode are stored in a library archive, say
8140 @file{libfoo.a}, it is possible to extract and use them in an LTO link if you
8141 are using a linker with plugin support. To create static libraries suitable
8142 for LTO, use @command{gcc-ar} and @command{gcc-ranlib} instead of @command{ar}
8143 and @command{ranlib};
8144 to show the symbols of object files with GIMPLE bytecode, use
8145 @command{gcc-nm}. Those commands require that @command{ar}, @command{ranlib}
8146 and @command{nm} have been compiled with plugin support. At link time, use the the
8147 flag @option{-fuse-linker-plugin} to ensure that the library participates in
8148 the LTO optimization process:
8149
8150 @smallexample
8151 gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
8152 @end smallexample
8153
8154 With the linker plugin enabled, the linker extracts the needed
8155 GIMPLE files from @file{libfoo.a} and passes them on to the running GCC
8156 to make them part of the aggregated GIMPLE image to be optimized.
8157
8158 If you are not using a linker with plugin support and/or do not
8159 enable the linker plugin, then the objects inside @file{libfoo.a}
8160 are extracted and linked as usual, but they do not participate
8161 in the LTO optimization process. In order to make a static library suitable
8162 for both LTO optimization and usual linkage, compile its object files with
8163 @option{-flto} @option{-ffat-lto-objects}.
8164
8165 Link-time optimizations do not require the presence of the whole program to
8166 operate. If the program does not require any symbols to be exported, it is
8167 possible to combine @option{-flto} and @option{-fwhole-program} to allow
8168 the interprocedural optimizers to use more aggressive assumptions which may
8169 lead to improved optimization opportunities.
8170 Use of @option{-fwhole-program} is not needed when linker plugin is
8171 active (see @option{-fuse-linker-plugin}).
8172
8173 The current implementation of LTO makes no
8174 attempt to generate bytecode that is portable between different
8175 types of hosts. The bytecode files are versioned and there is a
8176 strict version check, so bytecode files generated in one version of
8177 GCC do not work with an older or newer version of GCC.
8178
8179 Link-time optimization does not work well with generation of debugging
8180 information. Combining @option{-flto} with
8181 @option{-g} is currently experimental and expected to produce unexpected
8182 results.
8183
8184 If you specify the optional @var{n}, the optimization and code
8185 generation done at link time is executed in parallel using @var{n}
8186 parallel jobs by utilizing an installed @command{make} program. The
8187 environment variable @env{MAKE} may be used to override the program
8188 used. The default value for @var{n} is 1.
8189
8190 You can also specify @option{-flto=jobserver} to use GNU make's
8191 job server mode to determine the number of parallel jobs. This
8192 is useful when the Makefile calling GCC is already executing in parallel.
8193 You must prepend a @samp{+} to the command recipe in the parent Makefile
8194 for this to work. This option likely only works if @env{MAKE} is
8195 GNU make.
8196
8197 @item -flto-partition=@var{alg}
8198 @opindex flto-partition
8199 Specify the partitioning algorithm used by the link-time optimizer.
8200 The value is either @samp{1to1} to specify a partitioning mirroring
8201 the original source files or @samp{balanced} to specify partitioning
8202 into equally sized chunks (whenever possible) or @samp{max} to create
8203 new partition for every symbol where possible. Specifying @samp{none}
8204 as an algorithm disables partitioning and streaming completely.
8205 The default value is @samp{balanced}. While @samp{1to1} can be used
8206 as an workaround for various code ordering issues, the @samp{max}
8207 partitioning is intended for internal testing only.
8208 The value @samp{one} specifies that exactly one partition should be
8209 used while the value @samp{none} bypasses partitioning and executes
8210 the link-time optimization step directly from the WPA phase.
8211
8212 @item -flto-odr-type-merging
8213 @opindex flto-odr-type-merging
8214 Enable streaming of mangled types names of C++ types and their unification
8215 at link time. This increases size of LTO object files, but enables
8216 diagnostics about One Definition Rule violations.
8217
8218 @item -flto-compression-level=@var{n}
8219 @opindex flto-compression-level
8220 This option specifies the level of compression used for intermediate
8221 language written to LTO object files, and is only meaningful in
8222 conjunction with LTO mode (@option{-flto}). Valid
8223 values are 0 (no compression) to 9 (maximum compression). Values
8224 outside this range are clamped to either 0 or 9. If the option is not
8225 given, a default balanced compression setting is used.
8226
8227 @item -fuse-linker-plugin
8228 @opindex fuse-linker-plugin
8229 Enables the use of a linker plugin during link-time optimization. This
8230 option relies on plugin support in the linker, which is available in gold
8231 or in GNU ld 2.21 or newer.
8232
8233 This option enables the extraction of object files with GIMPLE bytecode out
8234 of library archives. This improves the quality of optimization by exposing
8235 more code to the link-time optimizer. This information specifies what
8236 symbols can be accessed externally (by non-LTO object or during dynamic
8237 linking). Resulting code quality improvements on binaries (and shared
8238 libraries that use hidden visibility) are similar to @option{-fwhole-program}.
8239 See @option{-flto} for a description of the effect of this flag and how to
8240 use it.
8241
8242 This option is enabled by default when LTO support in GCC is enabled
8243 and GCC was configured for use with
8244 a linker supporting plugins (GNU ld 2.21 or newer or gold).
8245
8246 @item -ffat-lto-objects
8247 @opindex ffat-lto-objects
8248 Fat LTO objects are object files that contain both the intermediate language
8249 and the object code. This makes them usable for both LTO linking and normal
8250 linking. This option is effective only when compiling with @option{-flto}
8251 and is ignored at link time.
8252
8253 @option{-fno-fat-lto-objects} improves compilation time over plain LTO, but
8254 requires the complete toolchain to be aware of LTO. It requires a linker with
8255 linker plugin support for basic functionality. Additionally,
8256 @command{nm}, @command{ar} and @command{ranlib}
8257 need to support linker plugins to allow a full-featured build environment
8258 (capable of building static libraries etc). GCC provides the @command{gcc-ar},
8259 @command{gcc-nm}, @command{gcc-ranlib} wrappers to pass the right options
8260 to these tools. With non fat LTO makefiles need to be modified to use them.
8261
8262 The default is @option{-fno-fat-lto-objects} on targets with linker plugin
8263 support.
8264
8265 @item -fcompare-elim
8266 @opindex fcompare-elim
8267 After register allocation and post-register allocation instruction splitting,
8268 identify arithmetic instructions that compute processor flags similar to a
8269 comparison operation based on that arithmetic. If possible, eliminate the
8270 explicit comparison operation.
8271
8272 This pass only applies to certain targets that cannot explicitly represent
8273 the comparison operation before register allocation is complete.
8274
8275 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8276
8277 @item -fcprop-registers
8278 @opindex fcprop-registers
8279 After register allocation and post-register allocation instruction splitting,
8280 perform a copy-propagation pass to try to reduce scheduling dependencies
8281 and occasionally eliminate the copy.
8282
8283 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8284
8285 @item -fprofile-correction
8286 @opindex fprofile-correction
8287 Profiles collected using an instrumented binary for multi-threaded programs may
8288 be inconsistent due to missed counter updates. When this option is specified,
8289 GCC uses heuristics to correct or smooth out such inconsistencies. By
8290 default, GCC emits an error message when an inconsistent profile is detected.
8291
8292 @item -fprofile-use
8293 @itemx -fprofile-use=@var{path}
8294 @opindex fprofile-use
8295 Enable profile feedback-directed optimizations,
8296 and the following optimizations
8297 which are generally profitable only with profile feedback available:
8298 @option{-fbranch-probabilities}, @option{-fvpt},
8299 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
8300 @option{-ftree-vectorize}, and @option{ftree-loop-distribute-patterns}.
8301
8302 Before you can use this option, you must first generate profiling information.
8303 @xref{Optimize Options}, for information about the @option{-fprofile-generate}
8304 option.
8305
8306 By default, GCC emits an error message if the feedback profiles do not
8307 match the source code. This error can be turned into a warning by using
8308 @option{-Wcoverage-mismatch}. Note this may result in poorly optimized
8309 code.
8310
8311 If @var{path} is specified, GCC looks at the @var{path} to find
8312 the profile feedback data files. See @option{-fprofile-dir}.
8313
8314 @item -fauto-profile
8315 @itemx -fauto-profile=@var{path}
8316 @opindex fauto-profile
8317 Enable sampling-based feedback-directed optimizations,
8318 and the following optimizations
8319 which are generally profitable only with profile feedback available:
8320 @option{-fbranch-probabilities}, @option{-fvpt},
8321 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
8322 @option{-ftree-vectorize},
8323 @option{-finline-functions}, @option{-fipa-cp}, @option{-fipa-cp-clone},
8324 @option{-fpredictive-commoning}, @option{-funswitch-loops},
8325 @option{-fgcse-after-reload}, and @option{-ftree-loop-distribute-patterns}.
8326
8327 @var{path} is the name of a file containing AutoFDO profile information.
8328 If omitted, it defaults to @file{fbdata.afdo} in the current directory.
8329
8330 Producing an AutoFDO profile data file requires running your program
8331 with the @command{perf} utility on a supported GNU/Linux target system.
8332 For more information, see @uref{https://perf.wiki.kernel.org/}.
8333
8334 E.g.
8335 @smallexample
8336 perf record -e br_inst_retired:near_taken -b -o perf.data \
8337 -- your_program
8338 @end smallexample
8339
8340 Then use the @command{create_gcov} tool to convert the raw profile data
8341 to a format that can be used by GCC.@ You must also supply the
8342 unstripped binary for your program to this tool.
8343 See @uref{https://github.com/google/autofdo}.
8344
8345 E.g.
8346 @smallexample
8347 create_gcov --binary=your_program.unstripped --profile=perf.data \
8348 --gcov=profile.afdo
8349 @end smallexample
8350 @end table
8351
8352 The following options control compiler behavior regarding floating-point
8353 arithmetic. These options trade off between speed and
8354 correctness. All must be specifically enabled.
8355
8356 @table @gcctabopt
8357 @item -ffloat-store
8358 @opindex ffloat-store
8359 Do not store floating-point variables in registers, and inhibit other
8360 options that might change whether a floating-point value is taken from a
8361 register or memory.
8362
8363 @cindex floating-point precision
8364 This option prevents undesirable excess precision on machines such as
8365 the 68000 where the floating registers (of the 68881) keep more
8366 precision than a @code{double} is supposed to have. Similarly for the
8367 x86 architecture. For most programs, the excess precision does only
8368 good, but a few programs rely on the precise definition of IEEE floating
8369 point. Use @option{-ffloat-store} for such programs, after modifying
8370 them to store all pertinent intermediate computations into variables.
8371
8372 @item -fexcess-precision=@var{style}
8373 @opindex fexcess-precision
8374 This option allows further control over excess precision on machines
8375 where floating-point registers have more precision than the IEEE
8376 @code{float} and @code{double} types and the processor does not
8377 support operations rounding to those types. By default,
8378 @option{-fexcess-precision=fast} is in effect; this means that
8379 operations are carried out in the precision of the registers and that
8380 it is unpredictable when rounding to the types specified in the source
8381 code takes place. When compiling C, if
8382 @option{-fexcess-precision=standard} is specified then excess
8383 precision follows the rules specified in ISO C99; in particular,
8384 both casts and assignments cause values to be rounded to their
8385 semantic types (whereas @option{-ffloat-store} only affects
8386 assignments). This option is enabled by default for C if a strict
8387 conformance option such as @option{-std=c99} is used.
8388
8389 @opindex mfpmath
8390 @option{-fexcess-precision=standard} is not implemented for languages
8391 other than C, and has no effect if
8392 @option{-funsafe-math-optimizations} or @option{-ffast-math} is
8393 specified. On the x86, it also has no effect if @option{-mfpmath=sse}
8394 or @option{-mfpmath=sse+387} is specified; in the former case, IEEE
8395 semantics apply without excess precision, and in the latter, rounding
8396 is unpredictable.
8397
8398 @item -ffast-math
8399 @opindex ffast-math
8400 Sets the options @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
8401 @option{-ffinite-math-only}, @option{-fno-rounding-math},
8402 @option{-fno-signaling-nans} and @option{-fcx-limited-range}.
8403
8404 This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
8405
8406 This option is not turned on by any @option{-O} option besides
8407 @option{-Ofast} since it can result in incorrect output for programs
8408 that depend on an exact implementation of IEEE or ISO rules/specifications
8409 for math functions. It may, however, yield faster code for programs
8410 that do not require the guarantees of these specifications.
8411
8412 @item -fno-math-errno
8413 @opindex fno-math-errno
8414 Do not set @code{errno} after calling math functions that are executed
8415 with a single instruction, e.g., @code{sqrt}. A program that relies on
8416 IEEE exceptions for math error handling may want to use this flag
8417 for speed while maintaining IEEE arithmetic compatibility.
8418
8419 This option is not turned on by any @option{-O} option since
8420 it can result in incorrect output for programs that depend on
8421 an exact implementation of IEEE or ISO rules/specifications for
8422 math functions. It may, however, yield faster code for programs
8423 that do not require the guarantees of these specifications.
8424
8425 The default is @option{-fmath-errno}.
8426
8427 On Darwin systems, the math library never sets @code{errno}. There is
8428 therefore no reason for the compiler to consider the possibility that
8429 it might, and @option{-fno-math-errno} is the default.
8430
8431 @item -funsafe-math-optimizations
8432 @opindex funsafe-math-optimizations
8433
8434 Allow optimizations for floating-point arithmetic that (a) assume
8435 that arguments and results are valid and (b) may violate IEEE or
8436 ANSI standards. When used at link time, it may include libraries
8437 or startup files that change the default FPU control word or other
8438 similar optimizations.
8439
8440 This option is not turned on by any @option{-O} option since
8441 it can result in incorrect output for programs that depend on
8442 an exact implementation of IEEE or ISO rules/specifications for
8443 math functions. It may, however, yield faster code for programs
8444 that do not require the guarantees of these specifications.
8445 Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
8446 @option{-fassociative-math} and @option{-freciprocal-math}.
8447
8448 The default is @option{-fno-unsafe-math-optimizations}.
8449
8450 @item -fassociative-math
8451 @opindex fassociative-math
8452
8453 Allow re-association of operands in series of floating-point operations.
8454 This violates the ISO C and C++ language standard by possibly changing
8455 computation result. NOTE: re-ordering may change the sign of zero as
8456 well as ignore NaNs and inhibit or create underflow or overflow (and
8457 thus cannot be used on code that relies on rounding behavior like
8458 @code{(x + 2**52) - 2**52}. May also reorder floating-point comparisons
8459 and thus may not be used when ordered comparisons are required.
8460 This option requires that both @option{-fno-signed-zeros} and
8461 @option{-fno-trapping-math} be in effect. Moreover, it doesn't make
8462 much sense with @option{-frounding-math}. For Fortran the option
8463 is automatically enabled when both @option{-fno-signed-zeros} and
8464 @option{-fno-trapping-math} are in effect.
8465
8466 The default is @option{-fno-associative-math}.
8467
8468 @item -freciprocal-math
8469 @opindex freciprocal-math
8470
8471 Allow the reciprocal of a value to be used instead of dividing by
8472 the value if this enables optimizations. For example @code{x / y}
8473 can be replaced with @code{x * (1/y)}, which is useful if @code{(1/y)}
8474 is subject to common subexpression elimination. Note that this loses
8475 precision and increases the number of flops operating on the value.
8476
8477 The default is @option{-fno-reciprocal-math}.
8478
8479 @item -ffinite-math-only
8480 @opindex ffinite-math-only
8481 Allow optimizations for floating-point arithmetic that assume
8482 that arguments and results are not NaNs or +-Infs.
8483
8484 This option is not turned on by any @option{-O} option since
8485 it can result in incorrect output for programs that depend on
8486 an exact implementation of IEEE or ISO rules/specifications for
8487 math functions. It may, however, yield faster code for programs
8488 that do not require the guarantees of these specifications.
8489
8490 The default is @option{-fno-finite-math-only}.
8491
8492 @item -fno-signed-zeros
8493 @opindex fno-signed-zeros
8494 Allow optimizations for floating-point arithmetic that ignore the
8495 signedness of zero. IEEE arithmetic specifies the behavior of
8496 distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
8497 of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
8498 This option implies that the sign of a zero result isn't significant.
8499
8500 The default is @option{-fsigned-zeros}.
8501
8502 @item -fno-trapping-math
8503 @opindex fno-trapping-math
8504 Compile code assuming that floating-point operations cannot generate
8505 user-visible traps. These traps include division by zero, overflow,
8506 underflow, inexact result and invalid operation. This option requires
8507 that @option{-fno-signaling-nans} be in effect. Setting this option may
8508 allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example.
8509
8510 This option should never be turned on by any @option{-O} option since
8511 it can result in incorrect output for programs that depend on
8512 an exact implementation of IEEE or ISO rules/specifications for
8513 math functions.
8514
8515 The default is @option{-ftrapping-math}.
8516
8517 @item -frounding-math
8518 @opindex frounding-math
8519 Disable transformations and optimizations that assume default floating-point
8520 rounding behavior. This is round-to-zero for all floating point
8521 to integer conversions, and round-to-nearest for all other arithmetic
8522 truncations. This option should be specified for programs that change
8523 the FP rounding mode dynamically, or that may be executed with a
8524 non-default rounding mode. This option disables constant folding of
8525 floating-point expressions at compile time (which may be affected by
8526 rounding mode) and arithmetic transformations that are unsafe in the
8527 presence of sign-dependent rounding modes.
8528
8529 The default is @option{-fno-rounding-math}.
8530
8531 This option is experimental and does not currently guarantee to
8532 disable all GCC optimizations that are affected by rounding mode.
8533 Future versions of GCC may provide finer control of this setting
8534 using C99's @code{FENV_ACCESS} pragma. This command-line option
8535 will be used to specify the default state for @code{FENV_ACCESS}.
8536
8537 @item -fsignaling-nans
8538 @opindex fsignaling-nans
8539 Compile code assuming that IEEE signaling NaNs may generate user-visible
8540 traps during floating-point operations. Setting this option disables
8541 optimizations that may change the number of exceptions visible with
8542 signaling NaNs. This option implies @option{-ftrapping-math}.
8543
8544 This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
8545 be defined.
8546
8547 The default is @option{-fno-signaling-nans}.
8548
8549 This option is experimental and does not currently guarantee to
8550 disable all GCC optimizations that affect signaling NaN behavior.
8551
8552 @item -fno-fp-int-builtin-inexact
8553 @opindex fno-fp-int-builtin-inexact
8554 Do not allow the built-in functions @code{ceil}, @code{floor},
8555 @code{round} and @code{trunc}, and their @code{float} and @code{long
8556 double} variants, to generate code that raises the ``inexact''
8557 floating-point exception for noninteger arguments. ISO C99 and C11
8558 allow these functions to raise the ``inexact'' exception, but ISO/IEC
8559 TS 18661-1:2014, the C bindings to IEEE 754-2008, does not allow these
8560 functions to do so.
8561
8562 The default is @option{-ffp-int-builtin-inexact}, allowing the
8563 exception to be raised. This option does nothing unless
8564 @option{-ftrapping-math} is in effect.
8565
8566 Even if @option{-fno-fp-int-builtin-inexact} is used, if the functions
8567 generate a call to a library function then the ``inexact'' exception
8568 may be raised if the library implementation does not follow TS 18661.
8569
8570 @item -fsingle-precision-constant
8571 @opindex fsingle-precision-constant
8572 Treat floating-point constants as single precision instead of
8573 implicitly converting them to double-precision constants.
8574
8575 @item -fcx-limited-range
8576 @opindex fcx-limited-range
8577 When enabled, this option states that a range reduction step is not
8578 needed when performing complex division. Also, there is no checking
8579 whether the result of a complex multiplication or division is @code{NaN
8580 + I*NaN}, with an attempt to rescue the situation in that case. The
8581 default is @option{-fno-cx-limited-range}, but is enabled by
8582 @option{-ffast-math}.
8583
8584 This option controls the default setting of the ISO C99
8585 @code{CX_LIMITED_RANGE} pragma. Nevertheless, the option applies to
8586 all languages.
8587
8588 @item -fcx-fortran-rules
8589 @opindex fcx-fortran-rules
8590 Complex multiplication and division follow Fortran rules. Range
8591 reduction is done as part of complex division, but there is no checking
8592 whether the result of a complex multiplication or division is @code{NaN
8593 + I*NaN}, with an attempt to rescue the situation in that case.
8594
8595 The default is @option{-fno-cx-fortran-rules}.
8596
8597 @end table
8598
8599 The following options control optimizations that may improve
8600 performance, but are not enabled by any @option{-O} options. This
8601 section includes experimental options that may produce broken code.
8602
8603 @table @gcctabopt
8604 @item -fbranch-probabilities
8605 @opindex fbranch-probabilities
8606 After running a program compiled with @option{-fprofile-arcs}
8607 (@pxref{Instrumentation Options}),
8608 you can compile it a second time using
8609 @option{-fbranch-probabilities}, to improve optimizations based on
8610 the number of times each branch was taken. When a program
8611 compiled with @option{-fprofile-arcs} exits, it saves arc execution
8612 counts to a file called @file{@var{sourcename}.gcda} for each source
8613 file. The information in this data file is very dependent on the
8614 structure of the generated code, so you must use the same source code
8615 and the same optimization options for both compilations.
8616
8617 With @option{-fbranch-probabilities}, GCC puts a
8618 @samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
8619 These can be used to improve optimization. Currently, they are only
8620 used in one place: in @file{reorg.c}, instead of guessing which path a
8621 branch is most likely to take, the @samp{REG_BR_PROB} values are used to
8622 exactly determine which path is taken more often.
8623
8624 @item -fprofile-values
8625 @opindex fprofile-values
8626 If combined with @option{-fprofile-arcs}, it adds code so that some
8627 data about values of expressions in the program is gathered.
8628
8629 With @option{-fbranch-probabilities}, it reads back the data gathered
8630 from profiling values of expressions for usage in optimizations.
8631
8632 Enabled with @option{-fprofile-generate} and @option{-fprofile-use}.
8633
8634 @item -fprofile-reorder-functions
8635 @opindex fprofile-reorder-functions
8636 Function reordering based on profile instrumentation collects
8637 first time of execution of a function and orders these functions
8638 in ascending order.
8639
8640 Enabled with @option{-fprofile-use}.
8641
8642 @item -fvpt
8643 @opindex fvpt
8644 If combined with @option{-fprofile-arcs}, this option instructs the compiler
8645 to add code to gather information about values of expressions.
8646
8647 With @option{-fbranch-probabilities}, it reads back the data gathered
8648 and actually performs the optimizations based on them.
8649 Currently the optimizations include specialization of division operations
8650 using the knowledge about the value of the denominator.
8651
8652 @item -frename-registers
8653 @opindex frename-registers
8654 Attempt to avoid false dependencies in scheduled code by making use
8655 of registers left over after register allocation. This optimization
8656 most benefits processors with lots of registers. Depending on the
8657 debug information format adopted by the target, however, it can
8658 make debugging impossible, since variables no longer stay in
8659 a ``home register''.
8660
8661 Enabled by default with @option{-funroll-loops}.
8662
8663 @item -fschedule-fusion
8664 @opindex fschedule-fusion
8665 Performs a target dependent pass over the instruction stream to schedule
8666 instructions of same type together because target machine can execute them
8667 more efficiently if they are adjacent to each other in the instruction flow.
8668
8669 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8670
8671 @item -ftracer
8672 @opindex ftracer
8673 Perform tail duplication to enlarge superblock size. This transformation
8674 simplifies the control flow of the function allowing other optimizations to do
8675 a better job.
8676
8677 Enabled with @option{-fprofile-use}.
8678
8679 @item -funroll-loops
8680 @opindex funroll-loops
8681 Unroll loops whose number of iterations can be determined at compile time or
8682 upon entry to the loop. @option{-funroll-loops} implies
8683 @option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
8684 It also turns on complete loop peeling (i.e.@: complete removal of loops with
8685 a small constant number of iterations). This option makes code larger, and may
8686 or may not make it run faster.
8687
8688 Enabled with @option{-fprofile-use}.
8689
8690 @item -funroll-all-loops
8691 @opindex funroll-all-loops
8692 Unroll all loops, even if their number of iterations is uncertain when
8693 the loop is entered. This usually makes programs run more slowly.
8694 @option{-funroll-all-loops} implies the same options as
8695 @option{-funroll-loops}.
8696
8697 @item -fpeel-loops
8698 @opindex fpeel-loops
8699 Peels loops for which there is enough information that they do not
8700 roll much (from profile feedback or static analysis). It also turns on
8701 complete loop peeling (i.e.@: complete removal of loops with small constant
8702 number of iterations).
8703
8704 Enabled with @option{-O3} and/or @option{-fprofile-use}.
8705
8706 @item -fmove-loop-invariants
8707 @opindex fmove-loop-invariants
8708 Enables the loop invariant motion pass in the RTL loop optimizer. Enabled
8709 at level @option{-O1}
8710
8711 @item -funswitch-loops
8712 @opindex funswitch-loops
8713 Move branches with loop invariant conditions out of the loop, with duplicates
8714 of the loop on both branches (modified according to result of the condition).
8715
8716 @item -ffunction-sections
8717 @itemx -fdata-sections
8718 @opindex ffunction-sections
8719 @opindex fdata-sections
8720 Place each function or data item into its own section in the output
8721 file if the target supports arbitrary sections. The name of the
8722 function or the name of the data item determines the section's name
8723 in the output file.
8724
8725 Use these options on systems where the linker can perform optimizations
8726 to improve locality of reference in the instruction space. Most systems
8727 using the ELF object format and SPARC processors running Solaris 2 have
8728 linkers with such optimizations. AIX may have these optimizations in
8729 the future.
8730
8731 Only use these options when there are significant benefits from doing
8732 so. When you specify these options, the assembler and linker
8733 create larger object and executable files and are also slower.
8734 You cannot use @command{gprof} on all systems if you
8735 specify this option, and you may have problems with debugging if
8736 you specify both this option and @option{-g}.
8737
8738 @item -fbranch-target-load-optimize
8739 @opindex fbranch-target-load-optimize
8740 Perform branch target register load optimization before prologue / epilogue
8741 threading.
8742 The use of target registers can typically be exposed only during reload,
8743 thus hoisting loads out of loops and doing inter-block scheduling needs
8744 a separate optimization pass.
8745
8746 @item -fbranch-target-load-optimize2
8747 @opindex fbranch-target-load-optimize2
8748 Perform branch target register load optimization after prologue / epilogue
8749 threading.
8750
8751 @item -fbtr-bb-exclusive
8752 @opindex fbtr-bb-exclusive
8753 When performing branch target register load optimization, don't reuse
8754 branch target registers within any basic block.
8755
8756 @item -fstdarg-opt
8757 @opindex fstdarg-opt
8758 Optimize the prologue of variadic argument functions with respect to usage of
8759 those arguments.
8760
8761 @item -fsection-anchors
8762 @opindex fsection-anchors
8763 Try to reduce the number of symbolic address calculations by using
8764 shared ``anchor'' symbols to address nearby objects. This transformation
8765 can help to reduce the number of GOT entries and GOT accesses on some
8766 targets.
8767
8768 For example, the implementation of the following function @code{foo}:
8769
8770 @smallexample
8771 static int a, b, c;
8772 int foo (void) @{ return a + b + c; @}
8773 @end smallexample
8774
8775 @noindent
8776 usually calculates the addresses of all three variables, but if you
8777 compile it with @option{-fsection-anchors}, it accesses the variables
8778 from a common anchor point instead. The effect is similar to the
8779 following pseudocode (which isn't valid C):
8780
8781 @smallexample
8782 int foo (void)
8783 @{
8784 register int *xr = &x;
8785 return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
8786 @}
8787 @end smallexample
8788
8789 Not all targets support this option.
8790
8791 @item --param @var{name}=@var{value}
8792 @opindex param
8793 In some places, GCC uses various constants to control the amount of
8794 optimization that is done. For example, GCC does not inline functions
8795 that contain more than a certain number of instructions. You can
8796 control some of these constants on the command line using the
8797 @option{--param} option.
8798
8799 The names of specific parameters, and the meaning of the values, are
8800 tied to the internals of the compiler, and are subject to change
8801 without notice in future releases.
8802
8803 In each case, the @var{value} is an integer. The allowable choices for
8804 @var{name} are:
8805
8806 @table @gcctabopt
8807 @item predictable-branch-outcome
8808 When branch is predicted to be taken with probability lower than this threshold
8809 (in percent), then it is considered well predictable. The default is 10.
8810
8811 @item max-rtl-if-conversion-insns
8812 RTL if-conversion tries to remove conditional branches around a block and
8813 replace them with conditionally executed instructions. This parameter
8814 gives the maximum number of instructions in a block which should be
8815 considered for if-conversion. The default is 10, though the compiler will
8816 also use other heuristics to decide whether if-conversion is likely to be
8817 profitable.
8818
8819 @item max-crossjump-edges
8820 The maximum number of incoming edges to consider for cross-jumping.
8821 The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
8822 the number of edges incoming to each block. Increasing values mean
8823 more aggressive optimization, making the compilation time increase with
8824 probably small improvement in executable size.
8825
8826 @item min-crossjump-insns
8827 The minimum number of instructions that must be matched at the end
8828 of two blocks before cross-jumping is performed on them. This
8829 value is ignored in the case where all instructions in the block being
8830 cross-jumped from are matched. The default value is 5.
8831
8832 @item max-grow-copy-bb-insns
8833 The maximum code size expansion factor when copying basic blocks
8834 instead of jumping. The expansion is relative to a jump instruction.
8835 The default value is 8.
8836
8837 @item max-goto-duplication-insns
8838 The maximum number of instructions to duplicate to a block that jumps
8839 to a computed goto. To avoid @math{O(N^2)} behavior in a number of
8840 passes, GCC factors computed gotos early in the compilation process,
8841 and unfactors them as late as possible. Only computed jumps at the
8842 end of a basic blocks with no more than max-goto-duplication-insns are
8843 unfactored. The default value is 8.
8844
8845 @item max-delay-slot-insn-search
8846 The maximum number of instructions to consider when looking for an
8847 instruction to fill a delay slot. If more than this arbitrary number of
8848 instructions are searched, the time savings from filling the delay slot
8849 are minimal, so stop searching. Increasing values mean more
8850 aggressive optimization, making the compilation time increase with probably
8851 small improvement in execution time.
8852
8853 @item max-delay-slot-live-search
8854 When trying to fill delay slots, the maximum number of instructions to
8855 consider when searching for a block with valid live register
8856 information. Increasing this arbitrarily chosen value means more
8857 aggressive optimization, increasing the compilation time. This parameter
8858 should be removed when the delay slot code is rewritten to maintain the
8859 control-flow graph.
8860
8861 @item max-gcse-memory
8862 The approximate maximum amount of memory that can be allocated in
8863 order to perform the global common subexpression elimination
8864 optimization. If more memory than specified is required, the
8865 optimization is not done.
8866
8867 @item max-gcse-insertion-ratio
8868 If the ratio of expression insertions to deletions is larger than this value
8869 for any expression, then RTL PRE inserts or removes the expression and thus
8870 leaves partially redundant computations in the instruction stream. The default value is 20.
8871
8872 @item max-pending-list-length
8873 The maximum number of pending dependencies scheduling allows
8874 before flushing the current state and starting over. Large functions
8875 with few branches or calls can create excessively large lists which
8876 needlessly consume memory and resources.
8877
8878 @item max-modulo-backtrack-attempts
8879 The maximum number of backtrack attempts the scheduler should make
8880 when modulo scheduling a loop. Larger values can exponentially increase
8881 compilation time.
8882
8883 @item max-inline-insns-single
8884 Several parameters control the tree inliner used in GCC@.
8885 This number sets the maximum number of instructions (counted in GCC's
8886 internal representation) in a single function that the tree inliner
8887 considers for inlining. This only affects functions declared
8888 inline and methods implemented in a class declaration (C++).
8889 The default value is 400.
8890
8891 @item max-inline-insns-auto
8892 When you use @option{-finline-functions} (included in @option{-O3}),
8893 a lot of functions that would otherwise not be considered for inlining
8894 by the compiler are investigated. To those functions, a different
8895 (more restrictive) limit compared to functions declared inline can
8896 be applied.
8897 The default value is 40.
8898
8899 @item inline-min-speedup
8900 When estimated performance improvement of caller + callee runtime exceeds this
8901 threshold (in precent), the function can be inlined regardless the limit on
8902 @option{--param max-inline-insns-single} and @option{--param
8903 max-inline-insns-auto}.
8904
8905 @item large-function-insns
8906 The limit specifying really large functions. For functions larger than this
8907 limit after inlining, inlining is constrained by
8908 @option{--param large-function-growth}. This parameter is useful primarily
8909 to avoid extreme compilation time caused by non-linear algorithms used by the
8910 back end.
8911 The default value is 2700.
8912
8913 @item large-function-growth
8914 Specifies maximal growth of large function caused by inlining in percents.
8915 The default value is 100 which limits large function growth to 2.0 times
8916 the original size.
8917
8918 @item large-unit-insns
8919 The limit specifying large translation unit. Growth caused by inlining of
8920 units larger than this limit is limited by @option{--param inline-unit-growth}.
8921 For small units this might be too tight.
8922 For example, consider a unit consisting of function A
8923 that is inline and B that just calls A three times. If B is small relative to
8924 A, the growth of unit is 300\% and yet such inlining is very sane. For very
8925 large units consisting of small inlineable functions, however, the overall unit
8926 growth limit is needed to avoid exponential explosion of code size. Thus for
8927 smaller units, the size is increased to @option{--param large-unit-insns}
8928 before applying @option{--param inline-unit-growth}. The default is 10000.
8929
8930 @item inline-unit-growth
8931 Specifies maximal overall growth of the compilation unit caused by inlining.
8932 The default value is 20 which limits unit growth to 1.2 times the original
8933 size. Cold functions (either marked cold via an attribute or by profile
8934 feedback) are not accounted into the unit size.
8935
8936 @item ipcp-unit-growth
8937 Specifies maximal overall growth of the compilation unit caused by
8938 interprocedural constant propagation. The default value is 10 which limits
8939 unit growth to 1.1 times the original size.
8940
8941 @item large-stack-frame
8942 The limit specifying large stack frames. While inlining the algorithm is trying
8943 to not grow past this limit too much. The default value is 256 bytes.
8944
8945 @item large-stack-frame-growth
8946 Specifies maximal growth of large stack frames caused by inlining in percents.
8947 The default value is 1000 which limits large stack frame growth to 11 times
8948 the original size.
8949
8950 @item max-inline-insns-recursive
8951 @itemx max-inline-insns-recursive-auto
8952 Specifies the maximum number of instructions an out-of-line copy of a
8953 self-recursive inline
8954 function can grow into by performing recursive inlining.
8955
8956 @option{--param max-inline-insns-recursive} applies to functions
8957 declared inline.
8958 For functions not declared inline, recursive inlining
8959 happens only when @option{-finline-functions} (included in @option{-O3}) is
8960 enabled; @option{--param max-inline-insns-recursive-auto} applies instead. The
8961 default value is 450.
8962
8963 @item max-inline-recursive-depth
8964 @itemx max-inline-recursive-depth-auto
8965 Specifies the maximum recursion depth used for recursive inlining.
8966
8967 @option{--param max-inline-recursive-depth} applies to functions
8968 declared inline. For functions not declared inline, recursive inlining
8969 happens only when @option{-finline-functions} (included in @option{-O3}) is
8970 enabled; @option{--param max-inline-recursive-depth-auto} applies instead. The
8971 default value is 8.
8972
8973 @item min-inline-recursive-probability
8974 Recursive inlining is profitable only for function having deep recursion
8975 in average and can hurt for function having little recursion depth by
8976 increasing the prologue size or complexity of function body to other
8977 optimizers.
8978
8979 When profile feedback is available (see @option{-fprofile-generate}) the actual
8980 recursion depth can be guessed from probability that function recurses via a
8981 given call expression. This parameter limits inlining only to call expressions
8982 whose probability exceeds the given threshold (in percents).
8983 The default value is 10.
8984
8985 @item early-inlining-insns
8986 Specify growth that the early inliner can make. In effect it increases
8987 the amount of inlining for code having a large abstraction penalty.
8988 The default value is 14.
8989
8990 @item max-early-inliner-iterations
8991 Limit of iterations of the early inliner. This basically bounds
8992 the number of nested indirect calls the early inliner can resolve.
8993 Deeper chains are still handled by late inlining.
8994
8995 @item comdat-sharing-probability
8996 Probability (in percent) that C++ inline function with comdat visibility
8997 are shared across multiple compilation units. The default value is 20.
8998
8999 @item profile-func-internal-id
9000 A parameter to control whether to use function internal id in profile
9001 database lookup. If the value is 0, the compiler uses an id that
9002 is based on function assembler name and filename, which makes old profile
9003 data more tolerant to source changes such as function reordering etc.
9004 The default value is 0.
9005
9006 @item min-vect-loop-bound
9007 The minimum number of iterations under which loops are not vectorized
9008 when @option{-ftree-vectorize} is used. The number of iterations after
9009 vectorization needs to be greater than the value specified by this option
9010 to allow vectorization. The default value is 0.
9011
9012 @item gcse-cost-distance-ratio
9013 Scaling factor in calculation of maximum distance an expression
9014 can be moved by GCSE optimizations. This is currently supported only in the
9015 code hoisting pass. The bigger the ratio, the more aggressive code hoisting
9016 is with simple expressions, i.e., the expressions that have cost
9017 less than @option{gcse-unrestricted-cost}. Specifying 0 disables
9018 hoisting of simple expressions. The default value is 10.
9019
9020 @item gcse-unrestricted-cost
9021 Cost, roughly measured as the cost of a single typical machine
9022 instruction, at which GCSE optimizations do not constrain
9023 the distance an expression can travel. This is currently
9024 supported only in the code hoisting pass. The lesser the cost,
9025 the more aggressive code hoisting is. Specifying 0
9026 allows all expressions to travel unrestricted distances.
9027 The default value is 3.
9028
9029 @item max-hoist-depth
9030 The depth of search in the dominator tree for expressions to hoist.
9031 This is used to avoid quadratic behavior in hoisting algorithm.
9032 The value of 0 does not limit on the search, but may slow down compilation
9033 of huge functions. The default value is 30.
9034
9035 @item max-tail-merge-comparisons
9036 The maximum amount of similar bbs to compare a bb with. This is used to
9037 avoid quadratic behavior in tree tail merging. The default value is 10.
9038
9039 @item max-tail-merge-iterations
9040 The maximum amount of iterations of the pass over the function. This is used to
9041 limit compilation time in tree tail merging. The default value is 2.
9042
9043 @item max-unrolled-insns
9044 The maximum number of instructions that a loop may have to be unrolled.
9045 If a loop is unrolled, this parameter also determines how many times
9046 the loop code is unrolled.
9047
9048 @item max-average-unrolled-insns
9049 The maximum number of instructions biased by probabilities of their execution
9050 that a loop may have to be unrolled. If a loop is unrolled,
9051 this parameter also determines how many times the loop code is unrolled.
9052
9053 @item max-unroll-times
9054 The maximum number of unrollings of a single loop.
9055
9056 @item max-peeled-insns
9057 The maximum number of instructions that a loop may have to be peeled.
9058 If a loop is peeled, this parameter also determines how many times
9059 the loop code is peeled.
9060
9061 @item max-peel-times
9062 The maximum number of peelings of a single loop.
9063
9064 @item max-peel-branches
9065 The maximum number of branches on the hot path through the peeled sequence.
9066
9067 @item max-completely-peeled-insns
9068 The maximum number of insns of a completely peeled loop.
9069
9070 @item max-completely-peel-times
9071 The maximum number of iterations of a loop to be suitable for complete peeling.
9072
9073 @item max-completely-peel-loop-nest-depth
9074 The maximum depth of a loop nest suitable for complete peeling.
9075
9076 @item max-unswitch-insns
9077 The maximum number of insns of an unswitched loop.
9078
9079 @item max-unswitch-level
9080 The maximum number of branches unswitched in a single loop.
9081
9082 @item max-loop-headers-insns
9083 The maximum number of insns in loop header duplicated by he copy loop headers
9084 pass.
9085
9086 @item lim-expensive
9087 The minimum cost of an expensive expression in the loop invariant motion.
9088
9089 @item iv-consider-all-candidates-bound
9090 Bound on number of candidates for induction variables, below which
9091 all candidates are considered for each use in induction variable
9092 optimizations. If there are more candidates than this,
9093 only the most relevant ones are considered to avoid quadratic time complexity.
9094
9095 @item iv-max-considered-uses
9096 The induction variable optimizations give up on loops that contain more
9097 induction variable uses.
9098
9099 @item iv-always-prune-cand-set-bound
9100 If the number of candidates in the set is smaller than this value,
9101 always try to remove unnecessary ivs from the set
9102 when adding a new one.
9103
9104 @item scev-max-expr-size
9105 Bound on size of expressions used in the scalar evolutions analyzer.
9106 Large expressions slow the analyzer.
9107
9108 @item scev-max-expr-complexity
9109 Bound on the complexity of the expressions in the scalar evolutions analyzer.
9110 Complex expressions slow the analyzer.
9111
9112 @item max-tree-if-conversion-phi-args
9113 Maximum number of arguments in a PHI supported by TREE if conversion
9114 unless the loop is marked with simd pragma.
9115
9116 @item vect-max-version-for-alignment-checks
9117 The maximum number of run-time checks that can be performed when
9118 doing loop versioning for alignment in the vectorizer.
9119
9120 @item vect-max-version-for-alias-checks
9121 The maximum number of run-time checks that can be performed when
9122 doing loop versioning for alias in the vectorizer.
9123
9124 @item vect-max-peeling-for-alignment
9125 The maximum number of loop peels to enhance access alignment
9126 for vectorizer. Value -1 means no limit.
9127
9128 @item max-iterations-to-track
9129 The maximum number of iterations of a loop the brute-force algorithm
9130 for analysis of the number of iterations of the loop tries to evaluate.
9131
9132 @item hot-bb-count-ws-permille
9133 A basic block profile count is considered hot if it contributes to
9134 the given permillage (i.e. 0...1000) of the entire profiled execution.
9135
9136 @item hot-bb-frequency-fraction
9137 Select fraction of the entry block frequency of executions of basic block in
9138 function given basic block needs to have to be considered hot.
9139
9140 @item max-predicted-iterations
9141 The maximum number of loop iterations we predict statically. This is useful
9142 in cases where a function contains a single loop with known bound and
9143 another loop with unknown bound.
9144 The known number of iterations is predicted correctly, while
9145 the unknown number of iterations average to roughly 10. This means that the
9146 loop without bounds appears artificially cold relative to the other one.
9147
9148 @item builtin-expect-probability
9149 Control the probability of the expression having the specified value. This
9150 parameter takes a percentage (i.e. 0 ... 100) as input.
9151 The default probability of 90 is obtained empirically.
9152
9153 @item align-threshold
9154
9155 Select fraction of the maximal frequency of executions of a basic block in
9156 a function to align the basic block.
9157
9158 @item align-loop-iterations
9159
9160 A loop expected to iterate at least the selected number of iterations is
9161 aligned.
9162
9163 @item tracer-dynamic-coverage
9164 @itemx tracer-dynamic-coverage-feedback
9165
9166 This value is used to limit superblock formation once the given percentage of
9167 executed instructions is covered. This limits unnecessary code size
9168 expansion.
9169
9170 The @option{tracer-dynamic-coverage-feedback} parameter
9171 is used only when profile
9172 feedback is available. The real profiles (as opposed to statically estimated
9173 ones) are much less balanced allowing the threshold to be larger value.
9174
9175 @item tracer-max-code-growth
9176 Stop tail duplication once code growth has reached given percentage. This is
9177 a rather artificial limit, as most of the duplicates are eliminated later in
9178 cross jumping, so it may be set to much higher values than is the desired code
9179 growth.
9180
9181 @item tracer-min-branch-ratio
9182
9183 Stop reverse growth when the reverse probability of best edge is less than this
9184 threshold (in percent).
9185
9186 @item tracer-min-branch-probability
9187 @itemx tracer-min-branch-probability-feedback
9188
9189 Stop forward growth if the best edge has probability lower than this
9190 threshold.
9191
9192 Similarly to @option{tracer-dynamic-coverage} two parameters are
9193 provided. @option{tracer-min-branch-probability-feedback} is used for
9194 compilation with profile feedback and @option{tracer-min-branch-probability}
9195 compilation without. The value for compilation with profile feedback
9196 needs to be more conservative (higher) in order to make tracer
9197 effective.
9198
9199 @item max-cse-path-length
9200
9201 The maximum number of basic blocks on path that CSE considers.
9202 The default is 10.
9203
9204 @item max-cse-insns
9205 The maximum number of instructions CSE processes before flushing.
9206 The default is 1000.
9207
9208 @item ggc-min-expand
9209
9210 GCC uses a garbage collector to manage its own memory allocation. This
9211 parameter specifies the minimum percentage by which the garbage
9212 collector's heap should be allowed to expand between collections.
9213 Tuning this may improve compilation speed; it has no effect on code
9214 generation.
9215
9216 The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
9217 RAM >= 1GB@. If @code{getrlimit} is available, the notion of ``RAM'' is
9218 the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}. If
9219 GCC is not able to calculate RAM on a particular platform, the lower
9220 bound of 30% is used. Setting this parameter and
9221 @option{ggc-min-heapsize} to zero causes a full collection to occur at
9222 every opportunity. This is extremely slow, but can be useful for
9223 debugging.
9224
9225 @item ggc-min-heapsize
9226
9227 Minimum size of the garbage collector's heap before it begins bothering
9228 to collect garbage. The first collection occurs after the heap expands
9229 by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}. Again,
9230 tuning this may improve compilation speed, and has no effect on code
9231 generation.
9232
9233 The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that
9234 tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
9235 with a lower bound of 4096 (four megabytes) and an upper bound of
9236 131072 (128 megabytes). If GCC is not able to calculate RAM on a
9237 particular platform, the lower bound is used. Setting this parameter
9238 very large effectively disables garbage collection. Setting this
9239 parameter and @option{ggc-min-expand} to zero causes a full collection
9240 to occur at every opportunity.
9241
9242 @item max-reload-search-insns
9243 The maximum number of instruction reload should look backward for equivalent
9244 register. Increasing values mean more aggressive optimization, making the
9245 compilation time increase with probably slightly better performance.
9246 The default value is 100.
9247
9248 @item max-cselib-memory-locations
9249 The maximum number of memory locations cselib should take into account.
9250 Increasing values mean more aggressive optimization, making the compilation time
9251 increase with probably slightly better performance. The default value is 500.
9252
9253 @item max-sched-ready-insns
9254 The maximum number of instructions ready to be issued the scheduler should
9255 consider at any given time during the first scheduling pass. Increasing
9256 values mean more thorough searches, making the compilation time increase
9257 with probably little benefit. The default value is 100.
9258
9259 @item max-sched-region-blocks
9260 The maximum number of blocks in a region to be considered for
9261 interblock scheduling. The default value is 10.
9262
9263 @item max-pipeline-region-blocks
9264 The maximum number of blocks in a region to be considered for
9265 pipelining in the selective scheduler. The default value is 15.
9266
9267 @item max-sched-region-insns
9268 The maximum number of insns in a region to be considered for
9269 interblock scheduling. The default value is 100.
9270
9271 @item max-pipeline-region-insns
9272 The maximum number of insns in a region to be considered for
9273 pipelining in the selective scheduler. The default value is 200.
9274
9275 @item min-spec-prob
9276 The minimum probability (in percents) of reaching a source block
9277 for interblock speculative scheduling. The default value is 40.
9278
9279 @item max-sched-extend-regions-iters
9280 The maximum number of iterations through CFG to extend regions.
9281 A value of 0 (the default) disables region extensions.
9282
9283 @item max-sched-insn-conflict-delay
9284 The maximum conflict delay for an insn to be considered for speculative motion.
9285 The default value is 3.
9286
9287 @item sched-spec-prob-cutoff
9288 The minimal probability of speculation success (in percents), so that
9289 speculative insns are scheduled.
9290 The default value is 40.
9291
9292 @item sched-state-edge-prob-cutoff
9293 The minimum probability an edge must have for the scheduler to save its
9294 state across it.
9295 The default value is 10.
9296
9297 @item sched-mem-true-dep-cost
9298 Minimal distance (in CPU cycles) between store and load targeting same
9299 memory locations. The default value is 1.
9300
9301 @item selsched-max-lookahead
9302 The maximum size of the lookahead window of selective scheduling. It is a
9303 depth of search for available instructions.
9304 The default value is 50.
9305
9306 @item selsched-max-sched-times
9307 The maximum number of times that an instruction is scheduled during
9308 selective scheduling. This is the limit on the number of iterations
9309 through which the instruction may be pipelined. The default value is 2.
9310
9311 @item selsched-insns-to-rename
9312 The maximum number of best instructions in the ready list that are considered
9313 for renaming in the selective scheduler. The default value is 2.
9314
9315 @item sms-min-sc
9316 The minimum value of stage count that swing modulo scheduler
9317 generates. The default value is 2.
9318
9319 @item max-last-value-rtl
9320 The maximum size measured as number of RTLs that can be recorded in an expression
9321 in combiner for a pseudo register as last known value of that register. The default
9322 is 10000.
9323
9324 @item max-combine-insns
9325 The maximum number of instructions the RTL combiner tries to combine.
9326 The default value is 2 at @option{-Og} and 4 otherwise.
9327
9328 @item integer-share-limit
9329 Small integer constants can use a shared data structure, reducing the
9330 compiler's memory usage and increasing its speed. This sets the maximum
9331 value of a shared integer constant. The default value is 256.
9332
9333 @item ssp-buffer-size
9334 The minimum size of buffers (i.e.@: arrays) that receive stack smashing
9335 protection when @option{-fstack-protection} is used.
9336
9337 @item min-size-for-stack-sharing
9338 The minimum size of variables taking part in stack slot sharing when not
9339 optimizing. The default value is 32.
9340
9341 @item max-jump-thread-duplication-stmts
9342 Maximum number of statements allowed in a block that needs to be
9343 duplicated when threading jumps.
9344
9345 @item max-fields-for-field-sensitive
9346 Maximum number of fields in a structure treated in
9347 a field sensitive manner during pointer analysis. The default is zero
9348 for @option{-O0} and @option{-O1},
9349 and 100 for @option{-Os}, @option{-O2}, and @option{-O3}.
9350
9351 @item prefetch-latency
9352 Estimate on average number of instructions that are executed before
9353 prefetch finishes. The distance prefetched ahead is proportional
9354 to this constant. Increasing this number may also lead to less
9355 streams being prefetched (see @option{simultaneous-prefetches}).
9356
9357 @item simultaneous-prefetches
9358 Maximum number of prefetches that can run at the same time.
9359
9360 @item l1-cache-line-size
9361 The size of cache line in L1 cache, in bytes.
9362
9363 @item l1-cache-size
9364 The size of L1 cache, in kilobytes.
9365
9366 @item l2-cache-size
9367 The size of L2 cache, in kilobytes.
9368
9369 @item min-insn-to-prefetch-ratio
9370 The minimum ratio between the number of instructions and the
9371 number of prefetches to enable prefetching in a loop.
9372
9373 @item prefetch-min-insn-to-mem-ratio
9374 The minimum ratio between the number of instructions and the
9375 number of memory references to enable prefetching in a loop.
9376
9377 @item use-canonical-types
9378 Whether the compiler should use the ``canonical'' type system. By
9379 default, this should always be 1, which uses a more efficient internal
9380 mechanism for comparing types in C++ and Objective-C++. However, if
9381 bugs in the canonical type system are causing compilation failures,
9382 set this value to 0 to disable canonical types.
9383
9384 @item switch-conversion-max-branch-ratio
9385 Switch initialization conversion refuses to create arrays that are
9386 bigger than @option{switch-conversion-max-branch-ratio} times the number of
9387 branches in the switch.
9388
9389 @item max-partial-antic-length
9390 Maximum length of the partial antic set computed during the tree
9391 partial redundancy elimination optimization (@option{-ftree-pre}) when
9392 optimizing at @option{-O3} and above. For some sorts of source code
9393 the enhanced partial redundancy elimination optimization can run away,
9394 consuming all of the memory available on the host machine. This
9395 parameter sets a limit on the length of the sets that are computed,
9396 which prevents the runaway behavior. Setting a value of 0 for
9397 this parameter allows an unlimited set length.
9398
9399 @item sccvn-max-scc-size
9400 Maximum size of a strongly connected component (SCC) during SCCVN
9401 processing. If this limit is hit, SCCVN processing for the whole
9402 function is not done and optimizations depending on it are
9403 disabled. The default maximum SCC size is 10000.
9404
9405 @item sccvn-max-alias-queries-per-access
9406 Maximum number of alias-oracle queries we perform when looking for
9407 redundancies for loads and stores. If this limit is hit the search
9408 is aborted and the load or store is not considered redundant. The
9409 number of queries is algorithmically limited to the number of
9410 stores on all paths from the load to the function entry.
9411 The default maximum number of queries is 1000.
9412
9413 @item ira-max-loops-num
9414 IRA uses regional register allocation by default. If a function
9415 contains more loops than the number given by this parameter, only at most
9416 the given number of the most frequently-executed loops form regions
9417 for regional register allocation. The default value of the
9418 parameter is 100.
9419
9420 @item ira-max-conflict-table-size
9421 Although IRA uses a sophisticated algorithm to compress the conflict
9422 table, the table can still require excessive amounts of memory for
9423 huge functions. If the conflict table for a function could be more
9424 than the size in MB given by this parameter, the register allocator
9425 instead uses a faster, simpler, and lower-quality
9426 algorithm that does not require building a pseudo-register conflict table.
9427 The default value of the parameter is 2000.
9428
9429 @item ira-loop-reserved-regs
9430 IRA can be used to evaluate more accurate register pressure in loops
9431 for decisions to move loop invariants (see @option{-O3}). The number
9432 of available registers reserved for some other purposes is given
9433 by this parameter. The default value of the parameter is 2, which is
9434 the minimal number of registers needed by typical instructions.
9435 This value is the best found from numerous experiments.
9436
9437 @item lra-inheritance-ebb-probability-cutoff
9438 LRA tries to reuse values reloaded in registers in subsequent insns.
9439 This optimization is called inheritance. EBB is used as a region to
9440 do this optimization. The parameter defines a minimal fall-through
9441 edge probability in percentage used to add BB to inheritance EBB in
9442 LRA. The default value of the parameter is 40. The value was chosen
9443 from numerous runs of SPEC2000 on x86-64.
9444
9445 @item loop-invariant-max-bbs-in-loop
9446 Loop invariant motion can be very expensive, both in compilation time and
9447 in amount of needed compile-time memory, with very large loops. Loops
9448 with more basic blocks than this parameter won't have loop invariant
9449 motion optimization performed on them. The default value of the
9450 parameter is 1000 for @option{-O1} and 10000 for @option{-O2} and above.
9451
9452 @item loop-max-datarefs-for-datadeps
9453 Building data dependencies is expensive for very large loops. This
9454 parameter limits the number of data references in loops that are
9455 considered for data dependence analysis. These large loops are no
9456 handled by the optimizations using loop data dependencies.
9457 The default value is 1000.
9458
9459 @item max-vartrack-size
9460 Sets a maximum number of hash table slots to use during variable
9461 tracking dataflow analysis of any function. If this limit is exceeded
9462 with variable tracking at assignments enabled, analysis for that
9463 function is retried without it, after removing all debug insns from
9464 the function. If the limit is exceeded even without debug insns, var
9465 tracking analysis is completely disabled for the function. Setting
9466 the parameter to zero makes it unlimited.
9467
9468 @item max-vartrack-expr-depth
9469 Sets a maximum number of recursion levels when attempting to map
9470 variable names or debug temporaries to value expressions. This trades
9471 compilation time for more complete debug information. If this is set too
9472 low, value expressions that are available and could be represented in
9473 debug information may end up not being used; setting this higher may
9474 enable the compiler to find more complex debug expressions, but compile
9475 time and memory use may grow. The default is 12.
9476
9477 @item min-nondebug-insn-uid
9478 Use uids starting at this parameter for nondebug insns. The range below
9479 the parameter is reserved exclusively for debug insns created by
9480 @option{-fvar-tracking-assignments}, but debug insns may get
9481 (non-overlapping) uids above it if the reserved range is exhausted.
9482
9483 @item ipa-sra-ptr-growth-factor
9484 IPA-SRA replaces a pointer to an aggregate with one or more new
9485 parameters only when their cumulative size is less or equal to
9486 @option{ipa-sra-ptr-growth-factor} times the size of the original
9487 pointer parameter.
9488
9489 @item sra-max-scalarization-size-Ospeed
9490 @item sra-max-scalarization-size-Osize
9491 The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to
9492 replace scalar parts of aggregates with uses of independent scalar
9493 variables. These parameters control the maximum size, in storage units,
9494 of aggregate which is considered for replacement when compiling for
9495 speed
9496 (@option{sra-max-scalarization-size-Ospeed}) or size
9497 (@option{sra-max-scalarization-size-Osize}) respectively.
9498
9499 @item tm-max-aggregate-size
9500 When making copies of thread-local variables in a transaction, this
9501 parameter specifies the size in bytes after which variables are
9502 saved with the logging functions as opposed to save/restore code
9503 sequence pairs. This option only applies when using
9504 @option{-fgnu-tm}.
9505
9506 @item graphite-max-nb-scop-params
9507 To avoid exponential effects in the Graphite loop transforms, the
9508 number of parameters in a Static Control Part (SCoP) is bounded. The
9509 default value is 10 parameters. A variable whose value is unknown at
9510 compilation time and defined outside a SCoP is a parameter of the SCoP.
9511
9512 @item graphite-max-bbs-per-function
9513 To avoid exponential effects in the detection of SCoPs, the size of
9514 the functions analyzed by Graphite is bounded. The default value is
9515 100 basic blocks.
9516
9517 @item loop-block-tile-size
9518 Loop blocking or strip mining transforms, enabled with
9519 @option{-floop-block} or @option{-floop-strip-mine}, strip mine each
9520 loop in the loop nest by a given number of iterations. The strip
9521 length can be changed using the @option{loop-block-tile-size}
9522 parameter. The default value is 51 iterations.
9523
9524 @item loop-unroll-jam-size
9525 Specify the unroll factor for the @option{-floop-unroll-and-jam} option. The
9526 default value is 4.
9527
9528 @item loop-unroll-jam-depth
9529 Specify the dimension to be unrolled (counting from the most inner loop)
9530 for the @option{-floop-unroll-and-jam}. The default value is 2.
9531
9532 @item ipa-cp-value-list-size
9533 IPA-CP attempts to track all possible values and types passed to a function's
9534 parameter in order to propagate them and perform devirtualization.
9535 @option{ipa-cp-value-list-size} is the maximum number of values and types it
9536 stores per one formal parameter of a function.
9537
9538 @item ipa-cp-eval-threshold
9539 IPA-CP calculates its own score of cloning profitability heuristics
9540 and performs those cloning opportunities with scores that exceed
9541 @option{ipa-cp-eval-threshold}.
9542
9543 @item ipa-cp-recursion-penalty
9544 Percentage penalty the recursive functions will receive when they
9545 are evaluated for cloning.
9546
9547 @item ipa-cp-single-call-penalty
9548 Percentage penalty functions containg a single call to another
9549 function will receive when they are evaluated for cloning.
9550
9551
9552 @item ipa-max-agg-items
9553 IPA-CP is also capable to propagate a number of scalar values passed
9554 in an aggregate. @option{ipa-max-agg-items} controls the maximum
9555 number of such values per one parameter.
9556
9557 @item ipa-cp-loop-hint-bonus
9558 When IPA-CP determines that a cloning candidate would make the number
9559 of iterations of a loop known, it adds a bonus of
9560 @option{ipa-cp-loop-hint-bonus} to the profitability score of
9561 the candidate.
9562
9563 @item ipa-cp-array-index-hint-bonus
9564 When IPA-CP determines that a cloning candidate would make the index of
9565 an array access known, it adds a bonus of
9566 @option{ipa-cp-array-index-hint-bonus} to the profitability
9567 score of the candidate.
9568
9569 @item ipa-max-aa-steps
9570 During its analysis of function bodies, IPA-CP employs alias analysis
9571 in order to track values pointed to by function parameters. In order
9572 not spend too much time analyzing huge functions, it gives up and
9573 consider all memory clobbered after examining
9574 @option{ipa-max-aa-steps} statements modifying memory.
9575
9576 @item lto-partitions
9577 Specify desired number of partitions produced during WHOPR compilation.
9578 The number of partitions should exceed the number of CPUs used for compilation.
9579 The default value is 32.
9580
9581 @item lto-min-partition
9582 Size of minimal partition for WHOPR (in estimated instructions).
9583 This prevents expenses of splitting very small programs into too many
9584 partitions.
9585
9586 @item lto-max-partition
9587 Size of max partition for WHOPR (in estimated instructions).
9588 to provide an upper bound for individual size of partition.
9589 Meant to be used only with balanced partitioning.
9590
9591 @item cxx-max-namespaces-for-diagnostic-help
9592 The maximum number of namespaces to consult for suggestions when C++
9593 name lookup fails for an identifier. The default is 1000.
9594
9595 @item sink-frequency-threshold
9596 The maximum relative execution frequency (in percents) of the target block
9597 relative to a statement's original block to allow statement sinking of a
9598 statement. Larger numbers result in more aggressive statement sinking.
9599 The default value is 75. A small positive adjustment is applied for
9600 statements with memory operands as those are even more profitable so sink.
9601
9602 @item max-stores-to-sink
9603 The maximum number of conditional store pairs that can be sunk. Set to 0
9604 if either vectorization (@option{-ftree-vectorize}) or if-conversion
9605 (@option{-ftree-loop-if-convert}) is disabled. The default is 2.
9606
9607 @item allow-store-data-races
9608 Allow optimizers to introduce new data races on stores.
9609 Set to 1 to allow, otherwise to 0. This option is enabled by default
9610 at optimization level @option{-Ofast}.
9611
9612 @item case-values-threshold
9613 The smallest number of different values for which it is best to use a
9614 jump-table instead of a tree of conditional branches. If the value is
9615 0, use the default for the machine. The default is 0.
9616
9617 @item tree-reassoc-width
9618 Set the maximum number of instructions executed in parallel in
9619 reassociated tree. This parameter overrides target dependent
9620 heuristics used by default if has non zero value.
9621
9622 @item sched-pressure-algorithm
9623 Choose between the two available implementations of
9624 @option{-fsched-pressure}. Algorithm 1 is the original implementation
9625 and is the more likely to prevent instructions from being reordered.
9626 Algorithm 2 was designed to be a compromise between the relatively
9627 conservative approach taken by algorithm 1 and the rather aggressive
9628 approach taken by the default scheduler. It relies more heavily on
9629 having a regular register file and accurate register pressure classes.
9630 See @file{haifa-sched.c} in the GCC sources for more details.
9631
9632 The default choice depends on the target.
9633
9634 @item max-slsr-cand-scan
9635 Set the maximum number of existing candidates that are considered when
9636 seeking a basis for a new straight-line strength reduction candidate.
9637
9638 @item asan-globals
9639 Enable buffer overflow detection for global objects. This kind
9640 of protection is enabled by default if you are using
9641 @option{-fsanitize=address} option.
9642 To disable global objects protection use @option{--param asan-globals=0}.
9643
9644 @item asan-stack
9645 Enable buffer overflow detection for stack objects. This kind of
9646 protection is enabled by default when using @option{-fsanitize=address}.
9647 To disable stack protection use @option{--param asan-stack=0} option.
9648
9649 @item asan-instrument-reads
9650 Enable buffer overflow detection for memory reads. This kind of
9651 protection is enabled by default when using @option{-fsanitize=address}.
9652 To disable memory reads protection use
9653 @option{--param asan-instrument-reads=0}.
9654
9655 @item asan-instrument-writes
9656 Enable buffer overflow detection for memory writes. This kind of
9657 protection is enabled by default when using @option{-fsanitize=address}.
9658 To disable memory writes protection use
9659 @option{--param asan-instrument-writes=0} option.
9660
9661 @item asan-memintrin
9662 Enable detection for built-in functions. This kind of protection
9663 is enabled by default when using @option{-fsanitize=address}.
9664 To disable built-in functions protection use
9665 @option{--param asan-memintrin=0}.
9666
9667 @item asan-use-after-return
9668 Enable detection of use-after-return. This kind of protection
9669 is enabled by default when using @option{-fsanitize=address} option.
9670 To disable use-after-return detection use
9671 @option{--param asan-use-after-return=0}.
9672
9673 @item asan-instrumentation-with-call-threshold
9674 If number of memory accesses in function being instrumented
9675 is greater or equal to this number, use callbacks instead of inline checks.
9676 E.g. to disable inline code use
9677 @option{--param asan-instrumentation-with-call-threshold=0}.
9678
9679 @item chkp-max-ctor-size
9680 Static constructors generated by Pointer Bounds Checker may become very
9681 large and significantly increase compile time at optimization level
9682 @option{-O1} and higher. This parameter is a maximum nubmer of statements
9683 in a single generated constructor. Default value is 5000.
9684
9685 @item max-fsm-thread-path-insns
9686 Maximum number of instructions to copy when duplicating blocks on a
9687 finite state automaton jump thread path. The default is 100.
9688
9689 @item max-fsm-thread-length
9690 Maximum number of basic blocks on a finite state automaton jump thread
9691 path. The default is 10.
9692
9693 @item max-fsm-thread-paths
9694 Maximum number of new jump thread paths to create for a finite state
9695 automaton. The default is 50.
9696
9697 @item parloops-chunk-size
9698 Chunk size of omp schedule for loops parallelized by parloops. The default
9699 is 0.
9700
9701 @item parloops-schedule
9702 Schedule type of omp schedule for loops parallelized by parloops (static,
9703 dynamic, guided, auto, runtime). The default is static.
9704
9705 @item max-ssa-name-query-depth
9706 Maximum depth of recursion when querying properties of SSA names in things
9707 like fold routines. One level of recursion corresponds to following a
9708 use-def chain.
9709
9710 @item hsa-gen-debug-stores
9711 Enable emission of special debug stores within HSA kernels which are
9712 then read and reported by libgomp plugin. Generation of these stores
9713 is disabled by default, use @option{--param hsa-gen-debug-stores=1} to
9714 enable it.
9715
9716 @item max-speculative-devirt-maydefs
9717 The maximum number of may-defs we analyze when looking for a must-def
9718 specifying the dynamic type of an object that invokes a virtual call
9719 we may be able to devirtualize speculatively.
9720 @end table
9721 @end table
9722
9723 @node Instrumentation Options
9724 @section Program Instrumentation Options
9725 @cindex instrumentation options
9726 @cindex program instrumentation options
9727 @cindex run-time error checking options
9728 @cindex profiling options
9729 @cindex options, program instrumentation
9730 @cindex options, run-time error checking
9731 @cindex options, profiling
9732
9733 GCC supports a number of command-line options that control adding
9734 run-time instrumentation to the code it normally generates.
9735 For example, one purpose of instrumentation is collect profiling
9736 statistics for use in finding program hot spots, code coverage
9737 analysis, or profile-guided optimizations.
9738 Another class of program instrumentation is adding run-time checking
9739 to detect programming errors like invalid pointer
9740 dereferences or out-of-bounds array accesses, as well as deliberately
9741 hostile attacks such as stack smashing or C++ vtable hijacking.
9742 There is also a general hook which can be used to implement other
9743 forms of tracing or function-level instrumentation for debug or
9744 program analysis purposes.
9745
9746 @table @gcctabopt
9747 @cindex @command{prof}
9748 @item -p
9749 @opindex p
9750 Generate extra code to write profile information suitable for the
9751 analysis program @command{prof}. You must use this option when compiling
9752 the source files you want data about, and you must also use it when
9753 linking.
9754
9755 @cindex @command{gprof}
9756 @item -pg
9757 @opindex pg
9758 Generate extra code to write profile information suitable for the
9759 analysis program @command{gprof}. You must use this option when compiling
9760 the source files you want data about, and you must also use it when
9761 linking.
9762
9763 @item -fprofile-arcs
9764 @opindex fprofile-arcs
9765 Add code so that program flow @dfn{arcs} are instrumented. During
9766 execution the program records how many times each branch and call is
9767 executed and how many times it is taken or returns. When the compiled
9768 program exits it saves this data to a file called
9769 @file{@var{auxname}.gcda} for each source file. The data may be used for
9770 profile-directed optimizations (@option{-fbranch-probabilities}), or for
9771 test coverage analysis (@option{-ftest-coverage}). Each object file's
9772 @var{auxname} is generated from the name of the output file, if
9773 explicitly specified and it is not the final executable, otherwise it is
9774 the basename of the source file. In both cases any suffix is removed
9775 (e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
9776 @file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
9777 @xref{Cross-profiling}.
9778
9779 @cindex @command{gcov}
9780 @item --coverage
9781 @opindex coverage
9782
9783 This option is used to compile and link code instrumented for coverage
9784 analysis. The option is a synonym for @option{-fprofile-arcs}
9785 @option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
9786 linking). See the documentation for those options for more details.
9787
9788 @itemize
9789
9790 @item
9791 Compile the source files with @option{-fprofile-arcs} plus optimization
9792 and code generation options. For test coverage analysis, use the
9793 additional @option{-ftest-coverage} option. You do not need to profile
9794 every source file in a program.
9795
9796 @item
9797 Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
9798 (the latter implies the former).
9799
9800 @item
9801 Run the program on a representative workload to generate the arc profile
9802 information. This may be repeated any number of times. You can run
9803 concurrent instances of your program, and provided that the file system
9804 supports locking, the data files will be correctly updated. Also
9805 @code{fork} calls are detected and correctly handled (double counting
9806 will not happen).
9807
9808 @item
9809 For profile-directed optimizations, compile the source files again with
9810 the same optimization and code generation options plus
9811 @option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
9812 Control Optimization}).
9813
9814 @item
9815 For test coverage analysis, use @command{gcov} to produce human readable
9816 information from the @file{.gcno} and @file{.gcda} files. Refer to the
9817 @command{gcov} documentation for further information.
9818
9819 @end itemize
9820
9821 With @option{-fprofile-arcs}, for each function of your program GCC
9822 creates a program flow graph, then finds a spanning tree for the graph.
9823 Only arcs that are not on the spanning tree have to be instrumented: the
9824 compiler adds code to count the number of times that these arcs are
9825 executed. When an arc is the only exit or only entrance to a block, the
9826 instrumentation code can be added to the block; otherwise, a new basic
9827 block must be created to hold the instrumentation code.
9828
9829 @need 2000
9830 @item -ftest-coverage
9831 @opindex ftest-coverage
9832 Produce a notes file that the @command{gcov} code-coverage utility
9833 (@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
9834 show program coverage. Each source file's note file is called
9835 @file{@var{auxname}.gcno}. Refer to the @option{-fprofile-arcs} option
9836 above for a description of @var{auxname} and instructions on how to
9837 generate test coverage data. Coverage data matches the source files
9838 more closely if you do not optimize.
9839
9840 @item -fprofile-dir=@var{path}
9841 @opindex fprofile-dir
9842
9843 Set the directory to search for the profile data files in to @var{path}.
9844 This option affects only the profile data generated by
9845 @option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
9846 and used by @option{-fprofile-use} and @option{-fbranch-probabilities}
9847 and its related options. Both absolute and relative paths can be used.
9848 By default, GCC uses the current directory as @var{path}, thus the
9849 profile data file appears in the same directory as the object file.
9850
9851 @item -fprofile-generate
9852 @itemx -fprofile-generate=@var{path}
9853 @opindex fprofile-generate
9854
9855 Enable options usually used for instrumenting application to produce
9856 profile useful for later recompilation with profile feedback based
9857 optimization. You must use @option{-fprofile-generate} both when
9858 compiling and when linking your program.
9859
9860 The following options are enabled: @option{-fprofile-arcs}, @option{-fprofile-values}, @option{-fvpt}.
9861
9862 If @var{path} is specified, GCC looks at the @var{path} to find
9863 the profile feedback data files. See @option{-fprofile-dir}.
9864
9865 To optimize the program based on the collected profile information, use
9866 @option{-fprofile-use}. @xref{Optimize Options}, for more information.
9867
9868 @item -fsanitize=address
9869 @opindex fsanitize=address
9870 Enable AddressSanitizer, a fast memory error detector.
9871 Memory access instructions are instrumented to detect
9872 out-of-bounds and use-after-free bugs.
9873 See @uref{https://github.com/google/sanitizers/wiki/AddressSanitizer} for
9874 more details. The run-time behavior can be influenced using the
9875 @env{ASAN_OPTIONS} environment variable. When set to @code{help=1},
9876 the available options are shown at startup of the instrumented program. See
9877 @url{https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags}
9878 for a list of supported options.
9879
9880 @item -fsanitize=kernel-address
9881 @opindex fsanitize=kernel-address
9882 Enable AddressSanitizer for Linux kernel.
9883 See @uref{https://github.com/google/kasan/wiki} for more details.
9884
9885 @item -fsanitize=thread
9886 @opindex fsanitize=thread
9887 Enable ThreadSanitizer, a fast data race detector.
9888 Memory access instructions are instrumented to detect
9889 data race bugs. See @uref{https://github.com/google/sanitizers/wiki#threadsanitizer} for more
9890 details. The run-time behavior can be influenced using the @env{TSAN_OPTIONS}
9891 environment variable; see
9892 @url{https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags} for a list of
9893 supported options.
9894
9895 @item -fsanitize=leak
9896 @opindex fsanitize=leak
9897 Enable LeakSanitizer, a memory leak detector.
9898 This option only matters for linking of executables and if neither
9899 @option{-fsanitize=address} nor @option{-fsanitize=thread} is used. In that
9900 case the executable is linked against a library that overrides @code{malloc}
9901 and other allocator functions. See
9902 @uref{https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer} for more
9903 details. The run-time behavior can be influenced using the
9904 @env{LSAN_OPTIONS} environment variable.
9905
9906 @item -fsanitize=undefined
9907 @opindex fsanitize=undefined
9908 Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
9909 Various computations are instrumented to detect undefined behavior
9910 at runtime. Current suboptions are:
9911
9912 @table @gcctabopt
9913
9914 @item -fsanitize=shift
9915 @opindex fsanitize=shift
9916 This option enables checking that the result of a shift operation is
9917 not undefined. Note that what exactly is considered undefined differs
9918 slightly between C and C++, as well as between ISO C90 and C99, etc.
9919
9920 @item -fsanitize=integer-divide-by-zero
9921 @opindex fsanitize=integer-divide-by-zero
9922 Detect integer division by zero as well as @code{INT_MIN / -1} division.
9923
9924 @item -fsanitize=unreachable
9925 @opindex fsanitize=unreachable
9926 With this option, the compiler turns the @code{__builtin_unreachable}
9927 call into a diagnostics message call instead. When reaching the
9928 @code{__builtin_unreachable} call, the behavior is undefined.
9929
9930 @item -fsanitize=vla-bound
9931 @opindex fsanitize=vla-bound
9932 This option instructs the compiler to check that the size of a variable
9933 length array is positive.
9934
9935 @item -fsanitize=null
9936 @opindex fsanitize=null
9937 This option enables pointer checking. Particularly, the application
9938 built with this option turned on will issue an error message when it
9939 tries to dereference a NULL pointer, or if a reference (possibly an
9940 rvalue reference) is bound to a NULL pointer, or if a method is invoked
9941 on an object pointed by a NULL pointer.
9942
9943 @item -fsanitize=return
9944 @opindex fsanitize=return
9945 This option enables return statement checking. Programs
9946 built with this option turned on will issue an error message
9947 when the end of a non-void function is reached without actually
9948 returning a value. This option works in C++ only.
9949
9950 @item -fsanitize=signed-integer-overflow
9951 @opindex fsanitize=signed-integer-overflow
9952 This option enables signed integer overflow checking. We check that
9953 the result of @code{+}, @code{*}, and both unary and binary @code{-}
9954 does not overflow in the signed arithmetics. Note, integer promotion
9955 rules must be taken into account. That is, the following is not an
9956 overflow:
9957 @smallexample
9958 signed char a = SCHAR_MAX;
9959 a++;
9960 @end smallexample
9961
9962 @item -fsanitize=bounds
9963 @opindex fsanitize=bounds
9964 This option enables instrumentation of array bounds. Various out of bounds
9965 accesses are detected. Flexible array members, flexible array member-like
9966 arrays, and initializers of variables with static storage are not instrumented.
9967
9968 @item -fsanitize=bounds-strict
9969 @opindex fsanitize=bounds-strict
9970 This option enables strict instrumentation of array bounds. Most out of bounds
9971 accesses are detected, including flexible array members and flexible array
9972 member-like arrays. Initializers of variables with static storage are not
9973 instrumented.
9974
9975 @item -fsanitize=alignment
9976 @opindex fsanitize=alignment
9977
9978 This option enables checking of alignment of pointers when they are
9979 dereferenced, or when a reference is bound to insufficiently aligned target,
9980 or when a method or constructor is invoked on insufficiently aligned object.
9981
9982 @item -fsanitize=object-size
9983 @opindex fsanitize=object-size
9984 This option enables instrumentation of memory references using the
9985 @code{__builtin_object_size} function. Various out of bounds pointer
9986 accesses are detected.
9987
9988 @item -fsanitize=float-divide-by-zero
9989 @opindex fsanitize=float-divide-by-zero
9990 Detect floating-point division by zero. Unlike other similar options,
9991 @option{-fsanitize=float-divide-by-zero} is not enabled by
9992 @option{-fsanitize=undefined}, since floating-point division by zero can
9993 be a legitimate way of obtaining infinities and NaNs.
9994
9995 @item -fsanitize=float-cast-overflow
9996 @opindex fsanitize=float-cast-overflow
9997 This option enables floating-point type to integer conversion checking.
9998 We check that the result of the conversion does not overflow.
9999 Unlike other similar options, @option{-fsanitize=float-cast-overflow} is
10000 not enabled by @option{-fsanitize=undefined}.
10001 This option does not work well with @code{FE_INVALID} exceptions enabled.
10002
10003 @item -fsanitize=nonnull-attribute
10004 @opindex fsanitize=nonnull-attribute
10005
10006 This option enables instrumentation of calls, checking whether null values
10007 are not passed to arguments marked as requiring a non-null value by the
10008 @code{nonnull} function attribute.
10009
10010 @item -fsanitize=returns-nonnull-attribute
10011 @opindex fsanitize=returns-nonnull-attribute
10012
10013 This option enables instrumentation of return statements in functions
10014 marked with @code{returns_nonnull} function attribute, to detect returning
10015 of null values from such functions.
10016
10017 @item -fsanitize=bool
10018 @opindex fsanitize=bool
10019
10020 This option enables instrumentation of loads from bool. If a value other
10021 than 0/1 is loaded, a run-time error is issued.
10022
10023 @item -fsanitize=enum
10024 @opindex fsanitize=enum
10025
10026 This option enables instrumentation of loads from an enum type. If
10027 a value outside the range of values for the enum type is loaded,
10028 a run-time error is issued.
10029
10030 @item -fsanitize=vptr
10031 @opindex fsanitize=vptr
10032
10033 This option enables instrumentation of C++ member function calls, member
10034 accesses and some conversions between pointers to base and derived classes,
10035 to verify the referenced object has the correct dynamic type.
10036
10037 @end table
10038
10039 While @option{-ftrapv} causes traps for signed overflows to be emitted,
10040 @option{-fsanitize=undefined} gives a diagnostic message.
10041 This currently works only for the C family of languages.
10042
10043 @item -fno-sanitize=all
10044 @opindex fno-sanitize=all
10045
10046 This option disables all previously enabled sanitizers.
10047 @option{-fsanitize=all} is not allowed, as some sanitizers cannot be used
10048 together.
10049
10050 @item -fasan-shadow-offset=@var{number}
10051 @opindex fasan-shadow-offset
10052 This option forces GCC to use custom shadow offset in AddressSanitizer checks.
10053 It is useful for experimenting with different shadow memory layouts in
10054 Kernel AddressSanitizer.
10055
10056 @item -fsanitize-sections=@var{s1},@var{s2},...
10057 @opindex fsanitize-sections
10058 Sanitize global variables in selected user-defined sections. @var{si} may
10059 contain wildcards.
10060
10061 @item -fsanitize-recover@r{[}=@var{opts}@r{]}
10062 @opindex fsanitize-recover
10063 @opindex fno-sanitize-recover
10064 @option{-fsanitize-recover=} controls error recovery mode for sanitizers
10065 mentioned in comma-separated list of @var{opts}. Enabling this option
10066 for a sanitizer component causes it to attempt to continue
10067 running the program as if no error happened. This means multiple
10068 runtime errors can be reported in a single program run, and the exit
10069 code of the program may indicate success even when errors
10070 have been reported. The @option{-fno-sanitize-recover=} option
10071 can be used to alter
10072 this behavior: only the first detected error is reported
10073 and program then exits with a non-zero exit code.
10074
10075 Currently this feature only works for @option{-fsanitize=undefined} (and its suboptions
10076 except for @option{-fsanitize=unreachable} and @option{-fsanitize=return}),
10077 @option{-fsanitize=float-cast-overflow}, @option{-fsanitize=float-divide-by-zero},
10078 @option{-fsanitize=kernel-address} and @option{-fsanitize=address}.
10079 For these sanitizers error recovery is turned on by default, except @option{-fsanitize=address},
10080 for which this feature is experimental.
10081 @option{-fsanitize-recover=all} and @option{-fno-sanitize-recover=all} is also
10082 accepted, the former enables recovery for all sanitizers that support it,
10083 the latter disables recovery for all sanitizers that support it.
10084
10085 Even if a recovery mode is turned on the compiler side, it needs to be also
10086 enabled on the runtime library side, otherwise the failures are still fatal.
10087 The runtime library defaults to @code{halt_on_error=0} for
10088 ThreadSanitizer and UndefinedBehaviorSanitizer, while default value for
10089 AddressSanitizer is @code{halt_on_error=1}. This can be overridden through
10090 setting the @code{halt_on_error} flag in the corresponding environment variable.
10091
10092 Syntax without explicit @var{opts} parameter is deprecated. It is equivalent to
10093 @smallexample
10094 -fsanitize-recover=undefined,float-cast-overflow,float-divide-by-zero
10095 @end smallexample
10096 @noindent
10097 Similarly @option{-fno-sanitize-recover} is equivalent to
10098 @smallexample
10099 -fno-sanitize-recover=undefined,float-cast-overflow,float-divide-by-zero
10100 @end smallexample
10101
10102 @item -fsanitize-undefined-trap-on-error
10103 @opindex fsanitize-undefined-trap-on-error
10104 The @option{-fsanitize-undefined-trap-on-error} option instructs the compiler to
10105 report undefined behavior using @code{__builtin_trap} rather than
10106 a @code{libubsan} library routine. The advantage of this is that the
10107 @code{libubsan} library is not needed and is not linked in, so this
10108 is usable even in freestanding environments.
10109
10110 @item -fsanitize-coverage=trace-pc
10111 @opindex fsanitize-coverage=trace-pc
10112 Enable coverage-guided fuzzing code instrumentation.
10113 Inserts a call to @code{__sanitizer_cov_trace_pc} into every basic block.
10114
10115 @item -fbounds-check
10116 @opindex fbounds-check
10117 For front ends that support it, generate additional code to check that
10118 indices used to access arrays are within the declared range. This is
10119 currently only supported by the Java and Fortran front ends, where
10120 this option defaults to true and false respectively.
10121
10122 @item -fcheck-pointer-bounds
10123 @opindex fcheck-pointer-bounds
10124 @opindex fno-check-pointer-bounds
10125 @cindex Pointer Bounds Checker options
10126 Enable Pointer Bounds Checker instrumentation. Each memory reference
10127 is instrumented with checks of the pointer used for memory access against
10128 bounds associated with that pointer.
10129
10130 Currently there
10131 is only an implementation for Intel MPX available, thus x86 GNU/Linux target
10132 and @option{-mmpx} are required to enable this feature.
10133 MPX-based instrumentation requires
10134 a runtime library to enable MPX in hardware and handle bounds
10135 violation signals. By default when @option{-fcheck-pointer-bounds}
10136 and @option{-mmpx} options are used to link a program, the GCC driver
10137 links against the @file{libmpx} and @file{libmpxwrappers} libraries.
10138 Bounds checking on calls to dynamic libraries requires a linker
10139 with @option{-z bndplt} support; if GCC was configured with a linker
10140 without support for this option (including the Gold linker and older
10141 versions of ld), a warning is given if you link with @option{-mmpx}
10142 without also specifying @option{-static}, since the overall effectiveness
10143 of the bounds checking protection is reduced.
10144 See also @option{-static-libmpxwrappers}.
10145
10146 MPX-based instrumentation
10147 may be used for debugging and also may be included in production code
10148 to increase program security. Depending on usage, you may
10149 have different requirements for the runtime library. The current version
10150 of the MPX runtime library is more oriented for use as a debugging
10151 tool. MPX runtime library usage implies @option{-lpthread}. See
10152 also @option{-static-libmpx}. The runtime library behavior can be
10153 influenced using various @env{CHKP_RT_*} environment variables. See
10154 @uref{https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler}
10155 for more details.
10156
10157 Generated instrumentation may be controlled by various
10158 @option{-fchkp-*} options and by the @code{bnd_variable_size}
10159 structure field attribute (@pxref{Type Attributes}) and
10160 @code{bnd_legacy}, and @code{bnd_instrument} function attributes
10161 (@pxref{Function Attributes}). GCC also provides a number of built-in
10162 functions for controlling the Pointer Bounds Checker. @xref{Pointer
10163 Bounds Checker builtins}, for more information.
10164
10165 @item -fchkp-check-incomplete-type
10166 @opindex fchkp-check-incomplete-type
10167 @opindex fno-chkp-check-incomplete-type
10168 Generate pointer bounds checks for variables with incomplete type.
10169 Enabled by default.
10170
10171 @item -fchkp-narrow-bounds
10172 @opindex fchkp-narrow-bounds
10173 @opindex fno-chkp-narrow-bounds
10174 Controls bounds used by Pointer Bounds Checker for pointers to object
10175 fields. If narrowing is enabled then field bounds are used. Otherwise
10176 object bounds are used. See also @option{-fchkp-narrow-to-innermost-array}
10177 and @option{-fchkp-first-field-has-own-bounds}. Enabled by default.
10178
10179 @item -fchkp-first-field-has-own-bounds
10180 @opindex fchkp-first-field-has-own-bounds
10181 @opindex fno-chkp-first-field-has-own-bounds
10182 Forces Pointer Bounds Checker to use narrowed bounds for the address of the
10183 first field in the structure. By default a pointer to the first field has
10184 the same bounds as a pointer to the whole structure.
10185
10186 @item -fchkp-narrow-to-innermost-array
10187 @opindex fchkp-narrow-to-innermost-array
10188 @opindex fno-chkp-narrow-to-innermost-array
10189 Forces Pointer Bounds Checker to use bounds of the innermost arrays in
10190 case of nested static array access. By default this option is disabled and
10191 bounds of the outermost array are used.
10192
10193 @item -fchkp-optimize
10194 @opindex fchkp-optimize
10195 @opindex fno-chkp-optimize
10196 Enables Pointer Bounds Checker optimizations. Enabled by default at
10197 optimization levels @option{-O}, @option{-O2}, @option{-O3}.
10198
10199 @item -fchkp-use-fast-string-functions
10200 @opindex fchkp-use-fast-string-functions
10201 @opindex fno-chkp-use-fast-string-functions
10202 Enables use of @code{*_nobnd} versions of string functions (not copying bounds)
10203 by Pointer Bounds Checker. Disabled by default.
10204
10205 @item -fchkp-use-nochk-string-functions
10206 @opindex fchkp-use-nochk-string-functions
10207 @opindex fno-chkp-use-nochk-string-functions
10208 Enables use of @code{*_nochk} versions of string functions (not checking bounds)
10209 by Pointer Bounds Checker. Disabled by default.
10210
10211 @item -fchkp-use-static-bounds
10212 @opindex fchkp-use-static-bounds
10213 @opindex fno-chkp-use-static-bounds
10214 Allow Pointer Bounds Checker to generate static bounds holding
10215 bounds of static variables. Enabled by default.
10216
10217 @item -fchkp-use-static-const-bounds
10218 @opindex fchkp-use-static-const-bounds
10219 @opindex fno-chkp-use-static-const-bounds
10220 Use statically-initialized bounds for constant bounds instead of
10221 generating them each time they are required. By default enabled when
10222 @option{-fchkp-use-static-bounds} is enabled.
10223
10224 @item -fchkp-treat-zero-dynamic-size-as-infinite
10225 @opindex fchkp-treat-zero-dynamic-size-as-infinite
10226 @opindex fno-chkp-treat-zero-dynamic-size-as-infinite
10227 With this option, objects with incomplete type whose
10228 dynamically-obtained size is zero are treated as having infinite size
10229 instead by Pointer Bounds
10230 Checker. This option may be helpful if a program is linked with a library
10231 missing size information for some symbols. Disabled by default.
10232
10233 @item -fchkp-check-read
10234 @opindex fchkp-check-read
10235 @opindex fno-chkp-check-read
10236 Instructs Pointer Bounds Checker to generate checks for all read
10237 accesses to memory. Enabled by default.
10238
10239 @item -fchkp-check-write
10240 @opindex fchkp-check-write
10241 @opindex fno-chkp-check-write
10242 Instructs Pointer Bounds Checker to generate checks for all write
10243 accesses to memory. Enabled by default.
10244
10245 @item -fchkp-store-bounds
10246 @opindex fchkp-store-bounds
10247 @opindex fno-chkp-store-bounds
10248 Instructs Pointer Bounds Checker to generate bounds stores for
10249 pointer writes. Enabled by default.
10250
10251 @item -fchkp-instrument-calls
10252 @opindex fchkp-instrument-calls
10253 @opindex fno-chkp-instrument-calls
10254 Instructs Pointer Bounds Checker to pass pointer bounds to calls.
10255 Enabled by default.
10256
10257 @item -fchkp-instrument-marked-only
10258 @opindex fchkp-instrument-marked-only
10259 @opindex fno-chkp-instrument-marked-only
10260 Instructs Pointer Bounds Checker to instrument only functions
10261 marked with the @code{bnd_instrument} attribute
10262 (@pxref{Function Attributes}). Disabled by default.
10263
10264 @item -fchkp-use-wrappers
10265 @opindex fchkp-use-wrappers
10266 @opindex fno-chkp-use-wrappers
10267 Allows Pointer Bounds Checker to replace calls to built-in functions
10268 with calls to wrapper functions. When @option{-fchkp-use-wrappers}
10269 is used to link a program, the GCC driver automatically links
10270 against @file{libmpxwrappers}. See also @option{-static-libmpxwrappers}.
10271 Enabled by default.
10272
10273 @item -fstack-protector
10274 @opindex fstack-protector
10275 Emit extra code to check for buffer overflows, such as stack smashing
10276 attacks. This is done by adding a guard variable to functions with
10277 vulnerable objects. This includes functions that call @code{alloca}, and
10278 functions with buffers larger than 8 bytes. The guards are initialized
10279 when a function is entered and then checked when the function exits.
10280 If a guard check fails, an error message is printed and the program exits.
10281
10282 @item -fstack-protector-all
10283 @opindex fstack-protector-all
10284 Like @option{-fstack-protector} except that all functions are protected.
10285
10286 @item -fstack-protector-strong
10287 @opindex fstack-protector-strong
10288 Like @option{-fstack-protector} but includes additional functions to
10289 be protected --- those that have local array definitions, or have
10290 references to local frame addresses.
10291
10292 @item -fstack-protector-explicit
10293 @opindex fstack-protector-explicit
10294 Like @option{-fstack-protector} but only protects those functions which
10295 have the @code{stack_protect} attribute.
10296
10297 @item -fstack-check
10298 @opindex fstack-check
10299 Generate code to verify that you do not go beyond the boundary of the
10300 stack. You should specify this flag if you are running in an
10301 environment with multiple threads, but you only rarely need to specify it in
10302 a single-threaded environment since stack overflow is automatically
10303 detected on nearly all systems if there is only one stack.
10304
10305 Note that this switch does not actually cause checking to be done; the
10306 operating system or the language runtime must do that. The switch causes
10307 generation of code to ensure that they see the stack being extended.
10308
10309 You can additionally specify a string parameter: @samp{no} means no
10310 checking, @samp{generic} means force the use of old-style checking,
10311 @samp{specific} means use the best checking method and is equivalent
10312 to bare @option{-fstack-check}.
10313
10314 Old-style checking is a generic mechanism that requires no specific
10315 target support in the compiler but comes with the following drawbacks:
10316
10317 @enumerate
10318 @item
10319 Modified allocation strategy for large objects: they are always
10320 allocated dynamically if their size exceeds a fixed threshold.
10321
10322 @item
10323 Fixed limit on the size of the static frame of functions: when it is
10324 topped by a particular function, stack checking is not reliable and
10325 a warning is issued by the compiler.
10326
10327 @item
10328 Inefficiency: because of both the modified allocation strategy and the
10329 generic implementation, code performance is hampered.
10330 @end enumerate
10331
10332 Note that old-style stack checking is also the fallback method for
10333 @samp{specific} if no target support has been added in the compiler.
10334
10335 @item -fstack-limit-register=@var{reg}
10336 @itemx -fstack-limit-symbol=@var{sym}
10337 @itemx -fno-stack-limit
10338 @opindex fstack-limit-register
10339 @opindex fstack-limit-symbol
10340 @opindex fno-stack-limit
10341 Generate code to ensure that the stack does not grow beyond a certain value,
10342 either the value of a register or the address of a symbol. If a larger
10343 stack is required, a signal is raised at run time. For most targets,
10344 the signal is raised before the stack overruns the boundary, so
10345 it is possible to catch the signal without taking special precautions.
10346
10347 For instance, if the stack starts at absolute address @samp{0x80000000}
10348 and grows downwards, you can use the flags
10349 @option{-fstack-limit-symbol=__stack_limit} and
10350 @option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
10351 of 128KB@. Note that this may only work with the GNU linker.
10352
10353 You can locally override stack limit checking by using the
10354 @code{no_stack_limit} function attribute (@pxref{Function Attributes}).
10355
10356 @item -fsplit-stack
10357 @opindex fsplit-stack
10358 Generate code to automatically split the stack before it overflows.
10359 The resulting program has a discontiguous stack which can only
10360 overflow if the program is unable to allocate any more memory. This
10361 is most useful when running threaded programs, as it is no longer
10362 necessary to calculate a good stack size to use for each thread. This
10363 is currently only implemented for the x86 targets running
10364 GNU/Linux.
10365
10366 When code compiled with @option{-fsplit-stack} calls code compiled
10367 without @option{-fsplit-stack}, there may not be much stack space
10368 available for the latter code to run. If compiling all code,
10369 including library code, with @option{-fsplit-stack} is not an option,
10370 then the linker can fix up these calls so that the code compiled
10371 without @option{-fsplit-stack} always has a large stack. Support for
10372 this is implemented in the gold linker in GNU binutils release 2.21
10373 and later.
10374
10375 @item -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]}
10376 @opindex fvtable-verify
10377 This option is only available when compiling C++ code.
10378 It turns on (or off, if using @option{-fvtable-verify=none}) the security
10379 feature that verifies at run time, for every virtual call, that
10380 the vtable pointer through which the call is made is valid for the type of
10381 the object, and has not been corrupted or overwritten. If an invalid vtable
10382 pointer is detected at run time, an error is reported and execution of the
10383 program is immediately halted.
10384
10385 This option causes run-time data structures to be built at program startup,
10386 which are used for verifying the vtable pointers.
10387 The options @samp{std} and @samp{preinit}
10388 control the timing of when these data structures are built. In both cases the
10389 data structures are built before execution reaches @code{main}. Using
10390 @option{-fvtable-verify=std} causes the data structures to be built after
10391 shared libraries have been loaded and initialized.
10392 @option{-fvtable-verify=preinit} causes them to be built before shared
10393 libraries have been loaded and initialized.
10394
10395 If this option appears multiple times in the command line with different
10396 values specified, @samp{none} takes highest priority over both @samp{std} and
10397 @samp{preinit}; @samp{preinit} takes priority over @samp{std}.
10398
10399 @item -fvtv-debug
10400 @opindex fvtv-debug
10401 When used in conjunction with @option{-fvtable-verify=std} or
10402 @option{-fvtable-verify=preinit}, causes debug versions of the
10403 runtime functions for the vtable verification feature to be called.
10404 This flag also causes the compiler to log information about which
10405 vtable pointers it finds for each class.
10406 This information is written to a file named @file{vtv_set_ptr_data.log}
10407 in the directory named by the environment variable @env{VTV_LOGS_DIR}
10408 if that is defined or the current working directory otherwise.
10409
10410 Note: This feature @emph{appends} data to the log file. If you want a fresh log
10411 file, be sure to delete any existing one.
10412
10413 @item -fvtv-counts
10414 @opindex fvtv-counts
10415 This is a debugging flag. When used in conjunction with
10416 @option{-fvtable-verify=std} or @option{-fvtable-verify=preinit}, this
10417 causes the compiler to keep track of the total number of virtual calls
10418 it encounters and the number of verifications it inserts. It also
10419 counts the number of calls to certain run-time library functions
10420 that it inserts and logs this information for each compilation unit.
10421 The compiler writes this information to a file named
10422 @file{vtv_count_data.log} in the directory named by the environment
10423 variable @env{VTV_LOGS_DIR} if that is defined or the current working
10424 directory otherwise. It also counts the size of the vtable pointer sets
10425 for each class, and writes this information to @file{vtv_class_set_sizes.log}
10426 in the same directory.
10427
10428 Note: This feature @emph{appends} data to the log files. To get fresh log
10429 files, be sure to delete any existing ones.
10430
10431 @item -finstrument-functions
10432 @opindex finstrument-functions
10433 Generate instrumentation calls for entry and exit to functions. Just
10434 after function entry and just before function exit, the following
10435 profiling functions are called with the address of the current
10436 function and its call site. (On some platforms,
10437 @code{__builtin_return_address} does not work beyond the current
10438 function, so the call site information may not be available to the
10439 profiling functions otherwise.)
10440
10441 @smallexample
10442 void __cyg_profile_func_enter (void *this_fn,
10443 void *call_site);
10444 void __cyg_profile_func_exit (void *this_fn,
10445 void *call_site);
10446 @end smallexample
10447
10448 The first argument is the address of the start of the current function,
10449 which may be looked up exactly in the symbol table.
10450
10451 This instrumentation is also done for functions expanded inline in other
10452 functions. The profiling calls indicate where, conceptually, the
10453 inline function is entered and exited. This means that addressable
10454 versions of such functions must be available. If all your uses of a
10455 function are expanded inline, this may mean an additional expansion of
10456 code size. If you use @code{extern inline} in your C code, an
10457 addressable version of such functions must be provided. (This is
10458 normally the case anyway, but if you get lucky and the optimizer always
10459 expands the functions inline, you might have gotten away without
10460 providing static copies.)
10461
10462 A function may be given the attribute @code{no_instrument_function}, in
10463 which case this instrumentation is not done. This can be used, for
10464 example, for the profiling functions listed above, high-priority
10465 interrupt routines, and any functions from which the profiling functions
10466 cannot safely be called (perhaps signal handlers, if the profiling
10467 routines generate output or allocate memory).
10468
10469 @item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
10470 @opindex finstrument-functions-exclude-file-list
10471
10472 Set the list of functions that are excluded from instrumentation (see
10473 the description of @option{-finstrument-functions}). If the file that
10474 contains a function definition matches with one of @var{file}, then
10475 that function is not instrumented. The match is done on substrings:
10476 if the @var{file} parameter is a substring of the file name, it is
10477 considered to be a match.
10478
10479 For example:
10480
10481 @smallexample
10482 -finstrument-functions-exclude-file-list=/bits/stl,include/sys
10483 @end smallexample
10484
10485 @noindent
10486 excludes any inline function defined in files whose pathnames
10487 contain @file{/bits/stl} or @file{include/sys}.
10488
10489 If, for some reason, you want to include letter @samp{,} in one of
10490 @var{sym}, write @samp{\,}. For example,
10491 @option{-finstrument-functions-exclude-file-list='\,\,tmp'}
10492 (note the single quote surrounding the option).
10493
10494 @item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
10495 @opindex finstrument-functions-exclude-function-list
10496
10497 This is similar to @option{-finstrument-functions-exclude-file-list},
10498 but this option sets the list of function names to be excluded from
10499 instrumentation. The function name to be matched is its user-visible
10500 name, such as @code{vector<int> blah(const vector<int> &)}, not the
10501 internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}). The
10502 match is done on substrings: if the @var{sym} parameter is a substring
10503 of the function name, it is considered to be a match. For C99 and C++
10504 extended identifiers, the function name must be given in UTF-8, not
10505 using universal character names.
10506
10507 @end table
10508
10509
10510 @node Preprocessor Options
10511 @section Options Controlling the Preprocessor
10512 @cindex preprocessor options
10513 @cindex options, preprocessor
10514
10515 These options control the C preprocessor, which is run on each C source
10516 file before actual compilation.
10517
10518 If you use the @option{-E} option, nothing is done except preprocessing.
10519 Some of these options make sense only together with @option{-E} because
10520 they cause the preprocessor output to be unsuitable for actual
10521 compilation.
10522
10523 @table @gcctabopt
10524 @item -Wp,@var{option}
10525 @opindex Wp
10526 You can use @option{-Wp,@var{option}} to bypass the compiler driver
10527 and pass @var{option} directly through to the preprocessor. If
10528 @var{option} contains commas, it is split into multiple options at the
10529 commas. However, many options are modified, translated or interpreted
10530 by the compiler driver before being passed to the preprocessor, and
10531 @option{-Wp} forcibly bypasses this phase. The preprocessor's direct
10532 interface is undocumented and subject to change, so whenever possible
10533 you should avoid using @option{-Wp} and let the driver handle the
10534 options instead.
10535
10536 @item -Xpreprocessor @var{option}
10537 @opindex Xpreprocessor
10538 Pass @var{option} as an option to the preprocessor. You can use this to
10539 supply system-specific preprocessor options that GCC does not
10540 recognize.
10541
10542 If you want to pass an option that takes an argument, you must use
10543 @option{-Xpreprocessor} twice, once for the option and once for the argument.
10544
10545 @item -no-integrated-cpp
10546 @opindex no-integrated-cpp
10547 Perform preprocessing as a separate pass before compilation.
10548 By default, GCC performs preprocessing as an integrated part of
10549 input tokenization and parsing.
10550 If this option is provided, the appropriate language front end
10551 (@command{cc1}, @command{cc1plus}, or @command{cc1obj} for C, C++,
10552 and Objective-C, respectively) is instead invoked twice,
10553 once for preprocessing only and once for actual compilation
10554 of the preprocessed input.
10555 This option may be useful in conjunction with the @option{-B} or
10556 @option{-wrapper} options to specify an alternate preprocessor or
10557 perform additional processing of the program source between
10558 normal preprocessing and compilation.
10559 @end table
10560
10561 @include cppopts.texi
10562
10563 @node Assembler Options
10564 @section Passing Options to the Assembler
10565
10566 @c prevent bad page break with this line
10567 You can pass options to the assembler.
10568
10569 @table @gcctabopt
10570 @item -Wa,@var{option}
10571 @opindex Wa
10572 Pass @var{option} as an option to the assembler. If @var{option}
10573 contains commas, it is split into multiple options at the commas.
10574
10575 @item -Xassembler @var{option}
10576 @opindex Xassembler
10577 Pass @var{option} as an option to the assembler. You can use this to
10578 supply system-specific assembler options that GCC does not
10579 recognize.
10580
10581 If you want to pass an option that takes an argument, you must use
10582 @option{-Xassembler} twice, once for the option and once for the argument.
10583
10584 @end table
10585
10586 @node Link Options
10587 @section Options for Linking
10588 @cindex link options
10589 @cindex options, linking
10590
10591 These options come into play when the compiler links object files into
10592 an executable output file. They are meaningless if the compiler is
10593 not doing a link step.
10594
10595 @table @gcctabopt
10596 @cindex file names
10597 @item @var{object-file-name}
10598 A file name that does not end in a special recognized suffix is
10599 considered to name an object file or library. (Object files are
10600 distinguished from libraries by the linker according to the file
10601 contents.) If linking is done, these object files are used as input
10602 to the linker.
10603
10604 @item -c
10605 @itemx -S
10606 @itemx -E
10607 @opindex c
10608 @opindex S
10609 @opindex E
10610 If any of these options is used, then the linker is not run, and
10611 object file names should not be used as arguments. @xref{Overall
10612 Options}.
10613
10614 @item -fuse-ld=bfd
10615 @opindex fuse-ld=bfd
10616 Use the @command{bfd} linker instead of the default linker.
10617
10618 @item -fuse-ld=gold
10619 @opindex fuse-ld=gold
10620 Use the @command{gold} linker instead of the default linker.
10621
10622 @cindex Libraries
10623 @item -l@var{library}
10624 @itemx -l @var{library}
10625 @opindex l
10626 Search the library named @var{library} when linking. (The second
10627 alternative with the library as a separate argument is only for
10628 POSIX compliance and is not recommended.)
10629
10630 It makes a difference where in the command you write this option; the
10631 linker searches and processes libraries and object files in the order they
10632 are specified. Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
10633 after file @file{foo.o} but before @file{bar.o}. If @file{bar.o} refers
10634 to functions in @samp{z}, those functions may not be loaded.
10635
10636 The linker searches a standard list of directories for the library,
10637 which is actually a file named @file{lib@var{library}.a}. The linker
10638 then uses this file as if it had been specified precisely by name.
10639
10640 The directories searched include several standard system directories
10641 plus any that you specify with @option{-L}.
10642
10643 Normally the files found this way are library files---archive files
10644 whose members are object files. The linker handles an archive file by
10645 scanning through it for members which define symbols that have so far
10646 been referenced but not defined. But if the file that is found is an
10647 ordinary object file, it is linked in the usual fashion. The only
10648 difference between using an @option{-l} option and specifying a file name
10649 is that @option{-l} surrounds @var{library} with @samp{lib} and @samp{.a}
10650 and searches several directories.
10651
10652 @item -lobjc
10653 @opindex lobjc
10654 You need this special case of the @option{-l} option in order to
10655 link an Objective-C or Objective-C++ program.
10656
10657 @item -nostartfiles
10658 @opindex nostartfiles
10659 Do not use the standard system startup files when linking.
10660 The standard system libraries are used normally, unless @option{-nostdlib}
10661 or @option{-nodefaultlibs} is used.
10662
10663 @item -nodefaultlibs
10664 @opindex nodefaultlibs
10665 Do not use the standard system libraries when linking.
10666 Only the libraries you specify are passed to the linker, and options
10667 specifying linkage of the system libraries, such as @option{-static-libgcc}
10668 or @option{-shared-libgcc}, are ignored.
10669 The standard startup files are used normally, unless @option{-nostartfiles}
10670 is used.
10671
10672 The compiler may generate calls to @code{memcmp},
10673 @code{memset}, @code{memcpy} and @code{memmove}.
10674 These entries are usually resolved by entries in
10675 libc. These entry points should be supplied through some other
10676 mechanism when this option is specified.
10677
10678 @item -nostdlib
10679 @opindex nostdlib
10680 Do not use the standard system startup files or libraries when linking.
10681 No startup files and only the libraries you specify are passed to
10682 the linker, and options specifying linkage of the system libraries, such as
10683 @option{-static-libgcc} or @option{-shared-libgcc}, are ignored.
10684
10685 The compiler may generate calls to @code{memcmp}, @code{memset},
10686 @code{memcpy} and @code{memmove}.
10687 These entries are usually resolved by entries in
10688 libc. These entry points should be supplied through some other
10689 mechanism when this option is specified.
10690
10691 @cindex @option{-lgcc}, use with @option{-nostdlib}
10692 @cindex @option{-nostdlib} and unresolved references
10693 @cindex unresolved references and @option{-nostdlib}
10694 @cindex @option{-lgcc}, use with @option{-nodefaultlibs}
10695 @cindex @option{-nodefaultlibs} and unresolved references
10696 @cindex unresolved references and @option{-nodefaultlibs}
10697 One of the standard libraries bypassed by @option{-nostdlib} and
10698 @option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
10699 which GCC uses to overcome shortcomings of particular machines, or special
10700 needs for some languages.
10701 (@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
10702 Collection (GCC) Internals},
10703 for more discussion of @file{libgcc.a}.)
10704 In most cases, you need @file{libgcc.a} even when you want to avoid
10705 other standard libraries. In other words, when you specify @option{-nostdlib}
10706 or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
10707 This ensures that you have no unresolved references to internal GCC
10708 library subroutines.
10709 (An example of such an internal subroutine is @code{__main}, used to ensure C++
10710 constructors are called; @pxref{Collect2,,@code{collect2}, gccint,
10711 GNU Compiler Collection (GCC) Internals}.)
10712
10713 @item -pie
10714 @opindex pie
10715 Produce a position independent executable on targets that support it.
10716 For predictable results, you must also specify the same set of options
10717 used for compilation (@option{-fpie}, @option{-fPIE},
10718 or model suboptions) when you specify this linker option.
10719
10720 @item -no-pie
10721 @opindex no-pie
10722 Don't produce a position independent executable.
10723
10724 @item -rdynamic
10725 @opindex rdynamic
10726 Pass the flag @option{-export-dynamic} to the ELF linker, on targets
10727 that support it. This instructs the linker to add all symbols, not
10728 only used ones, to the dynamic symbol table. This option is needed
10729 for some uses of @code{dlopen} or to allow obtaining backtraces
10730 from within a program.
10731
10732 @item -s
10733 @opindex s
10734 Remove all symbol table and relocation information from the executable.
10735
10736 @item -static
10737 @opindex static
10738 On systems that support dynamic linking, this prevents linking with the shared
10739 libraries. On other systems, this option has no effect.
10740
10741 @item -shared
10742 @opindex shared
10743 Produce a shared object which can then be linked with other objects to
10744 form an executable. Not all systems support this option. For predictable
10745 results, you must also specify the same set of options used for compilation
10746 (@option{-fpic}, @option{-fPIC}, or model suboptions) when
10747 you specify this linker option.@footnote{On some systems, @samp{gcc -shared}
10748 needs to build supplementary stub code for constructors to work. On
10749 multi-libbed systems, @samp{gcc -shared} must select the correct support
10750 libraries to link against. Failing to supply the correct flags may lead
10751 to subtle defects. Supplying them in cases where they are not necessary
10752 is innocuous.}
10753
10754 @item -shared-libgcc
10755 @itemx -static-libgcc
10756 @opindex shared-libgcc
10757 @opindex static-libgcc
10758 On systems that provide @file{libgcc} as a shared library, these options
10759 force the use of either the shared or static version, respectively.
10760 If no shared version of @file{libgcc} was built when the compiler was
10761 configured, these options have no effect.
10762
10763 There are several situations in which an application should use the
10764 shared @file{libgcc} instead of the static version. The most common
10765 of these is when the application wishes to throw and catch exceptions
10766 across different shared libraries. In that case, each of the libraries
10767 as well as the application itself should use the shared @file{libgcc}.
10768
10769 Therefore, the G++ and GCJ drivers automatically add
10770 @option{-shared-libgcc} whenever you build a shared library or a main
10771 executable, because C++ and Java programs typically use exceptions, so
10772 this is the right thing to do.
10773
10774 If, instead, you use the GCC driver to create shared libraries, you may
10775 find that they are not always linked with the shared @file{libgcc}.
10776 If GCC finds, at its configuration time, that you have a non-GNU linker
10777 or a GNU linker that does not support option @option{--eh-frame-hdr},
10778 it links the shared version of @file{libgcc} into shared libraries
10779 by default. Otherwise, it takes advantage of the linker and optimizes
10780 away the linking with the shared version of @file{libgcc}, linking with
10781 the static version of libgcc by default. This allows exceptions to
10782 propagate through such shared libraries, without incurring relocation
10783 costs at library load time.
10784
10785 However, if a library or main executable is supposed to throw or catch
10786 exceptions, you must link it using the G++ or GCJ driver, as appropriate
10787 for the languages used in the program, or using the option
10788 @option{-shared-libgcc}, such that it is linked with the shared
10789 @file{libgcc}.
10790
10791 @item -static-libasan
10792 @opindex static-libasan
10793 When the @option{-fsanitize=address} option is used to link a program,
10794 the GCC driver automatically links against @option{libasan}. If
10795 @file{libasan} is available as a shared library, and the @option{-static}
10796 option is not used, then this links against the shared version of
10797 @file{libasan}. The @option{-static-libasan} option directs the GCC
10798 driver to link @file{libasan} statically, without necessarily linking
10799 other libraries statically.
10800
10801 @item -static-libtsan
10802 @opindex static-libtsan
10803 When the @option{-fsanitize=thread} option is used to link a program,
10804 the GCC driver automatically links against @option{libtsan}. If
10805 @file{libtsan} is available as a shared library, and the @option{-static}
10806 option is not used, then this links against the shared version of
10807 @file{libtsan}. The @option{-static-libtsan} option directs the GCC
10808 driver to link @file{libtsan} statically, without necessarily linking
10809 other libraries statically.
10810
10811 @item -static-liblsan
10812 @opindex static-liblsan
10813 When the @option{-fsanitize=leak} option is used to link a program,
10814 the GCC driver automatically links against @option{liblsan}. If
10815 @file{liblsan} is available as a shared library, and the @option{-static}
10816 option is not used, then this links against the shared version of
10817 @file{liblsan}. The @option{-static-liblsan} option directs the GCC
10818 driver to link @file{liblsan} statically, without necessarily linking
10819 other libraries statically.
10820
10821 @item -static-libubsan
10822 @opindex static-libubsan
10823 When the @option{-fsanitize=undefined} option is used to link a program,
10824 the GCC driver automatically links against @option{libubsan}. If
10825 @file{libubsan} is available as a shared library, and the @option{-static}
10826 option is not used, then this links against the shared version of
10827 @file{libubsan}. The @option{-static-libubsan} option directs the GCC
10828 driver to link @file{libubsan} statically, without necessarily linking
10829 other libraries statically.
10830
10831 @item -static-libmpx
10832 @opindex static-libmpx
10833 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are
10834 used to link a program, the GCC driver automatically links against
10835 @file{libmpx}. If @file{libmpx} is available as a shared library,
10836 and the @option{-static} option is not used, then this links against
10837 the shared version of @file{libmpx}. The @option{-static-libmpx}
10838 option directs the GCC driver to link @file{libmpx} statically,
10839 without necessarily linking other libraries statically.
10840
10841 @item -static-libmpxwrappers
10842 @opindex static-libmpxwrappers
10843 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are used
10844 to link a program without also using @option{-fno-chkp-use-wrappers}, the
10845 GCC driver automatically links against @file{libmpxwrappers}. If
10846 @file{libmpxwrappers} is available as a shared library, and the
10847 @option{-static} option is not used, then this links against the shared
10848 version of @file{libmpxwrappers}. The @option{-static-libmpxwrappers}
10849 option directs the GCC driver to link @file{libmpxwrappers} statically,
10850 without necessarily linking other libraries statically.
10851
10852 @item -static-libstdc++
10853 @opindex static-libstdc++
10854 When the @command{g++} program is used to link a C++ program, it
10855 normally automatically links against @option{libstdc++}. If
10856 @file{libstdc++} is available as a shared library, and the
10857 @option{-static} option is not used, then this links against the
10858 shared version of @file{libstdc++}. That is normally fine. However, it
10859 is sometimes useful to freeze the version of @file{libstdc++} used by
10860 the program without going all the way to a fully static link. The
10861 @option{-static-libstdc++} option directs the @command{g++} driver to
10862 link @file{libstdc++} statically, without necessarily linking other
10863 libraries statically.
10864
10865 @item -symbolic
10866 @opindex symbolic
10867 Bind references to global symbols when building a shared object. Warn
10868 about any unresolved references (unless overridden by the link editor
10869 option @option{-Xlinker -z -Xlinker defs}). Only a few systems support
10870 this option.
10871
10872 @item -T @var{script}
10873 @opindex T
10874 @cindex linker script
10875 Use @var{script} as the linker script. This option is supported by most
10876 systems using the GNU linker. On some targets, such as bare-board
10877 targets without an operating system, the @option{-T} option may be required
10878 when linking to avoid references to undefined symbols.
10879
10880 @item -Xlinker @var{option}
10881 @opindex Xlinker
10882 Pass @var{option} as an option to the linker. You can use this to
10883 supply system-specific linker options that GCC does not recognize.
10884
10885 If you want to pass an option that takes a separate argument, you must use
10886 @option{-Xlinker} twice, once for the option and once for the argument.
10887 For example, to pass @option{-assert definitions}, you must write
10888 @option{-Xlinker -assert -Xlinker definitions}. It does not work to write
10889 @option{-Xlinker "-assert definitions"}, because this passes the entire
10890 string as a single argument, which is not what the linker expects.
10891
10892 When using the GNU linker, it is usually more convenient to pass
10893 arguments to linker options using the @option{@var{option}=@var{value}}
10894 syntax than as separate arguments. For example, you can specify
10895 @option{-Xlinker -Map=output.map} rather than
10896 @option{-Xlinker -Map -Xlinker output.map}. Other linkers may not support
10897 this syntax for command-line options.
10898
10899 @item -Wl,@var{option}
10900 @opindex Wl
10901 Pass @var{option} as an option to the linker. If @var{option} contains
10902 commas, it is split into multiple options at the commas. You can use this
10903 syntax to pass an argument to the option.
10904 For example, @option{-Wl,-Map,output.map} passes @option{-Map output.map} to the
10905 linker. When using the GNU linker, you can also get the same effect with
10906 @option{-Wl,-Map=output.map}.
10907
10908 @item -u @var{symbol}
10909 @opindex u
10910 Pretend the symbol @var{symbol} is undefined, to force linking of
10911 library modules to define it. You can use @option{-u} multiple times with
10912 different symbols to force loading of additional library modules.
10913
10914 @item -z @var{keyword}
10915 @opindex z
10916 @option{-z} is passed directly on to the linker along with the keyword
10917 @var{keyword}. See the section in the documentation of your linker for
10918 permitted values and their meanings.
10919 @end table
10920
10921 @node Directory Options
10922 @section Options for Directory Search
10923 @cindex directory options
10924 @cindex options, directory search
10925 @cindex search path
10926
10927 These options specify directories to search for header files, for
10928 libraries and for parts of the compiler:
10929
10930 @table @gcctabopt
10931 @item -I@var{dir}
10932 @opindex I
10933 Add the directory @var{dir} to the head of the list of directories to be
10934 searched for header files. This can be used to override a system header
10935 file, substituting your own version, since these directories are
10936 searched before the system header file directories. However, you should
10937 not use this option to add directories that contain vendor-supplied
10938 system header files (use @option{-isystem} for that). If you use more than
10939 one @option{-I} option, the directories are scanned in left-to-right
10940 order; the standard system directories come after.
10941
10942 If a standard system include directory, or a directory specified with
10943 @option{-isystem}, is also specified with @option{-I}, the @option{-I}
10944 option is ignored. The directory is still searched but as a
10945 system directory at its normal position in the system include chain.
10946 This is to ensure that GCC's procedure to fix buggy system headers and
10947 the ordering for the @code{include_next} directive are not inadvertently changed.
10948 If you really need to change the search order for system directories,
10949 use the @option{-nostdinc} and/or @option{-isystem} options.
10950
10951 @item -iplugindir=@var{dir}
10952 @opindex iplugindir=
10953 Set the directory to search for plugins that are passed
10954 by @option{-fplugin=@var{name}} instead of
10955 @option{-fplugin=@var{path}/@var{name}.so}. This option is not meant
10956 to be used by the user, but only passed by the driver.
10957
10958 @item -iquote@var{dir}
10959 @opindex iquote
10960 Add the directory @var{dir} to the head of the list of directories to
10961 be searched for header files only for the case of @code{#include
10962 "@var{file}"}; they are not searched for @code{#include <@var{file}>},
10963 otherwise just like @option{-I}.
10964
10965 @item -L@var{dir}
10966 @opindex L
10967 Add directory @var{dir} to the list of directories to be searched
10968 for @option{-l}.
10969
10970 @item -B@var{prefix}
10971 @opindex B
10972 This option specifies where to find the executables, libraries,
10973 include files, and data files of the compiler itself.
10974
10975 The compiler driver program runs one or more of the subprograms
10976 @command{cpp}, @command{cc1}, @command{as} and @command{ld}. It tries
10977 @var{prefix} as a prefix for each program it tries to run, both with and
10978 without @samp{@var{machine}/@var{version}/} for the corresponding target
10979 machine and compiler version.
10980
10981 For each subprogram to be run, the compiler driver first tries the
10982 @option{-B} prefix, if any. If that name is not found, or if @option{-B}
10983 is not specified, the driver tries two standard prefixes,
10984 @file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}. If neither of
10985 those results in a file name that is found, the unmodified program
10986 name is searched for using the directories specified in your
10987 @env{PATH} environment variable.
10988
10989 The compiler checks to see if the path provided by @option{-B}
10990 refers to a directory, and if necessary it adds a directory
10991 separator character at the end of the path.
10992
10993 @option{-B} prefixes that effectively specify directory names also apply
10994 to libraries in the linker, because the compiler translates these
10995 options into @option{-L} options for the linker. They also apply to
10996 include files in the preprocessor, because the compiler translates these
10997 options into @option{-isystem} options for the preprocessor. In this case,
10998 the compiler appends @samp{include} to the prefix.
10999
11000 The runtime support file @file{libgcc.a} can also be searched for using
11001 the @option{-B} prefix, if needed. If it is not found there, the two
11002 standard prefixes above are tried, and that is all. The file is left
11003 out of the link if it is not found by those means.
11004
11005 Another way to specify a prefix much like the @option{-B} prefix is to use
11006 the environment variable @env{GCC_EXEC_PREFIX}. @xref{Environment
11007 Variables}.
11008
11009 As a special kludge, if the path provided by @option{-B} is
11010 @file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
11011 9, then it is replaced by @file{[dir/]include}. This is to help
11012 with boot-strapping the compiler.
11013
11014 @item -no-canonical-prefixes
11015 @opindex no-canonical-prefixes
11016 Do not expand any symbolic links, resolve references to @samp{/../}
11017 or @samp{/./}, or make the path absolute when generating a relative
11018 prefix.
11019
11020 @item --sysroot=@var{dir}
11021 @opindex sysroot
11022 Use @var{dir} as the logical root directory for headers and libraries.
11023 For example, if the compiler normally searches for headers in
11024 @file{/usr/include} and libraries in @file{/usr/lib}, it instead
11025 searches @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.
11026
11027 If you use both this option and the @option{-isysroot} option, then
11028 the @option{--sysroot} option applies to libraries, but the
11029 @option{-isysroot} option applies to header files.
11030
11031 The GNU linker (beginning with version 2.16) has the necessary support
11032 for this option. If your linker does not support this option, the
11033 header file aspect of @option{--sysroot} still works, but the
11034 library aspect does not.
11035
11036 @item --no-sysroot-suffix
11037 @opindex no-sysroot-suffix
11038 For some targets, a suffix is added to the root directory specified
11039 with @option{--sysroot}, depending on the other options used, so that
11040 headers may for example be found in
11041 @file{@var{dir}/@var{suffix}/usr/include} instead of
11042 @file{@var{dir}/usr/include}. This option disables the addition of
11043 such a suffix.
11044
11045 @item -I-
11046 @opindex I-
11047 This option has been deprecated. Please use @option{-iquote} instead for
11048 @option{-I} directories before the @option{-I-} and remove the @option{-I-}
11049 option.
11050 Any directories you specify with @option{-I} options before the @option{-I-}
11051 option are searched only for the case of @code{#include "@var{file}"};
11052 they are not searched for @code{#include <@var{file}>}.
11053
11054 If additional directories are specified with @option{-I} options after
11055 the @option{-I-} option, these directories are searched for all @code{#include}
11056 directives. (Ordinarily @emph{all} @option{-I} directories are used
11057 this way.)
11058
11059 In addition, the @option{-I-} option inhibits the use of the current
11060 directory (where the current input file came from) as the first search
11061 directory for @code{#include "@var{file}"}. There is no way to
11062 override this effect of @option{-I-}. With @option{-I.} you can specify
11063 searching the directory that is current when the compiler is
11064 invoked. That is not exactly the same as what the preprocessor does
11065 by default, but it is often satisfactory.
11066
11067 @option{-I-} does not inhibit the use of the standard system directories
11068 for header files. Thus, @option{-I-} and @option{-nostdinc} are
11069 independent.
11070 @end table
11071
11072 @node Code Gen Options
11073 @section Options for Code Generation Conventions
11074 @cindex code generation conventions
11075 @cindex options, code generation
11076 @cindex run-time options
11077
11078 These machine-independent options control the interface conventions
11079 used in code generation.
11080
11081 Most of them have both positive and negative forms; the negative form
11082 of @option{-ffoo} is @option{-fno-foo}. In the table below, only
11083 one of the forms is listed---the one that is not the default. You
11084 can figure out the other form by either removing @samp{no-} or adding
11085 it.
11086
11087 @table @gcctabopt
11088 @item -fstack-reuse=@var{reuse-level}
11089 @opindex fstack_reuse
11090 This option controls stack space reuse for user declared local/auto variables
11091 and compiler generated temporaries. @var{reuse_level} can be @samp{all},
11092 @samp{named_vars}, or @samp{none}. @samp{all} enables stack reuse for all
11093 local variables and temporaries, @samp{named_vars} enables the reuse only for
11094 user defined local variables with names, and @samp{none} disables stack reuse
11095 completely. The default value is @samp{all}. The option is needed when the
11096 program extends the lifetime of a scoped local variable or a compiler generated
11097 temporary beyond the end point defined by the language. When a lifetime of
11098 a variable ends, and if the variable lives in memory, the optimizing compiler
11099 has the freedom to reuse its stack space with other temporaries or scoped
11100 local variables whose live range does not overlap with it. Legacy code extending
11101 local lifetime is likely to break with the stack reuse optimization.
11102
11103 For example,
11104
11105 @smallexample
11106 int *p;
11107 @{
11108 int local1;
11109
11110 p = &local1;
11111 local1 = 10;
11112 ....
11113 @}
11114 @{
11115 int local2;
11116 local2 = 20;
11117 ...
11118 @}
11119
11120 if (*p == 10) // out of scope use of local1
11121 @{
11122
11123 @}
11124 @end smallexample
11125
11126 Another example:
11127 @smallexample
11128
11129 struct A
11130 @{
11131 A(int k) : i(k), j(k) @{ @}
11132 int i;
11133 int j;
11134 @};
11135
11136 A *ap;
11137
11138 void foo(const A& ar)
11139 @{
11140 ap = &ar;
11141 @}
11142
11143 void bar()
11144 @{
11145 foo(A(10)); // temp object's lifetime ends when foo returns
11146
11147 @{
11148 A a(20);
11149 ....
11150 @}
11151 ap->i+= 10; // ap references out of scope temp whose space
11152 // is reused with a. What is the value of ap->i?
11153 @}
11154
11155 @end smallexample
11156
11157 The lifetime of a compiler generated temporary is well defined by the C++
11158 standard. When a lifetime of a temporary ends, and if the temporary lives
11159 in memory, the optimizing compiler has the freedom to reuse its stack
11160 space with other temporaries or scoped local variables whose live range
11161 does not overlap with it. However some of the legacy code relies on
11162 the behavior of older compilers in which temporaries' stack space is
11163 not reused, the aggressive stack reuse can lead to runtime errors. This
11164 option is used to control the temporary stack reuse optimization.
11165
11166 @item -ftrapv
11167 @opindex ftrapv
11168 This option generates traps for signed overflow on addition, subtraction,
11169 multiplication operations.
11170 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
11171 @option{-ftrapv} @option{-fwrapv} on the command-line results in
11172 @option{-fwrapv} being effective. Note that only active options override, so
11173 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
11174 results in @option{-ftrapv} being effective.
11175
11176 @item -fwrapv
11177 @opindex fwrapv
11178 This option instructs the compiler to assume that signed arithmetic
11179 overflow of addition, subtraction and multiplication wraps around
11180 using twos-complement representation. This flag enables some optimizations
11181 and disables others. This option is enabled by default for the Java
11182 front end, as required by the Java language specification.
11183 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
11184 @option{-ftrapv} @option{-fwrapv} on the command-line results in
11185 @option{-fwrapv} being effective. Note that only active options override, so
11186 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
11187 results in @option{-ftrapv} being effective.
11188
11189 @item -fexceptions
11190 @opindex fexceptions
11191 Enable exception handling. Generates extra code needed to propagate
11192 exceptions. For some targets, this implies GCC generates frame
11193 unwind information for all functions, which can produce significant data
11194 size overhead, although it does not affect execution. If you do not
11195 specify this option, GCC enables it by default for languages like
11196 C++ that normally require exception handling, and disables it for
11197 languages like C that do not normally require it. However, you may need
11198 to enable this option when compiling C code that needs to interoperate
11199 properly with exception handlers written in C++. You may also wish to
11200 disable this option if you are compiling older C++ programs that don't
11201 use exception handling.
11202
11203 @item -fnon-call-exceptions
11204 @opindex fnon-call-exceptions
11205 Generate code that allows trapping instructions to throw exceptions.
11206 Note that this requires platform-specific runtime support that does
11207 not exist everywhere. Moreover, it only allows @emph{trapping}
11208 instructions to throw exceptions, i.e.@: memory references or floating-point
11209 instructions. It does not allow exceptions to be thrown from
11210 arbitrary signal handlers such as @code{SIGALRM}.
11211
11212 @item -fdelete-dead-exceptions
11213 @opindex fdelete-dead-exceptions
11214 Consider that instructions that may throw exceptions but don't otherwise
11215 contribute to the execution of the program can be optimized away.
11216 This option is enabled by default for the Ada front end, as permitted by
11217 the Ada language specification.
11218 Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
11219
11220 @item -funwind-tables
11221 @opindex funwind-tables
11222 Similar to @option{-fexceptions}, except that it just generates any needed
11223 static data, but does not affect the generated code in any other way.
11224 You normally do not need to enable this option; instead, a language processor
11225 that needs this handling enables it on your behalf.
11226
11227 @item -fasynchronous-unwind-tables
11228 @opindex fasynchronous-unwind-tables
11229 Generate unwind table in DWARF format, if supported by target machine. The
11230 table is exact at each instruction boundary, so it can be used for stack
11231 unwinding from asynchronous events (such as debugger or garbage collector).
11232
11233 @item -fno-gnu-unique
11234 @opindex fno-gnu-unique
11235 On systems with recent GNU assembler and C library, the C++ compiler
11236 uses the @code{STB_GNU_UNIQUE} binding to make sure that definitions
11237 of template static data members and static local variables in inline
11238 functions are unique even in the presence of @code{RTLD_LOCAL}; this
11239 is necessary to avoid problems with a library used by two different
11240 @code{RTLD_LOCAL} plugins depending on a definition in one of them and
11241 therefore disagreeing with the other one about the binding of the
11242 symbol. But this causes @code{dlclose} to be ignored for affected
11243 DSOs; if your program relies on reinitialization of a DSO via
11244 @code{dlclose} and @code{dlopen}, you can use
11245 @option{-fno-gnu-unique}.
11246
11247 @item -fpcc-struct-return
11248 @opindex fpcc-struct-return
11249 Return ``short'' @code{struct} and @code{union} values in memory like
11250 longer ones, rather than in registers. This convention is less
11251 efficient, but it has the advantage of allowing intercallability between
11252 GCC-compiled files and files compiled with other compilers, particularly
11253 the Portable C Compiler (pcc).
11254
11255 The precise convention for returning structures in memory depends
11256 on the target configuration macros.
11257
11258 Short structures and unions are those whose size and alignment match
11259 that of some integer type.
11260
11261 @strong{Warning:} code compiled with the @option{-fpcc-struct-return}
11262 switch is not binary compatible with code compiled with the
11263 @option{-freg-struct-return} switch.
11264 Use it to conform to a non-default application binary interface.
11265
11266 @item -freg-struct-return
11267 @opindex freg-struct-return
11268 Return @code{struct} and @code{union} values in registers when possible.
11269 This is more efficient for small structures than
11270 @option{-fpcc-struct-return}.
11271
11272 If you specify neither @option{-fpcc-struct-return} nor
11273 @option{-freg-struct-return}, GCC defaults to whichever convention is
11274 standard for the target. If there is no standard convention, GCC
11275 defaults to @option{-fpcc-struct-return}, except on targets where GCC is
11276 the principal compiler. In those cases, we can choose the standard, and
11277 we chose the more efficient register return alternative.
11278
11279 @strong{Warning:} code compiled with the @option{-freg-struct-return}
11280 switch is not binary compatible with code compiled with the
11281 @option{-fpcc-struct-return} switch.
11282 Use it to conform to a non-default application binary interface.
11283
11284 @item -fshort-enums
11285 @opindex fshort-enums
11286 Allocate to an @code{enum} type only as many bytes as it needs for the
11287 declared range of possible values. Specifically, the @code{enum} type
11288 is equivalent to the smallest integer type that has enough room.
11289
11290 @strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
11291 code that is not binary compatible with code generated without that switch.
11292 Use it to conform to a non-default application binary interface.
11293
11294 @item -fshort-wchar
11295 @opindex fshort-wchar
11296 Override the underlying type for @code{wchar_t} to be @code{short
11297 unsigned int} instead of the default for the target. This option is
11298 useful for building programs to run under WINE@.
11299
11300 @strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
11301 code that is not binary compatible with code generated without that switch.
11302 Use it to conform to a non-default application binary interface.
11303
11304 @item -fno-common
11305 @opindex fno-common
11306 In C code, controls the placement of uninitialized global variables.
11307 Unix C compilers have traditionally permitted multiple definitions of
11308 such variables in different compilation units by placing the variables
11309 in a common block.
11310 This is the behavior specified by @option{-fcommon}, and is the default
11311 for GCC on most targets.
11312 On the other hand, this behavior is not required by ISO C, and on some
11313 targets may carry a speed or code size penalty on variable references.
11314 The @option{-fno-common} option specifies that the compiler should place
11315 uninitialized global variables in the data section of the object file,
11316 rather than generating them as common blocks.
11317 This has the effect that if the same variable is declared
11318 (without @code{extern}) in two different compilations,
11319 you get a multiple-definition error when you link them.
11320 In this case, you must compile with @option{-fcommon} instead.
11321 Compiling with @option{-fno-common} is useful on targets for which
11322 it provides better performance, or if you wish to verify that the
11323 program will work on other systems that always treat uninitialized
11324 variable declarations this way.
11325
11326 @item -fno-ident
11327 @opindex fno-ident
11328 Ignore the @code{#ident} directive.
11329
11330 @item -finhibit-size-directive
11331 @opindex finhibit-size-directive
11332 Don't output a @code{.size} assembler directive, or anything else that
11333 would cause trouble if the function is split in the middle, and the
11334 two halves are placed at locations far apart in memory. This option is
11335 used when compiling @file{crtstuff.c}; you should not need to use it
11336 for anything else.
11337
11338 @item -fverbose-asm
11339 @opindex fverbose-asm
11340 Put extra commentary information in the generated assembly code to
11341 make it more readable. This option is generally only of use to those
11342 who actually need to read the generated assembly code (perhaps while
11343 debugging the compiler itself).
11344
11345 @option{-fno-verbose-asm}, the default, causes the
11346 extra information to be omitted and is useful when comparing two assembler
11347 files.
11348
11349 @item -frecord-gcc-switches
11350 @opindex frecord-gcc-switches
11351 This switch causes the command line used to invoke the
11352 compiler to be recorded into the object file that is being created.
11353 This switch is only implemented on some targets and the exact format
11354 of the recording is target and binary file format dependent, but it
11355 usually takes the form of a section containing ASCII text. This
11356 switch is related to the @option{-fverbose-asm} switch, but that
11357 switch only records information in the assembler output file as
11358 comments, so it never reaches the object file.
11359 See also @option{-grecord-gcc-switches} for another
11360 way of storing compiler options into the object file.
11361
11362 @item -fpic
11363 @opindex fpic
11364 @cindex global offset table
11365 @cindex PIC
11366 Generate position-independent code (PIC) suitable for use in a shared
11367 library, if supported for the target machine. Such code accesses all
11368 constant addresses through a global offset table (GOT)@. The dynamic
11369 loader resolves the GOT entries when the program starts (the dynamic
11370 loader is not part of GCC; it is part of the operating system). If
11371 the GOT size for the linked executable exceeds a machine-specific
11372 maximum size, you get an error message from the linker indicating that
11373 @option{-fpic} does not work; in that case, recompile with @option{-fPIC}
11374 instead. (These maximums are 8k on the SPARC, 28k on AArch64 and 32k
11375 on the m68k and RS/6000. The x86 has no such limit.)
11376
11377 Position-independent code requires special support, and therefore works
11378 only on certain machines. For the x86, GCC supports PIC for System V
11379 but not for the Sun 386i. Code generated for the IBM RS/6000 is always
11380 position-independent.
11381
11382 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
11383 are defined to 1.
11384
11385 @item -fPIC
11386 @opindex fPIC
11387 If supported for the target machine, emit position-independent code,
11388 suitable for dynamic linking and avoiding any limit on the size of the
11389 global offset table. This option makes a difference on AArch64, m68k,
11390 PowerPC and SPARC@.
11391
11392 Position-independent code requires special support, and therefore works
11393 only on certain machines.
11394
11395 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
11396 are defined to 2.
11397
11398 @item -fpie
11399 @itemx -fPIE
11400 @opindex fpie
11401 @opindex fPIE
11402 These options are similar to @option{-fpic} and @option{-fPIC}, but
11403 generated position independent code can be only linked into executables.
11404 Usually these options are used when @option{-pie} GCC option is
11405 used during linking.
11406
11407 @option{-fpie} and @option{-fPIE} both define the macros
11408 @code{__pie__} and @code{__PIE__}. The macros have the value 1
11409 for @option{-fpie} and 2 for @option{-fPIE}.
11410
11411 @item -fno-plt
11412 @opindex fno-plt
11413 Do not use the PLT for external function calls in position-independent code.
11414 Instead, load the callee address at call sites from the GOT and branch to it.
11415 This leads to more efficient code by eliminating PLT stubs and exposing
11416 GOT loads to optimizations. On architectures such as 32-bit x86 where
11417 PLT stubs expect the GOT pointer in a specific register, this gives more
11418 register allocation freedom to the compiler.
11419 Lazy binding requires use of the PLT;
11420 with @option{-fno-plt} all external symbols are resolved at load time.
11421
11422 Alternatively, the function attribute @code{noplt} can be used to avoid calls
11423 through the PLT for specific external functions.
11424
11425 In position-dependent code, a few targets also convert calls to
11426 functions that are marked to not use the PLT to use the GOT instead.
11427
11428 @item -fno-jump-tables
11429 @opindex fno-jump-tables
11430 Do not use jump tables for switch statements even where it would be
11431 more efficient than other code generation strategies. This option is
11432 of use in conjunction with @option{-fpic} or @option{-fPIC} for
11433 building code that forms part of a dynamic linker and cannot
11434 reference the address of a jump table. On some targets, jump tables
11435 do not require a GOT and this option is not needed.
11436
11437 @item -ffixed-@var{reg}
11438 @opindex ffixed
11439 Treat the register named @var{reg} as a fixed register; generated code
11440 should never refer to it (except perhaps as a stack pointer, frame
11441 pointer or in some other fixed role).
11442
11443 @var{reg} must be the name of a register. The register names accepted
11444 are machine-specific and are defined in the @code{REGISTER_NAMES}
11445 macro in the machine description macro file.
11446
11447 This flag does not have a negative form, because it specifies a
11448 three-way choice.
11449
11450 @item -fcall-used-@var{reg}
11451 @opindex fcall-used
11452 Treat the register named @var{reg} as an allocable register that is
11453 clobbered by function calls. It may be allocated for temporaries or
11454 variables that do not live across a call. Functions compiled this way
11455 do not save and restore the register @var{reg}.
11456
11457 It is an error to use this flag with the frame pointer or stack pointer.
11458 Use of this flag for other registers that have fixed pervasive roles in
11459 the machine's execution model produces disastrous results.
11460
11461 This flag does not have a negative form, because it specifies a
11462 three-way choice.
11463
11464 @item -fcall-saved-@var{reg}
11465 @opindex fcall-saved
11466 Treat the register named @var{reg} as an allocable register saved by
11467 functions. It may be allocated even for temporaries or variables that
11468 live across a call. Functions compiled this way save and restore
11469 the register @var{reg} if they use it.
11470
11471 It is an error to use this flag with the frame pointer or stack pointer.
11472 Use of this flag for other registers that have fixed pervasive roles in
11473 the machine's execution model produces disastrous results.
11474
11475 A different sort of disaster results from the use of this flag for
11476 a register in which function values may be returned.
11477
11478 This flag does not have a negative form, because it specifies a
11479 three-way choice.
11480
11481 @item -fpack-struct[=@var{n}]
11482 @opindex fpack-struct
11483 Without a value specified, pack all structure members together without
11484 holes. When a value is specified (which must be a small power of two), pack
11485 structure members according to this value, representing the maximum
11486 alignment (that is, objects with default alignment requirements larger than
11487 this are output potentially unaligned at the next fitting location.
11488
11489 @strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
11490 code that is not binary compatible with code generated without that switch.
11491 Additionally, it makes the code suboptimal.
11492 Use it to conform to a non-default application binary interface.
11493
11494 @item -fleading-underscore
11495 @opindex fleading-underscore
11496 This option and its counterpart, @option{-fno-leading-underscore}, forcibly
11497 change the way C symbols are represented in the object file. One use
11498 is to help link with legacy assembly code.
11499
11500 @strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
11501 generate code that is not binary compatible with code generated without that
11502 switch. Use it to conform to a non-default application binary interface.
11503 Not all targets provide complete support for this switch.
11504
11505 @item -ftls-model=@var{model}
11506 @opindex ftls-model
11507 Alter the thread-local storage model to be used (@pxref{Thread-Local}).
11508 The @var{model} argument should be one of @samp{global-dynamic},
11509 @samp{local-dynamic}, @samp{initial-exec} or @samp{local-exec}.
11510 Note that the choice is subject to optimization: the compiler may use
11511 a more efficient model for symbols not visible outside of the translation
11512 unit, or if @option{-fpic} is not given on the command line.
11513
11514 The default without @option{-fpic} is @samp{initial-exec}; with
11515 @option{-fpic} the default is @samp{global-dynamic}.
11516
11517 @item -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]}
11518 @opindex fvisibility
11519 Set the default ELF image symbol visibility to the specified option---all
11520 symbols are marked with this unless overridden within the code.
11521 Using this feature can very substantially improve linking and
11522 load times of shared object libraries, produce more optimized
11523 code, provide near-perfect API export and prevent symbol clashes.
11524 It is @strong{strongly} recommended that you use this in any shared objects
11525 you distribute.
11526
11527 Despite the nomenclature, @samp{default} always means public; i.e.,
11528 available to be linked against from outside the shared object.
11529 @samp{protected} and @samp{internal} are pretty useless in real-world
11530 usage so the only other commonly used option is @samp{hidden}.
11531 The default if @option{-fvisibility} isn't specified is
11532 @samp{default}, i.e., make every symbol public.
11533
11534 A good explanation of the benefits offered by ensuring ELF
11535 symbols have the correct visibility is given by ``How To Write
11536 Shared Libraries'' by Ulrich Drepper (which can be found at
11537 @w{@uref{http://www.akkadia.org/drepper/}})---however a superior
11538 solution made possible by this option to marking things hidden when
11539 the default is public is to make the default hidden and mark things
11540 public. This is the norm with DLLs on Windows and with @option{-fvisibility=hidden}
11541 and @code{__attribute__ ((visibility("default")))} instead of
11542 @code{__declspec(dllexport)} you get almost identical semantics with
11543 identical syntax. This is a great boon to those working with
11544 cross-platform projects.
11545
11546 For those adding visibility support to existing code, you may find
11547 @code{#pragma GCC visibility} of use. This works by you enclosing
11548 the declarations you wish to set visibility for with (for example)
11549 @code{#pragma GCC visibility push(hidden)} and
11550 @code{#pragma GCC visibility pop}.
11551 Bear in mind that symbol visibility should be viewed @strong{as
11552 part of the API interface contract} and thus all new code should
11553 always specify visibility when it is not the default; i.e., declarations
11554 only for use within the local DSO should @strong{always} be marked explicitly
11555 as hidden as so to avoid PLT indirection overheads---making this
11556 abundantly clear also aids readability and self-documentation of the code.
11557 Note that due to ISO C++ specification requirements, @code{operator new} and
11558 @code{operator delete} must always be of default visibility.
11559
11560 Be aware that headers from outside your project, in particular system
11561 headers and headers from any other library you use, may not be
11562 expecting to be compiled with visibility other than the default. You
11563 may need to explicitly say @code{#pragma GCC visibility push(default)}
11564 before including any such headers.
11565
11566 @code{extern} declarations are not affected by @option{-fvisibility}, so
11567 a lot of code can be recompiled with @option{-fvisibility=hidden} with
11568 no modifications. However, this means that calls to @code{extern}
11569 functions with no explicit visibility use the PLT, so it is more
11570 effective to use @code{__attribute ((visibility))} and/or
11571 @code{#pragma GCC visibility} to tell the compiler which @code{extern}
11572 declarations should be treated as hidden.
11573
11574 Note that @option{-fvisibility} does affect C++ vague linkage
11575 entities. This means that, for instance, an exception class that is
11576 be thrown between DSOs must be explicitly marked with default
11577 visibility so that the @samp{type_info} nodes are unified between
11578 the DSOs.
11579
11580 An overview of these techniques, their benefits and how to use them
11581 is at @uref{http://gcc.gnu.org/@/wiki/@/Visibility}.
11582
11583 @item -fstrict-volatile-bitfields
11584 @opindex fstrict-volatile-bitfields
11585 This option should be used if accesses to volatile bit-fields (or other
11586 structure fields, although the compiler usually honors those types
11587 anyway) should use a single access of the width of the
11588 field's type, aligned to a natural alignment if possible. For
11589 example, targets with memory-mapped peripheral registers might require
11590 all such accesses to be 16 bits wide; with this flag you can
11591 declare all peripheral bit-fields as @code{unsigned short} (assuming short
11592 is 16 bits on these targets) to force GCC to use 16-bit accesses
11593 instead of, perhaps, a more efficient 32-bit access.
11594
11595 If this option is disabled, the compiler uses the most efficient
11596 instruction. In the previous example, that might be a 32-bit load
11597 instruction, even though that accesses bytes that do not contain
11598 any portion of the bit-field, or memory-mapped registers unrelated to
11599 the one being updated.
11600
11601 In some cases, such as when the @code{packed} attribute is applied to a
11602 structure field, it may not be possible to access the field with a single
11603 read or write that is correctly aligned for the target machine. In this
11604 case GCC falls back to generating multiple accesses rather than code that
11605 will fault or truncate the result at run time.
11606
11607 Note: Due to restrictions of the C/C++11 memory model, write accesses are
11608 not allowed to touch non bit-field members. It is therefore recommended
11609 to define all bits of the field's type as bit-field members.
11610
11611 The default value of this option is determined by the application binary
11612 interface for the target processor.
11613
11614 @item -fsync-libcalls
11615 @opindex fsync-libcalls
11616 This option controls whether any out-of-line instance of the @code{__sync}
11617 family of functions may be used to implement the C++11 @code{__atomic}
11618 family of functions.
11619
11620 The default value of this option is enabled, thus the only useful form
11621 of the option is @option{-fno-sync-libcalls}. This option is used in
11622 the implementation of the @file{libatomic} runtime library.
11623
11624 @end table
11625
11626 @node Developer Options
11627 @section GCC Developer Options
11628 @cindex developer options
11629 @cindex debugging GCC
11630 @cindex debug dump options
11631 @cindex dump options
11632 @cindex compilation statistics
11633
11634 This section describes command-line options that are primarily of
11635 interest to GCC developers, including options to support compiler
11636 testing and investigation of compiler bugs and compile-time
11637 performance problems. This includes options that produce debug dumps
11638 at various points in the compilation; that print statistics such as
11639 memory use and execution time; and that print information about GCC's
11640 configuration, such as where it searches for libraries. You should
11641 rarely need to use any of these options for ordinary compilation and
11642 linking tasks.
11643
11644 @table @gcctabopt
11645
11646 @item -d@var{letters}
11647 @itemx -fdump-rtl-@var{pass}
11648 @itemx -fdump-rtl-@var{pass}=@var{filename}
11649 @opindex d
11650 @opindex fdump-rtl-@var{pass}
11651 Says to make debugging dumps during compilation at times specified by
11652 @var{letters}. This is used for debugging the RTL-based passes of the
11653 compiler. The file names for most of the dumps are made by appending
11654 a pass number and a word to the @var{dumpname}, and the files are
11655 created in the directory of the output file. In case of
11656 @option{=@var{filename}} option, the dump is output on the given file
11657 instead of the pass numbered dump files. Note that the pass number is
11658 assigned as passes are registered into the pass manager. Most passes
11659 are registered in the order that they will execute and for these passes
11660 the number corresponds to the pass execution order. However, passes
11661 registered by plugins, passes specific to compilation targets, or
11662 passes that are otherwise registered after all the other passes are
11663 numbered higher than a pass named "final", even if they are executed
11664 earlier. @var{dumpname} is generated from the name of the output
11665 file if explicitly specified and not an executable, otherwise it is
11666 the basename of the source file. These switches may have different
11667 effects when @option{-E} is used for preprocessing.
11668
11669 Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
11670 @option{-d} option @var{letters}. Here are the possible
11671 letters for use in @var{pass} and @var{letters}, and their meanings:
11672
11673 @table @gcctabopt
11674
11675 @item -fdump-rtl-alignments
11676 @opindex fdump-rtl-alignments
11677 Dump after branch alignments have been computed.
11678
11679 @item -fdump-rtl-asmcons
11680 @opindex fdump-rtl-asmcons
11681 Dump after fixing rtl statements that have unsatisfied in/out constraints.
11682
11683 @item -fdump-rtl-auto_inc_dec
11684 @opindex fdump-rtl-auto_inc_dec
11685 Dump after auto-inc-dec discovery. This pass is only run on
11686 architectures that have auto inc or auto dec instructions.
11687
11688 @item -fdump-rtl-barriers
11689 @opindex fdump-rtl-barriers
11690 Dump after cleaning up the barrier instructions.
11691
11692 @item -fdump-rtl-bbpart
11693 @opindex fdump-rtl-bbpart
11694 Dump after partitioning hot and cold basic blocks.
11695
11696 @item -fdump-rtl-bbro
11697 @opindex fdump-rtl-bbro
11698 Dump after block reordering.
11699
11700 @item -fdump-rtl-btl1
11701 @itemx -fdump-rtl-btl2
11702 @opindex fdump-rtl-btl2
11703 @opindex fdump-rtl-btl2
11704 @option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
11705 after the two branch
11706 target load optimization passes.
11707
11708 @item -fdump-rtl-bypass
11709 @opindex fdump-rtl-bypass
11710 Dump after jump bypassing and control flow optimizations.
11711
11712 @item -fdump-rtl-combine
11713 @opindex fdump-rtl-combine
11714 Dump after the RTL instruction combination pass.
11715
11716 @item -fdump-rtl-compgotos
11717 @opindex fdump-rtl-compgotos
11718 Dump after duplicating the computed gotos.
11719
11720 @item -fdump-rtl-ce1
11721 @itemx -fdump-rtl-ce2
11722 @itemx -fdump-rtl-ce3
11723 @opindex fdump-rtl-ce1
11724 @opindex fdump-rtl-ce2
11725 @opindex fdump-rtl-ce3
11726 @option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
11727 @option{-fdump-rtl-ce3} enable dumping after the three
11728 if conversion passes.
11729
11730 @item -fdump-rtl-cprop_hardreg
11731 @opindex fdump-rtl-cprop_hardreg
11732 Dump after hard register copy propagation.
11733
11734 @item -fdump-rtl-csa
11735 @opindex fdump-rtl-csa
11736 Dump after combining stack adjustments.
11737
11738 @item -fdump-rtl-cse1
11739 @itemx -fdump-rtl-cse2
11740 @opindex fdump-rtl-cse1
11741 @opindex fdump-rtl-cse2
11742 @option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
11743 the two common subexpression elimination passes.
11744
11745 @item -fdump-rtl-dce
11746 @opindex fdump-rtl-dce
11747 Dump after the standalone dead code elimination passes.
11748
11749 @item -fdump-rtl-dbr
11750 @opindex fdump-rtl-dbr
11751 Dump after delayed branch scheduling.
11752
11753 @item -fdump-rtl-dce1
11754 @itemx -fdump-rtl-dce2
11755 @opindex fdump-rtl-dce1
11756 @opindex fdump-rtl-dce2
11757 @option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
11758 the two dead store elimination passes.
11759
11760 @item -fdump-rtl-eh
11761 @opindex fdump-rtl-eh
11762 Dump after finalization of EH handling code.
11763
11764 @item -fdump-rtl-eh_ranges
11765 @opindex fdump-rtl-eh_ranges
11766 Dump after conversion of EH handling range regions.
11767
11768 @item -fdump-rtl-expand
11769 @opindex fdump-rtl-expand
11770 Dump after RTL generation.
11771
11772 @item -fdump-rtl-fwprop1
11773 @itemx -fdump-rtl-fwprop2
11774 @opindex fdump-rtl-fwprop1
11775 @opindex fdump-rtl-fwprop2
11776 @option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
11777 dumping after the two forward propagation passes.
11778
11779 @item -fdump-rtl-gcse1
11780 @itemx -fdump-rtl-gcse2
11781 @opindex fdump-rtl-gcse1
11782 @opindex fdump-rtl-gcse2
11783 @option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
11784 after global common subexpression elimination.
11785
11786 @item -fdump-rtl-init-regs
11787 @opindex fdump-rtl-init-regs
11788 Dump after the initialization of the registers.
11789
11790 @item -fdump-rtl-initvals
11791 @opindex fdump-rtl-initvals
11792 Dump after the computation of the initial value sets.
11793
11794 @item -fdump-rtl-into_cfglayout
11795 @opindex fdump-rtl-into_cfglayout
11796 Dump after converting to cfglayout mode.
11797
11798 @item -fdump-rtl-ira
11799 @opindex fdump-rtl-ira
11800 Dump after iterated register allocation.
11801
11802 @item -fdump-rtl-jump
11803 @opindex fdump-rtl-jump
11804 Dump after the second jump optimization.
11805
11806 @item -fdump-rtl-loop2
11807 @opindex fdump-rtl-loop2
11808 @option{-fdump-rtl-loop2} enables dumping after the rtl
11809 loop optimization passes.
11810
11811 @item -fdump-rtl-mach
11812 @opindex fdump-rtl-mach
11813 Dump after performing the machine dependent reorganization pass, if that
11814 pass exists.
11815
11816 @item -fdump-rtl-mode_sw
11817 @opindex fdump-rtl-mode_sw
11818 Dump after removing redundant mode switches.
11819
11820 @item -fdump-rtl-rnreg
11821 @opindex fdump-rtl-rnreg
11822 Dump after register renumbering.
11823
11824 @item -fdump-rtl-outof_cfglayout
11825 @opindex fdump-rtl-outof_cfglayout
11826 Dump after converting from cfglayout mode.
11827
11828 @item -fdump-rtl-peephole2
11829 @opindex fdump-rtl-peephole2
11830 Dump after the peephole pass.
11831
11832 @item -fdump-rtl-postreload
11833 @opindex fdump-rtl-postreload
11834 Dump after post-reload optimizations.
11835
11836 @item -fdump-rtl-pro_and_epilogue
11837 @opindex fdump-rtl-pro_and_epilogue
11838 Dump after generating the function prologues and epilogues.
11839
11840 @item -fdump-rtl-sched1
11841 @itemx -fdump-rtl-sched2
11842 @opindex fdump-rtl-sched1
11843 @opindex fdump-rtl-sched2
11844 @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
11845 after the basic block scheduling passes.
11846
11847 @item -fdump-rtl-ree
11848 @opindex fdump-rtl-ree
11849 Dump after sign/zero extension elimination.
11850
11851 @item -fdump-rtl-seqabstr
11852 @opindex fdump-rtl-seqabstr
11853 Dump after common sequence discovery.
11854
11855 @item -fdump-rtl-shorten
11856 @opindex fdump-rtl-shorten
11857 Dump after shortening branches.
11858
11859 @item -fdump-rtl-sibling
11860 @opindex fdump-rtl-sibling
11861 Dump after sibling call optimizations.
11862
11863 @item -fdump-rtl-split1
11864 @itemx -fdump-rtl-split2
11865 @itemx -fdump-rtl-split3
11866 @itemx -fdump-rtl-split4
11867 @itemx -fdump-rtl-split5
11868 @opindex fdump-rtl-split1
11869 @opindex fdump-rtl-split2
11870 @opindex fdump-rtl-split3
11871 @opindex fdump-rtl-split4
11872 @opindex fdump-rtl-split5
11873 These options enable dumping after five rounds of
11874 instruction splitting.
11875
11876 @item -fdump-rtl-sms
11877 @opindex fdump-rtl-sms
11878 Dump after modulo scheduling. This pass is only run on some
11879 architectures.
11880
11881 @item -fdump-rtl-stack
11882 @opindex fdump-rtl-stack
11883 Dump after conversion from GCC's ``flat register file'' registers to the
11884 x87's stack-like registers. This pass is only run on x86 variants.
11885
11886 @item -fdump-rtl-subreg1
11887 @itemx -fdump-rtl-subreg2
11888 @opindex fdump-rtl-subreg1
11889 @opindex fdump-rtl-subreg2
11890 @option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
11891 the two subreg expansion passes.
11892
11893 @item -fdump-rtl-unshare
11894 @opindex fdump-rtl-unshare
11895 Dump after all rtl has been unshared.
11896
11897 @item -fdump-rtl-vartrack
11898 @opindex fdump-rtl-vartrack
11899 Dump after variable tracking.
11900
11901 @item -fdump-rtl-vregs
11902 @opindex fdump-rtl-vregs
11903 Dump after converting virtual registers to hard registers.
11904
11905 @item -fdump-rtl-web
11906 @opindex fdump-rtl-web
11907 Dump after live range splitting.
11908
11909 @item -fdump-rtl-regclass
11910 @itemx -fdump-rtl-subregs_of_mode_init
11911 @itemx -fdump-rtl-subregs_of_mode_finish
11912 @itemx -fdump-rtl-dfinit
11913 @itemx -fdump-rtl-dfinish
11914 @opindex fdump-rtl-regclass
11915 @opindex fdump-rtl-subregs_of_mode_init
11916 @opindex fdump-rtl-subregs_of_mode_finish
11917 @opindex fdump-rtl-dfinit
11918 @opindex fdump-rtl-dfinish
11919 These dumps are defined but always produce empty files.
11920
11921 @item -da
11922 @itemx -fdump-rtl-all
11923 @opindex da
11924 @opindex fdump-rtl-all
11925 Produce all the dumps listed above.
11926
11927 @item -dA
11928 @opindex dA
11929 Annotate the assembler output with miscellaneous debugging information.
11930
11931 @item -dD
11932 @opindex dD
11933 Dump all macro definitions, at the end of preprocessing, in addition to
11934 normal output.
11935
11936 @item -dH
11937 @opindex dH
11938 Produce a core dump whenever an error occurs.
11939
11940 @item -dp
11941 @opindex dp
11942 Annotate the assembler output with a comment indicating which
11943 pattern and alternative is used. The length of each instruction is
11944 also printed.
11945
11946 @item -dP
11947 @opindex dP
11948 Dump the RTL in the assembler output as a comment before each instruction.
11949 Also turns on @option{-dp} annotation.
11950
11951 @item -dx
11952 @opindex dx
11953 Just generate RTL for a function instead of compiling it. Usually used
11954 with @option{-fdump-rtl-expand}.
11955 @end table
11956
11957 @item -fdump-noaddr
11958 @opindex fdump-noaddr
11959 When doing debugging dumps, suppress address output. This makes it more
11960 feasible to use diff on debugging dumps for compiler invocations with
11961 different compiler binaries and/or different
11962 text / bss / data / heap / stack / dso start locations.
11963
11964 @item -freport-bug
11965 @opindex freport-bug
11966 Collect and dump debug information into a temporary file if an
11967 internal compiler error (ICE) occurs.
11968
11969 @item -fdump-unnumbered
11970 @opindex fdump-unnumbered
11971 When doing debugging dumps, suppress instruction numbers and address output.
11972 This makes it more feasible to use diff on debugging dumps for compiler
11973 invocations with different options, in particular with and without
11974 @option{-g}.
11975
11976 @item -fdump-unnumbered-links
11977 @opindex fdump-unnumbered-links
11978 When doing debugging dumps (see @option{-d} option above), suppress
11979 instruction numbers for the links to the previous and next instructions
11980 in a sequence.
11981
11982 @item -fdump-translation-unit @r{(C++ only)}
11983 @itemx -fdump-translation-unit-@var{options} @r{(C++ only)}
11984 @opindex fdump-translation-unit
11985 Dump a representation of the tree structure for the entire translation
11986 unit to a file. The file name is made by appending @file{.tu} to the
11987 source file name, and the file is created in the same directory as the
11988 output file. If the @samp{-@var{options}} form is used, @var{options}
11989 controls the details of the dump as described for the
11990 @option{-fdump-tree} options.
11991
11992 @item -fdump-class-hierarchy @r{(C++ only)}
11993 @itemx -fdump-class-hierarchy-@var{options} @r{(C++ only)}
11994 @opindex fdump-class-hierarchy
11995 Dump a representation of each class's hierarchy and virtual function
11996 table layout to a file. The file name is made by appending
11997 @file{.class} to the source file name, and the file is created in the
11998 same directory as the output file. If the @samp{-@var{options}} form
11999 is used, @var{options} controls the details of the dump as described
12000 for the @option{-fdump-tree} options.
12001
12002 @item -fdump-ipa-@var{switch}
12003 @opindex fdump-ipa
12004 Control the dumping at various stages of inter-procedural analysis
12005 language tree to a file. The file name is generated by appending a
12006 switch specific suffix to the source file name, and the file is created
12007 in the same directory as the output file. The following dumps are
12008 possible:
12009
12010 @table @samp
12011 @item all
12012 Enables all inter-procedural analysis dumps.
12013
12014 @item cgraph
12015 Dumps information about call-graph optimization, unused function removal,
12016 and inlining decisions.
12017
12018 @item inline
12019 Dump after function inlining.
12020
12021 @end table
12022
12023 @item -fdump-passes
12024 @opindex fdump-passes
12025 Dump the list of optimization passes that are turned on and off by
12026 the current command-line options.
12027
12028 @item -fdump-statistics-@var{option}
12029 @opindex fdump-statistics
12030 Enable and control dumping of pass statistics in a separate file. The
12031 file name is generated by appending a suffix ending in
12032 @samp{.statistics} to the source file name, and the file is created in
12033 the same directory as the output file. If the @samp{-@var{option}}
12034 form is used, @samp{-stats} causes counters to be summed over the
12035 whole compilation unit while @samp{-details} dumps every event as
12036 the passes generate them. The default with no option is to sum
12037 counters for each function compiled.
12038
12039 @item -fdump-tree-@var{switch}
12040 @itemx -fdump-tree-@var{switch}-@var{options}
12041 @itemx -fdump-tree-@var{switch}-@var{options}=@var{filename}
12042 @opindex fdump-tree
12043 Control the dumping at various stages of processing the intermediate
12044 language tree to a file. The file name is generated by appending a
12045 switch-specific suffix to the source file name, and the file is
12046 created in the same directory as the output file. In case of
12047 @option{=@var{filename}} option, the dump is output on the given file
12048 instead of the auto named dump files. If the @samp{-@var{options}}
12049 form is used, @var{options} is a list of @samp{-} separated options
12050 which control the details of the dump. Not all options are applicable
12051 to all dumps; those that are not meaningful are ignored. The
12052 following options are available
12053
12054 @table @samp
12055 @item address
12056 Print the address of each node. Usually this is not meaningful as it
12057 changes according to the environment and source file. Its primary use
12058 is for tying up a dump file with a debug environment.
12059 @item asmname
12060 If @code{DECL_ASSEMBLER_NAME} has been set for a given decl, use that
12061 in the dump instead of @code{DECL_NAME}. Its primary use is ease of
12062 use working backward from mangled names in the assembly file.
12063 @item slim
12064 When dumping front-end intermediate representations, inhibit dumping
12065 of members of a scope or body of a function merely because that scope
12066 has been reached. Only dump such items when they are directly reachable
12067 by some other path.
12068
12069 When dumping pretty-printed trees, this option inhibits dumping the
12070 bodies of control structures.
12071
12072 When dumping RTL, print the RTL in slim (condensed) form instead of
12073 the default LISP-like representation.
12074 @item raw
12075 Print a raw representation of the tree. By default, trees are
12076 pretty-printed into a C-like representation.
12077 @item details
12078 Enable more detailed dumps (not honored by every dump option). Also
12079 include information from the optimization passes.
12080 @item stats
12081 Enable dumping various statistics about the pass (not honored by every dump
12082 option).
12083 @item blocks
12084 Enable showing basic block boundaries (disabled in raw dumps).
12085 @item graph
12086 For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
12087 dump a representation of the control flow graph suitable for viewing with
12088 GraphViz to @file{@var{file}.@var{passid}.@var{pass}.dot}. Each function in
12089 the file is pretty-printed as a subgraph, so that GraphViz can render them
12090 all in a single plot.
12091
12092 This option currently only works for RTL dumps, and the RTL is always
12093 dumped in slim form.
12094 @item vops
12095 Enable showing virtual operands for every statement.
12096 @item lineno
12097 Enable showing line numbers for statements.
12098 @item uid
12099 Enable showing the unique ID (@code{DECL_UID}) for each variable.
12100 @item verbose
12101 Enable showing the tree dump for each statement.
12102 @item eh
12103 Enable showing the EH region number holding each statement.
12104 @item scev
12105 Enable showing scalar evolution analysis details.
12106 @item optimized
12107 Enable showing optimization information (only available in certain
12108 passes).
12109 @item missed
12110 Enable showing missed optimization information (only available in certain
12111 passes).
12112 @item note
12113 Enable other detailed optimization information (only available in
12114 certain passes).
12115 @item =@var{filename}
12116 Instead of an auto named dump file, output into the given file
12117 name. The file names @file{stdout} and @file{stderr} are treated
12118 specially and are considered already open standard streams. For
12119 example,
12120
12121 @smallexample
12122 gcc -O2 -ftree-vectorize -fdump-tree-vect-blocks=foo.dump
12123 -fdump-tree-pre=stderr file.c
12124 @end smallexample
12125
12126 outputs vectorizer dump into @file{foo.dump}, while the PRE dump is
12127 output on to @file{stderr}. If two conflicting dump filenames are
12128 given for the same pass, then the latter option overrides the earlier
12129 one.
12130
12131 @item split-paths
12132 @opindex fdump-tree-split-paths
12133 Dump each function after splitting paths to loop backedges. The file
12134 name is made by appending @file{.split-paths} to the source file name.
12135
12136 @item all
12137 Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
12138 and @option{lineno}.
12139
12140 @item optall
12141 Turn on all optimization options, i.e., @option{optimized},
12142 @option{missed}, and @option{note}.
12143 @end table
12144
12145 The following tree dumps are possible:
12146 @table @samp
12147
12148 @item original
12149 @opindex fdump-tree-original
12150 Dump before any tree based optimization, to @file{@var{file}.original}.
12151
12152 @item optimized
12153 @opindex fdump-tree-optimized
12154 Dump after all tree based optimization, to @file{@var{file}.optimized}.
12155
12156 @item gimple
12157 @opindex fdump-tree-gimple
12158 Dump each function before and after the gimplification pass to a file. The
12159 file name is made by appending @file{.gimple} to the source file name.
12160
12161 @item cfg
12162 @opindex fdump-tree-cfg
12163 Dump the control flow graph of each function to a file. The file name is
12164 made by appending @file{.cfg} to the source file name.
12165
12166 @item ch
12167 @opindex fdump-tree-ch
12168 Dump each function after copying loop headers. The file name is made by
12169 appending @file{.ch} to the source file name.
12170
12171 @item ssa
12172 @opindex fdump-tree-ssa
12173 Dump SSA related information to a file. The file name is made by appending
12174 @file{.ssa} to the source file name.
12175
12176 @item alias
12177 @opindex fdump-tree-alias
12178 Dump aliasing information for each function. The file name is made by
12179 appending @file{.alias} to the source file name.
12180
12181 @item ccp
12182 @opindex fdump-tree-ccp
12183 Dump each function after CCP@. The file name is made by appending
12184 @file{.ccp} to the source file name.
12185
12186 @item storeccp
12187 @opindex fdump-tree-storeccp
12188 Dump each function after STORE-CCP@. The file name is made by appending
12189 @file{.storeccp} to the source file name.
12190
12191 @item pre
12192 @opindex fdump-tree-pre
12193 Dump trees after partial redundancy elimination. The file name is made
12194 by appending @file{.pre} to the source file name.
12195
12196 @item fre
12197 @opindex fdump-tree-fre
12198 Dump trees after full redundancy elimination. The file name is made
12199 by appending @file{.fre} to the source file name.
12200
12201 @item copyprop
12202 @opindex fdump-tree-copyprop
12203 Dump trees after copy propagation. The file name is made
12204 by appending @file{.copyprop} to the source file name.
12205
12206 @item store_copyprop
12207 @opindex fdump-tree-store_copyprop
12208 Dump trees after store copy-propagation. The file name is made
12209 by appending @file{.store_copyprop} to the source file name.
12210
12211 @item dce
12212 @opindex fdump-tree-dce
12213 Dump each function after dead code elimination. The file name is made by
12214 appending @file{.dce} to the source file name.
12215
12216 @item sra
12217 @opindex fdump-tree-sra
12218 Dump each function after performing scalar replacement of aggregates. The
12219 file name is made by appending @file{.sra} to the source file name.
12220
12221 @item sink
12222 @opindex fdump-tree-sink
12223 Dump each function after performing code sinking. The file name is made
12224 by appending @file{.sink} to the source file name.
12225
12226 @item dom
12227 @opindex fdump-tree-dom
12228 Dump each function after applying dominator tree optimizations. The file
12229 name is made by appending @file{.dom} to the source file name.
12230
12231 @item dse
12232 @opindex fdump-tree-dse
12233 Dump each function after applying dead store elimination. The file
12234 name is made by appending @file{.dse} to the source file name.
12235
12236 @item phiopt
12237 @opindex fdump-tree-phiopt
12238 Dump each function after optimizing PHI nodes into straightline code. The file
12239 name is made by appending @file{.phiopt} to the source file name.
12240
12241 @item backprop
12242 @opindex fdump-tree-backprop
12243 Dump each function after back-propagating use information up the definition
12244 chain. The file name is made by appending @file{.backprop} to the
12245 source file name.
12246
12247 @item forwprop
12248 @opindex fdump-tree-forwprop
12249 Dump each function after forward propagating single use variables. The file
12250 name is made by appending @file{.forwprop} to the source file name.
12251
12252 @item nrv
12253 @opindex fdump-tree-nrv
12254 Dump each function after applying the named return value optimization on
12255 generic trees. The file name is made by appending @file{.nrv} to the source
12256 file name.
12257
12258 @item vect
12259 @opindex fdump-tree-vect
12260 Dump each function after applying vectorization of loops. The file name is
12261 made by appending @file{.vect} to the source file name.
12262
12263 @item slp
12264 @opindex fdump-tree-slp
12265 Dump each function after applying vectorization of basic blocks. The file name
12266 is made by appending @file{.slp} to the source file name.
12267
12268 @item vrp
12269 @opindex fdump-tree-vrp
12270 Dump each function after Value Range Propagation (VRP). The file name
12271 is made by appending @file{.vrp} to the source file name.
12272
12273 @item oaccdevlow
12274 @opindex fdump-tree-oaccdevlow
12275 Dump each function after applying device-specific OpenACC transformations.
12276 The file name is made by appending @file{.oaccdevlow} to the source file name.
12277
12278 @item all
12279 @opindex fdump-tree-all
12280 Enable all the available tree dumps with the flags provided in this option.
12281 @end table
12282
12283 @item -fopt-info
12284 @itemx -fopt-info-@var{options}
12285 @itemx -fopt-info-@var{options}=@var{filename}
12286 @opindex fopt-info
12287 Controls optimization dumps from various optimization passes. If the
12288 @samp{-@var{options}} form is used, @var{options} is a list of
12289 @samp{-} separated option keywords to select the dump details and
12290 optimizations.
12291
12292 The @var{options} can be divided into two groups: options describing the
12293 verbosity of the dump, and options describing which optimizations
12294 should be included. The options from both the groups can be freely
12295 mixed as they are non-overlapping. However, in case of any conflicts,
12296 the later options override the earlier options on the command
12297 line.
12298
12299 The following options control the dump verbosity:
12300
12301 @table @samp
12302 @item optimized
12303 Print information when an optimization is successfully applied. It is
12304 up to a pass to decide which information is relevant. For example, the
12305 vectorizer passes print the source location of loops which are
12306 successfully vectorized.
12307 @item missed
12308 Print information about missed optimizations. Individual passes
12309 control which information to include in the output.
12310 @item note
12311 Print verbose information about optimizations, such as certain
12312 transformations, more detailed messages about decisions etc.
12313 @item all
12314 Print detailed optimization information. This includes
12315 @samp{optimized}, @samp{missed}, and @samp{note}.
12316 @end table
12317
12318 One or more of the following option keywords can be used to describe a
12319 group of optimizations:
12320
12321 @table @samp
12322 @item ipa
12323 Enable dumps from all interprocedural optimizations.
12324 @item loop
12325 Enable dumps from all loop optimizations.
12326 @item inline
12327 Enable dumps from all inlining optimizations.
12328 @item vec
12329 Enable dumps from all vectorization optimizations.
12330 @item optall
12331 Enable dumps from all optimizations. This is a superset of
12332 the optimization groups listed above.
12333 @end table
12334
12335 If @var{options} is
12336 omitted, it defaults to @samp{optimized-optall}, which means to dump all
12337 info about successful optimizations from all the passes.
12338
12339 If the @var{filename} is provided, then the dumps from all the
12340 applicable optimizations are concatenated into the @var{filename}.
12341 Otherwise the dump is output onto @file{stderr}. Though multiple
12342 @option{-fopt-info} options are accepted, only one of them can include
12343 a @var{filename}. If other filenames are provided then all but the
12344 first such option are ignored.
12345
12346 Note that the output @var{filename} is overwritten
12347 in case of multiple translation units. If a combined output from
12348 multiple translation units is desired, @file{stderr} should be used
12349 instead.
12350
12351 In the following example, the optimization info is output to
12352 @file{stderr}:
12353
12354 @smallexample
12355 gcc -O3 -fopt-info
12356 @end smallexample
12357
12358 This example:
12359 @smallexample
12360 gcc -O3 -fopt-info-missed=missed.all
12361 @end smallexample
12362
12363 @noindent
12364 outputs missed optimization report from all the passes into
12365 @file{missed.all}, and this one:
12366
12367 @smallexample
12368 gcc -O2 -ftree-vectorize -fopt-info-vec-missed
12369 @end smallexample
12370
12371 @noindent
12372 prints information about missed optimization opportunities from
12373 vectorization passes on @file{stderr}.
12374 Note that @option{-fopt-info-vec-missed} is equivalent to
12375 @option{-fopt-info-missed-vec}.
12376
12377 As another example,
12378 @smallexample
12379 gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
12380 @end smallexample
12381
12382 @noindent
12383 outputs information about missed optimizations as well as
12384 optimized locations from all the inlining passes into
12385 @file{inline.txt}.
12386
12387 Finally, consider:
12388
12389 @smallexample
12390 gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
12391 @end smallexample
12392
12393 @noindent
12394 Here the two output filenames @file{vec.miss} and @file{loop.opt} are
12395 in conflict since only one output file is allowed. In this case, only
12396 the first option takes effect and the subsequent options are
12397 ignored. Thus only @file{vec.miss} is produced which contains
12398 dumps from the vectorizer about missed opportunities.
12399
12400 @item -fsched-verbose=@var{n}
12401 @opindex fsched-verbose
12402 On targets that use instruction scheduling, this option controls the
12403 amount of debugging output the scheduler prints to the dump files.
12404
12405 For @var{n} greater than zero, @option{-fsched-verbose} outputs the
12406 same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
12407 For @var{n} greater than one, it also output basic block probabilities,
12408 detailed ready list information and unit/insn info. For @var{n} greater
12409 than two, it includes RTL at abort point, control-flow and regions info.
12410 And for @var{n} over four, @option{-fsched-verbose} also includes
12411 dependence info.
12412
12413
12414
12415 @item -fenable-@var{kind}-@var{pass}
12416 @itemx -fdisable-@var{kind}-@var{pass}=@var{range-list}
12417 @opindex fdisable-
12418 @opindex fenable-
12419
12420 This is a set of options that are used to explicitly disable/enable
12421 optimization passes. These options are intended for use for debugging GCC.
12422 Compiler users should use regular options for enabling/disabling
12423 passes instead.
12424
12425 @table @gcctabopt
12426
12427 @item -fdisable-ipa-@var{pass}
12428 Disable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
12429 statically invoked in the compiler multiple times, the pass name should be
12430 appended with a sequential number starting from 1.
12431
12432 @item -fdisable-rtl-@var{pass}
12433 @itemx -fdisable-rtl-@var{pass}=@var{range-list}
12434 Disable RTL pass @var{pass}. @var{pass} is the pass name. If the same pass is
12435 statically invoked in the compiler multiple times, the pass name should be
12436 appended with a sequential number starting from 1. @var{range-list} is a
12437 comma-separated list of function ranges or assembler names. Each range is a number
12438 pair separated by a colon. The range is inclusive in both ends. If the range
12439 is trivial, the number pair can be simplified as a single number. If the
12440 function's call graph node's @var{uid} falls within one of the specified ranges,
12441 the @var{pass} is disabled for that function. The @var{uid} is shown in the
12442 function header of a dump file, and the pass names can be dumped by using
12443 option @option{-fdump-passes}.
12444
12445 @item -fdisable-tree-@var{pass}
12446 @itemx -fdisable-tree-@var{pass}=@var{range-list}
12447 Disable tree pass @var{pass}. See @option{-fdisable-rtl} for the description of
12448 option arguments.
12449
12450 @item -fenable-ipa-@var{pass}
12451 Enable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
12452 statically invoked in the compiler multiple times, the pass name should be
12453 appended with a sequential number starting from 1.
12454
12455 @item -fenable-rtl-@var{pass}
12456 @itemx -fenable-rtl-@var{pass}=@var{range-list}
12457 Enable RTL pass @var{pass}. See @option{-fdisable-rtl} for option argument
12458 description and examples.
12459
12460 @item -fenable-tree-@var{pass}
12461 @itemx -fenable-tree-@var{pass}=@var{range-list}
12462 Enable tree pass @var{pass}. See @option{-fdisable-rtl} for the description
12463 of option arguments.
12464
12465 @end table
12466
12467 Here are some examples showing uses of these options.
12468
12469 @smallexample
12470
12471 # disable ccp1 for all functions
12472 -fdisable-tree-ccp1
12473 # disable complete unroll for function whose cgraph node uid is 1
12474 -fenable-tree-cunroll=1
12475 # disable gcse2 for functions at the following ranges [1,1],
12476 # [300,400], and [400,1000]
12477 # disable gcse2 for functions foo and foo2
12478 -fdisable-rtl-gcse2=foo,foo2
12479 # disable early inlining
12480 -fdisable-tree-einline
12481 # disable ipa inlining
12482 -fdisable-ipa-inline
12483 # enable tree full unroll
12484 -fenable-tree-unroll
12485
12486 @end smallexample
12487
12488 @item -fchecking
12489 @itemx -fchecking=@var{n}
12490 @opindex fchecking
12491 @opindex fno-checking
12492 Enable internal consistency checking. The default depends on
12493 the compiler configuration. @option{-fchecking=2} enables further
12494 internal consistency checking that might affect code generation.
12495
12496 @item -frandom-seed=@var{string}
12497 @opindex frandom-seed
12498 This option provides a seed that GCC uses in place of
12499 random numbers in generating certain symbol names
12500 that have to be different in every compiled file. It is also used to
12501 place unique stamps in coverage data files and the object files that
12502 produce them. You can use the @option{-frandom-seed} option to produce
12503 reproducibly identical object files.
12504
12505 The @var{string} can either be a number (decimal, octal or hex) or an
12506 arbitrary string (in which case it's converted to a number by
12507 computing CRC32).
12508
12509 The @var{string} should be different for every file you compile.
12510
12511 @item -save-temps
12512 @itemx -save-temps=cwd
12513 @opindex save-temps
12514 Store the usual ``temporary'' intermediate files permanently; place them
12515 in the current directory and name them based on the source file. Thus,
12516 compiling @file{foo.c} with @option{-c -save-temps} produces files
12517 @file{foo.i} and @file{foo.s}, as well as @file{foo.o}. This creates a
12518 preprocessed @file{foo.i} output file even though the compiler now
12519 normally uses an integrated preprocessor.
12520
12521 When used in combination with the @option{-x} command-line option,
12522 @option{-save-temps} is sensible enough to avoid over writing an
12523 input source file with the same extension as an intermediate file.
12524 The corresponding intermediate file may be obtained by renaming the
12525 source file before using @option{-save-temps}.
12526
12527 If you invoke GCC in parallel, compiling several different source
12528 files that share a common base name in different subdirectories or the
12529 same source file compiled for multiple output destinations, it is
12530 likely that the different parallel compilers will interfere with each
12531 other, and overwrite the temporary files. For instance:
12532
12533 @smallexample
12534 gcc -save-temps -o outdir1/foo.o indir1/foo.c&
12535 gcc -save-temps -o outdir2/foo.o indir2/foo.c&
12536 @end smallexample
12537
12538 may result in @file{foo.i} and @file{foo.o} being written to
12539 simultaneously by both compilers.
12540
12541 @item -save-temps=obj
12542 @opindex save-temps=obj
12543 Store the usual ``temporary'' intermediate files permanently. If the
12544 @option{-o} option is used, the temporary files are based on the
12545 object file. If the @option{-o} option is not used, the
12546 @option{-save-temps=obj} switch behaves like @option{-save-temps}.
12547
12548 For example:
12549
12550 @smallexample
12551 gcc -save-temps=obj -c foo.c
12552 gcc -save-temps=obj -c bar.c -o dir/xbar.o
12553 gcc -save-temps=obj foobar.c -o dir2/yfoobar
12554 @end smallexample
12555
12556 @noindent
12557 creates @file{foo.i}, @file{foo.s}, @file{dir/xbar.i},
12558 @file{dir/xbar.s}, @file{dir2/yfoobar.i}, @file{dir2/yfoobar.s}, and
12559 @file{dir2/yfoobar.o}.
12560
12561 @item -time@r{[}=@var{file}@r{]}
12562 @opindex time
12563 Report the CPU time taken by each subprocess in the compilation
12564 sequence. For C source files, this is the compiler proper and assembler
12565 (plus the linker if linking is done).
12566
12567 Without the specification of an output file, the output looks like this:
12568
12569 @smallexample
12570 # cc1 0.12 0.01
12571 # as 0.00 0.01
12572 @end smallexample
12573
12574 The first number on each line is the ``user time'', that is time spent
12575 executing the program itself. The second number is ``system time'',
12576 time spent executing operating system routines on behalf of the program.
12577 Both numbers are in seconds.
12578
12579 With the specification of an output file, the output is appended to the
12580 named file, and it looks like this:
12581
12582 @smallexample
12583 0.12 0.01 cc1 @var{options}
12584 0.00 0.01 as @var{options}
12585 @end smallexample
12586
12587 The ``user time'' and the ``system time'' are moved before the program
12588 name, and the options passed to the program are displayed, so that one
12589 can later tell what file was being compiled, and with which options.
12590
12591 @item -fdump-final-insns@r{[}=@var{file}@r{]}
12592 @opindex fdump-final-insns
12593 Dump the final internal representation (RTL) to @var{file}. If the
12594 optional argument is omitted (or if @var{file} is @code{.}), the name
12595 of the dump file is determined by appending @code{.gkd} to the
12596 compilation output file name.
12597
12598 @item -fcompare-debug@r{[}=@var{opts}@r{]}
12599 @opindex fcompare-debug
12600 @opindex fno-compare-debug
12601 If no error occurs during compilation, run the compiler a second time,
12602 adding @var{opts} and @option{-fcompare-debug-second} to the arguments
12603 passed to the second compilation. Dump the final internal
12604 representation in both compilations, and print an error if they differ.
12605
12606 If the equal sign is omitted, the default @option{-gtoggle} is used.
12607
12608 The environment variable @env{GCC_COMPARE_DEBUG}, if defined, non-empty
12609 and nonzero, implicitly enables @option{-fcompare-debug}. If
12610 @env{GCC_COMPARE_DEBUG} is defined to a string starting with a dash,
12611 then it is used for @var{opts}, otherwise the default @option{-gtoggle}
12612 is used.
12613
12614 @option{-fcompare-debug=}, with the equal sign but without @var{opts},
12615 is equivalent to @option{-fno-compare-debug}, which disables the dumping
12616 of the final representation and the second compilation, preventing even
12617 @env{GCC_COMPARE_DEBUG} from taking effect.
12618
12619 To verify full coverage during @option{-fcompare-debug} testing, set
12620 @env{GCC_COMPARE_DEBUG} to say @option{-fcompare-debug-not-overridden},
12621 which GCC rejects as an invalid option in any actual compilation
12622 (rather than preprocessing, assembly or linking). To get just a
12623 warning, setting @env{GCC_COMPARE_DEBUG} to @samp{-w%n-fcompare-debug
12624 not overridden} will do.
12625
12626 @item -fcompare-debug-second
12627 @opindex fcompare-debug-second
12628 This option is implicitly passed to the compiler for the second
12629 compilation requested by @option{-fcompare-debug}, along with options to
12630 silence warnings, and omitting other options that would cause
12631 side-effect compiler outputs to files or to the standard output. Dump
12632 files and preserved temporary files are renamed so as to contain the
12633 @code{.gk} additional extension during the second compilation, to avoid
12634 overwriting those generated by the first.
12635
12636 When this option is passed to the compiler driver, it causes the
12637 @emph{first} compilation to be skipped, which makes it useful for little
12638 other than debugging the compiler proper.
12639
12640 @item -gtoggle
12641 @opindex gtoggle
12642 Turn off generation of debug info, if leaving out this option
12643 generates it, or turn it on at level 2 otherwise. The position of this
12644 argument in the command line does not matter; it takes effect after all
12645 other options are processed, and it does so only once, no matter how
12646 many times it is given. This is mainly intended to be used with
12647 @option{-fcompare-debug}.
12648
12649 @item -fvar-tracking-assignments-toggle
12650 @opindex fvar-tracking-assignments-toggle
12651 @opindex fno-var-tracking-assignments-toggle
12652 Toggle @option{-fvar-tracking-assignments}, in the same way that
12653 @option{-gtoggle} toggles @option{-g}.
12654
12655 @item -Q
12656 @opindex Q
12657 Makes the compiler print out each function name as it is compiled, and
12658 print some statistics about each pass when it finishes.
12659
12660 @item -ftime-report
12661 @opindex ftime-report
12662 Makes the compiler print some statistics about the time consumed by each
12663 pass when it finishes.
12664
12665 @item -fira-verbose=@var{n}
12666 @opindex fira-verbose
12667 Control the verbosity of the dump file for the integrated register allocator.
12668 The default value is 5. If the value @var{n} is greater or equal to 10,
12669 the dump output is sent to stderr using the same format as @var{n} minus 10.
12670
12671 @item -flto-report
12672 @opindex flto-report
12673 Prints a report with internal details on the workings of the link-time
12674 optimizer. The contents of this report vary from version to version.
12675 It is meant to be useful to GCC developers when processing object
12676 files in LTO mode (via @option{-flto}).
12677
12678 Disabled by default.
12679
12680 @item -flto-report-wpa
12681 @opindex flto-report-wpa
12682 Like @option{-flto-report}, but only print for the WPA phase of Link
12683 Time Optimization.
12684
12685 @item -fmem-report
12686 @opindex fmem-report
12687 Makes the compiler print some statistics about permanent memory
12688 allocation when it finishes.
12689
12690 @item -fmem-report-wpa
12691 @opindex fmem-report-wpa
12692 Makes the compiler print some statistics about permanent memory
12693 allocation for the WPA phase only.
12694
12695 @item -fpre-ipa-mem-report
12696 @opindex fpre-ipa-mem-report
12697 @item -fpost-ipa-mem-report
12698 @opindex fpost-ipa-mem-report
12699 Makes the compiler print some statistics about permanent memory
12700 allocation before or after interprocedural optimization.
12701
12702 @item -fprofile-report
12703 @opindex fprofile-report
12704 Makes the compiler print some statistics about consistency of the
12705 (estimated) profile and effect of individual passes.
12706
12707 @item -fstack-usage
12708 @opindex fstack-usage
12709 Makes the compiler output stack usage information for the program, on a
12710 per-function basis. The filename for the dump is made by appending
12711 @file{.su} to the @var{auxname}. @var{auxname} is generated from the name of
12712 the output file, if explicitly specified and it is not an executable,
12713 otherwise it is the basename of the source file. An entry is made up
12714 of three fields:
12715
12716 @itemize
12717 @item
12718 The name of the function.
12719 @item
12720 A number of bytes.
12721 @item
12722 One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
12723 @end itemize
12724
12725 The qualifier @code{static} means that the function manipulates the stack
12726 statically: a fixed number of bytes are allocated for the frame on function
12727 entry and released on function exit; no stack adjustments are otherwise made
12728 in the function. The second field is this fixed number of bytes.
12729
12730 The qualifier @code{dynamic} means that the function manipulates the stack
12731 dynamically: in addition to the static allocation described above, stack
12732 adjustments are made in the body of the function, for example to push/pop
12733 arguments around function calls. If the qualifier @code{bounded} is also
12734 present, the amount of these adjustments is bounded at compile time and
12735 the second field is an upper bound of the total amount of stack used by
12736 the function. If it is not present, the amount of these adjustments is
12737 not bounded at compile time and the second field only represents the
12738 bounded part.
12739
12740 @item -fstats
12741 @opindex fstats
12742 Emit statistics about front-end processing at the end of the compilation.
12743 This option is supported only by the C++ front end, and
12744 the information is generally only useful to the G++ development team.
12745
12746 @item -fdbg-cnt-list
12747 @opindex fdbg-cnt-list
12748 Print the name and the counter upper bound for all debug counters.
12749
12750
12751 @item -fdbg-cnt=@var{counter-value-list}
12752 @opindex fdbg-cnt
12753 Set the internal debug counter upper bound. @var{counter-value-list}
12754 is a comma-separated list of @var{name}:@var{value} pairs
12755 which sets the upper bound of each debug counter @var{name} to @var{value}.
12756 All debug counters have the initial upper bound of @code{UINT_MAX};
12757 thus @code{dbg_cnt} returns true always unless the upper bound
12758 is set by this option.
12759 For example, with @option{-fdbg-cnt=dce:10,tail_call:0},
12760 @code{dbg_cnt(dce)} returns true only for first 10 invocations.
12761
12762 @item -print-file-name=@var{library}
12763 @opindex print-file-name
12764 Print the full absolute name of the library file @var{library} that
12765 would be used when linking---and don't do anything else. With this
12766 option, GCC does not compile or link anything; it just prints the
12767 file name.
12768
12769 @item -print-multi-directory
12770 @opindex print-multi-directory
12771 Print the directory name corresponding to the multilib selected by any
12772 other switches present in the command line. This directory is supposed
12773 to exist in @env{GCC_EXEC_PREFIX}.
12774
12775 @item -print-multi-lib
12776 @opindex print-multi-lib
12777 Print the mapping from multilib directory names to compiler switches
12778 that enable them. The directory name is separated from the switches by
12779 @samp{;}, and each switch starts with an @samp{@@} instead of the
12780 @samp{-}, without spaces between multiple switches. This is supposed to
12781 ease shell processing.
12782
12783 @item -print-multi-os-directory
12784 @opindex print-multi-os-directory
12785 Print the path to OS libraries for the selected
12786 multilib, relative to some @file{lib} subdirectory. If OS libraries are
12787 present in the @file{lib} subdirectory and no multilibs are used, this is
12788 usually just @file{.}, if OS libraries are present in @file{lib@var{suffix}}
12789 sibling directories this prints e.g.@: @file{../lib64}, @file{../lib} or
12790 @file{../lib32}, or if OS libraries are present in @file{lib/@var{subdir}}
12791 subdirectories it prints e.g.@: @file{amd64}, @file{sparcv9} or @file{ev6}.
12792
12793 @item -print-multiarch
12794 @opindex print-multiarch
12795 Print the path to OS libraries for the selected multiarch,
12796 relative to some @file{lib} subdirectory.
12797
12798 @item -print-prog-name=@var{program}
12799 @opindex print-prog-name
12800 Like @option{-print-file-name}, but searches for a program such as @command{cpp}.
12801
12802 @item -print-libgcc-file-name
12803 @opindex print-libgcc-file-name
12804 Same as @option{-print-file-name=libgcc.a}.
12805
12806 This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
12807 but you do want to link with @file{libgcc.a}. You can do:
12808
12809 @smallexample
12810 gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
12811 @end smallexample
12812
12813 @item -print-search-dirs
12814 @opindex print-search-dirs
12815 Print the name of the configured installation directory and a list of
12816 program and library directories @command{gcc} searches---and don't do anything else.
12817
12818 This is useful when @command{gcc} prints the error message
12819 @samp{installation problem, cannot exec cpp0: No such file or directory}.
12820 To resolve this you either need to put @file{cpp0} and the other compiler
12821 components where @command{gcc} expects to find them, or you can set the environment
12822 variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
12823 Don't forget the trailing @samp{/}.
12824 @xref{Environment Variables}.
12825
12826 @item -print-sysroot
12827 @opindex print-sysroot
12828 Print the target sysroot directory that is used during
12829 compilation. This is the target sysroot specified either at configure
12830 time or using the @option{--sysroot} option, possibly with an extra
12831 suffix that depends on compilation options. If no target sysroot is
12832 specified, the option prints nothing.
12833
12834 @item -print-sysroot-headers-suffix
12835 @opindex print-sysroot-headers-suffix
12836 Print the suffix added to the target sysroot when searching for
12837 headers, or give an error if the compiler is not configured with such
12838 a suffix---and don't do anything else.
12839
12840 @item -dumpmachine
12841 @opindex dumpmachine
12842 Print the compiler's target machine (for example,
12843 @samp{i686-pc-linux-gnu})---and don't do anything else.
12844
12845 @item -dumpversion
12846 @opindex dumpversion
12847 Print the compiler version (for example, @code{3.0})---and don't do
12848 anything else.
12849
12850 @item -dumpspecs
12851 @opindex dumpspecs
12852 Print the compiler's built-in specs---and don't do anything else. (This
12853 is used when GCC itself is being built.) @xref{Spec Files}.
12854 @end table
12855
12856 @node Submodel Options
12857 @section Machine-Dependent Options
12858 @cindex submodel options
12859 @cindex specifying hardware config
12860 @cindex hardware models and configurations, specifying
12861 @cindex target-dependent options
12862 @cindex machine-dependent options
12863
12864 Each target machine supported by GCC can have its own options---for
12865 example, to allow you to compile for a particular processor variant or
12866 ABI, or to control optimizations specific to that machine. By
12867 convention, the names of machine-specific options start with
12868 @samp{-m}.
12869
12870 Some configurations of the compiler also support additional target-specific
12871 options, usually for compatibility with other compilers on the same
12872 platform.
12873
12874 @c This list is ordered alphanumerically by subsection name.
12875 @c It should be the same order and spelling as these options are listed
12876 @c in Machine Dependent Options
12877
12878 @menu
12879 * AArch64 Options::
12880 * Adapteva Epiphany Options::
12881 * ARC Options::
12882 * ARM Options::
12883 * AVR Options::
12884 * Blackfin Options::
12885 * C6X Options::
12886 * CRIS Options::
12887 * CR16 Options::
12888 * Darwin Options::
12889 * DEC Alpha Options::
12890 * FR30 Options::
12891 * FT32 Options::
12892 * FRV Options::
12893 * GNU/Linux Options::
12894 * H8/300 Options::
12895 * HPPA Options::
12896 * IA-64 Options::
12897 * LM32 Options::
12898 * M32C Options::
12899 * M32R/D Options::
12900 * M680x0 Options::
12901 * MCore Options::
12902 * MeP Options::
12903 * MicroBlaze Options::
12904 * MIPS Options::
12905 * MMIX Options::
12906 * MN10300 Options::
12907 * Moxie Options::
12908 * MSP430 Options::
12909 * NDS32 Options::
12910 * Nios II Options::
12911 * Nvidia PTX Options::
12912 * PDP-11 Options::
12913 * picoChip Options::
12914 * PowerPC Options::
12915 * RL78 Options::
12916 * RS/6000 and PowerPC Options::
12917 * RX Options::
12918 * S/390 and zSeries Options::
12919 * Score Options::
12920 * SH Options::
12921 * Solaris 2 Options::
12922 * SPARC Options::
12923 * SPU Options::
12924 * System V Options::
12925 * TILE-Gx Options::
12926 * TILEPro Options::
12927 * V850 Options::
12928 * VAX Options::
12929 * Visium Options::
12930 * VMS Options::
12931 * VxWorks Options::
12932 * x86 Options::
12933 * x86 Windows Options::
12934 * Xstormy16 Options::
12935 * Xtensa Options::
12936 * zSeries Options::
12937 @end menu
12938
12939 @node AArch64 Options
12940 @subsection AArch64 Options
12941 @cindex AArch64 Options
12942
12943 These options are defined for AArch64 implementations:
12944
12945 @table @gcctabopt
12946
12947 @item -mabi=@var{name}
12948 @opindex mabi
12949 Generate code for the specified data model. Permissible values
12950 are @samp{ilp32} for SysV-like data model where int, long int and pointers
12951 are 32 bits, and @samp{lp64} for SysV-like data model where int is 32 bits,
12952 but long int and pointers are 64 bits.
12953
12954 The default depends on the specific target configuration. Note that
12955 the LP64 and ILP32 ABIs are not link-compatible; you must compile your
12956 entire program with the same ABI, and link with a compatible set of libraries.
12957
12958 @item -mbig-endian
12959 @opindex mbig-endian
12960 Generate big-endian code. This is the default when GCC is configured for an
12961 @samp{aarch64_be-*-*} target.
12962
12963 @item -mgeneral-regs-only
12964 @opindex mgeneral-regs-only
12965 Generate code which uses only the general-purpose registers. This will prevent
12966 the compiler from using floating-point and Advanced SIMD registers but will not
12967 impose any restrictions on the assembler.
12968
12969 @item -mlittle-endian
12970 @opindex mlittle-endian
12971 Generate little-endian code. This is the default when GCC is configured for an
12972 @samp{aarch64-*-*} but not an @samp{aarch64_be-*-*} target.
12973
12974 @item -mcmodel=tiny
12975 @opindex mcmodel=tiny
12976 Generate code for the tiny code model. The program and its statically defined
12977 symbols must be within 1MB of each other. Programs can be statically or
12978 dynamically linked.
12979
12980 @item -mcmodel=small
12981 @opindex mcmodel=small
12982 Generate code for the small code model. The program and its statically defined
12983 symbols must be within 4GB of each other. Programs can be statically or
12984 dynamically linked. This is the default code model.
12985
12986 @item -mcmodel=large
12987 @opindex mcmodel=large
12988 Generate code for the large code model. This makes no assumptions about
12989 addresses and sizes of sections. Programs can be statically linked only.
12990
12991 @item -mstrict-align
12992 @opindex mstrict-align
12993 Avoid generating memory accesses that may not be aligned on a natural object
12994 boundary as described in the architecture specification.
12995
12996 @item -momit-leaf-frame-pointer
12997 @itemx -mno-omit-leaf-frame-pointer
12998 @opindex momit-leaf-frame-pointer
12999 @opindex mno-omit-leaf-frame-pointer
13000 Omit or keep the frame pointer in leaf functions. The former behavior is the
13001 default.
13002
13003 @item -mtls-dialect=desc
13004 @opindex mtls-dialect=desc
13005 Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
13006 of TLS variables. This is the default.
13007
13008 @item -mtls-dialect=traditional
13009 @opindex mtls-dialect=traditional
13010 Use traditional TLS as the thread-local storage mechanism for dynamic accesses
13011 of TLS variables.
13012
13013 @item -mtls-size=@var{size}
13014 @opindex mtls-size
13015 Specify bit size of immediate TLS offsets. Valid values are 12, 24, 32, 48.
13016 This option requires binutils 2.26 or newer.
13017
13018 @item -mfix-cortex-a53-835769
13019 @itemx -mno-fix-cortex-a53-835769
13020 @opindex mfix-cortex-a53-835769
13021 @opindex mno-fix-cortex-a53-835769
13022 Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769.
13023 This involves inserting a NOP instruction between memory instructions and
13024 64-bit integer multiply-accumulate instructions.
13025
13026 @item -mfix-cortex-a53-843419
13027 @itemx -mno-fix-cortex-a53-843419
13028 @opindex mfix-cortex-a53-843419
13029 @opindex mno-fix-cortex-a53-843419
13030 Enable or disable the workaround for the ARM Cortex-A53 erratum number 843419.
13031 This erratum workaround is made at link time and this will only pass the
13032 corresponding flag to the linker.
13033
13034 @item -mlow-precision-recip-sqrt
13035 @item -mno-low-precision-recip-sqrt
13036 @opindex mlow-precision-recip-sqrt
13037 @opindex mno-low-precision-recip-sqrt
13038 Enable or disable the reciprocal square root approximation.
13039 This option only has an effect if @option{-ffast-math} or
13040 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
13041 precision of reciprocal square root results to about 16 bits for
13042 single precision and to 32 bits for double precision.
13043
13044 @item -mlow-precision-sqrt
13045 @item -mno-low-precision-sqrt
13046 @opindex -mlow-precision-sqrt
13047 @opindex -mno-low-precision-sqrt
13048 Enable or disable the square root approximation.
13049 This option only has an effect if @option{-ffast-math} or
13050 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
13051 precision of square root results to about 16 bits for
13052 single precision and to 32 bits for double precision.
13053 If enabled, it implies @option{-mlow-precision-recip-sqrt}.
13054
13055 @item -mlow-precision-div
13056 @item -mno-low-precision-div
13057 @opindex -mlow-precision-div
13058 @opindex -mno-low-precision-div
13059 Enable or disable the division approximation.
13060 This option only has an effect if @option{-ffast-math} or
13061 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
13062 precision of division results to about 16 bits for
13063 single precision and to 32 bits for double precision.
13064
13065 @item -march=@var{name}
13066 @opindex march
13067 Specify the name of the target architecture and, optionally, one or
13068 more feature modifiers. This option has the form
13069 @option{-march=@var{arch}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}.
13070
13071 The permissible values for @var{arch} are @samp{armv8-a},
13072 @samp{armv8.1-a} or @var{native}.
13073
13074 The value @samp{armv8.1-a} implies @samp{armv8-a} and enables compiler
13075 support for the ARMv8.1 architecture extension. In particular, it
13076 enables the @samp{+crc} and @samp{+lse} features.
13077
13078 The value @samp{native} is available on native AArch64 GNU/Linux and
13079 causes the compiler to pick the architecture of the host system. This
13080 option has no effect if the compiler is unable to recognize the
13081 architecture of the host system,
13082
13083 The permissible values for @var{feature} are listed in the sub-section
13084 on @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
13085 Feature Modifiers}. Where conflicting feature modifiers are
13086 specified, the right-most feature is used.
13087
13088 GCC uses @var{name} to determine what kind of instructions it can emit
13089 when generating assembly code. If @option{-march} is specified
13090 without either of @option{-mtune} or @option{-mcpu} also being
13091 specified, the code is tuned to perform well across a range of target
13092 processors implementing the target architecture.
13093
13094 @item -mtune=@var{name}
13095 @opindex mtune
13096 Specify the name of the target processor for which GCC should tune the
13097 performance of the code. Permissible values for this option are:
13098 @samp{generic}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a57},
13099 @samp{cortex-a72}, @samp{exynos-m1}, @samp{qdf24xx}, @samp{thunderx},
13100 @samp{xgene1}, @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
13101 @samp{native}.
13102
13103 The values @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53}
13104 specify that GCC should tune for a big.LITTLE system.
13105
13106 Additionally on native AArch64 GNU/Linux systems the value
13107 @samp{native} tunes performance to the host system. This option has no effect
13108 if the compiler is unable to recognize the processor of the host system.
13109
13110 Where none of @option{-mtune=}, @option{-mcpu=} or @option{-march=}
13111 are specified, the code is tuned to perform well across a range
13112 of target processors.
13113
13114 This option cannot be suffixed by feature modifiers.
13115
13116 @item -mcpu=@var{name}
13117 @opindex mcpu
13118 Specify the name of the target processor, optionally suffixed by one
13119 or more feature modifiers. This option has the form
13120 @option{-mcpu=@var{cpu}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where
13121 the permissible values for @var{cpu} are the same as those available
13122 for @option{-mtune}. The permissible values for @var{feature} are
13123 documented in the sub-section on
13124 @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
13125 Feature Modifiers}. Where conflicting feature modifiers are
13126 specified, the right-most feature is used.
13127
13128 GCC uses @var{name} to determine what kind of instructions it can emit when
13129 generating assembly code (as if by @option{-march}) and to determine
13130 the target processor for which to tune for performance (as if
13131 by @option{-mtune}). Where this option is used in conjunction
13132 with @option{-march} or @option{-mtune}, those options take precedence
13133 over the appropriate part of this option.
13134
13135 @item -moverride=@var{string}
13136 @opindex moverride
13137 Override tuning decisions made by the back-end in response to a
13138 @option{-mtune=} switch. The syntax, semantics, and accepted values
13139 for @var{string} in this option are not guaranteed to be consistent
13140 across releases.
13141
13142 This option is only intended to be useful when developing GCC.
13143
13144 @item -mpc-relative-literal-loads
13145 @opindex mpc-relative-literal-loads
13146 Enable PC-relative literal loads. With this option literal pools are
13147 accessed using a single instruction and emitted after each function. This
13148 limits the maximum size of functions to 1MB. This is enabled by default for
13149 @option{-mcmodel=tiny}.
13150
13151 @end table
13152
13153 @subsubsection @option{-march} and @option{-mcpu} Feature Modifiers
13154 @anchor{aarch64-feature-modifiers}
13155 @cindex @option{-march} feature modifiers
13156 @cindex @option{-mcpu} feature modifiers
13157 Feature modifiers used with @option{-march} and @option{-mcpu} can be any of
13158 the following and their inverses @option{no@var{feature}}:
13159
13160 @table @samp
13161 @item crc
13162 Enable CRC extension. This is on by default for
13163 @option{-march=armv8.1-a}.
13164 @item crypto
13165 Enable Crypto extension. This also enables Advanced SIMD and floating-point
13166 instructions.
13167 @item fp
13168 Enable floating-point instructions. This is on by default for all possible
13169 values for options @option{-march} and @option{-mcpu}.
13170 @item simd
13171 Enable Advanced SIMD instructions. This also enables floating-point
13172 instructions. This is on by default for all possible values for options
13173 @option{-march} and @option{-mcpu}.
13174 @item lse
13175 Enable Large System Extension instructions. This is on by default for
13176 @option{-march=armv8.1-a}.
13177
13178 @end table
13179
13180 Feature @option{crypto} implies @option{simd}, which implies @option{fp}.
13181 Conversely, @option{nofp} implies @option{nosimd}, which implies
13182 @option{nocrypto}.
13183
13184 @node Adapteva Epiphany Options
13185 @subsection Adapteva Epiphany Options
13186
13187 These @samp{-m} options are defined for Adapteva Epiphany:
13188
13189 @table @gcctabopt
13190 @item -mhalf-reg-file
13191 @opindex mhalf-reg-file
13192 Don't allocate any register in the range @code{r32}@dots{}@code{r63}.
13193 That allows code to run on hardware variants that lack these registers.
13194
13195 @item -mprefer-short-insn-regs
13196 @opindex mprefer-short-insn-regs
13197 Preferentially allocate registers that allow short instruction generation.
13198 This can result in increased instruction count, so this may either reduce or
13199 increase overall code size.
13200
13201 @item -mbranch-cost=@var{num}
13202 @opindex mbranch-cost
13203 Set the cost of branches to roughly @var{num} ``simple'' instructions.
13204 This cost is only a heuristic and is not guaranteed to produce
13205 consistent results across releases.
13206
13207 @item -mcmove
13208 @opindex mcmove
13209 Enable the generation of conditional moves.
13210
13211 @item -mnops=@var{num}
13212 @opindex mnops
13213 Emit @var{num} NOPs before every other generated instruction.
13214
13215 @item -mno-soft-cmpsf
13216 @opindex mno-soft-cmpsf
13217 For single-precision floating-point comparisons, emit an @code{fsub} instruction
13218 and test the flags. This is faster than a software comparison, but can
13219 get incorrect results in the presence of NaNs, or when two different small
13220 numbers are compared such that their difference is calculated as zero.
13221 The default is @option{-msoft-cmpsf}, which uses slower, but IEEE-compliant,
13222 software comparisons.
13223
13224 @item -mstack-offset=@var{num}
13225 @opindex mstack-offset
13226 Set the offset between the top of the stack and the stack pointer.
13227 E.g., a value of 8 means that the eight bytes in the range @code{sp+0@dots{}sp+7}
13228 can be used by leaf functions without stack allocation.
13229 Values other than @samp{8} or @samp{16} are untested and unlikely to work.
13230 Note also that this option changes the ABI; compiling a program with a
13231 different stack offset than the libraries have been compiled with
13232 generally does not work.
13233 This option can be useful if you want to evaluate if a different stack
13234 offset would give you better code, but to actually use a different stack
13235 offset to build working programs, it is recommended to configure the
13236 toolchain with the appropriate @option{--with-stack-offset=@var{num}} option.
13237
13238 @item -mno-round-nearest
13239 @opindex mno-round-nearest
13240 Make the scheduler assume that the rounding mode has been set to
13241 truncating. The default is @option{-mround-nearest}.
13242
13243 @item -mlong-calls
13244 @opindex mlong-calls
13245 If not otherwise specified by an attribute, assume all calls might be beyond
13246 the offset range of the @code{b} / @code{bl} instructions, and therefore load the
13247 function address into a register before performing a (otherwise direct) call.
13248 This is the default.
13249
13250 @item -mshort-calls
13251 @opindex short-calls
13252 If not otherwise specified by an attribute, assume all direct calls are
13253 in the range of the @code{b} / @code{bl} instructions, so use these instructions
13254 for direct calls. The default is @option{-mlong-calls}.
13255
13256 @item -msmall16
13257 @opindex msmall16
13258 Assume addresses can be loaded as 16-bit unsigned values. This does not
13259 apply to function addresses for which @option{-mlong-calls} semantics
13260 are in effect.
13261
13262 @item -mfp-mode=@var{mode}
13263 @opindex mfp-mode
13264 Set the prevailing mode of the floating-point unit.
13265 This determines the floating-point mode that is provided and expected
13266 at function call and return time. Making this mode match the mode you
13267 predominantly need at function start can make your programs smaller and
13268 faster by avoiding unnecessary mode switches.
13269
13270 @var{mode} can be set to one the following values:
13271
13272 @table @samp
13273 @item caller
13274 Any mode at function entry is valid, and retained or restored when
13275 the function returns, and when it calls other functions.
13276 This mode is useful for compiling libraries or other compilation units
13277 you might want to incorporate into different programs with different
13278 prevailing FPU modes, and the convenience of being able to use a single
13279 object file outweighs the size and speed overhead for any extra
13280 mode switching that might be needed, compared with what would be needed
13281 with a more specific choice of prevailing FPU mode.
13282
13283 @item truncate
13284 This is the mode used for floating-point calculations with
13285 truncating (i.e.@: round towards zero) rounding mode. That includes
13286 conversion from floating point to integer.
13287
13288 @item round-nearest
13289 This is the mode used for floating-point calculations with
13290 round-to-nearest-or-even rounding mode.
13291
13292 @item int
13293 This is the mode used to perform integer calculations in the FPU, e.g.@:
13294 integer multiply, or integer multiply-and-accumulate.
13295 @end table
13296
13297 The default is @option{-mfp-mode=caller}
13298
13299 @item -mnosplit-lohi
13300 @itemx -mno-postinc
13301 @itemx -mno-postmodify
13302 @opindex mnosplit-lohi
13303 @opindex mno-postinc
13304 @opindex mno-postmodify
13305 Code generation tweaks that disable, respectively, splitting of 32-bit
13306 loads, generation of post-increment addresses, and generation of
13307 post-modify addresses. The defaults are @option{msplit-lohi},
13308 @option{-mpost-inc}, and @option{-mpost-modify}.
13309
13310 @item -mnovect-double
13311 @opindex mno-vect-double
13312 Change the preferred SIMD mode to SImode. The default is
13313 @option{-mvect-double}, which uses DImode as preferred SIMD mode.
13314
13315 @item -max-vect-align=@var{num}
13316 @opindex max-vect-align
13317 The maximum alignment for SIMD vector mode types.
13318 @var{num} may be 4 or 8. The default is 8.
13319 Note that this is an ABI change, even though many library function
13320 interfaces are unaffected if they don't use SIMD vector modes
13321 in places that affect size and/or alignment of relevant types.
13322
13323 @item -msplit-vecmove-early
13324 @opindex msplit-vecmove-early
13325 Split vector moves into single word moves before reload. In theory this
13326 can give better register allocation, but so far the reverse seems to be
13327 generally the case.
13328
13329 @item -m1reg-@var{reg}
13330 @opindex m1reg-
13331 Specify a register to hold the constant @minus{}1, which makes loading small negative
13332 constants and certain bitmasks faster.
13333 Allowable values for @var{reg} are @samp{r43} and @samp{r63},
13334 which specify use of that register as a fixed register,
13335 and @samp{none}, which means that no register is used for this
13336 purpose. The default is @option{-m1reg-none}.
13337
13338 @end table
13339
13340 @node ARC Options
13341 @subsection ARC Options
13342 @cindex ARC options
13343
13344 The following options control the architecture variant for which code
13345 is being compiled:
13346
13347 @c architecture variants
13348 @table @gcctabopt
13349
13350 @item -mbarrel-shifter
13351 @opindex mbarrel-shifter
13352 Generate instructions supported by barrel shifter. This is the default
13353 unless @option{-mcpu=ARC601} or @samp{-mcpu=ARCEM} is in effect.
13354
13355 @item -mcpu=@var{cpu}
13356 @opindex mcpu
13357 Set architecture type, register usage, and instruction scheduling
13358 parameters for @var{cpu}. There are also shortcut alias options
13359 available for backward compatibility and convenience. Supported
13360 values for @var{cpu} are
13361
13362 @table @samp
13363 @opindex mA6
13364 @opindex mARC600
13365 @item ARC600
13366 @item arc600
13367 Compile for ARC600. Aliases: @option{-mA6}, @option{-mARC600}.
13368
13369 @item ARC601
13370 @item arc601
13371 @opindex mARC601
13372 Compile for ARC601. Alias: @option{-mARC601}.
13373
13374 @item ARC700
13375 @item arc700
13376 @opindex mA7
13377 @opindex mARC700
13378 Compile for ARC700. Aliases: @option{-mA7}, @option{-mARC700}.
13379 This is the default when configured with @option{--with-cpu=arc700}@.
13380
13381 @item ARCEM
13382 @item arcem
13383 Compile for ARC EM.
13384
13385 @item ARCHS
13386 @item archs
13387 Compile for ARC HS.
13388 @end table
13389
13390 @item -mdpfp
13391 @opindex mdpfp
13392 @itemx -mdpfp-compact
13393 @opindex mdpfp-compact
13394 FPX: Generate Double Precision FPX instructions, tuned for the compact
13395 implementation.
13396
13397 @item -mdpfp-fast
13398 @opindex mdpfp-fast
13399 FPX: Generate Double Precision FPX instructions, tuned for the fast
13400 implementation.
13401
13402 @item -mno-dpfp-lrsr
13403 @opindex mno-dpfp-lrsr
13404 Disable LR and SR instructions from using FPX extension aux registers.
13405
13406 @item -mea
13407 @opindex mea
13408 Generate Extended arithmetic instructions. Currently only
13409 @code{divaw}, @code{adds}, @code{subs}, and @code{sat16} are
13410 supported. This is always enabled for @option{-mcpu=ARC700}.
13411
13412 @item -mno-mpy
13413 @opindex mno-mpy
13414 Do not generate mpy instructions for ARC700.
13415
13416 @item -mmul32x16
13417 @opindex mmul32x16
13418 Generate 32x16 bit multiply and mac instructions.
13419
13420 @item -mmul64
13421 @opindex mmul64
13422 Generate mul64 and mulu64 instructions. Only valid for @option{-mcpu=ARC600}.
13423
13424 @item -mnorm
13425 @opindex mnorm
13426 Generate norm instruction. This is the default if @option{-mcpu=ARC700}
13427 is in effect.
13428
13429 @item -mspfp
13430 @opindex mspfp
13431 @itemx -mspfp-compact
13432 @opindex mspfp-compact
13433 FPX: Generate Single Precision FPX instructions, tuned for the compact
13434 implementation.
13435
13436 @item -mspfp-fast
13437 @opindex mspfp-fast
13438 FPX: Generate Single Precision FPX instructions, tuned for the fast
13439 implementation.
13440
13441 @item -msimd
13442 @opindex msimd
13443 Enable generation of ARC SIMD instructions via target-specific
13444 builtins. Only valid for @option{-mcpu=ARC700}.
13445
13446 @item -msoft-float
13447 @opindex msoft-float
13448 This option ignored; it is provided for compatibility purposes only.
13449 Software floating point code is emitted by default, and this default
13450 can overridden by FPX options; @samp{mspfp}, @samp{mspfp-compact}, or
13451 @samp{mspfp-fast} for single precision, and @samp{mdpfp},
13452 @samp{mdpfp-compact}, or @samp{mdpfp-fast} for double precision.
13453
13454 @item -mswap
13455 @opindex mswap
13456 Generate swap instructions.
13457
13458 @item -matomic
13459 @opindex matomic
13460 This enables Locked Load/Store Conditional extension to implement
13461 atomic memopry built-in functions. Not available for ARC 6xx or ARC
13462 EM cores.
13463
13464 @item -mdiv-rem
13465 @opindex mdiv-rem
13466 Enable DIV/REM instructions for ARCv2 cores.
13467
13468 @item -mcode-density
13469 @opindex mcode-density
13470 Enable code density instructions for ARC EM, default on for ARC HS.
13471
13472 @item -mll64
13473 @opindex mll64
13474 Enable double load/store operations for ARC HS cores.
13475
13476 @item -mtp-regno=@var{regno}
13477 @opindex mtp-regno
13478 Specify thread pointer register number.
13479
13480 @item -mmpy-option=@var{multo}
13481 @opindex mmpy-option
13482 Compile ARCv2 code with a multiplier design option. @samp{wlh1} is
13483 the default value. The recognized values for @var{multo} are:
13484
13485 @table @samp
13486 @item 0
13487 No multiplier available.
13488
13489 @item 1
13490 @opindex w
13491 The multiply option is set to w: 16x16 multiplier, fully pipelined.
13492 The following instructions are enabled: MPYW, and MPYUW.
13493
13494 @item 2
13495 @opindex wlh1
13496 The multiply option is set to wlh1: 32x32 multiplier, fully
13497 pipelined (1 stage). The following instructions are additionally
13498 enabled: MPY, MPYU, MPYM, MPYMU, and MPY_S.
13499
13500 @item 3
13501 @opindex wlh2
13502 The multiply option is set to wlh2: 32x32 multiplier, fully pipelined
13503 (2 stages). The following instructions are additionally enabled: MPY,
13504 MPYU, MPYM, MPYMU, and MPY_S.
13505
13506 @item 4
13507 @opindex wlh3
13508 The multiply option is set to wlh3: Two 16x16 multiplier, blocking,
13509 sequential. The following instructions are additionally enabled: MPY,
13510 MPYU, MPYM, MPYMU, and MPY_S.
13511
13512 @item 5
13513 @opindex wlh4
13514 The multiply option is set to wlh4: One 16x16 multiplier, blocking,
13515 sequential. The following instructions are additionally enabled: MPY,
13516 MPYU, MPYM, MPYMU, and MPY_S.
13517
13518 @item 6
13519 @opindex wlh5
13520 The multiply option is set to wlh5: One 32x4 multiplier, blocking,
13521 sequential. The following instructions are additionally enabled: MPY,
13522 MPYU, MPYM, MPYMU, and MPY_S.
13523
13524 @end table
13525
13526 This option is only available for ARCv2 cores@.
13527
13528 @item -mfpu=@var{fpu}
13529 @opindex mfpu
13530 Enables specific floating-point hardware extension for ARCv2
13531 core. Supported values for @var{fpu} are:
13532
13533 @table @samp
13534
13535 @item fpus
13536 @opindex fpus
13537 Enables support for single precision floating point hardware
13538 extensions@.
13539
13540 @item fpud
13541 @opindex fpud
13542 Enables support for double precision floating point hardware
13543 extensions. The single precision floating point extension is also
13544 enabled. Not available for ARC EM@.
13545
13546 @item fpuda
13547 @opindex fpuda
13548 Enables support for double precision floating point hardware
13549 extensions using double precision assist instructions. The single
13550 precision floating point extension is also enabled. This option is
13551 only available for ARC EM@.
13552
13553 @item fpuda_div
13554 @opindex fpuda_div
13555 Enables support for double precision floating point hardware
13556 extensions using double precision assist instructions, and simple
13557 precision square-root and divide hardware extensions. The single
13558 precision floating point extension is also enabled. This option is
13559 only available for ARC EM@.
13560
13561 @item fpuda_fma
13562 @opindex fpuda_fma
13563 Enables support for double precision floating point hardware
13564 extensions using double precision assist instructions, and simple
13565 precision fused multiple and add hardware extension. The single
13566 precision floating point extension is also enabled. This option is
13567 only available for ARC EM@.
13568
13569 @item fpuda_all
13570 @opindex fpuda_all
13571 Enables support for double precision floating point hardware
13572 extensions using double precision assist instructions, and all simple
13573 precision hardware extensions. The single precision floating point
13574 extension is also enabled. This option is only available for ARC EM@.
13575
13576 @item fpus_div
13577 @opindex fpus_div
13578 Enables support for single precision floating point, and single
13579 precision square-root and divide hardware extensions@.
13580
13581 @item fpud_div
13582 @opindex fpud_div
13583 Enables support for double precision floating point, and double
13584 precision square-root and divide hardware extensions. This option
13585 includes option @samp{fpus_div}. Not available for ARC EM@.
13586
13587 @item fpus_fma
13588 @opindex fpus_fma
13589 Enables support for single precision floating point, and single
13590 precision fused multiple and add hardware extensions@.
13591
13592 @item fpud_fma
13593 @opindex fpud_fma
13594 Enables support for double precision floating point, and double
13595 precision fused multiple and add hardware extensions. This option
13596 includes option @samp{fpus_fma}. Not available for ARC EM@.
13597
13598 @item fpus_all
13599 @opindex fpus_all
13600 Enables support for all single precision floating point hardware
13601 extensions@.
13602
13603 @item fpud_all
13604 @opindex fpud_all
13605 Enables support for all single and double precision floating point
13606 hardware extensions. Not available for ARC EM@.
13607
13608 @end table
13609
13610 @end table
13611
13612 The following options are passed through to the assembler, and also
13613 define preprocessor macro symbols.
13614
13615 @c Flags used by the assembler, but for which we define preprocessor
13616 @c macro symbols as well.
13617 @table @gcctabopt
13618 @item -mdsp-packa
13619 @opindex mdsp-packa
13620 Passed down to the assembler to enable the DSP Pack A extensions.
13621 Also sets the preprocessor symbol @code{__Xdsp_packa}.
13622
13623 @item -mdvbf
13624 @opindex mdvbf
13625 Passed down to the assembler to enable the dual viterbi butterfly
13626 extension. Also sets the preprocessor symbol @code{__Xdvbf}.
13627
13628 @c ARC700 4.10 extension instruction
13629 @item -mlock
13630 @opindex mlock
13631 Passed down to the assembler to enable the Locked Load/Store
13632 Conditional extension. Also sets the preprocessor symbol
13633 @code{__Xlock}.
13634
13635 @item -mmac-d16
13636 @opindex mmac-d16
13637 Passed down to the assembler. Also sets the preprocessor symbol
13638 @code{__Xxmac_d16}.
13639
13640 @item -mmac-24
13641 @opindex mmac-24
13642 Passed down to the assembler. Also sets the preprocessor symbol
13643 @code{__Xxmac_24}.
13644
13645 @c ARC700 4.10 extension instruction
13646 @item -mrtsc
13647 @opindex mrtsc
13648 Passed down to the assembler to enable the 64-bit Time-Stamp Counter
13649 extension instruction. Also sets the preprocessor symbol
13650 @code{__Xrtsc}.
13651
13652 @c ARC700 4.10 extension instruction
13653 @item -mswape
13654 @opindex mswape
13655 Passed down to the assembler to enable the swap byte ordering
13656 extension instruction. Also sets the preprocessor symbol
13657 @code{__Xswape}.
13658
13659 @item -mtelephony
13660 @opindex mtelephony
13661 Passed down to the assembler to enable dual and single operand
13662 instructions for telephony. Also sets the preprocessor symbol
13663 @code{__Xtelephony}.
13664
13665 @item -mxy
13666 @opindex mxy
13667 Passed down to the assembler to enable the XY Memory extension. Also
13668 sets the preprocessor symbol @code{__Xxy}.
13669
13670 @end table
13671
13672 The following options control how the assembly code is annotated:
13673
13674 @c Assembly annotation options
13675 @table @gcctabopt
13676 @item -misize
13677 @opindex misize
13678 Annotate assembler instructions with estimated addresses.
13679
13680 @item -mannotate-align
13681 @opindex mannotate-align
13682 Explain what alignment considerations lead to the decision to make an
13683 instruction short or long.
13684
13685 @end table
13686
13687 The following options are passed through to the linker:
13688
13689 @c options passed through to the linker
13690 @table @gcctabopt
13691 @item -marclinux
13692 @opindex marclinux
13693 Passed through to the linker, to specify use of the @code{arclinux} emulation.
13694 This option is enabled by default in tool chains built for
13695 @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets
13696 when profiling is not requested.
13697
13698 @item -marclinux_prof
13699 @opindex marclinux_prof
13700 Passed through to the linker, to specify use of the
13701 @code{arclinux_prof} emulation. This option is enabled by default in
13702 tool chains built for @w{@code{arc-linux-uclibc}} and
13703 @w{@code{arceb-linux-uclibc}} targets when profiling is requested.
13704
13705 @end table
13706
13707 The following options control the semantics of generated code:
13708
13709 @c semantically relevant code generation options
13710 @table @gcctabopt
13711 @item -mlong-calls
13712 @opindex mlong-calls
13713 Generate call insns as register indirect calls, thus providing access
13714 to the full 32-bit address range.
13715
13716 @item -mmedium-calls
13717 @opindex mmedium-calls
13718 Don't use less than 25 bit addressing range for calls, which is the
13719 offset available for an unconditional branch-and-link
13720 instruction. Conditional execution of function calls is suppressed, to
13721 allow use of the 25-bit range, rather than the 21-bit range with
13722 conditional branch-and-link. This is the default for tool chains built
13723 for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets.
13724
13725 @item -mno-sdata
13726 @opindex mno-sdata
13727 Do not generate sdata references. This is the default for tool chains
13728 built for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}}
13729 targets.
13730
13731 @item -mucb-mcount
13732 @opindex mucb-mcount
13733 Instrument with mcount calls as used in UCB code. I.e. do the
13734 counting in the callee, not the caller. By default ARC instrumentation
13735 counts in the caller.
13736
13737 @item -mvolatile-cache
13738 @opindex mvolatile-cache
13739 Use ordinarily cached memory accesses for volatile references. This is the
13740 default.
13741
13742 @item -mno-volatile-cache
13743 @opindex mno-volatile-cache
13744 Enable cache bypass for volatile references.
13745
13746 @end table
13747
13748 The following options fine tune code generation:
13749 @c code generation tuning options
13750 @table @gcctabopt
13751 @item -malign-call
13752 @opindex malign-call
13753 Do alignment optimizations for call instructions.
13754
13755 @item -mauto-modify-reg
13756 @opindex mauto-modify-reg
13757 Enable the use of pre/post modify with register displacement.
13758
13759 @item -mbbit-peephole
13760 @opindex mbbit-peephole
13761 Enable bbit peephole2.
13762
13763 @item -mno-brcc
13764 @opindex mno-brcc
13765 This option disables a target-specific pass in @file{arc_reorg} to
13766 generate @code{BRcc} instructions. It has no effect on @code{BRcc}
13767 generation driven by the combiner pass.
13768
13769 @item -mcase-vector-pcrel
13770 @opindex mcase-vector-pcrel
13771 Use pc-relative switch case tables - this enables case table shortening.
13772 This is the default for @option{-Os}.
13773
13774 @item -mcompact-casesi
13775 @opindex mcompact-casesi
13776 Enable compact casesi pattern.
13777 This is the default for @option{-Os}.
13778
13779 @item -mno-cond-exec
13780 @opindex mno-cond-exec
13781 Disable ARCompact specific pass to generate conditional execution instructions.
13782 Due to delay slot scheduling and interactions between operand numbers,
13783 literal sizes, instruction lengths, and the support for conditional execution,
13784 the target-independent pass to generate conditional execution is often lacking,
13785 so the ARC port has kept a special pass around that tries to find more
13786 conditional execution generating opportunities after register allocation,
13787 branch shortening, and delay slot scheduling have been done. This pass
13788 generally, but not always, improves performance and code size, at the cost of
13789 extra compilation time, which is why there is an option to switch it off.
13790 If you have a problem with call instructions exceeding their allowable
13791 offset range because they are conditionalized, you should consider using
13792 @option{-mmedium-calls} instead.
13793
13794 @item -mearly-cbranchsi
13795 @opindex mearly-cbranchsi
13796 Enable pre-reload use of the cbranchsi pattern.
13797
13798 @item -mexpand-adddi
13799 @opindex mexpand-adddi
13800 Expand @code{adddi3} and @code{subdi3} at rtl generation time into
13801 @code{add.f}, @code{adc} etc.
13802
13803 @item -mindexed-loads
13804 @opindex mindexed-loads
13805 Enable the use of indexed loads. This can be problematic because some
13806 optimizers then assume that indexed stores exist, which is not
13807 the case.
13808
13809 @opindex mlra
13810 Enable Local Register Allocation. This is still experimental for ARC,
13811 so by default the compiler uses standard reload
13812 (i.e. @option{-mno-lra}).
13813
13814 @item -mlra-priority-none
13815 @opindex mlra-priority-none
13816 Don't indicate any priority for target registers.
13817
13818 @item -mlra-priority-compact
13819 @opindex mlra-priority-compact
13820 Indicate target register priority for r0..r3 / r12..r15.
13821
13822 @item -mlra-priority-noncompact
13823 @opindex mlra-priority-noncompact
13824 Reduce target register priority for r0..r3 / r12..r15.
13825
13826 @item -mno-millicode
13827 @opindex mno-millicode
13828 When optimizing for size (using @option{-Os}), prologues and epilogues
13829 that have to save or restore a large number of registers are often
13830 shortened by using call to a special function in libgcc; this is
13831 referred to as a @emph{millicode} call. As these calls can pose
13832 performance issues, and/or cause linking issues when linking in a
13833 nonstandard way, this option is provided to turn off millicode call
13834 generation.
13835
13836 @item -mmixed-code
13837 @opindex mmixed-code
13838 Tweak register allocation to help 16-bit instruction generation.
13839 This generally has the effect of decreasing the average instruction size
13840 while increasing the instruction count.
13841
13842 @item -mq-class
13843 @opindex mq-class
13844 Enable 'q' instruction alternatives.
13845 This is the default for @option{-Os}.
13846
13847 @item -mRcq
13848 @opindex mRcq
13849 Enable Rcq constraint handling - most short code generation depends on this.
13850 This is the default.
13851
13852 @item -mRcw
13853 @opindex mRcw
13854 Enable Rcw constraint handling - ccfsm condexec mostly depends on this.
13855 This is the default.
13856
13857 @item -msize-level=@var{level}
13858 @opindex msize-level
13859 Fine-tune size optimization with regards to instruction lengths and alignment.
13860 The recognized values for @var{level} are:
13861 @table @samp
13862 @item 0
13863 No size optimization. This level is deprecated and treated like @samp{1}.
13864
13865 @item 1
13866 Short instructions are used opportunistically.
13867
13868 @item 2
13869 In addition, alignment of loops and of code after barriers are dropped.
13870
13871 @item 3
13872 In addition, optional data alignment is dropped, and the option @option{Os} is enabled.
13873
13874 @end table
13875
13876 This defaults to @samp{3} when @option{-Os} is in effect. Otherwise,
13877 the behavior when this is not set is equivalent to level @samp{1}.
13878
13879 @item -mtune=@var{cpu}
13880 @opindex mtune
13881 Set instruction scheduling parameters for @var{cpu}, overriding any implied
13882 by @option{-mcpu=}.
13883
13884 Supported values for @var{cpu} are
13885
13886 @table @samp
13887 @item ARC600
13888 Tune for ARC600 cpu.
13889
13890 @item ARC601
13891 Tune for ARC601 cpu.
13892
13893 @item ARC700
13894 Tune for ARC700 cpu with standard multiplier block.
13895
13896 @item ARC700-xmac
13897 Tune for ARC700 cpu with XMAC block.
13898
13899 @item ARC725D
13900 Tune for ARC725D cpu.
13901
13902 @item ARC750D
13903 Tune for ARC750D cpu.
13904
13905 @end table
13906
13907 @item -mmultcost=@var{num}
13908 @opindex mmultcost
13909 Cost to assume for a multiply instruction, with @samp{4} being equal to a
13910 normal instruction.
13911
13912 @item -munalign-prob-threshold=@var{probability}
13913 @opindex munalign-prob-threshold
13914 Set probability threshold for unaligning branches.
13915 When tuning for @samp{ARC700} and optimizing for speed, branches without
13916 filled delay slot are preferably emitted unaligned and long, unless
13917 profiling indicates that the probability for the branch to be taken
13918 is below @var{probability}. @xref{Cross-profiling}.
13919 The default is (REG_BR_PROB_BASE/2), i.e.@: 5000.
13920
13921 @end table
13922
13923 The following options are maintained for backward compatibility, but
13924 are now deprecated and will be removed in a future release:
13925
13926 @c Deprecated options
13927 @table @gcctabopt
13928
13929 @item -margonaut
13930 @opindex margonaut
13931 Obsolete FPX.
13932
13933 @item -mbig-endian
13934 @opindex mbig-endian
13935 @itemx -EB
13936 @opindex EB
13937 Compile code for big endian targets. Use of these options is now
13938 deprecated. Users wanting big-endian code, should use the
13939 @w{@code{arceb-elf32}} and @w{@code{arceb-linux-uclibc}} targets when
13940 building the tool chain, for which big-endian is the default.
13941
13942 @item -mlittle-endian
13943 @opindex mlittle-endian
13944 @itemx -EL
13945 @opindex EL
13946 Compile code for little endian targets. Use of these options is now
13947 deprecated. Users wanting little-endian code should use the
13948 @w{@code{arc-elf32}} and @w{@code{arc-linux-uclibc}} targets when
13949 building the tool chain, for which little-endian is the default.
13950
13951 @item -mbarrel_shifter
13952 @opindex mbarrel_shifter
13953 Replaced by @option{-mbarrel-shifter}.
13954
13955 @item -mdpfp_compact
13956 @opindex mdpfp_compact
13957 Replaced by @option{-mdpfp-compact}.
13958
13959 @item -mdpfp_fast
13960 @opindex mdpfp_fast
13961 Replaced by @option{-mdpfp-fast}.
13962
13963 @item -mdsp_packa
13964 @opindex mdsp_packa
13965 Replaced by @option{-mdsp-packa}.
13966
13967 @item -mEA
13968 @opindex mEA
13969 Replaced by @option{-mea}.
13970
13971 @item -mmac_24
13972 @opindex mmac_24
13973 Replaced by @option{-mmac-24}.
13974
13975 @item -mmac_d16
13976 @opindex mmac_d16
13977 Replaced by @option{-mmac-d16}.
13978
13979 @item -mspfp_compact
13980 @opindex mspfp_compact
13981 Replaced by @option{-mspfp-compact}.
13982
13983 @item -mspfp_fast
13984 @opindex mspfp_fast
13985 Replaced by @option{-mspfp-fast}.
13986
13987 @item -mtune=@var{cpu}
13988 @opindex mtune
13989 Values @samp{arc600}, @samp{arc601}, @samp{arc700} and
13990 @samp{arc700-xmac} for @var{cpu} are replaced by @samp{ARC600},
13991 @samp{ARC601}, @samp{ARC700} and @samp{ARC700-xmac} respectively
13992
13993 @item -multcost=@var{num}
13994 @opindex multcost
13995 Replaced by @option{-mmultcost}.
13996
13997 @end table
13998
13999 @node ARM Options
14000 @subsection ARM Options
14001 @cindex ARM options
14002
14003 These @samp{-m} options are defined for the ARM port:
14004
14005 @table @gcctabopt
14006 @item -mabi=@var{name}
14007 @opindex mabi
14008 Generate code for the specified ABI@. Permissible values are: @samp{apcs-gnu},
14009 @samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.
14010
14011 @item -mapcs-frame
14012 @opindex mapcs-frame
14013 Generate a stack frame that is compliant with the ARM Procedure Call
14014 Standard for all functions, even if this is not strictly necessary for
14015 correct execution of the code. Specifying @option{-fomit-frame-pointer}
14016 with this option causes the stack frames not to be generated for
14017 leaf functions. The default is @option{-mno-apcs-frame}.
14018 This option is deprecated.
14019
14020 @item -mapcs
14021 @opindex mapcs
14022 This is a synonym for @option{-mapcs-frame} and is deprecated.
14023
14024 @ignore
14025 @c not currently implemented
14026 @item -mapcs-stack-check
14027 @opindex mapcs-stack-check
14028 Generate code to check the amount of stack space available upon entry to
14029 every function (that actually uses some stack space). If there is
14030 insufficient space available then either the function
14031 @code{__rt_stkovf_split_small} or @code{__rt_stkovf_split_big} is
14032 called, depending upon the amount of stack space required. The runtime
14033 system is required to provide these functions. The default is
14034 @option{-mno-apcs-stack-check}, since this produces smaller code.
14035
14036 @c not currently implemented
14037 @item -mapcs-float
14038 @opindex mapcs-float
14039 Pass floating-point arguments using the floating-point registers. This is
14040 one of the variants of the APCS@. This option is recommended if the
14041 target hardware has a floating-point unit or if a lot of floating-point
14042 arithmetic is going to be performed by the code. The default is
14043 @option{-mno-apcs-float}, since the size of integer-only code is
14044 slightly increased if @option{-mapcs-float} is used.
14045
14046 @c not currently implemented
14047 @item -mapcs-reentrant
14048 @opindex mapcs-reentrant
14049 Generate reentrant, position-independent code. The default is
14050 @option{-mno-apcs-reentrant}.
14051 @end ignore
14052
14053 @item -mthumb-interwork
14054 @opindex mthumb-interwork
14055 Generate code that supports calling between the ARM and Thumb
14056 instruction sets. Without this option, on pre-v5 architectures, the
14057 two instruction sets cannot be reliably used inside one program. The
14058 default is @option{-mno-thumb-interwork}, since slightly larger code
14059 is generated when @option{-mthumb-interwork} is specified. In AAPCS
14060 configurations this option is meaningless.
14061
14062 @item -mno-sched-prolog
14063 @opindex mno-sched-prolog
14064 Prevent the reordering of instructions in the function prologue, or the
14065 merging of those instruction with the instructions in the function's
14066 body. This means that all functions start with a recognizable set
14067 of instructions (or in fact one of a choice from a small set of
14068 different function prologues), and this information can be used to
14069 locate the start of functions inside an executable piece of code. The
14070 default is @option{-msched-prolog}.
14071
14072 @item -mfloat-abi=@var{name}
14073 @opindex mfloat-abi
14074 Specifies which floating-point ABI to use. Permissible values
14075 are: @samp{soft}, @samp{softfp} and @samp{hard}.
14076
14077 Specifying @samp{soft} causes GCC to generate output containing
14078 library calls for floating-point operations.
14079 @samp{softfp} allows the generation of code using hardware floating-point
14080 instructions, but still uses the soft-float calling conventions.
14081 @samp{hard} allows generation of floating-point instructions
14082 and uses FPU-specific calling conventions.
14083
14084 The default depends on the specific target configuration. Note that
14085 the hard-float and soft-float ABIs are not link-compatible; you must
14086 compile your entire program with the same ABI, and link with a
14087 compatible set of libraries.
14088
14089 @item -mlittle-endian
14090 @opindex mlittle-endian
14091 Generate code for a processor running in little-endian mode. This is
14092 the default for all standard configurations.
14093
14094 @item -mbig-endian
14095 @opindex mbig-endian
14096 Generate code for a processor running in big-endian mode; the default is
14097 to compile code for a little-endian processor.
14098
14099 @item -march=@var{name}
14100 @opindex march
14101 This specifies the name of the target ARM architecture. GCC uses this
14102 name to determine what kind of instructions it can emit when generating
14103 assembly code. This option can be used in conjunction with or instead
14104 of the @option{-mcpu=} option. Permissible names are: @samp{armv2},
14105 @samp{armv2a}, @samp{armv3}, @samp{armv3m}, @samp{armv4}, @samp{armv4t},
14106 @samp{armv5}, @samp{armv5e}, @samp{armv5t}, @samp{armv5te},
14107 @samp{armv6}, @samp{armv6-m}, @samp{armv6j}, @samp{armv6k},
14108 @samp{armv6kz}, @samp{armv6s-m},
14109 @samp{armv6t2}, @samp{armv6z}, @samp{armv6zk},
14110 @samp{armv7}, @samp{armv7-a}, @samp{armv7-m}, @samp{armv7-r}, @samp{armv7e-m},
14111 @samp{armv7ve}, @samp{armv8-a}, @samp{armv8-a+crc}, @samp{armv8.1-a},
14112 @samp{armv8.1-a+crc}, @samp{iwmmxt}, @samp{iwmmxt2}.
14113
14114 Architecture revisions older than @samp{armv4t} are deprecated.
14115
14116 @option{-march=armv6s-m} is the @samp{armv6-m} architecture with support for
14117 the (now mandatory) SVC instruction.
14118
14119 @option{-march=armv6zk} is an alias for @samp{armv6kz}, existing for backwards
14120 compatibility.
14121
14122 @option{-march=armv7ve} is the @samp{armv7-a} architecture with virtualization
14123 extensions.
14124
14125 @option{-march=armv8-a+crc} enables code generation for the ARMv8-A
14126 architecture together with the optional CRC32 extensions.
14127
14128 @option{-march=native} causes the compiler to auto-detect the architecture
14129 of the build computer. At present, this feature is only supported on
14130 GNU/Linux, and not all architectures are recognized. If the auto-detect
14131 is unsuccessful the option has no effect.
14132
14133 @item -mtune=@var{name}
14134 @opindex mtune
14135 This option specifies the name of the target ARM processor for
14136 which GCC should tune the performance of the code.
14137 For some ARM implementations better performance can be obtained by using
14138 this option.
14139 Permissible names are: @samp{arm2}, @samp{arm250},
14140 @samp{arm3}, @samp{arm6}, @samp{arm60}, @samp{arm600}, @samp{arm610},
14141 @samp{arm620}, @samp{arm7}, @samp{arm7m}, @samp{arm7d}, @samp{arm7dm},
14142 @samp{arm7di}, @samp{arm7dmi}, @samp{arm70}, @samp{arm700},
14143 @samp{arm700i}, @samp{arm710}, @samp{arm710c}, @samp{arm7100},
14144 @samp{arm720},
14145 @samp{arm7500}, @samp{arm7500fe}, @samp{arm7tdmi}, @samp{arm7tdmi-s},
14146 @samp{arm710t}, @samp{arm720t}, @samp{arm740t},
14147 @samp{strongarm}, @samp{strongarm110}, @samp{strongarm1100},
14148 @samp{strongarm1110},
14149 @samp{arm8}, @samp{arm810}, @samp{arm9}, @samp{arm9e}, @samp{arm920},
14150 @samp{arm920t}, @samp{arm922t}, @samp{arm946e-s}, @samp{arm966e-s},
14151 @samp{arm968e-s}, @samp{arm926ej-s}, @samp{arm940t}, @samp{arm9tdmi},
14152 @samp{arm10tdmi}, @samp{arm1020t}, @samp{arm1026ej-s},
14153 @samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
14154 @samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
14155 @samp{arm1156t2-s}, @samp{arm1156t2f-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
14156 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}, @samp{cortex-a8},
14157 @samp{cortex-a9}, @samp{cortex-a12}, @samp{cortex-a15}, @samp{cortex-a17},
14158 @samp{cortex-a32}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a57},
14159 @samp{cortex-a72}, @samp{cortex-r4},
14160 @samp{cortex-r4f}, @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8},
14161 @samp{cortex-m7},
14162 @samp{cortex-m4},
14163 @samp{cortex-m3},
14164 @samp{cortex-m1},
14165 @samp{cortex-m0},
14166 @samp{cortex-m0plus},
14167 @samp{cortex-m1.small-multiply},
14168 @samp{cortex-m0.small-multiply},
14169 @samp{cortex-m0plus.small-multiply},
14170 @samp{exynos-m1},
14171 @samp{qdf24xx},
14172 @samp{marvell-pj4},
14173 @samp{xscale}, @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312},
14174 @samp{fa526}, @samp{fa626},
14175 @samp{fa606te}, @samp{fa626te}, @samp{fmp626}, @samp{fa726te},
14176 @samp{xgene1}.
14177
14178 Additionally, this option can specify that GCC should tune the performance
14179 of the code for a big.LITTLE system. Permissible names are:
14180 @samp{cortex-a15.cortex-a7}, @samp{cortex-a17.cortex-a7},
14181 @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53}.
14182
14183 @option{-mtune=generic-@var{arch}} specifies that GCC should tune the
14184 performance for a blend of processors within architecture @var{arch}.
14185 The aim is to generate code that run well on the current most popular
14186 processors, balancing between optimizations that benefit some CPUs in the
14187 range, and avoiding performance pitfalls of other CPUs. The effects of
14188 this option may change in future GCC versions as CPU models come and go.
14189
14190 @option{-mtune=native} causes the compiler to auto-detect the CPU
14191 of the build computer. At present, this feature is only supported on
14192 GNU/Linux, and not all architectures are recognized. If the auto-detect is
14193 unsuccessful the option has no effect.
14194
14195 @item -mcpu=@var{name}
14196 @opindex mcpu
14197 This specifies the name of the target ARM processor. GCC uses this name
14198 to derive the name of the target ARM architecture (as if specified
14199 by @option{-march}) and the ARM processor type for which to tune for
14200 performance (as if specified by @option{-mtune}). Where this option
14201 is used in conjunction with @option{-march} or @option{-mtune},
14202 those options take precedence over the appropriate part of this option.
14203
14204 Permissible names for this option are the same as those for
14205 @option{-mtune}.
14206
14207 @option{-mcpu=generic-@var{arch}} is also permissible, and is
14208 equivalent to @option{-march=@var{arch} -mtune=generic-@var{arch}}.
14209 See @option{-mtune} for more information.
14210
14211 @option{-mcpu=native} causes the compiler to auto-detect the CPU
14212 of the build computer. At present, this feature is only supported on
14213 GNU/Linux, and not all architectures are recognized. If the auto-detect
14214 is unsuccessful the option has no effect.
14215
14216 @item -mfpu=@var{name}
14217 @opindex mfpu
14218 This specifies what floating-point hardware (or hardware emulation) is
14219 available on the target. Permissible names are: @samp{vfp}, @samp{vfpv3},
14220 @samp{vfpv3-fp16}, @samp{vfpv3-d16}, @samp{vfpv3-d16-fp16}, @samp{vfpv3xd},
14221 @samp{vfpv3xd-fp16}, @samp{neon}, @samp{neon-fp16}, @samp{vfpv4},
14222 @samp{vfpv4-d16}, @samp{fpv4-sp-d16}, @samp{neon-vfpv4},
14223 @samp{fpv5-d16}, @samp{fpv5-sp-d16},
14224 @samp{fp-armv8}, @samp{neon-fp-armv8} and @samp{crypto-neon-fp-armv8}.
14225
14226 If @option{-msoft-float} is specified this specifies the format of
14227 floating-point values.
14228
14229 If the selected floating-point hardware includes the NEON extension
14230 (e.g. @option{-mfpu}=@samp{neon}), note that floating-point
14231 operations are not generated by GCC's auto-vectorization pass unless
14232 @option{-funsafe-math-optimizations} is also specified. This is
14233 because NEON hardware does not fully implement the IEEE 754 standard for
14234 floating-point arithmetic (in particular denormal values are treated as
14235 zero), so the use of NEON instructions may lead to a loss of precision.
14236
14237 You can also set the fpu name at function level by using the @code{target("fpu=")} function attributes (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
14238
14239 @item -mfp16-format=@var{name}
14240 @opindex mfp16-format
14241 Specify the format of the @code{__fp16} half-precision floating-point type.
14242 Permissible names are @samp{none}, @samp{ieee}, and @samp{alternative};
14243 the default is @samp{none}, in which case the @code{__fp16} type is not
14244 defined. @xref{Half-Precision}, for more information.
14245
14246 @item -mstructure-size-boundary=@var{n}
14247 @opindex mstructure-size-boundary
14248 The sizes of all structures and unions are rounded up to a multiple
14249 of the number of bits set by this option. Permissible values are 8, 32
14250 and 64. The default value varies for different toolchains. For the COFF
14251 targeted toolchain the default value is 8. A value of 64 is only allowed
14252 if the underlying ABI supports it.
14253
14254 Specifying a larger number can produce faster, more efficient code, but
14255 can also increase the size of the program. Different values are potentially
14256 incompatible. Code compiled with one value cannot necessarily expect to
14257 work with code or libraries compiled with another value, if they exchange
14258 information using structures or unions.
14259
14260 @item -mabort-on-noreturn
14261 @opindex mabort-on-noreturn
14262 Generate a call to the function @code{abort} at the end of a
14263 @code{noreturn} function. It is executed if the function tries to
14264 return.
14265
14266 @item -mlong-calls
14267 @itemx -mno-long-calls
14268 @opindex mlong-calls
14269 @opindex mno-long-calls
14270 Tells the compiler to perform function calls by first loading the
14271 address of the function into a register and then performing a subroutine
14272 call on this register. This switch is needed if the target function
14273 lies outside of the 64-megabyte addressing range of the offset-based
14274 version of subroutine call instruction.
14275
14276 Even if this switch is enabled, not all function calls are turned
14277 into long calls. The heuristic is that static functions, functions
14278 that have the @code{short_call} attribute, functions that are inside
14279 the scope of a @code{#pragma no_long_calls} directive, and functions whose
14280 definitions have already been compiled within the current compilation
14281 unit are not turned into long calls. The exceptions to this rule are
14282 that weak function definitions, functions with the @code{long_call}
14283 attribute or the @code{section} attribute, and functions that are within
14284 the scope of a @code{#pragma long_calls} directive are always
14285 turned into long calls.
14286
14287 This feature is not enabled by default. Specifying
14288 @option{-mno-long-calls} restores the default behavior, as does
14289 placing the function calls within the scope of a @code{#pragma
14290 long_calls_off} directive. Note these switches have no effect on how
14291 the compiler generates code to handle function calls via function
14292 pointers.
14293
14294 @item -msingle-pic-base
14295 @opindex msingle-pic-base
14296 Treat the register used for PIC addressing as read-only, rather than
14297 loading it in the prologue for each function. The runtime system is
14298 responsible for initializing this register with an appropriate value
14299 before execution begins.
14300
14301 @item -mpic-register=@var{reg}
14302 @opindex mpic-register
14303 Specify the register to be used for PIC addressing.
14304 For standard PIC base case, the default is any suitable register
14305 determined by compiler. For single PIC base case, the default is
14306 @samp{R9} if target is EABI based or stack-checking is enabled,
14307 otherwise the default is @samp{R10}.
14308
14309 @item -mpic-data-is-text-relative
14310 @opindex mpic-data-is-text-relative
14311 Assume that each data segments are relative to text segment at load time.
14312 Therefore, it permits addressing data using PC-relative operations.
14313 This option is on by default for targets other than VxWorks RTP.
14314
14315 @item -mpoke-function-name
14316 @opindex mpoke-function-name
14317 Write the name of each function into the text section, directly
14318 preceding the function prologue. The generated code is similar to this:
14319
14320 @smallexample
14321 t0
14322 .ascii "arm_poke_function_name", 0
14323 .align
14324 t1
14325 .word 0xff000000 + (t1 - t0)
14326 arm_poke_function_name
14327 mov ip, sp
14328 stmfd sp!, @{fp, ip, lr, pc@}
14329 sub fp, ip, #4
14330 @end smallexample
14331
14332 When performing a stack backtrace, code can inspect the value of
14333 @code{pc} stored at @code{fp + 0}. If the trace function then looks at
14334 location @code{pc - 12} and the top 8 bits are set, then we know that
14335 there is a function name embedded immediately preceding this location
14336 and has length @code{((pc[-3]) & 0xff000000)}.
14337
14338 @item -mthumb
14339 @itemx -marm
14340 @opindex marm
14341 @opindex mthumb
14342
14343 Select between generating code that executes in ARM and Thumb
14344 states. The default for most configurations is to generate code
14345 that executes in ARM state, but the default can be changed by
14346 configuring GCC with the @option{--with-mode=}@var{state}
14347 configure option.
14348
14349 You can also override the ARM and Thumb mode for each function
14350 by using the @code{target("thumb")} and @code{target("arm")} function attributes
14351 (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
14352
14353 @item -mtpcs-frame
14354 @opindex mtpcs-frame
14355 Generate a stack frame that is compliant with the Thumb Procedure Call
14356 Standard for all non-leaf functions. (A leaf function is one that does
14357 not call any other functions.) The default is @option{-mno-tpcs-frame}.
14358
14359 @item -mtpcs-leaf-frame
14360 @opindex mtpcs-leaf-frame
14361 Generate a stack frame that is compliant with the Thumb Procedure Call
14362 Standard for all leaf functions. (A leaf function is one that does
14363 not call any other functions.) The default is @option{-mno-apcs-leaf-frame}.
14364
14365 @item -mcallee-super-interworking
14366 @opindex mcallee-super-interworking
14367 Gives all externally visible functions in the file being compiled an ARM
14368 instruction set header which switches to Thumb mode before executing the
14369 rest of the function. This allows these functions to be called from
14370 non-interworking code. This option is not valid in AAPCS configurations
14371 because interworking is enabled by default.
14372
14373 @item -mcaller-super-interworking
14374 @opindex mcaller-super-interworking
14375 Allows calls via function pointers (including virtual functions) to
14376 execute correctly regardless of whether the target code has been
14377 compiled for interworking or not. There is a small overhead in the cost
14378 of executing a function pointer if this option is enabled. This option
14379 is not valid in AAPCS configurations because interworking is enabled
14380 by default.
14381
14382 @item -mtp=@var{name}
14383 @opindex mtp
14384 Specify the access model for the thread local storage pointer. The valid
14385 models are @samp{soft}, which generates calls to @code{__aeabi_read_tp},
14386 @samp{cp15}, which fetches the thread pointer from @code{cp15} directly
14387 (supported in the arm6k architecture), and @samp{auto}, which uses the
14388 best available method for the selected processor. The default setting is
14389 @samp{auto}.
14390
14391 @item -mtls-dialect=@var{dialect}
14392 @opindex mtls-dialect
14393 Specify the dialect to use for accessing thread local storage. Two
14394 @var{dialect}s are supported---@samp{gnu} and @samp{gnu2}. The
14395 @samp{gnu} dialect selects the original GNU scheme for supporting
14396 local and global dynamic TLS models. The @samp{gnu2} dialect
14397 selects the GNU descriptor scheme, which provides better performance
14398 for shared libraries. The GNU descriptor scheme is compatible with
14399 the original scheme, but does require new assembler, linker and
14400 library support. Initial and local exec TLS models are unaffected by
14401 this option and always use the original scheme.
14402
14403 @item -mword-relocations
14404 @opindex mword-relocations
14405 Only generate absolute relocations on word-sized values (i.e. R_ARM_ABS32).
14406 This is enabled by default on targets (uClinux, SymbianOS) where the runtime
14407 loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
14408 is specified.
14409
14410 @item -mfix-cortex-m3-ldrd
14411 @opindex mfix-cortex-m3-ldrd
14412 Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
14413 with overlapping destination and base registers are used. This option avoids
14414 generating these instructions. This option is enabled by default when
14415 @option{-mcpu=cortex-m3} is specified.
14416
14417 @item -munaligned-access
14418 @itemx -mno-unaligned-access
14419 @opindex munaligned-access
14420 @opindex mno-unaligned-access
14421 Enables (or disables) reading and writing of 16- and 32- bit values
14422 from addresses that are not 16- or 32- bit aligned. By default
14423 unaligned access is disabled for all pre-ARMv6 and all ARMv6-M
14424 architectures, and enabled for all other architectures. If unaligned
14425 access is not enabled then words in packed data structures are
14426 accessed a byte at a time.
14427
14428 The ARM attribute @code{Tag_CPU_unaligned_access} is set in the
14429 generated object file to either true or false, depending upon the
14430 setting of this option. If unaligned access is enabled then the
14431 preprocessor symbol @code{__ARM_FEATURE_UNALIGNED} is also
14432 defined.
14433
14434 @item -mneon-for-64bits
14435 @opindex mneon-for-64bits
14436 Enables using Neon to handle scalar 64-bits operations. This is
14437 disabled by default since the cost of moving data from core registers
14438 to Neon is high.
14439
14440 @item -mslow-flash-data
14441 @opindex mslow-flash-data
14442 Assume loading data from flash is slower than fetching instruction.
14443 Therefore literal load is minimized for better performance.
14444 This option is only supported when compiling for ARMv7 M-profile and
14445 off by default.
14446
14447 @item -masm-syntax-unified
14448 @opindex masm-syntax-unified
14449 Assume inline assembler is using unified asm syntax. The default is
14450 currently off which implies divided syntax. This option has no impact
14451 on Thumb2. However, this may change in future releases of GCC.
14452 Divided syntax should be considered deprecated.
14453
14454 @item -mrestrict-it
14455 @opindex mrestrict-it
14456 Restricts generation of IT blocks to conform to the rules of ARMv8.
14457 IT blocks can only contain a single 16-bit instruction from a select
14458 set of instructions. This option is on by default for ARMv8 Thumb mode.
14459
14460 @item -mprint-tune-info
14461 @opindex mprint-tune-info
14462 Print CPU tuning information as comment in assembler file. This is
14463 an option used only for regression testing of the compiler and not
14464 intended for ordinary use in compiling code. This option is disabled
14465 by default.
14466 @end table
14467
14468 @node AVR Options
14469 @subsection AVR Options
14470 @cindex AVR Options
14471
14472 These options are defined for AVR implementations:
14473
14474 @table @gcctabopt
14475 @item -mmcu=@var{mcu}
14476 @opindex mmcu
14477 Specify Atmel AVR instruction set architectures (ISA) or MCU type.
14478
14479 The default for this option is@tie{}@samp{avr2}.
14480
14481 GCC supports the following AVR devices and ISAs:
14482
14483 @include avr-mmcu.texi
14484
14485 @item -maccumulate-args
14486 @opindex maccumulate-args
14487 Accumulate outgoing function arguments and acquire/release the needed
14488 stack space for outgoing function arguments once in function
14489 prologue/epilogue. Without this option, outgoing arguments are pushed
14490 before calling a function and popped afterwards.
14491
14492 Popping the arguments after the function call can be expensive on
14493 AVR so that accumulating the stack space might lead to smaller
14494 executables because arguments need not to be removed from the
14495 stack after such a function call.
14496
14497 This option can lead to reduced code size for functions that perform
14498 several calls to functions that get their arguments on the stack like
14499 calls to printf-like functions.
14500
14501 @item -mbranch-cost=@var{cost}
14502 @opindex mbranch-cost
14503 Set the branch costs for conditional branch instructions to
14504 @var{cost}. Reasonable values for @var{cost} are small, non-negative
14505 integers. The default branch cost is 0.
14506
14507 @item -mcall-prologues
14508 @opindex mcall-prologues
14509 Functions prologues/epilogues are expanded as calls to appropriate
14510 subroutines. Code size is smaller.
14511
14512 @item -mint8
14513 @opindex mint8
14514 Assume @code{int} to be 8-bit integer. This affects the sizes of all types: a
14515 @code{char} is 1 byte, an @code{int} is 1 byte, a @code{long} is 2 bytes,
14516 and @code{long long} is 4 bytes. Please note that this option does not
14517 conform to the C standards, but it results in smaller code
14518 size.
14519
14520 @item -mn-flash=@var{num}
14521 @opindex mn-flash
14522 Assume that the flash memory has a size of
14523 @var{num} times 64@tie{}KiB.
14524
14525 @item -mno-interrupts
14526 @opindex mno-interrupts
14527 Generated code is not compatible with hardware interrupts.
14528 Code size is smaller.
14529
14530 @item -mrelax
14531 @opindex mrelax
14532 Try to replace @code{CALL} resp.@: @code{JMP} instruction by the shorter
14533 @code{RCALL} resp.@: @code{RJMP} instruction if applicable.
14534 Setting @option{-mrelax} just adds the @option{--mlink-relax} option to
14535 the assembler's command line and the @option{--relax} option to the
14536 linker's command line.
14537
14538 Jump relaxing is performed by the linker because jump offsets are not
14539 known before code is located. Therefore, the assembler code generated by the
14540 compiler is the same, but the instructions in the executable may
14541 differ from instructions in the assembler code.
14542
14543 Relaxing must be turned on if linker stubs are needed, see the
14544 section on @code{EIND} and linker stubs below.
14545
14546 @item -mrmw
14547 @opindex mrmw
14548 Assume that the device supports the Read-Modify-Write
14549 instructions @code{XCH}, @code{LAC}, @code{LAS} and @code{LAT}.
14550
14551 @item -msp8
14552 @opindex msp8
14553 Treat the stack pointer register as an 8-bit register,
14554 i.e.@: assume the high byte of the stack pointer is zero.
14555 In general, you don't need to set this option by hand.
14556
14557 This option is used internally by the compiler to select and
14558 build multilibs for architectures @code{avr2} and @code{avr25}.
14559 These architectures mix devices with and without @code{SPH}.
14560 For any setting other than @option{-mmcu=avr2} or @option{-mmcu=avr25}
14561 the compiler driver adds or removes this option from the compiler
14562 proper's command line, because the compiler then knows if the device
14563 or architecture has an 8-bit stack pointer and thus no @code{SPH}
14564 register or not.
14565
14566 @item -mstrict-X
14567 @opindex mstrict-X
14568 Use address register @code{X} in a way proposed by the hardware. This means
14569 that @code{X} is only used in indirect, post-increment or
14570 pre-decrement addressing.
14571
14572 Without this option, the @code{X} register may be used in the same way
14573 as @code{Y} or @code{Z} which then is emulated by additional
14574 instructions.
14575 For example, loading a value with @code{X+const} addressing with a
14576 small non-negative @code{const < 64} to a register @var{Rn} is
14577 performed as
14578
14579 @example
14580 adiw r26, const ; X += const
14581 ld @var{Rn}, X ; @var{Rn} = *X
14582 sbiw r26, const ; X -= const
14583 @end example
14584
14585 @item -mtiny-stack
14586 @opindex mtiny-stack
14587 Only change the lower 8@tie{}bits of the stack pointer.
14588
14589 @item -nodevicelib
14590 @opindex nodevicelib
14591 Don't link against AVR-LibC's device specific library @code{lib<mcu>.a}.
14592
14593 @item -Waddr-space-convert
14594 @opindex Waddr-space-convert
14595 Warn about conversions between address spaces in the case where the
14596 resulting address space is not contained in the incoming address space.
14597
14598 @item -Wmisspelled-isr
14599 @opindex Wmisspelled-isr
14600 Warn if the ISR is misspelled, i.e. without __vector prefix.
14601 Enabled by default.
14602 @end table
14603
14604 @subsubsection @code{EIND} and Devices with More Than 128 Ki Bytes of Flash
14605 @cindex @code{EIND}
14606 Pointers in the implementation are 16@tie{}bits wide.
14607 The address of a function or label is represented as word address so
14608 that indirect jumps and calls can target any code address in the
14609 range of 64@tie{}Ki words.
14610
14611 In order to facilitate indirect jump on devices with more than 128@tie{}Ki
14612 bytes of program memory space, there is a special function register called
14613 @code{EIND} that serves as most significant part of the target address
14614 when @code{EICALL} or @code{EIJMP} instructions are used.
14615
14616 Indirect jumps and calls on these devices are handled as follows by
14617 the compiler and are subject to some limitations:
14618
14619 @itemize @bullet
14620
14621 @item
14622 The compiler never sets @code{EIND}.
14623
14624 @item
14625 The compiler uses @code{EIND} implicitly in @code{EICALL}/@code{EIJMP}
14626 instructions or might read @code{EIND} directly in order to emulate an
14627 indirect call/jump by means of a @code{RET} instruction.
14628
14629 @item
14630 The compiler assumes that @code{EIND} never changes during the startup
14631 code or during the application. In particular, @code{EIND} is not
14632 saved/restored in function or interrupt service routine
14633 prologue/epilogue.
14634
14635 @item
14636 For indirect calls to functions and computed goto, the linker
14637 generates @emph{stubs}. Stubs are jump pads sometimes also called
14638 @emph{trampolines}. Thus, the indirect call/jump jumps to such a stub.
14639 The stub contains a direct jump to the desired address.
14640
14641 @item
14642 Linker relaxation must be turned on so that the linker generates
14643 the stubs correctly in all situations. See the compiler option
14644 @option{-mrelax} and the linker option @option{--relax}.
14645 There are corner cases where the linker is supposed to generate stubs
14646 but aborts without relaxation and without a helpful error message.
14647
14648 @item
14649 The default linker script is arranged for code with @code{EIND = 0}.
14650 If code is supposed to work for a setup with @code{EIND != 0}, a custom
14651 linker script has to be used in order to place the sections whose
14652 name start with @code{.trampolines} into the segment where @code{EIND}
14653 points to.
14654
14655 @item
14656 The startup code from libgcc never sets @code{EIND}.
14657 Notice that startup code is a blend of code from libgcc and AVR-LibC.
14658 For the impact of AVR-LibC on @code{EIND}, see the
14659 @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC user manual}}.
14660
14661 @item
14662 It is legitimate for user-specific startup code to set up @code{EIND}
14663 early, for example by means of initialization code located in
14664 section @code{.init3}. Such code runs prior to general startup code
14665 that initializes RAM and calls constructors, but after the bit
14666 of startup code from AVR-LibC that sets @code{EIND} to the segment
14667 where the vector table is located.
14668 @example
14669 #include <avr/io.h>
14670
14671 static void
14672 __attribute__((section(".init3"),naked,used,no_instrument_function))
14673 init3_set_eind (void)
14674 @{
14675 __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
14676 "out %i0,r24" :: "n" (&EIND) : "r24","memory");
14677 @}
14678 @end example
14679
14680 @noindent
14681 The @code{__trampolines_start} symbol is defined in the linker script.
14682
14683 @item
14684 Stubs are generated automatically by the linker if
14685 the following two conditions are met:
14686 @itemize @minus
14687
14688 @item The address of a label is taken by means of the @code{gs} modifier
14689 (short for @emph{generate stubs}) like so:
14690 @example
14691 LDI r24, lo8(gs(@var{func}))
14692 LDI r25, hi8(gs(@var{func}))
14693 @end example
14694 @item The final location of that label is in a code segment
14695 @emph{outside} the segment where the stubs are located.
14696 @end itemize
14697
14698 @item
14699 The compiler emits such @code{gs} modifiers for code labels in the
14700 following situations:
14701 @itemize @minus
14702 @item Taking address of a function or code label.
14703 @item Computed goto.
14704 @item If prologue-save function is used, see @option{-mcall-prologues}
14705 command-line option.
14706 @item Switch/case dispatch tables. If you do not want such dispatch
14707 tables you can specify the @option{-fno-jump-tables} command-line option.
14708 @item C and C++ constructors/destructors called during startup/shutdown.
14709 @item If the tools hit a @code{gs()} modifier explained above.
14710 @end itemize
14711
14712 @item
14713 Jumping to non-symbolic addresses like so is @emph{not} supported:
14714
14715 @example
14716 int main (void)
14717 @{
14718 /* Call function at word address 0x2 */
14719 return ((int(*)(void)) 0x2)();
14720 @}
14721 @end example
14722
14723 Instead, a stub has to be set up, i.e.@: the function has to be called
14724 through a symbol (@code{func_4} in the example):
14725
14726 @example
14727 int main (void)
14728 @{
14729 extern int func_4 (void);
14730
14731 /* Call function at byte address 0x4 */
14732 return func_4();
14733 @}
14734 @end example
14735
14736 and the application be linked with @option{-Wl,--defsym,func_4=0x4}.
14737 Alternatively, @code{func_4} can be defined in the linker script.
14738 @end itemize
14739
14740 @subsubsection Handling of the @code{RAMPD}, @code{RAMPX}, @code{RAMPY} and @code{RAMPZ} Special Function Registers
14741 @cindex @code{RAMPD}
14742 @cindex @code{RAMPX}
14743 @cindex @code{RAMPY}
14744 @cindex @code{RAMPZ}
14745 Some AVR devices support memories larger than the 64@tie{}KiB range
14746 that can be accessed with 16-bit pointers. To access memory locations
14747 outside this 64@tie{}KiB range, the contentent of a @code{RAMP}
14748 register is used as high part of the address:
14749 The @code{X}, @code{Y}, @code{Z} address register is concatenated
14750 with the @code{RAMPX}, @code{RAMPY}, @code{RAMPZ} special function
14751 register, respectively, to get a wide address. Similarly,
14752 @code{RAMPD} is used together with direct addressing.
14753
14754 @itemize
14755 @item
14756 The startup code initializes the @code{RAMP} special function
14757 registers with zero.
14758
14759 @item
14760 If a @ref{AVR Named Address Spaces,named address space} other than
14761 generic or @code{__flash} is used, then @code{RAMPZ} is set
14762 as needed before the operation.
14763
14764 @item
14765 If the device supports RAM larger than 64@tie{}KiB and the compiler
14766 needs to change @code{RAMPZ} to accomplish an operation, @code{RAMPZ}
14767 is reset to zero after the operation.
14768
14769 @item
14770 If the device comes with a specific @code{RAMP} register, the ISR
14771 prologue/epilogue saves/restores that SFR and initializes it with
14772 zero in case the ISR code might (implicitly) use it.
14773
14774 @item
14775 RAM larger than 64@tie{}KiB is not supported by GCC for AVR targets.
14776 If you use inline assembler to read from locations outside the
14777 16-bit address range and change one of the @code{RAMP} registers,
14778 you must reset it to zero after the access.
14779
14780 @end itemize
14781
14782 @subsubsection AVR Built-in Macros
14783
14784 GCC defines several built-in macros so that the user code can test
14785 for the presence or absence of features. Almost any of the following
14786 built-in macros are deduced from device capabilities and thus
14787 triggered by the @option{-mmcu=} command-line option.
14788
14789 For even more AVR-specific built-in macros see
14790 @ref{AVR Named Address Spaces} and @ref{AVR Built-in Functions}.
14791
14792 @table @code
14793
14794 @item __AVR_ARCH__
14795 Build-in macro that resolves to a decimal number that identifies the
14796 architecture and depends on the @option{-mmcu=@var{mcu}} option.
14797 Possible values are:
14798
14799 @code{2}, @code{25}, @code{3}, @code{31}, @code{35},
14800 @code{4}, @code{5}, @code{51}, @code{6}
14801
14802 for @var{mcu}=@code{avr2}, @code{avr25}, @code{avr3}, @code{avr31},
14803 @code{avr35}, @code{avr4}, @code{avr5}, @code{avr51}, @code{avr6},
14804
14805 respectively and
14806
14807 @code{100}, @code{102}, @code{104},
14808 @code{105}, @code{106}, @code{107}
14809
14810 for @var{mcu}=@code{avrtiny}, @code{avrxmega2}, @code{avrxmega4},
14811 @code{avrxmega5}, @code{avrxmega6}, @code{avrxmega7}, respectively.
14812 If @var{mcu} specifies a device, this built-in macro is set
14813 accordingly. For example, with @option{-mmcu=atmega8} the macro is
14814 defined to @code{4}.
14815
14816 @item __AVR_@var{Device}__
14817 Setting @option{-mmcu=@var{device}} defines this built-in macro which reflects
14818 the device's name. For example, @option{-mmcu=atmega8} defines the
14819 built-in macro @code{__AVR_ATmega8__}, @option{-mmcu=attiny261a} defines
14820 @code{__AVR_ATtiny261A__}, etc.
14821
14822 The built-in macros' names follow
14823 the scheme @code{__AVR_@var{Device}__} where @var{Device} is
14824 the device name as from the AVR user manual. The difference between
14825 @var{Device} in the built-in macro and @var{device} in
14826 @option{-mmcu=@var{device}} is that the latter is always lowercase.
14827
14828 If @var{device} is not a device but only a core architecture like
14829 @samp{avr51}, this macro is not defined.
14830
14831 @item __AVR_DEVICE_NAME__
14832 Setting @option{-mmcu=@var{device}} defines this built-in macro to
14833 the device's name. For example, with @option{-mmcu=atmega8} the macro
14834 is defined to @code{atmega8}.
14835
14836 If @var{device} is not a device but only a core architecture like
14837 @samp{avr51}, this macro is not defined.
14838
14839 @item __AVR_XMEGA__
14840 The device / architecture belongs to the XMEGA family of devices.
14841
14842 @item __AVR_HAVE_ELPM__
14843 The device has the @code{ELPM} instruction.
14844
14845 @item __AVR_HAVE_ELPMX__
14846 The device has the @code{ELPM R@var{n},Z} and @code{ELPM
14847 R@var{n},Z+} instructions.
14848
14849 @item __AVR_HAVE_MOVW__
14850 The device has the @code{MOVW} instruction to perform 16-bit
14851 register-register moves.
14852
14853 @item __AVR_HAVE_LPMX__
14854 The device has the @code{LPM R@var{n},Z} and
14855 @code{LPM R@var{n},Z+} instructions.
14856
14857 @item __AVR_HAVE_MUL__
14858 The device has a hardware multiplier.
14859
14860 @item __AVR_HAVE_JMP_CALL__
14861 The device has the @code{JMP} and @code{CALL} instructions.
14862 This is the case for devices with at least 16@tie{}KiB of program
14863 memory.
14864
14865 @item __AVR_HAVE_EIJMP_EICALL__
14866 @itemx __AVR_3_BYTE_PC__
14867 The device has the @code{EIJMP} and @code{EICALL} instructions.
14868 This is the case for devices with more than 128@tie{}KiB of program memory.
14869 This also means that the program counter
14870 (PC) is 3@tie{}bytes wide.
14871
14872 @item __AVR_2_BYTE_PC__
14873 The program counter (PC) is 2@tie{}bytes wide. This is the case for devices
14874 with up to 128@tie{}KiB of program memory.
14875
14876 @item __AVR_HAVE_8BIT_SP__
14877 @itemx __AVR_HAVE_16BIT_SP__
14878 The stack pointer (SP) register is treated as 8-bit respectively
14879 16-bit register by the compiler.
14880 The definition of these macros is affected by @option{-mtiny-stack}.
14881
14882 @item __AVR_HAVE_SPH__
14883 @itemx __AVR_SP8__
14884 The device has the SPH (high part of stack pointer) special function
14885 register or has an 8-bit stack pointer, respectively.
14886 The definition of these macros is affected by @option{-mmcu=} and
14887 in the cases of @option{-mmcu=avr2} and @option{-mmcu=avr25} also
14888 by @option{-msp8}.
14889
14890 @item __AVR_HAVE_RAMPD__
14891 @itemx __AVR_HAVE_RAMPX__
14892 @itemx __AVR_HAVE_RAMPY__
14893 @itemx __AVR_HAVE_RAMPZ__
14894 The device has the @code{RAMPD}, @code{RAMPX}, @code{RAMPY},
14895 @code{RAMPZ} special function register, respectively.
14896
14897 @item __NO_INTERRUPTS__
14898 This macro reflects the @option{-mno-interrupts} command-line option.
14899
14900 @item __AVR_ERRATA_SKIP__
14901 @itemx __AVR_ERRATA_SKIP_JMP_CALL__
14902 Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
14903 instructions because of a hardware erratum. Skip instructions are
14904 @code{SBRS}, @code{SBRC}, @code{SBIS}, @code{SBIC} and @code{CPSE}.
14905 The second macro is only defined if @code{__AVR_HAVE_JMP_CALL__} is also
14906 set.
14907
14908 @item __AVR_ISA_RMW__
14909 The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).
14910
14911 @item __AVR_SFR_OFFSET__=@var{offset}
14912 Instructions that can address I/O special function registers directly
14913 like @code{IN}, @code{OUT}, @code{SBI}, etc.@: may use a different
14914 address as if addressed by an instruction to access RAM like @code{LD}
14915 or @code{STS}. This offset depends on the device architecture and has
14916 to be subtracted from the RAM address in order to get the
14917 respective I/O@tie{}address.
14918
14919 @item __WITH_AVRLIBC__
14920 The compiler is configured to be used together with AVR-Libc.
14921 See the @option{--with-avrlibc} configure option.
14922
14923 @end table
14924
14925 @node Blackfin Options
14926 @subsection Blackfin Options
14927 @cindex Blackfin Options
14928
14929 @table @gcctabopt
14930 @item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
14931 @opindex mcpu=
14932 Specifies the name of the target Blackfin processor. Currently, @var{cpu}
14933 can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
14934 @samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
14935 @samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
14936 @samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
14937 @samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
14938 @samp{bf542m}, @samp{bf544m}, @samp{bf547m}, @samp{bf548m}, @samp{bf549m},
14939 @samp{bf561}, @samp{bf592}.
14940
14941 The optional @var{sirevision} specifies the silicon revision of the target
14942 Blackfin processor. Any workarounds available for the targeted silicon revision
14943 are enabled. If @var{sirevision} is @samp{none}, no workarounds are enabled.
14944 If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
14945 are enabled. The @code{__SILICON_REVISION__} macro is defined to two
14946 hexadecimal digits representing the major and minor numbers in the silicon
14947 revision. If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
14948 is not defined. If @var{sirevision} is @samp{any}, the
14949 @code{__SILICON_REVISION__} is defined to be @code{0xffff}.
14950 If this optional @var{sirevision} is not used, GCC assumes the latest known
14951 silicon revision of the targeted Blackfin processor.
14952
14953 GCC defines a preprocessor macro for the specified @var{cpu}.
14954 For the @samp{bfin-elf} toolchain, this option causes the hardware BSP
14955 provided by libgloss to be linked in if @option{-msim} is not given.
14956
14957 Without this option, @samp{bf532} is used as the processor by default.
14958
14959 Note that support for @samp{bf561} is incomplete. For @samp{bf561},
14960 only the preprocessor macro is defined.
14961
14962 @item -msim
14963 @opindex msim
14964 Specifies that the program will be run on the simulator. This causes
14965 the simulator BSP provided by libgloss to be linked in. This option
14966 has effect only for @samp{bfin-elf} toolchain.
14967 Certain other options, such as @option{-mid-shared-library} and
14968 @option{-mfdpic}, imply @option{-msim}.
14969
14970 @item -momit-leaf-frame-pointer
14971 @opindex momit-leaf-frame-pointer
14972 Don't keep the frame pointer in a register for leaf functions. This
14973 avoids the instructions to save, set up and restore frame pointers and
14974 makes an extra register available in leaf functions. The option
14975 @option{-fomit-frame-pointer} removes the frame pointer for all functions,
14976 which might make debugging harder.
14977
14978 @item -mspecld-anomaly
14979 @opindex mspecld-anomaly
14980 When enabled, the compiler ensures that the generated code does not
14981 contain speculative loads after jump instructions. If this option is used,
14982 @code{__WORKAROUND_SPECULATIVE_LOADS} is defined.
14983
14984 @item -mno-specld-anomaly
14985 @opindex mno-specld-anomaly
14986 Don't generate extra code to prevent speculative loads from occurring.
14987
14988 @item -mcsync-anomaly
14989 @opindex mcsync-anomaly
14990 When enabled, the compiler ensures that the generated code does not
14991 contain CSYNC or SSYNC instructions too soon after conditional branches.
14992 If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.
14993
14994 @item -mno-csync-anomaly
14995 @opindex mno-csync-anomaly
14996 Don't generate extra code to prevent CSYNC or SSYNC instructions from
14997 occurring too soon after a conditional branch.
14998
14999 @item -mlow-64k
15000 @opindex mlow-64k
15001 When enabled, the compiler is free to take advantage of the knowledge that
15002 the entire program fits into the low 64k of memory.
15003
15004 @item -mno-low-64k
15005 @opindex mno-low-64k
15006 Assume that the program is arbitrarily large. This is the default.
15007
15008 @item -mstack-check-l1
15009 @opindex mstack-check-l1
15010 Do stack checking using information placed into L1 scratchpad memory by the
15011 uClinux kernel.
15012
15013 @item -mid-shared-library
15014 @opindex mid-shared-library
15015 Generate code that supports shared libraries via the library ID method.
15016 This allows for execute in place and shared libraries in an environment
15017 without virtual memory management. This option implies @option{-fPIC}.
15018 With a @samp{bfin-elf} target, this option implies @option{-msim}.
15019
15020 @item -mno-id-shared-library
15021 @opindex mno-id-shared-library
15022 Generate code that doesn't assume ID-based shared libraries are being used.
15023 This is the default.
15024
15025 @item -mleaf-id-shared-library
15026 @opindex mleaf-id-shared-library
15027 Generate code that supports shared libraries via the library ID method,
15028 but assumes that this library or executable won't link against any other
15029 ID shared libraries. That allows the compiler to use faster code for jumps
15030 and calls.
15031
15032 @item -mno-leaf-id-shared-library
15033 @opindex mno-leaf-id-shared-library
15034 Do not assume that the code being compiled won't link against any ID shared
15035 libraries. Slower code is generated for jump and call insns.
15036
15037 @item -mshared-library-id=n
15038 @opindex mshared-library-id
15039 Specifies the identification number of the ID-based shared library being
15040 compiled. Specifying a value of 0 generates more compact code; specifying
15041 other values forces the allocation of that number to the current
15042 library but is no more space- or time-efficient than omitting this option.
15043
15044 @item -msep-data
15045 @opindex msep-data
15046 Generate code that allows the data segment to be located in a different
15047 area of memory from the text segment. This allows for execute in place in
15048 an environment without virtual memory management by eliminating relocations
15049 against the text section.
15050
15051 @item -mno-sep-data
15052 @opindex mno-sep-data
15053 Generate code that assumes that the data segment follows the text segment.
15054 This is the default.
15055
15056 @item -mlong-calls
15057 @itemx -mno-long-calls
15058 @opindex mlong-calls
15059 @opindex mno-long-calls
15060 Tells the compiler to perform function calls by first loading the
15061 address of the function into a register and then performing a subroutine
15062 call on this register. This switch is needed if the target function
15063 lies outside of the 24-bit addressing range of the offset-based
15064 version of subroutine call instruction.
15065
15066 This feature is not enabled by default. Specifying
15067 @option{-mno-long-calls} restores the default behavior. Note these
15068 switches have no effect on how the compiler generates code to handle
15069 function calls via function pointers.
15070
15071 @item -mfast-fp
15072 @opindex mfast-fp
15073 Link with the fast floating-point library. This library relaxes some of
15074 the IEEE floating-point standard's rules for checking inputs against
15075 Not-a-Number (NAN), in the interest of performance.
15076
15077 @item -minline-plt
15078 @opindex minline-plt
15079 Enable inlining of PLT entries in function calls to functions that are
15080 not known to bind locally. It has no effect without @option{-mfdpic}.
15081
15082 @item -mmulticore
15083 @opindex mmulticore
15084 Build a standalone application for multicore Blackfin processors.
15085 This option causes proper start files and link scripts supporting
15086 multicore to be used, and defines the macro @code{__BFIN_MULTICORE}.
15087 It can only be used with @option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}.
15088
15089 This option can be used with @option{-mcorea} or @option{-mcoreb}, which
15090 selects the one-application-per-core programming model. Without
15091 @option{-mcorea} or @option{-mcoreb}, the single-application/dual-core
15092 programming model is used. In this model, the main function of Core B
15093 should be named as @code{coreb_main}.
15094
15095 If this option is not used, the single-core application programming
15096 model is used.
15097
15098 @item -mcorea
15099 @opindex mcorea
15100 Build a standalone application for Core A of BF561 when using
15101 the one-application-per-core programming model. Proper start files
15102 and link scripts are used to support Core A, and the macro
15103 @code{__BFIN_COREA} is defined.
15104 This option can only be used in conjunction with @option{-mmulticore}.
15105
15106 @item -mcoreb
15107 @opindex mcoreb
15108 Build a standalone application for Core B of BF561 when using
15109 the one-application-per-core programming model. Proper start files
15110 and link scripts are used to support Core B, and the macro
15111 @code{__BFIN_COREB} is defined. When this option is used, @code{coreb_main}
15112 should be used instead of @code{main}.
15113 This option can only be used in conjunction with @option{-mmulticore}.
15114
15115 @item -msdram
15116 @opindex msdram
15117 Build a standalone application for SDRAM. Proper start files and
15118 link scripts are used to put the application into SDRAM, and the macro
15119 @code{__BFIN_SDRAM} is defined.
15120 The loader should initialize SDRAM before loading the application.
15121
15122 @item -micplb
15123 @opindex micplb
15124 Assume that ICPLBs are enabled at run time. This has an effect on certain
15125 anomaly workarounds. For Linux targets, the default is to assume ICPLBs
15126 are enabled; for standalone applications the default is off.
15127 @end table
15128
15129 @node C6X Options
15130 @subsection C6X Options
15131 @cindex C6X Options
15132
15133 @table @gcctabopt
15134 @item -march=@var{name}
15135 @opindex march
15136 This specifies the name of the target architecture. GCC uses this
15137 name to determine what kind of instructions it can emit when generating
15138 assembly code. Permissible names are: @samp{c62x},
15139 @samp{c64x}, @samp{c64x+}, @samp{c67x}, @samp{c67x+}, @samp{c674x}.
15140
15141 @item -mbig-endian
15142 @opindex mbig-endian
15143 Generate code for a big-endian target.
15144
15145 @item -mlittle-endian
15146 @opindex mlittle-endian
15147 Generate code for a little-endian target. This is the default.
15148
15149 @item -msim
15150 @opindex msim
15151 Choose startup files and linker script suitable for the simulator.
15152
15153 @item -msdata=default
15154 @opindex msdata=default
15155 Put small global and static data in the @code{.neardata} section,
15156 which is pointed to by register @code{B14}. Put small uninitialized
15157 global and static data in the @code{.bss} section, which is adjacent
15158 to the @code{.neardata} section. Put small read-only data into the
15159 @code{.rodata} section. The corresponding sections used for large
15160 pieces of data are @code{.fardata}, @code{.far} and @code{.const}.
15161
15162 @item -msdata=all
15163 @opindex msdata=all
15164 Put all data, not just small objects, into the sections reserved for
15165 small data, and use addressing relative to the @code{B14} register to
15166 access them.
15167
15168 @item -msdata=none
15169 @opindex msdata=none
15170 Make no use of the sections reserved for small data, and use absolute
15171 addresses to access all data. Put all initialized global and static
15172 data in the @code{.fardata} section, and all uninitialized data in the
15173 @code{.far} section. Put all constant data into the @code{.const}
15174 section.
15175 @end table
15176
15177 @node CRIS Options
15178 @subsection CRIS Options
15179 @cindex CRIS Options
15180
15181 These options are defined specifically for the CRIS ports.
15182
15183 @table @gcctabopt
15184 @item -march=@var{architecture-type}
15185 @itemx -mcpu=@var{architecture-type}
15186 @opindex march
15187 @opindex mcpu
15188 Generate code for the specified architecture. The choices for
15189 @var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
15190 respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
15191 Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
15192 @samp{v10}.
15193
15194 @item -mtune=@var{architecture-type}
15195 @opindex mtune
15196 Tune to @var{architecture-type} everything applicable about the generated
15197 code, except for the ABI and the set of available instructions. The
15198 choices for @var{architecture-type} are the same as for
15199 @option{-march=@var{architecture-type}}.
15200
15201 @item -mmax-stack-frame=@var{n}
15202 @opindex mmax-stack-frame
15203 Warn when the stack frame of a function exceeds @var{n} bytes.
15204
15205 @item -metrax4
15206 @itemx -metrax100
15207 @opindex metrax4
15208 @opindex metrax100
15209 The options @option{-metrax4} and @option{-metrax100} are synonyms for
15210 @option{-march=v3} and @option{-march=v8} respectively.
15211
15212 @item -mmul-bug-workaround
15213 @itemx -mno-mul-bug-workaround
15214 @opindex mmul-bug-workaround
15215 @opindex mno-mul-bug-workaround
15216 Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
15217 models where it applies. This option is active by default.
15218
15219 @item -mpdebug
15220 @opindex mpdebug
15221 Enable CRIS-specific verbose debug-related information in the assembly
15222 code. This option also has the effect of turning off the @samp{#NO_APP}
15223 formatted-code indicator to the assembler at the beginning of the
15224 assembly file.
15225
15226 @item -mcc-init
15227 @opindex mcc-init
15228 Do not use condition-code results from previous instruction; always emit
15229 compare and test instructions before use of condition codes.
15230
15231 @item -mno-side-effects
15232 @opindex mno-side-effects
15233 Do not emit instructions with side effects in addressing modes other than
15234 post-increment.
15235
15236 @item -mstack-align
15237 @itemx -mno-stack-align
15238 @itemx -mdata-align
15239 @itemx -mno-data-align
15240 @itemx -mconst-align
15241 @itemx -mno-const-align
15242 @opindex mstack-align
15243 @opindex mno-stack-align
15244 @opindex mdata-align
15245 @opindex mno-data-align
15246 @opindex mconst-align
15247 @opindex mno-const-align
15248 These options (@samp{no-} options) arrange (eliminate arrangements) for the
15249 stack frame, individual data and constants to be aligned for the maximum
15250 single data access size for the chosen CPU model. The default is to
15251 arrange for 32-bit alignment. ABI details such as structure layout are
15252 not affected by these options.
15253
15254 @item -m32-bit
15255 @itemx -m16-bit
15256 @itemx -m8-bit
15257 @opindex m32-bit
15258 @opindex m16-bit
15259 @opindex m8-bit
15260 Similar to the stack- data- and const-align options above, these options
15261 arrange for stack frame, writable data and constants to all be 32-bit,
15262 16-bit or 8-bit aligned. The default is 32-bit alignment.
15263
15264 @item -mno-prologue-epilogue
15265 @itemx -mprologue-epilogue
15266 @opindex mno-prologue-epilogue
15267 @opindex mprologue-epilogue
15268 With @option{-mno-prologue-epilogue}, the normal function prologue and
15269 epilogue which set up the stack frame are omitted and no return
15270 instructions or return sequences are generated in the code. Use this
15271 option only together with visual inspection of the compiled code: no
15272 warnings or errors are generated when call-saved registers must be saved,
15273 or storage for local variables needs to be allocated.
15274
15275 @item -mno-gotplt
15276 @itemx -mgotplt
15277 @opindex mno-gotplt
15278 @opindex mgotplt
15279 With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
15280 instruction sequences that load addresses for functions from the PLT part
15281 of the GOT rather than (traditional on other architectures) calls to the
15282 PLT@. The default is @option{-mgotplt}.
15283
15284 @item -melf
15285 @opindex melf
15286 Legacy no-op option only recognized with the cris-axis-elf and
15287 cris-axis-linux-gnu targets.
15288
15289 @item -mlinux
15290 @opindex mlinux
15291 Legacy no-op option only recognized with the cris-axis-linux-gnu target.
15292
15293 @item -sim
15294 @opindex sim
15295 This option, recognized for the cris-axis-elf, arranges
15296 to link with input-output functions from a simulator library. Code,
15297 initialized data and zero-initialized data are allocated consecutively.
15298
15299 @item -sim2
15300 @opindex sim2
15301 Like @option{-sim}, but pass linker options to locate initialized data at
15302 0x40000000 and zero-initialized data at 0x80000000.
15303 @end table
15304
15305 @node CR16 Options
15306 @subsection CR16 Options
15307 @cindex CR16 Options
15308
15309 These options are defined specifically for the CR16 ports.
15310
15311 @table @gcctabopt
15312
15313 @item -mmac
15314 @opindex mmac
15315 Enable the use of multiply-accumulate instructions. Disabled by default.
15316
15317 @item -mcr16cplus
15318 @itemx -mcr16c
15319 @opindex mcr16cplus
15320 @opindex mcr16c
15321 Generate code for CR16C or CR16C+ architecture. CR16C+ architecture
15322 is default.
15323
15324 @item -msim
15325 @opindex msim
15326 Links the library libsim.a which is in compatible with simulator. Applicable
15327 to ELF compiler only.
15328
15329 @item -mint32
15330 @opindex mint32
15331 Choose integer type as 32-bit wide.
15332
15333 @item -mbit-ops
15334 @opindex mbit-ops
15335 Generates @code{sbit}/@code{cbit} instructions for bit manipulations.
15336
15337 @item -mdata-model=@var{model}
15338 @opindex mdata-model
15339 Choose a data model. The choices for @var{model} are @samp{near},
15340 @samp{far} or @samp{medium}. @samp{medium} is default.
15341 However, @samp{far} is not valid with @option{-mcr16c}, as the
15342 CR16C architecture does not support the far data model.
15343 @end table
15344
15345 @node Darwin Options
15346 @subsection Darwin Options
15347 @cindex Darwin options
15348
15349 These options are defined for all architectures running the Darwin operating
15350 system.
15351
15352 FSF GCC on Darwin does not create ``fat'' object files; it creates
15353 an object file for the single architecture that GCC was built to
15354 target. Apple's GCC on Darwin does create ``fat'' files if multiple
15355 @option{-arch} options are used; it does so by running the compiler or
15356 linker multiple times and joining the results together with
15357 @file{lipo}.
15358
15359 The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
15360 @samp{i686}) is determined by the flags that specify the ISA
15361 that GCC is targeting, like @option{-mcpu} or @option{-march}. The
15362 @option{-force_cpusubtype_ALL} option can be used to override this.
15363
15364 The Darwin tools vary in their behavior when presented with an ISA
15365 mismatch. The assembler, @file{as}, only permits instructions to
15366 be used that are valid for the subtype of the file it is generating,
15367 so you cannot put 64-bit instructions in a @samp{ppc750} object file.
15368 The linker for shared libraries, @file{/usr/bin/libtool}, fails
15369 and prints an error if asked to create a shared library with a less
15370 restrictive subtype than its input files (for instance, trying to put
15371 a @samp{ppc970} object file in a @samp{ppc7400} library). The linker
15372 for executables, @command{ld}, quietly gives the executable the most
15373 restrictive subtype of any of its input files.
15374
15375 @table @gcctabopt
15376 @item -F@var{dir}
15377 @opindex F
15378 Add the framework directory @var{dir} to the head of the list of
15379 directories to be searched for header files. These directories are
15380 interleaved with those specified by @option{-I} options and are
15381 scanned in a left-to-right order.
15382
15383 A framework directory is a directory with frameworks in it. A
15384 framework is a directory with a @file{Headers} and/or
15385 @file{PrivateHeaders} directory contained directly in it that ends
15386 in @file{.framework}. The name of a framework is the name of this
15387 directory excluding the @file{.framework}. Headers associated with
15388 the framework are found in one of those two directories, with
15389 @file{Headers} being searched first. A subframework is a framework
15390 directory that is in a framework's @file{Frameworks} directory.
15391 Includes of subframework headers can only appear in a header of a
15392 framework that contains the subframework, or in a sibling subframework
15393 header. Two subframeworks are siblings if they occur in the same
15394 framework. A subframework should not have the same name as a
15395 framework; a warning is issued if this is violated. Currently a
15396 subframework cannot have subframeworks; in the future, the mechanism
15397 may be extended to support this. The standard frameworks can be found
15398 in @file{/System/Library/Frameworks} and
15399 @file{/Library/Frameworks}. An example include looks like
15400 @code{#include <Framework/header.h>}, where @file{Framework} denotes
15401 the name of the framework and @file{header.h} is found in the
15402 @file{PrivateHeaders} or @file{Headers} directory.
15403
15404 @item -iframework@var{dir}
15405 @opindex iframework
15406 Like @option{-F} except the directory is a treated as a system
15407 directory. The main difference between this @option{-iframework} and
15408 @option{-F} is that with @option{-iframework} the compiler does not
15409 warn about constructs contained within header files found via
15410 @var{dir}. This option is valid only for the C family of languages.
15411
15412 @item -gused
15413 @opindex gused
15414 Emit debugging information for symbols that are used. For stabs
15415 debugging format, this enables @option{-feliminate-unused-debug-symbols}.
15416 This is by default ON@.
15417
15418 @item -gfull
15419 @opindex gfull
15420 Emit debugging information for all symbols and types.
15421
15422 @item -mmacosx-version-min=@var{version}
15423 The earliest version of MacOS X that this executable will run on
15424 is @var{version}. Typical values of @var{version} include @code{10.1},
15425 @code{10.2}, and @code{10.3.9}.
15426
15427 If the compiler was built to use the system's headers by default,
15428 then the default for this option is the system version on which the
15429 compiler is running, otherwise the default is to make choices that
15430 are compatible with as many systems and code bases as possible.
15431
15432 @item -mkernel
15433 @opindex mkernel
15434 Enable kernel development mode. The @option{-mkernel} option sets
15435 @option{-static}, @option{-fno-common}, @option{-fno-use-cxa-atexit},
15436 @option{-fno-exceptions}, @option{-fno-non-call-exceptions},
15437 @option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
15438 applicable. This mode also sets @option{-mno-altivec},
15439 @option{-msoft-float}, @option{-fno-builtin} and
15440 @option{-mlong-branch} for PowerPC targets.
15441
15442 @item -mone-byte-bool
15443 @opindex mone-byte-bool
15444 Override the defaults for @code{bool} so that @code{sizeof(bool)==1}.
15445 By default @code{sizeof(bool)} is @code{4} when compiling for
15446 Darwin/PowerPC and @code{1} when compiling for Darwin/x86, so this
15447 option has no effect on x86.
15448
15449 @strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
15450 to generate code that is not binary compatible with code generated
15451 without that switch. Using this switch may require recompiling all
15452 other modules in a program, including system libraries. Use this
15453 switch to conform to a non-default data model.
15454
15455 @item -mfix-and-continue
15456 @itemx -ffix-and-continue
15457 @itemx -findirect-data
15458 @opindex mfix-and-continue
15459 @opindex ffix-and-continue
15460 @opindex findirect-data
15461 Generate code suitable for fast turnaround development, such as to
15462 allow GDB to dynamically load @file{.o} files into already-running
15463 programs. @option{-findirect-data} and @option{-ffix-and-continue}
15464 are provided for backwards compatibility.
15465
15466 @item -all_load
15467 @opindex all_load
15468 Loads all members of static archive libraries.
15469 See man ld(1) for more information.
15470
15471 @item -arch_errors_fatal
15472 @opindex arch_errors_fatal
15473 Cause the errors having to do with files that have the wrong architecture
15474 to be fatal.
15475
15476 @item -bind_at_load
15477 @opindex bind_at_load
15478 Causes the output file to be marked such that the dynamic linker will
15479 bind all undefined references when the file is loaded or launched.
15480
15481 @item -bundle
15482 @opindex bundle
15483 Produce a Mach-o bundle format file.
15484 See man ld(1) for more information.
15485
15486 @item -bundle_loader @var{executable}
15487 @opindex bundle_loader
15488 This option specifies the @var{executable} that will load the build
15489 output file being linked. See man ld(1) for more information.
15490
15491 @item -dynamiclib
15492 @opindex dynamiclib
15493 When passed this option, GCC produces a dynamic library instead of
15494 an executable when linking, using the Darwin @file{libtool} command.
15495
15496 @item -force_cpusubtype_ALL
15497 @opindex force_cpusubtype_ALL
15498 This causes GCC's output file to have the @samp{ALL} subtype, instead of
15499 one controlled by the @option{-mcpu} or @option{-march} option.
15500
15501 @item -allowable_client @var{client_name}
15502 @itemx -client_name
15503 @itemx -compatibility_version
15504 @itemx -current_version
15505 @itemx -dead_strip
15506 @itemx -dependency-file
15507 @itemx -dylib_file
15508 @itemx -dylinker_install_name
15509 @itemx -dynamic
15510 @itemx -exported_symbols_list
15511 @itemx -filelist
15512 @need 800
15513 @itemx -flat_namespace
15514 @itemx -force_flat_namespace
15515 @itemx -headerpad_max_install_names
15516 @itemx -image_base
15517 @itemx -init
15518 @itemx -install_name
15519 @itemx -keep_private_externs
15520 @itemx -multi_module
15521 @itemx -multiply_defined
15522 @itemx -multiply_defined_unused
15523 @need 800
15524 @itemx -noall_load
15525 @itemx -no_dead_strip_inits_and_terms
15526 @itemx -nofixprebinding
15527 @itemx -nomultidefs
15528 @itemx -noprebind
15529 @itemx -noseglinkedit
15530 @itemx -pagezero_size
15531 @itemx -prebind
15532 @itemx -prebind_all_twolevel_modules
15533 @itemx -private_bundle
15534 @need 800
15535 @itemx -read_only_relocs
15536 @itemx -sectalign
15537 @itemx -sectobjectsymbols
15538 @itemx -whyload
15539 @itemx -seg1addr
15540 @itemx -sectcreate
15541 @itemx -sectobjectsymbols
15542 @itemx -sectorder
15543 @itemx -segaddr
15544 @itemx -segs_read_only_addr
15545 @need 800
15546 @itemx -segs_read_write_addr
15547 @itemx -seg_addr_table
15548 @itemx -seg_addr_table_filename
15549 @itemx -seglinkedit
15550 @itemx -segprot
15551 @itemx -segs_read_only_addr
15552 @itemx -segs_read_write_addr
15553 @itemx -single_module
15554 @itemx -static
15555 @itemx -sub_library
15556 @need 800
15557 @itemx -sub_umbrella
15558 @itemx -twolevel_namespace
15559 @itemx -umbrella
15560 @itemx -undefined
15561 @itemx -unexported_symbols_list
15562 @itemx -weak_reference_mismatches
15563 @itemx -whatsloaded
15564 @opindex allowable_client
15565 @opindex client_name
15566 @opindex compatibility_version
15567 @opindex current_version
15568 @opindex dead_strip
15569 @opindex dependency-file
15570 @opindex dylib_file
15571 @opindex dylinker_install_name
15572 @opindex dynamic
15573 @opindex exported_symbols_list
15574 @opindex filelist
15575 @opindex flat_namespace
15576 @opindex force_flat_namespace
15577 @opindex headerpad_max_install_names
15578 @opindex image_base
15579 @opindex init
15580 @opindex install_name
15581 @opindex keep_private_externs
15582 @opindex multi_module
15583 @opindex multiply_defined
15584 @opindex multiply_defined_unused
15585 @opindex noall_load
15586 @opindex no_dead_strip_inits_and_terms
15587 @opindex nofixprebinding
15588 @opindex nomultidefs
15589 @opindex noprebind
15590 @opindex noseglinkedit
15591 @opindex pagezero_size
15592 @opindex prebind
15593 @opindex prebind_all_twolevel_modules
15594 @opindex private_bundle
15595 @opindex read_only_relocs
15596 @opindex sectalign
15597 @opindex sectobjectsymbols
15598 @opindex whyload
15599 @opindex seg1addr
15600 @opindex sectcreate
15601 @opindex sectobjectsymbols
15602 @opindex sectorder
15603 @opindex segaddr
15604 @opindex segs_read_only_addr
15605 @opindex segs_read_write_addr
15606 @opindex seg_addr_table
15607 @opindex seg_addr_table_filename
15608 @opindex seglinkedit
15609 @opindex segprot
15610 @opindex segs_read_only_addr
15611 @opindex segs_read_write_addr
15612 @opindex single_module
15613 @opindex static
15614 @opindex sub_library
15615 @opindex sub_umbrella
15616 @opindex twolevel_namespace
15617 @opindex umbrella
15618 @opindex undefined
15619 @opindex unexported_symbols_list
15620 @opindex weak_reference_mismatches
15621 @opindex whatsloaded
15622 These options are passed to the Darwin linker. The Darwin linker man page
15623 describes them in detail.
15624 @end table
15625
15626 @node DEC Alpha Options
15627 @subsection DEC Alpha Options
15628
15629 These @samp{-m} options are defined for the DEC Alpha implementations:
15630
15631 @table @gcctabopt
15632 @item -mno-soft-float
15633 @itemx -msoft-float
15634 @opindex mno-soft-float
15635 @opindex msoft-float
15636 Use (do not use) the hardware floating-point instructions for
15637 floating-point operations. When @option{-msoft-float} is specified,
15638 functions in @file{libgcc.a} are used to perform floating-point
15639 operations. Unless they are replaced by routines that emulate the
15640 floating-point operations, or compiled in such a way as to call such
15641 emulations routines, these routines issue floating-point
15642 operations. If you are compiling for an Alpha without floating-point
15643 operations, you must ensure that the library is built so as not to call
15644 them.
15645
15646 Note that Alpha implementations without floating-point operations are
15647 required to have floating-point registers.
15648
15649 @item -mfp-reg
15650 @itemx -mno-fp-regs
15651 @opindex mfp-reg
15652 @opindex mno-fp-regs
15653 Generate code that uses (does not use) the floating-point register set.
15654 @option{-mno-fp-regs} implies @option{-msoft-float}. If the floating-point
15655 register set is not used, floating-point operands are passed in integer
15656 registers as if they were integers and floating-point results are passed
15657 in @code{$0} instead of @code{$f0}. This is a non-standard calling sequence,
15658 so any function with a floating-point argument or return value called by code
15659 compiled with @option{-mno-fp-regs} must also be compiled with that
15660 option.
15661
15662 A typical use of this option is building a kernel that does not use,
15663 and hence need not save and restore, any floating-point registers.
15664
15665 @item -mieee
15666 @opindex mieee
15667 The Alpha architecture implements floating-point hardware optimized for
15668 maximum performance. It is mostly compliant with the IEEE floating-point
15669 standard. However, for full compliance, software assistance is
15670 required. This option generates code fully IEEE-compliant code
15671 @emph{except} that the @var{inexact-flag} is not maintained (see below).
15672 If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
15673 defined during compilation. The resulting code is less efficient but is
15674 able to correctly support denormalized numbers and exceptional IEEE
15675 values such as not-a-number and plus/minus infinity. Other Alpha
15676 compilers call this option @option{-ieee_with_no_inexact}.
15677
15678 @item -mieee-with-inexact
15679 @opindex mieee-with-inexact
15680 This is like @option{-mieee} except the generated code also maintains
15681 the IEEE @var{inexact-flag}. Turning on this option causes the
15682 generated code to implement fully-compliant IEEE math. In addition to
15683 @code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
15684 macro. On some Alpha implementations the resulting code may execute
15685 significantly slower than the code generated by default. Since there is
15686 very little code that depends on the @var{inexact-flag}, you should
15687 normally not specify this option. Other Alpha compilers call this
15688 option @option{-ieee_with_inexact}.
15689
15690 @item -mfp-trap-mode=@var{trap-mode}
15691 @opindex mfp-trap-mode
15692 This option controls what floating-point related traps are enabled.
15693 Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
15694 The trap mode can be set to one of four values:
15695
15696 @table @samp
15697 @item n
15698 This is the default (normal) setting. The only traps that are enabled
15699 are the ones that cannot be disabled in software (e.g., division by zero
15700 trap).
15701
15702 @item u
15703 In addition to the traps enabled by @samp{n}, underflow traps are enabled
15704 as well.
15705
15706 @item su
15707 Like @samp{u}, but the instructions are marked to be safe for software
15708 completion (see Alpha architecture manual for details).
15709
15710 @item sui
15711 Like @samp{su}, but inexact traps are enabled as well.
15712 @end table
15713
15714 @item -mfp-rounding-mode=@var{rounding-mode}
15715 @opindex mfp-rounding-mode
15716 Selects the IEEE rounding mode. Other Alpha compilers call this option
15717 @option{-fprm @var{rounding-mode}}. The @var{rounding-mode} can be one
15718 of:
15719
15720 @table @samp
15721 @item n
15722 Normal IEEE rounding mode. Floating-point numbers are rounded towards
15723 the nearest machine number or towards the even machine number in case
15724 of a tie.
15725
15726 @item m
15727 Round towards minus infinity.
15728
15729 @item c
15730 Chopped rounding mode. Floating-point numbers are rounded towards zero.
15731
15732 @item d
15733 Dynamic rounding mode. A field in the floating-point control register
15734 (@var{fpcr}, see Alpha architecture reference manual) controls the
15735 rounding mode in effect. The C library initializes this register for
15736 rounding towards plus infinity. Thus, unless your program modifies the
15737 @var{fpcr}, @samp{d} corresponds to round towards plus infinity.
15738 @end table
15739
15740 @item -mtrap-precision=@var{trap-precision}
15741 @opindex mtrap-precision
15742 In the Alpha architecture, floating-point traps are imprecise. This
15743 means without software assistance it is impossible to recover from a
15744 floating trap and program execution normally needs to be terminated.
15745 GCC can generate code that can assist operating system trap handlers
15746 in determining the exact location that caused a floating-point trap.
15747 Depending on the requirements of an application, different levels of
15748 precisions can be selected:
15749
15750 @table @samp
15751 @item p
15752 Program precision. This option is the default and means a trap handler
15753 can only identify which program caused a floating-point exception.
15754
15755 @item f
15756 Function precision. The trap handler can determine the function that
15757 caused a floating-point exception.
15758
15759 @item i
15760 Instruction precision. The trap handler can determine the exact
15761 instruction that caused a floating-point exception.
15762 @end table
15763
15764 Other Alpha compilers provide the equivalent options called
15765 @option{-scope_safe} and @option{-resumption_safe}.
15766
15767 @item -mieee-conformant
15768 @opindex mieee-conformant
15769 This option marks the generated code as IEEE conformant. You must not
15770 use this option unless you also specify @option{-mtrap-precision=i} and either
15771 @option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}. Its only effect
15772 is to emit the line @samp{.eflag 48} in the function prologue of the
15773 generated assembly file.
15774
15775 @item -mbuild-constants
15776 @opindex mbuild-constants
15777 Normally GCC examines a 32- or 64-bit integer constant to
15778 see if it can construct it from smaller constants in two or three
15779 instructions. If it cannot, it outputs the constant as a literal and
15780 generates code to load it from the data segment at run time.
15781
15782 Use this option to require GCC to construct @emph{all} integer constants
15783 using code, even if it takes more instructions (the maximum is six).
15784
15785 You typically use this option to build a shared library dynamic
15786 loader. Itself a shared library, it must relocate itself in memory
15787 before it can find the variables and constants in its own data segment.
15788
15789 @item -mbwx
15790 @itemx -mno-bwx
15791 @itemx -mcix
15792 @itemx -mno-cix
15793 @itemx -mfix
15794 @itemx -mno-fix
15795 @itemx -mmax
15796 @itemx -mno-max
15797 @opindex mbwx
15798 @opindex mno-bwx
15799 @opindex mcix
15800 @opindex mno-cix
15801 @opindex mfix
15802 @opindex mno-fix
15803 @opindex mmax
15804 @opindex mno-max
15805 Indicate whether GCC should generate code to use the optional BWX,
15806 CIX, FIX and MAX instruction sets. The default is to use the instruction
15807 sets supported by the CPU type specified via @option{-mcpu=} option or that
15808 of the CPU on which GCC was built if none is specified.
15809
15810 @item -mfloat-vax
15811 @itemx -mfloat-ieee
15812 @opindex mfloat-vax
15813 @opindex mfloat-ieee
15814 Generate code that uses (does not use) VAX F and G floating-point
15815 arithmetic instead of IEEE single and double precision.
15816
15817 @item -mexplicit-relocs
15818 @itemx -mno-explicit-relocs
15819 @opindex mexplicit-relocs
15820 @opindex mno-explicit-relocs
15821 Older Alpha assemblers provided no way to generate symbol relocations
15822 except via assembler macros. Use of these macros does not allow
15823 optimal instruction scheduling. GNU binutils as of version 2.12
15824 supports a new syntax that allows the compiler to explicitly mark
15825 which relocations should apply to which instructions. This option
15826 is mostly useful for debugging, as GCC detects the capabilities of
15827 the assembler when it is built and sets the default accordingly.
15828
15829 @item -msmall-data
15830 @itemx -mlarge-data
15831 @opindex msmall-data
15832 @opindex mlarge-data
15833 When @option{-mexplicit-relocs} is in effect, static data is
15834 accessed via @dfn{gp-relative} relocations. When @option{-msmall-data}
15835 is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
15836 (the @code{.sdata} and @code{.sbss} sections) and are accessed via
15837 16-bit relocations off of the @code{$gp} register. This limits the
15838 size of the small data area to 64KB, but allows the variables to be
15839 directly accessed via a single instruction.
15840
15841 The default is @option{-mlarge-data}. With this option the data area
15842 is limited to just below 2GB@. Programs that require more than 2GB of
15843 data must use @code{malloc} or @code{mmap} to allocate the data in the
15844 heap instead of in the program's data segment.
15845
15846 When generating code for shared libraries, @option{-fpic} implies
15847 @option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
15848
15849 @item -msmall-text
15850 @itemx -mlarge-text
15851 @opindex msmall-text
15852 @opindex mlarge-text
15853 When @option{-msmall-text} is used, the compiler assumes that the
15854 code of the entire program (or shared library) fits in 4MB, and is
15855 thus reachable with a branch instruction. When @option{-msmall-data}
15856 is used, the compiler can assume that all local symbols share the
15857 same @code{$gp} value, and thus reduce the number of instructions
15858 required for a function call from 4 to 1.
15859
15860 The default is @option{-mlarge-text}.
15861
15862 @item -mcpu=@var{cpu_type}
15863 @opindex mcpu
15864 Set the instruction set and instruction scheduling parameters for
15865 machine type @var{cpu_type}. You can specify either the @samp{EV}
15866 style name or the corresponding chip number. GCC supports scheduling
15867 parameters for the EV4, EV5 and EV6 family of processors and
15868 chooses the default values for the instruction set from the processor
15869 you specify. If you do not specify a processor type, GCC defaults
15870 to the processor on which the compiler was built.
15871
15872 Supported values for @var{cpu_type} are
15873
15874 @table @samp
15875 @item ev4
15876 @itemx ev45
15877 @itemx 21064
15878 Schedules as an EV4 and has no instruction set extensions.
15879
15880 @item ev5
15881 @itemx 21164
15882 Schedules as an EV5 and has no instruction set extensions.
15883
15884 @item ev56
15885 @itemx 21164a
15886 Schedules as an EV5 and supports the BWX extension.
15887
15888 @item pca56
15889 @itemx 21164pc
15890 @itemx 21164PC
15891 Schedules as an EV5 and supports the BWX and MAX extensions.
15892
15893 @item ev6
15894 @itemx 21264
15895 Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
15896
15897 @item ev67
15898 @itemx 21264a
15899 Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
15900 @end table
15901
15902 Native toolchains also support the value @samp{native},
15903 which selects the best architecture option for the host processor.
15904 @option{-mcpu=native} has no effect if GCC does not recognize
15905 the processor.
15906
15907 @item -mtune=@var{cpu_type}
15908 @opindex mtune
15909 Set only the instruction scheduling parameters for machine type
15910 @var{cpu_type}. The instruction set is not changed.
15911
15912 Native toolchains also support the value @samp{native},
15913 which selects the best architecture option for the host processor.
15914 @option{-mtune=native} has no effect if GCC does not recognize
15915 the processor.
15916
15917 @item -mmemory-latency=@var{time}
15918 @opindex mmemory-latency
15919 Sets the latency the scheduler should assume for typical memory
15920 references as seen by the application. This number is highly
15921 dependent on the memory access patterns used by the application
15922 and the size of the external cache on the machine.
15923
15924 Valid options for @var{time} are
15925
15926 @table @samp
15927 @item @var{number}
15928 A decimal number representing clock cycles.
15929
15930 @item L1
15931 @itemx L2
15932 @itemx L3
15933 @itemx main
15934 The compiler contains estimates of the number of clock cycles for
15935 ``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
15936 (also called Dcache, Scache, and Bcache), as well as to main memory.
15937 Note that L3 is only valid for EV5.
15938
15939 @end table
15940 @end table
15941
15942 @node FR30 Options
15943 @subsection FR30 Options
15944 @cindex FR30 Options
15945
15946 These options are defined specifically for the FR30 port.
15947
15948 @table @gcctabopt
15949
15950 @item -msmall-model
15951 @opindex msmall-model
15952 Use the small address space model. This can produce smaller code, but
15953 it does assume that all symbolic values and addresses fit into a
15954 20-bit range.
15955
15956 @item -mno-lsim
15957 @opindex mno-lsim
15958 Assume that runtime support has been provided and so there is no need
15959 to include the simulator library (@file{libsim.a}) on the linker
15960 command line.
15961
15962 @end table
15963
15964 @node FT32 Options
15965 @subsection FT32 Options
15966 @cindex FT32 Options
15967
15968 These options are defined specifically for the FT32 port.
15969
15970 @table @gcctabopt
15971
15972 @item -msim
15973 @opindex msim
15974 Specifies that the program will be run on the simulator. This causes
15975 an alternate runtime startup and library to be linked.
15976 You must not use this option when generating programs that will run on
15977 real hardware; you must provide your own runtime library for whatever
15978 I/O functions are needed.
15979
15980 @item -mlra
15981 @opindex mlra
15982 Enable Local Register Allocation. This is still experimental for FT32,
15983 so by default the compiler uses standard reload.
15984
15985 @item -mnodiv
15986 @opindex mnodiv
15987 Do not use div and mod instructions.
15988
15989 @end table
15990
15991 @node FRV Options
15992 @subsection FRV Options
15993 @cindex FRV Options
15994
15995 @table @gcctabopt
15996 @item -mgpr-32
15997 @opindex mgpr-32
15998
15999 Only use the first 32 general-purpose registers.
16000
16001 @item -mgpr-64
16002 @opindex mgpr-64
16003
16004 Use all 64 general-purpose registers.
16005
16006 @item -mfpr-32
16007 @opindex mfpr-32
16008
16009 Use only the first 32 floating-point registers.
16010
16011 @item -mfpr-64
16012 @opindex mfpr-64
16013
16014 Use all 64 floating-point registers.
16015
16016 @item -mhard-float
16017 @opindex mhard-float
16018
16019 Use hardware instructions for floating-point operations.
16020
16021 @item -msoft-float
16022 @opindex msoft-float
16023
16024 Use library routines for floating-point operations.
16025
16026 @item -malloc-cc
16027 @opindex malloc-cc
16028
16029 Dynamically allocate condition code registers.
16030
16031 @item -mfixed-cc
16032 @opindex mfixed-cc
16033
16034 Do not try to dynamically allocate condition code registers, only
16035 use @code{icc0} and @code{fcc0}.
16036
16037 @item -mdword
16038 @opindex mdword
16039
16040 Change ABI to use double word insns.
16041
16042 @item -mno-dword
16043 @opindex mno-dword
16044
16045 Do not use double word instructions.
16046
16047 @item -mdouble
16048 @opindex mdouble
16049
16050 Use floating-point double instructions.
16051
16052 @item -mno-double
16053 @opindex mno-double
16054
16055 Do not use floating-point double instructions.
16056
16057 @item -mmedia
16058 @opindex mmedia
16059
16060 Use media instructions.
16061
16062 @item -mno-media
16063 @opindex mno-media
16064
16065 Do not use media instructions.
16066
16067 @item -mmuladd
16068 @opindex mmuladd
16069
16070 Use multiply and add/subtract instructions.
16071
16072 @item -mno-muladd
16073 @opindex mno-muladd
16074
16075 Do not use multiply and add/subtract instructions.
16076
16077 @item -mfdpic
16078 @opindex mfdpic
16079
16080 Select the FDPIC ABI, which uses function descriptors to represent
16081 pointers to functions. Without any PIC/PIE-related options, it
16082 implies @option{-fPIE}. With @option{-fpic} or @option{-fpie}, it
16083 assumes GOT entries and small data are within a 12-bit range from the
16084 GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
16085 are computed with 32 bits.
16086 With a @samp{bfin-elf} target, this option implies @option{-msim}.
16087
16088 @item -minline-plt
16089 @opindex minline-plt
16090
16091 Enable inlining of PLT entries in function calls to functions that are
16092 not known to bind locally. It has no effect without @option{-mfdpic}.
16093 It's enabled by default if optimizing for speed and compiling for
16094 shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
16095 optimization option such as @option{-O3} or above is present in the
16096 command line.
16097
16098 @item -mTLS
16099 @opindex mTLS
16100
16101 Assume a large TLS segment when generating thread-local code.
16102
16103 @item -mtls
16104 @opindex mtls
16105
16106 Do not assume a large TLS segment when generating thread-local code.
16107
16108 @item -mgprel-ro
16109 @opindex mgprel-ro
16110
16111 Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
16112 that is known to be in read-only sections. It's enabled by default,
16113 except for @option{-fpic} or @option{-fpie}: even though it may help
16114 make the global offset table smaller, it trades 1 instruction for 4.
16115 With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
16116 one of which may be shared by multiple symbols, and it avoids the need
16117 for a GOT entry for the referenced symbol, so it's more likely to be a
16118 win. If it is not, @option{-mno-gprel-ro} can be used to disable it.
16119
16120 @item -multilib-library-pic
16121 @opindex multilib-library-pic
16122
16123 Link with the (library, not FD) pic libraries. It's implied by
16124 @option{-mlibrary-pic}, as well as by @option{-fPIC} and
16125 @option{-fpic} without @option{-mfdpic}. You should never have to use
16126 it explicitly.
16127
16128 @item -mlinked-fp
16129 @opindex mlinked-fp
16130
16131 Follow the EABI requirement of always creating a frame pointer whenever
16132 a stack frame is allocated. This option is enabled by default and can
16133 be disabled with @option{-mno-linked-fp}.
16134
16135 @item -mlong-calls
16136 @opindex mlong-calls
16137
16138 Use indirect addressing to call functions outside the current
16139 compilation unit. This allows the functions to be placed anywhere
16140 within the 32-bit address space.
16141
16142 @item -malign-labels
16143 @opindex malign-labels
16144
16145 Try to align labels to an 8-byte boundary by inserting NOPs into the
16146 previous packet. This option only has an effect when VLIW packing
16147 is enabled. It doesn't create new packets; it merely adds NOPs to
16148 existing ones.
16149
16150 @item -mlibrary-pic
16151 @opindex mlibrary-pic
16152
16153 Generate position-independent EABI code.
16154
16155 @item -macc-4
16156 @opindex macc-4
16157
16158 Use only the first four media accumulator registers.
16159
16160 @item -macc-8
16161 @opindex macc-8
16162
16163 Use all eight media accumulator registers.
16164
16165 @item -mpack
16166 @opindex mpack
16167
16168 Pack VLIW instructions.
16169
16170 @item -mno-pack
16171 @opindex mno-pack
16172
16173 Do not pack VLIW instructions.
16174
16175 @item -mno-eflags
16176 @opindex mno-eflags
16177
16178 Do not mark ABI switches in e_flags.
16179
16180 @item -mcond-move
16181 @opindex mcond-move
16182
16183 Enable the use of conditional-move instructions (default).
16184
16185 This switch is mainly for debugging the compiler and will likely be removed
16186 in a future version.
16187
16188 @item -mno-cond-move
16189 @opindex mno-cond-move
16190
16191 Disable the use of conditional-move instructions.
16192
16193 This switch is mainly for debugging the compiler and will likely be removed
16194 in a future version.
16195
16196 @item -mscc
16197 @opindex mscc
16198
16199 Enable the use of conditional set instructions (default).
16200
16201 This switch is mainly for debugging the compiler and will likely be removed
16202 in a future version.
16203
16204 @item -mno-scc
16205 @opindex mno-scc
16206
16207 Disable the use of conditional set instructions.
16208
16209 This switch is mainly for debugging the compiler and will likely be removed
16210 in a future version.
16211
16212 @item -mcond-exec
16213 @opindex mcond-exec
16214
16215 Enable the use of conditional execution (default).
16216
16217 This switch is mainly for debugging the compiler and will likely be removed
16218 in a future version.
16219
16220 @item -mno-cond-exec
16221 @opindex mno-cond-exec
16222
16223 Disable the use of conditional execution.
16224
16225 This switch is mainly for debugging the compiler and will likely be removed
16226 in a future version.
16227
16228 @item -mvliw-branch
16229 @opindex mvliw-branch
16230
16231 Run a pass to pack branches into VLIW instructions (default).
16232
16233 This switch is mainly for debugging the compiler and will likely be removed
16234 in a future version.
16235
16236 @item -mno-vliw-branch
16237 @opindex mno-vliw-branch
16238
16239 Do not run a pass to pack branches into VLIW instructions.
16240
16241 This switch is mainly for debugging the compiler and will likely be removed
16242 in a future version.
16243
16244 @item -mmulti-cond-exec
16245 @opindex mmulti-cond-exec
16246
16247 Enable optimization of @code{&&} and @code{||} in conditional execution
16248 (default).
16249
16250 This switch is mainly for debugging the compiler and will likely be removed
16251 in a future version.
16252
16253 @item -mno-multi-cond-exec
16254 @opindex mno-multi-cond-exec
16255
16256 Disable optimization of @code{&&} and @code{||} in conditional execution.
16257
16258 This switch is mainly for debugging the compiler and will likely be removed
16259 in a future version.
16260
16261 @item -mnested-cond-exec
16262 @opindex mnested-cond-exec
16263
16264 Enable nested conditional execution optimizations (default).
16265
16266 This switch is mainly for debugging the compiler and will likely be removed
16267 in a future version.
16268
16269 @item -mno-nested-cond-exec
16270 @opindex mno-nested-cond-exec
16271
16272 Disable nested conditional execution optimizations.
16273
16274 This switch is mainly for debugging the compiler and will likely be removed
16275 in a future version.
16276
16277 @item -moptimize-membar
16278 @opindex moptimize-membar
16279
16280 This switch removes redundant @code{membar} instructions from the
16281 compiler-generated code. It is enabled by default.
16282
16283 @item -mno-optimize-membar
16284 @opindex mno-optimize-membar
16285
16286 This switch disables the automatic removal of redundant @code{membar}
16287 instructions from the generated code.
16288
16289 @item -mtomcat-stats
16290 @opindex mtomcat-stats
16291
16292 Cause gas to print out tomcat statistics.
16293
16294 @item -mcpu=@var{cpu}
16295 @opindex mcpu
16296
16297 Select the processor type for which to generate code. Possible values are
16298 @samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
16299 @samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
16300
16301 @end table
16302
16303 @node GNU/Linux Options
16304 @subsection GNU/Linux Options
16305
16306 These @samp{-m} options are defined for GNU/Linux targets:
16307
16308 @table @gcctabopt
16309 @item -mglibc
16310 @opindex mglibc
16311 Use the GNU C library. This is the default except
16312 on @samp{*-*-linux-*uclibc*}, @samp{*-*-linux-*musl*} and
16313 @samp{*-*-linux-*android*} targets.
16314
16315 @item -muclibc
16316 @opindex muclibc
16317 Use uClibc C library. This is the default on
16318 @samp{*-*-linux-*uclibc*} targets.
16319
16320 @item -mmusl
16321 @opindex mmusl
16322 Use the musl C library. This is the default on
16323 @samp{*-*-linux-*musl*} targets.
16324
16325 @item -mbionic
16326 @opindex mbionic
16327 Use Bionic C library. This is the default on
16328 @samp{*-*-linux-*android*} targets.
16329
16330 @item -mandroid
16331 @opindex mandroid
16332 Compile code compatible with Android platform. This is the default on
16333 @samp{*-*-linux-*android*} targets.
16334
16335 When compiling, this option enables @option{-mbionic}, @option{-fPIC},
16336 @option{-fno-exceptions} and @option{-fno-rtti} by default. When linking,
16337 this option makes the GCC driver pass Android-specific options to the linker.
16338 Finally, this option causes the preprocessor macro @code{__ANDROID__}
16339 to be defined.
16340
16341 @item -tno-android-cc
16342 @opindex tno-android-cc
16343 Disable compilation effects of @option{-mandroid}, i.e., do not enable
16344 @option{-mbionic}, @option{-fPIC}, @option{-fno-exceptions} and
16345 @option{-fno-rtti} by default.
16346
16347 @item -tno-android-ld
16348 @opindex tno-android-ld
16349 Disable linking effects of @option{-mandroid}, i.e., pass standard Linux
16350 linking options to the linker.
16351
16352 @end table
16353
16354 @node H8/300 Options
16355 @subsection H8/300 Options
16356
16357 These @samp{-m} options are defined for the H8/300 implementations:
16358
16359 @table @gcctabopt
16360 @item -mrelax
16361 @opindex mrelax
16362 Shorten some address references at link time, when possible; uses the
16363 linker option @option{-relax}. @xref{H8/300,, @code{ld} and the H8/300,
16364 ld, Using ld}, for a fuller description.
16365
16366 @item -mh
16367 @opindex mh
16368 Generate code for the H8/300H@.
16369
16370 @item -ms
16371 @opindex ms
16372 Generate code for the H8S@.
16373
16374 @item -mn
16375 @opindex mn
16376 Generate code for the H8S and H8/300H in the normal mode. This switch
16377 must be used either with @option{-mh} or @option{-ms}.
16378
16379 @item -ms2600
16380 @opindex ms2600
16381 Generate code for the H8S/2600. This switch must be used with @option{-ms}.
16382
16383 @item -mexr
16384 @opindex mexr
16385 Extended registers are stored on stack before execution of function
16386 with monitor attribute. Default option is @option{-mexr}.
16387 This option is valid only for H8S targets.
16388
16389 @item -mno-exr
16390 @opindex mno-exr
16391 Extended registers are not stored on stack before execution of function
16392 with monitor attribute. Default option is @option{-mno-exr}.
16393 This option is valid only for H8S targets.
16394
16395 @item -mint32
16396 @opindex mint32
16397 Make @code{int} data 32 bits by default.
16398
16399 @item -malign-300
16400 @opindex malign-300
16401 On the H8/300H and H8S, use the same alignment rules as for the H8/300.
16402 The default for the H8/300H and H8S is to align longs and floats on
16403 4-byte boundaries.
16404 @option{-malign-300} causes them to be aligned on 2-byte boundaries.
16405 This option has no effect on the H8/300.
16406 @end table
16407
16408 @node HPPA Options
16409 @subsection HPPA Options
16410 @cindex HPPA Options
16411
16412 These @samp{-m} options are defined for the HPPA family of computers:
16413
16414 @table @gcctabopt
16415 @item -march=@var{architecture-type}
16416 @opindex march
16417 Generate code for the specified architecture. The choices for
16418 @var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
16419 1.1, and @samp{2.0} for PA 2.0 processors. Refer to
16420 @file{/usr/lib/sched.models} on an HP-UX system to determine the proper
16421 architecture option for your machine. Code compiled for lower numbered
16422 architectures runs on higher numbered architectures, but not the
16423 other way around.
16424
16425 @item -mpa-risc-1-0
16426 @itemx -mpa-risc-1-1
16427 @itemx -mpa-risc-2-0
16428 @opindex mpa-risc-1-0
16429 @opindex mpa-risc-1-1
16430 @opindex mpa-risc-2-0
16431 Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
16432
16433 @item -mjump-in-delay
16434 @opindex mjump-in-delay
16435 This option is ignored and provided for compatibility purposes only.
16436
16437 @item -mdisable-fpregs
16438 @opindex mdisable-fpregs
16439 Prevent floating-point registers from being used in any manner. This is
16440 necessary for compiling kernels that perform lazy context switching of
16441 floating-point registers. If you use this option and attempt to perform
16442 floating-point operations, the compiler aborts.
16443
16444 @item -mdisable-indexing
16445 @opindex mdisable-indexing
16446 Prevent the compiler from using indexing address modes. This avoids some
16447 rather obscure problems when compiling MIG generated code under MACH@.
16448
16449 @item -mno-space-regs
16450 @opindex mno-space-regs
16451 Generate code that assumes the target has no space registers. This allows
16452 GCC to generate faster indirect calls and use unscaled index address modes.
16453
16454 Such code is suitable for level 0 PA systems and kernels.
16455
16456 @item -mfast-indirect-calls
16457 @opindex mfast-indirect-calls
16458 Generate code that assumes calls never cross space boundaries. This
16459 allows GCC to emit code that performs faster indirect calls.
16460
16461 This option does not work in the presence of shared libraries or nested
16462 functions.
16463
16464 @item -mfixed-range=@var{register-range}
16465 @opindex mfixed-range
16466 Generate code treating the given register range as fixed registers.
16467 A fixed register is one that the register allocator cannot use. This is
16468 useful when compiling kernel code. A register range is specified as
16469 two registers separated by a dash. Multiple register ranges can be
16470 specified separated by a comma.
16471
16472 @item -mlong-load-store
16473 @opindex mlong-load-store
16474 Generate 3-instruction load and store sequences as sometimes required by
16475 the HP-UX 10 linker. This is equivalent to the @samp{+k} option to
16476 the HP compilers.
16477
16478 @item -mportable-runtime
16479 @opindex mportable-runtime
16480 Use the portable calling conventions proposed by HP for ELF systems.
16481
16482 @item -mgas
16483 @opindex mgas
16484 Enable the use of assembler directives only GAS understands.
16485
16486 @item -mschedule=@var{cpu-type}
16487 @opindex mschedule
16488 Schedule code according to the constraints for the machine type
16489 @var{cpu-type}. The choices for @var{cpu-type} are @samp{700}
16490 @samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}. Refer
16491 to @file{/usr/lib/sched.models} on an HP-UX system to determine the
16492 proper scheduling option for your machine. The default scheduling is
16493 @samp{8000}.
16494
16495 @item -mlinker-opt
16496 @opindex mlinker-opt
16497 Enable the optimization pass in the HP-UX linker. Note this makes symbolic
16498 debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
16499 linkers in which they give bogus error messages when linking some programs.
16500
16501 @item -msoft-float
16502 @opindex msoft-float
16503 Generate output containing library calls for floating point.
16504 @strong{Warning:} the requisite libraries are not available for all HPPA
16505 targets. Normally the facilities of the machine's usual C compiler are
16506 used, but this cannot be done directly in cross-compilation. You must make
16507 your own arrangements to provide suitable library functions for
16508 cross-compilation.
16509
16510 @option{-msoft-float} changes the calling convention in the output file;
16511 therefore, it is only useful if you compile @emph{all} of a program with
16512 this option. In particular, you need to compile @file{libgcc.a}, the
16513 library that comes with GCC, with @option{-msoft-float} in order for
16514 this to work.
16515
16516 @item -msio
16517 @opindex msio
16518 Generate the predefine, @code{_SIO}, for server IO@. The default is
16519 @option{-mwsio}. This generates the predefines, @code{__hp9000s700},
16520 @code{__hp9000s700__} and @code{_WSIO}, for workstation IO@. These
16521 options are available under HP-UX and HI-UX@.
16522
16523 @item -mgnu-ld
16524 @opindex mgnu-ld
16525 Use options specific to GNU @command{ld}.
16526 This passes @option{-shared} to @command{ld} when
16527 building a shared library. It is the default when GCC is configured,
16528 explicitly or implicitly, with the GNU linker. This option does not
16529 affect which @command{ld} is called; it only changes what parameters
16530 are passed to that @command{ld}.
16531 The @command{ld} that is called is determined by the
16532 @option{--with-ld} configure option, GCC's program search path, and
16533 finally by the user's @env{PATH}. The linker used by GCC can be printed
16534 using @samp{which `gcc -print-prog-name=ld`}. This option is only available
16535 on the 64-bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
16536
16537 @item -mhp-ld
16538 @opindex mhp-ld
16539 Use options specific to HP @command{ld}.
16540 This passes @option{-b} to @command{ld} when building
16541 a shared library and passes @option{+Accept TypeMismatch} to @command{ld} on all
16542 links. It is the default when GCC is configured, explicitly or
16543 implicitly, with the HP linker. This option does not affect
16544 which @command{ld} is called; it only changes what parameters are passed to that
16545 @command{ld}.
16546 The @command{ld} that is called is determined by the @option{--with-ld}
16547 configure option, GCC's program search path, and finally by the user's
16548 @env{PATH}. The linker used by GCC can be printed using @samp{which
16549 `gcc -print-prog-name=ld`}. This option is only available on the 64-bit
16550 HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
16551
16552 @item -mlong-calls
16553 @opindex mno-long-calls
16554 Generate code that uses long call sequences. This ensures that a call
16555 is always able to reach linker generated stubs. The default is to generate
16556 long calls only when the distance from the call site to the beginning
16557 of the function or translation unit, as the case may be, exceeds a
16558 predefined limit set by the branch type being used. The limits for
16559 normal calls are 7,600,000 and 240,000 bytes, respectively for the
16560 PA 2.0 and PA 1.X architectures. Sibcalls are always limited at
16561 240,000 bytes.
16562
16563 Distances are measured from the beginning of functions when using the
16564 @option{-ffunction-sections} option, or when using the @option{-mgas}
16565 and @option{-mno-portable-runtime} options together under HP-UX with
16566 the SOM linker.
16567
16568 It is normally not desirable to use this option as it degrades
16569 performance. However, it may be useful in large applications,
16570 particularly when partial linking is used to build the application.
16571
16572 The types of long calls used depends on the capabilities of the
16573 assembler and linker, and the type of code being generated. The
16574 impact on systems that support long absolute calls, and long pic
16575 symbol-difference or pc-relative calls should be relatively small.
16576 However, an indirect call is used on 32-bit ELF systems in pic code
16577 and it is quite long.
16578
16579 @item -munix=@var{unix-std}
16580 @opindex march
16581 Generate compiler predefines and select a startfile for the specified
16582 UNIX standard. The choices for @var{unix-std} are @samp{93}, @samp{95}
16583 and @samp{98}. @samp{93} is supported on all HP-UX versions. @samp{95}
16584 is available on HP-UX 10.10 and later. @samp{98} is available on HP-UX
16585 11.11 and later. The default values are @samp{93} for HP-UX 10.00,
16586 @samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
16587 and later.
16588
16589 @option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
16590 @option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
16591 and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
16592 @option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
16593 @code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
16594 @code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
16595
16596 It is @emph{important} to note that this option changes the interfaces
16597 for various library routines. It also affects the operational behavior
16598 of the C library. Thus, @emph{extreme} care is needed in using this
16599 option.
16600
16601 Library code that is intended to operate with more than one UNIX
16602 standard must test, set and restore the variable @code{__xpg4_extended_mask}
16603 as appropriate. Most GNU software doesn't provide this capability.
16604
16605 @item -nolibdld
16606 @opindex nolibdld
16607 Suppress the generation of link options to search libdld.sl when the
16608 @option{-static} option is specified on HP-UX 10 and later.
16609
16610 @item -static
16611 @opindex static
16612 The HP-UX implementation of setlocale in libc has a dependency on
16613 libdld.sl. There isn't an archive version of libdld.sl. Thus,
16614 when the @option{-static} option is specified, special link options
16615 are needed to resolve this dependency.
16616
16617 On HP-UX 10 and later, the GCC driver adds the necessary options to
16618 link with libdld.sl when the @option{-static} option is specified.
16619 This causes the resulting binary to be dynamic. On the 64-bit port,
16620 the linkers generate dynamic binaries by default in any case. The
16621 @option{-nolibdld} option can be used to prevent the GCC driver from
16622 adding these link options.
16623
16624 @item -threads
16625 @opindex threads
16626 Add support for multithreading with the @dfn{dce thread} library
16627 under HP-UX@. This option sets flags for both the preprocessor and
16628 linker.
16629 @end table
16630
16631 @node IA-64 Options
16632 @subsection IA-64 Options
16633 @cindex IA-64 Options
16634
16635 These are the @samp{-m} options defined for the Intel IA-64 architecture.
16636
16637 @table @gcctabopt
16638 @item -mbig-endian
16639 @opindex mbig-endian
16640 Generate code for a big-endian target. This is the default for HP-UX@.
16641
16642 @item -mlittle-endian
16643 @opindex mlittle-endian
16644 Generate code for a little-endian target. This is the default for AIX5
16645 and GNU/Linux.
16646
16647 @item -mgnu-as
16648 @itemx -mno-gnu-as
16649 @opindex mgnu-as
16650 @opindex mno-gnu-as
16651 Generate (or don't) code for the GNU assembler. This is the default.
16652 @c Also, this is the default if the configure option @option{--with-gnu-as}
16653 @c is used.
16654
16655 @item -mgnu-ld
16656 @itemx -mno-gnu-ld
16657 @opindex mgnu-ld
16658 @opindex mno-gnu-ld
16659 Generate (or don't) code for the GNU linker. This is the default.
16660 @c Also, this is the default if the configure option @option{--with-gnu-ld}
16661 @c is used.
16662
16663 @item -mno-pic
16664 @opindex mno-pic
16665 Generate code that does not use a global pointer register. The result
16666 is not position independent code, and violates the IA-64 ABI@.
16667
16668 @item -mvolatile-asm-stop
16669 @itemx -mno-volatile-asm-stop
16670 @opindex mvolatile-asm-stop
16671 @opindex mno-volatile-asm-stop
16672 Generate (or don't) a stop bit immediately before and after volatile asm
16673 statements.
16674
16675 @item -mregister-names
16676 @itemx -mno-register-names
16677 @opindex mregister-names
16678 @opindex mno-register-names
16679 Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
16680 the stacked registers. This may make assembler output more readable.
16681
16682 @item -mno-sdata
16683 @itemx -msdata
16684 @opindex mno-sdata
16685 @opindex msdata
16686 Disable (or enable) optimizations that use the small data section. This may
16687 be useful for working around optimizer bugs.
16688
16689 @item -mconstant-gp
16690 @opindex mconstant-gp
16691 Generate code that uses a single constant global pointer value. This is
16692 useful when compiling kernel code.
16693
16694 @item -mauto-pic
16695 @opindex mauto-pic
16696 Generate code that is self-relocatable. This implies @option{-mconstant-gp}.
16697 This is useful when compiling firmware code.
16698
16699 @item -minline-float-divide-min-latency
16700 @opindex minline-float-divide-min-latency
16701 Generate code for inline divides of floating-point values
16702 using the minimum latency algorithm.
16703
16704 @item -minline-float-divide-max-throughput
16705 @opindex minline-float-divide-max-throughput
16706 Generate code for inline divides of floating-point values
16707 using the maximum throughput algorithm.
16708
16709 @item -mno-inline-float-divide
16710 @opindex mno-inline-float-divide
16711 Do not generate inline code for divides of floating-point values.
16712
16713 @item -minline-int-divide-min-latency
16714 @opindex minline-int-divide-min-latency
16715 Generate code for inline divides of integer values
16716 using the minimum latency algorithm.
16717
16718 @item -minline-int-divide-max-throughput
16719 @opindex minline-int-divide-max-throughput
16720 Generate code for inline divides of integer values
16721 using the maximum throughput algorithm.
16722
16723 @item -mno-inline-int-divide
16724 @opindex mno-inline-int-divide
16725 Do not generate inline code for divides of integer values.
16726
16727 @item -minline-sqrt-min-latency
16728 @opindex minline-sqrt-min-latency
16729 Generate code for inline square roots
16730 using the minimum latency algorithm.
16731
16732 @item -minline-sqrt-max-throughput
16733 @opindex minline-sqrt-max-throughput
16734 Generate code for inline square roots
16735 using the maximum throughput algorithm.
16736
16737 @item -mno-inline-sqrt
16738 @opindex mno-inline-sqrt
16739 Do not generate inline code for @code{sqrt}.
16740
16741 @item -mfused-madd
16742 @itemx -mno-fused-madd
16743 @opindex mfused-madd
16744 @opindex mno-fused-madd
16745 Do (don't) generate code that uses the fused multiply/add or multiply/subtract
16746 instructions. The default is to use these instructions.
16747
16748 @item -mno-dwarf2-asm
16749 @itemx -mdwarf2-asm
16750 @opindex mno-dwarf2-asm
16751 @opindex mdwarf2-asm
16752 Don't (or do) generate assembler code for the DWARF line number debugging
16753 info. This may be useful when not using the GNU assembler.
16754
16755 @item -mearly-stop-bits
16756 @itemx -mno-early-stop-bits
16757 @opindex mearly-stop-bits
16758 @opindex mno-early-stop-bits
16759 Allow stop bits to be placed earlier than immediately preceding the
16760 instruction that triggered the stop bit. This can improve instruction
16761 scheduling, but does not always do so.
16762
16763 @item -mfixed-range=@var{register-range}
16764 @opindex mfixed-range
16765 Generate code treating the given register range as fixed registers.
16766 A fixed register is one that the register allocator cannot use. This is
16767 useful when compiling kernel code. A register range is specified as
16768 two registers separated by a dash. Multiple register ranges can be
16769 specified separated by a comma.
16770
16771 @item -mtls-size=@var{tls-size}
16772 @opindex mtls-size
16773 Specify bit size of immediate TLS offsets. Valid values are 14, 22, and
16774 64.
16775
16776 @item -mtune=@var{cpu-type}
16777 @opindex mtune
16778 Tune the instruction scheduling for a particular CPU, Valid values are
16779 @samp{itanium}, @samp{itanium1}, @samp{merced}, @samp{itanium2},
16780 and @samp{mckinley}.
16781
16782 @item -milp32
16783 @itemx -mlp64
16784 @opindex milp32
16785 @opindex mlp64
16786 Generate code for a 32-bit or 64-bit environment.
16787 The 32-bit environment sets int, long and pointer to 32 bits.
16788 The 64-bit environment sets int to 32 bits and long and pointer
16789 to 64 bits. These are HP-UX specific flags.
16790
16791 @item -mno-sched-br-data-spec
16792 @itemx -msched-br-data-spec
16793 @opindex mno-sched-br-data-spec
16794 @opindex msched-br-data-spec
16795 (Dis/En)able data speculative scheduling before reload.
16796 This results in generation of @code{ld.a} instructions and
16797 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
16798 The default setting is disabled.
16799
16800 @item -msched-ar-data-spec
16801 @itemx -mno-sched-ar-data-spec
16802 @opindex msched-ar-data-spec
16803 @opindex mno-sched-ar-data-spec
16804 (En/Dis)able data speculative scheduling after reload.
16805 This results in generation of @code{ld.a} instructions and
16806 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
16807 The default setting is enabled.
16808
16809 @item -mno-sched-control-spec
16810 @itemx -msched-control-spec
16811 @opindex mno-sched-control-spec
16812 @opindex msched-control-spec
16813 (Dis/En)able control speculative scheduling. This feature is
16814 available only during region scheduling (i.e.@: before reload).
16815 This results in generation of the @code{ld.s} instructions and
16816 the corresponding check instructions @code{chk.s}.
16817 The default setting is disabled.
16818
16819 @item -msched-br-in-data-spec
16820 @itemx -mno-sched-br-in-data-spec
16821 @opindex msched-br-in-data-spec
16822 @opindex mno-sched-br-in-data-spec
16823 (En/Dis)able speculative scheduling of the instructions that
16824 are dependent on the data speculative loads before reload.
16825 This is effective only with @option{-msched-br-data-spec} enabled.
16826 The default setting is enabled.
16827
16828 @item -msched-ar-in-data-spec
16829 @itemx -mno-sched-ar-in-data-spec
16830 @opindex msched-ar-in-data-spec
16831 @opindex mno-sched-ar-in-data-spec
16832 (En/Dis)able speculative scheduling of the instructions that
16833 are dependent on the data speculative loads after reload.
16834 This is effective only with @option{-msched-ar-data-spec} enabled.
16835 The default setting is enabled.
16836
16837 @item -msched-in-control-spec
16838 @itemx -mno-sched-in-control-spec
16839 @opindex msched-in-control-spec
16840 @opindex mno-sched-in-control-spec
16841 (En/Dis)able speculative scheduling of the instructions that
16842 are dependent on the control speculative loads.
16843 This is effective only with @option{-msched-control-spec} enabled.
16844 The default setting is enabled.
16845
16846 @item -mno-sched-prefer-non-data-spec-insns
16847 @itemx -msched-prefer-non-data-spec-insns
16848 @opindex mno-sched-prefer-non-data-spec-insns
16849 @opindex msched-prefer-non-data-spec-insns
16850 If enabled, data-speculative instructions are chosen for schedule
16851 only if there are no other choices at the moment. This makes
16852 the use of the data speculation much more conservative.
16853 The default setting is disabled.
16854
16855 @item -mno-sched-prefer-non-control-spec-insns
16856 @itemx -msched-prefer-non-control-spec-insns
16857 @opindex mno-sched-prefer-non-control-spec-insns
16858 @opindex msched-prefer-non-control-spec-insns
16859 If enabled, control-speculative instructions are chosen for schedule
16860 only if there are no other choices at the moment. This makes
16861 the use of the control speculation much more conservative.
16862 The default setting is disabled.
16863
16864 @item -mno-sched-count-spec-in-critical-path
16865 @itemx -msched-count-spec-in-critical-path
16866 @opindex mno-sched-count-spec-in-critical-path
16867 @opindex msched-count-spec-in-critical-path
16868 If enabled, speculative dependencies are considered during
16869 computation of the instructions priorities. This makes the use of the
16870 speculation a bit more conservative.
16871 The default setting is disabled.
16872
16873 @item -msched-spec-ldc
16874 @opindex msched-spec-ldc
16875 Use a simple data speculation check. This option is on by default.
16876
16877 @item -msched-control-spec-ldc
16878 @opindex msched-spec-ldc
16879 Use a simple check for control speculation. This option is on by default.
16880
16881 @item -msched-stop-bits-after-every-cycle
16882 @opindex msched-stop-bits-after-every-cycle
16883 Place a stop bit after every cycle when scheduling. This option is on
16884 by default.
16885
16886 @item -msched-fp-mem-deps-zero-cost
16887 @opindex msched-fp-mem-deps-zero-cost
16888 Assume that floating-point stores and loads are not likely to cause a conflict
16889 when placed into the same instruction group. This option is disabled by
16890 default.
16891
16892 @item -msel-sched-dont-check-control-spec
16893 @opindex msel-sched-dont-check-control-spec
16894 Generate checks for control speculation in selective scheduling.
16895 This flag is disabled by default.
16896
16897 @item -msched-max-memory-insns=@var{max-insns}
16898 @opindex msched-max-memory-insns
16899 Limit on the number of memory insns per instruction group, giving lower
16900 priority to subsequent memory insns attempting to schedule in the same
16901 instruction group. Frequently useful to prevent cache bank conflicts.
16902 The default value is 1.
16903
16904 @item -msched-max-memory-insns-hard-limit
16905 @opindex msched-max-memory-insns-hard-limit
16906 Makes the limit specified by @option{msched-max-memory-insns} a hard limit,
16907 disallowing more than that number in an instruction group.
16908 Otherwise, the limit is ``soft'', meaning that non-memory operations
16909 are preferred when the limit is reached, but memory operations may still
16910 be scheduled.
16911
16912 @end table
16913
16914 @node LM32 Options
16915 @subsection LM32 Options
16916 @cindex LM32 options
16917
16918 These @option{-m} options are defined for the LatticeMico32 architecture:
16919
16920 @table @gcctabopt
16921 @item -mbarrel-shift-enabled
16922 @opindex mbarrel-shift-enabled
16923 Enable barrel-shift instructions.
16924
16925 @item -mdivide-enabled
16926 @opindex mdivide-enabled
16927 Enable divide and modulus instructions.
16928
16929 @item -mmultiply-enabled
16930 @opindex multiply-enabled
16931 Enable multiply instructions.
16932
16933 @item -msign-extend-enabled
16934 @opindex msign-extend-enabled
16935 Enable sign extend instructions.
16936
16937 @item -muser-enabled
16938 @opindex muser-enabled
16939 Enable user-defined instructions.
16940
16941 @end table
16942
16943 @node M32C Options
16944 @subsection M32C Options
16945 @cindex M32C options
16946
16947 @table @gcctabopt
16948 @item -mcpu=@var{name}
16949 @opindex mcpu=
16950 Select the CPU for which code is generated. @var{name} may be one of
16951 @samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
16952 /60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
16953 the M32C/80 series.
16954
16955 @item -msim
16956 @opindex msim
16957 Specifies that the program will be run on the simulator. This causes
16958 an alternate runtime library to be linked in which supports, for
16959 example, file I/O@. You must not use this option when generating
16960 programs that will run on real hardware; you must provide your own
16961 runtime library for whatever I/O functions are needed.
16962
16963 @item -memregs=@var{number}
16964 @opindex memregs=
16965 Specifies the number of memory-based pseudo-registers GCC uses
16966 during code generation. These pseudo-registers are used like real
16967 registers, so there is a tradeoff between GCC's ability to fit the
16968 code into available registers, and the performance penalty of using
16969 memory instead of registers. Note that all modules in a program must
16970 be compiled with the same value for this option. Because of that, you
16971 must not use this option with GCC's default runtime libraries.
16972
16973 @end table
16974
16975 @node M32R/D Options
16976 @subsection M32R/D Options
16977 @cindex M32R/D options
16978
16979 These @option{-m} options are defined for Renesas M32R/D architectures:
16980
16981 @table @gcctabopt
16982 @item -m32r2
16983 @opindex m32r2
16984 Generate code for the M32R/2@.
16985
16986 @item -m32rx
16987 @opindex m32rx
16988 Generate code for the M32R/X@.
16989
16990 @item -m32r
16991 @opindex m32r
16992 Generate code for the M32R@. This is the default.
16993
16994 @item -mmodel=small
16995 @opindex mmodel=small
16996 Assume all objects live in the lower 16MB of memory (so that their addresses
16997 can be loaded with the @code{ld24} instruction), and assume all subroutines
16998 are reachable with the @code{bl} instruction.
16999 This is the default.
17000
17001 The addressability of a particular object can be set with the
17002 @code{model} attribute.
17003
17004 @item -mmodel=medium
17005 @opindex mmodel=medium
17006 Assume objects may be anywhere in the 32-bit address space (the compiler
17007 generates @code{seth/add3} instructions to load their addresses), and
17008 assume all subroutines are reachable with the @code{bl} instruction.
17009
17010 @item -mmodel=large
17011 @opindex mmodel=large
17012 Assume objects may be anywhere in the 32-bit address space (the compiler
17013 generates @code{seth/add3} instructions to load their addresses), and
17014 assume subroutines may not be reachable with the @code{bl} instruction
17015 (the compiler generates the much slower @code{seth/add3/jl}
17016 instruction sequence).
17017
17018 @item -msdata=none
17019 @opindex msdata=none
17020 Disable use of the small data area. Variables are put into
17021 one of @code{.data}, @code{.bss}, or @code{.rodata} (unless the
17022 @code{section} attribute has been specified).
17023 This is the default.
17024
17025 The small data area consists of sections @code{.sdata} and @code{.sbss}.
17026 Objects may be explicitly put in the small data area with the
17027 @code{section} attribute using one of these sections.
17028
17029 @item -msdata=sdata
17030 @opindex msdata=sdata
17031 Put small global and static data in the small data area, but do not
17032 generate special code to reference them.
17033
17034 @item -msdata=use
17035 @opindex msdata=use
17036 Put small global and static data in the small data area, and generate
17037 special instructions to reference them.
17038
17039 @item -G @var{num}
17040 @opindex G
17041 @cindex smaller data references
17042 Put global and static objects less than or equal to @var{num} bytes
17043 into the small data or BSS sections instead of the normal data or BSS
17044 sections. The default value of @var{num} is 8.
17045 The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
17046 for this option to have any effect.
17047
17048 All modules should be compiled with the same @option{-G @var{num}} value.
17049 Compiling with different values of @var{num} may or may not work; if it
17050 doesn't the linker gives an error message---incorrect code is not
17051 generated.
17052
17053 @item -mdebug
17054 @opindex mdebug
17055 Makes the M32R-specific code in the compiler display some statistics
17056 that might help in debugging programs.
17057
17058 @item -malign-loops
17059 @opindex malign-loops
17060 Align all loops to a 32-byte boundary.
17061
17062 @item -mno-align-loops
17063 @opindex mno-align-loops
17064 Do not enforce a 32-byte alignment for loops. This is the default.
17065
17066 @item -missue-rate=@var{number}
17067 @opindex missue-rate=@var{number}
17068 Issue @var{number} instructions per cycle. @var{number} can only be 1
17069 or 2.
17070
17071 @item -mbranch-cost=@var{number}
17072 @opindex mbranch-cost=@var{number}
17073 @var{number} can only be 1 or 2. If it is 1 then branches are
17074 preferred over conditional code, if it is 2, then the opposite applies.
17075
17076 @item -mflush-trap=@var{number}
17077 @opindex mflush-trap=@var{number}
17078 Specifies the trap number to use to flush the cache. The default is
17079 12. Valid numbers are between 0 and 15 inclusive.
17080
17081 @item -mno-flush-trap
17082 @opindex mno-flush-trap
17083 Specifies that the cache cannot be flushed by using a trap.
17084
17085 @item -mflush-func=@var{name}
17086 @opindex mflush-func=@var{name}
17087 Specifies the name of the operating system function to call to flush
17088 the cache. The default is @samp{_flush_cache}, but a function call
17089 is only used if a trap is not available.
17090
17091 @item -mno-flush-func
17092 @opindex mno-flush-func
17093 Indicates that there is no OS function for flushing the cache.
17094
17095 @end table
17096
17097 @node M680x0 Options
17098 @subsection M680x0 Options
17099 @cindex M680x0 options
17100
17101 These are the @samp{-m} options defined for M680x0 and ColdFire processors.
17102 The default settings depend on which architecture was selected when
17103 the compiler was configured; the defaults for the most common choices
17104 are given below.
17105
17106 @table @gcctabopt
17107 @item -march=@var{arch}
17108 @opindex march
17109 Generate code for a specific M680x0 or ColdFire instruction set
17110 architecture. Permissible values of @var{arch} for M680x0
17111 architectures are: @samp{68000}, @samp{68010}, @samp{68020},
17112 @samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}. ColdFire
17113 architectures are selected according to Freescale's ISA classification
17114 and the permissible values are: @samp{isaa}, @samp{isaaplus},
17115 @samp{isab} and @samp{isac}.
17116
17117 GCC defines a macro @code{__mcf@var{arch}__} whenever it is generating
17118 code for a ColdFire target. The @var{arch} in this macro is one of the
17119 @option{-march} arguments given above.
17120
17121 When used together, @option{-march} and @option{-mtune} select code
17122 that runs on a family of similar processors but that is optimized
17123 for a particular microarchitecture.
17124
17125 @item -mcpu=@var{cpu}
17126 @opindex mcpu
17127 Generate code for a specific M680x0 or ColdFire processor.
17128 The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
17129 @samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
17130 and @samp{cpu32}. The ColdFire @var{cpu}s are given by the table
17131 below, which also classifies the CPUs into families:
17132
17133 @multitable @columnfractions 0.20 0.80
17134 @item @strong{Family} @tab @strong{@samp{-mcpu} arguments}
17135 @item @samp{51} @tab @samp{51} @samp{51ac} @samp{51ag} @samp{51cn} @samp{51em} @samp{51je} @samp{51jf} @samp{51jg} @samp{51jm} @samp{51mm} @samp{51qe} @samp{51qm}
17136 @item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
17137 @item @samp{5206e} @tab @samp{5206e}
17138 @item @samp{5208} @tab @samp{5207} @samp{5208}
17139 @item @samp{5211a} @tab @samp{5210a} @samp{5211a}
17140 @item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
17141 @item @samp{5216} @tab @samp{5214} @samp{5216}
17142 @item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235}
17143 @item @samp{5225} @tab @samp{5224} @samp{5225}
17144 @item @samp{52259} @tab @samp{52252} @samp{52254} @samp{52255} @samp{52256} @samp{52258} @samp{52259}
17145 @item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x}
17146 @item @samp{5249} @tab @samp{5249}
17147 @item @samp{5250} @tab @samp{5250}
17148 @item @samp{5271} @tab @samp{5270} @samp{5271}
17149 @item @samp{5272} @tab @samp{5272}
17150 @item @samp{5275} @tab @samp{5274} @samp{5275}
17151 @item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
17152 @item @samp{53017} @tab @samp{53011} @samp{53012} @samp{53013} @samp{53014} @samp{53015} @samp{53016} @samp{53017}
17153 @item @samp{5307} @tab @samp{5307}
17154 @item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
17155 @item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
17156 @item @samp{5407} @tab @samp{5407}
17157 @item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485}
17158 @end multitable
17159
17160 @option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
17161 @var{arch} is compatible with @var{cpu}. Other combinations of
17162 @option{-mcpu} and @option{-march} are rejected.
17163
17164 GCC defines the macro @code{__mcf_cpu_@var{cpu}} when ColdFire target
17165 @var{cpu} is selected. It also defines @code{__mcf_family_@var{family}},
17166 where the value of @var{family} is given by the table above.
17167
17168 @item -mtune=@var{tune}
17169 @opindex mtune
17170 Tune the code for a particular microarchitecture within the
17171 constraints set by @option{-march} and @option{-mcpu}.
17172 The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
17173 @samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
17174 and @samp{cpu32}. The ColdFire microarchitectures
17175 are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.
17176
17177 You can also use @option{-mtune=68020-40} for code that needs
17178 to run relatively well on 68020, 68030 and 68040 targets.
17179 @option{-mtune=68020-60} is similar but includes 68060 targets
17180 as well. These two options select the same tuning decisions as
17181 @option{-m68020-40} and @option{-m68020-60} respectively.
17182
17183 GCC defines the macros @code{__mc@var{arch}} and @code{__mc@var{arch}__}
17184 when tuning for 680x0 architecture @var{arch}. It also defines
17185 @code{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
17186 option is used. If GCC is tuning for a range of architectures,
17187 as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
17188 it defines the macros for every architecture in the range.
17189
17190 GCC also defines the macro @code{__m@var{uarch}__} when tuning for
17191 ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
17192 of the arguments given above.
17193
17194 @item -m68000
17195 @itemx -mc68000
17196 @opindex m68000
17197 @opindex mc68000
17198 Generate output for a 68000. This is the default
17199 when the compiler is configured for 68000-based systems.
17200 It is equivalent to @option{-march=68000}.
17201
17202 Use this option for microcontrollers with a 68000 or EC000 core,
17203 including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
17204
17205 @item -m68010
17206 @opindex m68010
17207 Generate output for a 68010. This is the default
17208 when the compiler is configured for 68010-based systems.
17209 It is equivalent to @option{-march=68010}.
17210
17211 @item -m68020
17212 @itemx -mc68020
17213 @opindex m68020
17214 @opindex mc68020
17215 Generate output for a 68020. This is the default
17216 when the compiler is configured for 68020-based systems.
17217 It is equivalent to @option{-march=68020}.
17218
17219 @item -m68030
17220 @opindex m68030
17221 Generate output for a 68030. This is the default when the compiler is
17222 configured for 68030-based systems. It is equivalent to
17223 @option{-march=68030}.
17224
17225 @item -m68040
17226 @opindex m68040
17227 Generate output for a 68040. This is the default when the compiler is
17228 configured for 68040-based systems. It is equivalent to
17229 @option{-march=68040}.
17230
17231 This option inhibits the use of 68881/68882 instructions that have to be
17232 emulated by software on the 68040. Use this option if your 68040 does not
17233 have code to emulate those instructions.
17234
17235 @item -m68060
17236 @opindex m68060
17237 Generate output for a 68060. This is the default when the compiler is
17238 configured for 68060-based systems. It is equivalent to
17239 @option{-march=68060}.
17240
17241 This option inhibits the use of 68020 and 68881/68882 instructions that
17242 have to be emulated by software on the 68060. Use this option if your 68060
17243 does not have code to emulate those instructions.
17244
17245 @item -mcpu32
17246 @opindex mcpu32
17247 Generate output for a CPU32. This is the default
17248 when the compiler is configured for CPU32-based systems.
17249 It is equivalent to @option{-march=cpu32}.
17250
17251 Use this option for microcontrollers with a
17252 CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
17253 68336, 68340, 68341, 68349 and 68360.
17254
17255 @item -m5200
17256 @opindex m5200
17257 Generate output for a 520X ColdFire CPU@. This is the default
17258 when the compiler is configured for 520X-based systems.
17259 It is equivalent to @option{-mcpu=5206}, and is now deprecated
17260 in favor of that option.
17261
17262 Use this option for microcontroller with a 5200 core, including
17263 the MCF5202, MCF5203, MCF5204 and MCF5206.
17264
17265 @item -m5206e
17266 @opindex m5206e
17267 Generate output for a 5206e ColdFire CPU@. The option is now
17268 deprecated in favor of the equivalent @option{-mcpu=5206e}.
17269
17270 @item -m528x
17271 @opindex m528x
17272 Generate output for a member of the ColdFire 528X family.
17273 The option is now deprecated in favor of the equivalent
17274 @option{-mcpu=528x}.
17275
17276 @item -m5307
17277 @opindex m5307
17278 Generate output for a ColdFire 5307 CPU@. The option is now deprecated
17279 in favor of the equivalent @option{-mcpu=5307}.
17280
17281 @item -m5407
17282 @opindex m5407
17283 Generate output for a ColdFire 5407 CPU@. The option is now deprecated
17284 in favor of the equivalent @option{-mcpu=5407}.
17285
17286 @item -mcfv4e
17287 @opindex mcfv4e
17288 Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).
17289 This includes use of hardware floating-point instructions.
17290 The option is equivalent to @option{-mcpu=547x}, and is now
17291 deprecated in favor of that option.
17292
17293 @item -m68020-40
17294 @opindex m68020-40
17295 Generate output for a 68040, without using any of the new instructions.
17296 This results in code that can run relatively efficiently on either a
17297 68020/68881 or a 68030 or a 68040. The generated code does use the
17298 68881 instructions that are emulated on the 68040.
17299
17300 The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.
17301
17302 @item -m68020-60
17303 @opindex m68020-60
17304 Generate output for a 68060, without using any of the new instructions.
17305 This results in code that can run relatively efficiently on either a
17306 68020/68881 or a 68030 or a 68040. The generated code does use the
17307 68881 instructions that are emulated on the 68060.
17308
17309 The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.
17310
17311 @item -mhard-float
17312 @itemx -m68881
17313 @opindex mhard-float
17314 @opindex m68881
17315 Generate floating-point instructions. This is the default for 68020
17316 and above, and for ColdFire devices that have an FPU@. It defines the
17317 macro @code{__HAVE_68881__} on M680x0 targets and @code{__mcffpu__}
17318 on ColdFire targets.
17319
17320 @item -msoft-float
17321 @opindex msoft-float
17322 Do not generate floating-point instructions; use library calls instead.
17323 This is the default for 68000, 68010, and 68832 targets. It is also
17324 the default for ColdFire devices that have no FPU.
17325
17326 @item -mdiv
17327 @itemx -mno-div
17328 @opindex mdiv
17329 @opindex mno-div
17330 Generate (do not generate) ColdFire hardware divide and remainder
17331 instructions. If @option{-march} is used without @option{-mcpu},
17332 the default is ``on'' for ColdFire architectures and ``off'' for M680x0
17333 architectures. Otherwise, the default is taken from the target CPU
17334 (either the default CPU, or the one specified by @option{-mcpu}). For
17335 example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for
17336 @option{-mcpu=5206e}.
17337
17338 GCC defines the macro @code{__mcfhwdiv__} when this option is enabled.
17339
17340 @item -mshort
17341 @opindex mshort
17342 Consider type @code{int} to be 16 bits wide, like @code{short int}.
17343 Additionally, parameters passed on the stack are also aligned to a
17344 16-bit boundary even on targets whose API mandates promotion to 32-bit.
17345
17346 @item -mno-short
17347 @opindex mno-short
17348 Do not consider type @code{int} to be 16 bits wide. This is the default.
17349
17350 @item -mnobitfield
17351 @itemx -mno-bitfield
17352 @opindex mnobitfield
17353 @opindex mno-bitfield
17354 Do not use the bit-field instructions. The @option{-m68000}, @option{-mcpu32}
17355 and @option{-m5200} options imply @w{@option{-mnobitfield}}.
17356
17357 @item -mbitfield
17358 @opindex mbitfield
17359 Do use the bit-field instructions. The @option{-m68020} option implies
17360 @option{-mbitfield}. This is the default if you use a configuration
17361 designed for a 68020.
17362
17363 @item -mrtd
17364 @opindex mrtd
17365 Use a different function-calling convention, in which functions
17366 that take a fixed number of arguments return with the @code{rtd}
17367 instruction, which pops their arguments while returning. This
17368 saves one instruction in the caller since there is no need to pop
17369 the arguments there.
17370
17371 This calling convention is incompatible with the one normally
17372 used on Unix, so you cannot use it if you need to call libraries
17373 compiled with the Unix compiler.
17374
17375 Also, you must provide function prototypes for all functions that
17376 take variable numbers of arguments (including @code{printf});
17377 otherwise incorrect code is generated for calls to those
17378 functions.
17379
17380 In addition, seriously incorrect code results if you call a
17381 function with too many arguments. (Normally, extra arguments are
17382 harmlessly ignored.)
17383
17384 The @code{rtd} instruction is supported by the 68010, 68020, 68030,
17385 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
17386
17387 @item -mno-rtd
17388 @opindex mno-rtd
17389 Do not use the calling conventions selected by @option{-mrtd}.
17390 This is the default.
17391
17392 @item -malign-int
17393 @itemx -mno-align-int
17394 @opindex malign-int
17395 @opindex mno-align-int
17396 Control whether GCC aligns @code{int}, @code{long}, @code{long long},
17397 @code{float}, @code{double}, and @code{long double} variables on a 32-bit
17398 boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
17399 Aligning variables on 32-bit boundaries produces code that runs somewhat
17400 faster on processors with 32-bit busses at the expense of more memory.
17401
17402 @strong{Warning:} if you use the @option{-malign-int} switch, GCC
17403 aligns structures containing the above types differently than
17404 most published application binary interface specifications for the m68k.
17405
17406 @item -mpcrel
17407 @opindex mpcrel
17408 Use the pc-relative addressing mode of the 68000 directly, instead of
17409 using a global offset table. At present, this option implies @option{-fpic},
17410 allowing at most a 16-bit offset for pc-relative addressing. @option{-fPIC} is
17411 not presently supported with @option{-mpcrel}, though this could be supported for
17412 68020 and higher processors.
17413
17414 @item -mno-strict-align
17415 @itemx -mstrict-align
17416 @opindex mno-strict-align
17417 @opindex mstrict-align
17418 Do not (do) assume that unaligned memory references are handled by
17419 the system.
17420
17421 @item -msep-data
17422 Generate code that allows the data segment to be located in a different
17423 area of memory from the text segment. This allows for execute-in-place in
17424 an environment without virtual memory management. This option implies
17425 @option{-fPIC}.
17426
17427 @item -mno-sep-data
17428 Generate code that assumes that the data segment follows the text segment.
17429 This is the default.
17430
17431 @item -mid-shared-library
17432 Generate code that supports shared libraries via the library ID method.
17433 This allows for execute-in-place and shared libraries in an environment
17434 without virtual memory management. This option implies @option{-fPIC}.
17435
17436 @item -mno-id-shared-library
17437 Generate code that doesn't assume ID-based shared libraries are being used.
17438 This is the default.
17439
17440 @item -mshared-library-id=n
17441 Specifies the identification number of the ID-based shared library being
17442 compiled. Specifying a value of 0 generates more compact code; specifying
17443 other values forces the allocation of that number to the current
17444 library, but is no more space- or time-efficient than omitting this option.
17445
17446 @item -mxgot
17447 @itemx -mno-xgot
17448 @opindex mxgot
17449 @opindex mno-xgot
17450 When generating position-independent code for ColdFire, generate code
17451 that works if the GOT has more than 8192 entries. This code is
17452 larger and slower than code generated without this option. On M680x0
17453 processors, this option is not needed; @option{-fPIC} suffices.
17454
17455 GCC normally uses a single instruction to load values from the GOT@.
17456 While this is relatively efficient, it only works if the GOT
17457 is smaller than about 64k. Anything larger causes the linker
17458 to report an error such as:
17459
17460 @cindex relocation truncated to fit (ColdFire)
17461 @smallexample
17462 relocation truncated to fit: R_68K_GOT16O foobar
17463 @end smallexample
17464
17465 If this happens, you should recompile your code with @option{-mxgot}.
17466 It should then work with very large GOTs. However, code generated with
17467 @option{-mxgot} is less efficient, since it takes 4 instructions to fetch
17468 the value of a global symbol.
17469
17470 Note that some linkers, including newer versions of the GNU linker,
17471 can create multiple GOTs and sort GOT entries. If you have such a linker,
17472 you should only need to use @option{-mxgot} when compiling a single
17473 object file that accesses more than 8192 GOT entries. Very few do.
17474
17475 These options have no effect unless GCC is generating
17476 position-independent code.
17477
17478 @end table
17479
17480 @node MCore Options
17481 @subsection MCore Options
17482 @cindex MCore options
17483
17484 These are the @samp{-m} options defined for the Motorola M*Core
17485 processors.
17486
17487 @table @gcctabopt
17488
17489 @item -mhardlit
17490 @itemx -mno-hardlit
17491 @opindex mhardlit
17492 @opindex mno-hardlit
17493 Inline constants into the code stream if it can be done in two
17494 instructions or less.
17495
17496 @item -mdiv
17497 @itemx -mno-div
17498 @opindex mdiv
17499 @opindex mno-div
17500 Use the divide instruction. (Enabled by default).
17501
17502 @item -mrelax-immediate
17503 @itemx -mno-relax-immediate
17504 @opindex mrelax-immediate
17505 @opindex mno-relax-immediate
17506 Allow arbitrary-sized immediates in bit operations.
17507
17508 @item -mwide-bitfields
17509 @itemx -mno-wide-bitfields
17510 @opindex mwide-bitfields
17511 @opindex mno-wide-bitfields
17512 Always treat bit-fields as @code{int}-sized.
17513
17514 @item -m4byte-functions
17515 @itemx -mno-4byte-functions
17516 @opindex m4byte-functions
17517 @opindex mno-4byte-functions
17518 Force all functions to be aligned to a 4-byte boundary.
17519
17520 @item -mcallgraph-data
17521 @itemx -mno-callgraph-data
17522 @opindex mcallgraph-data
17523 @opindex mno-callgraph-data
17524 Emit callgraph information.
17525
17526 @item -mslow-bytes
17527 @itemx -mno-slow-bytes
17528 @opindex mslow-bytes
17529 @opindex mno-slow-bytes
17530 Prefer word access when reading byte quantities.
17531
17532 @item -mlittle-endian
17533 @itemx -mbig-endian
17534 @opindex mlittle-endian
17535 @opindex mbig-endian
17536 Generate code for a little-endian target.
17537
17538 @item -m210
17539 @itemx -m340
17540 @opindex m210
17541 @opindex m340
17542 Generate code for the 210 processor.
17543
17544 @item -mno-lsim
17545 @opindex mno-lsim
17546 Assume that runtime support has been provided and so omit the
17547 simulator library (@file{libsim.a)} from the linker command line.
17548
17549 @item -mstack-increment=@var{size}
17550 @opindex mstack-increment
17551 Set the maximum amount for a single stack increment operation. Large
17552 values can increase the speed of programs that contain functions
17553 that need a large amount of stack space, but they can also trigger a
17554 segmentation fault if the stack is extended too much. The default
17555 value is 0x1000.
17556
17557 @end table
17558
17559 @node MeP Options
17560 @subsection MeP Options
17561 @cindex MeP options
17562
17563 @table @gcctabopt
17564
17565 @item -mabsdiff
17566 @opindex mabsdiff
17567 Enables the @code{abs} instruction, which is the absolute difference
17568 between two registers.
17569
17570 @item -mall-opts
17571 @opindex mall-opts
17572 Enables all the optional instructions---average, multiply, divide, bit
17573 operations, leading zero, absolute difference, min/max, clip, and
17574 saturation.
17575
17576
17577 @item -maverage
17578 @opindex maverage
17579 Enables the @code{ave} instruction, which computes the average of two
17580 registers.
17581
17582 @item -mbased=@var{n}
17583 @opindex mbased=
17584 Variables of size @var{n} bytes or smaller are placed in the
17585 @code{.based} section by default. Based variables use the @code{$tp}
17586 register as a base register, and there is a 128-byte limit to the
17587 @code{.based} section.
17588
17589 @item -mbitops
17590 @opindex mbitops
17591 Enables the bit operation instructions---bit test (@code{btstm}), set
17592 (@code{bsetm}), clear (@code{bclrm}), invert (@code{bnotm}), and
17593 test-and-set (@code{tas}).
17594
17595 @item -mc=@var{name}
17596 @opindex mc=
17597 Selects which section constant data is placed in. @var{name} may
17598 be @samp{tiny}, @samp{near}, or @samp{far}.
17599
17600 @item -mclip
17601 @opindex mclip
17602 Enables the @code{clip} instruction. Note that @option{-mclip} is not
17603 useful unless you also provide @option{-mminmax}.
17604
17605 @item -mconfig=@var{name}
17606 @opindex mconfig=
17607 Selects one of the built-in core configurations. Each MeP chip has
17608 one or more modules in it; each module has a core CPU and a variety of
17609 coprocessors, optional instructions, and peripherals. The
17610 @code{MeP-Integrator} tool, not part of GCC, provides these
17611 configurations through this option; using this option is the same as
17612 using all the corresponding command-line options. The default
17613 configuration is @samp{default}.
17614
17615 @item -mcop
17616 @opindex mcop
17617 Enables the coprocessor instructions. By default, this is a 32-bit
17618 coprocessor. Note that the coprocessor is normally enabled via the
17619 @option{-mconfig=} option.
17620
17621 @item -mcop32
17622 @opindex mcop32
17623 Enables the 32-bit coprocessor's instructions.
17624
17625 @item -mcop64
17626 @opindex mcop64
17627 Enables the 64-bit coprocessor's instructions.
17628
17629 @item -mivc2
17630 @opindex mivc2
17631 Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor.
17632
17633 @item -mdc
17634 @opindex mdc
17635 Causes constant variables to be placed in the @code{.near} section.
17636
17637 @item -mdiv
17638 @opindex mdiv
17639 Enables the @code{div} and @code{divu} instructions.
17640
17641 @item -meb
17642 @opindex meb
17643 Generate big-endian code.
17644
17645 @item -mel
17646 @opindex mel
17647 Generate little-endian code.
17648
17649 @item -mio-volatile
17650 @opindex mio-volatile
17651 Tells the compiler that any variable marked with the @code{io}
17652 attribute is to be considered volatile.
17653
17654 @item -ml
17655 @opindex ml
17656 Causes variables to be assigned to the @code{.far} section by default.
17657
17658 @item -mleadz
17659 @opindex mleadz
17660 Enables the @code{leadz} (leading zero) instruction.
17661
17662 @item -mm
17663 @opindex mm
17664 Causes variables to be assigned to the @code{.near} section by default.
17665
17666 @item -mminmax
17667 @opindex mminmax
17668 Enables the @code{min} and @code{max} instructions.
17669
17670 @item -mmult
17671 @opindex mmult
17672 Enables the multiplication and multiply-accumulate instructions.
17673
17674 @item -mno-opts
17675 @opindex mno-opts
17676 Disables all the optional instructions enabled by @option{-mall-opts}.
17677
17678 @item -mrepeat
17679 @opindex mrepeat
17680 Enables the @code{repeat} and @code{erepeat} instructions, used for
17681 low-overhead looping.
17682
17683 @item -ms
17684 @opindex ms
17685 Causes all variables to default to the @code{.tiny} section. Note
17686 that there is a 65536-byte limit to this section. Accesses to these
17687 variables use the @code{%gp} base register.
17688
17689 @item -msatur
17690 @opindex msatur
17691 Enables the saturation instructions. Note that the compiler does not
17692 currently generate these itself, but this option is included for
17693 compatibility with other tools, like @code{as}.
17694
17695 @item -msdram
17696 @opindex msdram
17697 Link the SDRAM-based runtime instead of the default ROM-based runtime.
17698
17699 @item -msim
17700 @opindex msim
17701 Link the simulator run-time libraries.
17702
17703 @item -msimnovec
17704 @opindex msimnovec
17705 Link the simulator runtime libraries, excluding built-in support
17706 for reset and exception vectors and tables.
17707
17708 @item -mtf
17709 @opindex mtf
17710 Causes all functions to default to the @code{.far} section. Without
17711 this option, functions default to the @code{.near} section.
17712
17713 @item -mtiny=@var{n}
17714 @opindex mtiny=
17715 Variables that are @var{n} bytes or smaller are allocated to the
17716 @code{.tiny} section. These variables use the @code{$gp} base
17717 register. The default for this option is 4, but note that there's a
17718 65536-byte limit to the @code{.tiny} section.
17719
17720 @end table
17721
17722 @node MicroBlaze Options
17723 @subsection MicroBlaze Options
17724 @cindex MicroBlaze Options
17725
17726 @table @gcctabopt
17727
17728 @item -msoft-float
17729 @opindex msoft-float
17730 Use software emulation for floating point (default).
17731
17732 @item -mhard-float
17733 @opindex mhard-float
17734 Use hardware floating-point instructions.
17735
17736 @item -mmemcpy
17737 @opindex mmemcpy
17738 Do not optimize block moves, use @code{memcpy}.
17739
17740 @item -mno-clearbss
17741 @opindex mno-clearbss
17742 This option is deprecated. Use @option{-fno-zero-initialized-in-bss} instead.
17743
17744 @item -mcpu=@var{cpu-type}
17745 @opindex mcpu=
17746 Use features of, and schedule code for, the given CPU.
17747 Supported values are in the format @samp{v@var{X}.@var{YY}.@var{Z}},
17748 where @var{X} is a major version, @var{YY} is the minor version, and
17749 @var{Z} is compatibility code. Example values are @samp{v3.00.a},
17750 @samp{v4.00.b}, @samp{v5.00.a}, @samp{v5.00.b}, @samp{v5.00.b}, @samp{v6.00.a}.
17751
17752 @item -mxl-soft-mul
17753 @opindex mxl-soft-mul
17754 Use software multiply emulation (default).
17755
17756 @item -mxl-soft-div
17757 @opindex mxl-soft-div
17758 Use software emulation for divides (default).
17759
17760 @item -mxl-barrel-shift
17761 @opindex mxl-barrel-shift
17762 Use the hardware barrel shifter.
17763
17764 @item -mxl-pattern-compare
17765 @opindex mxl-pattern-compare
17766 Use pattern compare instructions.
17767
17768 @item -msmall-divides
17769 @opindex msmall-divides
17770 Use table lookup optimization for small signed integer divisions.
17771
17772 @item -mxl-stack-check
17773 @opindex mxl-stack-check
17774 This option is deprecated. Use @option{-fstack-check} instead.
17775
17776 @item -mxl-gp-opt
17777 @opindex mxl-gp-opt
17778 Use GP-relative @code{.sdata}/@code{.sbss} sections.
17779
17780 @item -mxl-multiply-high
17781 @opindex mxl-multiply-high
17782 Use multiply high instructions for high part of 32x32 multiply.
17783
17784 @item -mxl-float-convert
17785 @opindex mxl-float-convert
17786 Use hardware floating-point conversion instructions.
17787
17788 @item -mxl-float-sqrt
17789 @opindex mxl-float-sqrt
17790 Use hardware floating-point square root instruction.
17791
17792 @item -mbig-endian
17793 @opindex mbig-endian
17794 Generate code for a big-endian target.
17795
17796 @item -mlittle-endian
17797 @opindex mlittle-endian
17798 Generate code for a little-endian target.
17799
17800 @item -mxl-reorder
17801 @opindex mxl-reorder
17802 Use reorder instructions (swap and byte reversed load/store).
17803
17804 @item -mxl-mode-@var{app-model}
17805 Select application model @var{app-model}. Valid models are
17806 @table @samp
17807 @item executable
17808 normal executable (default), uses startup code @file{crt0.o}.
17809
17810 @item xmdstub
17811 for use with Xilinx Microprocessor Debugger (XMD) based
17812 software intrusive debug agent called xmdstub. This uses startup file
17813 @file{crt1.o} and sets the start address of the program to 0x800.
17814
17815 @item bootstrap
17816 for applications that are loaded using a bootloader.
17817 This model uses startup file @file{crt2.o} which does not contain a processor
17818 reset vector handler. This is suitable for transferring control on a
17819 processor reset to the bootloader rather than the application.
17820
17821 @item novectors
17822 for applications that do not require any of the
17823 MicroBlaze vectors. This option may be useful for applications running
17824 within a monitoring application. This model uses @file{crt3.o} as a startup file.
17825 @end table
17826
17827 Option @option{-xl-mode-@var{app-model}} is a deprecated alias for
17828 @option{-mxl-mode-@var{app-model}}.
17829
17830 @end table
17831
17832 @node MIPS Options
17833 @subsection MIPS Options
17834 @cindex MIPS options
17835
17836 @table @gcctabopt
17837
17838 @item -EB
17839 @opindex EB
17840 Generate big-endian code.
17841
17842 @item -EL
17843 @opindex EL
17844 Generate little-endian code. This is the default for @samp{mips*el-*-*}
17845 configurations.
17846
17847 @item -march=@var{arch}
17848 @opindex march
17849 Generate code that runs on @var{arch}, which can be the name of a
17850 generic MIPS ISA, or the name of a particular processor.
17851 The ISA names are:
17852 @samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
17853 @samp{mips32}, @samp{mips32r2}, @samp{mips32r3}, @samp{mips32r5},
17854 @samp{mips32r6}, @samp{mips64}, @samp{mips64r2}, @samp{mips64r3},
17855 @samp{mips64r5} and @samp{mips64r6}.
17856 The processor names are:
17857 @samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc},
17858 @samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd},
17859 @samp{5kc}, @samp{5kf},
17860 @samp{20kc},
17861 @samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1},
17862 @samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1},
17863 @samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1}, @samp{34kn},
17864 @samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2},
17865 @samp{1004kc}, @samp{1004kf2_1}, @samp{1004kf1_1},
17866 @samp{i6400},
17867 @samp{interaptiv},
17868 @samp{loongson2e}, @samp{loongson2f}, @samp{loongson3a},
17869 @samp{m4k},
17870 @samp{m14k}, @samp{m14kc}, @samp{m14ke}, @samp{m14kec},
17871 @samp{m5100}, @samp{m5101},
17872 @samp{octeon}, @samp{octeon+}, @samp{octeon2}, @samp{octeon3},
17873 @samp{orion},
17874 @samp{p5600},
17875 @samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
17876 @samp{r4600}, @samp{r4650}, @samp{r4700}, @samp{r6000}, @samp{r8000},
17877 @samp{rm7000}, @samp{rm9000},
17878 @samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000},
17879 @samp{sb1},
17880 @samp{sr71000},
17881 @samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
17882 @samp{vr5000}, @samp{vr5400}, @samp{vr5500},
17883 @samp{xlr} and @samp{xlp}.
17884 The special value @samp{from-abi} selects the
17885 most compatible architecture for the selected ABI (that is,
17886 @samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
17887
17888 The native Linux/GNU toolchain also supports the value @samp{native},
17889 which selects the best architecture option for the host processor.
17890 @option{-march=native} has no effect if GCC does not recognize
17891 the processor.
17892
17893 In processor names, a final @samp{000} can be abbreviated as @samp{k}
17894 (for example, @option{-march=r2k}). Prefixes are optional, and
17895 @samp{vr} may be written @samp{r}.
17896
17897 Names of the form @samp{@var{n}f2_1} refer to processors with
17898 FPUs clocked at half the rate of the core, names of the form
17899 @samp{@var{n}f1_1} refer to processors with FPUs clocked at the same
17900 rate as the core, and names of the form @samp{@var{n}f3_2} refer to
17901 processors with FPUs clocked a ratio of 3:2 with respect to the core.
17902 For compatibility reasons, @samp{@var{n}f} is accepted as a synonym
17903 for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are
17904 accepted as synonyms for @samp{@var{n}f1_1}.
17905
17906 GCC defines two macros based on the value of this option. The first
17907 is @code{_MIPS_ARCH}, which gives the name of target architecture, as
17908 a string. The second has the form @code{_MIPS_ARCH_@var{foo}},
17909 where @var{foo} is the capitalized value of @code{_MIPS_ARCH}@.
17910 For example, @option{-march=r2000} sets @code{_MIPS_ARCH}
17911 to @code{"r2000"} and defines the macro @code{_MIPS_ARCH_R2000}.
17912
17913 Note that the @code{_MIPS_ARCH} macro uses the processor names given
17914 above. In other words, it has the full prefix and does not
17915 abbreviate @samp{000} as @samp{k}. In the case of @samp{from-abi},
17916 the macro names the resolved architecture (either @code{"mips1"} or
17917 @code{"mips3"}). It names the default architecture when no
17918 @option{-march} option is given.
17919
17920 @item -mtune=@var{arch}
17921 @opindex mtune
17922 Optimize for @var{arch}. Among other things, this option controls
17923 the way instructions are scheduled, and the perceived cost of arithmetic
17924 operations. The list of @var{arch} values is the same as for
17925 @option{-march}.
17926
17927 When this option is not used, GCC optimizes for the processor
17928 specified by @option{-march}. By using @option{-march} and
17929 @option{-mtune} together, it is possible to generate code that
17930 runs on a family of processors, but optimize the code for one
17931 particular member of that family.
17932
17933 @option{-mtune} defines the macros @code{_MIPS_TUNE} and
17934 @code{_MIPS_TUNE_@var{foo}}, which work in the same way as the
17935 @option{-march} ones described above.
17936
17937 @item -mips1
17938 @opindex mips1
17939 Equivalent to @option{-march=mips1}.
17940
17941 @item -mips2
17942 @opindex mips2
17943 Equivalent to @option{-march=mips2}.
17944
17945 @item -mips3
17946 @opindex mips3
17947 Equivalent to @option{-march=mips3}.
17948
17949 @item -mips4
17950 @opindex mips4
17951 Equivalent to @option{-march=mips4}.
17952
17953 @item -mips32
17954 @opindex mips32
17955 Equivalent to @option{-march=mips32}.
17956
17957 @item -mips32r3
17958 @opindex mips32r3
17959 Equivalent to @option{-march=mips32r3}.
17960
17961 @item -mips32r5
17962 @opindex mips32r5
17963 Equivalent to @option{-march=mips32r5}.
17964
17965 @item -mips32r6
17966 @opindex mips32r6
17967 Equivalent to @option{-march=mips32r6}.
17968
17969 @item -mips64
17970 @opindex mips64
17971 Equivalent to @option{-march=mips64}.
17972
17973 @item -mips64r2
17974 @opindex mips64r2
17975 Equivalent to @option{-march=mips64r2}.
17976
17977 @item -mips64r3
17978 @opindex mips64r3
17979 Equivalent to @option{-march=mips64r3}.
17980
17981 @item -mips64r5
17982 @opindex mips64r5
17983 Equivalent to @option{-march=mips64r5}.
17984
17985 @item -mips64r6
17986 @opindex mips64r6
17987 Equivalent to @option{-march=mips64r6}.
17988
17989 @item -mips16
17990 @itemx -mno-mips16
17991 @opindex mips16
17992 @opindex mno-mips16
17993 Generate (do not generate) MIPS16 code. If GCC is targeting a
17994 MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE@.
17995
17996 MIPS16 code generation can also be controlled on a per-function basis
17997 by means of @code{mips16} and @code{nomips16} attributes.
17998 @xref{Function Attributes}, for more information.
17999
18000 @item -mflip-mips16
18001 @opindex mflip-mips16
18002 Generate MIPS16 code on alternating functions. This option is provided
18003 for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
18004 not intended for ordinary use in compiling user code.
18005
18006 @item -minterlink-compressed
18007 @item -mno-interlink-compressed
18008 @opindex minterlink-compressed
18009 @opindex mno-interlink-compressed
18010 Require (do not require) that code using the standard (uncompressed) MIPS ISA
18011 be link-compatible with MIPS16 and microMIPS code, and vice versa.
18012
18013 For example, code using the standard ISA encoding cannot jump directly
18014 to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
18015 @option{-minterlink-compressed} therefore disables direct jumps unless GCC
18016 knows that the target of the jump is not compressed.
18017
18018 @item -minterlink-mips16
18019 @itemx -mno-interlink-mips16
18020 @opindex minterlink-mips16
18021 @opindex mno-interlink-mips16
18022 Aliases of @option{-minterlink-compressed} and
18023 @option{-mno-interlink-compressed}. These options predate the microMIPS ASE
18024 and are retained for backwards compatibility.
18025
18026 @item -mabi=32
18027 @itemx -mabi=o64
18028 @itemx -mabi=n32
18029 @itemx -mabi=64
18030 @itemx -mabi=eabi
18031 @opindex mabi=32
18032 @opindex mabi=o64
18033 @opindex mabi=n32
18034 @opindex mabi=64
18035 @opindex mabi=eabi
18036 Generate code for the given ABI@.
18037
18038 Note that the EABI has a 32-bit and a 64-bit variant. GCC normally
18039 generates 64-bit code when you select a 64-bit architecture, but you
18040 can use @option{-mgp32} to get 32-bit code instead.
18041
18042 For information about the O64 ABI, see
18043 @uref{http://gcc.gnu.org/@/projects/@/mipso64-abi.html}.
18044
18045 GCC supports a variant of the o32 ABI in which floating-point registers
18046 are 64 rather than 32 bits wide. You can select this combination with
18047 @option{-mabi=32} @option{-mfp64}. This ABI relies on the @code{mthc1}
18048 and @code{mfhc1} instructions and is therefore only supported for
18049 MIPS32R2, MIPS32R3 and MIPS32R5 processors.
18050
18051 The register assignments for arguments and return values remain the
18052 same, but each scalar value is passed in a single 64-bit register
18053 rather than a pair of 32-bit registers. For example, scalar
18054 floating-point values are returned in @samp{$f0} only, not a
18055 @samp{$f0}/@samp{$f1} pair. The set of call-saved registers also
18056 remains the same in that the even-numbered double-precision registers
18057 are saved.
18058
18059 Two additional variants of the o32 ABI are supported to enable
18060 a transition from 32-bit to 64-bit registers. These are FPXX
18061 (@option{-mfpxx}) and FP64A (@option{-mfp64} @option{-mno-odd-spreg}).
18062 The FPXX extension mandates that all code must execute correctly
18063 when run using 32-bit or 64-bit registers. The code can be interlinked
18064 with either FP32 or FP64, but not both.
18065 The FP64A extension is similar to the FP64 extension but forbids the
18066 use of odd-numbered single-precision registers. This can be used
18067 in conjunction with the @code{FRE} mode of FPUs in MIPS32R5
18068 processors and allows both FP32 and FP64A code to interlink and
18069 run in the same process without changing FPU modes.
18070
18071 @item -mabicalls
18072 @itemx -mno-abicalls
18073 @opindex mabicalls
18074 @opindex mno-abicalls
18075 Generate (do not generate) code that is suitable for SVR4-style
18076 dynamic objects. @option{-mabicalls} is the default for SVR4-based
18077 systems.
18078
18079 @item -mshared
18080 @itemx -mno-shared
18081 Generate (do not generate) code that is fully position-independent,
18082 and that can therefore be linked into shared libraries. This option
18083 only affects @option{-mabicalls}.
18084
18085 All @option{-mabicalls} code has traditionally been position-independent,
18086 regardless of options like @option{-fPIC} and @option{-fpic}. However,
18087 as an extension, the GNU toolchain allows executables to use absolute
18088 accesses for locally-binding symbols. It can also use shorter GP
18089 initialization sequences and generate direct calls to locally-defined
18090 functions. This mode is selected by @option{-mno-shared}.
18091
18092 @option{-mno-shared} depends on binutils 2.16 or higher and generates
18093 objects that can only be linked by the GNU linker. However, the option
18094 does not affect the ABI of the final executable; it only affects the ABI
18095 of relocatable objects. Using @option{-mno-shared} generally makes
18096 executables both smaller and quicker.
18097
18098 @option{-mshared} is the default.
18099
18100 @item -mplt
18101 @itemx -mno-plt
18102 @opindex mplt
18103 @opindex mno-plt
18104 Assume (do not assume) that the static and dynamic linkers
18105 support PLTs and copy relocations. This option only affects
18106 @option{-mno-shared -mabicalls}. For the n64 ABI, this option
18107 has no effect without @option{-msym32}.
18108
18109 You can make @option{-mplt} the default by configuring
18110 GCC with @option{--with-mips-plt}. The default is
18111 @option{-mno-plt} otherwise.
18112
18113 @item -mxgot
18114 @itemx -mno-xgot
18115 @opindex mxgot
18116 @opindex mno-xgot
18117 Lift (do not lift) the usual restrictions on the size of the global
18118 offset table.
18119
18120 GCC normally uses a single instruction to load values from the GOT@.
18121 While this is relatively efficient, it only works if the GOT
18122 is smaller than about 64k. Anything larger causes the linker
18123 to report an error such as:
18124
18125 @cindex relocation truncated to fit (MIPS)
18126 @smallexample
18127 relocation truncated to fit: R_MIPS_GOT16 foobar
18128 @end smallexample
18129
18130 If this happens, you should recompile your code with @option{-mxgot}.
18131 This works with very large GOTs, although the code is also
18132 less efficient, since it takes three instructions to fetch the
18133 value of a global symbol.
18134
18135 Note that some linkers can create multiple GOTs. If you have such a
18136 linker, you should only need to use @option{-mxgot} when a single object
18137 file accesses more than 64k's worth of GOT entries. Very few do.
18138
18139 These options have no effect unless GCC is generating position
18140 independent code.
18141
18142 @item -mgp32
18143 @opindex mgp32
18144 Assume that general-purpose registers are 32 bits wide.
18145
18146 @item -mgp64
18147 @opindex mgp64
18148 Assume that general-purpose registers are 64 bits wide.
18149
18150 @item -mfp32
18151 @opindex mfp32
18152 Assume that floating-point registers are 32 bits wide.
18153
18154 @item -mfp64
18155 @opindex mfp64
18156 Assume that floating-point registers are 64 bits wide.
18157
18158 @item -mfpxx
18159 @opindex mfpxx
18160 Do not assume the width of floating-point registers.
18161
18162 @item -mhard-float
18163 @opindex mhard-float
18164 Use floating-point coprocessor instructions.
18165
18166 @item -msoft-float
18167 @opindex msoft-float
18168 Do not use floating-point coprocessor instructions. Implement
18169 floating-point calculations using library calls instead.
18170
18171 @item -mno-float
18172 @opindex mno-float
18173 Equivalent to @option{-msoft-float}, but additionally asserts that the
18174 program being compiled does not perform any floating-point operations.
18175 This option is presently supported only by some bare-metal MIPS
18176 configurations, where it may select a special set of libraries
18177 that lack all floating-point support (including, for example, the
18178 floating-point @code{printf} formats).
18179 If code compiled with @option{-mno-float} accidentally contains
18180 floating-point operations, it is likely to suffer a link-time
18181 or run-time failure.
18182
18183 @item -msingle-float
18184 @opindex msingle-float
18185 Assume that the floating-point coprocessor only supports single-precision
18186 operations.
18187
18188 @item -mdouble-float
18189 @opindex mdouble-float
18190 Assume that the floating-point coprocessor supports double-precision
18191 operations. This is the default.
18192
18193 @item -modd-spreg
18194 @itemx -mno-odd-spreg
18195 @opindex modd-spreg
18196 @opindex mno-odd-spreg
18197 Enable the use of odd-numbered single-precision floating-point registers
18198 for the o32 ABI. This is the default for processors that are known to
18199 support these registers. When using the o32 FPXX ABI, @option{-mno-odd-spreg}
18200 is set by default.
18201
18202 @item -mabs=2008
18203 @itemx -mabs=legacy
18204 @opindex mabs=2008
18205 @opindex mabs=legacy
18206 These options control the treatment of the special not-a-number (NaN)
18207 IEEE 754 floating-point data with the @code{abs.@i{fmt}} and
18208 @code{neg.@i{fmt}} machine instructions.
18209
18210 By default or when @option{-mabs=legacy} is used the legacy
18211 treatment is selected. In this case these instructions are considered
18212 arithmetic and avoided where correct operation is required and the
18213 input operand might be a NaN. A longer sequence of instructions that
18214 manipulate the sign bit of floating-point datum manually is used
18215 instead unless the @option{-ffinite-math-only} option has also been
18216 specified.
18217
18218 The @option{-mabs=2008} option selects the IEEE 754-2008 treatment. In
18219 this case these instructions are considered non-arithmetic and therefore
18220 operating correctly in all cases, including in particular where the
18221 input operand is a NaN. These instructions are therefore always used
18222 for the respective operations.
18223
18224 @item -mnan=2008
18225 @itemx -mnan=legacy
18226 @opindex mnan=2008
18227 @opindex mnan=legacy
18228 These options control the encoding of the special not-a-number (NaN)
18229 IEEE 754 floating-point data.
18230
18231 The @option{-mnan=legacy} option selects the legacy encoding. In this
18232 case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
18233 significand field being 0, whereas signaling NaNs (sNaNs) are denoted
18234 by the first bit of their trailing significand field being 1.
18235
18236 The @option{-mnan=2008} option selects the IEEE 754-2008 encoding. In
18237 this case qNaNs are denoted by the first bit of their trailing
18238 significand field being 1, whereas sNaNs are denoted by the first bit of
18239 their trailing significand field being 0.
18240
18241 The default is @option{-mnan=legacy} unless GCC has been configured with
18242 @option{--with-nan=2008}.
18243
18244 @item -mllsc
18245 @itemx -mno-llsc
18246 @opindex mllsc
18247 @opindex mno-llsc
18248 Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to
18249 implement atomic memory built-in functions. When neither option is
18250 specified, GCC uses the instructions if the target architecture
18251 supports them.
18252
18253 @option{-mllsc} is useful if the runtime environment can emulate the
18254 instructions and @option{-mno-llsc} can be useful when compiling for
18255 nonstandard ISAs. You can make either option the default by
18256 configuring GCC with @option{--with-llsc} and @option{--without-llsc}
18257 respectively. @option{--with-llsc} is the default for some
18258 configurations; see the installation documentation for details.
18259
18260 @item -mdsp
18261 @itemx -mno-dsp
18262 @opindex mdsp
18263 @opindex mno-dsp
18264 Use (do not use) revision 1 of the MIPS DSP ASE@.
18265 @xref{MIPS DSP Built-in Functions}. This option defines the
18266 preprocessor macro @code{__mips_dsp}. It also defines
18267 @code{__mips_dsp_rev} to 1.
18268
18269 @item -mdspr2
18270 @itemx -mno-dspr2
18271 @opindex mdspr2
18272 @opindex mno-dspr2
18273 Use (do not use) revision 2 of the MIPS DSP ASE@.
18274 @xref{MIPS DSP Built-in Functions}. This option defines the
18275 preprocessor macros @code{__mips_dsp} and @code{__mips_dspr2}.
18276 It also defines @code{__mips_dsp_rev} to 2.
18277
18278 @item -msmartmips
18279 @itemx -mno-smartmips
18280 @opindex msmartmips
18281 @opindex mno-smartmips
18282 Use (do not use) the MIPS SmartMIPS ASE.
18283
18284 @item -mpaired-single
18285 @itemx -mno-paired-single
18286 @opindex mpaired-single
18287 @opindex mno-paired-single
18288 Use (do not use) paired-single floating-point instructions.
18289 @xref{MIPS Paired-Single Support}. This option requires
18290 hardware floating-point support to be enabled.
18291
18292 @item -mdmx
18293 @itemx -mno-mdmx
18294 @opindex mdmx
18295 @opindex mno-mdmx
18296 Use (do not use) MIPS Digital Media Extension instructions.
18297 This option can only be used when generating 64-bit code and requires
18298 hardware floating-point support to be enabled.
18299
18300 @item -mips3d
18301 @itemx -mno-mips3d
18302 @opindex mips3d
18303 @opindex mno-mips3d
18304 Use (do not use) the MIPS-3D ASE@. @xref{MIPS-3D Built-in Functions}.
18305 The option @option{-mips3d} implies @option{-mpaired-single}.
18306
18307 @item -mmicromips
18308 @itemx -mno-micromips
18309 @opindex mmicromips
18310 @opindex mno-mmicromips
18311 Generate (do not generate) microMIPS code.
18312
18313 MicroMIPS code generation can also be controlled on a per-function basis
18314 by means of @code{micromips} and @code{nomicromips} attributes.
18315 @xref{Function Attributes}, for more information.
18316
18317 @item -mmt
18318 @itemx -mno-mt
18319 @opindex mmt
18320 @opindex mno-mt
18321 Use (do not use) MT Multithreading instructions.
18322
18323 @item -mmcu
18324 @itemx -mno-mcu
18325 @opindex mmcu
18326 @opindex mno-mcu
18327 Use (do not use) the MIPS MCU ASE instructions.
18328
18329 @item -meva
18330 @itemx -mno-eva
18331 @opindex meva
18332 @opindex mno-eva
18333 Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
18334
18335 @item -mvirt
18336 @itemx -mno-virt
18337 @opindex mvirt
18338 @opindex mno-virt
18339 Use (do not use) the MIPS Virtualization Application Specific instructions.
18340
18341 @item -mxpa
18342 @itemx -mno-xpa
18343 @opindex mxpa
18344 @opindex mno-xpa
18345 Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.
18346
18347 @item -mlong64
18348 @opindex mlong64
18349 Force @code{long} types to be 64 bits wide. See @option{-mlong32} for
18350 an explanation of the default and the way that the pointer size is
18351 determined.
18352
18353 @item -mlong32
18354 @opindex mlong32
18355 Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
18356
18357 The default size of @code{int}s, @code{long}s and pointers depends on
18358 the ABI@. All the supported ABIs use 32-bit @code{int}s. The n64 ABI
18359 uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
18360 32-bit @code{long}s. Pointers are the same size as @code{long}s,
18361 or the same size as integer registers, whichever is smaller.
18362
18363 @item -msym32
18364 @itemx -mno-sym32
18365 @opindex msym32
18366 @opindex mno-sym32
18367 Assume (do not assume) that all symbols have 32-bit values, regardless
18368 of the selected ABI@. This option is useful in combination with
18369 @option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
18370 to generate shorter and faster references to symbolic addresses.
18371
18372 @item -G @var{num}
18373 @opindex G
18374 Put definitions of externally-visible data in a small data section
18375 if that data is no bigger than @var{num} bytes. GCC can then generate
18376 more efficient accesses to the data; see @option{-mgpopt} for details.
18377
18378 The default @option{-G} option depends on the configuration.
18379
18380 @item -mlocal-sdata
18381 @itemx -mno-local-sdata
18382 @opindex mlocal-sdata
18383 @opindex mno-local-sdata
18384 Extend (do not extend) the @option{-G} behavior to local data too,
18385 such as to static variables in C@. @option{-mlocal-sdata} is the
18386 default for all configurations.
18387
18388 If the linker complains that an application is using too much small data,
18389 you might want to try rebuilding the less performance-critical parts with
18390 @option{-mno-local-sdata}. You might also want to build large
18391 libraries with @option{-mno-local-sdata}, so that the libraries leave
18392 more room for the main program.
18393
18394 @item -mextern-sdata
18395 @itemx -mno-extern-sdata
18396 @opindex mextern-sdata
18397 @opindex mno-extern-sdata
18398 Assume (do not assume) that externally-defined data is in
18399 a small data section if the size of that data is within the @option{-G} limit.
18400 @option{-mextern-sdata} is the default for all configurations.
18401
18402 If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G
18403 @var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var}
18404 that is no bigger than @var{num} bytes, you must make sure that @var{Var}
18405 is placed in a small data section. If @var{Var} is defined by another
18406 module, you must either compile that module with a high-enough
18407 @option{-G} setting or attach a @code{section} attribute to @var{Var}'s
18408 definition. If @var{Var} is common, you must link the application
18409 with a high-enough @option{-G} setting.
18410
18411 The easiest way of satisfying these restrictions is to compile
18412 and link every module with the same @option{-G} option. However,
18413 you may wish to build a library that supports several different
18414 small data limits. You can do this by compiling the library with
18415 the highest supported @option{-G} setting and additionally using
18416 @option{-mno-extern-sdata} to stop the library from making assumptions
18417 about externally-defined data.
18418
18419 @item -mgpopt
18420 @itemx -mno-gpopt
18421 @opindex mgpopt
18422 @opindex mno-gpopt
18423 Use (do not use) GP-relative accesses for symbols that are known to be
18424 in a small data section; see @option{-G}, @option{-mlocal-sdata} and
18425 @option{-mextern-sdata}. @option{-mgpopt} is the default for all
18426 configurations.
18427
18428 @option{-mno-gpopt} is useful for cases where the @code{$gp} register
18429 might not hold the value of @code{_gp}. For example, if the code is
18430 part of a library that might be used in a boot monitor, programs that
18431 call boot monitor routines pass an unknown value in @code{$gp}.
18432 (In such situations, the boot monitor itself is usually compiled
18433 with @option{-G0}.)
18434
18435 @option{-mno-gpopt} implies @option{-mno-local-sdata} and
18436 @option{-mno-extern-sdata}.
18437
18438 @item -membedded-data
18439 @itemx -mno-embedded-data
18440 @opindex membedded-data
18441 @opindex mno-embedded-data
18442 Allocate variables to the read-only data section first if possible, then
18443 next in the small data section if possible, otherwise in data. This gives
18444 slightly slower code than the default, but reduces the amount of RAM required
18445 when executing, and thus may be preferred for some embedded systems.
18446
18447 @item -muninit-const-in-rodata
18448 @itemx -mno-uninit-const-in-rodata
18449 @opindex muninit-const-in-rodata
18450 @opindex mno-uninit-const-in-rodata
18451 Put uninitialized @code{const} variables in the read-only data section.
18452 This option is only meaningful in conjunction with @option{-membedded-data}.
18453
18454 @item -mcode-readable=@var{setting}
18455 @opindex mcode-readable
18456 Specify whether GCC may generate code that reads from executable sections.
18457 There are three possible settings:
18458
18459 @table @gcctabopt
18460 @item -mcode-readable=yes
18461 Instructions may freely access executable sections. This is the
18462 default setting.
18463
18464 @item -mcode-readable=pcrel
18465 MIPS16 PC-relative load instructions can access executable sections,
18466 but other instructions must not do so. This option is useful on 4KSc
18467 and 4KSd processors when the code TLBs have the Read Inhibit bit set.
18468 It is also useful on processors that can be configured to have a dual
18469 instruction/data SRAM interface and that, like the M4K, automatically
18470 redirect PC-relative loads to the instruction RAM.
18471
18472 @item -mcode-readable=no
18473 Instructions must not access executable sections. This option can be
18474 useful on targets that are configured to have a dual instruction/data
18475 SRAM interface but that (unlike the M4K) do not automatically redirect
18476 PC-relative loads to the instruction RAM.
18477 @end table
18478
18479 @item -msplit-addresses
18480 @itemx -mno-split-addresses
18481 @opindex msplit-addresses
18482 @opindex mno-split-addresses
18483 Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
18484 relocation operators. This option has been superseded by
18485 @option{-mexplicit-relocs} but is retained for backwards compatibility.
18486
18487 @item -mexplicit-relocs
18488 @itemx -mno-explicit-relocs
18489 @opindex mexplicit-relocs
18490 @opindex mno-explicit-relocs
18491 Use (do not use) assembler relocation operators when dealing with symbolic
18492 addresses. The alternative, selected by @option{-mno-explicit-relocs},
18493 is to use assembler macros instead.
18494
18495 @option{-mexplicit-relocs} is the default if GCC was configured
18496 to use an assembler that supports relocation operators.
18497
18498 @item -mcheck-zero-division
18499 @itemx -mno-check-zero-division
18500 @opindex mcheck-zero-division
18501 @opindex mno-check-zero-division
18502 Trap (do not trap) on integer division by zero.
18503
18504 The default is @option{-mcheck-zero-division}.
18505
18506 @item -mdivide-traps
18507 @itemx -mdivide-breaks
18508 @opindex mdivide-traps
18509 @opindex mdivide-breaks
18510 MIPS systems check for division by zero by generating either a
18511 conditional trap or a break instruction. Using traps results in
18512 smaller code, but is only supported on MIPS II and later. Also, some
18513 versions of the Linux kernel have a bug that prevents trap from
18514 generating the proper signal (@code{SIGFPE}). Use @option{-mdivide-traps} to
18515 allow conditional traps on architectures that support them and
18516 @option{-mdivide-breaks} to force the use of breaks.
18517
18518 The default is usually @option{-mdivide-traps}, but this can be
18519 overridden at configure time using @option{--with-divide=breaks}.
18520 Divide-by-zero checks can be completely disabled using
18521 @option{-mno-check-zero-division}.
18522
18523 @item -mmemcpy
18524 @itemx -mno-memcpy
18525 @opindex mmemcpy
18526 @opindex mno-memcpy
18527 Force (do not force) the use of @code{memcpy} for non-trivial block
18528 moves. The default is @option{-mno-memcpy}, which allows GCC to inline
18529 most constant-sized copies.
18530
18531 @item -mlong-calls
18532 @itemx -mno-long-calls
18533 @opindex mlong-calls
18534 @opindex mno-long-calls
18535 Disable (do not disable) use of the @code{jal} instruction. Calling
18536 functions using @code{jal} is more efficient but requires the caller
18537 and callee to be in the same 256 megabyte segment.
18538
18539 This option has no effect on abicalls code. The default is
18540 @option{-mno-long-calls}.
18541
18542 @item -mmad
18543 @itemx -mno-mad
18544 @opindex mmad
18545 @opindex mno-mad
18546 Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
18547 instructions, as provided by the R4650 ISA@.
18548
18549 @item -mimadd
18550 @itemx -mno-imadd
18551 @opindex mimadd
18552 @opindex mno-imadd
18553 Enable (disable) use of the @code{madd} and @code{msub} integer
18554 instructions. The default is @option{-mimadd} on architectures
18555 that support @code{madd} and @code{msub} except for the 74k
18556 architecture where it was found to generate slower code.
18557
18558 @item -mfused-madd
18559 @itemx -mno-fused-madd
18560 @opindex mfused-madd
18561 @opindex mno-fused-madd
18562 Enable (disable) use of the floating-point multiply-accumulate
18563 instructions, when they are available. The default is
18564 @option{-mfused-madd}.
18565
18566 On the R8000 CPU when multiply-accumulate instructions are used,
18567 the intermediate product is calculated to infinite precision
18568 and is not subject to the FCSR Flush to Zero bit. This may be
18569 undesirable in some circumstances. On other processors the result
18570 is numerically identical to the equivalent computation using
18571 separate multiply, add, subtract and negate instructions.
18572
18573 @item -nocpp
18574 @opindex nocpp
18575 Tell the MIPS assembler to not run its preprocessor over user
18576 assembler files (with a @samp{.s} suffix) when assembling them.
18577
18578 @item -mfix-24k
18579 @item -mno-fix-24k
18580 @opindex mfix-24k
18581 @opindex mno-fix-24k
18582 Work around the 24K E48 (lost data on stores during refill) errata.
18583 The workarounds are implemented by the assembler rather than by GCC@.
18584
18585 @item -mfix-r4000
18586 @itemx -mno-fix-r4000
18587 @opindex mfix-r4000
18588 @opindex mno-fix-r4000
18589 Work around certain R4000 CPU errata:
18590 @itemize @minus
18591 @item
18592 A double-word or a variable shift may give an incorrect result if executed
18593 immediately after starting an integer division.
18594 @item
18595 A double-word or a variable shift may give an incorrect result if executed
18596 while an integer multiplication is in progress.
18597 @item
18598 An integer division may give an incorrect result if started in a delay slot
18599 of a taken branch or a jump.
18600 @end itemize
18601
18602 @item -mfix-r4400
18603 @itemx -mno-fix-r4400
18604 @opindex mfix-r4400
18605 @opindex mno-fix-r4400
18606 Work around certain R4400 CPU errata:
18607 @itemize @minus
18608 @item
18609 A double-word or a variable shift may give an incorrect result if executed
18610 immediately after starting an integer division.
18611 @end itemize
18612
18613 @item -mfix-r10000
18614 @itemx -mno-fix-r10000
18615 @opindex mfix-r10000
18616 @opindex mno-fix-r10000
18617 Work around certain R10000 errata:
18618 @itemize @minus
18619 @item
18620 @code{ll}/@code{sc} sequences may not behave atomically on revisions
18621 prior to 3.0. They may deadlock on revisions 2.6 and earlier.
18622 @end itemize
18623
18624 This option can only be used if the target architecture supports
18625 branch-likely instructions. @option{-mfix-r10000} is the default when
18626 @option{-march=r10000} is used; @option{-mno-fix-r10000} is the default
18627 otherwise.
18628
18629 @item -mfix-rm7000
18630 @itemx -mno-fix-rm7000
18631 @opindex mfix-rm7000
18632 Work around the RM7000 @code{dmult}/@code{dmultu} errata. The
18633 workarounds are implemented by the assembler rather than by GCC@.
18634
18635 @item -mfix-vr4120
18636 @itemx -mno-fix-vr4120
18637 @opindex mfix-vr4120
18638 Work around certain VR4120 errata:
18639 @itemize @minus
18640 @item
18641 @code{dmultu} does not always produce the correct result.
18642 @item
18643 @code{div} and @code{ddiv} do not always produce the correct result if one
18644 of the operands is negative.
18645 @end itemize
18646 The workarounds for the division errata rely on special functions in
18647 @file{libgcc.a}. At present, these functions are only provided by
18648 the @code{mips64vr*-elf} configurations.
18649
18650 Other VR4120 errata require a NOP to be inserted between certain pairs of
18651 instructions. These errata are handled by the assembler, not by GCC itself.
18652
18653 @item -mfix-vr4130
18654 @opindex mfix-vr4130
18655 Work around the VR4130 @code{mflo}/@code{mfhi} errata. The
18656 workarounds are implemented by the assembler rather than by GCC,
18657 although GCC avoids using @code{mflo} and @code{mfhi} if the
18658 VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
18659 instructions are available instead.
18660
18661 @item -mfix-sb1
18662 @itemx -mno-fix-sb1
18663 @opindex mfix-sb1
18664 Work around certain SB-1 CPU core errata.
18665 (This flag currently works around the SB-1 revision 2
18666 ``F1'' and ``F2'' floating-point errata.)
18667
18668 @item -mr10k-cache-barrier=@var{setting}
18669 @opindex mr10k-cache-barrier
18670 Specify whether GCC should insert cache barriers to avoid the
18671 side-effects of speculation on R10K processors.
18672
18673 In common with many processors, the R10K tries to predict the outcome
18674 of a conditional branch and speculatively executes instructions from
18675 the ``taken'' branch. It later aborts these instructions if the
18676 predicted outcome is wrong. However, on the R10K, even aborted
18677 instructions can have side effects.
18678
18679 This problem only affects kernel stores and, depending on the system,
18680 kernel loads. As an example, a speculatively-executed store may load
18681 the target memory into cache and mark the cache line as dirty, even if
18682 the store itself is later aborted. If a DMA operation writes to the
18683 same area of memory before the ``dirty'' line is flushed, the cached
18684 data overwrites the DMA-ed data. See the R10K processor manual
18685 for a full description, including other potential problems.
18686
18687 One workaround is to insert cache barrier instructions before every memory
18688 access that might be speculatively executed and that might have side
18689 effects even if aborted. @option{-mr10k-cache-barrier=@var{setting}}
18690 controls GCC's implementation of this workaround. It assumes that
18691 aborted accesses to any byte in the following regions does not have
18692 side effects:
18693
18694 @enumerate
18695 @item
18696 the memory occupied by the current function's stack frame;
18697
18698 @item
18699 the memory occupied by an incoming stack argument;
18700
18701 @item
18702 the memory occupied by an object with a link-time-constant address.
18703 @end enumerate
18704
18705 It is the kernel's responsibility to ensure that speculative
18706 accesses to these regions are indeed safe.
18707
18708 If the input program contains a function declaration such as:
18709
18710 @smallexample
18711 void foo (void);
18712 @end smallexample
18713
18714 then the implementation of @code{foo} must allow @code{j foo} and
18715 @code{jal foo} to be executed speculatively. GCC honors this
18716 restriction for functions it compiles itself. It expects non-GCC
18717 functions (such as hand-written assembly code) to do the same.
18718
18719 The option has three forms:
18720
18721 @table @gcctabopt
18722 @item -mr10k-cache-barrier=load-store
18723 Insert a cache barrier before a load or store that might be
18724 speculatively executed and that might have side effects even
18725 if aborted.
18726
18727 @item -mr10k-cache-barrier=store
18728 Insert a cache barrier before a store that might be speculatively
18729 executed and that might have side effects even if aborted.
18730
18731 @item -mr10k-cache-barrier=none
18732 Disable the insertion of cache barriers. This is the default setting.
18733 @end table
18734
18735 @item -mflush-func=@var{func}
18736 @itemx -mno-flush-func
18737 @opindex mflush-func
18738 Specifies the function to call to flush the I and D caches, or to not
18739 call any such function. If called, the function must take the same
18740 arguments as the common @code{_flush_func}, that is, the address of the
18741 memory range for which the cache is being flushed, the size of the
18742 memory range, and the number 3 (to flush both caches). The default
18743 depends on the target GCC was configured for, but commonly is either
18744 @code{_flush_func} or @code{__cpu_flush}.
18745
18746 @item mbranch-cost=@var{num}
18747 @opindex mbranch-cost
18748 Set the cost of branches to roughly @var{num} ``simple'' instructions.
18749 This cost is only a heuristic and is not guaranteed to produce
18750 consistent results across releases. A zero cost redundantly selects
18751 the default, which is based on the @option{-mtune} setting.
18752
18753 @item -mbranch-likely
18754 @itemx -mno-branch-likely
18755 @opindex mbranch-likely
18756 @opindex mno-branch-likely
18757 Enable or disable use of Branch Likely instructions, regardless of the
18758 default for the selected architecture. By default, Branch Likely
18759 instructions may be generated if they are supported by the selected
18760 architecture. An exception is for the MIPS32 and MIPS64 architectures
18761 and processors that implement those architectures; for those, Branch
18762 Likely instructions are not be generated by default because the MIPS32
18763 and MIPS64 architectures specifically deprecate their use.
18764
18765 @item -mcompact-branches=never
18766 @itemx -mcompact-branches=optimal
18767 @itemx -mcompact-branches=always
18768 @opindex mcompact-branches=never
18769 @opindex mcompact-branches=optimal
18770 @opindex mcompact-branches=always
18771 These options control which form of branches will be generated. The
18772 default is @option{-mcompact-branches=optimal}.
18773
18774 The @option{-mcompact-branches=never} option ensures that compact branch
18775 instructions will never be generated.
18776
18777 The @option{-mcompact-branches=always} option ensures that a compact
18778 branch instruction will be generated if available. If a compact branch
18779 instruction is not available, a delay slot form of the branch will be
18780 used instead.
18781
18782 This option is supported from MIPS Release 6 onwards.
18783
18784 The @option{-mcompact-branches=optimal} option will cause a delay slot
18785 branch to be used if one is available in the current ISA and the delay
18786 slot is successfully filled. If the delay slot is not filled, a compact
18787 branch will be chosen if one is available.
18788
18789 @item -mfp-exceptions
18790 @itemx -mno-fp-exceptions
18791 @opindex mfp-exceptions
18792 Specifies whether FP exceptions are enabled. This affects how
18793 FP instructions are scheduled for some processors.
18794 The default is that FP exceptions are
18795 enabled.
18796
18797 For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
18798 64-bit code, then we can use both FP pipes. Otherwise, we can only use one
18799 FP pipe.
18800
18801 @item -mvr4130-align
18802 @itemx -mno-vr4130-align
18803 @opindex mvr4130-align
18804 The VR4130 pipeline is two-way superscalar, but can only issue two
18805 instructions together if the first one is 8-byte aligned. When this
18806 option is enabled, GCC aligns pairs of instructions that it
18807 thinks should execute in parallel.
18808
18809 This option only has an effect when optimizing for the VR4130.
18810 It normally makes code faster, but at the expense of making it bigger.
18811 It is enabled by default at optimization level @option{-O3}.
18812
18813 @item -msynci
18814 @itemx -mno-synci
18815 @opindex msynci
18816 Enable (disable) generation of @code{synci} instructions on
18817 architectures that support it. The @code{synci} instructions (if
18818 enabled) are generated when @code{__builtin___clear_cache} is
18819 compiled.
18820
18821 This option defaults to @option{-mno-synci}, but the default can be
18822 overridden by configuring GCC with @option{--with-synci}.
18823
18824 When compiling code for single processor systems, it is generally safe
18825 to use @code{synci}. However, on many multi-core (SMP) systems, it
18826 does not invalidate the instruction caches on all cores and may lead
18827 to undefined behavior.
18828
18829 @item -mrelax-pic-calls
18830 @itemx -mno-relax-pic-calls
18831 @opindex mrelax-pic-calls
18832 Try to turn PIC calls that are normally dispatched via register
18833 @code{$25} into direct calls. This is only possible if the linker can
18834 resolve the destination at link time and if the destination is within
18835 range for a direct call.
18836
18837 @option{-mrelax-pic-calls} is the default if GCC was configured to use
18838 an assembler and a linker that support the @code{.reloc} assembly
18839 directive and @option{-mexplicit-relocs} is in effect. With
18840 @option{-mno-explicit-relocs}, this optimization can be performed by the
18841 assembler and the linker alone without help from the compiler.
18842
18843 @item -mmcount-ra-address
18844 @itemx -mno-mcount-ra-address
18845 @opindex mmcount-ra-address
18846 @opindex mno-mcount-ra-address
18847 Emit (do not emit) code that allows @code{_mcount} to modify the
18848 calling function's return address. When enabled, this option extends
18849 the usual @code{_mcount} interface with a new @var{ra-address}
18850 parameter, which has type @code{intptr_t *} and is passed in register
18851 @code{$12}. @code{_mcount} can then modify the return address by
18852 doing both of the following:
18853 @itemize
18854 @item
18855 Returning the new address in register @code{$31}.
18856 @item
18857 Storing the new address in @code{*@var{ra-address}},
18858 if @var{ra-address} is nonnull.
18859 @end itemize
18860
18861 The default is @option{-mno-mcount-ra-address}.
18862
18863 @item -mframe-header-opt
18864 @itemx -mno-frame-header-opt
18865 @opindex mframe-header-opt
18866 Enable (disable) frame header optimization in the o32 ABI. When using the
18867 o32 ABI, calling functions will allocate 16 bytes on the stack for the called
18868 function to write out register arguments. When enabled, this optimization
18869 will suppress the allocation of the frame header if it can be determined that
18870 it is unused.
18871
18872 This optimization is off by default at all optimization levels.
18873
18874 @end table
18875
18876 @node MMIX Options
18877 @subsection MMIX Options
18878 @cindex MMIX Options
18879
18880 These options are defined for the MMIX:
18881
18882 @table @gcctabopt
18883 @item -mlibfuncs
18884 @itemx -mno-libfuncs
18885 @opindex mlibfuncs
18886 @opindex mno-libfuncs
18887 Specify that intrinsic library functions are being compiled, passing all
18888 values in registers, no matter the size.
18889
18890 @item -mepsilon
18891 @itemx -mno-epsilon
18892 @opindex mepsilon
18893 @opindex mno-epsilon
18894 Generate floating-point comparison instructions that compare with respect
18895 to the @code{rE} epsilon register.
18896
18897 @item -mabi=mmixware
18898 @itemx -mabi=gnu
18899 @opindex mabi=mmixware
18900 @opindex mabi=gnu
18901 Generate code that passes function parameters and return values that (in
18902 the called function) are seen as registers @code{$0} and up, as opposed to
18903 the GNU ABI which uses global registers @code{$231} and up.
18904
18905 @item -mzero-extend
18906 @itemx -mno-zero-extend
18907 @opindex mzero-extend
18908 @opindex mno-zero-extend
18909 When reading data from memory in sizes shorter than 64 bits, use (do not
18910 use) zero-extending load instructions by default, rather than
18911 sign-extending ones.
18912
18913 @item -mknuthdiv
18914 @itemx -mno-knuthdiv
18915 @opindex mknuthdiv
18916 @opindex mno-knuthdiv
18917 Make the result of a division yielding a remainder have the same sign as
18918 the divisor. With the default, @option{-mno-knuthdiv}, the sign of the
18919 remainder follows the sign of the dividend. Both methods are
18920 arithmetically valid, the latter being almost exclusively used.
18921
18922 @item -mtoplevel-symbols
18923 @itemx -mno-toplevel-symbols
18924 @opindex mtoplevel-symbols
18925 @opindex mno-toplevel-symbols
18926 Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
18927 code can be used with the @code{PREFIX} assembly directive.
18928
18929 @item -melf
18930 @opindex melf
18931 Generate an executable in the ELF format, rather than the default
18932 @samp{mmo} format used by the @command{mmix} simulator.
18933
18934 @item -mbranch-predict
18935 @itemx -mno-branch-predict
18936 @opindex mbranch-predict
18937 @opindex mno-branch-predict
18938 Use (do not use) the probable-branch instructions, when static branch
18939 prediction indicates a probable branch.
18940
18941 @item -mbase-addresses
18942 @itemx -mno-base-addresses
18943 @opindex mbase-addresses
18944 @opindex mno-base-addresses
18945 Generate (do not generate) code that uses @emph{base addresses}. Using a
18946 base address automatically generates a request (handled by the assembler
18947 and the linker) for a constant to be set up in a global register. The
18948 register is used for one or more base address requests within the range 0
18949 to 255 from the value held in the register. The generally leads to short
18950 and fast code, but the number of different data items that can be
18951 addressed is limited. This means that a program that uses lots of static
18952 data may require @option{-mno-base-addresses}.
18953
18954 @item -msingle-exit
18955 @itemx -mno-single-exit
18956 @opindex msingle-exit
18957 @opindex mno-single-exit
18958 Force (do not force) generated code to have a single exit point in each
18959 function.
18960 @end table
18961
18962 @node MN10300 Options
18963 @subsection MN10300 Options
18964 @cindex MN10300 options
18965
18966 These @option{-m} options are defined for Matsushita MN10300 architectures:
18967
18968 @table @gcctabopt
18969 @item -mmult-bug
18970 @opindex mmult-bug
18971 Generate code to avoid bugs in the multiply instructions for the MN10300
18972 processors. This is the default.
18973
18974 @item -mno-mult-bug
18975 @opindex mno-mult-bug
18976 Do not generate code to avoid bugs in the multiply instructions for the
18977 MN10300 processors.
18978
18979 @item -mam33
18980 @opindex mam33
18981 Generate code using features specific to the AM33 processor.
18982
18983 @item -mno-am33
18984 @opindex mno-am33
18985 Do not generate code using features specific to the AM33 processor. This
18986 is the default.
18987
18988 @item -mam33-2
18989 @opindex mam33-2
18990 Generate code using features specific to the AM33/2.0 processor.
18991
18992 @item -mam34
18993 @opindex mam34
18994 Generate code using features specific to the AM34 processor.
18995
18996 @item -mtune=@var{cpu-type}
18997 @opindex mtune
18998 Use the timing characteristics of the indicated CPU type when
18999 scheduling instructions. This does not change the targeted processor
19000 type. The CPU type must be one of @samp{mn10300}, @samp{am33},
19001 @samp{am33-2} or @samp{am34}.
19002
19003 @item -mreturn-pointer-on-d0
19004 @opindex mreturn-pointer-on-d0
19005 When generating a function that returns a pointer, return the pointer
19006 in both @code{a0} and @code{d0}. Otherwise, the pointer is returned
19007 only in @code{a0}, and attempts to call such functions without a prototype
19008 result in errors. Note that this option is on by default; use
19009 @option{-mno-return-pointer-on-d0} to disable it.
19010
19011 @item -mno-crt0
19012 @opindex mno-crt0
19013 Do not link in the C run-time initialization object file.
19014
19015 @item -mrelax
19016 @opindex mrelax
19017 Indicate to the linker that it should perform a relaxation optimization pass
19018 to shorten branches, calls and absolute memory addresses. This option only
19019 has an effect when used on the command line for the final link step.
19020
19021 This option makes symbolic debugging impossible.
19022
19023 @item -mliw
19024 @opindex mliw
19025 Allow the compiler to generate @emph{Long Instruction Word}
19026 instructions if the target is the @samp{AM33} or later. This is the
19027 default. This option defines the preprocessor macro @code{__LIW__}.
19028
19029 @item -mnoliw
19030 @opindex mnoliw
19031 Do not allow the compiler to generate @emph{Long Instruction Word}
19032 instructions. This option defines the preprocessor macro
19033 @code{__NO_LIW__}.
19034
19035 @item -msetlb
19036 @opindex msetlb
19037 Allow the compiler to generate the @emph{SETLB} and @emph{Lcc}
19038 instructions if the target is the @samp{AM33} or later. This is the
19039 default. This option defines the preprocessor macro @code{__SETLB__}.
19040
19041 @item -mnosetlb
19042 @opindex mnosetlb
19043 Do not allow the compiler to generate @emph{SETLB} or @emph{Lcc}
19044 instructions. This option defines the preprocessor macro
19045 @code{__NO_SETLB__}.
19046
19047 @end table
19048
19049 @node Moxie Options
19050 @subsection Moxie Options
19051 @cindex Moxie Options
19052
19053 @table @gcctabopt
19054
19055 @item -meb
19056 @opindex meb
19057 Generate big-endian code. This is the default for @samp{moxie-*-*}
19058 configurations.
19059
19060 @item -mel
19061 @opindex mel
19062 Generate little-endian code.
19063
19064 @item -mmul.x
19065 @opindex mmul.x
19066 Generate mul.x and umul.x instructions. This is the default for
19067 @samp{moxiebox-*-*} configurations.
19068
19069 @item -mno-crt0
19070 @opindex mno-crt0
19071 Do not link in the C run-time initialization object file.
19072
19073 @end table
19074
19075 @node MSP430 Options
19076 @subsection MSP430 Options
19077 @cindex MSP430 Options
19078
19079 These options are defined for the MSP430:
19080
19081 @table @gcctabopt
19082
19083 @item -masm-hex
19084 @opindex masm-hex
19085 Force assembly output to always use hex constants. Normally such
19086 constants are signed decimals, but this option is available for
19087 testsuite and/or aesthetic purposes.
19088
19089 @item -mmcu=
19090 @opindex mmcu=
19091 Select the MCU to target. This is used to create a C preprocessor
19092 symbol based upon the MCU name, converted to upper case and pre- and
19093 post-fixed with @samp{__}. This in turn is used by the
19094 @file{msp430.h} header file to select an MCU-specific supplementary
19095 header file.
19096
19097 The option also sets the ISA to use. If the MCU name is one that is
19098 known to only support the 430 ISA then that is selected, otherwise the
19099 430X ISA is selected. A generic MCU name of @samp{msp430} can also be
19100 used to select the 430 ISA. Similarly the generic @samp{msp430x} MCU
19101 name selects the 430X ISA.
19102
19103 In addition an MCU-specific linker script is added to the linker
19104 command line. The script's name is the name of the MCU with
19105 @file{.ld} appended. Thus specifying @option{-mmcu=xxx} on the @command{gcc}
19106 command line defines the C preprocessor symbol @code{__XXX__} and
19107 cause the linker to search for a script called @file{xxx.ld}.
19108
19109 This option is also passed on to the assembler.
19110
19111 @item -mwarn-mcu
19112 @itemx -mno-warn-mcu
19113 @opindex mwarn-mcu
19114 @opindex mno-warn-mcu
19115 This option enables or disables warnings about conflicts between the
19116 MCU name specified by the @option{-mmcu} option and the ISA set by the
19117 @option{-mcpu} option and/or the hardware multiply support set by the
19118 @option{-mhwmult} option. It also toggles warnings about unrecognized
19119 MCU names. This option is on by default.
19120
19121 @item -mcpu=
19122 @opindex mcpu=
19123 Specifies the ISA to use. Accepted values are @samp{msp430},
19124 @samp{msp430x} and @samp{msp430xv2}. This option is deprecated. The
19125 @option{-mmcu=} option should be used to select the ISA.
19126
19127 @item -msim
19128 @opindex msim
19129 Link to the simulator runtime libraries and linker script. Overrides
19130 any scripts that would be selected by the @option{-mmcu=} option.
19131
19132 @item -mlarge
19133 @opindex mlarge
19134 Use large-model addressing (20-bit pointers, 32-bit @code{size_t}).
19135
19136 @item -msmall
19137 @opindex msmall
19138 Use small-model addressing (16-bit pointers, 16-bit @code{size_t}).
19139
19140 @item -mrelax
19141 @opindex mrelax
19142 This option is passed to the assembler and linker, and allows the
19143 linker to perform certain optimizations that cannot be done until
19144 the final link.
19145
19146 @item mhwmult=
19147 @opindex mhwmult=
19148 Describes the type of hardware multiply supported by the target.
19149 Accepted values are @samp{none} for no hardware multiply, @samp{16bit}
19150 for the original 16-bit-only multiply supported by early MCUs.
19151 @samp{32bit} for the 16/32-bit multiply supported by later MCUs and
19152 @samp{f5series} for the 16/32-bit multiply supported by F5-series MCUs.
19153 A value of @samp{auto} can also be given. This tells GCC to deduce
19154 the hardware multiply support based upon the MCU name provided by the
19155 @option{-mmcu} option. If no @option{-mmcu} option is specified or if
19156 the MCU name is not recognized then no hardware multiply support is
19157 assumed. @code{auto} is the default setting.
19158
19159 Hardware multiplies are normally performed by calling a library
19160 routine. This saves space in the generated code. When compiling at
19161 @option{-O3} or higher however the hardware multiplier is invoked
19162 inline. This makes for bigger, but faster code.
19163
19164 The hardware multiply routines disable interrupts whilst running and
19165 restore the previous interrupt state when they finish. This makes
19166 them safe to use inside interrupt handlers as well as in normal code.
19167
19168 @item -minrt
19169 @opindex minrt
19170 Enable the use of a minimum runtime environment - no static
19171 initializers or constructors. This is intended for memory-constrained
19172 devices. The compiler includes special symbols in some objects
19173 that tell the linker and runtime which code fragments are required.
19174
19175 @item -mcode-region=
19176 @itemx -mdata-region=
19177 @opindex mcode-region
19178 @opindex mdata-region
19179 These options tell the compiler where to place functions and data that
19180 do not have one of the @code{lower}, @code{upper}, @code{either} or
19181 @code{section} attributes. Possible values are @code{lower},
19182 @code{upper}, @code{either} or @code{any}. The first three behave
19183 like the corresponding attribute. The fourth possible value -
19184 @code{any} - is the default. It leaves placement entirely up to the
19185 linker script and how it assigns the standard sections
19186 (@code{.text}, @code{.data}, etc) to the memory regions.
19187
19188 @item -msilicon-errata=
19189 @opindex msilicon-errata
19190 This option passes on a request to assembler to enable the fixes for
19191 the named silicon errata.
19192
19193 @item -msilicon-errata-warn=
19194 @opindex msilicon-errata-warn
19195 This option passes on a request to the assembler to enable warning
19196 messages when a silicon errata might need to be applied.
19197
19198 @end table
19199
19200 @node NDS32 Options
19201 @subsection NDS32 Options
19202 @cindex NDS32 Options
19203
19204 These options are defined for NDS32 implementations:
19205
19206 @table @gcctabopt
19207
19208 @item -mbig-endian
19209 @opindex mbig-endian
19210 Generate code in big-endian mode.
19211
19212 @item -mlittle-endian
19213 @opindex mlittle-endian
19214 Generate code in little-endian mode.
19215
19216 @item -mreduced-regs
19217 @opindex mreduced-regs
19218 Use reduced-set registers for register allocation.
19219
19220 @item -mfull-regs
19221 @opindex mfull-regs
19222 Use full-set registers for register allocation.
19223
19224 @item -mcmov
19225 @opindex mcmov
19226 Generate conditional move instructions.
19227
19228 @item -mno-cmov
19229 @opindex mno-cmov
19230 Do not generate conditional move instructions.
19231
19232 @item -mperf-ext
19233 @opindex mperf-ext
19234 Generate performance extension instructions.
19235
19236 @item -mno-perf-ext
19237 @opindex mno-perf-ext
19238 Do not generate performance extension instructions.
19239
19240 @item -mv3push
19241 @opindex mv3push
19242 Generate v3 push25/pop25 instructions.
19243
19244 @item -mno-v3push
19245 @opindex mno-v3push
19246 Do not generate v3 push25/pop25 instructions.
19247
19248 @item -m16-bit
19249 @opindex m16-bit
19250 Generate 16-bit instructions.
19251
19252 @item -mno-16-bit
19253 @opindex mno-16-bit
19254 Do not generate 16-bit instructions.
19255
19256 @item -misr-vector-size=@var{num}
19257 @opindex misr-vector-size
19258 Specify the size of each interrupt vector, which must be 4 or 16.
19259
19260 @item -mcache-block-size=@var{num}
19261 @opindex mcache-block-size
19262 Specify the size of each cache block,
19263 which must be a power of 2 between 4 and 512.
19264
19265 @item -march=@var{arch}
19266 @opindex march
19267 Specify the name of the target architecture.
19268
19269 @item -mcmodel=@var{code-model}
19270 @opindex mcmodel
19271 Set the code model to one of
19272 @table @asis
19273 @item @samp{small}
19274 All the data and read-only data segments must be within 512KB addressing space.
19275 The text segment must be within 16MB addressing space.
19276 @item @samp{medium}
19277 The data segment must be within 512KB while the read-only data segment can be
19278 within 4GB addressing space. The text segment should be still within 16MB
19279 addressing space.
19280 @item @samp{large}
19281 All the text and data segments can be within 4GB addressing space.
19282 @end table
19283
19284 @item -mctor-dtor
19285 @opindex mctor-dtor
19286 Enable constructor/destructor feature.
19287
19288 @item -mrelax
19289 @opindex mrelax
19290 Guide linker to relax instructions.
19291
19292 @end table
19293
19294 @node Nios II Options
19295 @subsection Nios II Options
19296 @cindex Nios II options
19297 @cindex Altera Nios II options
19298
19299 These are the options defined for the Altera Nios II processor.
19300
19301 @table @gcctabopt
19302
19303 @item -G @var{num}
19304 @opindex G
19305 @cindex smaller data references
19306 Put global and static objects less than or equal to @var{num} bytes
19307 into the small data or BSS sections instead of the normal data or BSS
19308 sections. The default value of @var{num} is 8.
19309
19310 @item -mgpopt=@var{option}
19311 @item -mgpopt
19312 @itemx -mno-gpopt
19313 @opindex mgpopt
19314 @opindex mno-gpopt
19315 Generate (do not generate) GP-relative accesses. The following
19316 @var{option} names are recognized:
19317
19318 @table @samp
19319
19320 @item none
19321 Do not generate GP-relative accesses.
19322
19323 @item local
19324 Generate GP-relative accesses for small data objects that are not
19325 external, weak, or uninitialized common symbols.
19326 Also use GP-relative addressing for objects that
19327 have been explicitly placed in a small data section via a @code{section}
19328 attribute.
19329
19330 @item global
19331 As for @samp{local}, but also generate GP-relative accesses for
19332 small data objects that are external, weak, or common. If you use this option,
19333 you must ensure that all parts of your program (including libraries) are
19334 compiled with the same @option{-G} setting.
19335
19336 @item data
19337 Generate GP-relative accesses for all data objects in the program. If you
19338 use this option, the entire data and BSS segments
19339 of your program must fit in 64K of memory and you must use an appropriate
19340 linker script to allocate them within the addressable range of the
19341 global pointer.
19342
19343 @item all
19344 Generate GP-relative addresses for function pointers as well as data
19345 pointers. If you use this option, the entire text, data, and BSS segments
19346 of your program must fit in 64K of memory and you must use an appropriate
19347 linker script to allocate them within the addressable range of the
19348 global pointer.
19349
19350 @end table
19351
19352 @option{-mgpopt} is equivalent to @option{-mgpopt=local}, and
19353 @option{-mno-gpopt} is equivalent to @option{-mgpopt=none}.
19354
19355 The default is @option{-mgpopt} except when @option{-fpic} or
19356 @option{-fPIC} is specified to generate position-independent code.
19357 Note that the Nios II ABI does not permit GP-relative accesses from
19358 shared libraries.
19359
19360 You may need to specify @option{-mno-gpopt} explicitly when building
19361 programs that include large amounts of small data, including large
19362 GOT data sections. In this case, the 16-bit offset for GP-relative
19363 addressing may not be large enough to allow access to the entire
19364 small data section.
19365
19366 @item -mel
19367 @itemx -meb
19368 @opindex mel
19369 @opindex meb
19370 Generate little-endian (default) or big-endian (experimental) code,
19371 respectively.
19372
19373 @item -march=@var{arch}
19374 @opindex march
19375 This specifies the name of the target Nios II architecture. GCC uses this
19376 name to determine what kind of instructions it can emit when generating
19377 assembly code. Permissible names are: @samp{r1}, @samp{r2}.
19378
19379 The preprocessor macro @code{__nios2_arch__} is available to programs,
19380 with value 1 or 2, indicating the targeted ISA level.
19381
19382 @item -mbypass-cache
19383 @itemx -mno-bypass-cache
19384 @opindex mno-bypass-cache
19385 @opindex mbypass-cache
19386 Force all load and store instructions to always bypass cache by
19387 using I/O variants of the instructions. The default is not to
19388 bypass the cache.
19389
19390 @item -mno-cache-volatile
19391 @itemx -mcache-volatile
19392 @opindex mcache-volatile
19393 @opindex mno-cache-volatile
19394 Volatile memory access bypass the cache using the I/O variants of
19395 the load and store instructions. The default is not to bypass the cache.
19396
19397 @item -mno-fast-sw-div
19398 @itemx -mfast-sw-div
19399 @opindex mno-fast-sw-div
19400 @opindex mfast-sw-div
19401 Do not use table-based fast divide for small numbers. The default
19402 is to use the fast divide at @option{-O3} and above.
19403
19404 @item -mno-hw-mul
19405 @itemx -mhw-mul
19406 @itemx -mno-hw-mulx
19407 @itemx -mhw-mulx
19408 @itemx -mno-hw-div
19409 @itemx -mhw-div
19410 @opindex mno-hw-mul
19411 @opindex mhw-mul
19412 @opindex mno-hw-mulx
19413 @opindex mhw-mulx
19414 @opindex mno-hw-div
19415 @opindex mhw-div
19416 Enable or disable emitting @code{mul}, @code{mulx} and @code{div} family of
19417 instructions by the compiler. The default is to emit @code{mul}
19418 and not emit @code{div} and @code{mulx}.
19419
19420 @item -mbmx
19421 @itemx -mno-bmx
19422 @itemx -mcdx
19423 @itemx -mno-cdx
19424 Enable or disable generation of Nios II R2 BMX (bit manipulation) and
19425 CDX (code density) instructions. Enabling these instructions also
19426 requires @option{-march=r2}. Since these instructions are optional
19427 extensions to the R2 architecture, the default is not to emit them.
19428
19429 @item -mcustom-@var{insn}=@var{N}
19430 @itemx -mno-custom-@var{insn}
19431 @opindex mcustom-@var{insn}
19432 @opindex mno-custom-@var{insn}
19433 Each @option{-mcustom-@var{insn}=@var{N}} option enables use of a
19434 custom instruction with encoding @var{N} when generating code that uses
19435 @var{insn}. For example, @option{-mcustom-fadds=253} generates custom
19436 instruction 253 for single-precision floating-point add operations instead
19437 of the default behavior of using a library call.
19438
19439 The following values of @var{insn} are supported. Except as otherwise
19440 noted, floating-point operations are expected to be implemented with
19441 normal IEEE 754 semantics and correspond directly to the C operators or the
19442 equivalent GCC built-in functions (@pxref{Other Builtins}).
19443
19444 Single-precision floating point:
19445 @table @asis
19446
19447 @item @samp{fadds}, @samp{fsubs}, @samp{fdivs}, @samp{fmuls}
19448 Binary arithmetic operations.
19449
19450 @item @samp{fnegs}
19451 Unary negation.
19452
19453 @item @samp{fabss}
19454 Unary absolute value.
19455
19456 @item @samp{fcmpeqs}, @samp{fcmpges}, @samp{fcmpgts}, @samp{fcmples}, @samp{fcmplts}, @samp{fcmpnes}
19457 Comparison operations.
19458
19459 @item @samp{fmins}, @samp{fmaxs}
19460 Floating-point minimum and maximum. These instructions are only
19461 generated if @option{-ffinite-math-only} is specified.
19462
19463 @item @samp{fsqrts}
19464 Unary square root operation.
19465
19466 @item @samp{fcoss}, @samp{fsins}, @samp{ftans}, @samp{fatans}, @samp{fexps}, @samp{flogs}
19467 Floating-point trigonometric and exponential functions. These instructions
19468 are only generated if @option{-funsafe-math-optimizations} is also specified.
19469
19470 @end table
19471
19472 Double-precision floating point:
19473 @table @asis
19474
19475 @item @samp{faddd}, @samp{fsubd}, @samp{fdivd}, @samp{fmuld}
19476 Binary arithmetic operations.
19477
19478 @item @samp{fnegd}
19479 Unary negation.
19480
19481 @item @samp{fabsd}
19482 Unary absolute value.
19483
19484 @item @samp{fcmpeqd}, @samp{fcmpged}, @samp{fcmpgtd}, @samp{fcmpled}, @samp{fcmpltd}, @samp{fcmpned}
19485 Comparison operations.
19486
19487 @item @samp{fmind}, @samp{fmaxd}
19488 Double-precision minimum and maximum. These instructions are only
19489 generated if @option{-ffinite-math-only} is specified.
19490
19491 @item @samp{fsqrtd}
19492 Unary square root operation.
19493
19494 @item @samp{fcosd}, @samp{fsind}, @samp{ftand}, @samp{fatand}, @samp{fexpd}, @samp{flogd}
19495 Double-precision trigonometric and exponential functions. These instructions
19496 are only generated if @option{-funsafe-math-optimizations} is also specified.
19497
19498 @end table
19499
19500 Conversions:
19501 @table @asis
19502 @item @samp{fextsd}
19503 Conversion from single precision to double precision.
19504
19505 @item @samp{ftruncds}
19506 Conversion from double precision to single precision.
19507
19508 @item @samp{fixsi}, @samp{fixsu}, @samp{fixdi}, @samp{fixdu}
19509 Conversion from floating point to signed or unsigned integer types, with
19510 truncation towards zero.
19511
19512 @item @samp{round}
19513 Conversion from single-precision floating point to signed integer,
19514 rounding to the nearest integer and ties away from zero.
19515 This corresponds to the @code{__builtin_lroundf} function when
19516 @option{-fno-math-errno} is used.
19517
19518 @item @samp{floatis}, @samp{floatus}, @samp{floatid}, @samp{floatud}
19519 Conversion from signed or unsigned integer types to floating-point types.
19520
19521 @end table
19522
19523 In addition, all of the following transfer instructions for internal
19524 registers X and Y must be provided to use any of the double-precision
19525 floating-point instructions. Custom instructions taking two
19526 double-precision source operands expect the first operand in the
19527 64-bit register X. The other operand (or only operand of a unary
19528 operation) is given to the custom arithmetic instruction with the
19529 least significant half in source register @var{src1} and the most
19530 significant half in @var{src2}. A custom instruction that returns a
19531 double-precision result returns the most significant 32 bits in the
19532 destination register and the other half in 32-bit register Y.
19533 GCC automatically generates the necessary code sequences to write
19534 register X and/or read register Y when double-precision floating-point
19535 instructions are used.
19536
19537 @table @asis
19538
19539 @item @samp{fwrx}
19540 Write @var{src1} into the least significant half of X and @var{src2} into
19541 the most significant half of X.
19542
19543 @item @samp{fwry}
19544 Write @var{src1} into Y.
19545
19546 @item @samp{frdxhi}, @samp{frdxlo}
19547 Read the most or least (respectively) significant half of X and store it in
19548 @var{dest}.
19549
19550 @item @samp{frdy}
19551 Read the value of Y and store it into @var{dest}.
19552 @end table
19553
19554 Note that you can gain more local control over generation of Nios II custom
19555 instructions by using the @code{target("custom-@var{insn}=@var{N}")}
19556 and @code{target("no-custom-@var{insn}")} function attributes
19557 (@pxref{Function Attributes})
19558 or pragmas (@pxref{Function Specific Option Pragmas}).
19559
19560 @item -mcustom-fpu-cfg=@var{name}
19561 @opindex mcustom-fpu-cfg
19562
19563 This option enables a predefined, named set of custom instruction encodings
19564 (see @option{-mcustom-@var{insn}} above).
19565 Currently, the following sets are defined:
19566
19567 @option{-mcustom-fpu-cfg=60-1} is equivalent to:
19568 @gccoptlist{-mcustom-fmuls=252 @gol
19569 -mcustom-fadds=253 @gol
19570 -mcustom-fsubs=254 @gol
19571 -fsingle-precision-constant}
19572
19573 @option{-mcustom-fpu-cfg=60-2} is equivalent to:
19574 @gccoptlist{-mcustom-fmuls=252 @gol
19575 -mcustom-fadds=253 @gol
19576 -mcustom-fsubs=254 @gol
19577 -mcustom-fdivs=255 @gol
19578 -fsingle-precision-constant}
19579
19580 @option{-mcustom-fpu-cfg=72-3} is equivalent to:
19581 @gccoptlist{-mcustom-floatus=243 @gol
19582 -mcustom-fixsi=244 @gol
19583 -mcustom-floatis=245 @gol
19584 -mcustom-fcmpgts=246 @gol
19585 -mcustom-fcmples=249 @gol
19586 -mcustom-fcmpeqs=250 @gol
19587 -mcustom-fcmpnes=251 @gol
19588 -mcustom-fmuls=252 @gol
19589 -mcustom-fadds=253 @gol
19590 -mcustom-fsubs=254 @gol
19591 -mcustom-fdivs=255 @gol
19592 -fsingle-precision-constant}
19593
19594 Custom instruction assignments given by individual
19595 @option{-mcustom-@var{insn}=} options override those given by
19596 @option{-mcustom-fpu-cfg=}, regardless of the
19597 order of the options on the command line.
19598
19599 Note that you can gain more local control over selection of a FPU
19600 configuration by using the @code{target("custom-fpu-cfg=@var{name}")}
19601 function attribute (@pxref{Function Attributes})
19602 or pragma (@pxref{Function Specific Option Pragmas}).
19603
19604 @end table
19605
19606 These additional @samp{-m} options are available for the Altera Nios II
19607 ELF (bare-metal) target:
19608
19609 @table @gcctabopt
19610
19611 @item -mhal
19612 @opindex mhal
19613 Link with HAL BSP. This suppresses linking with the GCC-provided C runtime
19614 startup and termination code, and is typically used in conjunction with
19615 @option{-msys-crt0=} to specify the location of the alternate startup code
19616 provided by the HAL BSP.
19617
19618 @item -msmallc
19619 @opindex msmallc
19620 Link with a limited version of the C library, @option{-lsmallc}, rather than
19621 Newlib.
19622
19623 @item -msys-crt0=@var{startfile}
19624 @opindex msys-crt0
19625 @var{startfile} is the file name of the startfile (crt0) to use
19626 when linking. This option is only useful in conjunction with @option{-mhal}.
19627
19628 @item -msys-lib=@var{systemlib}
19629 @opindex msys-lib
19630 @var{systemlib} is the library name of the library that provides
19631 low-level system calls required by the C library,
19632 e.g. @code{read} and @code{write}.
19633 This option is typically used to link with a library provided by a HAL BSP.
19634
19635 @end table
19636
19637 @node Nvidia PTX Options
19638 @subsection Nvidia PTX Options
19639 @cindex Nvidia PTX options
19640 @cindex nvptx options
19641
19642 These options are defined for Nvidia PTX:
19643
19644 @table @gcctabopt
19645
19646 @item -m32
19647 @itemx -m64
19648 @opindex m32
19649 @opindex m64
19650 Generate code for 32-bit or 64-bit ABI.
19651
19652 @item -mmainkernel
19653 @opindex mmainkernel
19654 Link in code for a __main kernel. This is for stand-alone instead of
19655 offloading execution.
19656
19657 @item -moptimize
19658 @opindex moptimize
19659 Apply partitioned execution optimizations. This is the default when any
19660 level of optimization is selected.
19661
19662 @end table
19663
19664 @node PDP-11 Options
19665 @subsection PDP-11 Options
19666 @cindex PDP-11 Options
19667
19668 These options are defined for the PDP-11:
19669
19670 @table @gcctabopt
19671 @item -mfpu
19672 @opindex mfpu
19673 Use hardware FPP floating point. This is the default. (FIS floating
19674 point on the PDP-11/40 is not supported.)
19675
19676 @item -msoft-float
19677 @opindex msoft-float
19678 Do not use hardware floating point.
19679
19680 @item -mac0
19681 @opindex mac0
19682 Return floating-point results in ac0 (fr0 in Unix assembler syntax).
19683
19684 @item -mno-ac0
19685 @opindex mno-ac0
19686 Return floating-point results in memory. This is the default.
19687
19688 @item -m40
19689 @opindex m40
19690 Generate code for a PDP-11/40.
19691
19692 @item -m45
19693 @opindex m45
19694 Generate code for a PDP-11/45. This is the default.
19695
19696 @item -m10
19697 @opindex m10
19698 Generate code for a PDP-11/10.
19699
19700 @item -mbcopy-builtin
19701 @opindex mbcopy-builtin
19702 Use inline @code{movmemhi} patterns for copying memory. This is the
19703 default.
19704
19705 @item -mbcopy
19706 @opindex mbcopy
19707 Do not use inline @code{movmemhi} patterns for copying memory.
19708
19709 @item -mint16
19710 @itemx -mno-int32
19711 @opindex mint16
19712 @opindex mno-int32
19713 Use 16-bit @code{int}. This is the default.
19714
19715 @item -mint32
19716 @itemx -mno-int16
19717 @opindex mint32
19718 @opindex mno-int16
19719 Use 32-bit @code{int}.
19720
19721 @item -mfloat64
19722 @itemx -mno-float32
19723 @opindex mfloat64
19724 @opindex mno-float32
19725 Use 64-bit @code{float}. This is the default.
19726
19727 @item -mfloat32
19728 @itemx -mno-float64
19729 @opindex mfloat32
19730 @opindex mno-float64
19731 Use 32-bit @code{float}.
19732
19733 @item -mabshi
19734 @opindex mabshi
19735 Use @code{abshi2} pattern. This is the default.
19736
19737 @item -mno-abshi
19738 @opindex mno-abshi
19739 Do not use @code{abshi2} pattern.
19740
19741 @item -mbranch-expensive
19742 @opindex mbranch-expensive
19743 Pretend that branches are expensive. This is for experimenting with
19744 code generation only.
19745
19746 @item -mbranch-cheap
19747 @opindex mbranch-cheap
19748 Do not pretend that branches are expensive. This is the default.
19749
19750 @item -munix-asm
19751 @opindex munix-asm
19752 Use Unix assembler syntax. This is the default when configured for
19753 @samp{pdp11-*-bsd}.
19754
19755 @item -mdec-asm
19756 @opindex mdec-asm
19757 Use DEC assembler syntax. This is the default when configured for any
19758 PDP-11 target other than @samp{pdp11-*-bsd}.
19759 @end table
19760
19761 @node picoChip Options
19762 @subsection picoChip Options
19763 @cindex picoChip options
19764
19765 These @samp{-m} options are defined for picoChip implementations:
19766
19767 @table @gcctabopt
19768
19769 @item -mae=@var{ae_type}
19770 @opindex mcpu
19771 Set the instruction set, register set, and instruction scheduling
19772 parameters for array element type @var{ae_type}. Supported values
19773 for @var{ae_type} are @samp{ANY}, @samp{MUL}, and @samp{MAC}.
19774
19775 @option{-mae=ANY} selects a completely generic AE type. Code
19776 generated with this option runs on any of the other AE types. The
19777 code is not as efficient as it would be if compiled for a specific
19778 AE type, and some types of operation (e.g., multiplication) do not
19779 work properly on all types of AE.
19780
19781 @option{-mae=MUL} selects a MUL AE type. This is the most useful AE type
19782 for compiled code, and is the default.
19783
19784 @option{-mae=MAC} selects a DSP-style MAC AE. Code compiled with this
19785 option may suffer from poor performance of byte (char) manipulation,
19786 since the DSP AE does not provide hardware support for byte load/stores.
19787
19788 @item -msymbol-as-address
19789 Enable the compiler to directly use a symbol name as an address in a
19790 load/store instruction, without first loading it into a
19791 register. Typically, the use of this option generates larger
19792 programs, which run faster than when the option isn't used. However, the
19793 results vary from program to program, so it is left as a user option,
19794 rather than being permanently enabled.
19795
19796 @item -mno-inefficient-warnings
19797 Disables warnings about the generation of inefficient code. These
19798 warnings can be generated, for example, when compiling code that
19799 performs byte-level memory operations on the MAC AE type. The MAC AE has
19800 no hardware support for byte-level memory operations, so all byte
19801 load/stores must be synthesized from word load/store operations. This is
19802 inefficient and a warning is generated to indicate
19803 that you should rewrite the code to avoid byte operations, or to target
19804 an AE type that has the necessary hardware support. This option disables
19805 these warnings.
19806
19807 @end table
19808
19809 @node PowerPC Options
19810 @subsection PowerPC Options
19811 @cindex PowerPC options
19812
19813 These are listed under @xref{RS/6000 and PowerPC Options}.
19814
19815 @node RL78 Options
19816 @subsection RL78 Options
19817 @cindex RL78 Options
19818
19819 @table @gcctabopt
19820
19821 @item -msim
19822 @opindex msim
19823 Links in additional target libraries to support operation within a
19824 simulator.
19825
19826 @item -mmul=none
19827 @itemx -mmul=g10
19828 @itemx -mmul=g13
19829 @itemx -mmul=g14
19830 @itemx -mmul=rl78
19831 @opindex mmul
19832 Specifies the type of hardware multiplication and division support to
19833 be used. The simplest is @code{none}, which uses software for both
19834 multiplication and division. This is the default. The @code{g13}
19835 value is for the hardware multiply/divide peripheral found on the
19836 RL78/G13 (S2 core) targets. The @code{g14} value selects the use of
19837 the multiplication and division instructions supported by the RL78/G14
19838 (S3 core) parts. The value @code{rl78} is an alias for @code{g14} and
19839 the value @code{mg10} is an alias for @code{none}.
19840
19841 In addition a C preprocessor macro is defined, based upon the setting
19842 of this option. Possible values are: @code{__RL78_MUL_NONE__},
19843 @code{__RL78_MUL_G13__} or @code{__RL78_MUL_G14__}.
19844
19845 @item -mcpu=g10
19846 @itemx -mcpu=g13
19847 @itemx -mcpu=g14
19848 @itemx -mcpu=rl78
19849 @opindex mcpu
19850 Specifies the RL78 core to target. The default is the G14 core, also
19851 known as an S3 core or just RL78. The G13 or S2 core does not have
19852 multiply or divide instructions, instead it uses a hardware peripheral
19853 for these operations. The G10 or S1 core does not have register
19854 banks, so it uses a different calling convention.
19855
19856 If this option is set it also selects the type of hardware multiply
19857 support to use, unless this is overridden by an explicit
19858 @option{-mmul=none} option on the command line. Thus specifying
19859 @option{-mcpu=g13} enables the use of the G13 hardware multiply
19860 peripheral and specifying @option{-mcpu=g10} disables the use of
19861 hardware multiplications altogether.
19862
19863 Note, although the RL78/G14 core is the default target, specifying
19864 @option{-mcpu=g14} or @option{-mcpu=rl78} on the command line does
19865 change the behavior of the toolchain since it also enables G14
19866 hardware multiply support. If these options are not specified on the
19867 command line then software multiplication routines will be used even
19868 though the code targets the RL78 core. This is for backwards
19869 compatibility with older toolchains which did not have hardware
19870 multiply and divide support.
19871
19872 In addition a C preprocessor macro is defined, based upon the setting
19873 of this option. Possible values are: @code{__RL78_G10__},
19874 @code{__RL78_G13__} or @code{__RL78_G14__}.
19875
19876 @item -mg10
19877 @itemx -mg13
19878 @itemx -mg14
19879 @itemx -mrl78
19880 @opindex mg10
19881 @opindex mg13
19882 @opindex mg14
19883 @opindex mrl78
19884 These are aliases for the corresponding @option{-mcpu=} option. They
19885 are provided for backwards compatibility.
19886
19887 @item -mallregs
19888 @opindex mallregs
19889 Allow the compiler to use all of the available registers. By default
19890 registers @code{r24..r31} are reserved for use in interrupt handlers.
19891 With this option enabled these registers can be used in ordinary
19892 functions as well.
19893
19894 @item -m64bit-doubles
19895 @itemx -m32bit-doubles
19896 @opindex m64bit-doubles
19897 @opindex m32bit-doubles
19898 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
19899 or 32 bits (@option{-m32bit-doubles}) in size. The default is
19900 @option{-m32bit-doubles}.
19901
19902 @item -msave-mduc-in-interrupts
19903 @item -mno-save-mduc-in-interrupts
19904 @opindex msave-mduc-in-interrupts
19905 @opindex mno-save-mduc-in-interrupts
19906 Specifies that interrupt handler functions should preserve the
19907 MDUC registers. This is only necessary if normal code might use
19908 the MDUC registers, for example because it performs multiplication
19909 and division operations. The default is to ignore the MDUC registers
19910 as this makes the interrupt handlers faster. The target option -mg13
19911 needs to be passed for this to work as this feature is only available
19912 on the G13 target (S2 core). The MDUC registers will only be saved
19913 if the interrupt handler performs a multiplication or division
19914 operation or it calls another function.
19915
19916 @end table
19917
19918 @node RS/6000 and PowerPC Options
19919 @subsection IBM RS/6000 and PowerPC Options
19920 @cindex RS/6000 and PowerPC Options
19921 @cindex IBM RS/6000 and PowerPC Options
19922
19923 These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
19924 @table @gcctabopt
19925 @item -mpowerpc-gpopt
19926 @itemx -mno-powerpc-gpopt
19927 @itemx -mpowerpc-gfxopt
19928 @itemx -mno-powerpc-gfxopt
19929 @need 800
19930 @itemx -mpowerpc64
19931 @itemx -mno-powerpc64
19932 @itemx -mmfcrf
19933 @itemx -mno-mfcrf
19934 @itemx -mpopcntb
19935 @itemx -mno-popcntb
19936 @itemx -mpopcntd
19937 @itemx -mno-popcntd
19938 @itemx -mfprnd
19939 @itemx -mno-fprnd
19940 @need 800
19941 @itemx -mcmpb
19942 @itemx -mno-cmpb
19943 @itemx -mmfpgpr
19944 @itemx -mno-mfpgpr
19945 @itemx -mhard-dfp
19946 @itemx -mno-hard-dfp
19947 @opindex mpowerpc-gpopt
19948 @opindex mno-powerpc-gpopt
19949 @opindex mpowerpc-gfxopt
19950 @opindex mno-powerpc-gfxopt
19951 @opindex mpowerpc64
19952 @opindex mno-powerpc64
19953 @opindex mmfcrf
19954 @opindex mno-mfcrf
19955 @opindex mpopcntb
19956 @opindex mno-popcntb
19957 @opindex mpopcntd
19958 @opindex mno-popcntd
19959 @opindex mfprnd
19960 @opindex mno-fprnd
19961 @opindex mcmpb
19962 @opindex mno-cmpb
19963 @opindex mmfpgpr
19964 @opindex mno-mfpgpr
19965 @opindex mhard-dfp
19966 @opindex mno-hard-dfp
19967 You use these options to specify which instructions are available on the
19968 processor you are using. The default value of these options is
19969 determined when configuring GCC@. Specifying the
19970 @option{-mcpu=@var{cpu_type}} overrides the specification of these
19971 options. We recommend you use the @option{-mcpu=@var{cpu_type}} option
19972 rather than the options listed above.
19973
19974 Specifying @option{-mpowerpc-gpopt} allows
19975 GCC to use the optional PowerPC architecture instructions in the
19976 General Purpose group, including floating-point square root. Specifying
19977 @option{-mpowerpc-gfxopt} allows GCC to
19978 use the optional PowerPC architecture instructions in the Graphics
19979 group, including floating-point select.
19980
19981 The @option{-mmfcrf} option allows GCC to generate the move from
19982 condition register field instruction implemented on the POWER4
19983 processor and other processors that support the PowerPC V2.01
19984 architecture.
19985 The @option{-mpopcntb} option allows GCC to generate the popcount and
19986 double-precision FP reciprocal estimate instruction implemented on the
19987 POWER5 processor and other processors that support the PowerPC V2.02
19988 architecture.
19989 The @option{-mpopcntd} option allows GCC to generate the popcount
19990 instruction implemented on the POWER7 processor and other processors
19991 that support the PowerPC V2.06 architecture.
19992 The @option{-mfprnd} option allows GCC to generate the FP round to
19993 integer instructions implemented on the POWER5+ processor and other
19994 processors that support the PowerPC V2.03 architecture.
19995 The @option{-mcmpb} option allows GCC to generate the compare bytes
19996 instruction implemented on the POWER6 processor and other processors
19997 that support the PowerPC V2.05 architecture.
19998 The @option{-mmfpgpr} option allows GCC to generate the FP move to/from
19999 general-purpose register instructions implemented on the POWER6X
20000 processor and other processors that support the extended PowerPC V2.05
20001 architecture.
20002 The @option{-mhard-dfp} option allows GCC to generate the decimal
20003 floating-point instructions implemented on some POWER processors.
20004
20005 The @option{-mpowerpc64} option allows GCC to generate the additional
20006 64-bit instructions that are found in the full PowerPC64 architecture
20007 and to treat GPRs as 64-bit, doubleword quantities. GCC defaults to
20008 @option{-mno-powerpc64}.
20009
20010 @item -mcpu=@var{cpu_type}
20011 @opindex mcpu
20012 Set architecture type, register usage, and
20013 instruction scheduling parameters for machine type @var{cpu_type}.
20014 Supported values for @var{cpu_type} are @samp{401}, @samp{403},
20015 @samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp},
20016 @samp{476}, @samp{476fp}, @samp{505}, @samp{601}, @samp{602}, @samp{603},
20017 @samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{630}, @samp{740},
20018 @samp{7400}, @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
20019 @samp{860}, @samp{970}, @samp{8540}, @samp{a2}, @samp{e300c2},
20020 @samp{e300c3}, @samp{e500mc}, @samp{e500mc64}, @samp{e5500},
20021 @samp{e6500}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5},
20022 @samp{titan}, @samp{power3}, @samp{power4}, @samp{power5}, @samp{power5+},
20023 @samp{power6}, @samp{power6x}, @samp{power7}, @samp{power8},
20024 @samp{power9}, @samp{powerpc}, @samp{powerpc64}, @samp{powerpc64le},
20025 and @samp{rs64}.
20026
20027 @option{-mcpu=powerpc}, @option{-mcpu=powerpc64}, and
20028 @option{-mcpu=powerpc64le} specify pure 32-bit PowerPC (either
20029 endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC
20030 architecture machine types, with an appropriate, generic processor
20031 model assumed for scheduling purposes.
20032
20033 The other options specify a specific processor. Code generated under
20034 those options runs best on that processor, and may not run at all on
20035 others.
20036
20037 The @option{-mcpu} options automatically enable or disable the
20038 following options:
20039
20040 @gccoptlist{-maltivec -mfprnd -mhard-float -mmfcrf -mmultiple @gol
20041 -mpopcntb -mpopcntd -mpowerpc64 @gol
20042 -mpowerpc-gpopt -mpowerpc-gfxopt -msingle-float -mdouble-float @gol
20043 -msimple-fpu -mstring -mmulhw -mdlmzb -mmfpgpr -mvsx @gol
20044 -mcrypto -mdirect-move -mhtm -mpower8-fusion -mpower8-vector @gol
20045 -mquad-memory -mquad-memory-atomic -mmodulo -mfloat128 -mfloat128-hardware @gol
20046 -mpower9-fusion -mpower9-vector -mpower9-dform}
20047
20048 The particular options set for any particular CPU varies between
20049 compiler versions, depending on what setting seems to produce optimal
20050 code for that CPU; it doesn't necessarily reflect the actual hardware's
20051 capabilities. If you wish to set an individual option to a particular
20052 value, you may specify it after the @option{-mcpu} option, like
20053 @option{-mcpu=970 -mno-altivec}.
20054
20055 On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
20056 not enabled or disabled by the @option{-mcpu} option at present because
20057 AIX does not have full support for these options. You may still
20058 enable or disable them individually if you're sure it'll work in your
20059 environment.
20060
20061 @item -mtune=@var{cpu_type}
20062 @opindex mtune
20063 Set the instruction scheduling parameters for machine type
20064 @var{cpu_type}, but do not set the architecture type or register usage,
20065 as @option{-mcpu=@var{cpu_type}} does. The same
20066 values for @var{cpu_type} are used for @option{-mtune} as for
20067 @option{-mcpu}. If both are specified, the code generated uses the
20068 architecture and registers set by @option{-mcpu}, but the
20069 scheduling parameters set by @option{-mtune}.
20070
20071 @item -mcmodel=small
20072 @opindex mcmodel=small
20073 Generate PowerPC64 code for the small model: The TOC is limited to
20074 64k.
20075
20076 @item -mcmodel=medium
20077 @opindex mcmodel=medium
20078 Generate PowerPC64 code for the medium model: The TOC and other static
20079 data may be up to a total of 4G in size.
20080
20081 @item -mcmodel=large
20082 @opindex mcmodel=large
20083 Generate PowerPC64 code for the large model: The TOC may be up to 4G
20084 in size. Other data and code is only limited by the 64-bit address
20085 space.
20086
20087 @item -maltivec
20088 @itemx -mno-altivec
20089 @opindex maltivec
20090 @opindex mno-altivec
20091 Generate code that uses (does not use) AltiVec instructions, and also
20092 enable the use of built-in functions that allow more direct access to
20093 the AltiVec instruction set. You may also need to set
20094 @option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
20095 enhancements.
20096
20097 When @option{-maltivec} is used, rather than @option{-maltivec=le} or
20098 @option{-maltivec=be}, the element order for AltiVec intrinsics such
20099 as @code{vec_splat}, @code{vec_extract}, and @code{vec_insert}
20100 match array element order corresponding to the endianness of the
20101 target. That is, element zero identifies the leftmost element in a
20102 vector register when targeting a big-endian platform, and identifies
20103 the rightmost element in a vector register when targeting a
20104 little-endian platform.
20105
20106 @item -maltivec=be
20107 @opindex maltivec=be
20108 Generate AltiVec instructions using big-endian element order,
20109 regardless of whether the target is big- or little-endian. This is
20110 the default when targeting a big-endian platform.
20111
20112 The element order is used to interpret element numbers in AltiVec
20113 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
20114 @code{vec_insert}. By default, these match array element order
20115 corresponding to the endianness for the target.
20116
20117 @item -maltivec=le
20118 @opindex maltivec=le
20119 Generate AltiVec instructions using little-endian element order,
20120 regardless of whether the target is big- or little-endian. This is
20121 the default when targeting a little-endian platform. This option is
20122 currently ignored when targeting a big-endian platform.
20123
20124 The element order is used to interpret element numbers in AltiVec
20125 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
20126 @code{vec_insert}. By default, these match array element order
20127 corresponding to the endianness for the target.
20128
20129 @item -mvrsave
20130 @itemx -mno-vrsave
20131 @opindex mvrsave
20132 @opindex mno-vrsave
20133 Generate VRSAVE instructions when generating AltiVec code.
20134
20135 @item -mgen-cell-microcode
20136 @opindex mgen-cell-microcode
20137 Generate Cell microcode instructions.
20138
20139 @item -mwarn-cell-microcode
20140 @opindex mwarn-cell-microcode
20141 Warn when a Cell microcode instruction is emitted. An example
20142 of a Cell microcode instruction is a variable shift.
20143
20144 @item -msecure-plt
20145 @opindex msecure-plt
20146 Generate code that allows @command{ld} and @command{ld.so}
20147 to build executables and shared
20148 libraries with non-executable @code{.plt} and @code{.got} sections.
20149 This is a PowerPC
20150 32-bit SYSV ABI option.
20151
20152 @item -mbss-plt
20153 @opindex mbss-plt
20154 Generate code that uses a BSS @code{.plt} section that @command{ld.so}
20155 fills in, and
20156 requires @code{.plt} and @code{.got}
20157 sections that are both writable and executable.
20158 This is a PowerPC 32-bit SYSV ABI option.
20159
20160 @item -misel
20161 @itemx -mno-isel
20162 @opindex misel
20163 @opindex mno-isel
20164 This switch enables or disables the generation of ISEL instructions.
20165
20166 @item -misel=@var{yes/no}
20167 This switch has been deprecated. Use @option{-misel} and
20168 @option{-mno-isel} instead.
20169
20170 @item -mlra
20171 @opindex mlra
20172 Enable Local Register Allocation. This is still experimental for PowerPC,
20173 so by default the compiler uses standard reload
20174 (i.e. @option{-mno-lra}).
20175
20176 @item -mspe
20177 @itemx -mno-spe
20178 @opindex mspe
20179 @opindex mno-spe
20180 This switch enables or disables the generation of SPE simd
20181 instructions.
20182
20183 @item -mpaired
20184 @itemx -mno-paired
20185 @opindex mpaired
20186 @opindex mno-paired
20187 This switch enables or disables the generation of PAIRED simd
20188 instructions.
20189
20190 @item -mspe=@var{yes/no}
20191 This option has been deprecated. Use @option{-mspe} and
20192 @option{-mno-spe} instead.
20193
20194 @item -mvsx
20195 @itemx -mno-vsx
20196 @opindex mvsx
20197 @opindex mno-vsx
20198 Generate code that uses (does not use) vector/scalar (VSX)
20199 instructions, and also enable the use of built-in functions that allow
20200 more direct access to the VSX instruction set.
20201
20202 @item -mcrypto
20203 @itemx -mno-crypto
20204 @opindex mcrypto
20205 @opindex mno-crypto
20206 Enable the use (disable) of the built-in functions that allow direct
20207 access to the cryptographic instructions that were added in version
20208 2.07 of the PowerPC ISA.
20209
20210 @item -mdirect-move
20211 @itemx -mno-direct-move
20212 @opindex mdirect-move
20213 @opindex mno-direct-move
20214 Generate code that uses (does not use) the instructions to move data
20215 between the general purpose registers and the vector/scalar (VSX)
20216 registers that were added in version 2.07 of the PowerPC ISA.
20217
20218 @item -mhtm
20219 @itemx -mno-htm
20220 @opindex mhtm
20221 @opindex mno-htm
20222 Enable (disable) the use of the built-in functions that allow direct
20223 access to the Hardware Transactional Memory (HTM) instructions that
20224 were added in version 2.07 of the PowerPC ISA.
20225
20226 @item -mpower8-fusion
20227 @itemx -mno-power8-fusion
20228 @opindex mpower8-fusion
20229 @opindex mno-power8-fusion
20230 Generate code that keeps (does not keeps) some integer operations
20231 adjacent so that the instructions can be fused together on power8 and
20232 later processors.
20233
20234 @item -mpower8-vector
20235 @itemx -mno-power8-vector
20236 @opindex mpower8-vector
20237 @opindex mno-power8-vector
20238 Generate code that uses (does not use) the vector and scalar
20239 instructions that were added in version 2.07 of the PowerPC ISA. Also
20240 enable the use of built-in functions that allow more direct access to
20241 the vector instructions.
20242
20243 @item -mquad-memory
20244 @itemx -mno-quad-memory
20245 @opindex mquad-memory
20246 @opindex mno-quad-memory
20247 Generate code that uses (does not use) the non-atomic quad word memory
20248 instructions. The @option{-mquad-memory} option requires use of
20249 64-bit mode.
20250
20251 @item -mquad-memory-atomic
20252 @itemx -mno-quad-memory-atomic
20253 @opindex mquad-memory-atomic
20254 @opindex mno-quad-memory-atomic
20255 Generate code that uses (does not use) the atomic quad word memory
20256 instructions. The @option{-mquad-memory-atomic} option requires use of
20257 64-bit mode.
20258
20259 @item -mupper-regs-di
20260 @itemx -mno-upper-regs-di
20261 @opindex mupper-regs-di
20262 @opindex mno-upper-regs-di
20263 Generate code that uses (does not use) the scalar instructions that
20264 target all 64 registers in the vector/scalar floating point register
20265 set that were added in version 2.06 of the PowerPC ISA when processing
20266 integers. @option{-mupper-regs-di} is turned on by default if you use
20267 any of the @option{-mcpu=power7}, @option{-mcpu=power8},
20268 @option{-mcpu=power9}, or @option{-mvsx} options.
20269
20270 @item -mupper-regs-df
20271 @itemx -mno-upper-regs-df
20272 @opindex mupper-regs-df
20273 @opindex mno-upper-regs-df
20274 Generate code that uses (does not use) the scalar double precision
20275 instructions that target all 64 registers in the vector/scalar
20276 floating point register set that were added in version 2.06 of the
20277 PowerPC ISA. @option{-mupper-regs-df} is turned on by default if you
20278 use any of the @option{-mcpu=power7}, @option{-mcpu=power8},
20279 @option{-mcpu=power9}, or @option{-mvsx} options.
20280
20281 @item -mupper-regs-sf
20282 @itemx -mno-upper-regs-sf
20283 @opindex mupper-regs-sf
20284 @opindex mno-upper-regs-sf
20285 Generate code that uses (does not use) the scalar single precision
20286 instructions that target all 64 registers in the vector/scalar
20287 floating point register set that were added in version 2.07 of the
20288 PowerPC ISA. @option{-mupper-regs-sf} is turned on by default if you
20289 use either of the @option{-mcpu=power8}, @option{-mpower8-vector}, or
20290 @option{-mpower9} options.
20291
20292 @item -mupper-regs
20293 @itemx -mno-upper-regs
20294 @opindex mupper-regs
20295 @opindex mno-upper-regs
20296 Generate code that uses (does not use) the scalar
20297 instructions that target all 64 registers in the vector/scalar
20298 floating point register set, depending on the model of the machine.
20299
20300 If the @option{-mno-upper-regs} option is used, it turns off both
20301 @option{-mupper-regs-sf} and @option{-mupper-regs-df} options.
20302
20303 @item -mfloat128
20304 @itemx -mno-float128
20305 @opindex mfloat128
20306 @opindex mno-float128
20307 Enable/disable the @var{__float128} keyword for IEEE 128-bit floating point
20308 and use either software emulation for IEEE 128-bit floating point or
20309 hardware instructions.
20310
20311 The VSX instruction set (@option{-mvsx}, @option{-mcpu=power7}, or
20312 @option{-mcpu=power8}) must be enabled to use the @option{-mfloat128}
20313 option. The @code{-mfloat128} option only works on PowerPC 64-bit
20314 Linux systems.
20315
20316 @item -mfloat128-hardware
20317 @itemx -mno-float128-hardware
20318 @opindex mfloat128-hardware
20319 @opindex mno-float128-hardware
20320 Enable/disable using ISA 3.0 hardware instructions to support the
20321 @var{__float128} data type.
20322
20323 @item -mmodulo
20324 @itemx -mno-modulo
20325 @opindex mmodulo
20326 @opindex mno-module
20327 Generate code that uses (does not use) the ISA 3.0 integer modulo
20328 instructions. The @option{-mmodulo} option is enabled by default
20329 with the @option{-mcpu=power9} option.
20330
20331 @item -mpower9-fusion
20332 @itemx -mno-power9-fusion
20333 @opindex mpower9-fusion
20334 @opindex mno-power9-fusion
20335 Generate code that keeps (does not keeps) some operations adjacent so
20336 that the instructions can be fused together on power9 and later
20337 processors.
20338
20339 @item -mpower9-vector
20340 @itemx -mno-power9-vector
20341 @opindex mpower9-vector
20342 @opindex mno-power9-vector
20343 Generate code that uses (does not use) the vector and scalar
20344 instructions that were added in version 3.0 of the PowerPC ISA. Also
20345 enable the use of built-in functions that allow more direct access to
20346 the vector instructions.
20347
20348 @item -mpower9-dform
20349 @itemx -mno-power9-dform
20350 @opindex mpower9-dform
20351 @opindex mno-power9-dform
20352 Enable (disable) scalar d-form (register + offset) memory instructions
20353 to load/store traditional Altivec registers. If the @var{LRA} register
20354 allocator is enabled, also enable (disable) vector d-form memory
20355 instructions.
20356
20357 @item -mfloat-gprs=@var{yes/single/double/no}
20358 @itemx -mfloat-gprs
20359 @opindex mfloat-gprs
20360 This switch enables or disables the generation of floating-point
20361 operations on the general-purpose registers for architectures that
20362 support it.
20363
20364 The argument @samp{yes} or @samp{single} enables the use of
20365 single-precision floating-point operations.
20366
20367 The argument @samp{double} enables the use of single and
20368 double-precision floating-point operations.
20369
20370 The argument @samp{no} disables floating-point operations on the
20371 general-purpose registers.
20372
20373 This option is currently only available on the MPC854x.
20374
20375 @item -m32
20376 @itemx -m64
20377 @opindex m32
20378 @opindex m64
20379 Generate code for 32-bit or 64-bit environments of Darwin and SVR4
20380 targets (including GNU/Linux). The 32-bit environment sets int, long
20381 and pointer to 32 bits and generates code that runs on any PowerPC
20382 variant. The 64-bit environment sets int to 32 bits and long and
20383 pointer to 64 bits, and generates code for PowerPC64, as for
20384 @option{-mpowerpc64}.
20385
20386 @item -mfull-toc
20387 @itemx -mno-fp-in-toc
20388 @itemx -mno-sum-in-toc
20389 @itemx -mminimal-toc
20390 @opindex mfull-toc
20391 @opindex mno-fp-in-toc
20392 @opindex mno-sum-in-toc
20393 @opindex mminimal-toc
20394 Modify generation of the TOC (Table Of Contents), which is created for
20395 every executable file. The @option{-mfull-toc} option is selected by
20396 default. In that case, GCC allocates at least one TOC entry for
20397 each unique non-automatic variable reference in your program. GCC
20398 also places floating-point constants in the TOC@. However, only
20399 16,384 entries are available in the TOC@.
20400
20401 If you receive a linker error message that saying you have overflowed
20402 the available TOC space, you can reduce the amount of TOC space used
20403 with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
20404 @option{-mno-fp-in-toc} prevents GCC from putting floating-point
20405 constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
20406 generate code to calculate the sum of an address and a constant at
20407 run time instead of putting that sum into the TOC@. You may specify one
20408 or both of these options. Each causes GCC to produce very slightly
20409 slower and larger code at the expense of conserving TOC space.
20410
20411 If you still run out of space in the TOC even when you specify both of
20412 these options, specify @option{-mminimal-toc} instead. This option causes
20413 GCC to make only one TOC entry for every file. When you specify this
20414 option, GCC produces code that is slower and larger but which
20415 uses extremely little TOC space. You may wish to use this option
20416 only on files that contain less frequently-executed code.
20417
20418 @item -maix64
20419 @itemx -maix32
20420 @opindex maix64
20421 @opindex maix32
20422 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
20423 @code{long} type, and the infrastructure needed to support them.
20424 Specifying @option{-maix64} implies @option{-mpowerpc64},
20425 while @option{-maix32} disables the 64-bit ABI and
20426 implies @option{-mno-powerpc64}. GCC defaults to @option{-maix32}.
20427
20428 @item -mxl-compat
20429 @itemx -mno-xl-compat
20430 @opindex mxl-compat
20431 @opindex mno-xl-compat
20432 Produce code that conforms more closely to IBM XL compiler semantics
20433 when using AIX-compatible ABI@. Pass floating-point arguments to
20434 prototyped functions beyond the register save area (RSA) on the stack
20435 in addition to argument FPRs. Do not assume that most significant
20436 double in 128-bit long double value is properly rounded when comparing
20437 values and converting to double. Use XL symbol names for long double
20438 support routines.
20439
20440 The AIX calling convention was extended but not initially documented to
20441 handle an obscure K&R C case of calling a function that takes the
20442 address of its arguments with fewer arguments than declared. IBM XL
20443 compilers access floating-point arguments that do not fit in the
20444 RSA from the stack when a subroutine is compiled without
20445 optimization. Because always storing floating-point arguments on the
20446 stack is inefficient and rarely needed, this option is not enabled by
20447 default and only is necessary when calling subroutines compiled by IBM
20448 XL compilers without optimization.
20449
20450 @item -mpe
20451 @opindex mpe
20452 Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@. Link an
20453 application written to use message passing with special startup code to
20454 enable the application to run. The system must have PE installed in the
20455 standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
20456 must be overridden with the @option{-specs=} option to specify the
20457 appropriate directory location. The Parallel Environment does not
20458 support threads, so the @option{-mpe} option and the @option{-pthread}
20459 option are incompatible.
20460
20461 @item -malign-natural
20462 @itemx -malign-power
20463 @opindex malign-natural
20464 @opindex malign-power
20465 On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
20466 @option{-malign-natural} overrides the ABI-defined alignment of larger
20467 types, such as floating-point doubles, on their natural size-based boundary.
20468 The option @option{-malign-power} instructs GCC to follow the ABI-specified
20469 alignment rules. GCC defaults to the standard alignment defined in the ABI@.
20470
20471 On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
20472 is not supported.
20473
20474 @item -msoft-float
20475 @itemx -mhard-float
20476 @opindex msoft-float
20477 @opindex mhard-float
20478 Generate code that does not use (uses) the floating-point register set.
20479 Software floating-point emulation is provided if you use the
20480 @option{-msoft-float} option, and pass the option to GCC when linking.
20481
20482 @item -msingle-float
20483 @itemx -mdouble-float
20484 @opindex msingle-float
20485 @opindex mdouble-float
20486 Generate code for single- or double-precision floating-point operations.
20487 @option{-mdouble-float} implies @option{-msingle-float}.
20488
20489 @item -msimple-fpu
20490 @opindex msimple-fpu
20491 Do not generate @code{sqrt} and @code{div} instructions for hardware
20492 floating-point unit.
20493
20494 @item -mfpu=@var{name}
20495 @opindex mfpu
20496 Specify type of floating-point unit. Valid values for @var{name} are
20497 @samp{sp_lite} (equivalent to @option{-msingle-float -msimple-fpu}),
20498 @samp{dp_lite} (equivalent to @option{-mdouble-float -msimple-fpu}),
20499 @samp{sp_full} (equivalent to @option{-msingle-float}),
20500 and @samp{dp_full} (equivalent to @option{-mdouble-float}).
20501
20502 @item -mxilinx-fpu
20503 @opindex mxilinx-fpu
20504 Perform optimizations for the floating-point unit on Xilinx PPC 405/440.
20505
20506 @item -mmultiple
20507 @itemx -mno-multiple
20508 @opindex mmultiple
20509 @opindex mno-multiple
20510 Generate code that uses (does not use) the load multiple word
20511 instructions and the store multiple word instructions. These
20512 instructions are generated by default on POWER systems, and not
20513 generated on PowerPC systems. Do not use @option{-mmultiple} on little-endian
20514 PowerPC systems, since those instructions do not work when the
20515 processor is in little-endian mode. The exceptions are PPC740 and
20516 PPC750 which permit these instructions in little-endian mode.
20517
20518 @item -mstring
20519 @itemx -mno-string
20520 @opindex mstring
20521 @opindex mno-string
20522 Generate code that uses (does not use) the load string instructions
20523 and the store string word instructions to save multiple registers and
20524 do small block moves. These instructions are generated by default on
20525 POWER systems, and not generated on PowerPC systems. Do not use
20526 @option{-mstring} on little-endian PowerPC systems, since those
20527 instructions do not work when the processor is in little-endian mode.
20528 The exceptions are PPC740 and PPC750 which permit these instructions
20529 in little-endian mode.
20530
20531 @item -mupdate
20532 @itemx -mno-update
20533 @opindex mupdate
20534 @opindex mno-update
20535 Generate code that uses (does not use) the load or store instructions
20536 that update the base register to the address of the calculated memory
20537 location. These instructions are generated by default. If you use
20538 @option{-mno-update}, there is a small window between the time that the
20539 stack pointer is updated and the address of the previous frame is
20540 stored, which means code that walks the stack frame across interrupts or
20541 signals may get corrupted data.
20542
20543 @item -mavoid-indexed-addresses
20544 @itemx -mno-avoid-indexed-addresses
20545 @opindex mavoid-indexed-addresses
20546 @opindex mno-avoid-indexed-addresses
20547 Generate code that tries to avoid (not avoid) the use of indexed load
20548 or store instructions. These instructions can incur a performance
20549 penalty on Power6 processors in certain situations, such as when
20550 stepping through large arrays that cross a 16M boundary. This option
20551 is enabled by default when targeting Power6 and disabled otherwise.
20552
20553 @item -mfused-madd
20554 @itemx -mno-fused-madd
20555 @opindex mfused-madd
20556 @opindex mno-fused-madd
20557 Generate code that uses (does not use) the floating-point multiply and
20558 accumulate instructions. These instructions are generated by default
20559 if hardware floating point is used. The machine-dependent
20560 @option{-mfused-madd} option is now mapped to the machine-independent
20561 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
20562 mapped to @option{-ffp-contract=off}.
20563
20564 @item -mmulhw
20565 @itemx -mno-mulhw
20566 @opindex mmulhw
20567 @opindex mno-mulhw
20568 Generate code that uses (does not use) the half-word multiply and
20569 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
20570 These instructions are generated by default when targeting those
20571 processors.
20572
20573 @item -mdlmzb
20574 @itemx -mno-dlmzb
20575 @opindex mdlmzb
20576 @opindex mno-dlmzb
20577 Generate code that uses (does not use) the string-search @samp{dlmzb}
20578 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
20579 generated by default when targeting those processors.
20580
20581 @item -mno-bit-align
20582 @itemx -mbit-align
20583 @opindex mno-bit-align
20584 @opindex mbit-align
20585 On System V.4 and embedded PowerPC systems do not (do) force structures
20586 and unions that contain bit-fields to be aligned to the base type of the
20587 bit-field.
20588
20589 For example, by default a structure containing nothing but 8
20590 @code{unsigned} bit-fields of length 1 is aligned to a 4-byte
20591 boundary and has a size of 4 bytes. By using @option{-mno-bit-align},
20592 the structure is aligned to a 1-byte boundary and is 1 byte in
20593 size.
20594
20595 @item -mno-strict-align
20596 @itemx -mstrict-align
20597 @opindex mno-strict-align
20598 @opindex mstrict-align
20599 On System V.4 and embedded PowerPC systems do not (do) assume that
20600 unaligned memory references are handled by the system.
20601
20602 @item -mrelocatable
20603 @itemx -mno-relocatable
20604 @opindex mrelocatable
20605 @opindex mno-relocatable
20606 Generate code that allows (does not allow) a static executable to be
20607 relocated to a different address at run time. A simple embedded
20608 PowerPC system loader should relocate the entire contents of
20609 @code{.got2} and 4-byte locations listed in the @code{.fixup} section,
20610 a table of 32-bit addresses generated by this option. For this to
20611 work, all objects linked together must be compiled with
20612 @option{-mrelocatable} or @option{-mrelocatable-lib}.
20613 @option{-mrelocatable} code aligns the stack to an 8-byte boundary.
20614
20615 @item -mrelocatable-lib
20616 @itemx -mno-relocatable-lib
20617 @opindex mrelocatable-lib
20618 @opindex mno-relocatable-lib
20619 Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
20620 @code{.fixup} section to allow static executables to be relocated at
20621 run time, but @option{-mrelocatable-lib} does not use the smaller stack
20622 alignment of @option{-mrelocatable}. Objects compiled with
20623 @option{-mrelocatable-lib} may be linked with objects compiled with
20624 any combination of the @option{-mrelocatable} options.
20625
20626 @item -mno-toc
20627 @itemx -mtoc
20628 @opindex mno-toc
20629 @opindex mtoc
20630 On System V.4 and embedded PowerPC systems do not (do) assume that
20631 register 2 contains a pointer to a global area pointing to the addresses
20632 used in the program.
20633
20634 @item -mlittle
20635 @itemx -mlittle-endian
20636 @opindex mlittle
20637 @opindex mlittle-endian
20638 On System V.4 and embedded PowerPC systems compile code for the
20639 processor in little-endian mode. The @option{-mlittle-endian} option is
20640 the same as @option{-mlittle}.
20641
20642 @item -mbig
20643 @itemx -mbig-endian
20644 @opindex mbig
20645 @opindex mbig-endian
20646 On System V.4 and embedded PowerPC systems compile code for the
20647 processor in big-endian mode. The @option{-mbig-endian} option is
20648 the same as @option{-mbig}.
20649
20650 @item -mdynamic-no-pic
20651 @opindex mdynamic-no-pic
20652 On Darwin and Mac OS X systems, compile code so that it is not
20653 relocatable, but that its external references are relocatable. The
20654 resulting code is suitable for applications, but not shared
20655 libraries.
20656
20657 @item -msingle-pic-base
20658 @opindex msingle-pic-base
20659 Treat the register used for PIC addressing as read-only, rather than
20660 loading it in the prologue for each function. The runtime system is
20661 responsible for initializing this register with an appropriate value
20662 before execution begins.
20663
20664 @item -mprioritize-restricted-insns=@var{priority}
20665 @opindex mprioritize-restricted-insns
20666 This option controls the priority that is assigned to
20667 dispatch-slot restricted instructions during the second scheduling
20668 pass. The argument @var{priority} takes the value @samp{0}, @samp{1},
20669 or @samp{2} to assign no, highest, or second-highest (respectively)
20670 priority to dispatch-slot restricted
20671 instructions.
20672
20673 @item -msched-costly-dep=@var{dependence_type}
20674 @opindex msched-costly-dep
20675 This option controls which dependences are considered costly
20676 by the target during instruction scheduling. The argument
20677 @var{dependence_type} takes one of the following values:
20678
20679 @table @asis
20680 @item @samp{no}
20681 No dependence is costly.
20682
20683 @item @samp{all}
20684 All dependences are costly.
20685
20686 @item @samp{true_store_to_load}
20687 A true dependence from store to load is costly.
20688
20689 @item @samp{store_to_load}
20690 Any dependence from store to load is costly.
20691
20692 @item @var{number}
20693 Any dependence for which the latency is greater than or equal to
20694 @var{number} is costly.
20695 @end table
20696
20697 @item -minsert-sched-nops=@var{scheme}
20698 @opindex minsert-sched-nops
20699 This option controls which NOP insertion scheme is used during
20700 the second scheduling pass. The argument @var{scheme} takes one of the
20701 following values:
20702
20703 @table @asis
20704 @item @samp{no}
20705 Don't insert NOPs.
20706
20707 @item @samp{pad}
20708 Pad with NOPs any dispatch group that has vacant issue slots,
20709 according to the scheduler's grouping.
20710
20711 @item @samp{regroup_exact}
20712 Insert NOPs to force costly dependent insns into
20713 separate groups. Insert exactly as many NOPs as needed to force an insn
20714 to a new group, according to the estimated processor grouping.
20715
20716 @item @var{number}
20717 Insert NOPs to force costly dependent insns into
20718 separate groups. Insert @var{number} NOPs to force an insn to a new group.
20719 @end table
20720
20721 @item -mcall-sysv
20722 @opindex mcall-sysv
20723 On System V.4 and embedded PowerPC systems compile code using calling
20724 conventions that adhere to the March 1995 draft of the System V
20725 Application Binary Interface, PowerPC processor supplement. This is the
20726 default unless you configured GCC using @samp{powerpc-*-eabiaix}.
20727
20728 @item -mcall-sysv-eabi
20729 @itemx -mcall-eabi
20730 @opindex mcall-sysv-eabi
20731 @opindex mcall-eabi
20732 Specify both @option{-mcall-sysv} and @option{-meabi} options.
20733
20734 @item -mcall-sysv-noeabi
20735 @opindex mcall-sysv-noeabi
20736 Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
20737
20738 @item -mcall-aixdesc
20739 @opindex m
20740 On System V.4 and embedded PowerPC systems compile code for the AIX
20741 operating system.
20742
20743 @item -mcall-linux
20744 @opindex mcall-linux
20745 On System V.4 and embedded PowerPC systems compile code for the
20746 Linux-based GNU system.
20747
20748 @item -mcall-freebsd
20749 @opindex mcall-freebsd
20750 On System V.4 and embedded PowerPC systems compile code for the
20751 FreeBSD operating system.
20752
20753 @item -mcall-netbsd
20754 @opindex mcall-netbsd
20755 On System V.4 and embedded PowerPC systems compile code for the
20756 NetBSD operating system.
20757
20758 @item -mcall-openbsd
20759 @opindex mcall-netbsd
20760 On System V.4 and embedded PowerPC systems compile code for the
20761 OpenBSD operating system.
20762
20763 @item -maix-struct-return
20764 @opindex maix-struct-return
20765 Return all structures in memory (as specified by the AIX ABI)@.
20766
20767 @item -msvr4-struct-return
20768 @opindex msvr4-struct-return
20769 Return structures smaller than 8 bytes in registers (as specified by the
20770 SVR4 ABI)@.
20771
20772 @item -mabi=@var{abi-type}
20773 @opindex mabi
20774 Extend the current ABI with a particular extension, or remove such extension.
20775 Valid values are @samp{altivec}, @samp{no-altivec}, @samp{spe},
20776 @samp{no-spe}, @samp{ibmlongdouble}, @samp{ieeelongdouble},
20777 @samp{elfv1}, @samp{elfv2}@.
20778
20779 @item -mabi=spe
20780 @opindex mabi=spe
20781 Extend the current ABI with SPE ABI extensions. This does not change
20782 the default ABI, instead it adds the SPE ABI extensions to the current
20783 ABI@.
20784
20785 @item -mabi=no-spe
20786 @opindex mabi=no-spe
20787 Disable Book-E SPE ABI extensions for the current ABI@.
20788
20789 @item -mabi=ibmlongdouble
20790 @opindex mabi=ibmlongdouble
20791 Change the current ABI to use IBM extended-precision long double.
20792 This is a PowerPC 32-bit SYSV ABI option.
20793
20794 @item -mabi=ieeelongdouble
20795 @opindex mabi=ieeelongdouble
20796 Change the current ABI to use IEEE extended-precision long double.
20797 This is a PowerPC 32-bit Linux ABI option.
20798
20799 @item -mabi=elfv1
20800 @opindex mabi=elfv1
20801 Change the current ABI to use the ELFv1 ABI.
20802 This is the default ABI for big-endian PowerPC 64-bit Linux.
20803 Overriding the default ABI requires special system support and is
20804 likely to fail in spectacular ways.
20805
20806 @item -mabi=elfv2
20807 @opindex mabi=elfv2
20808 Change the current ABI to use the ELFv2 ABI.
20809 This is the default ABI for little-endian PowerPC 64-bit Linux.
20810 Overriding the default ABI requires special system support and is
20811 likely to fail in spectacular ways.
20812
20813 @item -mprototype
20814 @itemx -mno-prototype
20815 @opindex mprototype
20816 @opindex mno-prototype
20817 On System V.4 and embedded PowerPC systems assume that all calls to
20818 variable argument functions are properly prototyped. Otherwise, the
20819 compiler must insert an instruction before every non-prototyped call to
20820 set or clear bit 6 of the condition code register (@code{CR}) to
20821 indicate whether floating-point values are passed in the floating-point
20822 registers in case the function takes variable arguments. With
20823 @option{-mprototype}, only calls to prototyped variable argument functions
20824 set or clear the bit.
20825
20826 @item -msim
20827 @opindex msim
20828 On embedded PowerPC systems, assume that the startup module is called
20829 @file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
20830 @file{libc.a}. This is the default for @samp{powerpc-*-eabisim}
20831 configurations.
20832
20833 @item -mmvme
20834 @opindex mmvme
20835 On embedded PowerPC systems, assume that the startup module is called
20836 @file{crt0.o} and the standard C libraries are @file{libmvme.a} and
20837 @file{libc.a}.
20838
20839 @item -mads
20840 @opindex mads
20841 On embedded PowerPC systems, assume that the startup module is called
20842 @file{crt0.o} and the standard C libraries are @file{libads.a} and
20843 @file{libc.a}.
20844
20845 @item -myellowknife
20846 @opindex myellowknife
20847 On embedded PowerPC systems, assume that the startup module is called
20848 @file{crt0.o} and the standard C libraries are @file{libyk.a} and
20849 @file{libc.a}.
20850
20851 @item -mvxworks
20852 @opindex mvxworks
20853 On System V.4 and embedded PowerPC systems, specify that you are
20854 compiling for a VxWorks system.
20855
20856 @item -memb
20857 @opindex memb
20858 On embedded PowerPC systems, set the @code{PPC_EMB} bit in the ELF flags
20859 header to indicate that @samp{eabi} extended relocations are used.
20860
20861 @item -meabi
20862 @itemx -mno-eabi
20863 @opindex meabi
20864 @opindex mno-eabi
20865 On System V.4 and embedded PowerPC systems do (do not) adhere to the
20866 Embedded Applications Binary Interface (EABI), which is a set of
20867 modifications to the System V.4 specifications. Selecting @option{-meabi}
20868 means that the stack is aligned to an 8-byte boundary, a function
20869 @code{__eabi} is called from @code{main} to set up the EABI
20870 environment, and the @option{-msdata} option can use both @code{r2} and
20871 @code{r13} to point to two separate small data areas. Selecting
20872 @option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
20873 no EABI initialization function is called from @code{main}, and the
20874 @option{-msdata} option only uses @code{r13} to point to a single
20875 small data area. The @option{-meabi} option is on by default if you
20876 configured GCC using one of the @samp{powerpc*-*-eabi*} options.
20877
20878 @item -msdata=eabi
20879 @opindex msdata=eabi
20880 On System V.4 and embedded PowerPC systems, put small initialized
20881 @code{const} global and static data in the @code{.sdata2} section, which
20882 is pointed to by register @code{r2}. Put small initialized
20883 non-@code{const} global and static data in the @code{.sdata} section,
20884 which is pointed to by register @code{r13}. Put small uninitialized
20885 global and static data in the @code{.sbss} section, which is adjacent to
20886 the @code{.sdata} section. The @option{-msdata=eabi} option is
20887 incompatible with the @option{-mrelocatable} option. The
20888 @option{-msdata=eabi} option also sets the @option{-memb} option.
20889
20890 @item -msdata=sysv
20891 @opindex msdata=sysv
20892 On System V.4 and embedded PowerPC systems, put small global and static
20893 data in the @code{.sdata} section, which is pointed to by register
20894 @code{r13}. Put small uninitialized global and static data in the
20895 @code{.sbss} section, which is adjacent to the @code{.sdata} section.
20896 The @option{-msdata=sysv} option is incompatible with the
20897 @option{-mrelocatable} option.
20898
20899 @item -msdata=default
20900 @itemx -msdata
20901 @opindex msdata=default
20902 @opindex msdata
20903 On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
20904 compile code the same as @option{-msdata=eabi}, otherwise compile code the
20905 same as @option{-msdata=sysv}.
20906
20907 @item -msdata=data
20908 @opindex msdata=data
20909 On System V.4 and embedded PowerPC systems, put small global
20910 data in the @code{.sdata} section. Put small uninitialized global
20911 data in the @code{.sbss} section. Do not use register @code{r13}
20912 to address small data however. This is the default behavior unless
20913 other @option{-msdata} options are used.
20914
20915 @item -msdata=none
20916 @itemx -mno-sdata
20917 @opindex msdata=none
20918 @opindex mno-sdata
20919 On embedded PowerPC systems, put all initialized global and static data
20920 in the @code{.data} section, and all uninitialized data in the
20921 @code{.bss} section.
20922
20923 @item -mblock-move-inline-limit=@var{num}
20924 @opindex mblock-move-inline-limit
20925 Inline all block moves (such as calls to @code{memcpy} or structure
20926 copies) less than or equal to @var{num} bytes. The minimum value for
20927 @var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
20928 targets. The default value is target-specific.
20929
20930 @item -G @var{num}
20931 @opindex G
20932 @cindex smaller data references (PowerPC)
20933 @cindex .sdata/.sdata2 references (PowerPC)
20934 On embedded PowerPC systems, put global and static items less than or
20935 equal to @var{num} bytes into the small data or BSS sections instead of
20936 the normal data or BSS section. By default, @var{num} is 8. The
20937 @option{-G @var{num}} switch is also passed to the linker.
20938 All modules should be compiled with the same @option{-G @var{num}} value.
20939
20940 @item -mregnames
20941 @itemx -mno-regnames
20942 @opindex mregnames
20943 @opindex mno-regnames
20944 On System V.4 and embedded PowerPC systems do (do not) emit register
20945 names in the assembly language output using symbolic forms.
20946
20947 @item -mlongcall
20948 @itemx -mno-longcall
20949 @opindex mlongcall
20950 @opindex mno-longcall
20951 By default assume that all calls are far away so that a longer and more
20952 expensive calling sequence is required. This is required for calls
20953 farther than 32 megabytes (33,554,432 bytes) from the current location.
20954 A short call is generated if the compiler knows
20955 the call cannot be that far away. This setting can be overridden by
20956 the @code{shortcall} function attribute, or by @code{#pragma
20957 longcall(0)}.
20958
20959 Some linkers are capable of detecting out-of-range calls and generating
20960 glue code on the fly. On these systems, long calls are unnecessary and
20961 generate slower code. As of this writing, the AIX linker can do this,
20962 as can the GNU linker for PowerPC/64. It is planned to add this feature
20963 to the GNU linker for 32-bit PowerPC systems as well.
20964
20965 On Darwin/PPC systems, @code{#pragma longcall} generates @code{jbsr
20966 callee, L42}, plus a @dfn{branch island} (glue code). The two target
20967 addresses represent the callee and the branch island. The
20968 Darwin/PPC linker prefers the first address and generates a @code{bl
20969 callee} if the PPC @code{bl} instruction reaches the callee directly;
20970 otherwise, the linker generates @code{bl L42} to call the branch
20971 island. The branch island is appended to the body of the
20972 calling function; it computes the full 32-bit address of the callee
20973 and jumps to it.
20974
20975 On Mach-O (Darwin) systems, this option directs the compiler emit to
20976 the glue for every direct call, and the Darwin linker decides whether
20977 to use or discard it.
20978
20979 In the future, GCC may ignore all longcall specifications
20980 when the linker is known to generate glue.
20981
20982 @item -mtls-markers
20983 @itemx -mno-tls-markers
20984 @opindex mtls-markers
20985 @opindex mno-tls-markers
20986 Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
20987 specifying the function argument. The relocation allows the linker to
20988 reliably associate function call with argument setup instructions for
20989 TLS optimization, which in turn allows GCC to better schedule the
20990 sequence.
20991
20992 @item -pthread
20993 @opindex pthread
20994 Adds support for multithreading with the @dfn{pthreads} library.
20995 This option sets flags for both the preprocessor and linker.
20996
20997 @item -mrecip
20998 @itemx -mno-recip
20999 @opindex mrecip
21000 This option enables use of the reciprocal estimate and
21001 reciprocal square root estimate instructions with additional
21002 Newton-Raphson steps to increase precision instead of doing a divide or
21003 square root and divide for floating-point arguments. You should use
21004 the @option{-ffast-math} option when using @option{-mrecip} (or at
21005 least @option{-funsafe-math-optimizations},
21006 @option{-ffinite-math-only}, @option{-freciprocal-math} and
21007 @option{-fno-trapping-math}). Note that while the throughput of the
21008 sequence is generally higher than the throughput of the non-reciprocal
21009 instruction, the precision of the sequence can be decreased by up to 2
21010 ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
21011 roots.
21012
21013 @item -mrecip=@var{opt}
21014 @opindex mrecip=opt
21015 This option controls which reciprocal estimate instructions
21016 may be used. @var{opt} is a comma-separated list of options, which may
21017 be preceded by a @code{!} to invert the option:
21018
21019 @table @samp
21020
21021 @item all
21022 Enable all estimate instructions.
21023
21024 @item default
21025 Enable the default instructions, equivalent to @option{-mrecip}.
21026
21027 @item none
21028 Disable all estimate instructions, equivalent to @option{-mno-recip}.
21029
21030 @item div
21031 Enable the reciprocal approximation instructions for both
21032 single and double precision.
21033
21034 @item divf
21035 Enable the single-precision reciprocal approximation instructions.
21036
21037 @item divd
21038 Enable the double-precision reciprocal approximation instructions.
21039
21040 @item rsqrt
21041 Enable the reciprocal square root approximation instructions for both
21042 single and double precision.
21043
21044 @item rsqrtf
21045 Enable the single-precision reciprocal square root approximation instructions.
21046
21047 @item rsqrtd
21048 Enable the double-precision reciprocal square root approximation instructions.
21049
21050 @end table
21051
21052 So, for example, @option{-mrecip=all,!rsqrtd} enables
21053 all of the reciprocal estimate instructions, except for the
21054 @code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
21055 which handle the double-precision reciprocal square root calculations.
21056
21057 @item -mrecip-precision
21058 @itemx -mno-recip-precision
21059 @opindex mrecip-precision
21060 Assume (do not assume) that the reciprocal estimate instructions
21061 provide higher-precision estimates than is mandated by the PowerPC
21062 ABI. Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
21063 @option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
21064 The double-precision square root estimate instructions are not generated by
21065 default on low-precision machines, since they do not provide an
21066 estimate that converges after three steps.
21067
21068 @item -mveclibabi=@var{type}
21069 @opindex mveclibabi
21070 Specifies the ABI type to use for vectorizing intrinsics using an
21071 external library. The only type supported at present is @samp{mass},
21072 which specifies to use IBM's Mathematical Acceleration Subsystem
21073 (MASS) libraries for vectorizing intrinsics using external libraries.
21074 GCC currently emits calls to @code{acosd2}, @code{acosf4},
21075 @code{acoshd2}, @code{acoshf4}, @code{asind2}, @code{asinf4},
21076 @code{asinhd2}, @code{asinhf4}, @code{atan2d2}, @code{atan2f4},
21077 @code{atand2}, @code{atanf4}, @code{atanhd2}, @code{atanhf4},
21078 @code{cbrtd2}, @code{cbrtf4}, @code{cosd2}, @code{cosf4},
21079 @code{coshd2}, @code{coshf4}, @code{erfcd2}, @code{erfcf4},
21080 @code{erfd2}, @code{erff4}, @code{exp2d2}, @code{exp2f4},
21081 @code{expd2}, @code{expf4}, @code{expm1d2}, @code{expm1f4},
21082 @code{hypotd2}, @code{hypotf4}, @code{lgammad2}, @code{lgammaf4},
21083 @code{log10d2}, @code{log10f4}, @code{log1pd2}, @code{log1pf4},
21084 @code{log2d2}, @code{log2f4}, @code{logd2}, @code{logf4},
21085 @code{powd2}, @code{powf4}, @code{sind2}, @code{sinf4}, @code{sinhd2},
21086 @code{sinhf4}, @code{sqrtd2}, @code{sqrtf4}, @code{tand2},
21087 @code{tanf4}, @code{tanhd2}, and @code{tanhf4} when generating code
21088 for power7. Both @option{-ftree-vectorize} and
21089 @option{-funsafe-math-optimizations} must also be enabled. The MASS
21090 libraries must be specified at link time.
21091
21092 @item -mfriz
21093 @itemx -mno-friz
21094 @opindex mfriz
21095 Generate (do not generate) the @code{friz} instruction when the
21096 @option{-funsafe-math-optimizations} option is used to optimize
21097 rounding of floating-point values to 64-bit integer and back to floating
21098 point. The @code{friz} instruction does not return the same value if
21099 the floating-point number is too large to fit in an integer.
21100
21101 @item -mpointers-to-nested-functions
21102 @itemx -mno-pointers-to-nested-functions
21103 @opindex mpointers-to-nested-functions
21104 Generate (do not generate) code to load up the static chain register
21105 (@code{r11}) when calling through a pointer on AIX and 64-bit Linux
21106 systems where a function pointer points to a 3-word descriptor giving
21107 the function address, TOC value to be loaded in register @code{r2}, and
21108 static chain value to be loaded in register @code{r11}. The
21109 @option{-mpointers-to-nested-functions} is on by default. You cannot
21110 call through pointers to nested functions or pointers
21111 to functions compiled in other languages that use the static chain if
21112 you use @option{-mno-pointers-to-nested-functions}.
21113
21114 @item -msave-toc-indirect
21115 @itemx -mno-save-toc-indirect
21116 @opindex msave-toc-indirect
21117 Generate (do not generate) code to save the TOC value in the reserved
21118 stack location in the function prologue if the function calls through
21119 a pointer on AIX and 64-bit Linux systems. If the TOC value is not
21120 saved in the prologue, it is saved just before the call through the
21121 pointer. The @option{-mno-save-toc-indirect} option is the default.
21122
21123 @item -mcompat-align-parm
21124 @itemx -mno-compat-align-parm
21125 @opindex mcompat-align-parm
21126 Generate (do not generate) code to pass structure parameters with a
21127 maximum alignment of 64 bits, for compatibility with older versions
21128 of GCC.
21129
21130 Older versions of GCC (prior to 4.9.0) incorrectly did not align a
21131 structure parameter on a 128-bit boundary when that structure contained
21132 a member requiring 128-bit alignment. This is corrected in more
21133 recent versions of GCC. This option may be used to generate code
21134 that is compatible with functions compiled with older versions of
21135 GCC.
21136
21137 The @option{-mno-compat-align-parm} option is the default.
21138 @end table
21139
21140 @node RX Options
21141 @subsection RX Options
21142 @cindex RX Options
21143
21144 These command-line options are defined for RX targets:
21145
21146 @table @gcctabopt
21147 @item -m64bit-doubles
21148 @itemx -m32bit-doubles
21149 @opindex m64bit-doubles
21150 @opindex m32bit-doubles
21151 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
21152 or 32 bits (@option{-m32bit-doubles}) in size. The default is
21153 @option{-m32bit-doubles}. @emph{Note} RX floating-point hardware only
21154 works on 32-bit values, which is why the default is
21155 @option{-m32bit-doubles}.
21156
21157 @item -fpu
21158 @itemx -nofpu
21159 @opindex fpu
21160 @opindex nofpu
21161 Enables (@option{-fpu}) or disables (@option{-nofpu}) the use of RX
21162 floating-point hardware. The default is enabled for the RX600
21163 series and disabled for the RX200 series.
21164
21165 Floating-point instructions are only generated for 32-bit floating-point
21166 values, however, so the FPU hardware is not used for doubles if the
21167 @option{-m64bit-doubles} option is used.
21168
21169 @emph{Note} If the @option{-fpu} option is enabled then
21170 @option{-funsafe-math-optimizations} is also enabled automatically.
21171 This is because the RX FPU instructions are themselves unsafe.
21172
21173 @item -mcpu=@var{name}
21174 @opindex mcpu
21175 Selects the type of RX CPU to be targeted. Currently three types are
21176 supported, the generic @samp{RX600} and @samp{RX200} series hardware and
21177 the specific @samp{RX610} CPU. The default is @samp{RX600}.
21178
21179 The only difference between @samp{RX600} and @samp{RX610} is that the
21180 @samp{RX610} does not support the @code{MVTIPL} instruction.
21181
21182 The @samp{RX200} series does not have a hardware floating-point unit
21183 and so @option{-nofpu} is enabled by default when this type is
21184 selected.
21185
21186 @item -mbig-endian-data
21187 @itemx -mlittle-endian-data
21188 @opindex mbig-endian-data
21189 @opindex mlittle-endian-data
21190 Store data (but not code) in the big-endian format. The default is
21191 @option{-mlittle-endian-data}, i.e.@: to store data in the little-endian
21192 format.
21193
21194 @item -msmall-data-limit=@var{N}
21195 @opindex msmall-data-limit
21196 Specifies the maximum size in bytes of global and static variables
21197 which can be placed into the small data area. Using the small data
21198 area can lead to smaller and faster code, but the size of area is
21199 limited and it is up to the programmer to ensure that the area does
21200 not overflow. Also when the small data area is used one of the RX's
21201 registers (usually @code{r13}) is reserved for use pointing to this
21202 area, so it is no longer available for use by the compiler. This
21203 could result in slower and/or larger code if variables are pushed onto
21204 the stack instead of being held in this register.
21205
21206 Note, common variables (variables that have not been initialized) and
21207 constants are not placed into the small data area as they are assigned
21208 to other sections in the output executable.
21209
21210 The default value is zero, which disables this feature. Note, this
21211 feature is not enabled by default with higher optimization levels
21212 (@option{-O2} etc) because of the potentially detrimental effects of
21213 reserving a register. It is up to the programmer to experiment and
21214 discover whether this feature is of benefit to their program. See the
21215 description of the @option{-mpid} option for a description of how the
21216 actual register to hold the small data area pointer is chosen.
21217
21218 @item -msim
21219 @itemx -mno-sim
21220 @opindex msim
21221 @opindex mno-sim
21222 Use the simulator runtime. The default is to use the libgloss
21223 board-specific runtime.
21224
21225 @item -mas100-syntax
21226 @itemx -mno-as100-syntax
21227 @opindex mas100-syntax
21228 @opindex mno-as100-syntax
21229 When generating assembler output use a syntax that is compatible with
21230 Renesas's AS100 assembler. This syntax can also be handled by the GAS
21231 assembler, but it has some restrictions so it is not generated by default.
21232
21233 @item -mmax-constant-size=@var{N}
21234 @opindex mmax-constant-size
21235 Specifies the maximum size, in bytes, of a constant that can be used as
21236 an operand in a RX instruction. Although the RX instruction set does
21237 allow constants of up to 4 bytes in length to be used in instructions,
21238 a longer value equates to a longer instruction. Thus in some
21239 circumstances it can be beneficial to restrict the size of constants
21240 that are used in instructions. Constants that are too big are instead
21241 placed into a constant pool and referenced via register indirection.
21242
21243 The value @var{N} can be between 0 and 4. A value of 0 (the default)
21244 or 4 means that constants of any size are allowed.
21245
21246 @item -mrelax
21247 @opindex mrelax
21248 Enable linker relaxation. Linker relaxation is a process whereby the
21249 linker attempts to reduce the size of a program by finding shorter
21250 versions of various instructions. Disabled by default.
21251
21252 @item -mint-register=@var{N}
21253 @opindex mint-register
21254 Specify the number of registers to reserve for fast interrupt handler
21255 functions. The value @var{N} can be between 0 and 4. A value of 1
21256 means that register @code{r13} is reserved for the exclusive use
21257 of fast interrupt handlers. A value of 2 reserves @code{r13} and
21258 @code{r12}. A value of 3 reserves @code{r13}, @code{r12} and
21259 @code{r11}, and a value of 4 reserves @code{r13} through @code{r10}.
21260 A value of 0, the default, does not reserve any registers.
21261
21262 @item -msave-acc-in-interrupts
21263 @opindex msave-acc-in-interrupts
21264 Specifies that interrupt handler functions should preserve the
21265 accumulator register. This is only necessary if normal code might use
21266 the accumulator register, for example because it performs 64-bit
21267 multiplications. The default is to ignore the accumulator as this
21268 makes the interrupt handlers faster.
21269
21270 @item -mpid
21271 @itemx -mno-pid
21272 @opindex mpid
21273 @opindex mno-pid
21274 Enables the generation of position independent data. When enabled any
21275 access to constant data is done via an offset from a base address
21276 held in a register. This allows the location of constant data to be
21277 determined at run time without requiring the executable to be
21278 relocated, which is a benefit to embedded applications with tight
21279 memory constraints. Data that can be modified is not affected by this
21280 option.
21281
21282 Note, using this feature reserves a register, usually @code{r13}, for
21283 the constant data base address. This can result in slower and/or
21284 larger code, especially in complicated functions.
21285
21286 The actual register chosen to hold the constant data base address
21287 depends upon whether the @option{-msmall-data-limit} and/or the
21288 @option{-mint-register} command-line options are enabled. Starting
21289 with register @code{r13} and proceeding downwards, registers are
21290 allocated first to satisfy the requirements of @option{-mint-register},
21291 then @option{-mpid} and finally @option{-msmall-data-limit}. Thus it
21292 is possible for the small data area register to be @code{r8} if both
21293 @option{-mint-register=4} and @option{-mpid} are specified on the
21294 command line.
21295
21296 By default this feature is not enabled. The default can be restored
21297 via the @option{-mno-pid} command-line option.
21298
21299 @item -mno-warn-multiple-fast-interrupts
21300 @itemx -mwarn-multiple-fast-interrupts
21301 @opindex mno-warn-multiple-fast-interrupts
21302 @opindex mwarn-multiple-fast-interrupts
21303 Prevents GCC from issuing a warning message if it finds more than one
21304 fast interrupt handler when it is compiling a file. The default is to
21305 issue a warning for each extra fast interrupt handler found, as the RX
21306 only supports one such interrupt.
21307
21308 @item -mallow-string-insns
21309 @itemx -mno-allow-string-insns
21310 @opindex mallow-string-insns
21311 @opindex mno-allow-string-insns
21312 Enables or disables the use of the string manipulation instructions
21313 @code{SMOVF}, @code{SCMPU}, @code{SMOVB}, @code{SMOVU}, @code{SUNTIL}
21314 @code{SWHILE} and also the @code{RMPA} instruction. These
21315 instructions may prefetch data, which is not safe to do if accessing
21316 an I/O register. (See section 12.2.7 of the RX62N Group User's Manual
21317 for more information).
21318
21319 The default is to allow these instructions, but it is not possible for
21320 GCC to reliably detect all circumstances where a string instruction
21321 might be used to access an I/O register, so their use cannot be
21322 disabled automatically. Instead it is reliant upon the programmer to
21323 use the @option{-mno-allow-string-insns} option if their program
21324 accesses I/O space.
21325
21326 When the instructions are enabled GCC defines the C preprocessor
21327 symbol @code{__RX_ALLOW_STRING_INSNS__}, otherwise it defines the
21328 symbol @code{__RX_DISALLOW_STRING_INSNS__}.
21329
21330 @item -mjsr
21331 @itemx -mno-jsr
21332 @opindex mjsr
21333 @opindex mno-jsr
21334 Use only (or not only) @code{JSR} instructions to access functions.
21335 This option can be used when code size exceeds the range of @code{BSR}
21336 instructions. Note that @option{-mno-jsr} does not mean to not use
21337 @code{JSR} but instead means that any type of branch may be used.
21338 @end table
21339
21340 @emph{Note:} The generic GCC command-line option @option{-ffixed-@var{reg}}
21341 has special significance to the RX port when used with the
21342 @code{interrupt} function attribute. This attribute indicates a
21343 function intended to process fast interrupts. GCC ensures
21344 that it only uses the registers @code{r10}, @code{r11}, @code{r12}
21345 and/or @code{r13} and only provided that the normal use of the
21346 corresponding registers have been restricted via the
21347 @option{-ffixed-@var{reg}} or @option{-mint-register} command-line
21348 options.
21349
21350 @node S/390 and zSeries Options
21351 @subsection S/390 and zSeries Options
21352 @cindex S/390 and zSeries Options
21353
21354 These are the @samp{-m} options defined for the S/390 and zSeries architecture.
21355
21356 @table @gcctabopt
21357 @item -mhard-float
21358 @itemx -msoft-float
21359 @opindex mhard-float
21360 @opindex msoft-float
21361 Use (do not use) the hardware floating-point instructions and registers
21362 for floating-point operations. When @option{-msoft-float} is specified,
21363 functions in @file{libgcc.a} are used to perform floating-point
21364 operations. When @option{-mhard-float} is specified, the compiler
21365 generates IEEE floating-point instructions. This is the default.
21366
21367 @item -mhard-dfp
21368 @itemx -mno-hard-dfp
21369 @opindex mhard-dfp
21370 @opindex mno-hard-dfp
21371 Use (do not use) the hardware decimal-floating-point instructions for
21372 decimal-floating-point operations. When @option{-mno-hard-dfp} is
21373 specified, functions in @file{libgcc.a} are used to perform
21374 decimal-floating-point operations. When @option{-mhard-dfp} is
21375 specified, the compiler generates decimal-floating-point hardware
21376 instructions. This is the default for @option{-march=z9-ec} or higher.
21377
21378 @item -mlong-double-64
21379 @itemx -mlong-double-128
21380 @opindex mlong-double-64
21381 @opindex mlong-double-128
21382 These switches control the size of @code{long double} type. A size
21383 of 64 bits makes the @code{long double} type equivalent to the @code{double}
21384 type. This is the default.
21385
21386 @item -mbackchain
21387 @itemx -mno-backchain
21388 @opindex mbackchain
21389 @opindex mno-backchain
21390 Store (do not store) the address of the caller's frame as backchain pointer
21391 into the callee's stack frame.
21392 A backchain may be needed to allow debugging using tools that do not understand
21393 DWARF call frame information.
21394 When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
21395 at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
21396 the backchain is placed into the topmost word of the 96/160 byte register
21397 save area.
21398
21399 In general, code compiled with @option{-mbackchain} is call-compatible with
21400 code compiled with @option{-mmo-backchain}; however, use of the backchain
21401 for debugging purposes usually requires that the whole binary is built with
21402 @option{-mbackchain}. Note that the combination of @option{-mbackchain},
21403 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
21404 to build a linux kernel use @option{-msoft-float}.
21405
21406 The default is to not maintain the backchain.
21407
21408 @item -mpacked-stack
21409 @itemx -mno-packed-stack
21410 @opindex mpacked-stack
21411 @opindex mno-packed-stack
21412 Use (do not use) the packed stack layout. When @option{-mno-packed-stack} is
21413 specified, the compiler uses the all fields of the 96/160 byte register save
21414 area only for their default purpose; unused fields still take up stack space.
21415 When @option{-mpacked-stack} is specified, register save slots are densely
21416 packed at the top of the register save area; unused space is reused for other
21417 purposes, allowing for more efficient use of the available stack space.
21418 However, when @option{-mbackchain} is also in effect, the topmost word of
21419 the save area is always used to store the backchain, and the return address
21420 register is always saved two words below the backchain.
21421
21422 As long as the stack frame backchain is not used, code generated with
21423 @option{-mpacked-stack} is call-compatible with code generated with
21424 @option{-mno-packed-stack}. Note that some non-FSF releases of GCC 2.95 for
21425 S/390 or zSeries generated code that uses the stack frame backchain at run
21426 time, not just for debugging purposes. Such code is not call-compatible
21427 with code compiled with @option{-mpacked-stack}. Also, note that the
21428 combination of @option{-mbackchain},
21429 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
21430 to build a linux kernel use @option{-msoft-float}.
21431
21432 The default is to not use the packed stack layout.
21433
21434 @item -msmall-exec
21435 @itemx -mno-small-exec
21436 @opindex msmall-exec
21437 @opindex mno-small-exec
21438 Generate (or do not generate) code using the @code{bras} instruction
21439 to do subroutine calls.
21440 This only works reliably if the total executable size does not
21441 exceed 64k. The default is to use the @code{basr} instruction instead,
21442 which does not have this limitation.
21443
21444 @item -m64
21445 @itemx -m31
21446 @opindex m64
21447 @opindex m31
21448 When @option{-m31} is specified, generate code compliant to the
21449 GNU/Linux for S/390 ABI@. When @option{-m64} is specified, generate
21450 code compliant to the GNU/Linux for zSeries ABI@. This allows GCC in
21451 particular to generate 64-bit instructions. For the @samp{s390}
21452 targets, the default is @option{-m31}, while the @samp{s390x}
21453 targets default to @option{-m64}.
21454
21455 @item -mzarch
21456 @itemx -mesa
21457 @opindex mzarch
21458 @opindex mesa
21459 When @option{-mzarch} is specified, generate code using the
21460 instructions available on z/Architecture.
21461 When @option{-mesa} is specified, generate code using the
21462 instructions available on ESA/390. Note that @option{-mesa} is
21463 not possible with @option{-m64}.
21464 When generating code compliant to the GNU/Linux for S/390 ABI,
21465 the default is @option{-mesa}. When generating code compliant
21466 to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
21467
21468 @item -mhtm
21469 @itemx -mno-htm
21470 @opindex mhtm
21471 @opindex mno-htm
21472 The @option{-mhtm} option enables a set of builtins making use of
21473 instructions available with the transactional execution facility
21474 introduced with the IBM zEnterprise EC12 machine generation
21475 @ref{S/390 System z Built-in Functions}.
21476 @option{-mhtm} is enabled by default when using @option{-march=zEC12}.
21477
21478 @item -mvx
21479 @itemx -mno-vx
21480 @opindex mvx
21481 @opindex mno-vx
21482 When @option{-mvx} is specified, generate code using the instructions
21483 available with the vector extension facility introduced with the IBM
21484 z13 machine generation.
21485 This option changes the ABI for some vector type values with regard to
21486 alignment and calling conventions. In case vector type values are
21487 being used in an ABI-relevant context a GAS @samp{.gnu_attribute}
21488 command will be added to mark the resulting binary with the ABI used.
21489 @option{-mvx} is enabled by default when using @option{-march=z13}.
21490
21491 @item -mzvector
21492 @itemx -mno-zvector
21493 @opindex mzvector
21494 @opindex mno-zvector
21495 The @option{-mzvector} option enables vector language extensions and
21496 builtins using instructions available with the vector extension
21497 facility introduced with the IBM z13 machine generation.
21498 This option adds support for @samp{vector} to be used as a keyword to
21499 define vector type variables and arguments. @samp{vector} is only
21500 available when GNU extensions are enabled. It will not be expanded
21501 when requesting strict standard compliance e.g. with @option{-std=c99}.
21502 In addition to the GCC low-level builtins @option{-mzvector} enables
21503 a set of builtins added for compatibility with AltiVec-style
21504 implementations like Power and Cell. In order to make use of these
21505 builtins the header file @file{vecintrin.h} needs to be included.
21506 @option{-mzvector} is disabled by default.
21507
21508 @item -mmvcle
21509 @itemx -mno-mvcle
21510 @opindex mmvcle
21511 @opindex mno-mvcle
21512 Generate (or do not generate) code using the @code{mvcle} instruction
21513 to perform block moves. When @option{-mno-mvcle} is specified,
21514 use a @code{mvc} loop instead. This is the default unless optimizing for
21515 size.
21516
21517 @item -mdebug
21518 @itemx -mno-debug
21519 @opindex mdebug
21520 @opindex mno-debug
21521 Print (or do not print) additional debug information when compiling.
21522 The default is to not print debug information.
21523
21524 @item -march=@var{cpu-type}
21525 @opindex march
21526 Generate code that runs on @var{cpu-type}, which is the name of a
21527 system representing a certain processor type. Possible values for
21528 @var{cpu-type} are @samp{z900}, @samp{z990}, @samp{z9-109},
21529 @samp{z9-ec}, @samp{z10}, @samp{z196}, @samp{zEC12}, and @samp{z13}.
21530 The default is @option{-march=z900}. @samp{g5} and @samp{g6} are
21531 deprecated and will be removed with future releases.
21532
21533 @item -mtune=@var{cpu-type}
21534 @opindex mtune
21535 Tune to @var{cpu-type} everything applicable about the generated code,
21536 except for the ABI and the set of available instructions.
21537 The list of @var{cpu-type} values is the same as for @option{-march}.
21538 The default is the value used for @option{-march}.
21539
21540 @item -mtpf-trace
21541 @itemx -mno-tpf-trace
21542 @opindex mtpf-trace
21543 @opindex mno-tpf-trace
21544 Generate code that adds (does not add) in TPF OS specific branches to trace
21545 routines in the operating system. This option is off by default, even
21546 when compiling for the TPF OS@.
21547
21548 @item -mfused-madd
21549 @itemx -mno-fused-madd
21550 @opindex mfused-madd
21551 @opindex mno-fused-madd
21552 Generate code that uses (does not use) the floating-point multiply and
21553 accumulate instructions. These instructions are generated by default if
21554 hardware floating point is used.
21555
21556 @item -mwarn-framesize=@var{framesize}
21557 @opindex mwarn-framesize
21558 Emit a warning if the current function exceeds the given frame size. Because
21559 this is a compile-time check it doesn't need to be a real problem when the program
21560 runs. It is intended to identify functions that most probably cause
21561 a stack overflow. It is useful to be used in an environment with limited stack
21562 size e.g.@: the linux kernel.
21563
21564 @item -mwarn-dynamicstack
21565 @opindex mwarn-dynamicstack
21566 Emit a warning if the function calls @code{alloca} or uses dynamically-sized
21567 arrays. This is generally a bad idea with a limited stack size.
21568
21569 @item -mstack-guard=@var{stack-guard}
21570 @itemx -mstack-size=@var{stack-size}
21571 @opindex mstack-guard
21572 @opindex mstack-size
21573 If these options are provided the S/390 back end emits additional instructions in
21574 the function prologue that trigger a trap if the stack size is @var{stack-guard}
21575 bytes above the @var{stack-size} (remember that the stack on S/390 grows downward).
21576 If the @var{stack-guard} option is omitted the smallest power of 2 larger than
21577 the frame size of the compiled function is chosen.
21578 These options are intended to be used to help debugging stack overflow problems.
21579 The additionally emitted code causes only little overhead and hence can also be
21580 used in production-like systems without greater performance degradation. The given
21581 values have to be exact powers of 2 and @var{stack-size} has to be greater than
21582 @var{stack-guard} without exceeding 64k.
21583 In order to be efficient the extra code makes the assumption that the stack starts
21584 at an address aligned to the value given by @var{stack-size}.
21585 The @var{stack-guard} option can only be used in conjunction with @var{stack-size}.
21586
21587 @item -mhotpatch=@var{pre-halfwords},@var{post-halfwords}
21588 @opindex mhotpatch
21589 If the hotpatch option is enabled, a ``hot-patching'' function
21590 prologue is generated for all functions in the compilation unit.
21591 The funtion label is prepended with the given number of two-byte
21592 NOP instructions (@var{pre-halfwords}, maximum 1000000). After
21593 the label, 2 * @var{post-halfwords} bytes are appended, using the
21594 largest NOP like instructions the architecture allows (maximum
21595 1000000).
21596
21597 If both arguments are zero, hotpatching is disabled.
21598
21599 This option can be overridden for individual functions with the
21600 @code{hotpatch} attribute.
21601 @end table
21602
21603 @node Score Options
21604 @subsection Score Options
21605 @cindex Score Options
21606
21607 These options are defined for Score implementations:
21608
21609 @table @gcctabopt
21610 @item -meb
21611 @opindex meb
21612 Compile code for big-endian mode. This is the default.
21613
21614 @item -mel
21615 @opindex mel
21616 Compile code for little-endian mode.
21617
21618 @item -mnhwloop
21619 @opindex mnhwloop
21620 Disable generation of @code{bcnz} instructions.
21621
21622 @item -muls
21623 @opindex muls
21624 Enable generation of unaligned load and store instructions.
21625
21626 @item -mmac
21627 @opindex mmac
21628 Enable the use of multiply-accumulate instructions. Disabled by default.
21629
21630 @item -mscore5
21631 @opindex mscore5
21632 Specify the SCORE5 as the target architecture.
21633
21634 @item -mscore5u
21635 @opindex mscore5u
21636 Specify the SCORE5U of the target architecture.
21637
21638 @item -mscore7
21639 @opindex mscore7
21640 Specify the SCORE7 as the target architecture. This is the default.
21641
21642 @item -mscore7d
21643 @opindex mscore7d
21644 Specify the SCORE7D as the target architecture.
21645 @end table
21646
21647 @node SH Options
21648 @subsection SH Options
21649
21650 These @samp{-m} options are defined for the SH implementations:
21651
21652 @table @gcctabopt
21653 @item -m1
21654 @opindex m1
21655 Generate code for the SH1.
21656
21657 @item -m2
21658 @opindex m2
21659 Generate code for the SH2.
21660
21661 @item -m2e
21662 Generate code for the SH2e.
21663
21664 @item -m2a-nofpu
21665 @opindex m2a-nofpu
21666 Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
21667 that the floating-point unit is not used.
21668
21669 @item -m2a-single-only
21670 @opindex m2a-single-only
21671 Generate code for the SH2a-FPU, in such a way that no double-precision
21672 floating-point operations are used.
21673
21674 @item -m2a-single
21675 @opindex m2a-single
21676 Generate code for the SH2a-FPU assuming the floating-point unit is in
21677 single-precision mode by default.
21678
21679 @item -m2a
21680 @opindex m2a
21681 Generate code for the SH2a-FPU assuming the floating-point unit is in
21682 double-precision mode by default.
21683
21684 @item -m3
21685 @opindex m3
21686 Generate code for the SH3.
21687
21688 @item -m3e
21689 @opindex m3e
21690 Generate code for the SH3e.
21691
21692 @item -m4-nofpu
21693 @opindex m4-nofpu
21694 Generate code for the SH4 without a floating-point unit.
21695
21696 @item -m4-single-only
21697 @opindex m4-single-only
21698 Generate code for the SH4 with a floating-point unit that only
21699 supports single-precision arithmetic.
21700
21701 @item -m4-single
21702 @opindex m4-single
21703 Generate code for the SH4 assuming the floating-point unit is in
21704 single-precision mode by default.
21705
21706 @item -m4
21707 @opindex m4
21708 Generate code for the SH4.
21709
21710 @item -m4-100
21711 @opindex m4-100
21712 Generate code for SH4-100.
21713
21714 @item -m4-100-nofpu
21715 @opindex m4-100-nofpu
21716 Generate code for SH4-100 in such a way that the
21717 floating-point unit is not used.
21718
21719 @item -m4-100-single
21720 @opindex m4-100-single
21721 Generate code for SH4-100 assuming the floating-point unit is in
21722 single-precision mode by default.
21723
21724 @item -m4-100-single-only
21725 @opindex m4-100-single-only
21726 Generate code for SH4-100 in such a way that no double-precision
21727 floating-point operations are used.
21728
21729 @item -m4-200
21730 @opindex m4-200
21731 Generate code for SH4-200.
21732
21733 @item -m4-200-nofpu
21734 @opindex m4-200-nofpu
21735 Generate code for SH4-200 without in such a way that the
21736 floating-point unit is not used.
21737
21738 @item -m4-200-single
21739 @opindex m4-200-single
21740 Generate code for SH4-200 assuming the floating-point unit is in
21741 single-precision mode by default.
21742
21743 @item -m4-200-single-only
21744 @opindex m4-200-single-only
21745 Generate code for SH4-200 in such a way that no double-precision
21746 floating-point operations are used.
21747
21748 @item -m4-300
21749 @opindex m4-300
21750 Generate code for SH4-300.
21751
21752 @item -m4-300-nofpu
21753 @opindex m4-300-nofpu
21754 Generate code for SH4-300 without in such a way that the
21755 floating-point unit is not used.
21756
21757 @item -m4-300-single
21758 @opindex m4-300-single
21759 Generate code for SH4-300 in such a way that no double-precision
21760 floating-point operations are used.
21761
21762 @item -m4-300-single-only
21763 @opindex m4-300-single-only
21764 Generate code for SH4-300 in such a way that no double-precision
21765 floating-point operations are used.
21766
21767 @item -m4-340
21768 @opindex m4-340
21769 Generate code for SH4-340 (no MMU, no FPU).
21770
21771 @item -m4-500
21772 @opindex m4-500
21773 Generate code for SH4-500 (no FPU). Passes @option{-isa=sh4-nofpu} to the
21774 assembler.
21775
21776 @item -m4a-nofpu
21777 @opindex m4a-nofpu
21778 Generate code for the SH4al-dsp, or for a SH4a in such a way that the
21779 floating-point unit is not used.
21780
21781 @item -m4a-single-only
21782 @opindex m4a-single-only
21783 Generate code for the SH4a, in such a way that no double-precision
21784 floating-point operations are used.
21785
21786 @item -m4a-single
21787 @opindex m4a-single
21788 Generate code for the SH4a assuming the floating-point unit is in
21789 single-precision mode by default.
21790
21791 @item -m4a
21792 @opindex m4a
21793 Generate code for the SH4a.
21794
21795 @item -m4al
21796 @opindex m4al
21797 Same as @option{-m4a-nofpu}, except that it implicitly passes
21798 @option{-dsp} to the assembler. GCC doesn't generate any DSP
21799 instructions at the moment.
21800
21801 @item -mb
21802 @opindex mb
21803 Compile code for the processor in big-endian mode.
21804
21805 @item -ml
21806 @opindex ml
21807 Compile code for the processor in little-endian mode.
21808
21809 @item -mdalign
21810 @opindex mdalign
21811 Align doubles at 64-bit boundaries. Note that this changes the calling
21812 conventions, and thus some functions from the standard C library do
21813 not work unless you recompile it first with @option{-mdalign}.
21814
21815 @item -mrelax
21816 @opindex mrelax
21817 Shorten some address references at link time, when possible; uses the
21818 linker option @option{-relax}.
21819
21820 @item -mbigtable
21821 @opindex mbigtable
21822 Use 32-bit offsets in @code{switch} tables. The default is to use
21823 16-bit offsets.
21824
21825 @item -mbitops
21826 @opindex mbitops
21827 Enable the use of bit manipulation instructions on SH2A.
21828
21829 @item -mfmovd
21830 @opindex mfmovd
21831 Enable the use of the instruction @code{fmovd}. Check @option{-mdalign} for
21832 alignment constraints.
21833
21834 @item -mrenesas
21835 @opindex mrenesas
21836 Comply with the calling conventions defined by Renesas.
21837
21838 @item -mno-renesas
21839 @opindex mno-renesas
21840 Comply with the calling conventions defined for GCC before the Renesas
21841 conventions were available. This option is the default for all
21842 targets of the SH toolchain.
21843
21844 @item -mnomacsave
21845 @opindex mnomacsave
21846 Mark the @code{MAC} register as call-clobbered, even if
21847 @option{-mrenesas} is given.
21848
21849 @item -mieee
21850 @itemx -mno-ieee
21851 @opindex mieee
21852 @opindex mno-ieee
21853 Control the IEEE compliance of floating-point comparisons, which affects the
21854 handling of cases where the result of a comparison is unordered. By default
21855 @option{-mieee} is implicitly enabled. If @option{-ffinite-math-only} is
21856 enabled @option{-mno-ieee} is implicitly set, which results in faster
21857 floating-point greater-equal and less-equal comparisons. The implicit settings
21858 can be overridden by specifying either @option{-mieee} or @option{-mno-ieee}.
21859
21860 @item -minline-ic_invalidate
21861 @opindex minline-ic_invalidate
21862 Inline code to invalidate instruction cache entries after setting up
21863 nested function trampolines.
21864 This option has no effect if @option{-musermode} is in effect and the selected
21865 code generation option (e.g. @option{-m4}) does not allow the use of the @code{icbi}
21866 instruction.
21867 If the selected code generation option does not allow the use of the @code{icbi}
21868 instruction, and @option{-musermode} is not in effect, the inlined code
21869 manipulates the instruction cache address array directly with an associative
21870 write. This not only requires privileged mode at run time, but it also
21871 fails if the cache line had been mapped via the TLB and has become unmapped.
21872
21873 @item -misize
21874 @opindex misize
21875 Dump instruction size and location in the assembly code.
21876
21877 @item -mpadstruct
21878 @opindex mpadstruct
21879 This option is deprecated. It pads structures to multiple of 4 bytes,
21880 which is incompatible with the SH ABI@.
21881
21882 @item -matomic-model=@var{model}
21883 @opindex matomic-model=@var{model}
21884 Sets the model of atomic operations and additional parameters as a comma
21885 separated list. For details on the atomic built-in functions see
21886 @ref{__atomic Builtins}. The following models and parameters are supported:
21887
21888 @table @samp
21889
21890 @item none
21891 Disable compiler generated atomic sequences and emit library calls for atomic
21892 operations. This is the default if the target is not @code{sh*-*-linux*}.
21893
21894 @item soft-gusa
21895 Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
21896 built-in functions. The generated atomic sequences require additional support
21897 from the interrupt/exception handling code of the system and are only suitable
21898 for SH3* and SH4* single-core systems. This option is enabled by default when
21899 the target is @code{sh*-*-linux*} and SH3* or SH4*. When the target is SH4A,
21900 this option also partially utilizes the hardware atomic instructions
21901 @code{movli.l} and @code{movco.l} to create more efficient code, unless
21902 @samp{strict} is specified.
21903
21904 @item soft-tcb
21905 Generate software atomic sequences that use a variable in the thread control
21906 block. This is a variation of the gUSA sequences which can also be used on
21907 SH1* and SH2* targets. The generated atomic sequences require additional
21908 support from the interrupt/exception handling code of the system and are only
21909 suitable for single-core systems. When using this model, the @samp{gbr-offset=}
21910 parameter has to be specified as well.
21911
21912 @item soft-imask
21913 Generate software atomic sequences that temporarily disable interrupts by
21914 setting @code{SR.IMASK = 1111}. This model works only when the program runs
21915 in privileged mode and is only suitable for single-core systems. Additional
21916 support from the interrupt/exception handling code of the system is not
21917 required. This model is enabled by default when the target is
21918 @code{sh*-*-linux*} and SH1* or SH2*.
21919
21920 @item hard-llcs
21921 Generate hardware atomic sequences using the @code{movli.l} and @code{movco.l}
21922 instructions only. This is only available on SH4A and is suitable for
21923 multi-core systems. Since the hardware instructions support only 32 bit atomic
21924 variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
21925 Code compiled with this option is also compatible with other software
21926 atomic model interrupt/exception handling systems if executed on an SH4A
21927 system. Additional support from the interrupt/exception handling code of the
21928 system is not required for this model.
21929
21930 @item gbr-offset=
21931 This parameter specifies the offset in bytes of the variable in the thread
21932 control block structure that should be used by the generated atomic sequences
21933 when the @samp{soft-tcb} model has been selected. For other models this
21934 parameter is ignored. The specified value must be an integer multiple of four
21935 and in the range 0-1020.
21936
21937 @item strict
21938 This parameter prevents mixed usage of multiple atomic models, even if they
21939 are compatible, and makes the compiler generate atomic sequences of the
21940 specified model only.
21941
21942 @end table
21943
21944 @item -mtas
21945 @opindex mtas
21946 Generate the @code{tas.b} opcode for @code{__atomic_test_and_set}.
21947 Notice that depending on the particular hardware and software configuration
21948 this can degrade overall performance due to the operand cache line flushes
21949 that are implied by the @code{tas.b} instruction. On multi-core SH4A
21950 processors the @code{tas.b} instruction must be used with caution since it
21951 can result in data corruption for certain cache configurations.
21952
21953 @item -mprefergot
21954 @opindex mprefergot
21955 When generating position-independent code, emit function calls using
21956 the Global Offset Table instead of the Procedure Linkage Table.
21957
21958 @item -musermode
21959 @itemx -mno-usermode
21960 @opindex musermode
21961 @opindex mno-usermode
21962 Don't allow (allow) the compiler generating privileged mode code. Specifying
21963 @option{-musermode} also implies @option{-mno-inline-ic_invalidate} if the
21964 inlined code would not work in user mode. @option{-musermode} is the default
21965 when the target is @code{sh*-*-linux*}. If the target is SH1* or SH2*
21966 @option{-musermode} has no effect, since there is no user mode.
21967
21968 @item -multcost=@var{number}
21969 @opindex multcost=@var{number}
21970 Set the cost to assume for a multiply insn.
21971
21972 @item -mdiv=@var{strategy}
21973 @opindex mdiv=@var{strategy}
21974 Set the division strategy to be used for integer division operations.
21975 @var{strategy} can be one of:
21976
21977 @table @samp
21978
21979 @item call-div1
21980 Calls a library function that uses the single-step division instruction
21981 @code{div1} to perform the operation. Division by zero calculates an
21982 unspecified result and does not trap. This is the default except for SH4,
21983 SH2A and SHcompact.
21984
21985 @item call-fp
21986 Calls a library function that performs the operation in double precision
21987 floating point. Division by zero causes a floating-point exception. This is
21988 the default for SHcompact with FPU. Specifying this for targets that do not
21989 have a double precision FPU defaults to @code{call-div1}.
21990
21991 @item call-table
21992 Calls a library function that uses a lookup table for small divisors and
21993 the @code{div1} instruction with case distinction for larger divisors. Division
21994 by zero calculates an unspecified result and does not trap. This is the default
21995 for SH4. Specifying this for targets that do not have dynamic shift
21996 instructions defaults to @code{call-div1}.
21997
21998 @end table
21999
22000 When a division strategy has not been specified the default strategy is
22001 selected based on the current target. For SH2A the default strategy is to
22002 use the @code{divs} and @code{divu} instructions instead of library function
22003 calls.
22004
22005 @item -maccumulate-outgoing-args
22006 @opindex maccumulate-outgoing-args
22007 Reserve space once for outgoing arguments in the function prologue rather
22008 than around each call. Generally beneficial for performance and size. Also
22009 needed for unwinding to avoid changing the stack frame around conditional code.
22010
22011 @item -mdivsi3_libfunc=@var{name}
22012 @opindex mdivsi3_libfunc=@var{name}
22013 Set the name of the library function used for 32-bit signed division to
22014 @var{name}.
22015 This only affects the name used in the @samp{call} division strategies, and
22016 the compiler still expects the same sets of input/output/clobbered registers as
22017 if this option were not present.
22018
22019 @item -mfixed-range=@var{register-range}
22020 @opindex mfixed-range
22021 Generate code treating the given register range as fixed registers.
22022 A fixed register is one that the register allocator can not use. This is
22023 useful when compiling kernel code. A register range is specified as
22024 two registers separated by a dash. Multiple register ranges can be
22025 specified separated by a comma.
22026
22027 @item -mbranch-cost=@var{num}
22028 @opindex mbranch-cost=@var{num}
22029 Assume @var{num} to be the cost for a branch instruction. Higher numbers
22030 make the compiler try to generate more branch-free code if possible.
22031 If not specified the value is selected depending on the processor type that
22032 is being compiled for.
22033
22034 @item -mzdcbranch
22035 @itemx -mno-zdcbranch
22036 @opindex mzdcbranch
22037 @opindex mno-zdcbranch
22038 Assume (do not assume) that zero displacement conditional branch instructions
22039 @code{bt} and @code{bf} are fast. If @option{-mzdcbranch} is specified, the
22040 compiler prefers zero displacement branch code sequences. This is
22041 enabled by default when generating code for SH4 and SH4A. It can be explicitly
22042 disabled by specifying @option{-mno-zdcbranch}.
22043
22044 @item -mcbranch-force-delay-slot
22045 @opindex mcbranch-force-delay-slot
22046 Force the usage of delay slots for conditional branches, which stuffs the delay
22047 slot with a @code{nop} if a suitable instruction can't be found. By default
22048 this option is disabled. It can be enabled to work around hardware bugs as
22049 found in the original SH7055.
22050
22051 @item -mfused-madd
22052 @itemx -mno-fused-madd
22053 @opindex mfused-madd
22054 @opindex mno-fused-madd
22055 Generate code that uses (does not use) the floating-point multiply and
22056 accumulate instructions. These instructions are generated by default
22057 if hardware floating point is used. The machine-dependent
22058 @option{-mfused-madd} option is now mapped to the machine-independent
22059 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
22060 mapped to @option{-ffp-contract=off}.
22061
22062 @item -mfsca
22063 @itemx -mno-fsca
22064 @opindex mfsca
22065 @opindex mno-fsca
22066 Allow or disallow the compiler to emit the @code{fsca} instruction for sine
22067 and cosine approximations. The option @option{-mfsca} must be used in
22068 combination with @option{-funsafe-math-optimizations}. It is enabled by default
22069 when generating code for SH4A. Using @option{-mno-fsca} disables sine and cosine
22070 approximations even if @option{-funsafe-math-optimizations} is in effect.
22071
22072 @item -mfsrra
22073 @itemx -mno-fsrra
22074 @opindex mfsrra
22075 @opindex mno-fsrra
22076 Allow or disallow the compiler to emit the @code{fsrra} instruction for
22077 reciprocal square root approximations. The option @option{-mfsrra} must be used
22078 in combination with @option{-funsafe-math-optimizations} and
22079 @option{-ffinite-math-only}. It is enabled by default when generating code for
22080 SH4A. Using @option{-mno-fsrra} disables reciprocal square root approximations
22081 even if @option{-funsafe-math-optimizations} and @option{-ffinite-math-only} are
22082 in effect.
22083
22084 @item -mpretend-cmove
22085 @opindex mpretend-cmove
22086 Prefer zero-displacement conditional branches for conditional move instruction
22087 patterns. This can result in faster code on the SH4 processor.
22088
22089 @item -mfdpic
22090 @opindex fdpic
22091 Generate code using the FDPIC ABI.
22092
22093 @end table
22094
22095 @node Solaris 2 Options
22096 @subsection Solaris 2 Options
22097 @cindex Solaris 2 options
22098
22099 These @samp{-m} options are supported on Solaris 2:
22100
22101 @table @gcctabopt
22102 @item -mclear-hwcap
22103 @opindex mclear-hwcap
22104 @option{-mclear-hwcap} tells the compiler to remove the hardware
22105 capabilities generated by the Solaris assembler. This is only necessary
22106 when object files use ISA extensions not supported by the current
22107 machine, but check at runtime whether or not to use them.
22108
22109 @item -mimpure-text
22110 @opindex mimpure-text
22111 @option{-mimpure-text}, used in addition to @option{-shared}, tells
22112 the compiler to not pass @option{-z text} to the linker when linking a
22113 shared object. Using this option, you can link position-dependent
22114 code into a shared object.
22115
22116 @option{-mimpure-text} suppresses the ``relocations remain against
22117 allocatable but non-writable sections'' linker error message.
22118 However, the necessary relocations trigger copy-on-write, and the
22119 shared object is not actually shared across processes. Instead of
22120 using @option{-mimpure-text}, you should compile all source code with
22121 @option{-fpic} or @option{-fPIC}.
22122
22123 @end table
22124
22125 These switches are supported in addition to the above on Solaris 2:
22126
22127 @table @gcctabopt
22128 @item -pthreads
22129 @opindex pthreads
22130 Add support for multithreading using the POSIX threads library. This
22131 option sets flags for both the preprocessor and linker. This option does
22132 not affect the thread safety of object code produced by the compiler or
22133 that of libraries supplied with it.
22134
22135 @item -pthread
22136 @opindex pthread
22137 This is a synonym for @option{-pthreads}.
22138 @end table
22139
22140 @node SPARC Options
22141 @subsection SPARC Options
22142 @cindex SPARC options
22143
22144 These @samp{-m} options are supported on the SPARC:
22145
22146 @table @gcctabopt
22147 @item -mno-app-regs
22148 @itemx -mapp-regs
22149 @opindex mno-app-regs
22150 @opindex mapp-regs
22151 Specify @option{-mapp-regs} to generate output using the global registers
22152 2 through 4, which the SPARC SVR4 ABI reserves for applications. Like the
22153 global register 1, each global register 2 through 4 is then treated as an
22154 allocable register that is clobbered by function calls. This is the default.
22155
22156 To be fully SVR4 ABI-compliant at the cost of some performance loss,
22157 specify @option{-mno-app-regs}. You should compile libraries and system
22158 software with this option.
22159
22160 @item -mflat
22161 @itemx -mno-flat
22162 @opindex mflat
22163 @opindex mno-flat
22164 With @option{-mflat}, the compiler does not generate save/restore instructions
22165 and uses a ``flat'' or single register window model. This model is compatible
22166 with the regular register window model. The local registers and the input
22167 registers (0--5) are still treated as ``call-saved'' registers and are
22168 saved on the stack as needed.
22169
22170 With @option{-mno-flat} (the default), the compiler generates save/restore
22171 instructions (except for leaf functions). This is the normal operating mode.
22172
22173 @item -mfpu
22174 @itemx -mhard-float
22175 @opindex mfpu
22176 @opindex mhard-float
22177 Generate output containing floating-point instructions. This is the
22178 default.
22179
22180 @item -mno-fpu
22181 @itemx -msoft-float
22182 @opindex mno-fpu
22183 @opindex msoft-float
22184 Generate output containing library calls for floating point.
22185 @strong{Warning:} the requisite libraries are not available for all SPARC
22186 targets. Normally the facilities of the machine's usual C compiler are
22187 used, but this cannot be done directly in cross-compilation. You must make
22188 your own arrangements to provide suitable library functions for
22189 cross-compilation. The embedded targets @samp{sparc-*-aout} and
22190 @samp{sparclite-*-*} do provide software floating-point support.
22191
22192 @option{-msoft-float} changes the calling convention in the output file;
22193 therefore, it is only useful if you compile @emph{all} of a program with
22194 this option. In particular, you need to compile @file{libgcc.a}, the
22195 library that comes with GCC, with @option{-msoft-float} in order for
22196 this to work.
22197
22198 @item -mhard-quad-float
22199 @opindex mhard-quad-float
22200 Generate output containing quad-word (long double) floating-point
22201 instructions.
22202
22203 @item -msoft-quad-float
22204 @opindex msoft-quad-float
22205 Generate output containing library calls for quad-word (long double)
22206 floating-point instructions. The functions called are those specified
22207 in the SPARC ABI@. This is the default.
22208
22209 As of this writing, there are no SPARC implementations that have hardware
22210 support for the quad-word floating-point instructions. They all invoke
22211 a trap handler for one of these instructions, and then the trap handler
22212 emulates the effect of the instruction. Because of the trap handler overhead,
22213 this is much slower than calling the ABI library routines. Thus the
22214 @option{-msoft-quad-float} option is the default.
22215
22216 @item -mno-unaligned-doubles
22217 @itemx -munaligned-doubles
22218 @opindex mno-unaligned-doubles
22219 @opindex munaligned-doubles
22220 Assume that doubles have 8-byte alignment. This is the default.
22221
22222 With @option{-munaligned-doubles}, GCC assumes that doubles have 8-byte
22223 alignment only if they are contained in another type, or if they have an
22224 absolute address. Otherwise, it assumes they have 4-byte alignment.
22225 Specifying this option avoids some rare compatibility problems with code
22226 generated by other compilers. It is not the default because it results
22227 in a performance loss, especially for floating-point code.
22228
22229 @item -muser-mode
22230 @itemx -mno-user-mode
22231 @opindex muser-mode
22232 @opindex mno-user-mode
22233 Do not generate code that can only run in supervisor mode. This is relevant
22234 only for the @code{casa} instruction emitted for the LEON3 processor. This
22235 is the default.
22236
22237 @item -mfaster-structs
22238 @itemx -mno-faster-structs
22239 @opindex mfaster-structs
22240 @opindex mno-faster-structs
22241 With @option{-mfaster-structs}, the compiler assumes that structures
22242 should have 8-byte alignment. This enables the use of pairs of
22243 @code{ldd} and @code{std} instructions for copies in structure
22244 assignment, in place of twice as many @code{ld} and @code{st} pairs.
22245 However, the use of this changed alignment directly violates the SPARC
22246 ABI@. Thus, it's intended only for use on targets where the developer
22247 acknowledges that their resulting code is not directly in line with
22248 the rules of the ABI@.
22249
22250 @item -mstd-struct-return
22251 @itemx -mno-std-struct-return
22252 @opindex mstd-struct-return
22253 @opindex mno-std-struct-return
22254 With @option{-mstd-struct-return}, the compiler generates checking code
22255 in functions returning structures or unions to detect size mismatches
22256 between the two sides of function calls, as per the 32-bit ABI@.
22257
22258 The default is @option{-mno-std-struct-return}. This option has no effect
22259 in 64-bit mode.
22260
22261 @item -mcpu=@var{cpu_type}
22262 @opindex mcpu
22263 Set the instruction set, register set, and instruction scheduling parameters
22264 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
22265 @samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{hypersparc},
22266 @samp{leon}, @samp{leon3}, @samp{leon3v7}, @samp{sparclite}, @samp{f930},
22267 @samp{f934}, @samp{sparclite86x}, @samp{sparclet}, @samp{tsc701}, @samp{v9},
22268 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
22269 @samp{niagara3}, @samp{niagara4} and @samp{niagara7}.
22270
22271 Native Solaris and GNU/Linux toolchains also support the value @samp{native},
22272 which selects the best architecture option for the host processor.
22273 @option{-mcpu=native} has no effect if GCC does not recognize
22274 the processor.
22275
22276 Default instruction scheduling parameters are used for values that select
22277 an architecture and not an implementation. These are @samp{v7}, @samp{v8},
22278 @samp{sparclite}, @samp{sparclet}, @samp{v9}.
22279
22280 Here is a list of each supported architecture and their supported
22281 implementations.
22282
22283 @table @asis
22284 @item v7
22285 cypress, leon3v7
22286
22287 @item v8
22288 supersparc, hypersparc, leon, leon3
22289
22290 @item sparclite
22291 f930, f934, sparclite86x
22292
22293 @item sparclet
22294 tsc701
22295
22296 @item v9
22297 ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4, niagara7
22298 @end table
22299
22300 By default (unless configured otherwise), GCC generates code for the V7
22301 variant of the SPARC architecture. With @option{-mcpu=cypress}, the compiler
22302 additionally optimizes it for the Cypress CY7C602 chip, as used in the
22303 SPARCStation/SPARCServer 3xx series. This is also appropriate for the older
22304 SPARCStation 1, 2, IPX etc.
22305
22306 With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
22307 architecture. The only difference from V7 code is that the compiler emits
22308 the integer multiply and integer divide instructions which exist in SPARC-V8
22309 but not in SPARC-V7. With @option{-mcpu=supersparc}, the compiler additionally
22310 optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
22311 2000 series.
22312
22313 With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
22314 the SPARC architecture. This adds the integer multiply, integer divide step
22315 and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
22316 With @option{-mcpu=f930}, the compiler additionally optimizes it for the
22317 Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@. With
22318 @option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
22319 MB86934 chip, which is the more recent SPARClite with FPU@.
22320
22321 With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
22322 the SPARC architecture. This adds the integer multiply, multiply/accumulate,
22323 integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
22324 but not in SPARC-V7. With @option{-mcpu=tsc701}, the compiler additionally
22325 optimizes it for the TEMIC SPARClet chip.
22326
22327 With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
22328 architecture. This adds 64-bit integer and floating-point move instructions,
22329 3 additional floating-point condition code registers and conditional move
22330 instructions. With @option{-mcpu=ultrasparc}, the compiler additionally
22331 optimizes it for the Sun UltraSPARC I/II/IIi chips. With
22332 @option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
22333 Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips. With
22334 @option{-mcpu=niagara}, the compiler additionally optimizes it for
22335 Sun UltraSPARC T1 chips. With @option{-mcpu=niagara2}, the compiler
22336 additionally optimizes it for Sun UltraSPARC T2 chips. With
22337 @option{-mcpu=niagara3}, the compiler additionally optimizes it for Sun
22338 UltraSPARC T3 chips. With @option{-mcpu=niagara4}, the compiler
22339 additionally optimizes it for Sun UltraSPARC T4 chips. With
22340 @option{-mcpu=niagara7}, the compiler additionally optimizes it for
22341 Oracle SPARC M7 chips.
22342
22343 @item -mtune=@var{cpu_type}
22344 @opindex mtune
22345 Set the instruction scheduling parameters for machine type
22346 @var{cpu_type}, but do not set the instruction set or register set that the
22347 option @option{-mcpu=@var{cpu_type}} does.
22348
22349 The same values for @option{-mcpu=@var{cpu_type}} can be used for
22350 @option{-mtune=@var{cpu_type}}, but the only useful values are those
22351 that select a particular CPU implementation. Those are
22352 @samp{cypress}, @samp{supersparc}, @samp{hypersparc}, @samp{leon},
22353 @samp{leon3}, @samp{leon3v7}, @samp{f930}, @samp{f934},
22354 @samp{sparclite86x}, @samp{tsc701}, @samp{ultrasparc},
22355 @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2}, @samp{niagara3},
22356 @samp{niagara4} and @samp{niagara7}. With native Solaris and
22357 GNU/Linux toolchains, @samp{native} can also be used.
22358
22359 @item -mv8plus
22360 @itemx -mno-v8plus
22361 @opindex mv8plus
22362 @opindex mno-v8plus
22363 With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@. The
22364 difference from the V8 ABI is that the global and out registers are
22365 considered 64 bits wide. This is enabled by default on Solaris in 32-bit
22366 mode for all SPARC-V9 processors.
22367
22368 @item -mvis
22369 @itemx -mno-vis
22370 @opindex mvis
22371 @opindex mno-vis
22372 With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
22373 Visual Instruction Set extensions. The default is @option{-mno-vis}.
22374
22375 @item -mvis2
22376 @itemx -mno-vis2
22377 @opindex mvis2
22378 @opindex mno-vis2
22379 With @option{-mvis2}, GCC generates code that takes advantage of
22380 version 2.0 of the UltraSPARC Visual Instruction Set extensions. The
22381 default is @option{-mvis2} when targeting a cpu that supports such
22382 instructions, such as UltraSPARC-III and later. Setting @option{-mvis2}
22383 also sets @option{-mvis}.
22384
22385 @item -mvis3
22386 @itemx -mno-vis3
22387 @opindex mvis3
22388 @opindex mno-vis3
22389 With @option{-mvis3}, GCC generates code that takes advantage of
22390 version 3.0 of the UltraSPARC Visual Instruction Set extensions. The
22391 default is @option{-mvis3} when targeting a cpu that supports such
22392 instructions, such as niagara-3 and later. Setting @option{-mvis3}
22393 also sets @option{-mvis2} and @option{-mvis}.
22394
22395 @item -mvis4
22396 @itemx -mno-vis4
22397 @opindex mvis4
22398 @opindex mno-vis4
22399 With @option{-mvis4}, GCC generates code that takes advantage of
22400 version 4.0 of the UltraSPARC Visual Instruction Set extensions. The
22401 default is @option{-mvis4} when targeting a cpu that supports such
22402 instructions, such as niagara-7 and later. Setting @option{-mvis4}
22403 also sets @option{-mvis3}, @option{-mvis2} and @option{-mvis}.
22404
22405 @item -mcbcond
22406 @itemx -mno-cbcond
22407 @opindex mcbcond
22408 @opindex mno-cbcond
22409 With @option{-mcbcond}, GCC generates code that takes advantage of
22410 compare-and-branch instructions, as defined in the Sparc Architecture 2011.
22411 The default is @option{-mcbcond} when targeting a cpu that supports such
22412 instructions, such as niagara-4 and later.
22413
22414 @item -mpopc
22415 @itemx -mno-popc
22416 @opindex mpopc
22417 @opindex mno-popc
22418 With @option{-mpopc}, GCC generates code that takes advantage of the UltraSPARC
22419 population count instruction. The default is @option{-mpopc}
22420 when targeting a cpu that supports such instructions, such as Niagara-2 and
22421 later.
22422
22423 @item -mfmaf
22424 @itemx -mno-fmaf
22425 @opindex mfmaf
22426 @opindex mno-fmaf
22427 With @option{-mfmaf}, GCC generates code that takes advantage of the UltraSPARC
22428 Fused Multiply-Add Floating-point extensions. The default is @option{-mfmaf}
22429 when targeting a cpu that supports such instructions, such as Niagara-3 and
22430 later.
22431
22432 @item -mfix-at697f
22433 @opindex mfix-at697f
22434 Enable the documented workaround for the single erratum of the Atmel AT697F
22435 processor (which corresponds to erratum #13 of the AT697E processor).
22436
22437 @item -mfix-ut699
22438 @opindex mfix-ut699
22439 Enable the documented workarounds for the floating-point errata and the data
22440 cache nullify errata of the UT699 processor.
22441 @end table
22442
22443 These @samp{-m} options are supported in addition to the above
22444 on SPARC-V9 processors in 64-bit environments:
22445
22446 @table @gcctabopt
22447 @item -m32
22448 @itemx -m64
22449 @opindex m32
22450 @opindex m64
22451 Generate code for a 32-bit or 64-bit environment.
22452 The 32-bit environment sets int, long and pointer to 32 bits.
22453 The 64-bit environment sets int to 32 bits and long and pointer
22454 to 64 bits.
22455
22456 @item -mcmodel=@var{which}
22457 @opindex mcmodel
22458 Set the code model to one of
22459
22460 @table @samp
22461 @item medlow
22462 The Medium/Low code model: 64-bit addresses, programs
22463 must be linked in the low 32 bits of memory. Programs can be statically
22464 or dynamically linked.
22465
22466 @item medmid
22467 The Medium/Middle code model: 64-bit addresses, programs
22468 must be linked in the low 44 bits of memory, the text and data segments must
22469 be less than 2GB in size and the data segment must be located within 2GB of
22470 the text segment.
22471
22472 @item medany
22473 The Medium/Anywhere code model: 64-bit addresses, programs
22474 may be linked anywhere in memory, the text and data segments must be less
22475 than 2GB in size and the data segment must be located within 2GB of the
22476 text segment.
22477
22478 @item embmedany
22479 The Medium/Anywhere code model for embedded systems:
22480 64-bit addresses, the text and data segments must be less than 2GB in
22481 size, both starting anywhere in memory (determined at link time). The
22482 global register %g4 points to the base of the data segment. Programs
22483 are statically linked and PIC is not supported.
22484 @end table
22485
22486 @item -mmemory-model=@var{mem-model}
22487 @opindex mmemory-model
22488 Set the memory model in force on the processor to one of
22489
22490 @table @samp
22491 @item default
22492 The default memory model for the processor and operating system.
22493
22494 @item rmo
22495 Relaxed Memory Order
22496
22497 @item pso
22498 Partial Store Order
22499
22500 @item tso
22501 Total Store Order
22502
22503 @item sc
22504 Sequential Consistency
22505 @end table
22506
22507 These memory models are formally defined in Appendix D of the Sparc V9
22508 architecture manual, as set in the processor's @code{PSTATE.MM} field.
22509
22510 @item -mstack-bias
22511 @itemx -mno-stack-bias
22512 @opindex mstack-bias
22513 @opindex mno-stack-bias
22514 With @option{-mstack-bias}, GCC assumes that the stack pointer, and
22515 frame pointer if present, are offset by @minus{}2047 which must be added back
22516 when making stack frame references. This is the default in 64-bit mode.
22517 Otherwise, assume no such offset is present.
22518 @end table
22519
22520 @node SPU Options
22521 @subsection SPU Options
22522 @cindex SPU options
22523
22524 These @samp{-m} options are supported on the SPU:
22525
22526 @table @gcctabopt
22527 @item -mwarn-reloc
22528 @itemx -merror-reloc
22529 @opindex mwarn-reloc
22530 @opindex merror-reloc
22531
22532 The loader for SPU does not handle dynamic relocations. By default, GCC
22533 gives an error when it generates code that requires a dynamic
22534 relocation. @option{-mno-error-reloc} disables the error,
22535 @option{-mwarn-reloc} generates a warning instead.
22536
22537 @item -msafe-dma
22538 @itemx -munsafe-dma
22539 @opindex msafe-dma
22540 @opindex munsafe-dma
22541
22542 Instructions that initiate or test completion of DMA must not be
22543 reordered with respect to loads and stores of the memory that is being
22544 accessed.
22545 With @option{-munsafe-dma} you must use the @code{volatile} keyword to protect
22546 memory accesses, but that can lead to inefficient code in places where the
22547 memory is known to not change. Rather than mark the memory as volatile,
22548 you can use @option{-msafe-dma} to tell the compiler to treat
22549 the DMA instructions as potentially affecting all memory.
22550
22551 @item -mbranch-hints
22552 @opindex mbranch-hints
22553
22554 By default, GCC generates a branch hint instruction to avoid
22555 pipeline stalls for always-taken or probably-taken branches. A hint
22556 is not generated closer than 8 instructions away from its branch.
22557 There is little reason to disable them, except for debugging purposes,
22558 or to make an object a little bit smaller.
22559
22560 @item -msmall-mem
22561 @itemx -mlarge-mem
22562 @opindex msmall-mem
22563 @opindex mlarge-mem
22564
22565 By default, GCC generates code assuming that addresses are never larger
22566 than 18 bits. With @option{-mlarge-mem} code is generated that assumes
22567 a full 32-bit address.
22568
22569 @item -mstdmain
22570 @opindex mstdmain
22571
22572 By default, GCC links against startup code that assumes the SPU-style
22573 main function interface (which has an unconventional parameter list).
22574 With @option{-mstdmain}, GCC links your program against startup
22575 code that assumes a C99-style interface to @code{main}, including a
22576 local copy of @code{argv} strings.
22577
22578 @item -mfixed-range=@var{register-range}
22579 @opindex mfixed-range
22580 Generate code treating the given register range as fixed registers.
22581 A fixed register is one that the register allocator cannot use. This is
22582 useful when compiling kernel code. A register range is specified as
22583 two registers separated by a dash. Multiple register ranges can be
22584 specified separated by a comma.
22585
22586 @item -mea32
22587 @itemx -mea64
22588 @opindex mea32
22589 @opindex mea64
22590 Compile code assuming that pointers to the PPU address space accessed
22591 via the @code{__ea} named address space qualifier are either 32 or 64
22592 bits wide. The default is 32 bits. As this is an ABI-changing option,
22593 all object code in an executable must be compiled with the same setting.
22594
22595 @item -maddress-space-conversion
22596 @itemx -mno-address-space-conversion
22597 @opindex maddress-space-conversion
22598 @opindex mno-address-space-conversion
22599 Allow/disallow treating the @code{__ea} address space as superset
22600 of the generic address space. This enables explicit type casts
22601 between @code{__ea} and generic pointer as well as implicit
22602 conversions of generic pointers to @code{__ea} pointers. The
22603 default is to allow address space pointer conversions.
22604
22605 @item -mcache-size=@var{cache-size}
22606 @opindex mcache-size
22607 This option controls the version of libgcc that the compiler links to an
22608 executable and selects a software-managed cache for accessing variables
22609 in the @code{__ea} address space with a particular cache size. Possible
22610 options for @var{cache-size} are @samp{8}, @samp{16}, @samp{32}, @samp{64}
22611 and @samp{128}. The default cache size is 64KB.
22612
22613 @item -matomic-updates
22614 @itemx -mno-atomic-updates
22615 @opindex matomic-updates
22616 @opindex mno-atomic-updates
22617 This option controls the version of libgcc that the compiler links to an
22618 executable and selects whether atomic updates to the software-managed
22619 cache of PPU-side variables are used. If you use atomic updates, changes
22620 to a PPU variable from SPU code using the @code{__ea} named address space
22621 qualifier do not interfere with changes to other PPU variables residing
22622 in the same cache line from PPU code. If you do not use atomic updates,
22623 such interference may occur; however, writing back cache lines is
22624 more efficient. The default behavior is to use atomic updates.
22625
22626 @item -mdual-nops
22627 @itemx -mdual-nops=@var{n}
22628 @opindex mdual-nops
22629 By default, GCC inserts nops to increase dual issue when it expects
22630 it to increase performance. @var{n} can be a value from 0 to 10. A
22631 smaller @var{n} inserts fewer nops. 10 is the default, 0 is the
22632 same as @option{-mno-dual-nops}. Disabled with @option{-Os}.
22633
22634 @item -mhint-max-nops=@var{n}
22635 @opindex mhint-max-nops
22636 Maximum number of nops to insert for a branch hint. A branch hint must
22637 be at least 8 instructions away from the branch it is affecting. GCC
22638 inserts up to @var{n} nops to enforce this, otherwise it does not
22639 generate the branch hint.
22640
22641 @item -mhint-max-distance=@var{n}
22642 @opindex mhint-max-distance
22643 The encoding of the branch hint instruction limits the hint to be within
22644 256 instructions of the branch it is affecting. By default, GCC makes
22645 sure it is within 125.
22646
22647 @item -msafe-hints
22648 @opindex msafe-hints
22649 Work around a hardware bug that causes the SPU to stall indefinitely.
22650 By default, GCC inserts the @code{hbrp} instruction to make sure
22651 this stall won't happen.
22652
22653 @end table
22654
22655 @node System V Options
22656 @subsection Options for System V
22657
22658 These additional options are available on System V Release 4 for
22659 compatibility with other compilers on those systems:
22660
22661 @table @gcctabopt
22662 @item -G
22663 @opindex G
22664 Create a shared object.
22665 It is recommended that @option{-symbolic} or @option{-shared} be used instead.
22666
22667 @item -Qy
22668 @opindex Qy
22669 Identify the versions of each tool used by the compiler, in a
22670 @code{.ident} assembler directive in the output.
22671
22672 @item -Qn
22673 @opindex Qn
22674 Refrain from adding @code{.ident} directives to the output file (this is
22675 the default).
22676
22677 @item -YP,@var{dirs}
22678 @opindex YP
22679 Search the directories @var{dirs}, and no others, for libraries
22680 specified with @option{-l}.
22681
22682 @item -Ym,@var{dir}
22683 @opindex Ym
22684 Look in the directory @var{dir} to find the M4 preprocessor.
22685 The assembler uses this option.
22686 @c This is supposed to go with a -Yd for predefined M4 macro files, but
22687 @c the generic assembler that comes with Solaris takes just -Ym.
22688 @end table
22689
22690 @node TILE-Gx Options
22691 @subsection TILE-Gx Options
22692 @cindex TILE-Gx options
22693
22694 These @samp{-m} options are supported on the TILE-Gx:
22695
22696 @table @gcctabopt
22697 @item -mcmodel=small
22698 @opindex mcmodel=small
22699 Generate code for the small model. The distance for direct calls is
22700 limited to 500M in either direction. PC-relative addresses are 32
22701 bits. Absolute addresses support the full address range.
22702
22703 @item -mcmodel=large
22704 @opindex mcmodel=large
22705 Generate code for the large model. There is no limitation on call
22706 distance, pc-relative addresses, or absolute addresses.
22707
22708 @item -mcpu=@var{name}
22709 @opindex mcpu
22710 Selects the type of CPU to be targeted. Currently the only supported
22711 type is @samp{tilegx}.
22712
22713 @item -m32
22714 @itemx -m64
22715 @opindex m32
22716 @opindex m64
22717 Generate code for a 32-bit or 64-bit environment. The 32-bit
22718 environment sets int, long, and pointer to 32 bits. The 64-bit
22719 environment sets int to 32 bits and long and pointer to 64 bits.
22720
22721 @item -mbig-endian
22722 @itemx -mlittle-endian
22723 @opindex mbig-endian
22724 @opindex mlittle-endian
22725 Generate code in big/little endian mode, respectively.
22726 @end table
22727
22728 @node TILEPro Options
22729 @subsection TILEPro Options
22730 @cindex TILEPro options
22731
22732 These @samp{-m} options are supported on the TILEPro:
22733
22734 @table @gcctabopt
22735 @item -mcpu=@var{name}
22736 @opindex mcpu
22737 Selects the type of CPU to be targeted. Currently the only supported
22738 type is @samp{tilepro}.
22739
22740 @item -m32
22741 @opindex m32
22742 Generate code for a 32-bit environment, which sets int, long, and
22743 pointer to 32 bits. This is the only supported behavior so the flag
22744 is essentially ignored.
22745 @end table
22746
22747 @node V850 Options
22748 @subsection V850 Options
22749 @cindex V850 Options
22750
22751 These @samp{-m} options are defined for V850 implementations:
22752
22753 @table @gcctabopt
22754 @item -mlong-calls
22755 @itemx -mno-long-calls
22756 @opindex mlong-calls
22757 @opindex mno-long-calls
22758 Treat all calls as being far away (near). If calls are assumed to be
22759 far away, the compiler always loads the function's address into a
22760 register, and calls indirect through the pointer.
22761
22762 @item -mno-ep
22763 @itemx -mep
22764 @opindex mno-ep
22765 @opindex mep
22766 Do not optimize (do optimize) basic blocks that use the same index
22767 pointer 4 or more times to copy pointer into the @code{ep} register, and
22768 use the shorter @code{sld} and @code{sst} instructions. The @option{-mep}
22769 option is on by default if you optimize.
22770
22771 @item -mno-prolog-function
22772 @itemx -mprolog-function
22773 @opindex mno-prolog-function
22774 @opindex mprolog-function
22775 Do not use (do use) external functions to save and restore registers
22776 at the prologue and epilogue of a function. The external functions
22777 are slower, but use less code space if more than one function saves
22778 the same number of registers. The @option{-mprolog-function} option
22779 is on by default if you optimize.
22780
22781 @item -mspace
22782 @opindex mspace
22783 Try to make the code as small as possible. At present, this just turns
22784 on the @option{-mep} and @option{-mprolog-function} options.
22785
22786 @item -mtda=@var{n}
22787 @opindex mtda
22788 Put static or global variables whose size is @var{n} bytes or less into
22789 the tiny data area that register @code{ep} points to. The tiny data
22790 area can hold up to 256 bytes in total (128 bytes for byte references).
22791
22792 @item -msda=@var{n}
22793 @opindex msda
22794 Put static or global variables whose size is @var{n} bytes or less into
22795 the small data area that register @code{gp} points to. The small data
22796 area can hold up to 64 kilobytes.
22797
22798 @item -mzda=@var{n}
22799 @opindex mzda
22800 Put static or global variables whose size is @var{n} bytes or less into
22801 the first 32 kilobytes of memory.
22802
22803 @item -mv850
22804 @opindex mv850
22805 Specify that the target processor is the V850.
22806
22807 @item -mv850e3v5
22808 @opindex mv850e3v5
22809 Specify that the target processor is the V850E3V5. The preprocessor
22810 constant @code{__v850e3v5__} is defined if this option is used.
22811
22812 @item -mv850e2v4
22813 @opindex mv850e2v4
22814 Specify that the target processor is the V850E3V5. This is an alias for
22815 the @option{-mv850e3v5} option.
22816
22817 @item -mv850e2v3
22818 @opindex mv850e2v3
22819 Specify that the target processor is the V850E2V3. The preprocessor
22820 constant @code{__v850e2v3__} is defined if this option is used.
22821
22822 @item -mv850e2
22823 @opindex mv850e2
22824 Specify that the target processor is the V850E2. The preprocessor
22825 constant @code{__v850e2__} is defined if this option is used.
22826
22827 @item -mv850e1
22828 @opindex mv850e1
22829 Specify that the target processor is the V850E1. The preprocessor
22830 constants @code{__v850e1__} and @code{__v850e__} are defined if
22831 this option is used.
22832
22833 @item -mv850es
22834 @opindex mv850es
22835 Specify that the target processor is the V850ES. This is an alias for
22836 the @option{-mv850e1} option.
22837
22838 @item -mv850e
22839 @opindex mv850e
22840 Specify that the target processor is the V850E@. The preprocessor
22841 constant @code{__v850e__} is defined if this option is used.
22842
22843 If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
22844 nor @option{-mv850e2} nor @option{-mv850e2v3} nor @option{-mv850e3v5}
22845 are defined then a default target processor is chosen and the
22846 relevant @samp{__v850*__} preprocessor constant is defined.
22847
22848 The preprocessor constants @code{__v850} and @code{__v851__} are always
22849 defined, regardless of which processor variant is the target.
22850
22851 @item -mdisable-callt
22852 @itemx -mno-disable-callt
22853 @opindex mdisable-callt
22854 @opindex mno-disable-callt
22855 This option suppresses generation of the @code{CALLT} instruction for the
22856 v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
22857 architecture.
22858
22859 This option is enabled by default when the RH850 ABI is
22860 in use (see @option{-mrh850-abi}), and disabled by default when the
22861 GCC ABI is in use. If @code{CALLT} instructions are being generated
22862 then the C preprocessor symbol @code{__V850_CALLT__} is defined.
22863
22864 @item -mrelax
22865 @itemx -mno-relax
22866 @opindex mrelax
22867 @opindex mno-relax
22868 Pass on (or do not pass on) the @option{-mrelax} command-line option
22869 to the assembler.
22870
22871 @item -mlong-jumps
22872 @itemx -mno-long-jumps
22873 @opindex mlong-jumps
22874 @opindex mno-long-jumps
22875 Disable (or re-enable) the generation of PC-relative jump instructions.
22876
22877 @item -msoft-float
22878 @itemx -mhard-float
22879 @opindex msoft-float
22880 @opindex mhard-float
22881 Disable (or re-enable) the generation of hardware floating point
22882 instructions. This option is only significant when the target
22883 architecture is @samp{V850E2V3} or higher. If hardware floating point
22884 instructions are being generated then the C preprocessor symbol
22885 @code{__FPU_OK__} is defined, otherwise the symbol
22886 @code{__NO_FPU__} is defined.
22887
22888 @item -mloop
22889 @opindex mloop
22890 Enables the use of the e3v5 LOOP instruction. The use of this
22891 instruction is not enabled by default when the e3v5 architecture is
22892 selected because its use is still experimental.
22893
22894 @item -mrh850-abi
22895 @itemx -mghs
22896 @opindex mrh850-abi
22897 @opindex mghs
22898 Enables support for the RH850 version of the V850 ABI. This is the
22899 default. With this version of the ABI the following rules apply:
22900
22901 @itemize
22902 @item
22903 Integer sized structures and unions are returned via a memory pointer
22904 rather than a register.
22905
22906 @item
22907 Large structures and unions (more than 8 bytes in size) are passed by
22908 value.
22909
22910 @item
22911 Functions are aligned to 16-bit boundaries.
22912
22913 @item
22914 The @option{-m8byte-align} command-line option is supported.
22915
22916 @item
22917 The @option{-mdisable-callt} command-line option is enabled by
22918 default. The @option{-mno-disable-callt} command-line option is not
22919 supported.
22920 @end itemize
22921
22922 When this version of the ABI is enabled the C preprocessor symbol
22923 @code{__V850_RH850_ABI__} is defined.
22924
22925 @item -mgcc-abi
22926 @opindex mgcc-abi
22927 Enables support for the old GCC version of the V850 ABI. With this
22928 version of the ABI the following rules apply:
22929
22930 @itemize
22931 @item
22932 Integer sized structures and unions are returned in register @code{r10}.
22933
22934 @item
22935 Large structures and unions (more than 8 bytes in size) are passed by
22936 reference.
22937
22938 @item
22939 Functions are aligned to 32-bit boundaries, unless optimizing for
22940 size.
22941
22942 @item
22943 The @option{-m8byte-align} command-line option is not supported.
22944
22945 @item
22946 The @option{-mdisable-callt} command-line option is supported but not
22947 enabled by default.
22948 @end itemize
22949
22950 When this version of the ABI is enabled the C preprocessor symbol
22951 @code{__V850_GCC_ABI__} is defined.
22952
22953 @item -m8byte-align
22954 @itemx -mno-8byte-align
22955 @opindex m8byte-align
22956 @opindex mno-8byte-align
22957 Enables support for @code{double} and @code{long long} types to be
22958 aligned on 8-byte boundaries. The default is to restrict the
22959 alignment of all objects to at most 4-bytes. When
22960 @option{-m8byte-align} is in effect the C preprocessor symbol
22961 @code{__V850_8BYTE_ALIGN__} is defined.
22962
22963 @item -mbig-switch
22964 @opindex mbig-switch
22965 Generate code suitable for big switch tables. Use this option only if
22966 the assembler/linker complain about out of range branches within a switch
22967 table.
22968
22969 @item -mapp-regs
22970 @opindex mapp-regs
22971 This option causes r2 and r5 to be used in the code generated by
22972 the compiler. This setting is the default.
22973
22974 @item -mno-app-regs
22975 @opindex mno-app-regs
22976 This option causes r2 and r5 to be treated as fixed registers.
22977
22978 @end table
22979
22980 @node VAX Options
22981 @subsection VAX Options
22982 @cindex VAX options
22983
22984 These @samp{-m} options are defined for the VAX:
22985
22986 @table @gcctabopt
22987 @item -munix
22988 @opindex munix
22989 Do not output certain jump instructions (@code{aobleq} and so on)
22990 that the Unix assembler for the VAX cannot handle across long
22991 ranges.
22992
22993 @item -mgnu
22994 @opindex mgnu
22995 Do output those jump instructions, on the assumption that the
22996 GNU assembler is being used.
22997
22998 @item -mg
22999 @opindex mg
23000 Output code for G-format floating-point numbers instead of D-format.
23001 @end table
23002
23003 @node Visium Options
23004 @subsection Visium Options
23005 @cindex Visium options
23006
23007 @table @gcctabopt
23008
23009 @item -mdebug
23010 @opindex mdebug
23011 A program which performs file I/O and is destined to run on an MCM target
23012 should be linked with this option. It causes the libraries libc.a and
23013 libdebug.a to be linked. The program should be run on the target under
23014 the control of the GDB remote debugging stub.
23015
23016 @item -msim
23017 @opindex msim
23018 A program which performs file I/O and is destined to run on the simulator
23019 should be linked with option. This causes libraries libc.a and libsim.a to
23020 be linked.
23021
23022 @item -mfpu
23023 @itemx -mhard-float
23024 @opindex mfpu
23025 @opindex mhard-float
23026 Generate code containing floating-point instructions. This is the
23027 default.
23028
23029 @item -mno-fpu
23030 @itemx -msoft-float
23031 @opindex mno-fpu
23032 @opindex msoft-float
23033 Generate code containing library calls for floating-point.
23034
23035 @option{-msoft-float} changes the calling convention in the output file;
23036 therefore, it is only useful if you compile @emph{all} of a program with
23037 this option. In particular, you need to compile @file{libgcc.a}, the
23038 library that comes with GCC, with @option{-msoft-float} in order for
23039 this to work.
23040
23041 @item -mcpu=@var{cpu_type}
23042 @opindex mcpu
23043 Set the instruction set, register set, and instruction scheduling parameters
23044 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
23045 @samp{mcm}, @samp{gr5} and @samp{gr6}.
23046
23047 @samp{mcm} is a synonym of @samp{gr5} present for backward compatibility.
23048
23049 By default (unless configured otherwise), GCC generates code for the GR5
23050 variant of the Visium architecture.
23051
23052 With @option{-mcpu=gr6}, GCC generates code for the GR6 variant of the Visium
23053 architecture. The only difference from GR5 code is that the compiler will
23054 generate block move instructions.
23055
23056 @item -mtune=@var{cpu_type}
23057 @opindex mtune
23058 Set the instruction scheduling parameters for machine type @var{cpu_type},
23059 but do not set the instruction set or register set that the option
23060 @option{-mcpu=@var{cpu_type}} would.
23061
23062 @item -msv-mode
23063 @opindex msv-mode
23064 Generate code for the supervisor mode, where there are no restrictions on
23065 the access to general registers. This is the default.
23066
23067 @item -muser-mode
23068 @opindex muser-mode
23069 Generate code for the user mode, where the access to some general registers
23070 is forbidden: on the GR5, registers r24 to r31 cannot be accessed in this
23071 mode; on the GR6, only registers r29 to r31 are affected.
23072 @end table
23073
23074 @node VMS Options
23075 @subsection VMS Options
23076
23077 These @samp{-m} options are defined for the VMS implementations:
23078
23079 @table @gcctabopt
23080 @item -mvms-return-codes
23081 @opindex mvms-return-codes
23082 Return VMS condition codes from @code{main}. The default is to return POSIX-style
23083 condition (e.g.@ error) codes.
23084
23085 @item -mdebug-main=@var{prefix}
23086 @opindex mdebug-main=@var{prefix}
23087 Flag the first routine whose name starts with @var{prefix} as the main
23088 routine for the debugger.
23089
23090 @item -mmalloc64
23091 @opindex mmalloc64
23092 Default to 64-bit memory allocation routines.
23093
23094 @item -mpointer-size=@var{size}
23095 @opindex mpointer-size=@var{size}
23096 Set the default size of pointers. Possible options for @var{size} are
23097 @samp{32} or @samp{short} for 32 bit pointers, @samp{64} or @samp{long}
23098 for 64 bit pointers, and @samp{no} for supporting only 32 bit pointers.
23099 The later option disables @code{pragma pointer_size}.
23100 @end table
23101
23102 @node VxWorks Options
23103 @subsection VxWorks Options
23104 @cindex VxWorks Options
23105
23106 The options in this section are defined for all VxWorks targets.
23107 Options specific to the target hardware are listed with the other
23108 options for that target.
23109
23110 @table @gcctabopt
23111 @item -mrtp
23112 @opindex mrtp
23113 GCC can generate code for both VxWorks kernels and real time processes
23114 (RTPs). This option switches from the former to the latter. It also
23115 defines the preprocessor macro @code{__RTP__}.
23116
23117 @item -non-static
23118 @opindex non-static
23119 Link an RTP executable against shared libraries rather than static
23120 libraries. The options @option{-static} and @option{-shared} can
23121 also be used for RTPs (@pxref{Link Options}); @option{-static}
23122 is the default.
23123
23124 @item -Bstatic
23125 @itemx -Bdynamic
23126 @opindex Bstatic
23127 @opindex Bdynamic
23128 These options are passed down to the linker. They are defined for
23129 compatibility with Diab.
23130
23131 @item -Xbind-lazy
23132 @opindex Xbind-lazy
23133 Enable lazy binding of function calls. This option is equivalent to
23134 @option{-Wl,-z,now} and is defined for compatibility with Diab.
23135
23136 @item -Xbind-now
23137 @opindex Xbind-now
23138 Disable lazy binding of function calls. This option is the default and
23139 is defined for compatibility with Diab.
23140 @end table
23141
23142 @node x86 Options
23143 @subsection x86 Options
23144 @cindex x86 Options
23145
23146 These @samp{-m} options are defined for the x86 family of computers.
23147
23148 @table @gcctabopt
23149
23150 @item -march=@var{cpu-type}
23151 @opindex march
23152 Generate instructions for the machine type @var{cpu-type}. In contrast to
23153 @option{-mtune=@var{cpu-type}}, which merely tunes the generated code
23154 for the specified @var{cpu-type}, @option{-march=@var{cpu-type}} allows GCC
23155 to generate code that may not run at all on processors other than the one
23156 indicated. Specifying @option{-march=@var{cpu-type}} implies
23157 @option{-mtune=@var{cpu-type}}.
23158
23159 The choices for @var{cpu-type} are:
23160
23161 @table @samp
23162 @item native
23163 This selects the CPU to generate code for at compilation time by determining
23164 the processor type of the compiling machine. Using @option{-march=native}
23165 enables all instruction subsets supported by the local machine (hence
23166 the result might not run on different machines). Using @option{-mtune=native}
23167 produces code optimized for the local machine under the constraints
23168 of the selected instruction set.
23169
23170 @item i386
23171 Original Intel i386 CPU@.
23172
23173 @item i486
23174 Intel i486 CPU@. (No scheduling is implemented for this chip.)
23175
23176 @item i586
23177 @itemx pentium
23178 Intel Pentium CPU with no MMX support.
23179
23180 @item lakemont
23181 Intel Lakemont MCU, based on Intel Pentium CPU.
23182
23183 @item pentium-mmx
23184 Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
23185
23186 @item pentiumpro
23187 Intel Pentium Pro CPU@.
23188
23189 @item i686
23190 When used with @option{-march}, the Pentium Pro
23191 instruction set is used, so the code runs on all i686 family chips.
23192 When used with @option{-mtune}, it has the same meaning as @samp{generic}.
23193
23194 @item pentium2
23195 Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set
23196 support.
23197
23198 @item pentium3
23199 @itemx pentium3m
23200 Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction
23201 set support.
23202
23203 @item pentium-m
23204 Intel Pentium M; low-power version of Intel Pentium III CPU
23205 with MMX, SSE and SSE2 instruction set support. Used by Centrino notebooks.
23206
23207 @item pentium4
23208 @itemx pentium4m
23209 Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.
23210
23211 @item prescott
23212 Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction
23213 set support.
23214
23215 @item nocona
23216 Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
23217 SSE2 and SSE3 instruction set support.
23218
23219 @item core2
23220 Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
23221 instruction set support.
23222
23223 @item nehalem
23224 Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
23225 SSE4.1, SSE4.2 and POPCNT instruction set support.
23226
23227 @item westmere
23228 Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
23229 SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support.
23230
23231 @item sandybridge
23232 Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
23233 SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL instruction set support.
23234
23235 @item ivybridge
23236 Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
23237 SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C
23238 instruction set support.
23239
23240 @item haswell
23241 Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
23242 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
23243 BMI, BMI2 and F16C instruction set support.
23244
23245 @item broadwell
23246 Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
23247 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
23248 BMI, BMI2, F16C, RDSEED, ADCX and PREFETCHW instruction set support.
23249
23250 @item skylake
23251 Intel Skylake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
23252 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
23253 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC and
23254 XSAVES instruction set support.
23255
23256 @item bonnell
23257 Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
23258 instruction set support.
23259
23260 @item silvermont
23261 Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
23262 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and RDRND instruction set support.
23263
23264 @item knl
23265 Intel Knight's Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
23266 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
23267 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER and
23268 AVX512CD instruction set support.
23269
23270 @item skylake-avx512
23271 Intel Skylake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
23272 SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
23273 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
23274 AVX512VL, AVX512BW, AVX512DQ and AVX512CD instruction set support.
23275
23276 @item k6
23277 AMD K6 CPU with MMX instruction set support.
23278
23279 @item k6-2
23280 @itemx k6-3
23281 Improved versions of AMD K6 CPU with MMX and 3DNow!@: instruction set support.
23282
23283 @item athlon
23284 @itemx athlon-tbird
23285 AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow!@: and SSE prefetch instructions
23286 support.
23287
23288 @item athlon-4
23289 @itemx athlon-xp
23290 @itemx athlon-mp
23291 Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow!@: and full SSE
23292 instruction set support.
23293
23294 @item k8
23295 @itemx opteron
23296 @itemx athlon64
23297 @itemx athlon-fx
23298 Processors based on the AMD K8 core with x86-64 instruction set support,
23299 including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
23300 (This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow!@: and 64-bit
23301 instruction set extensions.)
23302
23303 @item k8-sse3
23304 @itemx opteron-sse3
23305 @itemx athlon64-sse3
23306 Improved versions of AMD K8 cores with SSE3 instruction set support.
23307
23308 @item amdfam10
23309 @itemx barcelona
23310 CPUs based on AMD Family 10h cores with x86-64 instruction set support. (This
23311 supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
23312 instruction set extensions.)
23313
23314 @item bdver1
23315 CPUs based on AMD Family 15h cores with x86-64 instruction set support. (This
23316 supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
23317 SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
23318 @item bdver2
23319 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
23320 supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX,
23321 SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set
23322 extensions.)
23323 @item bdver3
23324 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
23325 supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES,
23326 PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and
23327 64-bit instruction set extensions.
23328 @item bdver4
23329 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
23330 supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP,
23331 AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
23332 SSE4.2, ABM and 64-bit instruction set extensions.
23333
23334 @item znver1
23335 AMD Family 17h core based CPUs with x86-64 instruction set support. (This
23336 supersets BMI, BMI2, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX,
23337 SHA, CLZERO, AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3,
23338 SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit
23339 instruction set extensions.
23340
23341 @item btver1
23342 CPUs based on AMD Family 14h cores with x86-64 instruction set support. (This
23343 supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
23344 instruction set extensions.)
23345
23346 @item btver2
23347 CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
23348 includes MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM,
23349 SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
23350
23351 @item winchip-c6
23352 IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
23353 set support.
23354
23355 @item winchip2
23356 IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!@:
23357 instruction set support.
23358
23359 @item c3
23360 VIA C3 CPU with MMX and 3DNow!@: instruction set support.
23361 (No scheduling is implemented for this chip.)
23362
23363 @item c3-2
23364 VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
23365 (No scheduling is implemented for this chip.)
23366
23367 @item c7
23368 VIA C7 (Esther) CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
23369 (No scheduling is implemented for this chip.)
23370
23371 @item samuel-2
23372 VIA Eden Samuel 2 CPU with MMX and 3DNow!@: instruction set support.
23373 (No scheduling is implemented for this chip.)
23374
23375 @item nehemiah
23376 VIA Eden Nehemiah CPU with MMX and SSE instruction set support.
23377 (No scheduling is implemented for this chip.)
23378
23379 @item esther
23380 VIA Eden Esther CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
23381 (No scheduling is implemented for this chip.)
23382
23383 @item eden-x2
23384 VIA Eden X2 CPU with x86-64, MMX, SSE, SSE2 and SSE3 instruction set support.
23385 (No scheduling is implemented for this chip.)
23386
23387 @item eden-x4
23388 VIA Eden X4 CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
23389 AVX and AVX2 instruction set support.
23390 (No scheduling is implemented for this chip.)
23391
23392 @item nano
23393 Generic VIA Nano CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
23394 instruction set support.
23395 (No scheduling is implemented for this chip.)
23396
23397 @item nano-1000
23398 VIA Nano 1xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
23399 instruction set support.
23400 (No scheduling is implemented for this chip.)
23401
23402 @item nano-2000
23403 VIA Nano 2xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
23404 instruction set support.
23405 (No scheduling is implemented for this chip.)
23406
23407 @item nano-3000
23408 VIA Nano 3xxx CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
23409 instruction set support.
23410 (No scheduling is implemented for this chip.)
23411
23412 @item nano-x2
23413 VIA Nano Dual Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
23414 instruction set support.
23415 (No scheduling is implemented for this chip.)
23416
23417 @item nano-x4
23418 VIA Nano Quad Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
23419 instruction set support.
23420 (No scheduling is implemented for this chip.)
23421
23422 @item geode
23423 AMD Geode embedded processor with MMX and 3DNow!@: instruction set support.
23424 @end table
23425
23426 @item -mtune=@var{cpu-type}
23427 @opindex mtune
23428 Tune to @var{cpu-type} everything applicable about the generated code, except
23429 for the ABI and the set of available instructions.
23430 While picking a specific @var{cpu-type} schedules things appropriately
23431 for that particular chip, the compiler does not generate any code that
23432 cannot run on the default machine type unless you use a
23433 @option{-march=@var{cpu-type}} option.
23434 For example, if GCC is configured for i686-pc-linux-gnu
23435 then @option{-mtune=pentium4} generates code that is tuned for Pentium 4
23436 but still runs on i686 machines.
23437
23438 The choices for @var{cpu-type} are the same as for @option{-march}.
23439 In addition, @option{-mtune} supports 2 extra choices for @var{cpu-type}:
23440
23441 @table @samp
23442 @item generic
23443 Produce code optimized for the most common IA32/@/AMD64/@/EM64T processors.
23444 If you know the CPU on which your code will run, then you should use
23445 the corresponding @option{-mtune} or @option{-march} option instead of
23446 @option{-mtune=generic}. But, if you do not know exactly what CPU users
23447 of your application will have, then you should use this option.
23448
23449 As new processors are deployed in the marketplace, the behavior of this
23450 option will change. Therefore, if you upgrade to a newer version of
23451 GCC, code generation controlled by this option will change to reflect
23452 the processors
23453 that are most common at the time that version of GCC is released.
23454
23455 There is no @option{-march=generic} option because @option{-march}
23456 indicates the instruction set the compiler can use, and there is no
23457 generic instruction set applicable to all processors. In contrast,
23458 @option{-mtune} indicates the processor (or, in this case, collection of
23459 processors) for which the code is optimized.
23460
23461 @item intel
23462 Produce code optimized for the most current Intel processors, which are
23463 Haswell and Silvermont for this version of GCC. If you know the CPU
23464 on which your code will run, then you should use the corresponding
23465 @option{-mtune} or @option{-march} option instead of @option{-mtune=intel}.
23466 But, if you want your application performs better on both Haswell and
23467 Silvermont, then you should use this option.
23468
23469 As new Intel processors are deployed in the marketplace, the behavior of
23470 this option will change. Therefore, if you upgrade to a newer version of
23471 GCC, code generation controlled by this option will change to reflect
23472 the most current Intel processors at the time that version of GCC is
23473 released.
23474
23475 There is no @option{-march=intel} option because @option{-march} indicates
23476 the instruction set the compiler can use, and there is no common
23477 instruction set applicable to all processors. In contrast,
23478 @option{-mtune} indicates the processor (or, in this case, collection of
23479 processors) for which the code is optimized.
23480 @end table
23481
23482 @item -mcpu=@var{cpu-type}
23483 @opindex mcpu
23484 A deprecated synonym for @option{-mtune}.
23485
23486 @item -mfpmath=@var{unit}
23487 @opindex mfpmath
23488 Generate floating-point arithmetic for selected unit @var{unit}. The choices
23489 for @var{unit} are:
23490
23491 @table @samp
23492 @item 387
23493 Use the standard 387 floating-point coprocessor present on the majority of chips and
23494 emulated otherwise. Code compiled with this option runs almost everywhere.
23495 The temporary results are computed in 80-bit precision instead of the precision
23496 specified by the type, resulting in slightly different results compared to most
23497 of other chips. See @option{-ffloat-store} for more detailed description.
23498
23499 This is the default choice for x86-32 targets.
23500
23501 @item sse
23502 Use scalar floating-point instructions present in the SSE instruction set.
23503 This instruction set is supported by Pentium III and newer chips,
23504 and in the AMD line
23505 by Athlon-4, Athlon XP and Athlon MP chips. The earlier version of the SSE
23506 instruction set supports only single-precision arithmetic, thus the double and
23507 extended-precision arithmetic are still done using 387. A later version, present
23508 only in Pentium 4 and AMD x86-64 chips, supports double-precision
23509 arithmetic too.
23510
23511 For the x86-32 compiler, you must use @option{-march=@var{cpu-type}}, @option{-msse}
23512 or @option{-msse2} switches to enable SSE extensions and make this option
23513 effective. For the x86-64 compiler, these extensions are enabled by default.
23514
23515 The resulting code should be considerably faster in the majority of cases and avoid
23516 the numerical instability problems of 387 code, but may break some existing
23517 code that expects temporaries to be 80 bits.
23518
23519 This is the default choice for the x86-64 compiler.
23520
23521 @item sse,387
23522 @itemx sse+387
23523 @itemx both
23524 Attempt to utilize both instruction sets at once. This effectively doubles the
23525 amount of available registers, and on chips with separate execution units for
23526 387 and SSE the execution resources too. Use this option with care, as it is
23527 still experimental, because the GCC register allocator does not model separate
23528 functional units well, resulting in unstable performance.
23529 @end table
23530
23531 @item -masm=@var{dialect}
23532 @opindex masm=@var{dialect}
23533 Output assembly instructions using selected @var{dialect}. Also affects
23534 which dialect is used for basic @code{asm} (@pxref{Basic Asm}) and
23535 extended @code{asm} (@pxref{Extended Asm}). Supported choices (in dialect
23536 order) are @samp{att} or @samp{intel}. The default is @samp{att}. Darwin does
23537 not support @samp{intel}.
23538
23539 @item -mieee-fp
23540 @itemx -mno-ieee-fp
23541 @opindex mieee-fp
23542 @opindex mno-ieee-fp
23543 Control whether or not the compiler uses IEEE floating-point
23544 comparisons. These correctly handle the case where the result of a
23545 comparison is unordered.
23546
23547 @item -msoft-float
23548 @opindex msoft-float
23549 Generate output containing library calls for floating point.
23550
23551 @strong{Warning:} the requisite libraries are not part of GCC@.
23552 Normally the facilities of the machine's usual C compiler are used, but
23553 this can't be done directly in cross-compilation. You must make your
23554 own arrangements to provide suitable library functions for
23555 cross-compilation.
23556
23557 On machines where a function returns floating-point results in the 80387
23558 register stack, some floating-point opcodes may be emitted even if
23559 @option{-msoft-float} is used.
23560
23561 @item -mno-fp-ret-in-387
23562 @opindex mno-fp-ret-in-387
23563 Do not use the FPU registers for return values of functions.
23564
23565 The usual calling convention has functions return values of types
23566 @code{float} and @code{double} in an FPU register, even if there
23567 is no FPU@. The idea is that the operating system should emulate
23568 an FPU@.
23569
23570 The option @option{-mno-fp-ret-in-387} causes such values to be returned
23571 in ordinary CPU registers instead.
23572
23573 @item -mno-fancy-math-387
23574 @opindex mno-fancy-math-387
23575 Some 387 emulators do not support the @code{sin}, @code{cos} and
23576 @code{sqrt} instructions for the 387. Specify this option to avoid
23577 generating those instructions. This option is the default on
23578 OpenBSD and NetBSD@. This option is overridden when @option{-march}
23579 indicates that the target CPU always has an FPU and so the
23580 instruction does not need emulation. These
23581 instructions are not generated unless you also use the
23582 @option{-funsafe-math-optimizations} switch.
23583
23584 @item -malign-double
23585 @itemx -mno-align-double
23586 @opindex malign-double
23587 @opindex mno-align-double
23588 Control whether GCC aligns @code{double}, @code{long double}, and
23589 @code{long long} variables on a two-word boundary or a one-word
23590 boundary. Aligning @code{double} variables on a two-word boundary
23591 produces code that runs somewhat faster on a Pentium at the
23592 expense of more memory.
23593
23594 On x86-64, @option{-malign-double} is enabled by default.
23595
23596 @strong{Warning:} if you use the @option{-malign-double} switch,
23597 structures containing the above types are aligned differently than
23598 the published application binary interface specifications for the x86-32
23599 and are not binary compatible with structures in code compiled
23600 without that switch.
23601
23602 @item -m96bit-long-double
23603 @itemx -m128bit-long-double
23604 @opindex m96bit-long-double
23605 @opindex m128bit-long-double
23606 These switches control the size of @code{long double} type. The x86-32
23607 application binary interface specifies the size to be 96 bits,
23608 so @option{-m96bit-long-double} is the default in 32-bit mode.
23609
23610 Modern architectures (Pentium and newer) prefer @code{long double}
23611 to be aligned to an 8- or 16-byte boundary. In arrays or structures
23612 conforming to the ABI, this is not possible. So specifying
23613 @option{-m128bit-long-double} aligns @code{long double}
23614 to a 16-byte boundary by padding the @code{long double} with an additional
23615 32-bit zero.
23616
23617 In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
23618 its ABI specifies that @code{long double} is aligned on 16-byte boundary.
23619
23620 Notice that neither of these options enable any extra precision over the x87
23621 standard of 80 bits for a @code{long double}.
23622
23623 @strong{Warning:} if you override the default value for your target ABI, this
23624 changes the size of
23625 structures and arrays containing @code{long double} variables,
23626 as well as modifying the function calling convention for functions taking
23627 @code{long double}. Hence they are not binary-compatible
23628 with code compiled without that switch.
23629
23630 @item -mlong-double-64
23631 @itemx -mlong-double-80
23632 @itemx -mlong-double-128
23633 @opindex mlong-double-64
23634 @opindex mlong-double-80
23635 @opindex mlong-double-128
23636 These switches control the size of @code{long double} type. A size
23637 of 64 bits makes the @code{long double} type equivalent to the @code{double}
23638 type. This is the default for 32-bit Bionic C library. A size
23639 of 128 bits makes the @code{long double} type equivalent to the
23640 @code{__float128} type. This is the default for 64-bit Bionic C library.
23641
23642 @strong{Warning:} if you override the default value for your target ABI, this
23643 changes the size of
23644 structures and arrays containing @code{long double} variables,
23645 as well as modifying the function calling convention for functions taking
23646 @code{long double}. Hence they are not binary-compatible
23647 with code compiled without that switch.
23648
23649 @item -malign-data=@var{type}
23650 @opindex malign-data
23651 Control how GCC aligns variables. Supported values for @var{type} are
23652 @samp{compat} uses increased alignment value compatible uses GCC 4.8
23653 and earlier, @samp{abi} uses alignment value as specified by the
23654 psABI, and @samp{cacheline} uses increased alignment value to match
23655 the cache line size. @samp{compat} is the default.
23656
23657 @item -mlarge-data-threshold=@var{threshold}
23658 @opindex mlarge-data-threshold
23659 When @option{-mcmodel=medium} is specified, data objects larger than
23660 @var{threshold} are placed in the large data section. This value must be the
23661 same across all objects linked into the binary, and defaults to 65535.
23662
23663 @item -mrtd
23664 @opindex mrtd
23665 Use a different function-calling convention, in which functions that
23666 take a fixed number of arguments return with the @code{ret @var{num}}
23667 instruction, which pops their arguments while returning. This saves one
23668 instruction in the caller since there is no need to pop the arguments
23669 there.
23670
23671 You can specify that an individual function is called with this calling
23672 sequence with the function attribute @code{stdcall}. You can also
23673 override the @option{-mrtd} option by using the function attribute
23674 @code{cdecl}. @xref{Function Attributes}.
23675
23676 @strong{Warning:} this calling convention is incompatible with the one
23677 normally used on Unix, so you cannot use it if you need to call
23678 libraries compiled with the Unix compiler.
23679
23680 Also, you must provide function prototypes for all functions that
23681 take variable numbers of arguments (including @code{printf});
23682 otherwise incorrect code is generated for calls to those
23683 functions.
23684
23685 In addition, seriously incorrect code results if you call a
23686 function with too many arguments. (Normally, extra arguments are
23687 harmlessly ignored.)
23688
23689 @item -mregparm=@var{num}
23690 @opindex mregparm
23691 Control how many registers are used to pass integer arguments. By
23692 default, no registers are used to pass arguments, and at most 3
23693 registers can be used. You can control this behavior for a specific
23694 function by using the function attribute @code{regparm}.
23695 @xref{Function Attributes}.
23696
23697 @strong{Warning:} if you use this switch, and
23698 @var{num} is nonzero, then you must build all modules with the same
23699 value, including any libraries. This includes the system libraries and
23700 startup modules.
23701
23702 @item -msseregparm
23703 @opindex msseregparm
23704 Use SSE register passing conventions for float and double arguments
23705 and return values. You can control this behavior for a specific
23706 function by using the function attribute @code{sseregparm}.
23707 @xref{Function Attributes}.
23708
23709 @strong{Warning:} if you use this switch then you must build all
23710 modules with the same value, including any libraries. This includes
23711 the system libraries and startup modules.
23712
23713 @item -mvect8-ret-in-mem
23714 @opindex mvect8-ret-in-mem
23715 Return 8-byte vectors in memory instead of MMX registers. This is the
23716 default on Solaris@tie{}8 and 9 and VxWorks to match the ABI of the Sun
23717 Studio compilers until version 12. Later compiler versions (starting
23718 with Studio 12 Update@tie{}1) follow the ABI used by other x86 targets, which
23719 is the default on Solaris@tie{}10 and later. @emph{Only} use this option if
23720 you need to remain compatible with existing code produced by those
23721 previous compiler versions or older versions of GCC@.
23722
23723 @item -mpc32
23724 @itemx -mpc64
23725 @itemx -mpc80
23726 @opindex mpc32
23727 @opindex mpc64
23728 @opindex mpc80
23729
23730 Set 80387 floating-point precision to 32, 64 or 80 bits. When @option{-mpc32}
23731 is specified, the significands of results of floating-point operations are
23732 rounded to 24 bits (single precision); @option{-mpc64} rounds the
23733 significands of results of floating-point operations to 53 bits (double
23734 precision) and @option{-mpc80} rounds the significands of results of
23735 floating-point operations to 64 bits (extended double precision), which is
23736 the default. When this option is used, floating-point operations in higher
23737 precisions are not available to the programmer without setting the FPU
23738 control word explicitly.
23739
23740 Setting the rounding of floating-point operations to less than the default
23741 80 bits can speed some programs by 2% or more. Note that some mathematical
23742 libraries assume that extended-precision (80-bit) floating-point operations
23743 are enabled by default; routines in such libraries could suffer significant
23744 loss of accuracy, typically through so-called ``catastrophic cancellation'',
23745 when this option is used to set the precision to less than extended precision.
23746
23747 @item -mstackrealign
23748 @opindex mstackrealign
23749 Realign the stack at entry. On the x86, the @option{-mstackrealign}
23750 option generates an alternate prologue and epilogue that realigns the
23751 run-time stack if necessary. This supports mixing legacy codes that keep
23752 4-byte stack alignment with modern codes that keep 16-byte stack alignment for
23753 SSE compatibility. See also the attribute @code{force_align_arg_pointer},
23754 applicable to individual functions.
23755
23756 @item -mpreferred-stack-boundary=@var{num}
23757 @opindex mpreferred-stack-boundary
23758 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
23759 byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
23760 the default is 4 (16 bytes or 128 bits).
23761
23762 @strong{Warning:} When generating code for the x86-64 architecture with
23763 SSE extensions disabled, @option{-mpreferred-stack-boundary=3} can be
23764 used to keep the stack boundary aligned to 8 byte boundary. Since
23765 x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
23766 intended to be used in controlled environment where stack space is
23767 important limitation. This option leads to wrong code when functions
23768 compiled with 16 byte stack alignment (such as functions from a standard
23769 library) are called with misaligned stack. In this case, SSE
23770 instructions may lead to misaligned memory access traps. In addition,
23771 variable arguments are handled incorrectly for 16 byte aligned
23772 objects (including x87 long double and __int128), leading to wrong
23773 results. You must build all modules with
23774 @option{-mpreferred-stack-boundary=3}, including any libraries. This
23775 includes the system libraries and startup modules.
23776
23777 @item -mincoming-stack-boundary=@var{num}
23778 @opindex mincoming-stack-boundary
23779 Assume the incoming stack is aligned to a 2 raised to @var{num} byte
23780 boundary. If @option{-mincoming-stack-boundary} is not specified,
23781 the one specified by @option{-mpreferred-stack-boundary} is used.
23782
23783 On Pentium and Pentium Pro, @code{double} and @code{long double} values
23784 should be aligned to an 8-byte boundary (see @option{-malign-double}) or
23785 suffer significant run time performance penalties. On Pentium III, the
23786 Streaming SIMD Extension (SSE) data type @code{__m128} may not work
23787 properly if it is not 16-byte aligned.
23788
23789 To ensure proper alignment of this values on the stack, the stack boundary
23790 must be as aligned as that required by any value stored on the stack.
23791 Further, every function must be generated such that it keeps the stack
23792 aligned. Thus calling a function compiled with a higher preferred
23793 stack boundary from a function compiled with a lower preferred stack
23794 boundary most likely misaligns the stack. It is recommended that
23795 libraries that use callbacks always use the default setting.
23796
23797 This extra alignment does consume extra stack space, and generally
23798 increases code size. Code that is sensitive to stack space usage, such
23799 as embedded systems and operating system kernels, may want to reduce the
23800 preferred alignment to @option{-mpreferred-stack-boundary=2}.
23801
23802 @need 200
23803 @item -mmmx
23804 @opindex mmmx
23805 @need 200
23806 @itemx -msse
23807 @opindex msse
23808 @need 200
23809 @itemx -msse2
23810 @opindex msse2
23811 @need 200
23812 @itemx -msse3
23813 @opindex msse3
23814 @need 200
23815 @itemx -mssse3
23816 @opindex mssse3
23817 @need 200
23818 @itemx -msse4
23819 @opindex msse4
23820 @need 200
23821 @itemx -msse4a
23822 @opindex msse4a
23823 @need 200
23824 @itemx -msse4.1
23825 @opindex msse4.1
23826 @need 200
23827 @itemx -msse4.2
23828 @opindex msse4.2
23829 @need 200
23830 @itemx -mavx
23831 @opindex mavx
23832 @need 200
23833 @itemx -mavx2
23834 @opindex mavx2
23835 @need 200
23836 @itemx -mavx512f
23837 @opindex mavx512f
23838 @need 200
23839 @itemx -mavx512pf
23840 @opindex mavx512pf
23841 @need 200
23842 @itemx -mavx512er
23843 @opindex mavx512er
23844 @need 200
23845 @itemx -mavx512cd
23846 @opindex mavx512cd
23847 @need 200
23848 @itemx -mavx512vl
23849 @opindex mavx512vl
23850 @need 200
23851 @itemx -mavx512bw
23852 @opindex mavx512bw
23853 @need 200
23854 @itemx -mavx512dq
23855 @opindex mavx512dq
23856 @need 200
23857 @itemx -mavx512ifma
23858 @opindex mavx512ifma
23859 @need 200
23860 @itemx -mavx512vbmi
23861 @opindex mavx512vbmi
23862 @need 200
23863 @itemx -msha
23864 @opindex msha
23865 @need 200
23866 @itemx -maes
23867 @opindex maes
23868 @need 200
23869 @itemx -mpclmul
23870 @opindex mpclmul
23871 @need 200
23872 @itemx -mclfushopt
23873 @opindex mclfushopt
23874 @need 200
23875 @itemx -mfsgsbase
23876 @opindex mfsgsbase
23877 @need 200
23878 @itemx -mrdrnd
23879 @opindex mrdrnd
23880 @need 200
23881 @itemx -mf16c
23882 @opindex mf16c
23883 @need 200
23884 @itemx -mfma
23885 @opindex mfma
23886 @need 200
23887 @itemx -mfma4
23888 @opindex mfma4
23889 @need 200
23890 @itemx -mprefetchwt1
23891 @opindex mprefetchwt1
23892 @need 200
23893 @itemx -mxop
23894 @opindex mxop
23895 @need 200
23896 @itemx -mlwp
23897 @opindex mlwp
23898 @need 200
23899 @itemx -m3dnow
23900 @opindex m3dnow
23901 @need 200
23902 @itemx -mpopcnt
23903 @opindex mpopcnt
23904 @need 200
23905 @itemx -mabm
23906 @opindex mabm
23907 @need 200
23908 @itemx -mbmi
23909 @opindex mbmi
23910 @need 200
23911 @itemx -mbmi2
23912 @need 200
23913 @itemx -mlzcnt
23914 @opindex mlzcnt
23915 @need 200
23916 @itemx -mfxsr
23917 @opindex mfxsr
23918 @need 200
23919 @itemx -mxsave
23920 @opindex mxsave
23921 @need 200
23922 @itemx -mxsaveopt
23923 @opindex mxsaveopt
23924 @need 200
23925 @itemx -mxsavec
23926 @opindex mxsavec
23927 @need 200
23928 @itemx -mxsaves
23929 @opindex mxsaves
23930 @need 200
23931 @itemx -mrtm
23932 @opindex mrtm
23933 @need 200
23934 @itemx -mtbm
23935 @opindex mtbm
23936 @need 200
23937 @itemx -mmpx
23938 @opindex mmpx
23939 @need 200
23940 @itemx -mmwaitx
23941 @opindex mmwaitx
23942 @need 200
23943 @itemx -mclzero
23944 @opindex mclzero
23945 @itemx -mpku
23946 @opindex mpku
23947 These switches enable the use of instructions in the MMX, SSE,
23948 SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AVX512F, AVX512PF, AVX512ER, AVX512CD,
23949 SHA, AES, PCLMUL, FSGSBASE, RDRND, F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM,
23950 AVX512VL, AVX512BW, AVX512DQ, AVX512IFMA AVX512VBMI, BMI, BMI2, FXSR,
23951 XSAVE, XSAVEOPT, LZCNT, RTM, MPX, MWAITX, PKU or 3DNow!@:
23952 extended instruction sets. Each has a corresponding @option{-mno-} option
23953 to disable use of these instructions.
23954
23955 These extensions are also available as built-in functions: see
23956 @ref{x86 Built-in Functions}, for details of the functions enabled and
23957 disabled by these switches.
23958
23959 To generate SSE/SSE2 instructions automatically from floating-point
23960 code (as opposed to 387 instructions), see @option{-mfpmath=sse}.
23961
23962 GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
23963 generates new AVX instructions or AVX equivalence for all SSEx instructions
23964 when needed.
23965
23966 These options enable GCC to use these extended instructions in
23967 generated code, even without @option{-mfpmath=sse}. Applications that
23968 perform run-time CPU detection must compile separate files for each
23969 supported architecture, using the appropriate flags. In particular,
23970 the file containing the CPU detection code should be compiled without
23971 these options.
23972
23973 @item -mdump-tune-features
23974 @opindex mdump-tune-features
23975 This option instructs GCC to dump the names of the x86 performance
23976 tuning features and default settings. The names can be used in
23977 @option{-mtune-ctrl=@var{feature-list}}.
23978
23979 @item -mtune-ctrl=@var{feature-list}
23980 @opindex mtune-ctrl=@var{feature-list}
23981 This option is used to do fine grain control of x86 code generation features.
23982 @var{feature-list} is a comma separated list of @var{feature} names. See also
23983 @option{-mdump-tune-features}. When specified, the @var{feature} is turned
23984 on if it is not preceded with @samp{^}, otherwise, it is turned off.
23985 @option{-mtune-ctrl=@var{feature-list}} is intended to be used by GCC
23986 developers. Using it may lead to code paths not covered by testing and can
23987 potentially result in compiler ICEs or runtime errors.
23988
23989 @item -mno-default
23990 @opindex mno-default
23991 This option instructs GCC to turn off all tunable features. See also
23992 @option{-mtune-ctrl=@var{feature-list}} and @option{-mdump-tune-features}.
23993
23994 @item -mcld
23995 @opindex mcld
23996 This option instructs GCC to emit a @code{cld} instruction in the prologue
23997 of functions that use string instructions. String instructions depend on
23998 the DF flag to select between autoincrement or autodecrement mode. While the
23999 ABI specifies the DF flag to be cleared on function entry, some operating
24000 systems violate this specification by not clearing the DF flag in their
24001 exception dispatchers. The exception handler can be invoked with the DF flag
24002 set, which leads to wrong direction mode when string instructions are used.
24003 This option can be enabled by default on 32-bit x86 targets by configuring
24004 GCC with the @option{--enable-cld} configure option. Generation of @code{cld}
24005 instructions can be suppressed with the @option{-mno-cld} compiler option
24006 in this case.
24007
24008 @item -mvzeroupper
24009 @opindex mvzeroupper
24010 This option instructs GCC to emit a @code{vzeroupper} instruction
24011 before a transfer of control flow out of the function to minimize
24012 the AVX to SSE transition penalty as well as remove unnecessary @code{zeroupper}
24013 intrinsics.
24014
24015 @item -mprefer-avx128
24016 @opindex mprefer-avx128
24017 This option instructs GCC to use 128-bit AVX instructions instead of
24018 256-bit AVX instructions in the auto-vectorizer.
24019
24020 @item -mcx16
24021 @opindex mcx16
24022 This option enables GCC to generate @code{CMPXCHG16B} instructions.
24023 @code{CMPXCHG16B} allows for atomic operations on 128-bit double quadword
24024 (or oword) data types.
24025 This is useful for high-resolution counters that can be updated
24026 by multiple processors (or cores). This instruction is generated as part of
24027 atomic built-in functions: see @ref{__sync Builtins} or
24028 @ref{__atomic Builtins} for details.
24029
24030 @item -msahf
24031 @opindex msahf
24032 This option enables generation of @code{SAHF} instructions in 64-bit code.
24033 Early Intel Pentium 4 CPUs with Intel 64 support,
24034 prior to the introduction of Pentium 4 G1 step in December 2005,
24035 lacked the @code{LAHF} and @code{SAHF} instructions
24036 which are supported by AMD64.
24037 These are load and store instructions, respectively, for certain status flags.
24038 In 64-bit mode, the @code{SAHF} instruction is used to optimize @code{fmod},
24039 @code{drem}, and @code{remainder} built-in functions;
24040 see @ref{Other Builtins} for details.
24041
24042 @item -mmovbe
24043 @opindex mmovbe
24044 This option enables use of the @code{movbe} instruction to implement
24045 @code{__builtin_bswap32} and @code{__builtin_bswap64}.
24046
24047 @item -mcrc32
24048 @opindex mcrc32
24049 This option enables built-in functions @code{__builtin_ia32_crc32qi},
24050 @code{__builtin_ia32_crc32hi}, @code{__builtin_ia32_crc32si} and
24051 @code{__builtin_ia32_crc32di} to generate the @code{crc32} machine instruction.
24052
24053 @item -mrecip
24054 @opindex mrecip
24055 This option enables use of @code{RCPSS} and @code{RSQRTSS} instructions
24056 (and their vectorized variants @code{RCPPS} and @code{RSQRTPS})
24057 with an additional Newton-Raphson step
24058 to increase precision instead of @code{DIVSS} and @code{SQRTSS}
24059 (and their vectorized
24060 variants) for single-precision floating-point arguments. These instructions
24061 are generated only when @option{-funsafe-math-optimizations} is enabled
24062 together with @option{-ffinite-math-only} and @option{-fno-trapping-math}.
24063 Note that while the throughput of the sequence is higher than the throughput
24064 of the non-reciprocal instruction, the precision of the sequence can be
24065 decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).
24066
24067 Note that GCC implements @code{1.0f/sqrtf(@var{x})} in terms of @code{RSQRTSS}
24068 (or @code{RSQRTPS}) already with @option{-ffast-math} (or the above option
24069 combination), and doesn't need @option{-mrecip}.
24070
24071 Also note that GCC emits the above sequence with additional Newton-Raphson step
24072 for vectorized single-float division and vectorized @code{sqrtf(@var{x})}
24073 already with @option{-ffast-math} (or the above option combination), and
24074 doesn't need @option{-mrecip}.
24075
24076 @item -mrecip=@var{opt}
24077 @opindex mrecip=opt
24078 This option controls which reciprocal estimate instructions
24079 may be used. @var{opt} is a comma-separated list of options, which may
24080 be preceded by a @samp{!} to invert the option:
24081
24082 @table @samp
24083 @item all
24084 Enable all estimate instructions.
24085
24086 @item default
24087 Enable the default instructions, equivalent to @option{-mrecip}.
24088
24089 @item none
24090 Disable all estimate instructions, equivalent to @option{-mno-recip}.
24091
24092 @item div
24093 Enable the approximation for scalar division.
24094
24095 @item vec-div
24096 Enable the approximation for vectorized division.
24097
24098 @item sqrt
24099 Enable the approximation for scalar square root.
24100
24101 @item vec-sqrt
24102 Enable the approximation for vectorized square root.
24103 @end table
24104
24105 So, for example, @option{-mrecip=all,!sqrt} enables
24106 all of the reciprocal approximations, except for square root.
24107
24108 @item -mveclibabi=@var{type}
24109 @opindex mveclibabi
24110 Specifies the ABI type to use for vectorizing intrinsics using an
24111 external library. Supported values for @var{type} are @samp{svml}
24112 for the Intel short
24113 vector math library and @samp{acml} for the AMD math core library.
24114 To use this option, both @option{-ftree-vectorize} and
24115 @option{-funsafe-math-optimizations} have to be enabled, and an SVML or ACML
24116 ABI-compatible library must be specified at link time.
24117
24118 GCC currently emits calls to @code{vmldExp2},
24119 @code{vmldLn2}, @code{vmldLog102}, @code{vmldLog102}, @code{vmldPow2},
24120 @code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
24121 @code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
24122 @code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
24123 @code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4}, @code{vmlsLog104},
24124 @code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
24125 @code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
24126 @code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
24127 @code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
24128 function type when @option{-mveclibabi=svml} is used, and @code{__vrd2_sin},
24129 @code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
24130 @code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
24131 @code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
24132 @code{__vrs4_log10f} and @code{__vrs4_powf} for the corresponding function type
24133 when @option{-mveclibabi=acml} is used.
24134
24135 @item -mabi=@var{name}
24136 @opindex mabi
24137 Generate code for the specified calling convention. Permissible values
24138 are @samp{sysv} for the ABI used on GNU/Linux and other systems, and
24139 @samp{ms} for the Microsoft ABI. The default is to use the Microsoft
24140 ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
24141 You can control this behavior for specific functions by
24142 using the function attributes @code{ms_abi} and @code{sysv_abi}.
24143 @xref{Function Attributes}.
24144
24145 @item -mtls-dialect=@var{type}
24146 @opindex mtls-dialect
24147 Generate code to access thread-local storage using the @samp{gnu} or
24148 @samp{gnu2} conventions. @samp{gnu} is the conservative default;
24149 @samp{gnu2} is more efficient, but it may add compile- and run-time
24150 requirements that cannot be satisfied on all systems.
24151
24152 @item -mpush-args
24153 @itemx -mno-push-args
24154 @opindex mpush-args
24155 @opindex mno-push-args
24156 Use PUSH operations to store outgoing parameters. This method is shorter
24157 and usually equally fast as method using SUB/MOV operations and is enabled
24158 by default. In some cases disabling it may improve performance because of
24159 improved scheduling and reduced dependencies.
24160
24161 @item -maccumulate-outgoing-args
24162 @opindex maccumulate-outgoing-args
24163 If enabled, the maximum amount of space required for outgoing arguments is
24164 computed in the function prologue. This is faster on most modern CPUs
24165 because of reduced dependencies, improved scheduling and reduced stack usage
24166 when the preferred stack boundary is not equal to 2. The drawback is a notable
24167 increase in code size. This switch implies @option{-mno-push-args}.
24168
24169 @item -mthreads
24170 @opindex mthreads
24171 Support thread-safe exception handling on MinGW. Programs that rely
24172 on thread-safe exception handling must compile and link all code with the
24173 @option{-mthreads} option. When compiling, @option{-mthreads} defines
24174 @option{-D_MT}; when linking, it links in a special thread helper library
24175 @option{-lmingwthrd} which cleans up per-thread exception-handling data.
24176
24177 @item -mms-bitfields
24178 @itemx -mno-ms-bitfields
24179 @opindex mms-bitfields
24180 @opindex mno-ms-bitfields
24181
24182 Enable/disable bit-field layout compatible with the native Microsoft
24183 Windows compiler.
24184
24185 If @code{packed} is used on a structure, or if bit-fields are used,
24186 it may be that the Microsoft ABI lays out the structure differently
24187 than the way GCC normally does. Particularly when moving packed
24188 data between functions compiled with GCC and the native Microsoft compiler
24189 (either via function call or as data in a file), it may be necessary to access
24190 either format.
24191
24192 This option is enabled by default for Microsoft Windows
24193 targets. This behavior can also be controlled locally by use of variable
24194 or type attributes. For more information, see @ref{x86 Variable Attributes}
24195 and @ref{x86 Type Attributes}.
24196
24197 The Microsoft structure layout algorithm is fairly simple with the exception
24198 of the bit-field packing.
24199 The padding and alignment of members of structures and whether a bit-field
24200 can straddle a storage-unit boundary are determine by these rules:
24201
24202 @enumerate
24203 @item Structure members are stored sequentially in the order in which they are
24204 declared: the first member has the lowest memory address and the last member
24205 the highest.
24206
24207 @item Every data object has an alignment requirement. The alignment requirement
24208 for all data except structures, unions, and arrays is either the size of the
24209 object or the current packing size (specified with either the
24210 @code{aligned} attribute or the @code{pack} pragma),
24211 whichever is less. For structures, unions, and arrays,
24212 the alignment requirement is the largest alignment requirement of its members.
24213 Every object is allocated an offset so that:
24214
24215 @smallexample
24216 offset % alignment_requirement == 0
24217 @end smallexample
24218
24219 @item Adjacent bit-fields are packed into the same 1-, 2-, or 4-byte allocation
24220 unit if the integral types are the same size and if the next bit-field fits
24221 into the current allocation unit without crossing the boundary imposed by the
24222 common alignment requirements of the bit-fields.
24223 @end enumerate
24224
24225 MSVC interprets zero-length bit-fields in the following ways:
24226
24227 @enumerate
24228 @item If a zero-length bit-field is inserted between two bit-fields that
24229 are normally coalesced, the bit-fields are not coalesced.
24230
24231 For example:
24232
24233 @smallexample
24234 struct
24235 @{
24236 unsigned long bf_1 : 12;
24237 unsigned long : 0;
24238 unsigned long bf_2 : 12;
24239 @} t1;
24240 @end smallexample
24241
24242 @noindent
24243 The size of @code{t1} is 8 bytes with the zero-length bit-field. If the
24244 zero-length bit-field were removed, @code{t1}'s size would be 4 bytes.
24245
24246 @item If a zero-length bit-field is inserted after a bit-field, @code{foo}, and the
24247 alignment of the zero-length bit-field is greater than the member that follows it,
24248 @code{bar}, @code{bar} is aligned as the type of the zero-length bit-field.
24249
24250 For example:
24251
24252 @smallexample
24253 struct
24254 @{
24255 char foo : 4;
24256 short : 0;
24257 char bar;
24258 @} t2;
24259
24260 struct
24261 @{
24262 char foo : 4;
24263 short : 0;
24264 double bar;
24265 @} t3;
24266 @end smallexample
24267
24268 @noindent
24269 For @code{t2}, @code{bar} is placed at offset 2, rather than offset 1.
24270 Accordingly, the size of @code{t2} is 4. For @code{t3}, the zero-length
24271 bit-field does not affect the alignment of @code{bar} or, as a result, the size
24272 of the structure.
24273
24274 Taking this into account, it is important to note the following:
24275
24276 @enumerate
24277 @item If a zero-length bit-field follows a normal bit-field, the type of the
24278 zero-length bit-field may affect the alignment of the structure as whole. For
24279 example, @code{t2} has a size of 4 bytes, since the zero-length bit-field follows a
24280 normal bit-field, and is of type short.
24281
24282 @item Even if a zero-length bit-field is not followed by a normal bit-field, it may
24283 still affect the alignment of the structure:
24284
24285 @smallexample
24286 struct
24287 @{
24288 char foo : 6;
24289 long : 0;
24290 @} t4;
24291 @end smallexample
24292
24293 @noindent
24294 Here, @code{t4} takes up 4 bytes.
24295 @end enumerate
24296
24297 @item Zero-length bit-fields following non-bit-field members are ignored:
24298
24299 @smallexample
24300 struct
24301 @{
24302 char foo;
24303 long : 0;
24304 char bar;
24305 @} t5;
24306 @end smallexample
24307
24308 @noindent
24309 Here, @code{t5} takes up 2 bytes.
24310 @end enumerate
24311
24312
24313 @item -mno-align-stringops
24314 @opindex mno-align-stringops
24315 Do not align the destination of inlined string operations. This switch reduces
24316 code size and improves performance in case the destination is already aligned,
24317 but GCC doesn't know about it.
24318
24319 @item -minline-all-stringops
24320 @opindex minline-all-stringops
24321 By default GCC inlines string operations only when the destination is
24322 known to be aligned to least a 4-byte boundary.
24323 This enables more inlining and increases code
24324 size, but may improve performance of code that depends on fast
24325 @code{memcpy}, @code{strlen},
24326 and @code{memset} for short lengths.
24327
24328 @item -minline-stringops-dynamically
24329 @opindex minline-stringops-dynamically
24330 For string operations of unknown size, use run-time checks with
24331 inline code for small blocks and a library call for large blocks.
24332
24333 @item -mstringop-strategy=@var{alg}
24334 @opindex mstringop-strategy=@var{alg}
24335 Override the internal decision heuristic for the particular algorithm to use
24336 for inlining string operations. The allowed values for @var{alg} are:
24337
24338 @table @samp
24339 @item rep_byte
24340 @itemx rep_4byte
24341 @itemx rep_8byte
24342 Expand using i386 @code{rep} prefix of the specified size.
24343
24344 @item byte_loop
24345 @itemx loop
24346 @itemx unrolled_loop
24347 Expand into an inline loop.
24348
24349 @item libcall
24350 Always use a library call.
24351 @end table
24352
24353 @item -mmemcpy-strategy=@var{strategy}
24354 @opindex mmemcpy-strategy=@var{strategy}
24355 Override the internal decision heuristic to decide if @code{__builtin_memcpy}
24356 should be inlined and what inline algorithm to use when the expected size
24357 of the copy operation is known. @var{strategy}
24358 is a comma-separated list of @var{alg}:@var{max_size}:@var{dest_align} triplets.
24359 @var{alg} is specified in @option{-mstringop-strategy}, @var{max_size} specifies
24360 the max byte size with which inline algorithm @var{alg} is allowed. For the last
24361 triplet, the @var{max_size} must be @code{-1}. The @var{max_size} of the triplets
24362 in the list must be specified in increasing order. The minimal byte size for
24363 @var{alg} is @code{0} for the first triplet and @code{@var{max_size} + 1} of the
24364 preceding range.
24365
24366 @item -mmemset-strategy=@var{strategy}
24367 @opindex mmemset-strategy=@var{strategy}
24368 The option is similar to @option{-mmemcpy-strategy=} except that it is to control
24369 @code{__builtin_memset} expansion.
24370
24371 @item -momit-leaf-frame-pointer
24372 @opindex momit-leaf-frame-pointer
24373 Don't keep the frame pointer in a register for leaf functions. This
24374 avoids the instructions to save, set up, and restore frame pointers and
24375 makes an extra register available in leaf functions. The option
24376 @option{-fomit-leaf-frame-pointer} removes the frame pointer for leaf functions,
24377 which might make debugging harder.
24378
24379 @item -mtls-direct-seg-refs
24380 @itemx -mno-tls-direct-seg-refs
24381 @opindex mtls-direct-seg-refs
24382 Controls whether TLS variables may be accessed with offsets from the
24383 TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
24384 or whether the thread base pointer must be added. Whether or not this
24385 is valid depends on the operating system, and whether it maps the
24386 segment to cover the entire TLS area.
24387
24388 For systems that use the GNU C Library, the default is on.
24389
24390 @item -msse2avx
24391 @itemx -mno-sse2avx
24392 @opindex msse2avx
24393 Specify that the assembler should encode SSE instructions with VEX
24394 prefix. The option @option{-mavx} turns this on by default.
24395
24396 @item -mfentry
24397 @itemx -mno-fentry
24398 @opindex mfentry
24399 If profiling is active (@option{-pg}), put the profiling
24400 counter call before the prologue.
24401 Note: On x86 architectures the attribute @code{ms_hook_prologue}
24402 isn't possible at the moment for @option{-mfentry} and @option{-pg}.
24403
24404 @item -mrecord-mcount
24405 @itemx -mno-record-mcount
24406 @opindex mrecord-mcount
24407 If profiling is active (@option{-pg}), generate a __mcount_loc section
24408 that contains pointers to each profiling call. This is useful for
24409 automatically patching and out calls.
24410
24411 @item -mnop-mcount
24412 @itemx -mno-nop-mcount
24413 @opindex mnop-mcount
24414 If profiling is active (@option{-pg}), generate the calls to
24415 the profiling functions as nops. This is useful when they
24416 should be patched in later dynamically. This is likely only
24417 useful together with @option{-mrecord-mcount}.
24418
24419 @item -mskip-rax-setup
24420 @itemx -mno-skip-rax-setup
24421 @opindex mskip-rax-setup
24422 When generating code for the x86-64 architecture with SSE extensions
24423 disabled, @option{-mskip-rax-setup} can be used to skip setting up RAX
24424 register when there are no variable arguments passed in vector registers.
24425
24426 @strong{Warning:} Since RAX register is used to avoid unnecessarily
24427 saving vector registers on stack when passing variable arguments, the
24428 impacts of this option are callees may waste some stack space,
24429 misbehave or jump to a random location. GCC 4.4 or newer don't have
24430 those issues, regardless the RAX register value.
24431
24432 @item -m8bit-idiv
24433 @itemx -mno-8bit-idiv
24434 @opindex m8bit-idiv
24435 On some processors, like Intel Atom, 8-bit unsigned integer divide is
24436 much faster than 32-bit/64-bit integer divide. This option generates a
24437 run-time check. If both dividend and divisor are within range of 0
24438 to 255, 8-bit unsigned integer divide is used instead of
24439 32-bit/64-bit integer divide.
24440
24441 @item -mavx256-split-unaligned-load
24442 @itemx -mavx256-split-unaligned-store
24443 @opindex mavx256-split-unaligned-load
24444 @opindex mavx256-split-unaligned-store
24445 Split 32-byte AVX unaligned load and store.
24446
24447 @item -mstack-protector-guard=@var{guard}
24448 @opindex mstack-protector-guard=@var{guard}
24449 Generate stack protection code using canary at @var{guard}. Supported
24450 locations are @samp{global} for global canary or @samp{tls} for per-thread
24451 canary in the TLS block (the default). This option has effect only when
24452 @option{-fstack-protector} or @option{-fstack-protector-all} is specified.
24453
24454 @item -mmitigate-rop
24455 @opindex mmitigate-rop
24456 Try to avoid generating code sequences that contain unintended return
24457 opcodes, to mitigate against certain forms of attack. At the moment,
24458 this option is limited in what it can do and should not be relied
24459 on to provide serious protection.
24460
24461 @item -mgeneral-regs-only
24462 @opindex mgeneral-regs-only
24463 Generate code that uses only the general-purpose registers. This
24464 prevents the compiler from using floating-point, vector, mask and bound
24465 registers.
24466
24467 @end table
24468
24469 These @samp{-m} switches are supported in addition to the above
24470 on x86-64 processors in 64-bit environments.
24471
24472 @table @gcctabopt
24473 @item -m32
24474 @itemx -m64
24475 @itemx -mx32
24476 @itemx -m16
24477 @itemx -miamcu
24478 @opindex m32
24479 @opindex m64
24480 @opindex mx32
24481 @opindex m16
24482 @opindex miamcu
24483 Generate code for a 16-bit, 32-bit or 64-bit environment.
24484 The @option{-m32} option sets @code{int}, @code{long}, and pointer types
24485 to 32 bits, and
24486 generates code that runs on any i386 system.
24487
24488 The @option{-m64} option sets @code{int} to 32 bits and @code{long} and pointer
24489 types to 64 bits, and generates code for the x86-64 architecture.
24490 For Darwin only the @option{-m64} option also turns off the @option{-fno-pic}
24491 and @option{-mdynamic-no-pic} options.
24492
24493 The @option{-mx32} option sets @code{int}, @code{long}, and pointer types
24494 to 32 bits, and
24495 generates code for the x86-64 architecture.
24496
24497 The @option{-m16} option is the same as @option{-m32}, except for that
24498 it outputs the @code{.code16gcc} assembly directive at the beginning of
24499 the assembly output so that the binary can run in 16-bit mode.
24500
24501 The @option{-miamcu} option generates code which conforms to Intel MCU
24502 psABI. It requires the @option{-m32} option to be turned on.
24503
24504 @item -mno-red-zone
24505 @opindex mno-red-zone
24506 Do not use a so-called ``red zone'' for x86-64 code. The red zone is mandated
24507 by the x86-64 ABI; it is a 128-byte area beyond the location of the
24508 stack pointer that is not modified by signal or interrupt handlers
24509 and therefore can be used for temporary data without adjusting the stack
24510 pointer. The flag @option{-mno-red-zone} disables this red zone.
24511
24512 @item -mcmodel=small
24513 @opindex mcmodel=small
24514 Generate code for the small code model: the program and its symbols must
24515 be linked in the lower 2 GB of the address space. Pointers are 64 bits.
24516 Programs can be statically or dynamically linked. This is the default
24517 code model.
24518
24519 @item -mcmodel=kernel
24520 @opindex mcmodel=kernel
24521 Generate code for the kernel code model. The kernel runs in the
24522 negative 2 GB of the address space.
24523 This model has to be used for Linux kernel code.
24524
24525 @item -mcmodel=medium
24526 @opindex mcmodel=medium
24527 Generate code for the medium model: the program is linked in the lower 2
24528 GB of the address space. Small symbols are also placed there. Symbols
24529 with sizes larger than @option{-mlarge-data-threshold} are put into
24530 large data or BSS sections and can be located above 2GB. Programs can
24531 be statically or dynamically linked.
24532
24533 @item -mcmodel=large
24534 @opindex mcmodel=large
24535 Generate code for the large model. This model makes no assumptions
24536 about addresses and sizes of sections.
24537
24538 @item -maddress-mode=long
24539 @opindex maddress-mode=long
24540 Generate code for long address mode. This is only supported for 64-bit
24541 and x32 environments. It is the default address mode for 64-bit
24542 environments.
24543
24544 @item -maddress-mode=short
24545 @opindex maddress-mode=short
24546 Generate code for short address mode. This is only supported for 32-bit
24547 and x32 environments. It is the default address mode for 32-bit and
24548 x32 environments.
24549 @end table
24550
24551 @node x86 Windows Options
24552 @subsection x86 Windows Options
24553 @cindex x86 Windows Options
24554 @cindex Windows Options for x86
24555
24556 These additional options are available for Microsoft Windows targets:
24557
24558 @table @gcctabopt
24559 @item -mconsole
24560 @opindex mconsole
24561 This option
24562 specifies that a console application is to be generated, by
24563 instructing the linker to set the PE header subsystem type
24564 required for console applications.
24565 This option is available for Cygwin and MinGW targets and is
24566 enabled by default on those targets.
24567
24568 @item -mdll
24569 @opindex mdll
24570 This option is available for Cygwin and MinGW targets. It
24571 specifies that a DLL---a dynamic link library---is to be
24572 generated, enabling the selection of the required runtime
24573 startup object and entry point.
24574
24575 @item -mnop-fun-dllimport
24576 @opindex mnop-fun-dllimport
24577 This option is available for Cygwin and MinGW targets. It
24578 specifies that the @code{dllimport} attribute should be ignored.
24579
24580 @item -mthread
24581 @opindex mthread
24582 This option is available for MinGW targets. It specifies
24583 that MinGW-specific thread support is to be used.
24584
24585 @item -municode
24586 @opindex municode
24587 This option is available for MinGW-w64 targets. It causes
24588 the @code{UNICODE} preprocessor macro to be predefined, and
24589 chooses Unicode-capable runtime startup code.
24590
24591 @item -mwin32
24592 @opindex mwin32
24593 This option is available for Cygwin and MinGW targets. It
24594 specifies that the typical Microsoft Windows predefined macros are to
24595 be set in the pre-processor, but does not influence the choice
24596 of runtime library/startup code.
24597
24598 @item -mwindows
24599 @opindex mwindows
24600 This option is available for Cygwin and MinGW targets. It
24601 specifies that a GUI application is to be generated by
24602 instructing the linker to set the PE header subsystem type
24603 appropriately.
24604
24605 @item -fno-set-stack-executable
24606 @opindex fno-set-stack-executable
24607 This option is available for MinGW targets. It specifies that
24608 the executable flag for the stack used by nested functions isn't
24609 set. This is necessary for binaries running in kernel mode of
24610 Microsoft Windows, as there the User32 API, which is used to set executable
24611 privileges, isn't available.
24612
24613 @item -fwritable-relocated-rdata
24614 @opindex fno-writable-relocated-rdata
24615 This option is available for MinGW and Cygwin targets. It specifies
24616 that relocated-data in read-only section is put into the @code{.data}
24617 section. This is a necessary for older runtimes not supporting
24618 modification of @code{.rdata} sections for pseudo-relocation.
24619
24620 @item -mpe-aligned-commons
24621 @opindex mpe-aligned-commons
24622 This option is available for Cygwin and MinGW targets. It
24623 specifies that the GNU extension to the PE file format that
24624 permits the correct alignment of COMMON variables should be
24625 used when generating code. It is enabled by default if
24626 GCC detects that the target assembler found during configuration
24627 supports the feature.
24628 @end table
24629
24630 See also under @ref{x86 Options} for standard options.
24631
24632 @node Xstormy16 Options
24633 @subsection Xstormy16 Options
24634 @cindex Xstormy16 Options
24635
24636 These options are defined for Xstormy16:
24637
24638 @table @gcctabopt
24639 @item -msim
24640 @opindex msim
24641 Choose startup files and linker script suitable for the simulator.
24642 @end table
24643
24644 @node Xtensa Options
24645 @subsection Xtensa Options
24646 @cindex Xtensa Options
24647
24648 These options are supported for Xtensa targets:
24649
24650 @table @gcctabopt
24651 @item -mconst16
24652 @itemx -mno-const16
24653 @opindex mconst16
24654 @opindex mno-const16
24655 Enable or disable use of @code{CONST16} instructions for loading
24656 constant values. The @code{CONST16} instruction is currently not a
24657 standard option from Tensilica. When enabled, @code{CONST16}
24658 instructions are always used in place of the standard @code{L32R}
24659 instructions. The use of @code{CONST16} is enabled by default only if
24660 the @code{L32R} instruction is not available.
24661
24662 @item -mfused-madd
24663 @itemx -mno-fused-madd
24664 @opindex mfused-madd
24665 @opindex mno-fused-madd
24666 Enable or disable use of fused multiply/add and multiply/subtract
24667 instructions in the floating-point option. This has no effect if the
24668 floating-point option is not also enabled. Disabling fused multiply/add
24669 and multiply/subtract instructions forces the compiler to use separate
24670 instructions for the multiply and add/subtract operations. This may be
24671 desirable in some cases where strict IEEE 754-compliant results are
24672 required: the fused multiply add/subtract instructions do not round the
24673 intermediate result, thereby producing results with @emph{more} bits of
24674 precision than specified by the IEEE standard. Disabling fused multiply
24675 add/subtract instructions also ensures that the program output is not
24676 sensitive to the compiler's ability to combine multiply and add/subtract
24677 operations.
24678
24679 @item -mserialize-volatile
24680 @itemx -mno-serialize-volatile
24681 @opindex mserialize-volatile
24682 @opindex mno-serialize-volatile
24683 When this option is enabled, GCC inserts @code{MEMW} instructions before
24684 @code{volatile} memory references to guarantee sequential consistency.
24685 The default is @option{-mserialize-volatile}. Use
24686 @option{-mno-serialize-volatile} to omit the @code{MEMW} instructions.
24687
24688 @item -mforce-no-pic
24689 @opindex mforce-no-pic
24690 For targets, like GNU/Linux, where all user-mode Xtensa code must be
24691 position-independent code (PIC), this option disables PIC for compiling
24692 kernel code.
24693
24694 @item -mtext-section-literals
24695 @itemx -mno-text-section-literals
24696 @opindex mtext-section-literals
24697 @opindex mno-text-section-literals
24698 These options control the treatment of literal pools. The default is
24699 @option{-mno-text-section-literals}, which places literals in a separate
24700 section in the output file. This allows the literal pool to be placed
24701 in a data RAM/ROM, and it also allows the linker to combine literal
24702 pools from separate object files to remove redundant literals and
24703 improve code size. With @option{-mtext-section-literals}, the literals
24704 are interspersed in the text section in order to keep them as close as
24705 possible to their references. This may be necessary for large assembly
24706 files. Literals for each function are placed right before that function.
24707
24708 @item -mauto-litpools
24709 @itemx -mno-auto-litpools
24710 @opindex mauto-litpools
24711 @opindex mno-auto-litpools
24712 These options control the treatment of literal pools. The default is
24713 @option{-mno-auto-litpools}, which places literals in a separate
24714 section in the output file unless @option{-mtext-section-literals} is
24715 used. With @option{-mauto-litpools} the literals are interspersed in
24716 the text section by the assembler. Compiler does not produce explicit
24717 @code{.literal} directives and loads literals into registers with
24718 @code{MOVI} instructions instead of @code{L32R} to let the assembler
24719 do relaxation and place literals as necessary. This option allows
24720 assembler to create several literal pools per function and assemble
24721 very big functions, which may not be possible with
24722 @option{-mtext-section-literals}.
24723
24724 @item -mtarget-align
24725 @itemx -mno-target-align
24726 @opindex mtarget-align
24727 @opindex mno-target-align
24728 When this option is enabled, GCC instructs the assembler to
24729 automatically align instructions to reduce branch penalties at the
24730 expense of some code density. The assembler attempts to widen density
24731 instructions to align branch targets and the instructions following call
24732 instructions. If there are not enough preceding safe density
24733 instructions to align a target, no widening is performed. The
24734 default is @option{-mtarget-align}. These options do not affect the
24735 treatment of auto-aligned instructions like @code{LOOP}, which the
24736 assembler always aligns, either by widening density instructions or
24737 by inserting NOP instructions.
24738
24739 @item -mlongcalls
24740 @itemx -mno-longcalls
24741 @opindex mlongcalls
24742 @opindex mno-longcalls
24743 When this option is enabled, GCC instructs the assembler to translate
24744 direct calls to indirect calls unless it can determine that the target
24745 of a direct call is in the range allowed by the call instruction. This
24746 translation typically occurs for calls to functions in other source
24747 files. Specifically, the assembler translates a direct @code{CALL}
24748 instruction into an @code{L32R} followed by a @code{CALLX} instruction.
24749 The default is @option{-mno-longcalls}. This option should be used in
24750 programs where the call target can potentially be out of range. This
24751 option is implemented in the assembler, not the compiler, so the
24752 assembly code generated by GCC still shows direct call
24753 instructions---look at the disassembled object code to see the actual
24754 instructions. Note that the assembler uses an indirect call for
24755 every cross-file call, not just those that really are out of range.
24756 @end table
24757
24758 @node zSeries Options
24759 @subsection zSeries Options
24760 @cindex zSeries options
24761
24762 These are listed under @xref{S/390 and zSeries Options}.
24763
24764
24765 @c man end
24766
24767 @node Spec Files
24768 @section Specifying Subprocesses and the Switches to Pass to Them
24769 @cindex Spec Files
24770
24771 @command{gcc} is a driver program. It performs its job by invoking a
24772 sequence of other programs to do the work of compiling, assembling and
24773 linking. GCC interprets its command-line parameters and uses these to
24774 deduce which programs it should invoke, and which command-line options
24775 it ought to place on their command lines. This behavior is controlled
24776 by @dfn{spec strings}. In most cases there is one spec string for each
24777 program that GCC can invoke, but a few programs have multiple spec
24778 strings to control their behavior. The spec strings built into GCC can
24779 be overridden by using the @option{-specs=} command-line switch to specify
24780 a spec file.
24781
24782 @dfn{Spec files} are plain-text files that are used to construct spec
24783 strings. They consist of a sequence of directives separated by blank
24784 lines. The type of directive is determined by the first non-whitespace
24785 character on the line, which can be one of the following:
24786
24787 @table @code
24788 @item %@var{command}
24789 Issues a @var{command} to the spec file processor. The commands that can
24790 appear here are:
24791
24792 @table @code
24793 @item %include <@var{file}>
24794 @cindex @code{%include}
24795 Search for @var{file} and insert its text at the current point in the
24796 specs file.
24797
24798 @item %include_noerr <@var{file}>
24799 @cindex @code{%include_noerr}
24800 Just like @samp{%include}, but do not generate an error message if the include
24801 file cannot be found.
24802
24803 @item %rename @var{old_name} @var{new_name}
24804 @cindex @code{%rename}
24805 Rename the spec string @var{old_name} to @var{new_name}.
24806
24807 @end table
24808
24809 @item *[@var{spec_name}]:
24810 This tells the compiler to create, override or delete the named spec
24811 string. All lines after this directive up to the next directive or
24812 blank line are considered to be the text for the spec string. If this
24813 results in an empty string then the spec is deleted. (Or, if the
24814 spec did not exist, then nothing happens.) Otherwise, if the spec
24815 does not currently exist a new spec is created. If the spec does
24816 exist then its contents are overridden by the text of this
24817 directive, unless the first character of that text is the @samp{+}
24818 character, in which case the text is appended to the spec.
24819
24820 @item [@var{suffix}]:
24821 Creates a new @samp{[@var{suffix}] spec} pair. All lines after this directive
24822 and up to the next directive or blank line are considered to make up the
24823 spec string for the indicated suffix. When the compiler encounters an
24824 input file with the named suffix, it processes the spec string in
24825 order to work out how to compile that file. For example:
24826
24827 @smallexample
24828 .ZZ:
24829 z-compile -input %i
24830 @end smallexample
24831
24832 This says that any input file whose name ends in @samp{.ZZ} should be
24833 passed to the program @samp{z-compile}, which should be invoked with the
24834 command-line switch @option{-input} and with the result of performing the
24835 @samp{%i} substitution. (See below.)
24836
24837 As an alternative to providing a spec string, the text following a
24838 suffix directive can be one of the following:
24839
24840 @table @code
24841 @item @@@var{language}
24842 This says that the suffix is an alias for a known @var{language}. This is
24843 similar to using the @option{-x} command-line switch to GCC to specify a
24844 language explicitly. For example:
24845
24846 @smallexample
24847 .ZZ:
24848 @@c++
24849 @end smallexample
24850
24851 Says that .ZZ files are, in fact, C++ source files.
24852
24853 @item #@var{name}
24854 This causes an error messages saying:
24855
24856 @smallexample
24857 @var{name} compiler not installed on this system.
24858 @end smallexample
24859 @end table
24860
24861 GCC already has an extensive list of suffixes built into it.
24862 This directive adds an entry to the end of the list of suffixes, but
24863 since the list is searched from the end backwards, it is effectively
24864 possible to override earlier entries using this technique.
24865
24866 @end table
24867
24868 GCC has the following spec strings built into it. Spec files can
24869 override these strings or create their own. Note that individual
24870 targets can also add their own spec strings to this list.
24871
24872 @smallexample
24873 asm Options to pass to the assembler
24874 asm_final Options to pass to the assembler post-processor
24875 cpp Options to pass to the C preprocessor
24876 cc1 Options to pass to the C compiler
24877 cc1plus Options to pass to the C++ compiler
24878 endfile Object files to include at the end of the link
24879 link Options to pass to the linker
24880 lib Libraries to include on the command line to the linker
24881 libgcc Decides which GCC support library to pass to the linker
24882 linker Sets the name of the linker
24883 predefines Defines to be passed to the C preprocessor
24884 signed_char Defines to pass to CPP to say whether @code{char} is signed
24885 by default
24886 startfile Object files to include at the start of the link
24887 @end smallexample
24888
24889 Here is a small example of a spec file:
24890
24891 @smallexample
24892 %rename lib old_lib
24893
24894 *lib:
24895 --start-group -lgcc -lc -leval1 --end-group %(old_lib)
24896 @end smallexample
24897
24898 This example renames the spec called @samp{lib} to @samp{old_lib} and
24899 then overrides the previous definition of @samp{lib} with a new one.
24900 The new definition adds in some extra command-line options before
24901 including the text of the old definition.
24902
24903 @dfn{Spec strings} are a list of command-line options to be passed to their
24904 corresponding program. In addition, the spec strings can contain
24905 @samp{%}-prefixed sequences to substitute variable text or to
24906 conditionally insert text into the command line. Using these constructs
24907 it is possible to generate quite complex command lines.
24908
24909 Here is a table of all defined @samp{%}-sequences for spec
24910 strings. Note that spaces are not generated automatically around the
24911 results of expanding these sequences. Therefore you can concatenate them
24912 together or combine them with constant text in a single argument.
24913
24914 @table @code
24915 @item %%
24916 Substitute one @samp{%} into the program name or argument.
24917
24918 @item %i
24919 Substitute the name of the input file being processed.
24920
24921 @item %b
24922 Substitute the basename of the input file being processed.
24923 This is the substring up to (and not including) the last period
24924 and not including the directory.
24925
24926 @item %B
24927 This is the same as @samp{%b}, but include the file suffix (text after
24928 the last period).
24929
24930 @item %d
24931 Marks the argument containing or following the @samp{%d} as a
24932 temporary file name, so that that file is deleted if GCC exits
24933 successfully. Unlike @samp{%g}, this contributes no text to the
24934 argument.
24935
24936 @item %g@var{suffix}
24937 Substitute a file name that has suffix @var{suffix} and is chosen
24938 once per compilation, and mark the argument in the same way as
24939 @samp{%d}. To reduce exposure to denial-of-service attacks, the file
24940 name is now chosen in a way that is hard to predict even when previously
24941 chosen file names are known. For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
24942 might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}. @var{suffix} matches
24943 the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
24944 treated exactly as if @samp{%O} had been preprocessed. Previously, @samp{%g}
24945 was simply substituted with a file name chosen once per compilation,
24946 without regard to any appended suffix (which was therefore treated
24947 just like ordinary text), making such attacks more likely to succeed.
24948
24949 @item %u@var{suffix}
24950 Like @samp{%g}, but generates a new temporary file name
24951 each time it appears instead of once per compilation.
24952
24953 @item %U@var{suffix}
24954 Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
24955 new one if there is no such last file name. In the absence of any
24956 @samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
24957 the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
24958 involves the generation of two distinct file names, one
24959 for each @samp{%g.s} and another for each @samp{%U.s}. Previously, @samp{%U} was
24960 simply substituted with a file name chosen for the previous @samp{%u},
24961 without regard to any appended suffix.
24962
24963 @item %j@var{suffix}
24964 Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
24965 writable, and if @option{-save-temps} is not used;
24966 otherwise, substitute the name
24967 of a temporary file, just like @samp{%u}. This temporary file is not
24968 meant for communication between processes, but rather as a junk
24969 disposal mechanism.
24970
24971 @item %|@var{suffix}
24972 @itemx %m@var{suffix}
24973 Like @samp{%g}, except if @option{-pipe} is in effect. In that case
24974 @samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
24975 all. These are the two most common ways to instruct a program that it
24976 should read from standard input or write to standard output. If you
24977 need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
24978 construct: see for example @file{f/lang-specs.h}.
24979
24980 @item %.@var{SUFFIX}
24981 Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
24982 when it is subsequently output with @samp{%*}. @var{SUFFIX} is
24983 terminated by the next space or %.
24984
24985 @item %w
24986 Marks the argument containing or following the @samp{%w} as the
24987 designated output file of this compilation. This puts the argument
24988 into the sequence of arguments that @samp{%o} substitutes.
24989
24990 @item %o
24991 Substitutes the names of all the output files, with spaces
24992 automatically placed around them. You should write spaces
24993 around the @samp{%o} as well or the results are undefined.
24994 @samp{%o} is for use in the specs for running the linker.
24995 Input files whose names have no recognized suffix are not compiled
24996 at all, but they are included among the output files, so they are
24997 linked.
24998
24999 @item %O
25000 Substitutes the suffix for object files. Note that this is
25001 handled specially when it immediately follows @samp{%g, %u, or %U},
25002 because of the need for those to form complete file names. The
25003 handling is such that @samp{%O} is treated exactly as if it had already
25004 been substituted, except that @samp{%g, %u, and %U} do not currently
25005 support additional @var{suffix} characters following @samp{%O} as they do
25006 following, for example, @samp{.o}.
25007
25008 @item %p
25009 Substitutes the standard macro predefinitions for the
25010 current target machine. Use this when running @command{cpp}.
25011
25012 @item %P
25013 Like @samp{%p}, but puts @samp{__} before and after the name of each
25014 predefined macro, except for macros that start with @samp{__} or with
25015 @samp{_@var{L}}, where @var{L} is an uppercase letter. This is for ISO
25016 C@.
25017
25018 @item %I
25019 Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
25020 @option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
25021 @option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
25022 and @option{-imultilib} as necessary.
25023
25024 @item %s
25025 Current argument is the name of a library or startup file of some sort.
25026 Search for that file in a standard list of directories and substitute
25027 the full name found. The current working directory is included in the
25028 list of directories scanned.
25029
25030 @item %T
25031 Current argument is the name of a linker script. Search for that file
25032 in the current list of directories to scan for libraries. If the file
25033 is located insert a @option{--script} option into the command line
25034 followed by the full path name found. If the file is not found then
25035 generate an error message. Note: the current working directory is not
25036 searched.
25037
25038 @item %e@var{str}
25039 Print @var{str} as an error message. @var{str} is terminated by a newline.
25040 Use this when inconsistent options are detected.
25041
25042 @item %(@var{name})
25043 Substitute the contents of spec string @var{name} at this point.
25044
25045 @item %x@{@var{option}@}
25046 Accumulate an option for @samp{%X}.
25047
25048 @item %X
25049 Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
25050 spec string.
25051
25052 @item %Y
25053 Output the accumulated assembler options specified by @option{-Wa}.
25054
25055 @item %Z
25056 Output the accumulated preprocessor options specified by @option{-Wp}.
25057
25058 @item %a
25059 Process the @code{asm} spec. This is used to compute the
25060 switches to be passed to the assembler.
25061
25062 @item %A
25063 Process the @code{asm_final} spec. This is a spec string for
25064 passing switches to an assembler post-processor, if such a program is
25065 needed.
25066
25067 @item %l
25068 Process the @code{link} spec. This is the spec for computing the
25069 command line passed to the linker. Typically it makes use of the
25070 @samp{%L %G %S %D and %E} sequences.
25071
25072 @item %D
25073 Dump out a @option{-L} option for each directory that GCC believes might
25074 contain startup files. If the target supports multilibs then the
25075 current multilib directory is prepended to each of these paths.
25076
25077 @item %L
25078 Process the @code{lib} spec. This is a spec string for deciding which
25079 libraries are included on the command line to the linker.
25080
25081 @item %G
25082 Process the @code{libgcc} spec. This is a spec string for deciding
25083 which GCC support library is included on the command line to the linker.
25084
25085 @item %S
25086 Process the @code{startfile} spec. This is a spec for deciding which
25087 object files are the first ones passed to the linker. Typically
25088 this might be a file named @file{crt0.o}.
25089
25090 @item %E
25091 Process the @code{endfile} spec. This is a spec string that specifies
25092 the last object files that are passed to the linker.
25093
25094 @item %C
25095 Process the @code{cpp} spec. This is used to construct the arguments
25096 to be passed to the C preprocessor.
25097
25098 @item %1
25099 Process the @code{cc1} spec. This is used to construct the options to be
25100 passed to the actual C compiler (@command{cc1}).
25101
25102 @item %2
25103 Process the @code{cc1plus} spec. This is used to construct the options to be
25104 passed to the actual C++ compiler (@command{cc1plus}).
25105
25106 @item %*
25107 Substitute the variable part of a matched option. See below.
25108 Note that each comma in the substituted string is replaced by
25109 a single space.
25110
25111 @item %<@code{S}
25112 Remove all occurrences of @code{-S} from the command line. Note---this
25113 command is position dependent. @samp{%} commands in the spec string
25114 before this one see @code{-S}, @samp{%} commands in the spec string
25115 after this one do not.
25116
25117 @item %:@var{function}(@var{args})
25118 Call the named function @var{function}, passing it @var{args}.
25119 @var{args} is first processed as a nested spec string, then split
25120 into an argument vector in the usual fashion. The function returns
25121 a string which is processed as if it had appeared literally as part
25122 of the current spec.
25123
25124 The following built-in spec functions are provided:
25125
25126 @table @code
25127 @item @code{getenv}
25128 The @code{getenv} spec function takes two arguments: an environment
25129 variable name and a string. If the environment variable is not
25130 defined, a fatal error is issued. Otherwise, the return value is the
25131 value of the environment variable concatenated with the string. For
25132 example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:
25133
25134 @smallexample
25135 %:getenv(TOPDIR /include)
25136 @end smallexample
25137
25138 expands to @file{/path/to/top/include}.
25139
25140 @item @code{if-exists}
25141 The @code{if-exists} spec function takes one argument, an absolute
25142 pathname to a file. If the file exists, @code{if-exists} returns the
25143 pathname. Here is a small example of its usage:
25144
25145 @smallexample
25146 *startfile:
25147 crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
25148 @end smallexample
25149
25150 @item @code{if-exists-else}
25151 The @code{if-exists-else} spec function is similar to the @code{if-exists}
25152 spec function, except that it takes two arguments. The first argument is
25153 an absolute pathname to a file. If the file exists, @code{if-exists-else}
25154 returns the pathname. If it does not exist, it returns the second argument.
25155 This way, @code{if-exists-else} can be used to select one file or another,
25156 based on the existence of the first. Here is a small example of its usage:
25157
25158 @smallexample
25159 *startfile:
25160 crt0%O%s %:if-exists(crti%O%s) \
25161 %:if-exists-else(crtbeginT%O%s crtbegin%O%s)
25162 @end smallexample
25163
25164 @item @code{replace-outfile}
25165 The @code{replace-outfile} spec function takes two arguments. It looks for the
25166 first argument in the outfiles array and replaces it with the second argument. Here
25167 is a small example of its usage:
25168
25169 @smallexample
25170 %@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
25171 @end smallexample
25172
25173 @item @code{remove-outfile}
25174 The @code{remove-outfile} spec function takes one argument. It looks for the
25175 first argument in the outfiles array and removes it. Here is a small example
25176 its usage:
25177
25178 @smallexample
25179 %:remove-outfile(-lm)
25180 @end smallexample
25181
25182 @item @code{pass-through-libs}
25183 The @code{pass-through-libs} spec function takes any number of arguments. It
25184 finds any @option{-l} options and any non-options ending in @file{.a} (which it
25185 assumes are the names of linker input library archive files) and returns a
25186 result containing all the found arguments each prepended by
25187 @option{-plugin-opt=-pass-through=} and joined by spaces. This list is
25188 intended to be passed to the LTO linker plugin.
25189
25190 @smallexample
25191 %:pass-through-libs(%G %L %G)
25192 @end smallexample
25193
25194 @item @code{print-asm-header}
25195 The @code{print-asm-header} function takes no arguments and simply
25196 prints a banner like:
25197
25198 @smallexample
25199 Assembler options
25200 =================
25201
25202 Use "-Wa,OPTION" to pass "OPTION" to the assembler.
25203 @end smallexample
25204
25205 It is used to separate compiler options from assembler options
25206 in the @option{--target-help} output.
25207 @end table
25208
25209 @item %@{@code{S}@}
25210 Substitutes the @code{-S} switch, if that switch is given to GCC@.
25211 If that switch is not specified, this substitutes nothing. Note that
25212 the leading dash is omitted when specifying this option, and it is
25213 automatically inserted if the substitution is performed. Thus the spec
25214 string @samp{%@{foo@}} matches the command-line option @option{-foo}
25215 and outputs the command-line option @option{-foo}.
25216
25217 @item %W@{@code{S}@}
25218 Like %@{@code{S}@} but mark last argument supplied within as a file to be
25219 deleted on failure.
25220
25221 @item %@{@code{S}*@}
25222 Substitutes all the switches specified to GCC whose names start
25223 with @code{-S}, but which also take an argument. This is used for
25224 switches like @option{-o}, @option{-D}, @option{-I}, etc.
25225 GCC considers @option{-o foo} as being
25226 one switch whose name starts with @samp{o}. %@{o*@} substitutes this
25227 text, including the space. Thus two arguments are generated.
25228
25229 @item %@{@code{S}*&@code{T}*@}
25230 Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
25231 (the order of @code{S} and @code{T} in the spec is not significant).
25232 There can be any number of ampersand-separated variables; for each the
25233 wild card is optional. Useful for CPP as @samp{%@{D*&U*&A*@}}.
25234
25235 @item %@{@code{S}:@code{X}@}
25236 Substitutes @code{X}, if the @option{-S} switch is given to GCC@.
25237
25238 @item %@{!@code{S}:@code{X}@}
25239 Substitutes @code{X}, if the @option{-S} switch is @emph{not} given to GCC@.
25240
25241 @item %@{@code{S}*:@code{X}@}
25242 Substitutes @code{X} if one or more switches whose names start with
25243 @code{-S} are specified to GCC@. Normally @code{X} is substituted only
25244 once, no matter how many such switches appeared. However, if @code{%*}
25245 appears somewhere in @code{X}, then @code{X} is substituted once
25246 for each matching switch, with the @code{%*} replaced by the part of
25247 that switch matching the @code{*}.
25248
25249 If @code{%*} appears as the last part of a spec sequence then a space
25250 is added after the end of the last substitution. If there is more
25251 text in the sequence, however, then a space is not generated. This
25252 allows the @code{%*} substitution to be used as part of a larger
25253 string. For example, a spec string like this:
25254
25255 @smallexample
25256 %@{mcu=*:--script=%*/memory.ld@}
25257 @end smallexample
25258
25259 @noindent
25260 when matching an option like @option{-mcu=newchip} produces:
25261
25262 @smallexample
25263 --script=newchip/memory.ld
25264 @end smallexample
25265
25266 @item %@{.@code{S}:@code{X}@}
25267 Substitutes @code{X}, if processing a file with suffix @code{S}.
25268
25269 @item %@{!.@code{S}:@code{X}@}
25270 Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
25271
25272 @item %@{,@code{S}:@code{X}@}
25273 Substitutes @code{X}, if processing a file for language @code{S}.
25274
25275 @item %@{!,@code{S}:@code{X}@}
25276 Substitutes @code{X}, if not processing a file for language @code{S}.
25277
25278 @item %@{@code{S}|@code{P}:@code{X}@}
25279 Substitutes @code{X} if either @code{-S} or @code{-P} is given to
25280 GCC@. This may be combined with @samp{!}, @samp{.}, @samp{,}, and
25281 @code{*} sequences as well, although they have a stronger binding than
25282 the @samp{|}. If @code{%*} appears in @code{X}, all of the
25283 alternatives must be starred, and only the first matching alternative
25284 is substituted.
25285
25286 For example, a spec string like this:
25287
25288 @smallexample
25289 %@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
25290 @end smallexample
25291
25292 @noindent
25293 outputs the following command-line options from the following input
25294 command-line options:
25295
25296 @smallexample
25297 fred.c -foo -baz
25298 jim.d -bar -boggle
25299 -d fred.c -foo -baz -boggle
25300 -d jim.d -bar -baz -boggle
25301 @end smallexample
25302
25303 @item %@{S:X; T:Y; :D@}
25304
25305 If @code{S} is given to GCC, substitutes @code{X}; else if @code{T} is
25306 given to GCC, substitutes @code{Y}; else substitutes @code{D}. There can
25307 be as many clauses as you need. This may be combined with @code{.},
25308 @code{,}, @code{!}, @code{|}, and @code{*} as needed.
25309
25310
25311 @end table
25312
25313 The conditional text @code{X} in a %@{@code{S}:@code{X}@} or similar
25314 construct may contain other nested @samp{%} constructs or spaces, or
25315 even newlines. They are processed as usual, as described above.
25316 Trailing white space in @code{X} is ignored. White space may also
25317 appear anywhere on the left side of the colon in these constructs,
25318 except between @code{.} or @code{*} and the corresponding word.
25319
25320 The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
25321 handled specifically in these constructs. If another value of
25322 @option{-O} or the negated form of a @option{-f}, @option{-m}, or
25323 @option{-W} switch is found later in the command line, the earlier
25324 switch value is ignored, except with @{@code{S}*@} where @code{S} is
25325 just one letter, which passes all matching options.
25326
25327 The character @samp{|} at the beginning of the predicate text is used to
25328 indicate that a command should be piped to the following command, but
25329 only if @option{-pipe} is specified.
25330
25331 It is built into GCC which switches take arguments and which do not.
25332 (You might think it would be useful to generalize this to allow each
25333 compiler's spec to say which switches take arguments. But this cannot
25334 be done in a consistent fashion. GCC cannot even decide which input
25335 files have been specified without knowing which switches take arguments,
25336 and it must know which input files to compile in order to tell which
25337 compilers to run).
25338
25339 GCC also knows implicitly that arguments starting in @option{-l} are to be
25340 treated as compiler output files, and passed to the linker in their
25341 proper position among the other output files.
25342
25343 @node Environment Variables
25344 @section Environment Variables Affecting GCC
25345 @cindex environment variables
25346
25347 @c man begin ENVIRONMENT
25348 This section describes several environment variables that affect how GCC
25349 operates. Some of them work by specifying directories or prefixes to use
25350 when searching for various kinds of files. Some are used to specify other
25351 aspects of the compilation environment.
25352
25353 Note that you can also specify places to search using options such as
25354 @option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}). These
25355 take precedence over places specified using environment variables, which
25356 in turn take precedence over those specified by the configuration of GCC@.
25357 @xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
25358 GNU Compiler Collection (GCC) Internals}.
25359
25360 @table @env
25361 @item LANG
25362 @itemx LC_CTYPE
25363 @c @itemx LC_COLLATE
25364 @itemx LC_MESSAGES
25365 @c @itemx LC_MONETARY
25366 @c @itemx LC_NUMERIC
25367 @c @itemx LC_TIME
25368 @itemx LC_ALL
25369 @findex LANG
25370 @findex LC_CTYPE
25371 @c @findex LC_COLLATE
25372 @findex LC_MESSAGES
25373 @c @findex LC_MONETARY
25374 @c @findex LC_NUMERIC
25375 @c @findex LC_TIME
25376 @findex LC_ALL
25377 @cindex locale
25378 These environment variables control the way that GCC uses
25379 localization information which allows GCC to work with different
25380 national conventions. GCC inspects the locale categories
25381 @env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
25382 so. These locale categories can be set to any value supported by your
25383 installation. A typical value is @samp{en_GB.UTF-8} for English in the United
25384 Kingdom encoded in UTF-8.
25385
25386 The @env{LC_CTYPE} environment variable specifies character
25387 classification. GCC uses it to determine the character boundaries in
25388 a string; this is needed for some multibyte encodings that contain quote
25389 and escape characters that are otherwise interpreted as a string
25390 end or escape.
25391
25392 The @env{LC_MESSAGES} environment variable specifies the language to
25393 use in diagnostic messages.
25394
25395 If the @env{LC_ALL} environment variable is set, it overrides the value
25396 of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
25397 and @env{LC_MESSAGES} default to the value of the @env{LANG}
25398 environment variable. If none of these variables are set, GCC
25399 defaults to traditional C English behavior.
25400
25401 @item TMPDIR
25402 @findex TMPDIR
25403 If @env{TMPDIR} is set, it specifies the directory to use for temporary
25404 files. GCC uses temporary files to hold the output of one stage of
25405 compilation which is to be used as input to the next stage: for example,
25406 the output of the preprocessor, which is the input to the compiler
25407 proper.
25408
25409 @item GCC_COMPARE_DEBUG
25410 @findex GCC_COMPARE_DEBUG
25411 Setting @env{GCC_COMPARE_DEBUG} is nearly equivalent to passing
25412 @option{-fcompare-debug} to the compiler driver. See the documentation
25413 of this option for more details.
25414
25415 @item GCC_EXEC_PREFIX
25416 @findex GCC_EXEC_PREFIX
25417 If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
25418 names of the subprograms executed by the compiler. No slash is added
25419 when this prefix is combined with the name of a subprogram, but you can
25420 specify a prefix that ends with a slash if you wish.
25421
25422 If @env{GCC_EXEC_PREFIX} is not set, GCC attempts to figure out
25423 an appropriate prefix to use based on the pathname it is invoked with.
25424
25425 If GCC cannot find the subprogram using the specified prefix, it
25426 tries looking in the usual places for the subprogram.
25427
25428 The default value of @env{GCC_EXEC_PREFIX} is
25429 @file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to
25430 the installed compiler. In many cases @var{prefix} is the value
25431 of @code{prefix} when you ran the @file{configure} script.
25432
25433 Other prefixes specified with @option{-B} take precedence over this prefix.
25434
25435 This prefix is also used for finding files such as @file{crt0.o} that are
25436 used for linking.
25437
25438 In addition, the prefix is used in an unusual way in finding the
25439 directories to search for header files. For each of the standard
25440 directories whose name normally begins with @samp{/usr/local/lib/gcc}
25441 (more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
25442 replacing that beginning with the specified prefix to produce an
25443 alternate directory name. Thus, with @option{-Bfoo/}, GCC searches
25444 @file{foo/bar} just before it searches the standard directory
25445 @file{/usr/local/lib/bar}.
25446 If a standard directory begins with the configured
25447 @var{prefix} then the value of @var{prefix} is replaced by
25448 @env{GCC_EXEC_PREFIX} when looking for header files.
25449
25450 @item COMPILER_PATH
25451 @findex COMPILER_PATH
25452 The value of @env{COMPILER_PATH} is a colon-separated list of
25453 directories, much like @env{PATH}. GCC tries the directories thus
25454 specified when searching for subprograms, if it can't find the
25455 subprograms using @env{GCC_EXEC_PREFIX}.
25456
25457 @item LIBRARY_PATH
25458 @findex LIBRARY_PATH
25459 The value of @env{LIBRARY_PATH} is a colon-separated list of
25460 directories, much like @env{PATH}. When configured as a native compiler,
25461 GCC tries the directories thus specified when searching for special
25462 linker files, if it can't find them using @env{GCC_EXEC_PREFIX}. Linking
25463 using GCC also uses these directories when searching for ordinary
25464 libraries for the @option{-l} option (but directories specified with
25465 @option{-L} come first).
25466
25467 @item LANG
25468 @findex LANG
25469 @cindex locale definition
25470 This variable is used to pass locale information to the compiler. One way in
25471 which this information is used is to determine the character set to be used
25472 when character literals, string literals and comments are parsed in C and C++.
25473 When the compiler is configured to allow multibyte characters,
25474 the following values for @env{LANG} are recognized:
25475
25476 @table @samp
25477 @item C-JIS
25478 Recognize JIS characters.
25479 @item C-SJIS
25480 Recognize SJIS characters.
25481 @item C-EUCJP
25482 Recognize EUCJP characters.
25483 @end table
25484
25485 If @env{LANG} is not defined, or if it has some other value, then the
25486 compiler uses @code{mblen} and @code{mbtowc} as defined by the default locale to
25487 recognize and translate multibyte characters.
25488 @end table
25489
25490 @noindent
25491 Some additional environment variables affect the behavior of the
25492 preprocessor.
25493
25494 @include cppenv.texi
25495
25496 @c man end
25497
25498 @node Precompiled Headers
25499 @section Using Precompiled Headers
25500 @cindex precompiled headers
25501 @cindex speed of compilation
25502
25503 Often large projects have many header files that are included in every
25504 source file. The time the compiler takes to process these header files
25505 over and over again can account for nearly all of the time required to
25506 build the project. To make builds faster, GCC allows you to
25507 @dfn{precompile} a header file.
25508
25509 To create a precompiled header file, simply compile it as you would any
25510 other file, if necessary using the @option{-x} option to make the driver
25511 treat it as a C or C++ header file. You may want to use a
25512 tool like @command{make} to keep the precompiled header up-to-date when
25513 the headers it contains change.
25514
25515 A precompiled header file is searched for when @code{#include} is
25516 seen in the compilation. As it searches for the included file
25517 (@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
25518 compiler looks for a precompiled header in each directory just before it
25519 looks for the include file in that directory. The name searched for is
25520 the name specified in the @code{#include} with @samp{.gch} appended. If
25521 the precompiled header file can't be used, it is ignored.
25522
25523 For instance, if you have @code{#include "all.h"}, and you have
25524 @file{all.h.gch} in the same directory as @file{all.h}, then the
25525 precompiled header file is used if possible, and the original
25526 header is used otherwise.
25527
25528 Alternatively, you might decide to put the precompiled header file in a
25529 directory and use @option{-I} to ensure that directory is searched
25530 before (or instead of) the directory containing the original header.
25531 Then, if you want to check that the precompiled header file is always
25532 used, you can put a file of the same name as the original header in this
25533 directory containing an @code{#error} command.
25534
25535 This also works with @option{-include}. So yet another way to use
25536 precompiled headers, good for projects not designed with precompiled
25537 header files in mind, is to simply take most of the header files used by
25538 a project, include them from another header file, precompile that header
25539 file, and @option{-include} the precompiled header. If the header files
25540 have guards against multiple inclusion, they are skipped because
25541 they've already been included (in the precompiled header).
25542
25543 If you need to precompile the same header file for different
25544 languages, targets, or compiler options, you can instead make a
25545 @emph{directory} named like @file{all.h.gch}, and put each precompiled
25546 header in the directory, perhaps using @option{-o}. It doesn't matter
25547 what you call the files in the directory; every precompiled header in
25548 the directory is considered. The first precompiled header
25549 encountered in the directory that is valid for this compilation is
25550 used; they're searched in no particular order.
25551
25552 There are many other possibilities, limited only by your imagination,
25553 good sense, and the constraints of your build system.
25554
25555 A precompiled header file can be used only when these conditions apply:
25556
25557 @itemize
25558 @item
25559 Only one precompiled header can be used in a particular compilation.
25560
25561 @item
25562 A precompiled header can't be used once the first C token is seen. You
25563 can have preprocessor directives before a precompiled header; you cannot
25564 include a precompiled header from inside another header.
25565
25566 @item
25567 The precompiled header file must be produced for the same language as
25568 the current compilation. You can't use a C precompiled header for a C++
25569 compilation.
25570
25571 @item
25572 The precompiled header file must have been produced by the same compiler
25573 binary as the current compilation is using.
25574
25575 @item
25576 Any macros defined before the precompiled header is included must
25577 either be defined in the same way as when the precompiled header was
25578 generated, or must not affect the precompiled header, which usually
25579 means that they don't appear in the precompiled header at all.
25580
25581 The @option{-D} option is one way to define a macro before a
25582 precompiled header is included; using a @code{#define} can also do it.
25583 There are also some options that define macros implicitly, like
25584 @option{-O} and @option{-Wdeprecated}; the same rule applies to macros
25585 defined this way.
25586
25587 @item If debugging information is output when using the precompiled
25588 header, using @option{-g} or similar, the same kind of debugging information
25589 must have been output when building the precompiled header. However,
25590 a precompiled header built using @option{-g} can be used in a compilation
25591 when no debugging information is being output.
25592
25593 @item The same @option{-m} options must generally be used when building
25594 and using the precompiled header. @xref{Submodel Options},
25595 for any cases where this rule is relaxed.
25596
25597 @item Each of the following options must be the same when building and using
25598 the precompiled header:
25599
25600 @gccoptlist{-fexceptions}
25601
25602 @item
25603 Some other command-line options starting with @option{-f},
25604 @option{-p}, or @option{-O} must be defined in the same way as when
25605 the precompiled header was generated. At present, it's not clear
25606 which options are safe to change and which are not; the safest choice
25607 is to use exactly the same options when generating and using the
25608 precompiled header. The following are known to be safe:
25609
25610 @gccoptlist{-fmessage-length= -fpreprocessed -fsched-interblock @gol
25611 -fsched-spec -fsched-spec-load -fsched-spec-load-dangerous @gol
25612 -fsched-verbose=@var{number} -fschedule-insns -fvisibility= @gol
25613 -pedantic-errors}
25614
25615 @end itemize
25616
25617 For all of these except the last, the compiler automatically
25618 ignores the precompiled header if the conditions aren't met. If you
25619 find an option combination that doesn't work and doesn't cause the
25620 precompiled header to be ignored, please consider filing a bug report,
25621 see @ref{Bugs}.
25622
25623 If you do use differing options when generating and using the
25624 precompiled header, the actual behavior is a mixture of the
25625 behavior for the options. For instance, if you use @option{-g} to
25626 generate the precompiled header but not when using it, you may or may
25627 not get debugging information for routines in the precompiled header.
This page took 1.145537 seconds and 6 git commands to generate.