]> gcc.gnu.org Git - gcc.git/blob - gcc/ddg.c
trans-io.c (set_string): Use fold_build2 and build_int_cst instead of build2 and...
[gcc.git] / gcc / ddg.c
1 /* DDG - Data Dependence Graph implementation.
2 Copyright (C) 2004, 2005, 2006
3 Free Software Foundation, Inc.
4 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "hard-reg-set.h"
32 #include "regs.h"
33 #include "function.h"
34 #include "flags.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 #include "except.h"
38 #include "recog.h"
39 #include "sched-int.h"
40 #include "target.h"
41 #include "cfglayout.h"
42 #include "cfgloop.h"
43 #include "sbitmap.h"
44 #include "expr.h"
45 #include "bitmap.h"
46 #include "df.h"
47 #include "ddg.h"
48
49 /* A flag indicating that a ddg edge belongs to an SCC or not. */
50 enum edge_flag {NOT_IN_SCC = 0, IN_SCC};
51
52 /* Forward declarations. */
53 static void add_backarc_to_ddg (ddg_ptr, ddg_edge_ptr);
54 static void add_backarc_to_scc (ddg_scc_ptr, ddg_edge_ptr);
55 static void add_scc_to_ddg (ddg_all_sccs_ptr, ddg_scc_ptr);
56 static void create_ddg_dependence (ddg_ptr, ddg_node_ptr, ddg_node_ptr, rtx);
57 static void create_ddg_dep_no_link (ddg_ptr, ddg_node_ptr, ddg_node_ptr,
58 dep_type, dep_data_type, int);
59 static ddg_edge_ptr create_ddg_edge (ddg_node_ptr, ddg_node_ptr, dep_type,
60 dep_data_type, int, int);
61 static void add_edge_to_ddg (ddg_ptr g, ddg_edge_ptr);
62 \f
63 /* Auxiliary variable for mem_read_insn_p/mem_write_insn_p. */
64 static bool mem_ref_p;
65
66 /* Auxiliary function for mem_read_insn_p. */
67 static int
68 mark_mem_use (rtx *x, void *data ATTRIBUTE_UNUSED)
69 {
70 if (MEM_P (*x))
71 mem_ref_p = true;
72 return 0;
73 }
74
75 /* Auxiliary function for mem_read_insn_p. */
76 static void
77 mark_mem_use_1 (rtx *x, void *data)
78 {
79 for_each_rtx (x, mark_mem_use, data);
80 }
81
82 /* Returns nonzero if INSN reads from memory. */
83 static bool
84 mem_read_insn_p (rtx insn)
85 {
86 mem_ref_p = false;
87 note_uses (&PATTERN (insn), mark_mem_use_1, NULL);
88 return mem_ref_p;
89 }
90
91 static void
92 mark_mem_store (rtx loc, rtx setter ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
93 {
94 if (MEM_P (loc))
95 mem_ref_p = true;
96 }
97
98 /* Returns nonzero if INSN writes to memory. */
99 static bool
100 mem_write_insn_p (rtx insn)
101 {
102 mem_ref_p = false;
103 note_stores (PATTERN (insn), mark_mem_store, NULL);
104 return mem_ref_p;
105 }
106
107 /* Returns nonzero if X has access to memory. */
108 static bool
109 rtx_mem_access_p (rtx x)
110 {
111 int i, j;
112 const char *fmt;
113 enum rtx_code code;
114
115 if (x == 0)
116 return false;
117
118 if (MEM_P (x))
119 return true;
120
121 code = GET_CODE (x);
122 fmt = GET_RTX_FORMAT (code);
123 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
124 {
125 if (fmt[i] == 'e')
126 {
127 if (rtx_mem_access_p (XEXP (x, i)))
128 return true;
129 }
130 else if (fmt[i] == 'E')
131 for (j = 0; j < XVECLEN (x, i); j++)
132 {
133 if (rtx_mem_access_p (XVECEXP (x, i, j)))
134 return true;
135 }
136 }
137 return false;
138 }
139
140 /* Returns nonzero if INSN reads to or writes from memory. */
141 static bool
142 mem_access_insn_p (rtx insn)
143 {
144 return rtx_mem_access_p (PATTERN (insn));
145 }
146
147 /* Computes the dependence parameters (latency, distance etc.), creates
148 a ddg_edge and adds it to the given DDG. */
149 static void
150 create_ddg_dependence (ddg_ptr g, ddg_node_ptr src_node,
151 ddg_node_ptr dest_node, rtx link)
152 {
153 ddg_edge_ptr e;
154 int latency, distance = 0;
155 int interloop = (src_node->cuid >= dest_node->cuid);
156 dep_type t = TRUE_DEP;
157 dep_data_type dt = (mem_access_insn_p (src_node->insn)
158 && mem_access_insn_p (dest_node->insn) ? MEM_DEP
159 : REG_DEP);
160
161 /* For now we don't have an exact calculation of the distance,
162 so assume 1 conservatively. */
163 if (interloop)
164 distance = 1;
165
166 gcc_assert (link);
167
168 /* Note: REG_DEP_ANTI applies to MEM ANTI_DEP as well!! */
169 if (REG_NOTE_KIND (link) == REG_DEP_ANTI)
170 t = ANTI_DEP;
171 else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
172 t = OUTPUT_DEP;
173 latency = insn_cost (src_node->insn, link, dest_node->insn);
174
175 e = create_ddg_edge (src_node, dest_node, t, dt, latency, distance);
176
177 if (interloop)
178 {
179 /* Some interloop dependencies are relaxed:
180 1. Every insn is output dependent on itself; ignore such deps.
181 2. Every true/flow dependence is an anti dependence in the
182 opposite direction with distance 1; such register deps
183 will be removed by renaming if broken --- ignore them. */
184 if (!(t == OUTPUT_DEP && src_node == dest_node)
185 && !(t == ANTI_DEP && dt == REG_DEP))
186 add_backarc_to_ddg (g, e);
187 else
188 free (e);
189 }
190 else if (t == ANTI_DEP && dt == REG_DEP)
191 free (e); /* We can fix broken anti register deps using reg-moves. */
192 else
193 add_edge_to_ddg (g, e);
194 }
195
196 /* The same as the above function, but it doesn't require a link parameter. */
197 static void
198 create_ddg_dep_no_link (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to,
199 dep_type d_t, dep_data_type d_dt, int distance)
200 {
201 ddg_edge_ptr e;
202 int l;
203 rtx link = alloc_INSN_LIST (to->insn, NULL_RTX);
204
205 if (d_t == ANTI_DEP)
206 PUT_REG_NOTE_KIND (link, REG_DEP_ANTI);
207 else if (d_t == OUTPUT_DEP)
208 PUT_REG_NOTE_KIND (link, REG_DEP_OUTPUT);
209
210 l = insn_cost (from->insn, link, to->insn);
211 free_INSN_LIST_node (link);
212
213 e = create_ddg_edge (from, to, d_t, d_dt, l, distance);
214 if (distance > 0)
215 add_backarc_to_ddg (g, e);
216 else
217 add_edge_to_ddg (g, e);
218 }
219
220 \f
221 /* Given a downwards exposed register def RD, add inter-loop true dependences
222 for all its uses in the next iteration, and an output dependence to the
223 first def of the next iteration. */
224 static void
225 add_deps_for_def (ddg_ptr g, struct df *df, struct df_ref *rd)
226 {
227 int regno = DF_REF_REGNO (rd);
228 struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (df, g->bb);
229 struct df_link *r_use;
230 int use_before_def = false;
231 rtx def_insn = DF_REF_INSN (rd);
232 ddg_node_ptr src_node = get_node_of_insn (g, def_insn);
233
234 /* Create and inter-loop true dependence between RD and each of its uses
235 that is upwards exposed in RD's block. */
236 for (r_use = DF_REF_CHAIN (rd); r_use != NULL; r_use = r_use->next)
237 {
238 if (bitmap_bit_p (bb_info->gen, r_use->ref->id))
239 {
240 rtx use_insn = DF_REF_INSN (r_use->ref);
241 ddg_node_ptr dest_node = get_node_of_insn (g, use_insn);
242
243 gcc_assert (src_node && dest_node);
244
245 /* Any such upwards exposed use appears before the rd def. */
246 use_before_def = true;
247 create_ddg_dep_no_link (g, src_node, dest_node, TRUE_DEP,
248 REG_DEP, 1);
249 }
250 }
251
252 /* Create an inter-loop output dependence between RD (which is the
253 last def in its block, being downwards exposed) and the first def
254 in its block. Avoid creating a self output dependence. Avoid creating
255 an output dependence if there is a dependence path between the two defs
256 starting with a true dependence followed by an anti dependence (i.e. if
257 there is a use between the two defs. */
258 if (! use_before_def)
259 {
260 struct df_ref *def = df_bb_regno_first_def_find (df, g->bb, regno);
261 int i;
262 ddg_node_ptr dest_node;
263
264 if (!def || rd->id == def->id)
265 return;
266
267 /* Check if there are uses after RD. */
268 for (i = src_node->cuid + 1; i < g->num_nodes; i++)
269 if (df_find_use (df, g->nodes[i].insn, rd->reg))
270 return;
271
272 dest_node = get_node_of_insn (g, def->insn);
273 create_ddg_dep_no_link (g, src_node, dest_node, OUTPUT_DEP, REG_DEP, 1);
274 }
275 }
276
277 /* Given a register USE, add an inter-loop anti dependence to the first
278 (nearest BLOCK_BEGIN) def of the next iteration, unless USE is followed
279 by a def in the block. */
280 static void
281 add_deps_for_use (ddg_ptr g, struct df *df, struct df_ref *use)
282 {
283 int i;
284 int regno = DF_REF_REGNO (use);
285 struct df_ref *first_def = df_bb_regno_first_def_find (df, g->bb, regno);
286 ddg_node_ptr use_node;
287 ddg_node_ptr def_node;
288 struct df_rd_bb_info *bb_info;
289
290 bb_info = DF_RD_BB_INFO (df, g->bb);
291
292 if (!first_def)
293 return;
294
295 use_node = get_node_of_insn (g, use->insn);
296 def_node = get_node_of_insn (g, first_def->insn);
297
298 gcc_assert (use_node && def_node);
299
300 /* Make sure there are no defs after USE. */
301 for (i = use_node->cuid + 1; i < g->num_nodes; i++)
302 if (df_find_def (df, g->nodes[i].insn, use->reg))
303 return;
304 /* We must not add ANTI dep when there is an intra-loop TRUE dep in
305 the opposite direction. If the first_def reaches the USE then there is
306 such a dep. */
307 if (! bitmap_bit_p (bb_info->gen, first_def->id))
308 create_ddg_dep_no_link (g, use_node, def_node, ANTI_DEP, REG_DEP, 1);
309 }
310
311 /* Build inter-loop dependencies, by looking at DF analysis backwards. */
312 static void
313 build_inter_loop_deps (ddg_ptr g, struct df *df)
314 {
315 unsigned rd_num, u_num;
316 struct df_rd_bb_info *rd_bb_info;
317 struct df_ru_bb_info *ru_bb_info;
318 bitmap_iterator bi;
319
320 rd_bb_info = DF_RD_BB_INFO (df, g->bb);
321
322 /* Find inter-loop output and true deps by connecting downward exposed defs
323 to the first def of the BB and to upwards exposed uses. */
324 EXECUTE_IF_SET_IN_BITMAP (rd_bb_info->gen, 0, rd_num, bi)
325 {
326 struct df_ref *rd = DF_DEFS_GET (df, rd_num);
327
328 add_deps_for_def (g, df, rd);
329 }
330
331 ru_bb_info = DF_RU_BB_INFO (df, g->bb);
332
333 /* Find inter-loop anti deps. We are interested in uses of the block that
334 appear below all defs; this implies that these uses are killed. */
335 EXECUTE_IF_SET_IN_BITMAP (ru_bb_info->kill, 0, u_num, bi)
336 {
337 struct df_ref *use = DF_USES_GET (df, u_num);
338
339 /* We are interested in uses of this BB. */
340 if (BLOCK_FOR_INSN (use->insn) == g->bb)
341 add_deps_for_use (g, df,use);
342 }
343 }
344
345 /* Given two nodes, analyze their RTL insns and add inter-loop mem deps
346 to ddg G. */
347 static void
348 add_inter_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to)
349 {
350 if (mem_write_insn_p (from->insn))
351 {
352 if (mem_read_insn_p (to->insn))
353 create_ddg_dep_no_link (g, from, to, TRUE_DEP, MEM_DEP, 1);
354 else if (from->cuid != to->cuid)
355 create_ddg_dep_no_link (g, from, to, OUTPUT_DEP, MEM_DEP, 1);
356 }
357 else
358 {
359 if (mem_read_insn_p (to->insn))
360 return;
361 else if (from->cuid != to->cuid)
362 {
363 create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 1);
364 create_ddg_dep_no_link (g, to, from, TRUE_DEP, MEM_DEP, 1);
365 }
366 }
367
368 }
369
370 /* Perform intra-block Data Dependency analysis and connect the nodes in
371 the DDG. We assume the loop has a single basic block. */
372 static void
373 build_intra_loop_deps (ddg_ptr g)
374 {
375 int i;
376 /* Hold the dependency analysis state during dependency calculations. */
377 struct deps tmp_deps;
378 rtx head, tail, link;
379
380 /* Build the dependence information, using the sched_analyze function. */
381 init_deps_global ();
382 init_deps (&tmp_deps);
383
384 /* Do the intra-block data dependence analysis for the given block. */
385 get_ebb_head_tail (g->bb, g->bb, &head, &tail);
386 sched_analyze (&tmp_deps, head, tail);
387
388 /* Build intra-loop data dependencies using the scheduler dependency
389 analysis. */
390 for (i = 0; i < g->num_nodes; i++)
391 {
392 ddg_node_ptr dest_node = &g->nodes[i];
393
394 if (! INSN_P (dest_node->insn))
395 continue;
396
397 for (link = LOG_LINKS (dest_node->insn); link; link = XEXP (link, 1))
398 {
399 ddg_node_ptr src_node = get_node_of_insn (g, XEXP (link, 0));
400
401 if (!src_node)
402 continue;
403
404 add_forw_dep (dest_node->insn, link);
405 create_ddg_dependence (g, src_node, dest_node,
406 INSN_DEPEND (src_node->insn));
407 }
408
409 /* If this insn modifies memory, add an edge to all insns that access
410 memory. */
411 if (mem_access_insn_p (dest_node->insn))
412 {
413 int j;
414
415 for (j = 0; j <= i; j++)
416 {
417 ddg_node_ptr j_node = &g->nodes[j];
418 if (mem_access_insn_p (j_node->insn))
419 /* Don't bother calculating inter-loop dep if an intra-loop dep
420 already exists. */
421 if (! TEST_BIT (dest_node->successors, j))
422 add_inter_loop_mem_dep (g, dest_node, j_node);
423 }
424 }
425 }
426
427 /* Free the INSN_LISTs. */
428 finish_deps_global ();
429 free_deps (&tmp_deps);
430 }
431
432
433 /* Given a basic block, create its DDG and return a pointer to a variable
434 of ddg type that represents it.
435 Initialize the ddg structure fields to the appropriate values. */
436 ddg_ptr
437 create_ddg (basic_block bb, struct df *df, int closing_branch_deps)
438 {
439 ddg_ptr g;
440 rtx insn, first_note;
441 int i;
442 int num_nodes = 0;
443
444 g = (ddg_ptr) xcalloc (1, sizeof (struct ddg));
445
446 g->bb = bb;
447 g->closing_branch_deps = closing_branch_deps;
448
449 /* Count the number of insns in the BB. */
450 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
451 insn = NEXT_INSN (insn))
452 {
453 if (! INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE)
454 continue;
455
456 if (mem_read_insn_p (insn))
457 g->num_loads++;
458 if (mem_write_insn_p (insn))
459 g->num_stores++;
460 num_nodes++;
461 }
462
463 /* There is nothing to do for this BB. */
464 if (num_nodes <= 1)
465 {
466 free (g);
467 return NULL;
468 }
469
470 /* Allocate the nodes array, and initialize the nodes. */
471 g->num_nodes = num_nodes;
472 g->nodes = (ddg_node_ptr) xcalloc (num_nodes, sizeof (struct ddg_node));
473 g->closing_branch = NULL;
474 i = 0;
475 first_note = NULL_RTX;
476 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
477 insn = NEXT_INSN (insn))
478 {
479 if (! INSN_P (insn))
480 {
481 if (! first_note && NOTE_P (insn)
482 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK)
483 first_note = insn;
484 continue;
485 }
486 if (JUMP_P (insn))
487 {
488 gcc_assert (!g->closing_branch);
489 g->closing_branch = &g->nodes[i];
490 }
491 else if (GET_CODE (PATTERN (insn)) == USE)
492 {
493 if (! first_note)
494 first_note = insn;
495 continue;
496 }
497
498 g->nodes[i].cuid = i;
499 g->nodes[i].successors = sbitmap_alloc (num_nodes);
500 sbitmap_zero (g->nodes[i].successors);
501 g->nodes[i].predecessors = sbitmap_alloc (num_nodes);
502 sbitmap_zero (g->nodes[i].predecessors);
503 g->nodes[i].first_note = (first_note ? first_note : insn);
504 g->nodes[i++].insn = insn;
505 first_note = NULL_RTX;
506 }
507
508 /* We must have found a branch in DDG. */
509 gcc_assert (g->closing_branch);
510
511
512 /* Build the data dependency graph. */
513 build_intra_loop_deps (g);
514 build_inter_loop_deps (g, df);
515 return g;
516 }
517
518 /* Free all the memory allocated for the DDG. */
519 void
520 free_ddg (ddg_ptr g)
521 {
522 int i;
523
524 if (!g)
525 return;
526
527 for (i = 0; i < g->num_nodes; i++)
528 {
529 ddg_edge_ptr e = g->nodes[i].out;
530
531 while (e)
532 {
533 ddg_edge_ptr next = e->next_out;
534
535 free (e);
536 e = next;
537 }
538 sbitmap_free (g->nodes[i].successors);
539 sbitmap_free (g->nodes[i].predecessors);
540 }
541 if (g->num_backarcs > 0)
542 free (g->backarcs);
543 free (g->nodes);
544 free (g);
545 }
546
547 void
548 print_ddg_edge (FILE *file, ddg_edge_ptr e)
549 {
550 char dep_c;
551
552 switch (e->type) {
553 case OUTPUT_DEP :
554 dep_c = 'O';
555 break;
556 case ANTI_DEP :
557 dep_c = 'A';
558 break;
559 default:
560 dep_c = 'T';
561 }
562
563 fprintf (file, " [%d -(%c,%d,%d)-> %d] ", INSN_UID (e->src->insn),
564 dep_c, e->latency, e->distance, INSN_UID (e->dest->insn));
565 }
566
567 /* Print the DDG nodes with there in/out edges to the dump file. */
568 void
569 print_ddg (FILE *file, ddg_ptr g)
570 {
571 int i;
572
573 for (i = 0; i < g->num_nodes; i++)
574 {
575 ddg_edge_ptr e;
576
577 print_rtl_single (file, g->nodes[i].insn);
578 fprintf (file, "OUT ARCS: ");
579 for (e = g->nodes[i].out; e; e = e->next_out)
580 print_ddg_edge (file, e);
581
582 fprintf (file, "\nIN ARCS: ");
583 for (e = g->nodes[i].in; e; e = e->next_in)
584 print_ddg_edge (file, e);
585
586 fprintf (file, "\n");
587 }
588 }
589
590 /* Print the given DDG in VCG format. */
591 void
592 vcg_print_ddg (FILE *file, ddg_ptr g)
593 {
594 int src_cuid;
595
596 fprintf (file, "graph: {\n");
597 for (src_cuid = 0; src_cuid < g->num_nodes; src_cuid++)
598 {
599 ddg_edge_ptr e;
600 int src_uid = INSN_UID (g->nodes[src_cuid].insn);
601
602 fprintf (file, "node: {title: \"%d_%d\" info1: \"", src_cuid, src_uid);
603 print_rtl_single (file, g->nodes[src_cuid].insn);
604 fprintf (file, "\"}\n");
605 for (e = g->nodes[src_cuid].out; e; e = e->next_out)
606 {
607 int dst_uid = INSN_UID (e->dest->insn);
608 int dst_cuid = e->dest->cuid;
609
610 /* Give the backarcs a different color. */
611 if (e->distance > 0)
612 fprintf (file, "backedge: {color: red ");
613 else
614 fprintf (file, "edge: { ");
615
616 fprintf (file, "sourcename: \"%d_%d\" ", src_cuid, src_uid);
617 fprintf (file, "targetname: \"%d_%d\" ", dst_cuid, dst_uid);
618 fprintf (file, "label: \"%d_%d\"}\n", e->latency, e->distance);
619 }
620 }
621 fprintf (file, "}\n");
622 }
623
624 /* Create an edge and initialize it with given values. */
625 static ddg_edge_ptr
626 create_ddg_edge (ddg_node_ptr src, ddg_node_ptr dest,
627 dep_type t, dep_data_type dt, int l, int d)
628 {
629 ddg_edge_ptr e = (ddg_edge_ptr) xmalloc (sizeof (struct ddg_edge));
630
631 e->src = src;
632 e->dest = dest;
633 e->type = t;
634 e->data_type = dt;
635 e->latency = l;
636 e->distance = d;
637 e->next_in = e->next_out = NULL;
638 e->aux.info = 0;
639 return e;
640 }
641
642 /* Add the given edge to the in/out linked lists of the DDG nodes. */
643 static void
644 add_edge_to_ddg (ddg_ptr g ATTRIBUTE_UNUSED, ddg_edge_ptr e)
645 {
646 ddg_node_ptr src = e->src;
647 ddg_node_ptr dest = e->dest;
648
649 /* Should have allocated the sbitmaps. */
650 gcc_assert (src->successors && dest->predecessors);
651
652 SET_BIT (src->successors, dest->cuid);
653 SET_BIT (dest->predecessors, src->cuid);
654 e->next_in = dest->in;
655 dest->in = e;
656 e->next_out = src->out;
657 src->out = e;
658 }
659
660
661 \f
662 /* Algorithm for computing the recurrence_length of an scc. We assume at
663 for now that cycles in the data dependence graph contain a single backarc.
664 This simplifies the algorithm, and can be generalized later. */
665 static void
666 set_recurrence_length (ddg_scc_ptr scc, ddg_ptr g)
667 {
668 int j;
669 int result = -1;
670
671 for (j = 0; j < scc->num_backarcs; j++)
672 {
673 ddg_edge_ptr backarc = scc->backarcs[j];
674 int length;
675 int distance = backarc->distance;
676 ddg_node_ptr src = backarc->dest;
677 ddg_node_ptr dest = backarc->src;
678
679 length = longest_simple_path (g, src->cuid, dest->cuid, scc->nodes);
680 if (length < 0 )
681 {
682 /* fprintf (stderr, "Backarc not on simple cycle in SCC.\n"); */
683 continue;
684 }
685 length += backarc->latency;
686 result = MAX (result, (length / distance));
687 }
688 scc->recurrence_length = result;
689 }
690
691 /* Create a new SCC given the set of its nodes. Compute its recurrence_length
692 and mark edges that belong to this scc as IN_SCC. */
693 static ddg_scc_ptr
694 create_scc (ddg_ptr g, sbitmap nodes)
695 {
696 ddg_scc_ptr scc;
697 unsigned int u = 0;
698 sbitmap_iterator sbi;
699
700 scc = (ddg_scc_ptr) xmalloc (sizeof (struct ddg_scc));
701 scc->backarcs = NULL;
702 scc->num_backarcs = 0;
703 scc->nodes = sbitmap_alloc (g->num_nodes);
704 sbitmap_copy (scc->nodes, nodes);
705
706 /* Mark the backarcs that belong to this SCC. */
707 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
708 {
709 ddg_edge_ptr e;
710 ddg_node_ptr n = &g->nodes[u];
711
712 for (e = n->out; e; e = e->next_out)
713 if (TEST_BIT (nodes, e->dest->cuid))
714 {
715 e->aux.count = IN_SCC;
716 if (e->distance > 0)
717 add_backarc_to_scc (scc, e);
718 }
719 }
720
721 set_recurrence_length (scc, g);
722 return scc;
723 }
724
725 /* Cleans the memory allocation of a given SCC. */
726 static void
727 free_scc (ddg_scc_ptr scc)
728 {
729 if (!scc)
730 return;
731
732 sbitmap_free (scc->nodes);
733 if (scc->num_backarcs > 0)
734 free (scc->backarcs);
735 free (scc);
736 }
737
738
739 /* Add a given edge known to be a backarc to the given DDG. */
740 static void
741 add_backarc_to_ddg (ddg_ptr g, ddg_edge_ptr e)
742 {
743 int size = (g->num_backarcs + 1) * sizeof (ddg_edge_ptr);
744
745 add_edge_to_ddg (g, e);
746 g->backarcs = (ddg_edge_ptr *) xrealloc (g->backarcs, size);
747 g->backarcs[g->num_backarcs++] = e;
748 }
749
750 /* Add backarc to an SCC. */
751 static void
752 add_backarc_to_scc (ddg_scc_ptr scc, ddg_edge_ptr e)
753 {
754 int size = (scc->num_backarcs + 1) * sizeof (ddg_edge_ptr);
755
756 scc->backarcs = (ddg_edge_ptr *) xrealloc (scc->backarcs, size);
757 scc->backarcs[scc->num_backarcs++] = e;
758 }
759
760 /* Add the given SCC to the DDG. */
761 static void
762 add_scc_to_ddg (ddg_all_sccs_ptr g, ddg_scc_ptr scc)
763 {
764 int size = (g->num_sccs + 1) * sizeof (ddg_scc_ptr);
765
766 g->sccs = (ddg_scc_ptr *) xrealloc (g->sccs, size);
767 g->sccs[g->num_sccs++] = scc;
768 }
769
770 /* Given the instruction INSN return the node that represents it. */
771 ddg_node_ptr
772 get_node_of_insn (ddg_ptr g, rtx insn)
773 {
774 int i;
775
776 for (i = 0; i < g->num_nodes; i++)
777 if (insn == g->nodes[i].insn)
778 return &g->nodes[i];
779 return NULL;
780 }
781
782 /* Given a set OPS of nodes in the DDG, find the set of their successors
783 which are not in OPS, and set their bits in SUCC. Bits corresponding to
784 OPS are cleared from SUCC. Leaves the other bits in SUCC unchanged. */
785 void
786 find_successors (sbitmap succ, ddg_ptr g, sbitmap ops)
787 {
788 unsigned int i = 0;
789 sbitmap_iterator sbi;
790
791 EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i, sbi)
792 {
793 const sbitmap node_succ = NODE_SUCCESSORS (&g->nodes[i]);
794 sbitmap_a_or_b (succ, succ, node_succ);
795 };
796
797 /* We want those that are not in ops. */
798 sbitmap_difference (succ, succ, ops);
799 }
800
801 /* Given a set OPS of nodes in the DDG, find the set of their predecessors
802 which are not in OPS, and set their bits in PREDS. Bits corresponding to
803 OPS are cleared from PREDS. Leaves the other bits in PREDS unchanged. */
804 void
805 find_predecessors (sbitmap preds, ddg_ptr g, sbitmap ops)
806 {
807 unsigned int i = 0;
808 sbitmap_iterator sbi;
809
810 EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i, sbi)
811 {
812 const sbitmap node_preds = NODE_PREDECESSORS (&g->nodes[i]);
813 sbitmap_a_or_b (preds, preds, node_preds);
814 };
815
816 /* We want those that are not in ops. */
817 sbitmap_difference (preds, preds, ops);
818 }
819
820
821 /* Compare function to be passed to qsort to order the backarcs in descending
822 recMII order. */
823 static int
824 compare_sccs (const void *s1, const void *s2)
825 {
826 int rec_l1 = (*(ddg_scc_ptr *)s1)->recurrence_length;
827 int rec_l2 = (*(ddg_scc_ptr *)s2)->recurrence_length;
828 return ((rec_l2 > rec_l1) - (rec_l2 < rec_l1));
829
830 }
831
832 /* Order the backarcs in descending recMII order using compare_sccs. */
833 static void
834 order_sccs (ddg_all_sccs_ptr g)
835 {
836 qsort (g->sccs, g->num_sccs, sizeof (ddg_scc_ptr),
837 (int (*) (const void *, const void *)) compare_sccs);
838 }
839
840 /* Perform the Strongly Connected Components decomposing algorithm on the
841 DDG and return DDG_ALL_SCCS structure that contains them. */
842 ddg_all_sccs_ptr
843 create_ddg_all_sccs (ddg_ptr g)
844 {
845 int i;
846 int num_nodes = g->num_nodes;
847 sbitmap from = sbitmap_alloc (num_nodes);
848 sbitmap to = sbitmap_alloc (num_nodes);
849 sbitmap scc_nodes = sbitmap_alloc (num_nodes);
850 ddg_all_sccs_ptr sccs = (ddg_all_sccs_ptr)
851 xmalloc (sizeof (struct ddg_all_sccs));
852
853 sccs->ddg = g;
854 sccs->sccs = NULL;
855 sccs->num_sccs = 0;
856
857 for (i = 0; i < g->num_backarcs; i++)
858 {
859 ddg_scc_ptr scc;
860 ddg_edge_ptr backarc = g->backarcs[i];
861 ddg_node_ptr src = backarc->src;
862 ddg_node_ptr dest = backarc->dest;
863
864 /* If the backarc already belongs to an SCC, continue. */
865 if (backarc->aux.count == IN_SCC)
866 continue;
867
868 sbitmap_zero (from);
869 sbitmap_zero (to);
870 SET_BIT (from, dest->cuid);
871 SET_BIT (to, src->cuid);
872
873 if (find_nodes_on_paths (scc_nodes, g, from, to))
874 {
875 scc = create_scc (g, scc_nodes);
876 add_scc_to_ddg (sccs, scc);
877 }
878 }
879 order_sccs (sccs);
880 sbitmap_free (from);
881 sbitmap_free (to);
882 sbitmap_free (scc_nodes);
883 return sccs;
884 }
885
886 /* Frees the memory allocated for all SCCs of the DDG, but keeps the DDG. */
887 void
888 free_ddg_all_sccs (ddg_all_sccs_ptr all_sccs)
889 {
890 int i;
891
892 if (!all_sccs)
893 return;
894
895 for (i = 0; i < all_sccs->num_sccs; i++)
896 free_scc (all_sccs->sccs[i]);
897
898 free (all_sccs);
899 }
900
901 \f
902 /* Given FROM - a bitmap of source nodes - and TO - a bitmap of destination
903 nodes - find all nodes that lie on paths from FROM to TO (not excluding
904 nodes from FROM and TO). Return nonzero if nodes exist. */
905 int
906 find_nodes_on_paths (sbitmap result, ddg_ptr g, sbitmap from, sbitmap to)
907 {
908 int answer;
909 int change;
910 unsigned int u = 0;
911 int num_nodes = g->num_nodes;
912 sbitmap_iterator sbi;
913
914 sbitmap workset = sbitmap_alloc (num_nodes);
915 sbitmap reachable_from = sbitmap_alloc (num_nodes);
916 sbitmap reach_to = sbitmap_alloc (num_nodes);
917 sbitmap tmp = sbitmap_alloc (num_nodes);
918
919 sbitmap_copy (reachable_from, from);
920 sbitmap_copy (tmp, from);
921
922 change = 1;
923 while (change)
924 {
925 change = 0;
926 sbitmap_copy (workset, tmp);
927 sbitmap_zero (tmp);
928 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
929 {
930 ddg_edge_ptr e;
931 ddg_node_ptr u_node = &g->nodes[u];
932
933 for (e = u_node->out; e != (ddg_edge_ptr) 0; e = e->next_out)
934 {
935 ddg_node_ptr v_node = e->dest;
936 int v = v_node->cuid;
937
938 if (!TEST_BIT (reachable_from, v))
939 {
940 SET_BIT (reachable_from, v);
941 SET_BIT (tmp, v);
942 change = 1;
943 }
944 }
945 }
946 }
947
948 sbitmap_copy (reach_to, to);
949 sbitmap_copy (tmp, to);
950
951 change = 1;
952 while (change)
953 {
954 change = 0;
955 sbitmap_copy (workset, tmp);
956 sbitmap_zero (tmp);
957 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
958 {
959 ddg_edge_ptr e;
960 ddg_node_ptr u_node = &g->nodes[u];
961
962 for (e = u_node->in; e != (ddg_edge_ptr) 0; e = e->next_in)
963 {
964 ddg_node_ptr v_node = e->src;
965 int v = v_node->cuid;
966
967 if (!TEST_BIT (reach_to, v))
968 {
969 SET_BIT (reach_to, v);
970 SET_BIT (tmp, v);
971 change = 1;
972 }
973 }
974 }
975 }
976
977 answer = sbitmap_a_and_b_cg (result, reachable_from, reach_to);
978 sbitmap_free (workset);
979 sbitmap_free (reachable_from);
980 sbitmap_free (reach_to);
981 sbitmap_free (tmp);
982 return answer;
983 }
984
985
986 /* Updates the counts of U_NODE's successors (that belong to NODES) to be
987 at-least as large as the count of U_NODE plus the latency between them.
988 Sets a bit in TMP for each successor whose count was changed (increased).
989 Returns nonzero if any count was changed. */
990 static int
991 update_dist_to_successors (ddg_node_ptr u_node, sbitmap nodes, sbitmap tmp)
992 {
993 ddg_edge_ptr e;
994 int result = 0;
995
996 for (e = u_node->out; e; e = e->next_out)
997 {
998 ddg_node_ptr v_node = e->dest;
999 int v = v_node->cuid;
1000
1001 if (TEST_BIT (nodes, v)
1002 && (e->distance == 0)
1003 && (v_node->aux.count < u_node->aux.count + e->latency))
1004 {
1005 v_node->aux.count = u_node->aux.count + e->latency;
1006 SET_BIT (tmp, v);
1007 result = 1;
1008 }
1009 }
1010 return result;
1011 }
1012
1013
1014 /* Find the length of a longest path from SRC to DEST in G,
1015 going only through NODES, and disregarding backarcs. */
1016 int
1017 longest_simple_path (struct ddg * g, int src, int dest, sbitmap nodes)
1018 {
1019 int i;
1020 unsigned int u = 0;
1021 int change = 1;
1022 int result;
1023 int num_nodes = g->num_nodes;
1024 sbitmap workset = sbitmap_alloc (num_nodes);
1025 sbitmap tmp = sbitmap_alloc (num_nodes);
1026
1027
1028 /* Data will hold the distance of the longest path found so far from
1029 src to each node. Initialize to -1 = less than minimum. */
1030 for (i = 0; i < g->num_nodes; i++)
1031 g->nodes[i].aux.count = -1;
1032 g->nodes[src].aux.count = 0;
1033
1034 sbitmap_zero (tmp);
1035 SET_BIT (tmp, src);
1036
1037 while (change)
1038 {
1039 sbitmap_iterator sbi;
1040
1041 change = 0;
1042 sbitmap_copy (workset, tmp);
1043 sbitmap_zero (tmp);
1044 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
1045 {
1046 ddg_node_ptr u_node = &g->nodes[u];
1047
1048 change |= update_dist_to_successors (u_node, nodes, tmp);
1049 }
1050 }
1051 result = g->nodes[dest].aux.count;
1052 sbitmap_free (workset);
1053 sbitmap_free (tmp);
1054 return result;
1055 }
This page took 0.084447 seconds and 5 git commands to generate.