]> gcc.gnu.org Git - gcc.git/blob - gcc/cselib.c
8e9b3edefb0ce1a6d19b299d3d6639cdb3484e10
[gcc.git] / gcc / cselib.c
1 /* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "flags.h"
32 #include "real.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "function.h"
36 #include "expr.h"
37 #include "toplev.h"
38 #include "output.h"
39 #include "ggc.h"
40 #include "hashtab.h"
41 #include "cselib.h"
42 #include "params.h"
43 #include "alloc-pool.h"
44
45 static int entry_and_rtx_equal_p (const void *, const void *);
46 static hashval_t get_value_hash (const void *);
47 static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
48 static struct elt_loc_list *new_elt_loc_list (struct elt_loc_list *, rtx);
49 static void unchain_one_value (cselib_val *);
50 static void unchain_one_elt_list (struct elt_list **);
51 static void unchain_one_elt_loc_list (struct elt_loc_list **);
52 static void clear_table (void);
53 static int discard_useless_locs (void **, void *);
54 static int discard_useless_values (void **, void *);
55 static void remove_useless_values (void);
56 static rtx wrap_constant (enum machine_mode, rtx);
57 static unsigned int hash_rtx (rtx, enum machine_mode, int);
58 static cselib_val *new_cselib_val (unsigned int, enum machine_mode);
59 static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
60 static cselib_val *cselib_lookup_mem (rtx, int);
61 static void cselib_invalidate_regno (unsigned int, enum machine_mode);
62 static void cselib_invalidate_mem (rtx);
63 static void cselib_invalidate_rtx (rtx, rtx, void *);
64 static void cselib_record_set (rtx, cselib_val *, cselib_val *);
65 static void cselib_record_sets (rtx);
66
67 /* There are three ways in which cselib can look up an rtx:
68 - for a REG, the reg_values table (which is indexed by regno) is used
69 - for a MEM, we recursively look up its address and then follow the
70 addr_list of that value
71 - for everything else, we compute a hash value and go through the hash
72 table. Since different rtx's can still have the same hash value,
73 this involves walking the table entries for a given value and comparing
74 the locations of the entries with the rtx we are looking up. */
75
76 /* A table that enables us to look up elts by their value. */
77 static htab_t hash_table;
78
79 /* This is a global so we don't have to pass this through every function.
80 It is used in new_elt_loc_list to set SETTING_INSN. */
81 static rtx cselib_current_insn;
82 static bool cselib_current_insn_in_libcall;
83
84 /* Every new unknown value gets a unique number. */
85 static unsigned int next_unknown_value;
86
87 /* The number of registers we had when the varrays were last resized. */
88 static unsigned int cselib_nregs;
89
90 /* Count values without known locations. Whenever this grows too big, we
91 remove these useless values from the table. */
92 static int n_useless_values;
93
94 /* Number of useless values before we remove them from the hash table. */
95 #define MAX_USELESS_VALUES 32
96
97 /* This table maps from register number to values. It does not
98 contain pointers to cselib_val structures, but rather elt_lists.
99 The purpose is to be able to refer to the same register in
100 different modes. The first element of the list defines the mode in
101 which the register was set; if the mode is unknown or the value is
102 no longer valid in that mode, ELT will be NULL for the first
103 element. */
104 struct elt_list **reg_values;
105 unsigned int reg_values_size;
106 #define REG_VALUES(i) reg_values[i]
107
108 /* The largest number of hard regs used by any entry added to the
109 REG_VALUES table. Cleared on each clear_table() invocation. */
110 static unsigned int max_value_regs;
111
112 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
113 in clear_table() for fast emptying. */
114 static unsigned int *used_regs;
115 static unsigned int n_used_regs;
116
117 /* We pass this to cselib_invalidate_mem to invalidate all of
118 memory for a non-const call instruction. */
119 static GTY(()) rtx callmem;
120
121 /* Set by discard_useless_locs if it deleted the last location of any
122 value. */
123 static int values_became_useless;
124
125 /* Used as stop element of the containing_mem list so we can check
126 presence in the list by checking the next pointer. */
127 static cselib_val dummy_val;
128
129 /* Used to list all values that contain memory reference.
130 May or may not contain the useless values - the list is compacted
131 each time memory is invalidated. */
132 static cselib_val *first_containing_mem = &dummy_val;
133 static alloc_pool elt_loc_list_pool, elt_list_pool, cselib_val_pool, value_pool;
134 \f
135
136 /* Allocate a struct elt_list and fill in its two elements with the
137 arguments. */
138
139 static inline struct elt_list *
140 new_elt_list (struct elt_list *next, cselib_val *elt)
141 {
142 struct elt_list *el;
143 el = pool_alloc (elt_list_pool);
144 el->next = next;
145 el->elt = elt;
146 return el;
147 }
148
149 /* Allocate a struct elt_loc_list and fill in its two elements with the
150 arguments. */
151
152 static inline struct elt_loc_list *
153 new_elt_loc_list (struct elt_loc_list *next, rtx loc)
154 {
155 struct elt_loc_list *el;
156 el = pool_alloc (elt_loc_list_pool);
157 el->next = next;
158 el->loc = loc;
159 el->canon_loc = NULL;
160 el->setting_insn = cselib_current_insn;
161 el->in_libcall = cselib_current_insn_in_libcall;
162 return el;
163 }
164
165 /* The elt_list at *PL is no longer needed. Unchain it and free its
166 storage. */
167
168 static inline void
169 unchain_one_elt_list (struct elt_list **pl)
170 {
171 struct elt_list *l = *pl;
172
173 *pl = l->next;
174 pool_free (elt_list_pool, l);
175 }
176
177 /* Likewise for elt_loc_lists. */
178
179 static void
180 unchain_one_elt_loc_list (struct elt_loc_list **pl)
181 {
182 struct elt_loc_list *l = *pl;
183
184 *pl = l->next;
185 pool_free (elt_loc_list_pool, l);
186 }
187
188 /* Likewise for cselib_vals. This also frees the addr_list associated with
189 V. */
190
191 static void
192 unchain_one_value (cselib_val *v)
193 {
194 while (v->addr_list)
195 unchain_one_elt_list (&v->addr_list);
196
197 pool_free (cselib_val_pool, v);
198 }
199
200 /* Remove all entries from the hash table. Also used during
201 initialization. If CLEAR_ALL isn't set, then only clear the entries
202 which are known to have been used. */
203
204 static void
205 clear_table (void)
206 {
207 unsigned int i;
208
209 for (i = 0; i < n_used_regs; i++)
210 REG_VALUES (used_regs[i]) = 0;
211
212 max_value_regs = 0;
213
214 n_used_regs = 0;
215
216 htab_empty (hash_table);
217
218 n_useless_values = 0;
219
220 next_unknown_value = 0;
221
222 first_containing_mem = &dummy_val;
223 }
224
225 /* The equality test for our hash table. The first argument ENTRY is a table
226 element (i.e. a cselib_val), while the second arg X is an rtx. We know
227 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
228 CONST of an appropriate mode. */
229
230 static int
231 entry_and_rtx_equal_p (const void *entry, const void *x_arg)
232 {
233 struct elt_loc_list *l;
234 const cselib_val *v = (const cselib_val *) entry;
235 rtx x = (rtx) x_arg;
236 enum machine_mode mode = GET_MODE (x);
237
238 if (GET_CODE (x) == CONST_INT
239 || (mode == VOIDmode && GET_CODE (x) == CONST_DOUBLE))
240 abort ();
241 if (mode != GET_MODE (v->u.val_rtx))
242 return 0;
243
244 /* Unwrap X if necessary. */
245 if (GET_CODE (x) == CONST
246 && (GET_CODE (XEXP (x, 0)) == CONST_INT
247 || GET_CODE (XEXP (x, 0)) == CONST_DOUBLE))
248 x = XEXP (x, 0);
249
250 /* We don't guarantee that distinct rtx's have different hash values,
251 so we need to do a comparison. */
252 for (l = v->locs; l; l = l->next)
253 if (rtx_equal_for_cselib_p (l->loc, x))
254 return 1;
255
256 return 0;
257 }
258
259 /* The hash function for our hash table. The value is always computed with
260 hash_rtx when adding an element; this function just extracts the hash
261 value from a cselib_val structure. */
262
263 static hashval_t
264 get_value_hash (const void *entry)
265 {
266 const cselib_val *v = (const cselib_val *) entry;
267 return v->value;
268 }
269
270 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
271 only return true for values which point to a cselib_val whose value
272 element has been set to zero, which implies the cselib_val will be
273 removed. */
274
275 int
276 references_value_p (rtx x, int only_useless)
277 {
278 enum rtx_code code = GET_CODE (x);
279 const char *fmt = GET_RTX_FORMAT (code);
280 int i, j;
281
282 if (GET_CODE (x) == VALUE
283 && (! only_useless || CSELIB_VAL_PTR (x)->locs == 0))
284 return 1;
285
286 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
287 {
288 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
289 return 1;
290 else if (fmt[i] == 'E')
291 for (j = 0; j < XVECLEN (x, i); j++)
292 if (references_value_p (XVECEXP (x, i, j), only_useless))
293 return 1;
294 }
295
296 return 0;
297 }
298
299 /* For all locations found in X, delete locations that reference useless
300 values (i.e. values without any location). Called through
301 htab_traverse. */
302
303 static int
304 discard_useless_locs (void **x, void *info ATTRIBUTE_UNUSED)
305 {
306 cselib_val *v = (cselib_val *)*x;
307 struct elt_loc_list **p = &v->locs;
308 int had_locs = v->locs != 0;
309
310 while (*p)
311 {
312 if (references_value_p ((*p)->loc, 1))
313 unchain_one_elt_loc_list (p);
314 else
315 p = &(*p)->next;
316 }
317
318 if (had_locs && v->locs == 0)
319 {
320 n_useless_values++;
321 values_became_useless = 1;
322 }
323 return 1;
324 }
325
326 /* If X is a value with no locations, remove it from the hashtable. */
327
328 static int
329 discard_useless_values (void **x, void *info ATTRIBUTE_UNUSED)
330 {
331 cselib_val *v = (cselib_val *)*x;
332
333 if (v->locs == 0)
334 {
335 CSELIB_VAL_PTR (v->u.val_rtx) = NULL;
336 htab_clear_slot (hash_table, x);
337 unchain_one_value (v);
338 n_useless_values--;
339 }
340
341 return 1;
342 }
343
344 /* Clean out useless values (i.e. those which no longer have locations
345 associated with them) from the hash table. */
346
347 static void
348 remove_useless_values (void)
349 {
350 cselib_val **p, *v;
351 /* First pass: eliminate locations that reference the value. That in
352 turn can make more values useless. */
353 do
354 {
355 values_became_useless = 0;
356 htab_traverse (hash_table, discard_useless_locs, 0);
357 }
358 while (values_became_useless);
359
360 /* Second pass: actually remove the values. */
361
362 p = &first_containing_mem;
363 for (v = *p; v != &dummy_val; v = v->next_containing_mem)
364 if (v->locs)
365 {
366 *p = v;
367 p = &(*p)->next_containing_mem;
368 }
369 *p = &dummy_val;
370
371 htab_traverse (hash_table, discard_useless_values, 0);
372
373 if (n_useless_values != 0)
374 abort ();
375 }
376
377 /* Return the mode in which a register was last set. If X is not a
378 register, return its mode. If the mode in which the register was
379 set is not known, or the value was already clobbered, return
380 VOIDmode. */
381
382 enum machine_mode
383 cselib_reg_set_mode (rtx x)
384 {
385 if (GET_CODE (x) != REG)
386 return GET_MODE (x);
387
388 if (REG_VALUES (REGNO (x)) == NULL
389 || REG_VALUES (REGNO (x))->elt == NULL)
390 return VOIDmode;
391
392 return GET_MODE (REG_VALUES (REGNO (x))->elt->u.val_rtx);
393 }
394
395 /* Return nonzero if we can prove that X and Y contain the same value, taking
396 our gathered information into account. */
397
398 int
399 rtx_equal_for_cselib_p (rtx x, rtx y)
400 {
401 enum rtx_code code;
402 const char *fmt;
403 int i;
404
405 if (GET_CODE (x) == REG || GET_CODE (x) == MEM)
406 {
407 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0);
408
409 if (e)
410 x = e->u.val_rtx;
411 }
412
413 if (GET_CODE (y) == REG || GET_CODE (y) == MEM)
414 {
415 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0);
416
417 if (e)
418 y = e->u.val_rtx;
419 }
420
421 if (x == y)
422 return 1;
423
424 if (GET_CODE (x) == VALUE && GET_CODE (y) == VALUE)
425 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
426
427 if (GET_CODE (x) == VALUE)
428 {
429 cselib_val *e = CSELIB_VAL_PTR (x);
430 struct elt_loc_list *l;
431
432 for (l = e->locs; l; l = l->next)
433 {
434 rtx t = l->loc;
435
436 /* Avoid infinite recursion. */
437 if (GET_CODE (t) == REG || GET_CODE (t) == MEM)
438 continue;
439 else if (rtx_equal_for_cselib_p (t, y))
440 return 1;
441 }
442
443 return 0;
444 }
445
446 if (GET_CODE (y) == VALUE)
447 {
448 cselib_val *e = CSELIB_VAL_PTR (y);
449 struct elt_loc_list *l;
450
451 for (l = e->locs; l; l = l->next)
452 {
453 rtx t = l->loc;
454
455 if (GET_CODE (t) == REG || GET_CODE (t) == MEM)
456 continue;
457 else if (rtx_equal_for_cselib_p (x, t))
458 return 1;
459 }
460
461 return 0;
462 }
463
464 if (GET_CODE (x) != GET_CODE (y) || GET_MODE (x) != GET_MODE (y))
465 return 0;
466
467 /* This won't be handled correctly by the code below. */
468 if (GET_CODE (x) == LABEL_REF)
469 return XEXP (x, 0) == XEXP (y, 0);
470
471 code = GET_CODE (x);
472 fmt = GET_RTX_FORMAT (code);
473
474 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
475 {
476 int j;
477
478 switch (fmt[i])
479 {
480 case 'w':
481 if (XWINT (x, i) != XWINT (y, i))
482 return 0;
483 break;
484
485 case 'n':
486 case 'i':
487 if (XINT (x, i) != XINT (y, i))
488 return 0;
489 break;
490
491 case 'V':
492 case 'E':
493 /* Two vectors must have the same length. */
494 if (XVECLEN (x, i) != XVECLEN (y, i))
495 return 0;
496
497 /* And the corresponding elements must match. */
498 for (j = 0; j < XVECLEN (x, i); j++)
499 if (! rtx_equal_for_cselib_p (XVECEXP (x, i, j),
500 XVECEXP (y, i, j)))
501 return 0;
502 break;
503
504 case 'e':
505 if (! rtx_equal_for_cselib_p (XEXP (x, i), XEXP (y, i)))
506 return 0;
507 break;
508
509 case 'S':
510 case 's':
511 if (strcmp (XSTR (x, i), XSTR (y, i)))
512 return 0;
513 break;
514
515 case 'u':
516 /* These are just backpointers, so they don't matter. */
517 break;
518
519 case '0':
520 case 't':
521 break;
522
523 /* It is believed that rtx's at this level will never
524 contain anything but integers and other rtx's,
525 except for within LABEL_REFs and SYMBOL_REFs. */
526 default:
527 abort ();
528 }
529 }
530 return 1;
531 }
532
533 /* We need to pass down the mode of constants through the hash table
534 functions. For that purpose, wrap them in a CONST of the appropriate
535 mode. */
536 static rtx
537 wrap_constant (enum machine_mode mode, rtx x)
538 {
539 if (GET_CODE (x) != CONST_INT
540 && (GET_CODE (x) != CONST_DOUBLE || GET_MODE (x) != VOIDmode))
541 return x;
542 if (mode == VOIDmode)
543 abort ();
544 return gen_rtx_CONST (mode, x);
545 }
546
547 /* Hash an rtx. Return 0 if we couldn't hash the rtx.
548 For registers and memory locations, we look up their cselib_val structure
549 and return its VALUE element.
550 Possible reasons for return 0 are: the object is volatile, or we couldn't
551 find a register or memory location in the table and CREATE is zero. If
552 CREATE is nonzero, table elts are created for regs and mem.
553 MODE is used in hashing for CONST_INTs only;
554 otherwise the mode of X is used. */
555
556 static unsigned int
557 hash_rtx (rtx x, enum machine_mode mode, int create)
558 {
559 cselib_val *e;
560 int i, j;
561 enum rtx_code code;
562 const char *fmt;
563 unsigned int hash = 0;
564
565 code = GET_CODE (x);
566 hash += (unsigned) code + (unsigned) GET_MODE (x);
567
568 switch (code)
569 {
570 case MEM:
571 case REG:
572 e = cselib_lookup (x, GET_MODE (x), create);
573 if (! e)
574 return 0;
575
576 return e->value;
577
578 case CONST_INT:
579 hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + INTVAL (x);
580 return hash ? hash : (unsigned int) CONST_INT;
581
582 case CONST_DOUBLE:
583 /* This is like the general case, except that it only counts
584 the integers representing the constant. */
585 hash += (unsigned) code + (unsigned) GET_MODE (x);
586 if (GET_MODE (x) != VOIDmode)
587 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
588 else
589 hash += ((unsigned) CONST_DOUBLE_LOW (x)
590 + (unsigned) CONST_DOUBLE_HIGH (x));
591 return hash ? hash : (unsigned int) CONST_DOUBLE;
592
593 case CONST_VECTOR:
594 {
595 int units;
596 rtx elt;
597
598 units = CONST_VECTOR_NUNITS (x);
599
600 for (i = 0; i < units; ++i)
601 {
602 elt = CONST_VECTOR_ELT (x, i);
603 hash += hash_rtx (elt, GET_MODE (elt), 0);
604 }
605
606 return hash;
607 }
608
609 /* Assume there is only one rtx object for any given label. */
610 case LABEL_REF:
611 hash
612 += ((unsigned) LABEL_REF << 7) + (unsigned long) XEXP (x, 0);
613 return hash ? hash : (unsigned int) LABEL_REF;
614
615 case SYMBOL_REF:
616 hash
617 += ((unsigned) SYMBOL_REF << 7) + (unsigned long) XSTR (x, 0);
618 return hash ? hash : (unsigned int) SYMBOL_REF;
619
620 case PRE_DEC:
621 case PRE_INC:
622 case POST_DEC:
623 case POST_INC:
624 case POST_MODIFY:
625 case PRE_MODIFY:
626 case PC:
627 case CC0:
628 case CALL:
629 case UNSPEC_VOLATILE:
630 return 0;
631
632 case ASM_OPERANDS:
633 if (MEM_VOLATILE_P (x))
634 return 0;
635
636 break;
637
638 default:
639 break;
640 }
641
642 i = GET_RTX_LENGTH (code) - 1;
643 fmt = GET_RTX_FORMAT (code);
644 for (; i >= 0; i--)
645 {
646 if (fmt[i] == 'e')
647 {
648 rtx tem = XEXP (x, i);
649 unsigned int tem_hash = hash_rtx (tem, 0, create);
650
651 if (tem_hash == 0)
652 return 0;
653
654 hash += tem_hash;
655 }
656 else if (fmt[i] == 'E')
657 for (j = 0; j < XVECLEN (x, i); j++)
658 {
659 unsigned int tem_hash = hash_rtx (XVECEXP (x, i, j), 0, create);
660
661 if (tem_hash == 0)
662 return 0;
663
664 hash += tem_hash;
665 }
666 else if (fmt[i] == 's')
667 {
668 const unsigned char *p = (const unsigned char *) XSTR (x, i);
669
670 if (p)
671 while (*p)
672 hash += *p++;
673 }
674 else if (fmt[i] == 'i')
675 hash += XINT (x, i);
676 else if (fmt[i] == '0' || fmt[i] == 't')
677 /* unused */;
678 else
679 abort ();
680 }
681
682 return hash ? hash : 1 + (unsigned int) GET_CODE (x);
683 }
684
685 /* Create a new value structure for VALUE and initialize it. The mode of the
686 value is MODE. */
687
688 static inline cselib_val *
689 new_cselib_val (unsigned int value, enum machine_mode mode)
690 {
691 cselib_val *e = pool_alloc (cselib_val_pool);
692
693 #ifdef ENABLE_CHECKING
694 if (value == 0)
695 abort ();
696 #endif
697
698 e->value = value;
699 /* We use custom method to allocate this RTL construct because it accounts
700 about 8% of overall memory usage. */
701 e->u.val_rtx = pool_alloc (value_pool);
702 memset (e->u.val_rtx, 0, RTX_HDR_SIZE);
703 PUT_CODE (e->u.val_rtx, VALUE);
704 PUT_MODE (e->u.val_rtx, mode);
705 CSELIB_VAL_PTR (e->u.val_rtx) = e;
706 e->addr_list = 0;
707 e->locs = 0;
708 e->next_containing_mem = 0;
709 return e;
710 }
711
712 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
713 contains the data at this address. X is a MEM that represents the
714 value. Update the two value structures to represent this situation. */
715
716 static void
717 add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
718 {
719 struct elt_loc_list *l;
720
721 /* Avoid duplicates. */
722 for (l = mem_elt->locs; l; l = l->next)
723 if (GET_CODE (l->loc) == MEM
724 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt)
725 return;
726
727 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
728 mem_elt->locs
729 = new_elt_loc_list (mem_elt->locs,
730 replace_equiv_address_nv (x, addr_elt->u.val_rtx));
731 if (mem_elt->next_containing_mem == NULL)
732 {
733 mem_elt->next_containing_mem = first_containing_mem;
734 first_containing_mem = mem_elt;
735 }
736 }
737
738 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
739 If CREATE, make a new one if we haven't seen it before. */
740
741 static cselib_val *
742 cselib_lookup_mem (rtx x, int create)
743 {
744 enum machine_mode mode = GET_MODE (x);
745 void **slot;
746 cselib_val *addr;
747 cselib_val *mem_elt;
748 struct elt_list *l;
749
750 if (MEM_VOLATILE_P (x) || mode == BLKmode
751 || (FLOAT_MODE_P (mode) && flag_float_store))
752 return 0;
753
754 /* Look up the value for the address. */
755 addr = cselib_lookup (XEXP (x, 0), mode, create);
756 if (! addr)
757 return 0;
758
759 /* Find a value that describes a value of our mode at that address. */
760 for (l = addr->addr_list; l; l = l->next)
761 if (GET_MODE (l->elt->u.val_rtx) == mode)
762 return l->elt;
763
764 if (! create)
765 return 0;
766
767 mem_elt = new_cselib_val (++next_unknown_value, mode);
768 add_mem_for_addr (addr, mem_elt, x);
769 slot = htab_find_slot_with_hash (hash_table, wrap_constant (mode, x),
770 mem_elt->value, INSERT);
771 *slot = mem_elt;
772 return mem_elt;
773 }
774
775 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
776 with VALUE expressions. This way, it becomes independent of changes
777 to registers and memory.
778 X isn't actually modified; if modifications are needed, new rtl is
779 allocated. However, the return value can share rtl with X. */
780
781 rtx
782 cselib_subst_to_values (rtx x)
783 {
784 enum rtx_code code = GET_CODE (x);
785 const char *fmt = GET_RTX_FORMAT (code);
786 cselib_val *e;
787 struct elt_list *l;
788 rtx copy = x;
789 int i;
790
791 switch (code)
792 {
793 case REG:
794 l = REG_VALUES (REGNO (x));
795 if (l && l->elt == NULL)
796 l = l->next;
797 for (; l; l = l->next)
798 if (GET_MODE (l->elt->u.val_rtx) == GET_MODE (x))
799 return l->elt->u.val_rtx;
800
801 abort ();
802
803 case MEM:
804 e = cselib_lookup_mem (x, 0);
805 if (! e)
806 {
807 /* This happens for autoincrements. Assign a value that doesn't
808 match any other. */
809 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
810 }
811 return e->u.val_rtx;
812
813 case CONST_DOUBLE:
814 case CONST_VECTOR:
815 case CONST_INT:
816 return x;
817
818 case POST_INC:
819 case PRE_INC:
820 case POST_DEC:
821 case PRE_DEC:
822 case POST_MODIFY:
823 case PRE_MODIFY:
824 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
825 return e->u.val_rtx;
826
827 default:
828 break;
829 }
830
831 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
832 {
833 if (fmt[i] == 'e')
834 {
835 rtx t = cselib_subst_to_values (XEXP (x, i));
836
837 if (t != XEXP (x, i) && x == copy)
838 copy = shallow_copy_rtx (x);
839
840 XEXP (copy, i) = t;
841 }
842 else if (fmt[i] == 'E')
843 {
844 int j, k;
845
846 for (j = 0; j < XVECLEN (x, i); j++)
847 {
848 rtx t = cselib_subst_to_values (XVECEXP (x, i, j));
849
850 if (t != XVECEXP (x, i, j) && XVEC (x, i) == XVEC (copy, i))
851 {
852 if (x == copy)
853 copy = shallow_copy_rtx (x);
854
855 XVEC (copy, i) = rtvec_alloc (XVECLEN (x, i));
856 for (k = 0; k < j; k++)
857 XVECEXP (copy, i, k) = XVECEXP (x, i, k);
858 }
859
860 XVECEXP (copy, i, j) = t;
861 }
862 }
863 }
864
865 return copy;
866 }
867
868 /* Look up the rtl expression X in our tables and return the value it has.
869 If CREATE is zero, we return NULL if we don't know the value. Otherwise,
870 we create a new one if possible, using mode MODE if X doesn't have a mode
871 (i.e. because it's a constant). */
872
873 cselib_val *
874 cselib_lookup (rtx x, enum machine_mode mode, int create)
875 {
876 void **slot;
877 cselib_val *e;
878 unsigned int hashval;
879
880 if (GET_MODE (x) != VOIDmode)
881 mode = GET_MODE (x);
882
883 if (GET_CODE (x) == VALUE)
884 return CSELIB_VAL_PTR (x);
885
886 if (GET_CODE (x) == REG)
887 {
888 struct elt_list *l;
889 unsigned int i = REGNO (x);
890
891 l = REG_VALUES (i);
892 if (l && l->elt == NULL)
893 l = l->next;
894 for (; l; l = l->next)
895 if (mode == GET_MODE (l->elt->u.val_rtx))
896 return l->elt;
897
898 if (! create)
899 return 0;
900
901 if (i < FIRST_PSEUDO_REGISTER)
902 {
903 unsigned int n = hard_regno_nregs[i][mode];
904
905 if (n > max_value_regs)
906 max_value_regs = n;
907 }
908
909 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
910 e->locs = new_elt_loc_list (e->locs, x);
911 if (REG_VALUES (i) == 0)
912 {
913 /* Maintain the invariant that the first entry of
914 REG_VALUES, if present, must be the value used to set the
915 register, or NULL. */
916 used_regs[n_used_regs++] = i;
917 REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
918 }
919 REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
920 slot = htab_find_slot_with_hash (hash_table, x, e->value, INSERT);
921 *slot = e;
922 return e;
923 }
924
925 if (GET_CODE (x) == MEM)
926 return cselib_lookup_mem (x, create);
927
928 hashval = hash_rtx (x, mode, create);
929 /* Can't even create if hashing is not possible. */
930 if (! hashval)
931 return 0;
932
933 slot = htab_find_slot_with_hash (hash_table, wrap_constant (mode, x),
934 hashval, create ? INSERT : NO_INSERT);
935 if (slot == 0)
936 return 0;
937
938 e = (cselib_val *) *slot;
939 if (e)
940 return e;
941
942 e = new_cselib_val (hashval, mode);
943
944 /* We have to fill the slot before calling cselib_subst_to_values:
945 the hash table is inconsistent until we do so, and
946 cselib_subst_to_values will need to do lookups. */
947 *slot = (void *) e;
948 e->locs = new_elt_loc_list (e->locs, cselib_subst_to_values (x));
949 return e;
950 }
951
952 /* Invalidate any entries in reg_values that overlap REGNO. This is called
953 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
954 is used to determine how many hard registers are being changed. If MODE
955 is VOIDmode, then only REGNO is being changed; this is used when
956 invalidating call clobbered registers across a call. */
957
958 static void
959 cselib_invalidate_regno (unsigned int regno, enum machine_mode mode)
960 {
961 unsigned int endregno;
962 unsigned int i;
963
964 /* If we see pseudos after reload, something is _wrong_. */
965 if (reload_completed && regno >= FIRST_PSEUDO_REGISTER
966 && reg_renumber[regno] >= 0)
967 abort ();
968
969 /* Determine the range of registers that must be invalidated. For
970 pseudos, only REGNO is affected. For hard regs, we must take MODE
971 into account, and we must also invalidate lower register numbers
972 if they contain values that overlap REGNO. */
973 if (regno < FIRST_PSEUDO_REGISTER)
974 {
975 if (mode == VOIDmode)
976 abort ();
977
978 if (regno < max_value_regs)
979 i = 0;
980 else
981 i = regno - max_value_regs;
982
983 endregno = regno + hard_regno_nregs[regno][mode];
984 }
985 else
986 {
987 i = regno;
988 endregno = regno + 1;
989 }
990
991 for (; i < endregno; i++)
992 {
993 struct elt_list **l = &REG_VALUES (i);
994
995 /* Go through all known values for this reg; if it overlaps the range
996 we're invalidating, remove the value. */
997 while (*l)
998 {
999 cselib_val *v = (*l)->elt;
1000 struct elt_loc_list **p;
1001 unsigned int this_last = i;
1002
1003 if (i < FIRST_PSEUDO_REGISTER && v != NULL)
1004 this_last += hard_regno_nregs[i][GET_MODE (v->u.val_rtx)] - 1;
1005
1006 if (this_last < regno || v == NULL)
1007 {
1008 l = &(*l)->next;
1009 continue;
1010 }
1011
1012 /* We have an overlap. */
1013 if (*l == REG_VALUES (i))
1014 {
1015 /* Maintain the invariant that the first entry of
1016 REG_VALUES, if present, must be the value used to set
1017 the register, or NULL. This is also nice because
1018 then we won't push the same regno onto user_regs
1019 multiple times. */
1020 (*l)->elt = NULL;
1021 l = &(*l)->next;
1022 }
1023 else
1024 unchain_one_elt_list (l);
1025
1026 /* Now, we clear the mapping from value to reg. It must exist, so
1027 this code will crash intentionally if it doesn't. */
1028 for (p = &v->locs; ; p = &(*p)->next)
1029 {
1030 rtx x = (*p)->loc;
1031
1032 if (GET_CODE (x) == REG && REGNO (x) == i)
1033 {
1034 unchain_one_elt_loc_list (p);
1035 break;
1036 }
1037 }
1038 if (v->locs == 0)
1039 n_useless_values++;
1040 }
1041 }
1042 }
1043 \f
1044 /* Return 1 if X has a value that can vary even between two
1045 executions of the program. 0 means X can be compared reliably
1046 against certain constants or near-constants. */
1047
1048 static int
1049 cselib_rtx_varies_p (rtx x ATTRIBUTE_UNUSED, int from_alias ATTRIBUTE_UNUSED)
1050 {
1051 /* We actually don't need to verify very hard. This is because
1052 if X has actually changed, we invalidate the memory anyway,
1053 so assume that all common memory addresses are
1054 invariant. */
1055 return 0;
1056 }
1057
1058 /* Invalidate any locations in the table which are changed because of a
1059 store to MEM_RTX. If this is called because of a non-const call
1060 instruction, MEM_RTX is (mem:BLK const0_rtx). */
1061
1062 static void
1063 cselib_invalidate_mem (rtx mem_rtx)
1064 {
1065 cselib_val **vp, *v, *next;
1066 int num_mems = 0;
1067 rtx mem_addr;
1068
1069 mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
1070 mem_rtx = canon_rtx (mem_rtx);
1071
1072 vp = &first_containing_mem;
1073 for (v = *vp; v != &dummy_val; v = next)
1074 {
1075 bool has_mem = false;
1076 struct elt_loc_list **p = &v->locs;
1077 int had_locs = v->locs != 0;
1078
1079 while (*p)
1080 {
1081 rtx x = (*p)->loc;
1082 rtx canon_x = (*p)->canon_loc;
1083 cselib_val *addr;
1084 struct elt_list **mem_chain;
1085
1086 /* MEMs may occur in locations only at the top level; below
1087 that every MEM or REG is substituted by its VALUE. */
1088 if (GET_CODE (x) != MEM)
1089 {
1090 p = &(*p)->next;
1091 continue;
1092 }
1093 if (!canon_x)
1094 canon_x = (*p)->canon_loc = canon_rtx (x);
1095 if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
1096 && ! canon_true_dependence (mem_rtx, GET_MODE (mem_rtx), mem_addr,
1097 x, cselib_rtx_varies_p))
1098 {
1099 has_mem = true;
1100 num_mems++;
1101 p = &(*p)->next;
1102 continue;
1103 }
1104
1105 /* This one overlaps. */
1106 /* We must have a mapping from this MEM's address to the
1107 value (E). Remove that, too. */
1108 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0);
1109 mem_chain = &addr->addr_list;
1110 for (;;)
1111 {
1112 if ((*mem_chain)->elt == v)
1113 {
1114 unchain_one_elt_list (mem_chain);
1115 break;
1116 }
1117
1118 mem_chain = &(*mem_chain)->next;
1119 }
1120
1121 unchain_one_elt_loc_list (p);
1122 }
1123
1124 if (had_locs && v->locs == 0)
1125 n_useless_values++;
1126
1127 next = v->next_containing_mem;
1128 if (has_mem)
1129 {
1130 *vp = v;
1131 vp = &(*vp)->next_containing_mem;
1132 }
1133 else
1134 v->next_containing_mem = NULL;
1135 }
1136 *vp = &dummy_val;
1137 }
1138
1139 /* Invalidate DEST, which is being assigned to or clobbered. The second and
1140 the third parameter exist so that this function can be passed to
1141 note_stores; they are ignored. */
1142
1143 static void
1144 cselib_invalidate_rtx (rtx dest, rtx ignore ATTRIBUTE_UNUSED,
1145 void *data ATTRIBUTE_UNUSED)
1146 {
1147 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SIGN_EXTRACT
1148 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SUBREG)
1149 dest = XEXP (dest, 0);
1150
1151 if (GET_CODE (dest) == REG)
1152 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
1153 else if (GET_CODE (dest) == MEM)
1154 cselib_invalidate_mem (dest);
1155
1156 /* Some machines don't define AUTO_INC_DEC, but they still use push
1157 instructions. We need to catch that case here in order to
1158 invalidate the stack pointer correctly. Note that invalidating
1159 the stack pointer is different from invalidating DEST. */
1160 if (push_operand (dest, GET_MODE (dest)))
1161 cselib_invalidate_rtx (stack_pointer_rtx, NULL_RTX, NULL);
1162 }
1163
1164 /* Record the result of a SET instruction. DEST is being set; the source
1165 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
1166 describes its address. */
1167
1168 static void
1169 cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
1170 {
1171 int dreg = GET_CODE (dest) == REG ? (int) REGNO (dest) : -1;
1172
1173 if (src_elt == 0 || side_effects_p (dest))
1174 return;
1175
1176 if (dreg >= 0)
1177 {
1178 if (dreg < FIRST_PSEUDO_REGISTER)
1179 {
1180 unsigned int n = hard_regno_nregs[dreg][GET_MODE (dest)];
1181
1182 if (n > max_value_regs)
1183 max_value_regs = n;
1184 }
1185
1186 if (REG_VALUES (dreg) == 0)
1187 {
1188 used_regs[n_used_regs++] = dreg;
1189 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
1190 }
1191 else
1192 {
1193 if (REG_VALUES (dreg)->elt == 0)
1194 REG_VALUES (dreg)->elt = src_elt;
1195 else
1196 /* The register should have been invalidated. */
1197 abort ();
1198 }
1199
1200 if (src_elt->locs == 0)
1201 n_useless_values--;
1202 src_elt->locs = new_elt_loc_list (src_elt->locs, dest);
1203 }
1204 else if (GET_CODE (dest) == MEM && dest_addr_elt != 0)
1205 {
1206 if (src_elt->locs == 0)
1207 n_useless_values--;
1208 add_mem_for_addr (dest_addr_elt, src_elt, dest);
1209 }
1210 }
1211
1212 /* Describe a single set that is part of an insn. */
1213 struct set
1214 {
1215 rtx src;
1216 rtx dest;
1217 cselib_val *src_elt;
1218 cselib_val *dest_addr_elt;
1219 };
1220
1221 /* There is no good way to determine how many elements there can be
1222 in a PARALLEL. Since it's fairly cheap, use a really large number. */
1223 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
1224
1225 /* Record the effects of any sets in INSN. */
1226 static void
1227 cselib_record_sets (rtx insn)
1228 {
1229 int n_sets = 0;
1230 int i;
1231 struct set sets[MAX_SETS];
1232 rtx body = PATTERN (insn);
1233 rtx cond = 0;
1234
1235 body = PATTERN (insn);
1236 if (GET_CODE (body) == COND_EXEC)
1237 {
1238 cond = COND_EXEC_TEST (body);
1239 body = COND_EXEC_CODE (body);
1240 }
1241
1242 /* Find all sets. */
1243 if (GET_CODE (body) == SET)
1244 {
1245 sets[0].src = SET_SRC (body);
1246 sets[0].dest = SET_DEST (body);
1247 n_sets = 1;
1248 }
1249 else if (GET_CODE (body) == PARALLEL)
1250 {
1251 /* Look through the PARALLEL and record the values being
1252 set, if possible. Also handle any CLOBBERs. */
1253 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
1254 {
1255 rtx x = XVECEXP (body, 0, i);
1256
1257 if (GET_CODE (x) == SET)
1258 {
1259 sets[n_sets].src = SET_SRC (x);
1260 sets[n_sets].dest = SET_DEST (x);
1261 n_sets++;
1262 }
1263 }
1264 }
1265
1266 /* Look up the values that are read. Do this before invalidating the
1267 locations that are written. */
1268 for (i = 0; i < n_sets; i++)
1269 {
1270 rtx dest = sets[i].dest;
1271
1272 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
1273 the low part after invalidating any knowledge about larger modes. */
1274 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
1275 sets[i].dest = dest = XEXP (dest, 0);
1276
1277 /* We don't know how to record anything but REG or MEM. */
1278 if (GET_CODE (dest) == REG || GET_CODE (dest) == MEM)
1279 {
1280 rtx src = sets[i].src;
1281 if (cond)
1282 src = gen_rtx_IF_THEN_ELSE (GET_MODE (src), cond, src, dest);
1283 sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1);
1284 if (GET_CODE (dest) == MEM)
1285 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0), Pmode, 1);
1286 else
1287 sets[i].dest_addr_elt = 0;
1288 }
1289 }
1290
1291 /* Invalidate all locations written by this insn. Note that the elts we
1292 looked up in the previous loop aren't affected, just some of their
1293 locations may go away. */
1294 note_stores (body, cselib_invalidate_rtx, NULL);
1295
1296 /* If this is an asm, look for duplicate sets. This can happen when the
1297 user uses the same value as an output multiple times. This is valid
1298 if the outputs are not actually used thereafter. Treat this case as
1299 if the value isn't actually set. We do this by smashing the destination
1300 to pc_rtx, so that we won't record the value later. */
1301 if (n_sets >= 2 && asm_noperands (body) >= 0)
1302 {
1303 for (i = 0; i < n_sets; i++)
1304 {
1305 rtx dest = sets[i].dest;
1306 if (GET_CODE (dest) == REG || GET_CODE (dest) == MEM)
1307 {
1308 int j;
1309 for (j = i + 1; j < n_sets; j++)
1310 if (rtx_equal_p (dest, sets[j].dest))
1311 {
1312 sets[i].dest = pc_rtx;
1313 sets[j].dest = pc_rtx;
1314 }
1315 }
1316 }
1317 }
1318
1319 /* Now enter the equivalences in our tables. */
1320 for (i = 0; i < n_sets; i++)
1321 {
1322 rtx dest = sets[i].dest;
1323 if (GET_CODE (dest) == REG || GET_CODE (dest) == MEM)
1324 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
1325 }
1326 }
1327
1328 /* Record the effects of INSN. */
1329
1330 void
1331 cselib_process_insn (rtx insn)
1332 {
1333 int i;
1334 rtx x;
1335
1336 if (find_reg_note (insn, REG_LIBCALL, NULL))
1337 cselib_current_insn_in_libcall = true;
1338 if (find_reg_note (insn, REG_RETVAL, NULL))
1339 cselib_current_insn_in_libcall = false;
1340 cselib_current_insn = insn;
1341
1342 /* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp. */
1343 if (GET_CODE (insn) == CODE_LABEL
1344 || (GET_CODE (insn) == CALL_INSN
1345 && find_reg_note (insn, REG_SETJMP, NULL))
1346 || (GET_CODE (insn) == INSN
1347 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
1348 && MEM_VOLATILE_P (PATTERN (insn))))
1349 {
1350 clear_table ();
1351 return;
1352 }
1353
1354 if (! INSN_P (insn))
1355 {
1356 cselib_current_insn = 0;
1357 return;
1358 }
1359
1360 /* If this is a call instruction, forget anything stored in a
1361 call clobbered register, or, if this is not a const call, in
1362 memory. */
1363 if (GET_CODE (insn) == CALL_INSN)
1364 {
1365 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1366 if (call_used_regs[i])
1367 cselib_invalidate_regno (i, reg_raw_mode[i]);
1368
1369 if (! CONST_OR_PURE_CALL_P (insn))
1370 cselib_invalidate_mem (callmem);
1371 }
1372
1373 cselib_record_sets (insn);
1374
1375 #ifdef AUTO_INC_DEC
1376 /* Clobber any registers which appear in REG_INC notes. We
1377 could keep track of the changes to their values, but it is
1378 unlikely to help. */
1379 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
1380 if (REG_NOTE_KIND (x) == REG_INC)
1381 cselib_invalidate_rtx (XEXP (x, 0), NULL_RTX, NULL);
1382 #endif
1383
1384 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
1385 after we have processed the insn. */
1386 if (GET_CODE (insn) == CALL_INSN)
1387 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
1388 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
1389 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0), NULL_RTX, NULL);
1390
1391 cselib_current_insn = 0;
1392
1393 if (n_useless_values > MAX_USELESS_VALUES)
1394 remove_useless_values ();
1395 }
1396
1397 /* Initialize cselib for one pass. The caller must also call
1398 init_alias_analysis. */
1399
1400 void
1401 cselib_init (void)
1402 {
1403 elt_list_pool = create_alloc_pool ("elt_list",
1404 sizeof (struct elt_list), 10);
1405 elt_loc_list_pool = create_alloc_pool ("elt_loc_list",
1406 sizeof (struct elt_loc_list), 10);
1407 cselib_val_pool = create_alloc_pool ("cselib_val_list",
1408 sizeof (cselib_val), 10);
1409 value_pool = create_alloc_pool ("value",
1410 RTX_SIZE (VALUE), 100);
1411 /* This is only created once. */
1412 if (! callmem)
1413 callmem = gen_rtx_MEM (BLKmode, const0_rtx);
1414
1415 cselib_nregs = max_reg_num ();
1416
1417 /* We preserve reg_values to allow expensive clearing of the whole thing.
1418 Reallocate it however if it happens to be too large. */
1419 if (!reg_values || reg_values_size < cselib_nregs
1420 || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
1421 {
1422 if (reg_values)
1423 free (reg_values);
1424 /* Some space for newly emit instructions so we don't end up
1425 reallocating in between passes. */
1426 reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
1427 reg_values = xcalloc (reg_values_size, sizeof (reg_values));
1428 }
1429 used_regs = xmalloc (sizeof (*used_regs) * cselib_nregs);
1430 n_used_regs = 0;
1431 hash_table = htab_create (31, get_value_hash, entry_and_rtx_equal_p, NULL);
1432 cselib_current_insn_in_libcall = false;
1433 }
1434
1435 /* Called when the current user is done with cselib. */
1436
1437 void
1438 cselib_finish (void)
1439 {
1440 free_alloc_pool (elt_list_pool);
1441 free_alloc_pool (elt_loc_list_pool);
1442 free_alloc_pool (cselib_val_pool);
1443 free_alloc_pool (value_pool);
1444 clear_table ();
1445 htab_delete (hash_table);
1446 reg_values = 0;
1447 free (used_regs);
1448 used_regs = 0;
1449 hash_table = 0;
1450 n_useless_values = 0;
1451 next_unknown_value = 0;
1452 }
1453
1454 #include "gt-cselib.h"
This page took 0.101049 seconds and 4 git commands to generate.