]> gcc.gnu.org Git - gcc.git/blob - gcc/cse.c
(find_comparison_args): Look for comparison operations if the second arg is 0 in...
[gcc.git] / gcc / cse.c
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 #include "config.h"
22 #include "rtl.h"
23 #include "regs.h"
24 #include "hard-reg-set.h"
25 #include "flags.h"
26 #include "real.h"
27 #include "insn-config.h"
28 #include "recog.h"
29
30 #include <stdio.h>
31 #include <setjmp.h>
32
33 /* The basic idea of common subexpression elimination is to go
34 through the code, keeping a record of expressions that would
35 have the same value at the current scan point, and replacing
36 expressions encountered with the cheapest equivalent expression.
37
38 It is too complicated to keep track of the different possibilities
39 when control paths merge; so, at each label, we forget all that is
40 known and start fresh. This can be described as processing each
41 basic block separately. Note, however, that these are not quite
42 the same as the basic blocks found by a later pass and used for
43 data flow analysis and register packing. We do not need to start fresh
44 after a conditional jump instruction if there is no label there.
45
46 We use two data structures to record the equivalent expressions:
47 a hash table for most expressions, and several vectors together
48 with "quantity numbers" to record equivalent (pseudo) registers.
49
50 The use of the special data structure for registers is desirable
51 because it is faster. It is possible because registers references
52 contain a fairly small number, the register number, taken from
53 a contiguously allocated series, and two register references are
54 identical if they have the same number. General expressions
55 do not have any such thing, so the only way to retrieve the
56 information recorded on an expression other than a register
57 is to keep it in a hash table.
58
59 Registers and "quantity numbers":
60
61 At the start of each basic block, all of the (hardware and pseudo)
62 registers used in the function are given distinct quantity
63 numbers to indicate their contents. During scan, when the code
64 copies one register into another, we copy the quantity number.
65 When a register is loaded in any other way, we allocate a new
66 quantity number to describe the value generated by this operation.
67 `reg_qty' records what quantity a register is currently thought
68 of as containing.
69
70 All real quantity numbers are greater than or equal to `max_reg'.
71 If register N has not been assigned a quantity, reg_qty[N] will equal N.
72
73 Quantity numbers below `max_reg' do not exist and none of the `qty_...'
74 variables should be referenced with an index below `max_reg'.
75
76 We also maintain a bidirectional chain of registers for each
77 quantity number. `qty_first_reg', `qty_last_reg',
78 `reg_next_eqv' and `reg_prev_eqv' hold these chains.
79
80 The first register in a chain is the one whose lifespan is least local.
81 Among equals, it is the one that was seen first.
82 We replace any equivalent register with that one.
83
84 If two registers have the same quantity number, it must be true that
85 REG expressions with `qty_mode' must be in the hash table for both
86 registers and must be in the same class.
87
88 The converse is not true. Since hard registers may be referenced in
89 any mode, two REG expressions might be equivalent in the hash table
90 but not have the same quantity number if the quantity number of one
91 of the registers is not the same mode as those expressions.
92
93 Constants and quantity numbers
94
95 When a quantity has a known constant value, that value is stored
96 in the appropriate element of qty_const. This is in addition to
97 putting the constant in the hash table as is usual for non-regs.
98
99 Whether a reg or a constant is preferred is determined by the configuration
100 macro CONST_COSTS and will often depend on the constant value. In any
101 event, expressions containing constants can be simplified, by fold_rtx.
102
103 When a quantity has a known nearly constant value (such as an address
104 of a stack slot), that value is stored in the appropriate element
105 of qty_const.
106
107 Integer constants don't have a machine mode. However, cse
108 determines the intended machine mode from the destination
109 of the instruction that moves the constant. The machine mode
110 is recorded in the hash table along with the actual RTL
111 constant expression so that different modes are kept separate.
112
113 Other expressions:
114
115 To record known equivalences among expressions in general
116 we use a hash table called `table'. It has a fixed number of buckets
117 that contain chains of `struct table_elt' elements for expressions.
118 These chains connect the elements whose expressions have the same
119 hash codes.
120
121 Other chains through the same elements connect the elements which
122 currently have equivalent values.
123
124 Register references in an expression are canonicalized before hashing
125 the expression. This is done using `reg_qty' and `qty_first_reg'.
126 The hash code of a register reference is computed using the quantity
127 number, not the register number.
128
129 When the value of an expression changes, it is necessary to remove from the
130 hash table not just that expression but all expressions whose values
131 could be different as a result.
132
133 1. If the value changing is in memory, except in special cases
134 ANYTHING referring to memory could be changed. That is because
135 nobody knows where a pointer does not point.
136 The function `invalidate_memory' removes what is necessary.
137
138 The special cases are when the address is constant or is
139 a constant plus a fixed register such as the frame pointer
140 or a static chain pointer. When such addresses are stored in,
141 we can tell exactly which other such addresses must be invalidated
142 due to overlap. `invalidate' does this.
143 All expressions that refer to non-constant
144 memory addresses are also invalidated. `invalidate_memory' does this.
145
146 2. If the value changing is a register, all expressions
147 containing references to that register, and only those,
148 must be removed.
149
150 Because searching the entire hash table for expressions that contain
151 a register is very slow, we try to figure out when it isn't necessary.
152 Precisely, this is necessary only when expressions have been
153 entered in the hash table using this register, and then the value has
154 changed, and then another expression wants to be added to refer to
155 the register's new value. This sequence of circumstances is rare
156 within any one basic block.
157
158 The vectors `reg_tick' and `reg_in_table' are used to detect this case.
159 reg_tick[i] is incremented whenever a value is stored in register i.
160 reg_in_table[i] holds -1 if no references to register i have been
161 entered in the table; otherwise, it contains the value reg_tick[i] had
162 when the references were entered. If we want to enter a reference
163 and reg_in_table[i] != reg_tick[i], we must scan and remove old references.
164 Until we want to enter a new entry, the mere fact that the two vectors
165 don't match makes the entries be ignored if anyone tries to match them.
166
167 Registers themselves are entered in the hash table as well as in
168 the equivalent-register chains. However, the vectors `reg_tick'
169 and `reg_in_table' do not apply to expressions which are simple
170 register references. These expressions are removed from the table
171 immediately when they become invalid, and this can be done even if
172 we do not immediately search for all the expressions that refer to
173 the register.
174
175 A CLOBBER rtx in an instruction invalidates its operand for further
176 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
177 invalidates everything that resides in memory.
178
179 Related expressions:
180
181 Constant expressions that differ only by an additive integer
182 are called related. When a constant expression is put in
183 the table, the related expression with no constant term
184 is also entered. These are made to point at each other
185 so that it is possible to find out if there exists any
186 register equivalent to an expression related to a given expression. */
187
188 /* One plus largest register number used in this function. */
189
190 static int max_reg;
191
192 /* Length of vectors indexed by quantity number.
193 We know in advance we will not need a quantity number this big. */
194
195 static int max_qty;
196
197 /* Next quantity number to be allocated.
198 This is 1 + the largest number needed so far. */
199
200 static int next_qty;
201
202 /* Indexed by quantity number, gives the first (or last) (pseudo) register
203 in the chain of registers that currently contain this quantity. */
204
205 static int *qty_first_reg;
206 static int *qty_last_reg;
207
208 /* Index by quantity number, gives the mode of the quantity. */
209
210 static enum machine_mode *qty_mode;
211
212 /* Indexed by quantity number, gives the rtx of the constant value of the
213 quantity, or zero if it does not have a known value.
214 A sum of the frame pointer (or arg pointer) plus a constant
215 can also be entered here. */
216
217 static rtx *qty_const;
218
219 /* Indexed by qty number, gives the insn that stored the constant value
220 recorded in `qty_const'. */
221
222 static rtx *qty_const_insn;
223
224 /* The next three variables are used to track when a comparison between a
225 quantity and some constant or register has been passed. In that case, we
226 know the results of the comparison in case we see it again. These variables
227 record a comparison that is known to be true. */
228
229 /* Indexed by qty number, gives the rtx code of a comparison with a known
230 result involving this quantity. If none, it is UNKNOWN. */
231 static enum rtx_code *qty_comparison_code;
232
233 /* Indexed by qty number, gives the constant being compared against in a
234 comparison of known result. If no such comparison, it is undefined.
235 If the comparison is not with a constant, it is zero. */
236
237 static rtx *qty_comparison_const;
238
239 /* Indexed by qty number, gives the quantity being compared against in a
240 comparison of known result. If no such comparison, if it undefined.
241 If the comparison is not with a register, it is -1. */
242
243 static int *qty_comparison_qty;
244
245 #ifdef HAVE_cc0
246 /* For machines that have a CC0, we do not record its value in the hash
247 table since its use is guaranteed to be the insn immediately following
248 its definition and any other insn is presumed to invalidate it.
249
250 Instead, we store below the value last assigned to CC0. If it should
251 happen to be a constant, it is stored in preference to the actual
252 assigned value. In case it is a constant, we store the mode in which
253 the constant should be interpreted. */
254
255 static rtx prev_insn_cc0;
256 static enum machine_mode prev_insn_cc0_mode;
257 #endif
258
259 /* Previous actual insn. 0 if at first insn of basic block. */
260
261 static rtx prev_insn;
262
263 /* Insn being scanned. */
264
265 static rtx this_insn;
266
267 /* Index by (pseudo) register number, gives the quantity number
268 of the register's current contents. */
269
270 static int *reg_qty;
271
272 /* Index by (pseudo) register number, gives the number of the next (or
273 previous) (pseudo) register in the chain of registers sharing the same
274 value.
275
276 Or -1 if this register is at the end of the chain.
277
278 If reg_qty[N] == N, reg_next_eqv[N] is undefined. */
279
280 static int *reg_next_eqv;
281 static int *reg_prev_eqv;
282
283 /* Index by (pseudo) register number, gives the number of times
284 that register has been altered in the current basic block. */
285
286 static int *reg_tick;
287
288 /* Index by (pseudo) register number, gives the reg_tick value at which
289 rtx's containing this register are valid in the hash table.
290 If this does not equal the current reg_tick value, such expressions
291 existing in the hash table are invalid.
292 If this is -1, no expressions containing this register have been
293 entered in the table. */
294
295 static int *reg_in_table;
296
297 /* A HARD_REG_SET containing all the hard registers for which there is
298 currently a REG expression in the hash table. Note the difference
299 from the above variables, which indicate if the REG is mentioned in some
300 expression in the table. */
301
302 static HARD_REG_SET hard_regs_in_table;
303
304 /* A HARD_REG_SET containing all the hard registers that are invalidated
305 by a CALL_INSN. */
306
307 static HARD_REG_SET regs_invalidated_by_call;
308
309 /* Two vectors of ints:
310 one containing max_reg -1's; the other max_reg + 500 (an approximation
311 for max_qty) elements where element i contains i.
312 These are used to initialize various other vectors fast. */
313
314 static int *all_minus_one;
315 static int *consec_ints;
316
317 /* CUID of insn that starts the basic block currently being cse-processed. */
318
319 static int cse_basic_block_start;
320
321 /* CUID of insn that ends the basic block currently being cse-processed. */
322
323 static int cse_basic_block_end;
324
325 /* Vector mapping INSN_UIDs to cuids.
326 The cuids are like uids but increase monotonically always.
327 We use them to see whether a reg is used outside a given basic block. */
328
329 static int *uid_cuid;
330
331 /* Get the cuid of an insn. */
332
333 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
334
335 /* Nonzero if cse has altered conditional jump insns
336 in such a way that jump optimization should be redone. */
337
338 static int cse_jumps_altered;
339
340 /* canon_hash stores 1 in do_not_record
341 if it notices a reference to CC0, PC, or some other volatile
342 subexpression. */
343
344 static int do_not_record;
345
346 /* canon_hash stores 1 in hash_arg_in_memory
347 if it notices a reference to memory within the expression being hashed. */
348
349 static int hash_arg_in_memory;
350
351 /* canon_hash stores 1 in hash_arg_in_struct
352 if it notices a reference to memory that's part of a structure. */
353
354 static int hash_arg_in_struct;
355
356 /* The hash table contains buckets which are chains of `struct table_elt's,
357 each recording one expression's information.
358 That expression is in the `exp' field.
359
360 Those elements with the same hash code are chained in both directions
361 through the `next_same_hash' and `prev_same_hash' fields.
362
363 Each set of expressions with equivalent values
364 are on a two-way chain through the `next_same_value'
365 and `prev_same_value' fields, and all point with
366 the `first_same_value' field at the first element in
367 that chain. The chain is in order of increasing cost.
368 Each element's cost value is in its `cost' field.
369
370 The `in_memory' field is nonzero for elements that
371 involve any reference to memory. These elements are removed
372 whenever a write is done to an unidentified location in memory.
373 To be safe, we assume that a memory address is unidentified unless
374 the address is either a symbol constant or a constant plus
375 the frame pointer or argument pointer.
376
377 The `in_struct' field is nonzero for elements that
378 involve any reference to memory inside a structure or array.
379
380 The `related_value' field is used to connect related expressions
381 (that differ by adding an integer).
382 The related expressions are chained in a circular fashion.
383 `related_value' is zero for expressions for which this
384 chain is not useful.
385
386 The `cost' field stores the cost of this element's expression.
387
388 The `is_const' flag is set if the element is a constant (including
389 a fixed address).
390
391 The `flag' field is used as a temporary during some search routines.
392
393 The `mode' field is usually the same as GET_MODE (`exp'), but
394 if `exp' is a CONST_INT and has no machine mode then the `mode'
395 field is the mode it was being used as. Each constant is
396 recorded separately for each mode it is used with. */
397
398
399 struct table_elt
400 {
401 rtx exp;
402 struct table_elt *next_same_hash;
403 struct table_elt *prev_same_hash;
404 struct table_elt *next_same_value;
405 struct table_elt *prev_same_value;
406 struct table_elt *first_same_value;
407 struct table_elt *related_value;
408 int cost;
409 enum machine_mode mode;
410 char in_memory;
411 char in_struct;
412 char is_const;
413 char flag;
414 };
415
416 #define HASHBITS 16
417
418 /* We don't want a lot of buckets, because we rarely have very many
419 things stored in the hash table, and a lot of buckets slows
420 down a lot of loops that happen frequently. */
421 #define NBUCKETS 31
422
423 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
424 register (hard registers may require `do_not_record' to be set). */
425
426 #define HASH(X, M) \
427 (GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER \
428 ? ((((int) REG << 7) + reg_qty[REGNO (X)]) % NBUCKETS) \
429 : canon_hash (X, M) % NBUCKETS)
430
431 /* Determine whether register number N is considered a fixed register for CSE.
432 It is desirable to replace other regs with fixed regs, to reduce need for
433 non-fixed hard regs.
434 A reg wins if it is either the frame pointer or designated as fixed,
435 but not if it is an overlapping register. */
436 #ifdef OVERLAPPING_REGNO_P
437 #define FIXED_REGNO_P(N) \
438 (((N) == FRAME_POINTER_REGNUM || fixed_regs[N]) \
439 && ! OVERLAPPING_REGNO_P ((N)))
440 #else
441 #define FIXED_REGNO_P(N) \
442 ((N) == FRAME_POINTER_REGNUM || fixed_regs[N])
443 #endif
444
445 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
446 hard registers are the cheapest with a cost of 0. Next come pseudos
447 with a cost of one and other hard registers with a cost of 2. Aside
448 from these special cases, call `rtx_cost'. */
449
450 #define COST(X) \
451 (GET_CODE (X) == REG \
452 ? (REGNO (X) >= FIRST_PSEUDO_REGISTER ? 1 \
453 : (FIXED_REGNO_P (REGNO (X)) \
454 && REGNO_REG_CLASS (REGNO (X)) != NO_REGS) ? 0 \
455 : 2) \
456 : rtx_cost (X, SET) * 2)
457
458 /* Determine if the quantity number for register X represents a valid index
459 into the `qty_...' variables. */
460
461 #define REGNO_QTY_VALID_P(N) (reg_qty[N] != (N))
462
463 static struct table_elt *table[NBUCKETS];
464
465 /* Chain of `struct table_elt's made so far for this function
466 but currently removed from the table. */
467
468 static struct table_elt *free_element_chain;
469
470 /* Number of `struct table_elt' structures made so far for this function. */
471
472 static int n_elements_made;
473
474 /* Maximum value `n_elements_made' has had so far in this compilation
475 for functions previously processed. */
476
477 static int max_elements_made;
478
479 /* Surviving equivalence class when two equivalence classes are merged
480 by recording the effects of a jump in the last insn. Zero if the
481 last insn was not a conditional jump. */
482
483 static struct table_elt *last_jump_equiv_class;
484
485 /* Set to the cost of a constant pool reference if one was found for a
486 symbolic constant. If this was found, it means we should try to
487 convert constants into constant pool entries if they don't fit in
488 the insn. */
489
490 static int constant_pool_entries_cost;
491
492 /* Bits describing what kind of values in memory must be invalidated
493 for a particular instruction. If all three bits are zero,
494 no memory refs need to be invalidated. Each bit is more powerful
495 than the preceding ones, and if a bit is set then the preceding
496 bits are also set.
497
498 Here is how the bits are set:
499 Pushing onto the stack invalidates only the stack pointer,
500 writing at a fixed address invalidates only variable addresses,
501 writing in a structure element at variable address
502 invalidates all but scalar variables,
503 and writing in anything else at variable address invalidates everything. */
504
505 struct write_data
506 {
507 int sp : 1; /* Invalidate stack pointer. */
508 int var : 1; /* Invalidate variable addresses. */
509 int nonscalar : 1; /* Invalidate all but scalar variables. */
510 int all : 1; /* Invalidate all memory refs. */
511 };
512
513 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
514 virtual regs here because the simplify_*_operation routines are called
515 by integrate.c, which is called before virtual register instantiation. */
516
517 #define FIXED_BASE_PLUS_P(X) \
518 ((X) == frame_pointer_rtx || (X) == arg_pointer_rtx \
519 || (X) == virtual_stack_vars_rtx \
520 || (X) == virtual_incoming_args_rtx \
521 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
522 && (XEXP (X, 0) == frame_pointer_rtx \
523 || XEXP (X, 0) == arg_pointer_rtx \
524 || XEXP (X, 0) == virtual_stack_vars_rtx \
525 || XEXP (X, 0) == virtual_incoming_args_rtx)))
526
527 /* Similar, but also allows reference to the stack pointer.
528
529 This used to include FIXED_BASE_PLUS_P, however, we can't assume that
530 arg_pointer_rtx by itself is nonzero, because on at least one machine,
531 the i960, the arg pointer is zero when it is unused. */
532
533 #define NONZERO_BASE_PLUS_P(X) \
534 ((X) == frame_pointer_rtx \
535 || (X) == virtual_stack_vars_rtx \
536 || (X) == virtual_incoming_args_rtx \
537 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
538 && (XEXP (X, 0) == frame_pointer_rtx \
539 || XEXP (X, 0) == arg_pointer_rtx \
540 || XEXP (X, 0) == virtual_stack_vars_rtx \
541 || XEXP (X, 0) == virtual_incoming_args_rtx)) \
542 || (X) == stack_pointer_rtx \
543 || (X) == virtual_stack_dynamic_rtx \
544 || (X) == virtual_outgoing_args_rtx \
545 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
546 && (XEXP (X, 0) == stack_pointer_rtx \
547 || XEXP (X, 0) == virtual_stack_dynamic_rtx \
548 || XEXP (X, 0) == virtual_outgoing_args_rtx)))
549
550 static struct table_elt *lookup ();
551 static void free_element ();
552
553 static int insert_regs ();
554 static void rehash_using_reg ();
555 static void remove_invalid_refs ();
556 static int exp_equiv_p ();
557 int refers_to_p ();
558 int refers_to_mem_p ();
559 static void invalidate_from_clobbers ();
560 static int safe_hash ();
561 static int canon_hash ();
562 static rtx fold_rtx ();
563 static rtx equiv_constant ();
564 static void record_jump_cond ();
565 static void note_mem_written ();
566 static int cse_rtx_addr_varies_p ();
567 static enum rtx_code find_comparison_args ();
568 static void cse_insn ();
569 static void cse_set_around_loop ();
570 \f
571 /* Return an estimate of the cost of computing rtx X.
572 One use is in cse, to decide which expression to keep in the hash table.
573 Another is in rtl generation, to pick the cheapest way to multiply.
574 Other uses like the latter are expected in the future. */
575
576 /* Return the right cost to give to an operation
577 to make the cost of the corresponding register-to-register instruction
578 N times that of a fast register-to-register instruction. */
579
580 #define COSTS_N_INSNS(N) ((N) * 4 - 2)
581
582 int
583 rtx_cost (x, outer_code)
584 rtx x;
585 enum rtx_code outer_code;
586 {
587 register int i, j;
588 register enum rtx_code code;
589 register char *fmt;
590 register int total;
591
592 if (x == 0)
593 return 0;
594
595 /* Compute the default costs of certain things.
596 Note that RTX_COSTS can override the defaults. */
597
598 code = GET_CODE (x);
599 switch (code)
600 {
601 case MULT:
602 /* Count multiplication by 2**n as a shift,
603 because if we are considering it, we would output it as a shift. */
604 if (GET_CODE (XEXP (x, 1)) == CONST_INT
605 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0)
606 total = 2;
607 else
608 total = COSTS_N_INSNS (5);
609 break;
610 case DIV:
611 case UDIV:
612 case MOD:
613 case UMOD:
614 total = COSTS_N_INSNS (7);
615 break;
616 case USE:
617 /* Used in loop.c and combine.c as a marker. */
618 total = 0;
619 break;
620 case ASM_OPERANDS:
621 /* We don't want these to be used in substitutions because
622 we have no way of validating the resulting insn. So assign
623 anything containing an ASM_OPERANDS a very high cost. */
624 total = 1000;
625 break;
626 default:
627 total = 2;
628 }
629
630 switch (code)
631 {
632 case REG:
633 return 1;
634 case SUBREG:
635 /* If we can't tie these modes, make this expensive. The larger
636 the mode, the more expensive it is. */
637 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
638 return COSTS_N_INSNS (2
639 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
640 return 2;
641 #ifdef RTX_COSTS
642 RTX_COSTS (x, code, outer_code);
643 #endif
644 CONST_COSTS (x, code, outer_code);
645 }
646
647 /* Sum the costs of the sub-rtx's, plus cost of this operation,
648 which is already in total. */
649
650 fmt = GET_RTX_FORMAT (code);
651 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
652 if (fmt[i] == 'e')
653 total += rtx_cost (XEXP (x, i), code);
654 else if (fmt[i] == 'E')
655 for (j = 0; j < XVECLEN (x, i); j++)
656 total += rtx_cost (XVECEXP (x, i, j), code);
657
658 return total;
659 }
660 \f
661 /* Clear the hash table and initialize each register with its own quantity,
662 for a new basic block. */
663
664 static void
665 new_basic_block ()
666 {
667 register int i;
668
669 next_qty = max_reg;
670
671 bzero (reg_tick, max_reg * sizeof (int));
672
673 bcopy (all_minus_one, reg_in_table, max_reg * sizeof (int));
674 bcopy (consec_ints, reg_qty, max_reg * sizeof (int));
675 CLEAR_HARD_REG_SET (hard_regs_in_table);
676
677 /* The per-quantity values used to be initialized here, but it is
678 much faster to initialize each as it is made in `make_new_qty'. */
679
680 for (i = 0; i < NBUCKETS; i++)
681 {
682 register struct table_elt *this, *next;
683 for (this = table[i]; this; this = next)
684 {
685 next = this->next_same_hash;
686 free_element (this);
687 }
688 }
689
690 bzero (table, sizeof table);
691
692 prev_insn = 0;
693
694 #ifdef HAVE_cc0
695 prev_insn_cc0 = 0;
696 #endif
697 }
698
699 /* Say that register REG contains a quantity not in any register before
700 and initialize that quantity. */
701
702 static void
703 make_new_qty (reg)
704 register int reg;
705 {
706 register int q;
707
708 if (next_qty >= max_qty)
709 abort ();
710
711 q = reg_qty[reg] = next_qty++;
712 qty_first_reg[q] = reg;
713 qty_last_reg[q] = reg;
714 qty_const[q] = qty_const_insn[q] = 0;
715 qty_comparison_code[q] = UNKNOWN;
716
717 reg_next_eqv[reg] = reg_prev_eqv[reg] = -1;
718 }
719
720 /* Make reg NEW equivalent to reg OLD.
721 OLD is not changing; NEW is. */
722
723 static void
724 make_regs_eqv (new, old)
725 register int new, old;
726 {
727 register int lastr, firstr;
728 register int q = reg_qty[old];
729
730 /* Nothing should become eqv until it has a "non-invalid" qty number. */
731 if (! REGNO_QTY_VALID_P (old))
732 abort ();
733
734 reg_qty[new] = q;
735 firstr = qty_first_reg[q];
736 lastr = qty_last_reg[q];
737
738 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
739 hard regs. Among pseudos, if NEW will live longer than any other reg
740 of the same qty, and that is beyond the current basic block,
741 make it the new canonical replacement for this qty. */
742 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
743 /* Certain fixed registers might be of the class NO_REGS. This means
744 that not only can they not be allocated by the compiler, but
745 they cannot be used in substitutions or canonicalizations
746 either. */
747 && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
748 && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
749 || (new >= FIRST_PSEUDO_REGISTER
750 && (firstr < FIRST_PSEUDO_REGISTER
751 || ((uid_cuid[regno_last_uid[new]] > cse_basic_block_end
752 || (uid_cuid[regno_first_uid[new]]
753 < cse_basic_block_start))
754 && (uid_cuid[regno_last_uid[new]]
755 > uid_cuid[regno_last_uid[firstr]]))))))
756 {
757 reg_prev_eqv[firstr] = new;
758 reg_next_eqv[new] = firstr;
759 reg_prev_eqv[new] = -1;
760 qty_first_reg[q] = new;
761 }
762 else
763 {
764 /* If NEW is a hard reg (known to be non-fixed), insert at end.
765 Otherwise, insert before any non-fixed hard regs that are at the
766 end. Registers of class NO_REGS cannot be used as an
767 equivalent for anything. */
768 while (lastr < FIRST_PSEUDO_REGISTER && reg_prev_eqv[lastr] >= 0
769 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
770 && new >= FIRST_PSEUDO_REGISTER)
771 lastr = reg_prev_eqv[lastr];
772 reg_next_eqv[new] = reg_next_eqv[lastr];
773 if (reg_next_eqv[lastr] >= 0)
774 reg_prev_eqv[reg_next_eqv[lastr]] = new;
775 else
776 qty_last_reg[q] = new;
777 reg_next_eqv[lastr] = new;
778 reg_prev_eqv[new] = lastr;
779 }
780 }
781
782 /* Remove REG from its equivalence class. */
783
784 static void
785 delete_reg_equiv (reg)
786 register int reg;
787 {
788 register int n = reg_next_eqv[reg];
789 register int p = reg_prev_eqv[reg];
790 register int q = reg_qty[reg];
791
792 /* If invalid, do nothing. N and P above are undefined in that case. */
793 if (q == reg)
794 return;
795
796 if (n != -1)
797 reg_prev_eqv[n] = p;
798 else
799 qty_last_reg[q] = p;
800 if (p != -1)
801 reg_next_eqv[p] = n;
802 else
803 qty_first_reg[q] = n;
804
805 reg_qty[reg] = reg;
806 }
807
808 /* Remove any invalid expressions from the hash table
809 that refer to any of the registers contained in expression X.
810
811 Make sure that newly inserted references to those registers
812 as subexpressions will be considered valid.
813
814 mention_regs is not called when a register itself
815 is being stored in the table.
816
817 Return 1 if we have done something that may have changed the hash code
818 of X. */
819
820 static int
821 mention_regs (x)
822 rtx x;
823 {
824 register enum rtx_code code;
825 register int i, j;
826 register char *fmt;
827 register int changed = 0;
828
829 if (x == 0)
830 return 0;
831
832 code = GET_CODE (x);
833 if (code == REG)
834 {
835 register int regno = REGNO (x);
836 register int endregno
837 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
838 : HARD_REGNO_NREGS (regno, GET_MODE (x)));
839 int i;
840
841 for (i = regno; i < endregno; i++)
842 {
843 if (reg_in_table[i] >= 0 && reg_in_table[i] != reg_tick[i])
844 remove_invalid_refs (i);
845
846 reg_in_table[i] = reg_tick[i];
847 }
848
849 return 0;
850 }
851
852 /* If X is a comparison or a COMPARE and either operand is a register
853 that does not have a quantity, give it one. This is so that a later
854 call to record_jump_equiv won't cause X to be assigned a different
855 hash code and not found in the table after that call.
856
857 It is not necessary to do this here, since rehash_using_reg can
858 fix up the table later, but doing this here eliminates the need to
859 call that expensive function in the most common case where the only
860 use of the register is in the comparison. */
861
862 if (code == COMPARE || GET_RTX_CLASS (code) == '<')
863 {
864 if (GET_CODE (XEXP (x, 0)) == REG
865 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
866 if (insert_regs (XEXP (x, 0), NULL_PTR, 0))
867 {
868 rehash_using_reg (XEXP (x, 0));
869 changed = 1;
870 }
871
872 if (GET_CODE (XEXP (x, 1)) == REG
873 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
874 if (insert_regs (XEXP (x, 1), NULL_PTR, 0))
875 {
876 rehash_using_reg (XEXP (x, 1));
877 changed = 1;
878 }
879 }
880
881 fmt = GET_RTX_FORMAT (code);
882 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
883 if (fmt[i] == 'e')
884 changed |= mention_regs (XEXP (x, i));
885 else if (fmt[i] == 'E')
886 for (j = 0; j < XVECLEN (x, i); j++)
887 changed |= mention_regs (XVECEXP (x, i, j));
888
889 return changed;
890 }
891
892 /* Update the register quantities for inserting X into the hash table
893 with a value equivalent to CLASSP.
894 (If the class does not contain a REG, it is irrelevant.)
895 If MODIFIED is nonzero, X is a destination; it is being modified.
896 Note that delete_reg_equiv should be called on a register
897 before insert_regs is done on that register with MODIFIED != 0.
898
899 Nonzero value means that elements of reg_qty have changed
900 so X's hash code may be different. */
901
902 static int
903 insert_regs (x, classp, modified)
904 rtx x;
905 struct table_elt *classp;
906 int modified;
907 {
908 if (GET_CODE (x) == REG)
909 {
910 register int regno = REGNO (x);
911
912 if (modified
913 || ! (REGNO_QTY_VALID_P (regno)
914 && qty_mode[reg_qty[regno]] == GET_MODE (x)))
915 {
916 if (classp)
917 for (classp = classp->first_same_value;
918 classp != 0;
919 classp = classp->next_same_value)
920 if (GET_CODE (classp->exp) == REG
921 && GET_MODE (classp->exp) == GET_MODE (x))
922 {
923 make_regs_eqv (regno, REGNO (classp->exp));
924 return 1;
925 }
926
927 make_new_qty (regno);
928 qty_mode[reg_qty[regno]] = GET_MODE (x);
929 return 1;
930 }
931 }
932
933 /* If X is a SUBREG, we will likely be inserting the inner register in the
934 table. If that register doesn't have an assigned quantity number at
935 this point but does later, the insertion that we will be doing now will
936 not be accessible because its hash code will have changed. So assign
937 a quantity number now. */
938
939 else if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == REG
940 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
941 {
942 insert_regs (SUBREG_REG (x), NULL_PTR, 0);
943 mention_regs (SUBREG_REG (x));
944 return 1;
945 }
946 else
947 return mention_regs (x);
948 }
949 \f
950 /* Look in or update the hash table. */
951
952 /* Put the element ELT on the list of free elements. */
953
954 static void
955 free_element (elt)
956 struct table_elt *elt;
957 {
958 elt->next_same_hash = free_element_chain;
959 free_element_chain = elt;
960 }
961
962 /* Return an element that is free for use. */
963
964 static struct table_elt *
965 get_element ()
966 {
967 struct table_elt *elt = free_element_chain;
968 if (elt)
969 {
970 free_element_chain = elt->next_same_hash;
971 return elt;
972 }
973 n_elements_made++;
974 return (struct table_elt *) oballoc (sizeof (struct table_elt));
975 }
976
977 /* Remove table element ELT from use in the table.
978 HASH is its hash code, made using the HASH macro.
979 It's an argument because often that is known in advance
980 and we save much time not recomputing it. */
981
982 static void
983 remove_from_table (elt, hash)
984 register struct table_elt *elt;
985 int hash;
986 {
987 if (elt == 0)
988 return;
989
990 /* Mark this element as removed. See cse_insn. */
991 elt->first_same_value = 0;
992
993 /* Remove the table element from its equivalence class. */
994
995 {
996 register struct table_elt *prev = elt->prev_same_value;
997 register struct table_elt *next = elt->next_same_value;
998
999 if (next) next->prev_same_value = prev;
1000
1001 if (prev)
1002 prev->next_same_value = next;
1003 else
1004 {
1005 register struct table_elt *newfirst = next;
1006 while (next)
1007 {
1008 next->first_same_value = newfirst;
1009 next = next->next_same_value;
1010 }
1011 }
1012 }
1013
1014 /* Remove the table element from its hash bucket. */
1015
1016 {
1017 register struct table_elt *prev = elt->prev_same_hash;
1018 register struct table_elt *next = elt->next_same_hash;
1019
1020 if (next) next->prev_same_hash = prev;
1021
1022 if (prev)
1023 prev->next_same_hash = next;
1024 else if (table[hash] == elt)
1025 table[hash] = next;
1026 else
1027 {
1028 /* This entry is not in the proper hash bucket. This can happen
1029 when two classes were merged by `merge_equiv_classes'. Search
1030 for the hash bucket that it heads. This happens only very
1031 rarely, so the cost is acceptable. */
1032 for (hash = 0; hash < NBUCKETS; hash++)
1033 if (table[hash] == elt)
1034 table[hash] = next;
1035 }
1036 }
1037
1038 /* Remove the table element from its related-value circular chain. */
1039
1040 if (elt->related_value != 0 && elt->related_value != elt)
1041 {
1042 register struct table_elt *p = elt->related_value;
1043 while (p->related_value != elt)
1044 p = p->related_value;
1045 p->related_value = elt->related_value;
1046 if (p->related_value == p)
1047 p->related_value = 0;
1048 }
1049
1050 free_element (elt);
1051 }
1052
1053 /* Look up X in the hash table and return its table element,
1054 or 0 if X is not in the table.
1055
1056 MODE is the machine-mode of X, or if X is an integer constant
1057 with VOIDmode then MODE is the mode with which X will be used.
1058
1059 Here we are satisfied to find an expression whose tree structure
1060 looks like X. */
1061
1062 static struct table_elt *
1063 lookup (x, hash, mode)
1064 rtx x;
1065 int hash;
1066 enum machine_mode mode;
1067 {
1068 register struct table_elt *p;
1069
1070 for (p = table[hash]; p; p = p->next_same_hash)
1071 if (mode == p->mode && ((x == p->exp && GET_CODE (x) == REG)
1072 || exp_equiv_p (x, p->exp, GET_CODE (x) != REG, 0)))
1073 return p;
1074
1075 return 0;
1076 }
1077
1078 /* Like `lookup' but don't care whether the table element uses invalid regs.
1079 Also ignore discrepancies in the machine mode of a register. */
1080
1081 static struct table_elt *
1082 lookup_for_remove (x, hash, mode)
1083 rtx x;
1084 int hash;
1085 enum machine_mode mode;
1086 {
1087 register struct table_elt *p;
1088
1089 if (GET_CODE (x) == REG)
1090 {
1091 int regno = REGNO (x);
1092 /* Don't check the machine mode when comparing registers;
1093 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1094 for (p = table[hash]; p; p = p->next_same_hash)
1095 if (GET_CODE (p->exp) == REG
1096 && REGNO (p->exp) == regno)
1097 return p;
1098 }
1099 else
1100 {
1101 for (p = table[hash]; p; p = p->next_same_hash)
1102 if (mode == p->mode && (x == p->exp || exp_equiv_p (x, p->exp, 0, 0)))
1103 return p;
1104 }
1105
1106 return 0;
1107 }
1108
1109 /* Look for an expression equivalent to X and with code CODE.
1110 If one is found, return that expression. */
1111
1112 static rtx
1113 lookup_as_function (x, code)
1114 rtx x;
1115 enum rtx_code code;
1116 {
1117 register struct table_elt *p = lookup (x, safe_hash (x, VOIDmode) % NBUCKETS,
1118 GET_MODE (x));
1119 if (p == 0)
1120 return 0;
1121
1122 for (p = p->first_same_value; p; p = p->next_same_value)
1123 {
1124 if (GET_CODE (p->exp) == code
1125 /* Make sure this is a valid entry in the table. */
1126 && exp_equiv_p (p->exp, p->exp, 1, 0))
1127 return p->exp;
1128 }
1129
1130 return 0;
1131 }
1132
1133 /* Insert X in the hash table, assuming HASH is its hash code
1134 and CLASSP is an element of the class it should go in
1135 (or 0 if a new class should be made).
1136 It is inserted at the proper position to keep the class in
1137 the order cheapest first.
1138
1139 MODE is the machine-mode of X, or if X is an integer constant
1140 with VOIDmode then MODE is the mode with which X will be used.
1141
1142 For elements of equal cheapness, the most recent one
1143 goes in front, except that the first element in the list
1144 remains first unless a cheaper element is added. The order of
1145 pseudo-registers does not matter, as canon_reg will be called to
1146 find the cheapest when a register is retrieved from the table.
1147
1148 The in_memory field in the hash table element is set to 0.
1149 The caller must set it nonzero if appropriate.
1150
1151 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1152 and if insert_regs returns a nonzero value
1153 you must then recompute its hash code before calling here.
1154
1155 If necessary, update table showing constant values of quantities. */
1156
1157 #define CHEAPER(X,Y) ((X)->cost < (Y)->cost)
1158
1159 static struct table_elt *
1160 insert (x, classp, hash, mode)
1161 register rtx x;
1162 register struct table_elt *classp;
1163 int hash;
1164 enum machine_mode mode;
1165 {
1166 register struct table_elt *elt;
1167
1168 /* If X is a register and we haven't made a quantity for it,
1169 something is wrong. */
1170 if (GET_CODE (x) == REG && ! REGNO_QTY_VALID_P (REGNO (x)))
1171 abort ();
1172
1173 /* If X is a hard register, show it is being put in the table. */
1174 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
1175 {
1176 int regno = REGNO (x);
1177 int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
1178 int i;
1179
1180 for (i = regno; i < endregno; i++)
1181 SET_HARD_REG_BIT (hard_regs_in_table, i);
1182 }
1183
1184
1185 /* Put an element for X into the right hash bucket. */
1186
1187 elt = get_element ();
1188 elt->exp = x;
1189 elt->cost = COST (x);
1190 elt->next_same_value = 0;
1191 elt->prev_same_value = 0;
1192 elt->next_same_hash = table[hash];
1193 elt->prev_same_hash = 0;
1194 elt->related_value = 0;
1195 elt->in_memory = 0;
1196 elt->mode = mode;
1197 elt->is_const = (CONSTANT_P (x)
1198 /* GNU C++ takes advantage of this for `this'
1199 (and other const values). */
1200 || (RTX_UNCHANGING_P (x)
1201 && GET_CODE (x) == REG
1202 && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1203 || FIXED_BASE_PLUS_P (x));
1204
1205 if (table[hash])
1206 table[hash]->prev_same_hash = elt;
1207 table[hash] = elt;
1208
1209 /* Put it into the proper value-class. */
1210 if (classp)
1211 {
1212 classp = classp->first_same_value;
1213 if (CHEAPER (elt, classp))
1214 /* Insert at the head of the class */
1215 {
1216 register struct table_elt *p;
1217 elt->next_same_value = classp;
1218 classp->prev_same_value = elt;
1219 elt->first_same_value = elt;
1220
1221 for (p = classp; p; p = p->next_same_value)
1222 p->first_same_value = elt;
1223 }
1224 else
1225 {
1226 /* Insert not at head of the class. */
1227 /* Put it after the last element cheaper than X. */
1228 register struct table_elt *p, *next;
1229 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1230 p = next);
1231 /* Put it after P and before NEXT. */
1232 elt->next_same_value = next;
1233 if (next)
1234 next->prev_same_value = elt;
1235 elt->prev_same_value = p;
1236 p->next_same_value = elt;
1237 elt->first_same_value = classp;
1238 }
1239 }
1240 else
1241 elt->first_same_value = elt;
1242
1243 /* If this is a constant being set equivalent to a register or a register
1244 being set equivalent to a constant, note the constant equivalence.
1245
1246 If this is a constant, it cannot be equivalent to a different constant,
1247 and a constant is the only thing that can be cheaper than a register. So
1248 we know the register is the head of the class (before the constant was
1249 inserted).
1250
1251 If this is a register that is not already known equivalent to a
1252 constant, we must check the entire class.
1253
1254 If this is a register that is already known equivalent to an insn,
1255 update `qty_const_insn' to show that `this_insn' is the latest
1256 insn making that quantity equivalent to the constant. */
1257
1258 if (elt->is_const && classp && GET_CODE (classp->exp) == REG)
1259 {
1260 qty_const[reg_qty[REGNO (classp->exp)]]
1261 = gen_lowpart_if_possible (qty_mode[reg_qty[REGNO (classp->exp)]], x);
1262 qty_const_insn[reg_qty[REGNO (classp->exp)]] = this_insn;
1263 }
1264
1265 else if (GET_CODE (x) == REG && classp && ! qty_const[reg_qty[REGNO (x)]])
1266 {
1267 register struct table_elt *p;
1268
1269 for (p = classp; p != 0; p = p->next_same_value)
1270 {
1271 if (p->is_const)
1272 {
1273 qty_const[reg_qty[REGNO (x)]]
1274 = gen_lowpart_if_possible (GET_MODE (x), p->exp);
1275 qty_const_insn[reg_qty[REGNO (x)]] = this_insn;
1276 break;
1277 }
1278 }
1279 }
1280
1281 else if (GET_CODE (x) == REG && qty_const[reg_qty[REGNO (x)]]
1282 && GET_MODE (x) == qty_mode[reg_qty[REGNO (x)]])
1283 qty_const_insn[reg_qty[REGNO (x)]] = this_insn;
1284
1285 /* If this is a constant with symbolic value,
1286 and it has a term with an explicit integer value,
1287 link it up with related expressions. */
1288 if (GET_CODE (x) == CONST)
1289 {
1290 rtx subexp = get_related_value (x);
1291 int subhash;
1292 struct table_elt *subelt, *subelt_prev;
1293
1294 if (subexp != 0)
1295 {
1296 /* Get the integer-free subexpression in the hash table. */
1297 subhash = safe_hash (subexp, mode) % NBUCKETS;
1298 subelt = lookup (subexp, subhash, mode);
1299 if (subelt == 0)
1300 subelt = insert (subexp, NULL_PTR, subhash, mode);
1301 /* Initialize SUBELT's circular chain if it has none. */
1302 if (subelt->related_value == 0)
1303 subelt->related_value = subelt;
1304 /* Find the element in the circular chain that precedes SUBELT. */
1305 subelt_prev = subelt;
1306 while (subelt_prev->related_value != subelt)
1307 subelt_prev = subelt_prev->related_value;
1308 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1309 This way the element that follows SUBELT is the oldest one. */
1310 elt->related_value = subelt_prev->related_value;
1311 subelt_prev->related_value = elt;
1312 }
1313 }
1314
1315 return elt;
1316 }
1317 \f
1318 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1319 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1320 the two classes equivalent.
1321
1322 CLASS1 will be the surviving class; CLASS2 should not be used after this
1323 call.
1324
1325 Any invalid entries in CLASS2 will not be copied. */
1326
1327 static void
1328 merge_equiv_classes (class1, class2)
1329 struct table_elt *class1, *class2;
1330 {
1331 struct table_elt *elt, *next, *new;
1332
1333 /* Ensure we start with the head of the classes. */
1334 class1 = class1->first_same_value;
1335 class2 = class2->first_same_value;
1336
1337 /* If they were already equal, forget it. */
1338 if (class1 == class2)
1339 return;
1340
1341 for (elt = class2; elt; elt = next)
1342 {
1343 int hash;
1344 rtx exp = elt->exp;
1345 enum machine_mode mode = elt->mode;
1346
1347 next = elt->next_same_value;
1348
1349 /* Remove old entry, make a new one in CLASS1's class.
1350 Don't do this for invalid entries as we cannot find their
1351 hash code (it also isn't necessary). */
1352 if (GET_CODE (exp) == REG || exp_equiv_p (exp, exp, 1, 0))
1353 {
1354 hash_arg_in_memory = 0;
1355 hash_arg_in_struct = 0;
1356 hash = HASH (exp, mode);
1357
1358 if (GET_CODE (exp) == REG)
1359 delete_reg_equiv (REGNO (exp));
1360
1361 remove_from_table (elt, hash);
1362
1363 if (insert_regs (exp, class1, 0))
1364 hash = HASH (exp, mode);
1365 new = insert (exp, class1, hash, mode);
1366 new->in_memory = hash_arg_in_memory;
1367 new->in_struct = hash_arg_in_struct;
1368 }
1369 }
1370 }
1371 \f
1372 /* Remove from the hash table, or mark as invalid,
1373 all expressions whose values could be altered by storing in X.
1374 X is a register, a subreg, or a memory reference with nonvarying address
1375 (because, when a memory reference with a varying address is stored in,
1376 all memory references are removed by invalidate_memory
1377 so specific invalidation is superfluous).
1378
1379 A nonvarying address may be just a register or just
1380 a symbol reference, or it may be either of those plus
1381 a numeric offset. */
1382
1383 static void
1384 invalidate (x)
1385 rtx x;
1386 {
1387 register int i;
1388 register struct table_elt *p;
1389 register rtx base;
1390 register HOST_WIDE_INT start, end;
1391
1392 /* If X is a register, dependencies on its contents
1393 are recorded through the qty number mechanism.
1394 Just change the qty number of the register,
1395 mark it as invalid for expressions that refer to it,
1396 and remove it itself. */
1397
1398 if (GET_CODE (x) == REG)
1399 {
1400 register int regno = REGNO (x);
1401 register int hash = HASH (x, GET_MODE (x));
1402
1403 /* Remove REGNO from any quantity list it might be on and indicate
1404 that it's value might have changed. If it is a pseudo, remove its
1405 entry from the hash table.
1406
1407 For a hard register, we do the first two actions above for any
1408 additional hard registers corresponding to X. Then, if any of these
1409 registers are in the table, we must remove any REG entries that
1410 overlap these registers. */
1411
1412 delete_reg_equiv (regno);
1413 reg_tick[regno]++;
1414
1415 if (regno >= FIRST_PSEUDO_REGISTER)
1416 remove_from_table (lookup_for_remove (x, hash, GET_MODE (x)), hash);
1417 else
1418 {
1419 int in_table = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1420 int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
1421 int tregno, tendregno;
1422 register struct table_elt *p, *next;
1423
1424 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1425
1426 for (i = regno + 1; i < endregno; i++)
1427 {
1428 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, i);
1429 CLEAR_HARD_REG_BIT (hard_regs_in_table, i);
1430 delete_reg_equiv (i);
1431 reg_tick[i]++;
1432 }
1433
1434 if (in_table)
1435 for (hash = 0; hash < NBUCKETS; hash++)
1436 for (p = table[hash]; p; p = next)
1437 {
1438 next = p->next_same_hash;
1439
1440 if (GET_CODE (p->exp) != REG
1441 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1442 continue;
1443
1444 tregno = REGNO (p->exp);
1445 tendregno
1446 = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (p->exp));
1447 if (tendregno > regno && tregno < endregno)
1448 remove_from_table (p, hash);
1449 }
1450 }
1451
1452 return;
1453 }
1454
1455 if (GET_CODE (x) == SUBREG)
1456 {
1457 if (GET_CODE (SUBREG_REG (x)) != REG)
1458 abort ();
1459 invalidate (SUBREG_REG (x));
1460 return;
1461 }
1462
1463 /* X is not a register; it must be a memory reference with
1464 a nonvarying address. Remove all hash table elements
1465 that refer to overlapping pieces of memory. */
1466
1467 if (GET_CODE (x) != MEM)
1468 abort ();
1469 base = XEXP (x, 0);
1470 start = 0;
1471
1472 /* Registers with nonvarying addresses usually have constant equivalents;
1473 but the frame pointer register is also possible. */
1474 if (GET_CODE (base) == REG
1475 && REGNO_QTY_VALID_P (REGNO (base))
1476 && qty_mode[reg_qty[REGNO (base)]] == GET_MODE (base)
1477 && qty_const[reg_qty[REGNO (base)]] != 0)
1478 base = qty_const[reg_qty[REGNO (base)]];
1479 else if (GET_CODE (base) == PLUS
1480 && GET_CODE (XEXP (base, 1)) == CONST_INT
1481 && GET_CODE (XEXP (base, 0)) == REG
1482 && REGNO_QTY_VALID_P (REGNO (XEXP (base, 0)))
1483 && (qty_mode[reg_qty[REGNO (XEXP (base, 0))]]
1484 == GET_MODE (XEXP (base, 0)))
1485 && qty_const[reg_qty[REGNO (XEXP (base, 0))]])
1486 {
1487 start = INTVAL (XEXP (base, 1));
1488 base = qty_const[reg_qty[REGNO (XEXP (base, 0))]];
1489 }
1490
1491 if (GET_CODE (base) == CONST)
1492 base = XEXP (base, 0);
1493 if (GET_CODE (base) == PLUS
1494 && GET_CODE (XEXP (base, 1)) == CONST_INT)
1495 {
1496 start += INTVAL (XEXP (base, 1));
1497 base = XEXP (base, 0);
1498 }
1499
1500 end = start + GET_MODE_SIZE (GET_MODE (x));
1501 for (i = 0; i < NBUCKETS; i++)
1502 {
1503 register struct table_elt *next;
1504 for (p = table[i]; p; p = next)
1505 {
1506 next = p->next_same_hash;
1507 if (refers_to_mem_p (p->exp, base, start, end))
1508 remove_from_table (p, i);
1509 }
1510 }
1511 }
1512
1513 /* Remove all expressions that refer to register REGNO,
1514 since they are already invalid, and we are about to
1515 mark that register valid again and don't want the old
1516 expressions to reappear as valid. */
1517
1518 static void
1519 remove_invalid_refs (regno)
1520 int regno;
1521 {
1522 register int i;
1523 register struct table_elt *p, *next;
1524
1525 for (i = 0; i < NBUCKETS; i++)
1526 for (p = table[i]; p; p = next)
1527 {
1528 next = p->next_same_hash;
1529 if (GET_CODE (p->exp) != REG
1530 && refers_to_regno_p (regno, regno + 1, p->exp, NULL_PTR))
1531 remove_from_table (p, i);
1532 }
1533 }
1534 \f
1535 /* Recompute the hash codes of any valid entries in the hash table that
1536 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
1537
1538 This is called when we make a jump equivalence. */
1539
1540 static void
1541 rehash_using_reg (x)
1542 rtx x;
1543 {
1544 int i;
1545 struct table_elt *p, *next;
1546 int hash;
1547
1548 if (GET_CODE (x) == SUBREG)
1549 x = SUBREG_REG (x);
1550
1551 /* If X is not a register or if the register is known not to be in any
1552 valid entries in the table, we have no work to do. */
1553
1554 if (GET_CODE (x) != REG
1555 || reg_in_table[REGNO (x)] < 0
1556 || reg_in_table[REGNO (x)] != reg_tick[REGNO (x)])
1557 return;
1558
1559 /* Scan all hash chains looking for valid entries that mention X.
1560 If we find one and it is in the wrong hash chain, move it. We can skip
1561 objects that are registers, since they are handled specially. */
1562
1563 for (i = 0; i < NBUCKETS; i++)
1564 for (p = table[i]; p; p = next)
1565 {
1566 next = p->next_same_hash;
1567 if (GET_CODE (p->exp) != REG && reg_mentioned_p (x, p->exp)
1568 && exp_equiv_p (p->exp, p->exp, 1, 0)
1569 && i != (hash = safe_hash (p->exp, p->mode) % NBUCKETS))
1570 {
1571 if (p->next_same_hash)
1572 p->next_same_hash->prev_same_hash = p->prev_same_hash;
1573
1574 if (p->prev_same_hash)
1575 p->prev_same_hash->next_same_hash = p->next_same_hash;
1576 else
1577 table[i] = p->next_same_hash;
1578
1579 p->next_same_hash = table[hash];
1580 p->prev_same_hash = 0;
1581 if (table[hash])
1582 table[hash]->prev_same_hash = p;
1583 table[hash] = p;
1584 }
1585 }
1586 }
1587 \f
1588 /* Remove from the hash table all expressions that reference memory,
1589 or some of them as specified by *WRITES. */
1590
1591 static void
1592 invalidate_memory (writes)
1593 struct write_data *writes;
1594 {
1595 register int i;
1596 register struct table_elt *p, *next;
1597 int all = writes->all;
1598 int nonscalar = writes->nonscalar;
1599
1600 for (i = 0; i < NBUCKETS; i++)
1601 for (p = table[i]; p; p = next)
1602 {
1603 next = p->next_same_hash;
1604 if (p->in_memory
1605 && (all
1606 || (nonscalar && p->in_struct)
1607 || cse_rtx_addr_varies_p (p->exp)))
1608 remove_from_table (p, i);
1609 }
1610 }
1611 \f
1612 /* Remove from the hash table any expression that is a call-clobbered
1613 register. Also update their TICK values. */
1614
1615 static void
1616 invalidate_for_call ()
1617 {
1618 int regno, endregno;
1619 int i;
1620 int hash;
1621 struct table_elt *p, *next;
1622 int in_table = 0;
1623
1624 /* Go through all the hard registers. For each that is clobbered in
1625 a CALL_INSN, remove the register from quantity chains and update
1626 reg_tick if defined. Also see if any of these registers is currently
1627 in the table. */
1628
1629 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1630 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
1631 {
1632 delete_reg_equiv (regno);
1633 if (reg_tick[regno] >= 0)
1634 reg_tick[regno]++;
1635
1636 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1637 }
1638
1639 /* In the case where we have no call-clobbered hard registers in the
1640 table, we are done. Otherwise, scan the table and remove any
1641 entry that overlaps a call-clobbered register. */
1642
1643 if (in_table)
1644 for (hash = 0; hash < NBUCKETS; hash++)
1645 for (p = table[hash]; p; p = next)
1646 {
1647 next = p->next_same_hash;
1648
1649 if (GET_CODE (p->exp) != REG
1650 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1651 continue;
1652
1653 regno = REGNO (p->exp);
1654 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (p->exp));
1655
1656 for (i = regno; i < endregno; i++)
1657 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1658 {
1659 remove_from_table (p, hash);
1660 break;
1661 }
1662 }
1663 }
1664 \f
1665 /* Given an expression X of type CONST,
1666 and ELT which is its table entry (or 0 if it
1667 is not in the hash table),
1668 return an alternate expression for X as a register plus integer.
1669 If none can be found, return 0. */
1670
1671 static rtx
1672 use_related_value (x, elt)
1673 rtx x;
1674 struct table_elt *elt;
1675 {
1676 register struct table_elt *relt = 0;
1677 register struct table_elt *p, *q;
1678 HOST_WIDE_INT offset;
1679
1680 /* First, is there anything related known?
1681 If we have a table element, we can tell from that.
1682 Otherwise, must look it up. */
1683
1684 if (elt != 0 && elt->related_value != 0)
1685 relt = elt;
1686 else if (elt == 0 && GET_CODE (x) == CONST)
1687 {
1688 rtx subexp = get_related_value (x);
1689 if (subexp != 0)
1690 relt = lookup (subexp,
1691 safe_hash (subexp, GET_MODE (subexp)) % NBUCKETS,
1692 GET_MODE (subexp));
1693 }
1694
1695 if (relt == 0)
1696 return 0;
1697
1698 /* Search all related table entries for one that has an
1699 equivalent register. */
1700
1701 p = relt;
1702 while (1)
1703 {
1704 /* This loop is strange in that it is executed in two different cases.
1705 The first is when X is already in the table. Then it is searching
1706 the RELATED_VALUE list of X's class (RELT). The second case is when
1707 X is not in the table. Then RELT points to a class for the related
1708 value.
1709
1710 Ensure that, whatever case we are in, that we ignore classes that have
1711 the same value as X. */
1712
1713 if (rtx_equal_p (x, p->exp))
1714 q = 0;
1715 else
1716 for (q = p->first_same_value; q; q = q->next_same_value)
1717 if (GET_CODE (q->exp) == REG)
1718 break;
1719
1720 if (q)
1721 break;
1722
1723 p = p->related_value;
1724
1725 /* We went all the way around, so there is nothing to be found.
1726 Alternatively, perhaps RELT was in the table for some other reason
1727 and it has no related values recorded. */
1728 if (p == relt || p == 0)
1729 break;
1730 }
1731
1732 if (q == 0)
1733 return 0;
1734
1735 offset = (get_integer_term (x) - get_integer_term (p->exp));
1736 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
1737 return plus_constant (q->exp, offset);
1738 }
1739 \f
1740 /* Hash an rtx. We are careful to make sure the value is never negative.
1741 Equivalent registers hash identically.
1742 MODE is used in hashing for CONST_INTs only;
1743 otherwise the mode of X is used.
1744
1745 Store 1 in do_not_record if any subexpression is volatile.
1746
1747 Store 1 in hash_arg_in_memory if X contains a MEM rtx
1748 which does not have the RTX_UNCHANGING_P bit set.
1749 In this case, also store 1 in hash_arg_in_struct
1750 if there is a MEM rtx which has the MEM_IN_STRUCT_P bit set.
1751
1752 Note that cse_insn knows that the hash code of a MEM expression
1753 is just (int) MEM plus the hash code of the address. */
1754
1755 static int
1756 canon_hash (x, mode)
1757 rtx x;
1758 enum machine_mode mode;
1759 {
1760 register int i, j;
1761 register int hash = 0;
1762 register enum rtx_code code;
1763 register char *fmt;
1764
1765 /* repeat is used to turn tail-recursion into iteration. */
1766 repeat:
1767 if (x == 0)
1768 return hash;
1769
1770 code = GET_CODE (x);
1771 switch (code)
1772 {
1773 case REG:
1774 {
1775 register int regno = REGNO (x);
1776
1777 /* On some machines, we can't record any non-fixed hard register,
1778 because extending its life will cause reload problems. We
1779 consider ap, fp, and sp to be fixed for this purpose.
1780 On all machines, we can't record any global registers. */
1781
1782 if (regno < FIRST_PSEUDO_REGISTER
1783 && (global_regs[regno]
1784 #ifdef SMALL_REGISTER_CLASSES
1785 || (! fixed_regs[regno]
1786 && regno != FRAME_POINTER_REGNUM
1787 && regno != ARG_POINTER_REGNUM
1788 && regno != STACK_POINTER_REGNUM)
1789 #endif
1790 ))
1791 {
1792 do_not_record = 1;
1793 return 0;
1794 }
1795 return hash + ((int) REG << 7) + reg_qty[regno];
1796 }
1797
1798 case CONST_INT:
1799 hash += ((int) mode + ((int) CONST_INT << 7)
1800 + INTVAL (x) + (INTVAL (x) >> HASHBITS));
1801 return ((1 << HASHBITS) - 1) & hash;
1802
1803 case CONST_DOUBLE:
1804 /* This is like the general case, except that it only counts
1805 the integers representing the constant. */
1806 hash += (int) code + (int) GET_MODE (x);
1807 {
1808 int i;
1809 for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
1810 {
1811 int tem = XINT (x, i);
1812 hash += ((1 << HASHBITS) - 1) & (tem + (tem >> HASHBITS));
1813 }
1814 }
1815 return hash;
1816
1817 /* Assume there is only one rtx object for any given label. */
1818 case LABEL_REF:
1819 /* Use `and' to ensure a positive number. */
1820 return (hash + ((HOST_WIDE_INT) LABEL_REF << 7)
1821 + ((HOST_WIDE_INT) XEXP (x, 0) & ((1 << HASHBITS) - 1)));
1822
1823 case SYMBOL_REF:
1824 return (hash + ((HOST_WIDE_INT) SYMBOL_REF << 7)
1825 + ((HOST_WIDE_INT) XEXP (x, 0) & ((1 << HASHBITS) - 1)));
1826
1827 case MEM:
1828 if (MEM_VOLATILE_P (x))
1829 {
1830 do_not_record = 1;
1831 return 0;
1832 }
1833 if (! RTX_UNCHANGING_P (x))
1834 {
1835 hash_arg_in_memory = 1;
1836 if (MEM_IN_STRUCT_P (x)) hash_arg_in_struct = 1;
1837 }
1838 /* Now that we have already found this special case,
1839 might as well speed it up as much as possible. */
1840 hash += (int) MEM;
1841 x = XEXP (x, 0);
1842 goto repeat;
1843
1844 case PRE_DEC:
1845 case PRE_INC:
1846 case POST_DEC:
1847 case POST_INC:
1848 case PC:
1849 case CC0:
1850 case CALL:
1851 case UNSPEC_VOLATILE:
1852 do_not_record = 1;
1853 return 0;
1854
1855 case ASM_OPERANDS:
1856 if (MEM_VOLATILE_P (x))
1857 {
1858 do_not_record = 1;
1859 return 0;
1860 }
1861 }
1862
1863 i = GET_RTX_LENGTH (code) - 1;
1864 hash += (int) code + (int) GET_MODE (x);
1865 fmt = GET_RTX_FORMAT (code);
1866 for (; i >= 0; i--)
1867 {
1868 if (fmt[i] == 'e')
1869 {
1870 rtx tem = XEXP (x, i);
1871 rtx tem1;
1872
1873 /* If the operand is a REG that is equivalent to a constant, hash
1874 as if we were hashing the constant, since we will be comparing
1875 that way. */
1876 if (tem != 0 && GET_CODE (tem) == REG
1877 && REGNO_QTY_VALID_P (REGNO (tem))
1878 && qty_mode[reg_qty[REGNO (tem)]] == GET_MODE (tem)
1879 && (tem1 = qty_const[reg_qty[REGNO (tem)]]) != 0
1880 && CONSTANT_P (tem1))
1881 tem = tem1;
1882
1883 /* If we are about to do the last recursive call
1884 needed at this level, change it into iteration.
1885 This function is called enough to be worth it. */
1886 if (i == 0)
1887 {
1888 x = tem;
1889 goto repeat;
1890 }
1891 hash += canon_hash (tem, 0);
1892 }
1893 else if (fmt[i] == 'E')
1894 for (j = 0; j < XVECLEN (x, i); j++)
1895 hash += canon_hash (XVECEXP (x, i, j), 0);
1896 else if (fmt[i] == 's')
1897 {
1898 register char *p = XSTR (x, i);
1899 if (p)
1900 while (*p)
1901 {
1902 register int tem = *p++;
1903 hash += ((1 << HASHBITS) - 1) & (tem + (tem >> HASHBITS));
1904 }
1905 }
1906 else if (fmt[i] == 'i')
1907 {
1908 register int tem = XINT (x, i);
1909 hash += ((1 << HASHBITS) - 1) & (tem + (tem >> HASHBITS));
1910 }
1911 else
1912 abort ();
1913 }
1914 return hash;
1915 }
1916
1917 /* Like canon_hash but with no side effects. */
1918
1919 static int
1920 safe_hash (x, mode)
1921 rtx x;
1922 enum machine_mode mode;
1923 {
1924 int save_do_not_record = do_not_record;
1925 int save_hash_arg_in_memory = hash_arg_in_memory;
1926 int save_hash_arg_in_struct = hash_arg_in_struct;
1927 int hash = canon_hash (x, mode);
1928 hash_arg_in_memory = save_hash_arg_in_memory;
1929 hash_arg_in_struct = save_hash_arg_in_struct;
1930 do_not_record = save_do_not_record;
1931 return hash;
1932 }
1933 \f
1934 /* Return 1 iff X and Y would canonicalize into the same thing,
1935 without actually constructing the canonicalization of either one.
1936 If VALIDATE is nonzero,
1937 we assume X is an expression being processed from the rtl
1938 and Y was found in the hash table. We check register refs
1939 in Y for being marked as valid.
1940
1941 If EQUAL_VALUES is nonzero, we allow a register to match a constant value
1942 that is known to be in the register. Ordinarily, we don't allow them
1943 to match, because letting them match would cause unpredictable results
1944 in all the places that search a hash table chain for an equivalent
1945 for a given value. A possible equivalent that has different structure
1946 has its hash code computed from different data. Whether the hash code
1947 is the same as that of the the given value is pure luck. */
1948
1949 static int
1950 exp_equiv_p (x, y, validate, equal_values)
1951 rtx x, y;
1952 int validate;
1953 int equal_values;
1954 {
1955 register int i, j;
1956 register enum rtx_code code;
1957 register char *fmt;
1958
1959 /* Note: it is incorrect to assume an expression is equivalent to itself
1960 if VALIDATE is nonzero. */
1961 if (x == y && !validate)
1962 return 1;
1963 if (x == 0 || y == 0)
1964 return x == y;
1965
1966 code = GET_CODE (x);
1967 if (code != GET_CODE (y))
1968 {
1969 if (!equal_values)
1970 return 0;
1971
1972 /* If X is a constant and Y is a register or vice versa, they may be
1973 equivalent. We only have to validate if Y is a register. */
1974 if (CONSTANT_P (x) && GET_CODE (y) == REG
1975 && REGNO_QTY_VALID_P (REGNO (y))
1976 && GET_MODE (y) == qty_mode[reg_qty[REGNO (y)]]
1977 && rtx_equal_p (x, qty_const[reg_qty[REGNO (y)]])
1978 && (! validate || reg_in_table[REGNO (y)] == reg_tick[REGNO (y)]))
1979 return 1;
1980
1981 if (CONSTANT_P (y) && code == REG
1982 && REGNO_QTY_VALID_P (REGNO (x))
1983 && GET_MODE (x) == qty_mode[reg_qty[REGNO (x)]]
1984 && rtx_equal_p (y, qty_const[reg_qty[REGNO (x)]]))
1985 return 1;
1986
1987 return 0;
1988 }
1989
1990 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1991 if (GET_MODE (x) != GET_MODE (y))
1992 return 0;
1993
1994 switch (code)
1995 {
1996 case PC:
1997 case CC0:
1998 return x == y;
1999
2000 case CONST_INT:
2001 return INTVAL (x) == INTVAL (y);
2002
2003 case LABEL_REF:
2004 case SYMBOL_REF:
2005 return XEXP (x, 0) == XEXP (y, 0);
2006
2007 case REG:
2008 {
2009 int regno = REGNO (y);
2010 int endregno
2011 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
2012 : HARD_REGNO_NREGS (regno, GET_MODE (y)));
2013 int i;
2014
2015 /* If the quantities are not the same, the expressions are not
2016 equivalent. If there are and we are not to validate, they
2017 are equivalent. Otherwise, ensure all regs are up-to-date. */
2018
2019 if (reg_qty[REGNO (x)] != reg_qty[regno])
2020 return 0;
2021
2022 if (! validate)
2023 return 1;
2024
2025 for (i = regno; i < endregno; i++)
2026 if (reg_in_table[i] != reg_tick[i])
2027 return 0;
2028
2029 return 1;
2030 }
2031
2032 /* For commutative operations, check both orders. */
2033 case PLUS:
2034 case MULT:
2035 case AND:
2036 case IOR:
2037 case XOR:
2038 case NE:
2039 case EQ:
2040 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0), validate, equal_values)
2041 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2042 validate, equal_values))
2043 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2044 validate, equal_values)
2045 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2046 validate, equal_values)));
2047 }
2048
2049 /* Compare the elements. If any pair of corresponding elements
2050 fail to match, return 0 for the whole things. */
2051
2052 fmt = GET_RTX_FORMAT (code);
2053 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2054 {
2055 switch (fmt[i])
2056 {
2057 case 'e':
2058 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i), validate, equal_values))
2059 return 0;
2060 break;
2061
2062 case 'E':
2063 if (XVECLEN (x, i) != XVECLEN (y, i))
2064 return 0;
2065 for (j = 0; j < XVECLEN (x, i); j++)
2066 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2067 validate, equal_values))
2068 return 0;
2069 break;
2070
2071 case 's':
2072 if (strcmp (XSTR (x, i), XSTR (y, i)))
2073 return 0;
2074 break;
2075
2076 case 'i':
2077 if (XINT (x, i) != XINT (y, i))
2078 return 0;
2079 break;
2080
2081 case 'w':
2082 if (XWINT (x, i) != XWINT (y, i))
2083 return 0;
2084 break;
2085
2086 case '0':
2087 break;
2088
2089 default:
2090 abort ();
2091 }
2092 }
2093
2094 return 1;
2095 }
2096 \f
2097 /* Return 1 iff any subexpression of X matches Y.
2098 Here we do not require that X or Y be valid (for registers referred to)
2099 for being in the hash table. */
2100
2101 int
2102 refers_to_p (x, y)
2103 rtx x, y;
2104 {
2105 register int i;
2106 register enum rtx_code code;
2107 register char *fmt;
2108
2109 repeat:
2110 if (x == y)
2111 return 1;
2112 if (x == 0 || y == 0)
2113 return 0;
2114
2115 code = GET_CODE (x);
2116 /* If X as a whole has the same code as Y, they may match.
2117 If so, return 1. */
2118 if (code == GET_CODE (y))
2119 {
2120 if (exp_equiv_p (x, y, 0, 1))
2121 return 1;
2122 }
2123
2124 /* X does not match, so try its subexpressions. */
2125
2126 fmt = GET_RTX_FORMAT (code);
2127 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2128 if (fmt[i] == 'e')
2129 {
2130 if (i == 0)
2131 {
2132 x = XEXP (x, 0);
2133 goto repeat;
2134 }
2135 else
2136 if (refers_to_p (XEXP (x, i), y))
2137 return 1;
2138 }
2139 else if (fmt[i] == 'E')
2140 {
2141 int j;
2142 for (j = 0; j < XVECLEN (x, i); j++)
2143 if (refers_to_p (XVECEXP (x, i, j), y))
2144 return 1;
2145 }
2146
2147 return 0;
2148 }
2149 \f
2150 /* Return 1 iff any subexpression of X refers to memory
2151 at an address of BASE plus some offset
2152 such that any of the bytes' offsets fall between START (inclusive)
2153 and END (exclusive).
2154
2155 The value is undefined if X is a varying address.
2156 This function is not used in such cases.
2157
2158 When used in the cse pass, `qty_const' is nonzero, and it is used
2159 to treat an address that is a register with a known constant value
2160 as if it were that constant value.
2161 In the loop pass, `qty_const' is zero, so this is not done. */
2162
2163 int
2164 refers_to_mem_p (x, base, start, end)
2165 rtx x, base;
2166 HOST_WIDE_INT start, end;
2167 {
2168 register HOST_WIDE_INT i;
2169 register enum rtx_code code;
2170 register char *fmt;
2171
2172 if (GET_CODE (base) == CONST_INT)
2173 {
2174 start += INTVAL (base);
2175 end += INTVAL (base);
2176 base = const0_rtx;
2177 }
2178
2179 repeat:
2180 if (x == 0)
2181 return 0;
2182
2183 code = GET_CODE (x);
2184 if (code == MEM)
2185 {
2186 register rtx addr = XEXP (x, 0); /* Get the address. */
2187 int myend;
2188
2189 i = 0;
2190 if (GET_CODE (addr) == REG
2191 /* qty_const is 0 when outside the cse pass;
2192 at such times, this info is not available. */
2193 && qty_const != 0
2194 && REGNO_QTY_VALID_P (REGNO (addr))
2195 && GET_MODE (addr) == qty_mode[reg_qty[REGNO (addr)]]
2196 && qty_const[reg_qty[REGNO (addr)]] != 0)
2197 addr = qty_const[reg_qty[REGNO (addr)]];
2198 else if (GET_CODE (addr) == PLUS
2199 && GET_CODE (XEXP (addr, 1)) == CONST_INT
2200 && GET_CODE (XEXP (addr, 0)) == REG
2201 && qty_const != 0
2202 && REGNO_QTY_VALID_P (REGNO (XEXP (addr, 0)))
2203 && (GET_MODE (XEXP (addr, 0))
2204 == qty_mode[reg_qty[REGNO (XEXP (addr, 0))]])
2205 && qty_const[reg_qty[REGNO (XEXP (addr, 0))]])
2206 {
2207 i = INTVAL (XEXP (addr, 1));
2208 addr = qty_const[reg_qty[REGNO (XEXP (addr, 0))]];
2209 }
2210
2211 check_addr:
2212 if (GET_CODE (addr) == CONST)
2213 addr = XEXP (addr, 0);
2214
2215 /* If ADDR is BASE, or BASE plus an integer, put
2216 the integer in I. */
2217 if (GET_CODE (addr) == PLUS
2218 && XEXP (addr, 0) == base
2219 && GET_CODE (XEXP (addr, 1)) == CONST_INT)
2220 i += INTVAL (XEXP (addr, 1));
2221 else if (GET_CODE (addr) == LO_SUM)
2222 {
2223 if (GET_CODE (base) != LO_SUM)
2224 return 1;
2225 /* The REG component of the LO_SUM is known by the
2226 const value in the XEXP part. */
2227 addr = XEXP (addr, 1);
2228 base = XEXP (base, 1);
2229 i = 0;
2230 if (GET_CODE (base) == CONST)
2231 base = XEXP (base, 0);
2232 if (GET_CODE (base) == PLUS
2233 && GET_CODE (XEXP (base, 1)) == CONST_INT)
2234 {
2235 HOST_WIDE_INT tem = INTVAL (XEXP (base, 1));
2236 start += tem;
2237 end += tem;
2238 base = XEXP (base, 0);
2239 }
2240 goto check_addr;
2241 }
2242 else if (GET_CODE (base) == LO_SUM)
2243 {
2244 base = XEXP (base, 1);
2245 if (GET_CODE (base) == CONST)
2246 base = XEXP (base, 0);
2247 if (GET_CODE (base) == PLUS
2248 && GET_CODE (XEXP (base, 1)) == CONST_INT)
2249 {
2250 HOST_WIDE_INT tem = INTVAL (XEXP (base, 1));
2251 start += tem;
2252 end += tem;
2253 base = XEXP (base, 0);
2254 }
2255 goto check_addr;
2256 }
2257 else if (GET_CODE (addr) == CONST_INT && base == const0_rtx)
2258 i = INTVAL (addr);
2259 else if (addr != base)
2260 return 0;
2261
2262 myend = i + GET_MODE_SIZE (GET_MODE (x));
2263 return myend > start && i < end;
2264 }
2265
2266 /* X does not match, so try its subexpressions. */
2267
2268 fmt = GET_RTX_FORMAT (code);
2269 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2270 if (fmt[i] == 'e')
2271 {
2272 if (i == 0)
2273 {
2274 x = XEXP (x, 0);
2275 goto repeat;
2276 }
2277 else
2278 if (refers_to_mem_p (XEXP (x, i), base, start, end))
2279 return 1;
2280 }
2281 else if (fmt[i] == 'E')
2282 {
2283 int j;
2284 for (j = 0; j < XVECLEN (x, i); j++)
2285 if (refers_to_mem_p (XVECEXP (x, i, j), base, start, end))
2286 return 1;
2287 }
2288
2289 return 0;
2290 }
2291
2292 /* Nonzero if X refers to memory at a varying address;
2293 except that a register which has at the moment a known constant value
2294 isn't considered variable. */
2295
2296 static int
2297 cse_rtx_addr_varies_p (x)
2298 rtx x;
2299 {
2300 /* We need not check for X and the equivalence class being of the same
2301 mode because if X is equivalent to a constant in some mode, it
2302 doesn't vary in any mode. */
2303
2304 if (GET_CODE (x) == MEM
2305 && GET_CODE (XEXP (x, 0)) == REG
2306 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2307 && GET_MODE (XEXP (x, 0)) == qty_mode[reg_qty[REGNO (XEXP (x, 0))]]
2308 && qty_const[reg_qty[REGNO (XEXP (x, 0))]] != 0)
2309 return 0;
2310
2311 if (GET_CODE (x) == MEM
2312 && GET_CODE (XEXP (x, 0)) == PLUS
2313 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2314 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
2315 && REGNO_QTY_VALID_P (REGNO (XEXP (XEXP (x, 0), 0)))
2316 && (GET_MODE (XEXP (XEXP (x, 0), 0))
2317 == qty_mode[reg_qty[REGNO (XEXP (XEXP (x, 0), 0))]])
2318 && qty_const[reg_qty[REGNO (XEXP (XEXP (x, 0), 0))]])
2319 return 0;
2320
2321 return rtx_addr_varies_p (x);
2322 }
2323 \f
2324 /* Canonicalize an expression:
2325 replace each register reference inside it
2326 with the "oldest" equivalent register.
2327
2328 If INSN is non-zero and we are replacing a pseudo with a hard register
2329 or vice versa, verify that INSN remains valid after we make our
2330 substitution. */
2331
2332 static rtx
2333 canon_reg (x, insn)
2334 rtx x;
2335 rtx insn;
2336 {
2337 register int i;
2338 register enum rtx_code code;
2339 register char *fmt;
2340
2341 if (x == 0)
2342 return x;
2343
2344 code = GET_CODE (x);
2345 switch (code)
2346 {
2347 case PC:
2348 case CC0:
2349 case CONST:
2350 case CONST_INT:
2351 case CONST_DOUBLE:
2352 case SYMBOL_REF:
2353 case LABEL_REF:
2354 case ADDR_VEC:
2355 case ADDR_DIFF_VEC:
2356 return x;
2357
2358 case REG:
2359 {
2360 register int first;
2361
2362 /* Never replace a hard reg, because hard regs can appear
2363 in more than one machine mode, and we must preserve the mode
2364 of each occurrence. Also, some hard regs appear in
2365 MEMs that are shared and mustn't be altered. Don't try to
2366 replace any reg that maps to a reg of class NO_REGS. */
2367 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2368 || ! REGNO_QTY_VALID_P (REGNO (x)))
2369 return x;
2370
2371 first = qty_first_reg[reg_qty[REGNO (x)]];
2372 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2373 : REGNO_REG_CLASS (first) == NO_REGS ? x
2374 : gen_rtx (REG, qty_mode[reg_qty[REGNO (x)]], first));
2375 }
2376 }
2377
2378 fmt = GET_RTX_FORMAT (code);
2379 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2380 {
2381 register int j;
2382
2383 if (fmt[i] == 'e')
2384 {
2385 rtx new = canon_reg (XEXP (x, i), insn);
2386
2387 /* If replacing pseudo with hard reg or vice versa, ensure the
2388 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2389 if (new && GET_CODE (new) == REG && GET_CODE (XEXP (x, i)) == REG
2390 && (((REGNO (new) < FIRST_PSEUDO_REGISTER)
2391 != (REGNO (XEXP (x, i)) < FIRST_PSEUDO_REGISTER))
2392 || (insn != 0 && insn_n_dups[recog_memoized (insn)] > 0)))
2393 validate_change (insn, &XEXP (x, i), new, 1);
2394 else
2395 XEXP (x, i) = new;
2396 }
2397 else if (fmt[i] == 'E')
2398 for (j = 0; j < XVECLEN (x, i); j++)
2399 XVECEXP (x, i, j) = canon_reg (XVECEXP (x, i, j), insn);
2400 }
2401
2402 return x;
2403 }
2404 \f
2405 /* LOC is a location with INSN that is an operand address (the contents of
2406 a MEM). Find the best equivalent address to use that is valid for this
2407 insn.
2408
2409 On most CISC machines, complicated address modes are costly, and rtx_cost
2410 is a good approximation for that cost. However, most RISC machines have
2411 only a few (usually only one) memory reference formats. If an address is
2412 valid at all, it is often just as cheap as any other address. Hence, for
2413 RISC machines, we use the configuration macro `ADDRESS_COST' to compare the
2414 costs of various addresses. For two addresses of equal cost, choose the one
2415 with the highest `rtx_cost' value as that has the potential of eliminating
2416 the most insns. For equal costs, we choose the first in the equivalence
2417 class. Note that we ignore the fact that pseudo registers are cheaper
2418 than hard registers here because we would also prefer the pseudo registers.
2419 */
2420
2421 void
2422 find_best_addr (insn, loc)
2423 rtx insn;
2424 rtx *loc;
2425 {
2426 struct table_elt *elt, *p;
2427 rtx addr = *loc;
2428 int our_cost;
2429 int found_better = 1;
2430 int save_do_not_record = do_not_record;
2431 int save_hash_arg_in_memory = hash_arg_in_memory;
2432 int save_hash_arg_in_struct = hash_arg_in_struct;
2433 int hash_code;
2434 int addr_volatile;
2435 int regno;
2436
2437 /* Do not try to replace constant addresses or addresses of local and
2438 argument slots. These MEM expressions are made only once and inserted
2439 in many instructions, as well as being used to control symbol table
2440 output. It is not safe to clobber them.
2441
2442 There are some uncommon cases where the address is already in a register
2443 for some reason, but we cannot take advantage of that because we have
2444 no easy way to unshare the MEM. In addition, looking up all stack
2445 addresses is costly. */
2446 if ((GET_CODE (addr) == PLUS
2447 && GET_CODE (XEXP (addr, 0)) == REG
2448 && GET_CODE (XEXP (addr, 1)) == CONST_INT
2449 && (regno = REGNO (XEXP (addr, 0)),
2450 regno == FRAME_POINTER_REGNUM || regno == ARG_POINTER_REGNUM))
2451 || (GET_CODE (addr) == REG
2452 && (regno = REGNO (addr),
2453 regno == FRAME_POINTER_REGNUM || regno == ARG_POINTER_REGNUM))
2454 || CONSTANT_ADDRESS_P (addr))
2455 return;
2456
2457 /* If this address is not simply a register, try to fold it. This will
2458 sometimes simplify the expression. Many simplifications
2459 will not be valid, but some, usually applying the associative rule, will
2460 be valid and produce better code. */
2461 if (GET_CODE (addr) != REG
2462 && validate_change (insn, loc, fold_rtx (addr, insn), 0))
2463 addr = *loc;
2464
2465 /* If this address is not in the hash table, we can't look for equivalences
2466 of the whole address. Also, ignore if volatile. */
2467
2468 do_not_record = 0;
2469 hash_code = HASH (addr, Pmode);
2470 addr_volatile = do_not_record;
2471 do_not_record = save_do_not_record;
2472 hash_arg_in_memory = save_hash_arg_in_memory;
2473 hash_arg_in_struct = save_hash_arg_in_struct;
2474
2475 if (addr_volatile)
2476 return;
2477
2478 elt = lookup (addr, hash_code, Pmode);
2479
2480 #ifndef ADDRESS_COST
2481 if (elt)
2482 {
2483 our_cost = elt->cost;
2484
2485 /* Find the lowest cost below ours that works. */
2486 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
2487 if (elt->cost < our_cost
2488 && (GET_CODE (elt->exp) == REG
2489 || exp_equiv_p (elt->exp, elt->exp, 1, 0))
2490 && validate_change (insn, loc,
2491 canon_reg (copy_rtx (elt->exp), NULL_RTX), 0))
2492 return;
2493 }
2494 #else
2495
2496 if (elt)
2497 {
2498 /* We need to find the best (under the criteria documented above) entry
2499 in the class that is valid. We use the `flag' field to indicate
2500 choices that were invalid and iterate until we can't find a better
2501 one that hasn't already been tried. */
2502
2503 for (p = elt->first_same_value; p; p = p->next_same_value)
2504 p->flag = 0;
2505
2506 while (found_better)
2507 {
2508 int best_addr_cost = ADDRESS_COST (*loc);
2509 int best_rtx_cost = (elt->cost + 1) >> 1;
2510 struct table_elt *best_elt = elt;
2511
2512 found_better = 0;
2513 for (p = elt->first_same_value; p; p = p->next_same_value)
2514 if (! p->flag
2515 && (GET_CODE (p->exp) == REG
2516 || exp_equiv_p (p->exp, p->exp, 1, 0))
2517 && (ADDRESS_COST (p->exp) < best_addr_cost
2518 || (ADDRESS_COST (p->exp) == best_addr_cost
2519 && (p->cost + 1) >> 1 > best_rtx_cost)))
2520 {
2521 found_better = 1;
2522 best_addr_cost = ADDRESS_COST (p->exp);
2523 best_rtx_cost = (p->cost + 1) >> 1;
2524 best_elt = p;
2525 }
2526
2527 if (found_better)
2528 {
2529 if (validate_change (insn, loc,
2530 canon_reg (copy_rtx (best_elt->exp),
2531 NULL_RTX), 0))
2532 return;
2533 else
2534 best_elt->flag = 1;
2535 }
2536 }
2537 }
2538
2539 /* If the address is a binary operation with the first operand a register
2540 and the second a constant, do the same as above, but looking for
2541 equivalences of the register. Then try to simplify before checking for
2542 the best address to use. This catches a few cases: First is when we
2543 have REG+const and the register is another REG+const. We can often merge
2544 the constants and eliminate one insn and one register. It may also be
2545 that a machine has a cheap REG+REG+const. Finally, this improves the
2546 code on the Alpha for unaligned byte stores. */
2547
2548 if (flag_expensive_optimizations
2549 && (GET_RTX_CLASS (GET_CODE (*loc)) == '2'
2550 || GET_RTX_CLASS (GET_CODE (*loc)) == 'c')
2551 && GET_CODE (XEXP (*loc, 0)) == REG
2552 && GET_CODE (XEXP (*loc, 1)) == CONST_INT)
2553 {
2554 rtx c = XEXP (*loc, 1);
2555
2556 do_not_record = 0;
2557 hash_code = HASH (XEXP (*loc, 0), Pmode);
2558 do_not_record = save_do_not_record;
2559 hash_arg_in_memory = save_hash_arg_in_memory;
2560 hash_arg_in_struct = save_hash_arg_in_struct;
2561
2562 elt = lookup (XEXP (*loc, 0), hash_code, Pmode);
2563 if (elt == 0)
2564 return;
2565
2566 /* We need to find the best (under the criteria documented above) entry
2567 in the class that is valid. We use the `flag' field to indicate
2568 choices that were invalid and iterate until we can't find a better
2569 one that hasn't already been tried. */
2570
2571 for (p = elt->first_same_value; p; p = p->next_same_value)
2572 p->flag = 0;
2573
2574 while (found_better)
2575 {
2576 int best_addr_cost = ADDRESS_COST (*loc);
2577 int best_rtx_cost = (COST (*loc) + 1) >> 1;
2578 struct table_elt *best_elt = elt;
2579 rtx best_rtx = *loc;
2580
2581 found_better = 0;
2582 for (p = elt->first_same_value; p; p = p->next_same_value)
2583 if (! p->flag
2584 && (GET_CODE (p->exp) == REG
2585 || exp_equiv_p (p->exp, p->exp, 1, 0)))
2586 {
2587 rtx new = simplify_binary_operation (GET_CODE (*loc), Pmode,
2588 p->exp, c);
2589
2590 if (new == 0)
2591 new = gen_rtx (GET_CODE (*loc), Pmode, p->exp, c);
2592
2593 if ((ADDRESS_COST (new) < best_addr_cost
2594 || (ADDRESS_COST (new) == best_addr_cost
2595 && (COST (new) + 1) >> 1 > best_rtx_cost)))
2596 {
2597 found_better = 1;
2598 best_addr_cost = ADDRESS_COST (new);
2599 best_rtx_cost = (COST (new) + 1) >> 1;
2600 best_elt = p;
2601 best_rtx = new;
2602 }
2603 }
2604
2605 if (found_better)
2606 {
2607 if (validate_change (insn, loc,
2608 canon_reg (copy_rtx (best_rtx),
2609 NULL_RTX), 0))
2610 return;
2611 else
2612 best_elt->flag = 1;
2613 }
2614 }
2615 }
2616 #endif
2617 }
2618 \f
2619 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2620 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2621 what values are being compared.
2622
2623 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2624 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2625 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2626 compared to produce cc0.
2627
2628 The return value is the comparison operator and is either the code of
2629 A or the code corresponding to the inverse of the comparison. */
2630
2631 static enum rtx_code
2632 find_comparison_args (code, parg1, parg2)
2633 enum rtx_code code;
2634 rtx *parg1, *parg2;
2635 {
2636 rtx arg1, arg2;
2637
2638 arg1 = *parg1, arg2 = *parg2;
2639
2640 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2641
2642 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2643 {
2644 /* Set non-zero when we find something of interest. */
2645 rtx x = 0;
2646 int reverse_code = 0;
2647 struct table_elt *p = 0;
2648
2649 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2650 On machines with CC0, this is the only case that can occur, since
2651 fold_rtx will return the COMPARE or item being compared with zero
2652 when given CC0. */
2653
2654 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2655 x = arg1;
2656
2657 /* If ARG1 is a comparison operator and CODE is testing for
2658 STORE_FLAG_VALUE, get the inner arguments. */
2659
2660 else if (GET_RTX_CLASS (GET_CODE (arg1)) == '<')
2661 {
2662 if (code == NE
2663 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2664 && code == LT && STORE_FLAG_VALUE == -1)
2665 #ifdef FLOAT_STORE_FLAG_VALUE
2666 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
2667 && FLOAT_STORE_FLAG_VALUE < 0)
2668 #endif
2669 )
2670 x = arg1;
2671 else if (code == EQ
2672 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2673 && code == GE && STORE_FLAG_VALUE == -1)
2674 #ifdef FLOAT_STORE_FLAG_VALUE
2675 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
2676 && FLOAT_STORE_FLAG_VALUE < 0)
2677 #endif
2678 )
2679 x = arg1, reverse_code = 1;
2680 }
2681
2682 /* ??? We could also check for
2683
2684 (ne (and (eq (...) (const_int 1))) (const_int 0))
2685
2686 and related forms, but let's wait until we see them occurring. */
2687
2688 if (x == 0)
2689 /* Look up ARG1 in the hash table and see if it has an equivalence
2690 that lets us see what is being compared. */
2691 p = lookup (arg1, safe_hash (arg1, GET_MODE (arg1)) % NBUCKETS,
2692 GET_MODE (arg1));
2693 if (p) p = p->first_same_value;
2694
2695 for (; p; p = p->next_same_value)
2696 {
2697 enum machine_mode inner_mode = GET_MODE (p->exp);
2698
2699 /* If the entry isn't valid, skip it. */
2700 if (! exp_equiv_p (p->exp, p->exp, 1, 0))
2701 continue;
2702
2703 if (GET_CODE (p->exp) == COMPARE
2704 /* Another possibility is that this machine has a compare insn
2705 that includes the comparison code. In that case, ARG1 would
2706 be equivalent to a comparison operation that would set ARG1 to
2707 either STORE_FLAG_VALUE or zero. If this is an NE operation,
2708 ORIG_CODE is the actual comparison being done; if it is an EQ,
2709 we must reverse ORIG_CODE. On machine with a negative value
2710 for STORE_FLAG_VALUE, also look at LT and GE operations. */
2711 || ((code == NE
2712 || (code == LT
2713 && GET_MODE_CLASS (inner_mode) == MODE_INT
2714 && (GET_MODE_BITSIZE (inner_mode)
2715 <= HOST_BITS_PER_WIDE_INT)
2716 && (STORE_FLAG_VALUE
2717 & ((HOST_WIDE_INT) 1
2718 << (GET_MODE_BITSIZE (inner_mode) - 1))))
2719 #ifdef FLOAT_STORE_FLAG_VALUE
2720 || (code == LT
2721 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
2722 && FLOAT_STORE_FLAG_VALUE < 0)
2723 #endif
2724 )
2725 && GET_RTX_CLASS (GET_CODE (p->exp)) == '<'))
2726 {
2727 x = p->exp;
2728 break;
2729 }
2730 else if ((code == EQ
2731 || (code == GE
2732 && GET_MODE_CLASS (inner_mode) == MODE_INT
2733 && (GET_MODE_BITSIZE (inner_mode)
2734 <= HOST_BITS_PER_WIDE_INT)
2735 && (STORE_FLAG_VALUE
2736 & ((HOST_WIDE_INT) 1
2737 << (GET_MODE_BITSIZE (inner_mode) - 1))))
2738 #ifdef FLOAT_STORE_FLAG_VALUE
2739 || (code == GE
2740 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
2741 && FLOAT_STORE_FLAG_VALUE < 0)
2742 #endif
2743 )
2744 && GET_RTX_CLASS (GET_CODE (p->exp)) == '<')
2745 {
2746 reverse_code = 1;
2747 x = p->exp;
2748 break;
2749 }
2750
2751 /* If this is fp + constant, the equivalent is a better operand since
2752 it may let us predict the value of the comparison. */
2753 else if (NONZERO_BASE_PLUS_P (p->exp))
2754 {
2755 arg1 = p->exp;
2756 continue;
2757 }
2758 }
2759
2760 /* If we didn't find a useful equivalence for ARG1, we are done.
2761 Otherwise, set up for the next iteration. */
2762 if (x == 0)
2763 break;
2764
2765 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
2766 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
2767 code = GET_CODE (x);
2768
2769 if (reverse_code)
2770 code = reverse_condition (code);
2771 }
2772
2773 /* Return our results. */
2774 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
2775
2776 return code;
2777 }
2778 \f
2779 /* Try to simplify a unary operation CODE whose output mode is to be
2780 MODE with input operand OP whose mode was originally OP_MODE.
2781 Return zero if no simplification can be made. */
2782
2783 rtx
2784 simplify_unary_operation (code, mode, op, op_mode)
2785 enum rtx_code code;
2786 enum machine_mode mode;
2787 rtx op;
2788 enum machine_mode op_mode;
2789 {
2790 register int width = GET_MODE_BITSIZE (mode);
2791
2792 /* The order of these tests is critical so that, for example, we don't
2793 check the wrong mode (input vs. output) for a conversion operation,
2794 such as FIX. At some point, this should be simplified. */
2795
2796 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
2797 if (code == FLOAT && GET_CODE (op) == CONST_INT)
2798 {
2799 REAL_VALUE_TYPE d;
2800
2801 #ifdef REAL_ARITHMETIC
2802 REAL_VALUE_FROM_INT (d, INTVAL (op), INTVAL (op) < 0 ? ~0 : 0);
2803 #else
2804 d = (double) INTVAL (op);
2805 #endif
2806 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
2807 }
2808 else if (code == UNSIGNED_FLOAT && GET_CODE (op) == CONST_INT)
2809 {
2810 REAL_VALUE_TYPE d;
2811
2812 #ifdef REAL_ARITHMETIC
2813 REAL_VALUE_FROM_INT (d, INTVAL (op), 0);
2814 #else
2815 d = (double) (unsigned int) INTVAL (op);
2816 #endif
2817 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
2818 }
2819
2820 else if (code == FLOAT && GET_CODE (op) == CONST_DOUBLE
2821 && GET_MODE (op) == VOIDmode)
2822 {
2823 REAL_VALUE_TYPE d;
2824
2825 #ifdef REAL_ARITHMETIC
2826 REAL_VALUE_FROM_INT (d, CONST_DOUBLE_LOW (op), CONST_DOUBLE_HIGH (op));
2827 #else
2828 if (CONST_DOUBLE_HIGH (op) < 0)
2829 {
2830 d = (double) (~ CONST_DOUBLE_HIGH (op));
2831 d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
2832 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
2833 d += (double) (unsigned HOST_WIDE_INT) (~ CONST_DOUBLE_LOW (op));
2834 d = (- d - 1.0);
2835 }
2836 else
2837 {
2838 d = (double) CONST_DOUBLE_HIGH (op);
2839 d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
2840 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
2841 d += (double) (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (op);
2842 }
2843 #endif /* REAL_ARITHMETIC */
2844 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
2845 }
2846 else if (code == UNSIGNED_FLOAT && GET_CODE (op) == CONST_DOUBLE
2847 && GET_MODE (op) == VOIDmode)
2848 {
2849 REAL_VALUE_TYPE d;
2850
2851 #ifdef REAL_ARITHMETIC
2852 REAL_VALUE_FROM_UNSIGNED_INT (d, CONST_DOUBLE_LOW (op),
2853 CONST_DOUBLE_HIGH (op));
2854 #else
2855 d = (double) CONST_DOUBLE_HIGH (op);
2856 d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
2857 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
2858 d += (double) (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (op);
2859 #endif /* REAL_ARITHMETIC */
2860 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
2861 }
2862 #endif
2863
2864 if (GET_CODE (op) == CONST_INT
2865 && width <= HOST_BITS_PER_WIDE_INT && width > 0)
2866 {
2867 register HOST_WIDE_INT arg0 = INTVAL (op);
2868 register HOST_WIDE_INT val;
2869
2870 switch (code)
2871 {
2872 case NOT:
2873 val = ~ arg0;
2874 break;
2875
2876 case NEG:
2877 val = - arg0;
2878 break;
2879
2880 case ABS:
2881 val = (arg0 >= 0 ? arg0 : - arg0);
2882 break;
2883
2884 case FFS:
2885 /* Don't use ffs here. Instead, get low order bit and then its
2886 number. If arg0 is zero, this will return 0, as desired. */
2887 arg0 &= GET_MODE_MASK (mode);
2888 val = exact_log2 (arg0 & (- arg0)) + 1;
2889 break;
2890
2891 case TRUNCATE:
2892 val = arg0;
2893 break;
2894
2895 case ZERO_EXTEND:
2896 if (op_mode == VOIDmode)
2897 op_mode = mode;
2898 if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
2899 {
2900 /* If we were really extending the mode,
2901 we would have to distinguish between zero-extension
2902 and sign-extension. */
2903 if (width != GET_MODE_BITSIZE (op_mode))
2904 abort ();
2905 val = arg0;
2906 }
2907 else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
2908 val = arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
2909 else
2910 return 0;
2911 break;
2912
2913 case SIGN_EXTEND:
2914 if (op_mode == VOIDmode)
2915 op_mode = mode;
2916 if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
2917 {
2918 /* If we were really extending the mode,
2919 we would have to distinguish between zero-extension
2920 and sign-extension. */
2921 if (width != GET_MODE_BITSIZE (op_mode))
2922 abort ();
2923 val = arg0;
2924 }
2925 else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_INT)
2926 {
2927 val
2928 = arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
2929 if (val
2930 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (op_mode) - 1)))
2931 val -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
2932 }
2933 else
2934 return 0;
2935 break;
2936
2937 case SQRT:
2938 return 0;
2939
2940 default:
2941 abort ();
2942 }
2943
2944 /* Clear the bits that don't belong in our mode,
2945 unless they and our sign bit are all one.
2946 So we get either a reasonable negative value or a reasonable
2947 unsigned value for this mode. */
2948 if (width < HOST_BITS_PER_WIDE_INT
2949 && ((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
2950 != ((HOST_WIDE_INT) (-1) << (width - 1))))
2951 val &= (1 << width) - 1;
2952
2953 return GEN_INT (val);
2954 }
2955
2956 /* We can do some operations on integer CONST_DOUBLEs. Also allow
2957 for a DImode operation on a CONST_INT. */
2958 else if (GET_MODE (op) == VOIDmode
2959 && (GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT))
2960 {
2961 HOST_WIDE_INT l1, h1, lv, hv;
2962
2963 if (GET_CODE (op) == CONST_DOUBLE)
2964 l1 = CONST_DOUBLE_LOW (op), h1 = CONST_DOUBLE_HIGH (op);
2965 else
2966 l1 = INTVAL (op), h1 = l1 < 0 ? -1 : 0;
2967
2968 switch (code)
2969 {
2970 case NOT:
2971 lv = ~ l1;
2972 hv = ~ h1;
2973 break;
2974
2975 case NEG:
2976 neg_double (l1, h1, &lv, &hv);
2977 break;
2978
2979 case ABS:
2980 if (h1 < 0)
2981 neg_double (l1, h1, &lv, &hv);
2982 else
2983 lv = l1, hv = h1;
2984 break;
2985
2986 case FFS:
2987 hv = 0;
2988 if (l1 == 0)
2989 lv = HOST_BITS_PER_WIDE_INT + exact_log2 (h1 & (-h1)) + 1;
2990 else
2991 lv = exact_log2 (l1 & (-l1)) + 1;
2992 break;
2993
2994 case TRUNCATE:
2995 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
2996 return GEN_INT (l1 & GET_MODE_MASK (mode));
2997 else
2998 return 0;
2999 break;
3000
3001 case ZERO_EXTEND:
3002 if (op_mode == VOIDmode
3003 || GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
3004 return 0;
3005
3006 hv = 0;
3007 lv = l1 & GET_MODE_MASK (op_mode);
3008 break;
3009
3010 case SIGN_EXTEND:
3011 if (op_mode == VOIDmode
3012 || GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
3013 return 0;
3014 else
3015 {
3016 lv = l1 & GET_MODE_MASK (op_mode);
3017 if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT
3018 && (lv & ((HOST_WIDE_INT) 1
3019 << (GET_MODE_BITSIZE (op_mode) - 1))) != 0)
3020 lv -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
3021
3022 hv = (lv < 0) ? ~ (HOST_WIDE_INT) 0 : 0;
3023 }
3024 break;
3025
3026 case SQRT:
3027 return 0;
3028
3029 default:
3030 return 0;
3031 }
3032
3033 return immed_double_const (lv, hv, mode);
3034 }
3035
3036 #if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
3037 else if (GET_CODE (op) == CONST_DOUBLE
3038 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3039 {
3040 REAL_VALUE_TYPE d;
3041 jmp_buf handler;
3042 rtx x;
3043
3044 if (setjmp (handler))
3045 /* There used to be a warning here, but that is inadvisable.
3046 People may want to cause traps, and the natural way
3047 to do it should not get a warning. */
3048 return 0;
3049
3050 set_float_handler (handler);
3051
3052 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
3053
3054 switch (code)
3055 {
3056 case NEG:
3057 d = REAL_VALUE_NEGATE (d);
3058 break;
3059
3060 case ABS:
3061 if (REAL_VALUE_NEGATIVE (d))
3062 d = REAL_VALUE_NEGATE (d);
3063 break;
3064
3065 case FLOAT_TRUNCATE:
3066 d = (double) real_value_truncate (mode, d);
3067 break;
3068
3069 case FLOAT_EXTEND:
3070 /* All this does is change the mode. */
3071 break;
3072
3073 case FIX:
3074 d = (double) REAL_VALUE_FIX_TRUNCATE (d);
3075 break;
3076
3077 case UNSIGNED_FIX:
3078 d = (double) REAL_VALUE_UNSIGNED_FIX_TRUNCATE (d);
3079 break;
3080
3081 case SQRT:
3082 return 0;
3083
3084 default:
3085 abort ();
3086 }
3087
3088 x = immed_real_const_1 (d, mode);
3089 set_float_handler (NULL_PTR);
3090 return x;
3091 }
3092 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE_CLASS (mode) == MODE_INT
3093 && width <= HOST_BITS_PER_WIDE_INT && width > 0)
3094 {
3095 REAL_VALUE_TYPE d;
3096 jmp_buf handler;
3097 rtx x;
3098 HOST_WIDE_INT val;
3099
3100 if (setjmp (handler))
3101 return 0;
3102
3103 set_float_handler (handler);
3104
3105 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
3106
3107 switch (code)
3108 {
3109 case FIX:
3110 val = REAL_VALUE_FIX (d);
3111 break;
3112
3113 case UNSIGNED_FIX:
3114 val = REAL_VALUE_UNSIGNED_FIX (d);
3115 break;
3116
3117 default:
3118 abort ();
3119 }
3120
3121 set_float_handler (NULL_PTR);
3122
3123 /* Clear the bits that don't belong in our mode,
3124 unless they and our sign bit are all one.
3125 So we get either a reasonable negative value or a reasonable
3126 unsigned value for this mode. */
3127 if (width < HOST_BITS_PER_WIDE_INT
3128 && ((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
3129 != ((HOST_WIDE_INT) (-1) << (width - 1))))
3130 val &= ((HOST_WIDE_INT) 1 << width) - 1;
3131
3132 return GEN_INT (val);
3133 }
3134 #endif
3135 /* This was formerly used only for non-IEEE float.
3136 eggert@twinsun.com says it is safe for IEEE also. */
3137 else
3138 {
3139 /* There are some simplifications we can do even if the operands
3140 aren't constant. */
3141 switch (code)
3142 {
3143 case NEG:
3144 case NOT:
3145 /* (not (not X)) == X, similarly for NEG. */
3146 if (GET_CODE (op) == code)
3147 return XEXP (op, 0);
3148 break;
3149
3150 case SIGN_EXTEND:
3151 /* (sign_extend (truncate (minus (label_ref L1) (label_ref L2))))
3152 becomes just the MINUS if its mode is MODE. This allows
3153 folding switch statements on machines using casesi (such as
3154 the Vax). */
3155 if (GET_CODE (op) == TRUNCATE
3156 && GET_MODE (XEXP (op, 0)) == mode
3157 && GET_CODE (XEXP (op, 0)) == MINUS
3158 && GET_CODE (XEXP (XEXP (op, 0), 0)) == LABEL_REF
3159 && GET_CODE (XEXP (XEXP (op, 0), 1)) == LABEL_REF)
3160 return XEXP (op, 0);
3161 break;
3162 }
3163
3164 return 0;
3165 }
3166 }
3167 \f
3168 /* Simplify a binary operation CODE with result mode MODE, operating on OP0
3169 and OP1. Return 0 if no simplification is possible.
3170
3171 Don't use this for relational operations such as EQ or LT.
3172 Use simplify_relational_operation instead. */
3173
3174 rtx
3175 simplify_binary_operation (code, mode, op0, op1)
3176 enum rtx_code code;
3177 enum machine_mode mode;
3178 rtx op0, op1;
3179 {
3180 register HOST_WIDE_INT arg0, arg1, arg0s, arg1s;
3181 HOST_WIDE_INT val;
3182 int width = GET_MODE_BITSIZE (mode);
3183
3184 /* Relational operations don't work here. We must know the mode
3185 of the operands in order to do the comparison correctly.
3186 Assuming a full word can give incorrect results.
3187 Consider comparing 128 with -128 in QImode. */
3188
3189 if (GET_RTX_CLASS (code) == '<')
3190 abort ();
3191
3192 #if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
3193 if (GET_MODE_CLASS (mode) == MODE_FLOAT
3194 && GET_CODE (op0) == CONST_DOUBLE && GET_CODE (op1) == CONST_DOUBLE
3195 && mode == GET_MODE (op0) && mode == GET_MODE (op1))
3196 {
3197 REAL_VALUE_TYPE f0, f1, value;
3198 jmp_buf handler;
3199
3200 if (setjmp (handler))
3201 return 0;
3202
3203 set_float_handler (handler);
3204
3205 REAL_VALUE_FROM_CONST_DOUBLE (f0, op0);
3206 REAL_VALUE_FROM_CONST_DOUBLE (f1, op1);
3207 f0 = real_value_truncate (mode, f0);
3208 f1 = real_value_truncate (mode, f1);
3209
3210 #ifdef REAL_ARITHMETIC
3211 REAL_ARITHMETIC (value, code, f0, f1);
3212 #else
3213 switch (code)
3214 {
3215 case PLUS:
3216 value = f0 + f1;
3217 break;
3218 case MINUS:
3219 value = f0 - f1;
3220 break;
3221 case MULT:
3222 value = f0 * f1;
3223 break;
3224 case DIV:
3225 #ifndef REAL_INFINITY
3226 if (f1 == 0)
3227 abort ();
3228 #endif
3229 value = f0 / f1;
3230 break;
3231 case SMIN:
3232 value = MIN (f0, f1);
3233 break;
3234 case SMAX:
3235 value = MAX (f0, f1);
3236 break;
3237 default:
3238 abort ();
3239 }
3240 #endif
3241
3242 set_float_handler (NULL_PTR);
3243 value = real_value_truncate (mode, value);
3244 return immed_real_const_1 (value, mode);
3245 }
3246
3247 /* We can fold some multi-word operations. */
3248 else if (GET_MODE_CLASS (mode) == MODE_INT
3249 && GET_CODE (op0) == CONST_DOUBLE
3250 && (GET_CODE (op1) == CONST_DOUBLE || GET_CODE (op1) == CONST_INT))
3251 {
3252 HOST_WIDE_INT l1, l2, h1, h2, lv, hv;
3253
3254 l1 = CONST_DOUBLE_LOW (op0), h1 = CONST_DOUBLE_HIGH (op0);
3255
3256 if (GET_CODE (op1) == CONST_DOUBLE)
3257 l2 = CONST_DOUBLE_LOW (op1), h2 = CONST_DOUBLE_HIGH (op1);
3258 else
3259 l2 = INTVAL (op1), h2 = l2 < 0 ? -1 : 0;
3260
3261 switch (code)
3262 {
3263 case MINUS:
3264 /* A - B == A + (-B). */
3265 neg_double (l2, h2, &lv, &hv);
3266 l2 = lv, h2 = hv;
3267
3268 /* .. fall through ... */
3269
3270 case PLUS:
3271 add_double (l1, h1, l2, h2, &lv, &hv);
3272 break;
3273
3274 case MULT:
3275 mul_double (l1, h1, l2, h2, &lv, &hv);
3276 break;
3277
3278 case DIV: case MOD: case UDIV: case UMOD:
3279 /* We'd need to include tree.h to do this and it doesn't seem worth
3280 it. */
3281 return 0;
3282
3283 case AND:
3284 lv = l1 & l2, hv = h1 & h2;
3285 break;
3286
3287 case IOR:
3288 lv = l1 | l2, hv = h1 | h2;
3289 break;
3290
3291 case XOR:
3292 lv = l1 ^ l2, hv = h1 ^ h2;
3293 break;
3294
3295 case SMIN:
3296 if (h1 < h2
3297 || (h1 == h2
3298 && ((unsigned HOST_WIDE_INT) l1
3299 < (unsigned HOST_WIDE_INT) l2)))
3300 lv = l1, hv = h1;
3301 else
3302 lv = l2, hv = h2;
3303 break;
3304
3305 case SMAX:
3306 if (h1 > h2
3307 || (h1 == h2
3308 && ((unsigned HOST_WIDE_INT) l1
3309 > (unsigned HOST_WIDE_INT) l2)))
3310 lv = l1, hv = h1;
3311 else
3312 lv = l2, hv = h2;
3313 break;
3314
3315 case UMIN:
3316 if ((unsigned HOST_WIDE_INT) h1 < (unsigned HOST_WIDE_INT) h2
3317 || (h1 == h2
3318 && ((unsigned HOST_WIDE_INT) l1
3319 < (unsigned HOST_WIDE_INT) l2)))
3320 lv = l1, hv = h1;
3321 else
3322 lv = l2, hv = h2;
3323 break;
3324
3325 case UMAX:
3326 if ((unsigned HOST_WIDE_INT) h1 > (unsigned HOST_WIDE_INT) h2
3327 || (h1 == h2
3328 && ((unsigned HOST_WIDE_INT) l1
3329 > (unsigned HOST_WIDE_INT) l2)))
3330 lv = l1, hv = h1;
3331 else
3332 lv = l2, hv = h2;
3333 break;
3334
3335 case LSHIFTRT: case ASHIFTRT:
3336 case ASHIFT: case LSHIFT:
3337 case ROTATE: case ROTATERT:
3338 #ifdef SHIFT_COUNT_TRUNCATED
3339 l2 &= (GET_MODE_BITSIZE (mode) - 1), h2 = 0;
3340 #endif
3341
3342 if (h2 != 0 || l2 < 0 || l2 >= GET_MODE_BITSIZE (mode))
3343 return 0;
3344
3345 if (code == LSHIFTRT || code == ASHIFTRT)
3346 rshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv,
3347 code == ASHIFTRT);
3348 else if (code == ASHIFT || code == LSHIFT)
3349 lshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv,
3350 code == ASHIFT);
3351 else if (code == ROTATE)
3352 lrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
3353 else /* code == ROTATERT */
3354 rrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
3355 break;
3356
3357 default:
3358 return 0;
3359 }
3360
3361 return immed_double_const (lv, hv, mode);
3362 }
3363 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
3364
3365 if (GET_CODE (op0) != CONST_INT || GET_CODE (op1) != CONST_INT
3366 || width > HOST_BITS_PER_WIDE_INT || width == 0)
3367 {
3368 /* Even if we can't compute a constant result,
3369 there are some cases worth simplifying. */
3370
3371 switch (code)
3372 {
3373 case PLUS:
3374 /* In IEEE floating point, x+0 is not the same as x. Similarly
3375 for the other optimizations below. */
3376 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
3377 && GET_MODE_CLASS (mode) != MODE_INT)
3378 break;
3379
3380 if (op1 == CONST0_RTX (mode))
3381 return op0;
3382
3383 /* Strip off any surrounding CONSTs. They don't matter in any of
3384 the cases below. */
3385 if (GET_CODE (op0) == CONST)
3386 op0 = XEXP (op0, 0);
3387 if (GET_CODE (op1) == CONST)
3388 op1 = XEXP (op1, 0);
3389
3390 /* ((-a) + b) -> (b - a) and similarly for (a + (-b)) */
3391 if (GET_CODE (op0) == NEG)
3392 {
3393 rtx tem = simplify_binary_operation (MINUS, mode,
3394 op1, XEXP (op0, 0));
3395 return tem ? tem : gen_rtx (MINUS, mode, op1, XEXP (op0, 0));
3396 }
3397 else if (GET_CODE (op1) == NEG)
3398 {
3399 rtx tem = simplify_binary_operation (MINUS, mode,
3400 op0, XEXP (op1, 0));
3401 return tem ? tem : gen_rtx (MINUS, mode, op0, XEXP (op1, 0));
3402 }
3403
3404 /* Don't use the associative law for floating point.
3405 The inaccuracy makes it nonassociative,
3406 and subtle programs can break if operations are associated. */
3407 if (GET_MODE_CLASS (mode) != MODE_INT)
3408 break;
3409
3410 /* (a - b) + b -> a, similarly a + (b - a) -> a */
3411 if (GET_CODE (op0) == MINUS
3412 && rtx_equal_p (XEXP (op0, 1), op1) && ! side_effects_p (op1))
3413 return XEXP (op0, 0);
3414
3415 if (GET_CODE (op1) == MINUS
3416 && rtx_equal_p (XEXP (op1, 1), op0) && ! side_effects_p (op0))
3417 return XEXP (op1, 0);
3418
3419 /* (c1 - a) + c2 becomes (c1 + c2) - a. */
3420 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == MINUS
3421 && GET_CODE (XEXP (op0, 0)) == CONST_INT)
3422 {
3423 rtx tem = simplify_binary_operation (PLUS, mode, op1,
3424 XEXP (op0, 0));
3425
3426 return tem ? gen_rtx (MINUS, mode, tem, XEXP (op0, 1)) : 0;
3427 }
3428
3429 /* Handle both-operands-constant cases. */
3430 if (CONSTANT_P (op0) && CONSTANT_P (op1)
3431 && GET_CODE (op0) != CONST_DOUBLE
3432 && GET_CODE (op1) != CONST_DOUBLE
3433 && GET_MODE_CLASS (mode) == MODE_INT)
3434 {
3435 if (GET_CODE (op1) == CONST_INT)
3436 return plus_constant (op0, INTVAL (op1));
3437 else if (GET_CODE (op0) == CONST_INT)
3438 return plus_constant (op1, INTVAL (op0));
3439 else
3440 break;
3441 #if 0 /* No good, because this can produce the sum of two relocatable
3442 symbols, in an assembler instruction. Most UNIX assemblers can't
3443 handle that. */
3444 else
3445 return gen_rtx (CONST, mode,
3446 gen_rtx (PLUS, mode,
3447 GET_CODE (op0) == CONST
3448 ? XEXP (op0, 0) : op0,
3449 GET_CODE (op1) == CONST
3450 ? XEXP (op1, 0) : op1));
3451 #endif
3452 }
3453 else if (GET_CODE (op1) == CONST_INT
3454 && GET_CODE (op0) == PLUS
3455 && (CONSTANT_P (XEXP (op0, 0))
3456 || CONSTANT_P (XEXP (op0, 1))))
3457 /* constant + (variable + constant)
3458 can result if an index register is made constant.
3459 We simplify this by adding the constants.
3460 If we did not, it would become an invalid address. */
3461 return plus_constant (op0, INTVAL (op1));
3462 break;
3463
3464 case COMPARE:
3465 #ifdef HAVE_cc0
3466 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
3467 using cc0, in which case we want to leave it as a COMPARE
3468 so we can distinguish it from a register-register-copy.
3469
3470 In IEEE floating point, x-0 is not the same as x. */
3471
3472 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3473 || GET_MODE_CLASS (mode) == MODE_INT)
3474 && op1 == CONST0_RTX (mode))
3475 return op0;
3476 #else
3477 /* Do nothing here. */
3478 #endif
3479 break;
3480
3481 case MINUS:
3482 /* None of these optimizations can be done for IEEE
3483 floating point. */
3484 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
3485 && GET_MODE_CLASS (mode) != MODE_INT)
3486 break;
3487
3488 /* We can't assume x-x is 0 even with non-IEEE floating point. */
3489 if (rtx_equal_p (op0, op1)
3490 && ! side_effects_p (op0)
3491 && GET_MODE_CLASS (mode) != MODE_FLOAT)
3492 return const0_rtx;
3493
3494 /* Change subtraction from zero into negation. */
3495 if (op0 == CONST0_RTX (mode))
3496 return gen_rtx (NEG, mode, op1);
3497
3498 /* Subtracting 0 has no effect. */
3499 if (op1 == CONST0_RTX (mode))
3500 return op0;
3501
3502 /* Strip off any surrounding CONSTs. They don't matter in any of
3503 the cases below. */
3504 if (GET_CODE (op0) == CONST)
3505 op0 = XEXP (op0, 0);
3506 if (GET_CODE (op1) == CONST)
3507 op1 = XEXP (op1, 0);
3508
3509 /* (a - (-b)) -> (a + b). */
3510 if (GET_CODE (op1) == NEG)
3511 {
3512 rtx tem = simplify_binary_operation (PLUS, mode,
3513 op0, XEXP (op1, 0));
3514 return tem ? tem : gen_rtx (PLUS, mode, op0, XEXP (op1, 0));
3515 }
3516
3517 /* Don't use the associative law for floating point.
3518 The inaccuracy makes it nonassociative,
3519 and subtle programs can break if operations are associated. */
3520 if (GET_MODE_CLASS (mode) != MODE_INT)
3521 break;
3522
3523 /* (a + b) - a -> b, and (b - (a + b)) -> -a */
3524 if (GET_CODE (op0) == PLUS
3525 && rtx_equal_p (XEXP (op0, 0), op1)
3526 && ! side_effects_p (op1))
3527 return XEXP (op0, 1);
3528 else if (GET_CODE (op0) == PLUS
3529 && rtx_equal_p (XEXP (op0, 1), op1)
3530 && ! side_effects_p (op1))
3531 return XEXP (op0, 0);
3532
3533 if (GET_CODE (op1) == PLUS
3534 && rtx_equal_p (XEXP (op1, 0), op0)
3535 && ! side_effects_p (op0))
3536 {
3537 rtx tem = simplify_unary_operation (NEG, mode, XEXP (op1, 1),
3538 mode);
3539
3540 return tem ? tem : gen_rtx (NEG, mode, XEXP (op1, 1));
3541 }
3542 else if (GET_CODE (op1) == PLUS
3543 && rtx_equal_p (XEXP (op1, 1), op0)
3544 && ! side_effects_p (op0))
3545 {
3546 rtx tem = simplify_unary_operation (NEG, mode, XEXP (op1, 0),
3547 mode);
3548
3549 return tem ? tem : gen_rtx (NEG, mode, XEXP (op1, 0));
3550 }
3551
3552 /* a - (a - b) -> b */
3553 if (GET_CODE (op1) == MINUS && rtx_equal_p (op0, XEXP (op1, 0))
3554 && ! side_effects_p (op0))
3555 return XEXP (op1, 1);
3556
3557 /* (a +/- b) - (a +/- c) can be simplified. Do variants of
3558 this involving commutativity. The most common case is
3559 (a + C1) - (a + C2), but it's not hard to do all the cases. */
3560 if ((GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS)
3561 && (GET_CODE (op1) == PLUS || GET_CODE (op1) == MINUS))
3562 {
3563 rtx lhs0 = XEXP (op0, 0), lhs1 = XEXP (op0, 1);
3564 rtx rhs0 = XEXP (op1, 0), rhs1 = XEXP (op1, 1);
3565 int lhs_neg = GET_CODE (op0) == MINUS;
3566 int rhs_neg = GET_CODE (op1) == MINUS;
3567 rtx lhs = 0, rhs = 0;
3568
3569 /* Set LHS and RHS to the two different terms. */
3570 if (rtx_equal_p (lhs0, rhs0) && ! side_effects_p (lhs0))
3571 lhs = lhs1, rhs = rhs1;
3572 else if (! rhs_neg && rtx_equal_p (lhs0, rhs1)
3573 && ! side_effects_p (lhs0))
3574 lhs = lhs1, rhs = rhs0;
3575 else if (! lhs_neg && rtx_equal_p (lhs1, rhs0)
3576 && ! side_effects_p (lhs1))
3577 lhs = lhs0, rhs = rhs1;
3578 else if (! lhs_neg && ! rhs_neg && rtx_equal_p (lhs1, rhs1)
3579 && ! side_effects_p (lhs1))
3580 lhs = lhs0, rhs = rhs0;
3581
3582 /* The RHS is the operand of a MINUS, so its negation
3583 status should be complemented. */
3584 rhs_neg = ! rhs_neg;
3585
3586 /* If we found two values equal, form the sum or difference
3587 of the remaining two terms. */
3588 if (lhs)
3589 {
3590 rtx tem = simplify_binary_operation (lhs_neg == rhs_neg
3591 ? PLUS : MINUS,
3592 mode,
3593 lhs_neg ? rhs : lhs,
3594 lhs_neg ? lhs : rhs);
3595 if (tem == 0)
3596 tem = gen_rtx (lhs_neg == rhs_neg
3597 ? PLUS : MINUS,
3598 mode, lhs_neg ? rhs : lhs,
3599 lhs_neg ? lhs : rhs);
3600
3601 /* If both sides negated, negate result. */
3602 if (lhs_neg && rhs_neg)
3603 {
3604 rtx tem1
3605 = simplify_unary_operation (NEG, mode, tem, mode);
3606 if (tem1 == 0)
3607 tem1 = gen_rtx (NEG, mode, tem);
3608 tem = tem1;
3609 }
3610
3611 return tem;
3612 }
3613
3614 return 0;
3615 }
3616
3617 /* c1 - (a + c2) becomes (c1 - c2) - a. */
3618 if (GET_CODE (op0) == CONST_INT && GET_CODE (op1) == PLUS
3619 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
3620 {
3621 rtx tem = simplify_binary_operation (MINUS, mode, op0,
3622 XEXP (op1, 1));
3623
3624 return tem ? gen_rtx (MINUS, mode, tem, XEXP (op1, 0)) : 0;
3625 }
3626
3627 /* c1 - (c2 - a) becomes (c1 - c2) + a. */
3628 if (GET_CODE (op0) == CONST_INT && GET_CODE (op1) == MINUS
3629 && GET_CODE (XEXP (op1, 0)) == CONST_INT)
3630 {
3631 rtx tem = simplify_binary_operation (MINUS, mode, op0,
3632 XEXP (op1, 0));
3633
3634 return (tem && GET_CODE (tem) == CONST_INT
3635 ? plus_constant (XEXP (op1, 1), INTVAL (tem))
3636 : 0);
3637 }
3638
3639 /* Don't let a relocatable value get a negative coeff. */
3640 if (GET_CODE (op1) == CONST_INT)
3641 return plus_constant (op0, - INTVAL (op1));
3642 break;
3643
3644 case MULT:
3645 if (op1 == constm1_rtx)
3646 {
3647 rtx tem = simplify_unary_operation (NEG, mode, op0, mode);
3648
3649 return tem ? tem : gen_rtx (NEG, mode, op0);
3650 }
3651
3652 /* In IEEE floating point, x*0 is not always 0. */
3653 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3654 || GET_MODE_CLASS (mode) == MODE_INT)
3655 && op1 == CONST0_RTX (mode)
3656 && ! side_effects_p (op0))
3657 return op1;
3658
3659 /* In IEEE floating point, x*1 is not equivalent to x for nans.
3660 However, ANSI says we can drop signals,
3661 so we can do this anyway. */
3662 if (op1 == CONST1_RTX (mode))
3663 return op0;
3664
3665 /* Convert multiply by constant power of two into shift. */
3666 if (GET_CODE (op1) == CONST_INT
3667 && (val = exact_log2 (INTVAL (op1))) >= 0)
3668 return gen_rtx (ASHIFT, mode, op0, GEN_INT (val));
3669
3670 if (GET_CODE (op1) == CONST_DOUBLE
3671 && GET_MODE_CLASS (GET_MODE (op1)) == MODE_FLOAT)
3672 {
3673 REAL_VALUE_TYPE d;
3674 REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
3675
3676 /* x*2 is x+x and x*(-1) is -x */
3677 if (REAL_VALUES_EQUAL (d, dconst2)
3678 && GET_MODE (op0) == mode)
3679 return gen_rtx (PLUS, mode, op0, copy_rtx (op0));
3680
3681 else if (REAL_VALUES_EQUAL (d, dconstm1)
3682 && GET_MODE (op0) == mode)
3683 return gen_rtx (NEG, mode, op0);
3684 }
3685 break;
3686
3687 case IOR:
3688 if (op1 == const0_rtx)
3689 return op0;
3690 if (GET_CODE (op1) == CONST_INT
3691 && (INTVAL (op1) & GET_MODE_MASK (mode)) == GET_MODE_MASK (mode))
3692 return op1;
3693 if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
3694 return op0;
3695 /* A | (~A) -> -1 */
3696 if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
3697 || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
3698 && ! side_effects_p (op0))
3699 return constm1_rtx;
3700 break;
3701
3702 case XOR:
3703 if (op1 == const0_rtx)
3704 return op0;
3705 if (GET_CODE (op1) == CONST_INT
3706 && (INTVAL (op1) & GET_MODE_MASK (mode)) == GET_MODE_MASK (mode))
3707 return gen_rtx (NOT, mode, op0);
3708 if (op0 == op1 && ! side_effects_p (op0))
3709 return const0_rtx;
3710 break;
3711
3712 case AND:
3713 if (op1 == const0_rtx && ! side_effects_p (op0))
3714 return const0_rtx;
3715 if (GET_CODE (op1) == CONST_INT
3716 && (INTVAL (op1) & GET_MODE_MASK (mode)) == GET_MODE_MASK (mode))
3717 return op0;
3718 if (op0 == op1 && ! side_effects_p (op0))
3719 return op0;
3720 /* A & (~A) -> 0 */
3721 if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
3722 || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
3723 && ! side_effects_p (op0))
3724 return const0_rtx;
3725 break;
3726
3727 case UDIV:
3728 /* Convert divide by power of two into shift (divide by 1 handled
3729 below). */
3730 if (GET_CODE (op1) == CONST_INT
3731 && (arg1 = exact_log2 (INTVAL (op1))) > 0)
3732 return gen_rtx (LSHIFTRT, mode, op0, GEN_INT (arg1));
3733
3734 /* ... fall through ... */
3735
3736 case DIV:
3737 if (op1 == CONST1_RTX (mode))
3738 return op0;
3739
3740 /* In IEEE floating point, 0/x is not always 0. */
3741 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3742 || GET_MODE_CLASS (mode) == MODE_INT)
3743 && op0 == CONST0_RTX (mode)
3744 && ! side_effects_p (op1))
3745 return op0;
3746
3747 #if 0 /* Turned off till an expert says this is a safe thing to do. */
3748 #if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
3749 /* Change division by a constant into multiplication. */
3750 else if (GET_CODE (op1) == CONST_DOUBLE
3751 && GET_MODE_CLASS (GET_MODE (op1)) == MODE_FLOAT
3752 && op1 != CONST0_RTX (mode))
3753 {
3754 REAL_VALUE_TYPE d;
3755 REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
3756 if (REAL_VALUES_EQUAL (d, dconst0))
3757 abort();
3758 #if defined (REAL_ARITHMETIC)
3759 REAL_ARITHMETIC (d, RDIV_EXPR, dconst1, d);
3760 return gen_rtx (MULT, mode, op0,
3761 CONST_DOUBLE_FROM_REAL_VALUE (d, mode));
3762 #else
3763 return gen_rtx (MULT, mode, op0,
3764 CONST_DOUBLE_FROM_REAL_VALUE (1./d, mode));
3765 }
3766 #endif
3767 #endif
3768 #endif
3769 break;
3770
3771 case UMOD:
3772 /* Handle modulus by power of two (mod with 1 handled below). */
3773 if (GET_CODE (op1) == CONST_INT
3774 && exact_log2 (INTVAL (op1)) > 0)
3775 return gen_rtx (AND, mode, op0, GEN_INT (INTVAL (op1) - 1));
3776
3777 /* ... fall through ... */
3778
3779 case MOD:
3780 if ((op0 == const0_rtx || op1 == const1_rtx)
3781 && ! side_effects_p (op0) && ! side_effects_p (op1))
3782 return const0_rtx;
3783 break;
3784
3785 case ROTATERT:
3786 case ROTATE:
3787 /* Rotating ~0 always results in ~0. */
3788 if (GET_CODE (op0) == CONST_INT && width <= HOST_BITS_PER_WIDE_INT
3789 && INTVAL (op0) == GET_MODE_MASK (mode)
3790 && ! side_effects_p (op1))
3791 return op0;
3792
3793 /* ... fall through ... */
3794
3795 case LSHIFT:
3796 case ASHIFT:
3797 case ASHIFTRT:
3798 case LSHIFTRT:
3799 if (op1 == const0_rtx)
3800 return op0;
3801 if (op0 == const0_rtx && ! side_effects_p (op1))
3802 return op0;
3803 break;
3804
3805 case SMIN:
3806 if (width <= HOST_BITS_PER_WIDE_INT && GET_CODE (op1) == CONST_INT
3807 && INTVAL (op1) == (HOST_WIDE_INT) 1 << (width -1)
3808 && ! side_effects_p (op0))
3809 return op1;
3810 else if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
3811 return op0;
3812 break;
3813
3814 case SMAX:
3815 if (width <= HOST_BITS_PER_WIDE_INT && GET_CODE (op1) == CONST_INT
3816 && INTVAL (op1) == GET_MODE_MASK (mode) >> 1
3817 && ! side_effects_p (op0))
3818 return op1;
3819 else if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
3820 return op0;
3821 break;
3822
3823 case UMIN:
3824 if (op1 == const0_rtx && ! side_effects_p (op0))
3825 return op1;
3826 else if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
3827 return op0;
3828 break;
3829
3830 case UMAX:
3831 if (op1 == constm1_rtx && ! side_effects_p (op0))
3832 return op1;
3833 else if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
3834 return op0;
3835 break;
3836
3837 default:
3838 abort ();
3839 }
3840
3841 return 0;
3842 }
3843
3844 /* Get the integer argument values in two forms:
3845 zero-extended in ARG0, ARG1 and sign-extended in ARG0S, ARG1S. */
3846
3847 arg0 = INTVAL (op0);
3848 arg1 = INTVAL (op1);
3849
3850 if (width < HOST_BITS_PER_WIDE_INT)
3851 {
3852 arg0 &= ((HOST_WIDE_INT) 1 << width) - 1;
3853 arg1 &= ((HOST_WIDE_INT) 1 << width) - 1;
3854
3855 arg0s = arg0;
3856 if (arg0s & ((HOST_WIDE_INT) 1 << (width - 1)))
3857 arg0s |= ((HOST_WIDE_INT) (-1) << width);
3858
3859 arg1s = arg1;
3860 if (arg1s & ((HOST_WIDE_INT) 1 << (width - 1)))
3861 arg1s |= ((HOST_WIDE_INT) (-1) << width);
3862 }
3863 else
3864 {
3865 arg0s = arg0;
3866 arg1s = arg1;
3867 }
3868
3869 /* Compute the value of the arithmetic. */
3870
3871 switch (code)
3872 {
3873 case PLUS:
3874 val = arg0s + arg1s;
3875 break;
3876
3877 case MINUS:
3878 val = arg0s - arg1s;
3879 break;
3880
3881 case MULT:
3882 val = arg0s * arg1s;
3883 break;
3884
3885 case DIV:
3886 if (arg1s == 0)
3887 return 0;
3888 val = arg0s / arg1s;
3889 break;
3890
3891 case MOD:
3892 if (arg1s == 0)
3893 return 0;
3894 val = arg0s % arg1s;
3895 break;
3896
3897 case UDIV:
3898 if (arg1 == 0)
3899 return 0;
3900 val = (unsigned HOST_WIDE_INT) arg0 / arg1;
3901 break;
3902
3903 case UMOD:
3904 if (arg1 == 0)
3905 return 0;
3906 val = (unsigned HOST_WIDE_INT) arg0 % arg1;
3907 break;
3908
3909 case AND:
3910 val = arg0 & arg1;
3911 break;
3912
3913 case IOR:
3914 val = arg0 | arg1;
3915 break;
3916
3917 case XOR:
3918 val = arg0 ^ arg1;
3919 break;
3920
3921 case LSHIFTRT:
3922 /* If shift count is undefined, don't fold it; let the machine do
3923 what it wants. But truncate it if the machine will do that. */
3924 if (arg1 < 0)
3925 return 0;
3926
3927 #ifdef SHIFT_COUNT_TRUNCATED
3928 arg1 &= (BITS_PER_WORD - 1);
3929 #endif
3930
3931 if (arg1 >= width)
3932 return 0;
3933
3934 val = ((unsigned HOST_WIDE_INT) arg0) >> arg1;
3935 break;
3936
3937 case ASHIFT:
3938 case LSHIFT:
3939 if (arg1 < 0)
3940 return 0;
3941
3942 #ifdef SHIFT_COUNT_TRUNCATED
3943 arg1 &= (BITS_PER_WORD - 1);
3944 #endif
3945
3946 if (arg1 >= width)
3947 return 0;
3948
3949 val = ((unsigned HOST_WIDE_INT) arg0) << arg1;
3950 break;
3951
3952 case ASHIFTRT:
3953 if (arg1 < 0)
3954 return 0;
3955
3956 #ifdef SHIFT_COUNT_TRUNCATED
3957 arg1 &= (BITS_PER_WORD - 1);
3958 #endif
3959
3960 if (arg1 >= width)
3961 return 0;
3962
3963 val = arg0s >> arg1;
3964 break;
3965
3966 case ROTATERT:
3967 if (arg1 < 0)
3968 return 0;
3969
3970 arg1 %= width;
3971 val = ((((unsigned HOST_WIDE_INT) arg0) << (width - arg1))
3972 | (((unsigned HOST_WIDE_INT) arg0) >> arg1));
3973 break;
3974
3975 case ROTATE:
3976 if (arg1 < 0)
3977 return 0;
3978
3979 arg1 %= width;
3980 val = ((((unsigned HOST_WIDE_INT) arg0) << arg1)
3981 | (((unsigned HOST_WIDE_INT) arg0) >> (width - arg1)));
3982 break;
3983
3984 case COMPARE:
3985 /* Do nothing here. */
3986 return 0;
3987
3988 case SMIN:
3989 val = arg0s <= arg1s ? arg0s : arg1s;
3990 break;
3991
3992 case UMIN:
3993 val = ((unsigned HOST_WIDE_INT) arg0
3994 <= (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
3995 break;
3996
3997 case SMAX:
3998 val = arg0s > arg1s ? arg0s : arg1s;
3999 break;
4000
4001 case UMAX:
4002 val = ((unsigned HOST_WIDE_INT) arg0
4003 > (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
4004 break;
4005
4006 default:
4007 abort ();
4008 }
4009
4010 /* Clear the bits that don't belong in our mode, unless they and our sign
4011 bit are all one. So we get either a reasonable negative value or a
4012 reasonable unsigned value for this mode. */
4013 if (width < HOST_BITS_PER_WIDE_INT
4014 && ((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
4015 != ((HOST_WIDE_INT) (-1) << (width - 1))))
4016 val &= ((HOST_WIDE_INT) 1 << width) - 1;
4017
4018 return GEN_INT (val);
4019 }
4020 \f
4021 /* Like simplify_binary_operation except used for relational operators.
4022 MODE is the mode of the operands, not that of the result. */
4023
4024 rtx
4025 simplify_relational_operation (code, mode, op0, op1)
4026 enum rtx_code code;
4027 enum machine_mode mode;
4028 rtx op0, op1;
4029 {
4030 register HOST_WIDE_INT arg0, arg1, arg0s, arg1s;
4031 HOST_WIDE_INT val;
4032 int width = GET_MODE_BITSIZE (mode);
4033
4034 /* If op0 is a compare, extract the comparison arguments from it. */
4035 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
4036 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4037
4038 if (GET_CODE (op0) != CONST_INT || GET_CODE (op1) != CONST_INT
4039 || width > HOST_BITS_PER_WIDE_INT || width == 0)
4040 {
4041 /* Even if we can't compute a constant result,
4042 there are some cases worth simplifying. */
4043
4044 /* For non-IEEE floating-point, if the two operands are equal, we know
4045 the result. */
4046 if (rtx_equal_p (op0, op1)
4047 && (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
4048 || GET_MODE_CLASS (GET_MODE (op0)) != MODE_FLOAT))
4049 return (code == EQ || code == GE || code == LE || code == LEU
4050 || code == GEU) ? const_true_rtx : const0_rtx;
4051 else if (GET_CODE (op0) == CONST_DOUBLE
4052 && GET_CODE (op1) == CONST_DOUBLE
4053 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
4054 {
4055 REAL_VALUE_TYPE d0, d1;
4056 jmp_buf handler;
4057 int op0lt, op1lt, equal;
4058
4059 if (setjmp (handler))
4060 return 0;
4061
4062 set_float_handler (handler);
4063 REAL_VALUE_FROM_CONST_DOUBLE (d0, op0);
4064 REAL_VALUE_FROM_CONST_DOUBLE (d1, op1);
4065 equal = REAL_VALUES_EQUAL (d0, d1);
4066 op0lt = REAL_VALUES_LESS (d0, d1);
4067 op1lt = REAL_VALUES_LESS (d1, d0);
4068 set_float_handler (NULL_PTR);
4069
4070 switch (code)
4071 {
4072 case EQ:
4073 return equal ? const_true_rtx : const0_rtx;
4074 case NE:
4075 return !equal ? const_true_rtx : const0_rtx;
4076 case LE:
4077 return equal || op0lt ? const_true_rtx : const0_rtx;
4078 case LT:
4079 return op0lt ? const_true_rtx : const0_rtx;
4080 case GE:
4081 return equal || op1lt ? const_true_rtx : const0_rtx;
4082 case GT:
4083 return op1lt ? const_true_rtx : const0_rtx;
4084 }
4085 }
4086
4087 switch (code)
4088 {
4089 case EQ:
4090 {
4091 #if 0
4092 /* We can't make this assumption due to #pragma weak */
4093 if (CONSTANT_P (op0) && op1 == const0_rtx)
4094 return const0_rtx;
4095 #endif
4096 if (NONZERO_BASE_PLUS_P (op0) && op1 == const0_rtx
4097 /* On some machines, the ap reg can be 0 sometimes. */
4098 && op0 != arg_pointer_rtx)
4099 return const0_rtx;
4100 break;
4101 }
4102
4103 case NE:
4104 #if 0
4105 /* We can't make this assumption due to #pragma weak */
4106 if (CONSTANT_P (op0) && op1 == const0_rtx)
4107 return const_true_rtx;
4108 #endif
4109 if (NONZERO_BASE_PLUS_P (op0) && op1 == const0_rtx
4110 /* On some machines, the ap reg can be 0 sometimes. */
4111 && op0 != arg_pointer_rtx)
4112 return const_true_rtx;
4113 break;
4114
4115 case GEU:
4116 /* Unsigned values are never negative, but we must be sure we are
4117 actually comparing a value, not a CC operand. */
4118 if (op1 == const0_rtx
4119 && GET_MODE_CLASS (mode) == MODE_INT)
4120 return const_true_rtx;
4121 break;
4122
4123 case LTU:
4124 if (op1 == const0_rtx
4125 && GET_MODE_CLASS (mode) == MODE_INT)
4126 return const0_rtx;
4127 break;
4128
4129 case LEU:
4130 /* Unsigned values are never greater than the largest
4131 unsigned value. */
4132 if (GET_CODE (op1) == CONST_INT
4133 && INTVAL (op1) == GET_MODE_MASK (mode)
4134 && GET_MODE_CLASS (mode) == MODE_INT)
4135 return const_true_rtx;
4136 break;
4137
4138 case GTU:
4139 if (GET_CODE (op1) == CONST_INT
4140 && INTVAL (op1) == GET_MODE_MASK (mode)
4141 && GET_MODE_CLASS (mode) == MODE_INT)
4142 return const0_rtx;
4143 break;
4144 }
4145
4146 return 0;
4147 }
4148
4149 /* Get the integer argument values in two forms:
4150 zero-extended in ARG0, ARG1 and sign-extended in ARG0S, ARG1S. */
4151
4152 arg0 = INTVAL (op0);
4153 arg1 = INTVAL (op1);
4154
4155 if (width < HOST_BITS_PER_WIDE_INT)
4156 {
4157 arg0 &= ((HOST_WIDE_INT) 1 << width) - 1;
4158 arg1 &= ((HOST_WIDE_INT) 1 << width) - 1;
4159
4160 arg0s = arg0;
4161 if (arg0s & ((HOST_WIDE_INT) 1 << (width - 1)))
4162 arg0s |= ((HOST_WIDE_INT) (-1) << width);
4163
4164 arg1s = arg1;
4165 if (arg1s & ((HOST_WIDE_INT) 1 << (width - 1)))
4166 arg1s |= ((HOST_WIDE_INT) (-1) << width);
4167 }
4168 else
4169 {
4170 arg0s = arg0;
4171 arg1s = arg1;
4172 }
4173
4174 /* Compute the value of the arithmetic. */
4175
4176 switch (code)
4177 {
4178 case NE:
4179 val = arg0 != arg1 ? STORE_FLAG_VALUE : 0;
4180 break;
4181
4182 case EQ:
4183 val = arg0 == arg1 ? STORE_FLAG_VALUE : 0;
4184 break;
4185
4186 case LE:
4187 val = arg0s <= arg1s ? STORE_FLAG_VALUE : 0;
4188 break;
4189
4190 case LT:
4191 val = arg0s < arg1s ? STORE_FLAG_VALUE : 0;
4192 break;
4193
4194 case GE:
4195 val = arg0s >= arg1s ? STORE_FLAG_VALUE : 0;
4196 break;
4197
4198 case GT:
4199 val = arg0s > arg1s ? STORE_FLAG_VALUE : 0;
4200 break;
4201
4202 case LEU:
4203 val = (((unsigned HOST_WIDE_INT) arg0)
4204 <= ((unsigned HOST_WIDE_INT) arg1) ? STORE_FLAG_VALUE : 0);
4205 break;
4206
4207 case LTU:
4208 val = (((unsigned HOST_WIDE_INT) arg0)
4209 < ((unsigned HOST_WIDE_INT) arg1) ? STORE_FLAG_VALUE : 0);
4210 break;
4211
4212 case GEU:
4213 val = (((unsigned HOST_WIDE_INT) arg0)
4214 >= ((unsigned HOST_WIDE_INT) arg1) ? STORE_FLAG_VALUE : 0);
4215 break;
4216
4217 case GTU:
4218 val = (((unsigned HOST_WIDE_INT) arg0)
4219 > ((unsigned HOST_WIDE_INT) arg1) ? STORE_FLAG_VALUE : 0);
4220 break;
4221
4222 default:
4223 abort ();
4224 }
4225
4226 /* Clear the bits that don't belong in our mode, unless they and our sign
4227 bit are all one. So we get either a reasonable negative value or a
4228 reasonable unsigned value for this mode. */
4229 if (width < HOST_BITS_PER_WIDE_INT
4230 && ((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
4231 != ((HOST_WIDE_INT) (-1) << (width - 1))))
4232 val &= ((HOST_WIDE_INT) 1 << width) - 1;
4233
4234 return GEN_INT (val);
4235 }
4236 \f
4237 /* Simplify CODE, an operation with result mode MODE and three operands,
4238 OP0, OP1, and OP2. OP0_MODE was the mode of OP0 before it became
4239 a constant. Return 0 if no simplifications is possible. */
4240
4241 rtx
4242 simplify_ternary_operation (code, mode, op0_mode, op0, op1, op2)
4243 enum rtx_code code;
4244 enum machine_mode mode, op0_mode;
4245 rtx op0, op1, op2;
4246 {
4247 int width = GET_MODE_BITSIZE (mode);
4248
4249 /* VOIDmode means "infinite" precision. */
4250 if (width == 0)
4251 width = HOST_BITS_PER_WIDE_INT;
4252
4253 switch (code)
4254 {
4255 case SIGN_EXTRACT:
4256 case ZERO_EXTRACT:
4257 if (GET_CODE (op0) == CONST_INT
4258 && GET_CODE (op1) == CONST_INT
4259 && GET_CODE (op2) == CONST_INT
4260 && INTVAL (op1) + INTVAL (op2) <= GET_MODE_BITSIZE (op0_mode)
4261 && width <= HOST_BITS_PER_WIDE_INT)
4262 {
4263 /* Extracting a bit-field from a constant */
4264 HOST_WIDE_INT val = INTVAL (op0);
4265
4266 #if BITS_BIG_ENDIAN
4267 val >>= (GET_MODE_BITSIZE (op0_mode) - INTVAL (op2) - INTVAL (op1));
4268 #else
4269 val >>= INTVAL (op2);
4270 #endif
4271 if (HOST_BITS_PER_WIDE_INT != INTVAL (op1))
4272 {
4273 /* First zero-extend. */
4274 val &= ((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1;
4275 /* If desired, propagate sign bit. */
4276 if (code == SIGN_EXTRACT
4277 && (val & ((HOST_WIDE_INT) 1 << (INTVAL (op1) - 1))))
4278 val |= ~ (((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1);
4279 }
4280
4281 /* Clear the bits that don't belong in our mode,
4282 unless they and our sign bit are all one.
4283 So we get either a reasonable negative value or a reasonable
4284 unsigned value for this mode. */
4285 if (width < HOST_BITS_PER_WIDE_INT
4286 && ((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
4287 != ((HOST_WIDE_INT) (-1) << (width - 1))))
4288 val &= ((HOST_WIDE_INT) 1 << width) - 1;
4289
4290 return GEN_INT (val);
4291 }
4292 break;
4293
4294 case IF_THEN_ELSE:
4295 if (GET_CODE (op0) == CONST_INT)
4296 return op0 != const0_rtx ? op1 : op2;
4297 break;
4298
4299 default:
4300 abort ();
4301 }
4302
4303 return 0;
4304 }
4305 \f
4306 /* If X is a nontrivial arithmetic operation on an argument
4307 for which a constant value can be determined, return
4308 the result of operating on that value, as a constant.
4309 Otherwise, return X, possibly with one or more operands
4310 modified by recursive calls to this function.
4311
4312 If X is a register whose contents are known, we do NOT
4313 return those contents. This is because an instruction that
4314 uses a register is usually faster than one that uses a constant.
4315
4316 INSN is the insn that we may be modifying. If it is 0, make a copy
4317 of X before modifying it. */
4318
4319 static rtx
4320 fold_rtx (x, insn)
4321 rtx x;
4322 rtx insn;
4323 {
4324 register enum rtx_code code;
4325 register enum machine_mode mode;
4326 register char *fmt;
4327 register int i;
4328 rtx new = 0;
4329 int copied = 0;
4330 int must_swap = 0;
4331
4332 /* Folded equivalents of first two operands of X. */
4333 rtx folded_arg0;
4334 rtx folded_arg1;
4335
4336 /* Constant equivalents of first three operands of X;
4337 0 when no such equivalent is known. */
4338 rtx const_arg0;
4339 rtx const_arg1;
4340 rtx const_arg2;
4341
4342 /* The mode of the first operand of X. We need this for sign and zero
4343 extends. */
4344 enum machine_mode mode_arg0;
4345
4346 if (x == 0)
4347 return x;
4348
4349 mode = GET_MODE (x);
4350 code = GET_CODE (x);
4351 switch (code)
4352 {
4353 case CONST:
4354 case CONST_INT:
4355 case CONST_DOUBLE:
4356 case SYMBOL_REF:
4357 case LABEL_REF:
4358 case REG:
4359 /* No use simplifying an EXPR_LIST
4360 since they are used only for lists of args
4361 in a function call's REG_EQUAL note. */
4362 case EXPR_LIST:
4363 return x;
4364
4365 #ifdef HAVE_cc0
4366 case CC0:
4367 return prev_insn_cc0;
4368 #endif
4369
4370 case PC:
4371 /* If the next insn is a CODE_LABEL followed by a jump table,
4372 PC's value is a LABEL_REF pointing to that label. That
4373 lets us fold switch statements on the Vax. */
4374 if (insn && GET_CODE (insn) == JUMP_INSN)
4375 {
4376 rtx next = next_nonnote_insn (insn);
4377
4378 if (next && GET_CODE (next) == CODE_LABEL
4379 && NEXT_INSN (next) != 0
4380 && GET_CODE (NEXT_INSN (next)) == JUMP_INSN
4381 && (GET_CODE (PATTERN (NEXT_INSN (next))) == ADDR_VEC
4382 || GET_CODE (PATTERN (NEXT_INSN (next))) == ADDR_DIFF_VEC))
4383 return gen_rtx (LABEL_REF, Pmode, next);
4384 }
4385 break;
4386
4387 case SUBREG:
4388 /* See if we previously assigned a constant value to this SUBREG. */
4389 if ((new = lookup_as_function (x, CONST_INT)) != 0
4390 || (new = lookup_as_function (x, CONST_DOUBLE)) != 0)
4391 return new;
4392
4393 /* If this is a paradoxical SUBREG, we have no idea what value the
4394 extra bits would have. However, if the operand is equivalent
4395 to a SUBREG whose operand is the same as our mode, and all the
4396 modes are within a word, we can just use the inner operand
4397 because these SUBREGs just say how to treat the register. */
4398
4399 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4400 {
4401 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
4402 struct table_elt *elt;
4403
4404 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
4405 && GET_MODE_SIZE (imode) <= UNITS_PER_WORD
4406 && (elt = lookup (SUBREG_REG (x), HASH (SUBREG_REG (x), imode),
4407 imode)) != 0)
4408 {
4409 for (elt = elt->first_same_value;
4410 elt; elt = elt->next_same_value)
4411 if (GET_CODE (elt->exp) == SUBREG
4412 && GET_MODE (SUBREG_REG (elt->exp)) == mode
4413 && exp_equiv_p (elt->exp, elt->exp, 1, 0))
4414 return copy_rtx (SUBREG_REG (elt->exp));
4415 }
4416
4417 return x;
4418 }
4419
4420 /* Fold SUBREG_REG. If it changed, see if we can simplify the SUBREG.
4421 We might be able to if the SUBREG is extracting a single word in an
4422 integral mode or extracting the low part. */
4423
4424 folded_arg0 = fold_rtx (SUBREG_REG (x), insn);
4425 const_arg0 = equiv_constant (folded_arg0);
4426 if (const_arg0)
4427 folded_arg0 = const_arg0;
4428
4429 if (folded_arg0 != SUBREG_REG (x))
4430 {
4431 new = 0;
4432
4433 if (GET_MODE_CLASS (mode) == MODE_INT
4434 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
4435 && GET_MODE (SUBREG_REG (x)) != VOIDmode)
4436 new = operand_subword (folded_arg0, SUBREG_WORD (x), 0,
4437 GET_MODE (SUBREG_REG (x)));
4438 if (new == 0 && subreg_lowpart_p (x))
4439 new = gen_lowpart_if_possible (mode, folded_arg0);
4440 if (new)
4441 return new;
4442 }
4443
4444 /* If this is a narrowing SUBREG and our operand is a REG, see if
4445 we can find an equivalence for REG that is an arithmetic operation
4446 in a wider mode where both operands are paradoxical SUBREGs
4447 from objects of our result mode. In that case, we couldn't report
4448 an equivalent value for that operation, since we don't know what the
4449 extra bits will be. But we can find an equivalence for this SUBREG
4450 by folding that operation is the narrow mode. This allows us to
4451 fold arithmetic in narrow modes when the machine only supports
4452 word-sized arithmetic.
4453
4454 Also look for a case where we have a SUBREG whose operand is the
4455 same as our result. If both modes are smaller than a word, we
4456 are simply interpreting a register in different modes and we
4457 can use the inner value. */
4458
4459 if (GET_CODE (folded_arg0) == REG
4460 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (folded_arg0)))
4461 {
4462 struct table_elt *elt;
4463
4464 /* We can use HASH here since we know that canon_hash won't be
4465 called. */
4466 elt = lookup (folded_arg0,
4467 HASH (folded_arg0, GET_MODE (folded_arg0)),
4468 GET_MODE (folded_arg0));
4469
4470 if (elt)
4471 elt = elt->first_same_value;
4472
4473 for (; elt; elt = elt->next_same_value)
4474 {
4475 /* Just check for unary and binary operations. */
4476 if (GET_RTX_CLASS (GET_CODE (elt->exp)) == '1'
4477 && GET_CODE (elt->exp) != SIGN_EXTEND
4478 && GET_CODE (elt->exp) != ZERO_EXTEND
4479 && GET_CODE (XEXP (elt->exp, 0)) == SUBREG
4480 && GET_MODE (SUBREG_REG (XEXP (elt->exp, 0))) == mode)
4481 {
4482 rtx op0 = SUBREG_REG (XEXP (elt->exp, 0));
4483
4484 if (GET_CODE (op0) != REG && ! CONSTANT_P (op0))
4485 op0 = fold_rtx (op0, NULL_RTX);
4486
4487 op0 = equiv_constant (op0);
4488 if (op0)
4489 new = simplify_unary_operation (GET_CODE (elt->exp), mode,
4490 op0, mode);
4491 }
4492 else if ((GET_RTX_CLASS (GET_CODE (elt->exp)) == '2'
4493 || GET_RTX_CLASS (GET_CODE (elt->exp)) == 'c')
4494 && ((GET_CODE (XEXP (elt->exp, 0)) == SUBREG
4495 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 0)))
4496 == mode))
4497 || CONSTANT_P (XEXP (elt->exp, 0)))
4498 && ((GET_CODE (XEXP (elt->exp, 1)) == SUBREG
4499 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 1)))
4500 == mode))
4501 || CONSTANT_P (XEXP (elt->exp, 1))))
4502 {
4503 rtx op0 = gen_lowpart_common (mode, XEXP (elt->exp, 0));
4504 rtx op1 = gen_lowpart_common (mode, XEXP (elt->exp, 1));
4505
4506 if (op0 && GET_CODE (op0) != REG && ! CONSTANT_P (op0))
4507 op0 = fold_rtx (op0, NULL_RTX);
4508
4509 if (op0)
4510 op0 = equiv_constant (op0);
4511
4512 if (op1 && GET_CODE (op1) != REG && ! CONSTANT_P (op1))
4513 op1 = fold_rtx (op1, NULL_RTX);
4514
4515 if (op1)
4516 op1 = equiv_constant (op1);
4517
4518 if (op0 && op1)
4519 new = simplify_binary_operation (GET_CODE (elt->exp), mode,
4520 op0, op1);
4521 }
4522
4523 else if (GET_CODE (elt->exp) == SUBREG
4524 && GET_MODE (SUBREG_REG (elt->exp)) == mode
4525 && (GET_MODE_SIZE (GET_MODE (folded_arg0))
4526 <= UNITS_PER_WORD)
4527 && exp_equiv_p (elt->exp, elt->exp, 1, 0))
4528 new = copy_rtx (SUBREG_REG (elt->exp));
4529
4530 if (new)
4531 return new;
4532 }
4533 }
4534
4535 return x;
4536
4537 case NOT:
4538 case NEG:
4539 /* If we have (NOT Y), see if Y is known to be (NOT Z).
4540 If so, (NOT Y) simplifies to Z. Similarly for NEG. */
4541 new = lookup_as_function (XEXP (x, 0), code);
4542 if (new)
4543 return fold_rtx (copy_rtx (XEXP (new, 0)), insn);
4544 break;
4545
4546 case MEM:
4547 /* If we are not actually processing an insn, don't try to find the
4548 best address. Not only don't we care, but we could modify the
4549 MEM in an invalid way since we have no insn to validate against. */
4550 if (insn != 0)
4551 find_best_addr (insn, &XEXP (x, 0));
4552
4553 {
4554 /* Even if we don't fold in the insn itself,
4555 we can safely do so here, in hopes of getting a constant. */
4556 rtx addr = fold_rtx (XEXP (x, 0), NULL_RTX);
4557 rtx base = 0;
4558 HOST_WIDE_INT offset = 0;
4559
4560 if (GET_CODE (addr) == REG
4561 && REGNO_QTY_VALID_P (REGNO (addr))
4562 && GET_MODE (addr) == qty_mode[reg_qty[REGNO (addr)]]
4563 && qty_const[reg_qty[REGNO (addr)]] != 0)
4564 addr = qty_const[reg_qty[REGNO (addr)]];
4565
4566 /* If address is constant, split it into a base and integer offset. */
4567 if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
4568 base = addr;
4569 else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS
4570 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
4571 {
4572 base = XEXP (XEXP (addr, 0), 0);
4573 offset = INTVAL (XEXP (XEXP (addr, 0), 1));
4574 }
4575 else if (GET_CODE (addr) == LO_SUM
4576 && GET_CODE (XEXP (addr, 1)) == SYMBOL_REF)
4577 base = XEXP (addr, 1);
4578
4579 /* If this is a constant pool reference, we can fold it into its
4580 constant to allow better value tracking. */
4581 if (base && GET_CODE (base) == SYMBOL_REF
4582 && CONSTANT_POOL_ADDRESS_P (base))
4583 {
4584 rtx constant = get_pool_constant (base);
4585 enum machine_mode const_mode = get_pool_mode (base);
4586 rtx new;
4587
4588 if (CONSTANT_P (constant) && GET_CODE (constant) != CONST_INT)
4589 constant_pool_entries_cost = COST (constant);
4590
4591 /* If we are loading the full constant, we have an equivalence. */
4592 if (offset == 0 && mode == const_mode)
4593 return constant;
4594
4595 /* If this actually isn't a constant (wierd!), we can't do
4596 anything. Otherwise, handle the two most common cases:
4597 extracting a word from a multi-word constant, and extracting
4598 the low-order bits. Other cases don't seem common enough to
4599 worry about. */
4600 if (! CONSTANT_P (constant))
4601 return x;
4602
4603 if (GET_MODE_CLASS (mode) == MODE_INT
4604 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
4605 && offset % UNITS_PER_WORD == 0
4606 && (new = operand_subword (constant,
4607 offset / UNITS_PER_WORD,
4608 0, const_mode)) != 0)
4609 return new;
4610
4611 if (((BYTES_BIG_ENDIAN
4612 && offset == GET_MODE_SIZE (GET_MODE (constant)) - 1)
4613 || (! BYTES_BIG_ENDIAN && offset == 0))
4614 && (new = gen_lowpart_if_possible (mode, constant)) != 0)
4615 return new;
4616 }
4617
4618 /* If this is a reference to a label at a known position in a jump
4619 table, we also know its value. */
4620 if (base && GET_CODE (base) == LABEL_REF)
4621 {
4622 rtx label = XEXP (base, 0);
4623 rtx table_insn = NEXT_INSN (label);
4624
4625 if (table_insn && GET_CODE (table_insn) == JUMP_INSN
4626 && GET_CODE (PATTERN (table_insn)) == ADDR_VEC)
4627 {
4628 rtx table = PATTERN (table_insn);
4629
4630 if (offset >= 0
4631 && (offset / GET_MODE_SIZE (GET_MODE (table))
4632 < XVECLEN (table, 0)))
4633 return XVECEXP (table, 0,
4634 offset / GET_MODE_SIZE (GET_MODE (table)));
4635 }
4636 if (table_insn && GET_CODE (table_insn) == JUMP_INSN
4637 && GET_CODE (PATTERN (table_insn)) == ADDR_DIFF_VEC)
4638 {
4639 rtx table = PATTERN (table_insn);
4640
4641 if (offset >= 0
4642 && (offset / GET_MODE_SIZE (GET_MODE (table))
4643 < XVECLEN (table, 1)))
4644 {
4645 offset /= GET_MODE_SIZE (GET_MODE (table));
4646 new = gen_rtx (MINUS, Pmode, XVECEXP (table, 1, offset),
4647 XEXP (table, 0));
4648
4649 if (GET_MODE (table) != Pmode)
4650 new = gen_rtx (TRUNCATE, GET_MODE (table), new);
4651
4652 return new;
4653 }
4654 }
4655 }
4656
4657 return x;
4658 }
4659 }
4660
4661 const_arg0 = 0;
4662 const_arg1 = 0;
4663 const_arg2 = 0;
4664 mode_arg0 = VOIDmode;
4665
4666 /* Try folding our operands.
4667 Then see which ones have constant values known. */
4668
4669 fmt = GET_RTX_FORMAT (code);
4670 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4671 if (fmt[i] == 'e')
4672 {
4673 rtx arg = XEXP (x, i);
4674 rtx folded_arg = arg, const_arg = 0;
4675 enum machine_mode mode_arg = GET_MODE (arg);
4676 rtx cheap_arg, expensive_arg;
4677 rtx replacements[2];
4678 int j;
4679
4680 /* Most arguments are cheap, so handle them specially. */
4681 switch (GET_CODE (arg))
4682 {
4683 case REG:
4684 /* This is the same as calling equiv_constant; it is duplicated
4685 here for speed. */
4686 if (REGNO_QTY_VALID_P (REGNO (arg))
4687 && qty_const[reg_qty[REGNO (arg)]] != 0
4688 && GET_CODE (qty_const[reg_qty[REGNO (arg)]]) != REG
4689 && GET_CODE (qty_const[reg_qty[REGNO (arg)]]) != PLUS)
4690 const_arg
4691 = gen_lowpart_if_possible (GET_MODE (arg),
4692 qty_const[reg_qty[REGNO (arg)]]);
4693 break;
4694
4695 case CONST:
4696 case CONST_INT:
4697 case SYMBOL_REF:
4698 case LABEL_REF:
4699 case CONST_DOUBLE:
4700 const_arg = arg;
4701 break;
4702
4703 #ifdef HAVE_cc0
4704 case CC0:
4705 folded_arg = prev_insn_cc0;
4706 mode_arg = prev_insn_cc0_mode;
4707 const_arg = equiv_constant (folded_arg);
4708 break;
4709 #endif
4710
4711 default:
4712 folded_arg = fold_rtx (arg, insn);
4713 const_arg = equiv_constant (folded_arg);
4714 }
4715
4716 /* For the first three operands, see if the operand
4717 is constant or equivalent to a constant. */
4718 switch (i)
4719 {
4720 case 0:
4721 folded_arg0 = folded_arg;
4722 const_arg0 = const_arg;
4723 mode_arg0 = mode_arg;
4724 break;
4725 case 1:
4726 folded_arg1 = folded_arg;
4727 const_arg1 = const_arg;
4728 break;
4729 case 2:
4730 const_arg2 = const_arg;
4731 break;
4732 }
4733
4734 /* Pick the least expensive of the folded argument and an
4735 equivalent constant argument. */
4736 if (const_arg == 0 || const_arg == folded_arg
4737 || COST (const_arg) > COST (folded_arg))
4738 cheap_arg = folded_arg, expensive_arg = const_arg;
4739 else
4740 cheap_arg = const_arg, expensive_arg = folded_arg;
4741
4742 /* Try to replace the operand with the cheapest of the two
4743 possibilities. If it doesn't work and this is either of the first
4744 two operands of a commutative operation, try swapping them.
4745 If THAT fails, try the more expensive, provided it is cheaper
4746 than what is already there. */
4747
4748 if (cheap_arg == XEXP (x, i))
4749 continue;
4750
4751 if (insn == 0 && ! copied)
4752 {
4753 x = copy_rtx (x);
4754 copied = 1;
4755 }
4756
4757 replacements[0] = cheap_arg, replacements[1] = expensive_arg;
4758 for (j = 0;
4759 j < 2 && replacements[j]
4760 && COST (replacements[j]) < COST (XEXP (x, i));
4761 j++)
4762 {
4763 if (validate_change (insn, &XEXP (x, i), replacements[j], 0))
4764 break;
4765
4766 if (code == NE || code == EQ || GET_RTX_CLASS (code) == 'c')
4767 {
4768 validate_change (insn, &XEXP (x, i), XEXP (x, 1 - i), 1);
4769 validate_change (insn, &XEXP (x, 1 - i), replacements[j], 1);
4770
4771 if (apply_change_group ())
4772 {
4773 /* Swap them back to be invalid so that this loop can
4774 continue and flag them to be swapped back later. */
4775 rtx tem;
4776
4777 tem = XEXP (x, 0); XEXP (x, 0) = XEXP (x, 1);
4778 XEXP (x, 1) = tem;
4779 must_swap = 1;
4780 break;
4781 }
4782 }
4783 }
4784 }
4785
4786 else if (fmt[i] == 'E')
4787 /* Don't try to fold inside of a vector of expressions.
4788 Doing nothing is harmless. */
4789 ;
4790
4791 /* If a commutative operation, place a constant integer as the second
4792 operand unless the first operand is also a constant integer. Otherwise,
4793 place any constant second unless the first operand is also a constant. */
4794
4795 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
4796 {
4797 if (must_swap || (const_arg0
4798 && (const_arg1 == 0
4799 || (GET_CODE (const_arg0) == CONST_INT
4800 && GET_CODE (const_arg1) != CONST_INT))))
4801 {
4802 register rtx tem = XEXP (x, 0);
4803
4804 if (insn == 0 && ! copied)
4805 {
4806 x = copy_rtx (x);
4807 copied = 1;
4808 }
4809
4810 validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
4811 validate_change (insn, &XEXP (x, 1), tem, 1);
4812 if (apply_change_group ())
4813 {
4814 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
4815 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
4816 }
4817 }
4818 }
4819
4820 /* If X is an arithmetic operation, see if we can simplify it. */
4821
4822 switch (GET_RTX_CLASS (code))
4823 {
4824 case '1':
4825 /* We can't simplify extension ops unless we know the original mode. */
4826 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
4827 && mode_arg0 == VOIDmode)
4828 break;
4829 new = simplify_unary_operation (code, mode,
4830 const_arg0 ? const_arg0 : folded_arg0,
4831 mode_arg0);
4832 break;
4833
4834 case '<':
4835 /* See what items are actually being compared and set FOLDED_ARG[01]
4836 to those values and CODE to the actual comparison code. If any are
4837 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
4838 do anything if both operands are already known to be constant. */
4839
4840 if (const_arg0 == 0 || const_arg1 == 0)
4841 {
4842 struct table_elt *p0, *p1;
4843 rtx true = const_true_rtx, false = const0_rtx;
4844
4845 #ifdef FLOAT_STORE_FLAG_VALUE
4846 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
4847 {
4848 true = immed_real_const_1 (FLOAT_STORE_FLAG_VALUE, mode);
4849 false = CONST0_RTX (mode);
4850 }
4851 #endif
4852
4853 code = find_comparison_args (code, &folded_arg0, &folded_arg1);
4854 const_arg0 = equiv_constant (folded_arg0);
4855 const_arg1 = equiv_constant (folded_arg1);
4856
4857 /* Get a mode from the values actually being compared, or from the
4858 old value of MODE_ARG0 if both are constants. If the resulting
4859 mode is VOIDmode or a MODE_CC mode, we don't know what kinds
4860 of things are being compared, so we can't do anything with this
4861 comparison. */
4862
4863 if (GET_MODE (folded_arg0) != VOIDmode
4864 && GET_MODE_CLASS (GET_MODE (folded_arg0)) != MODE_CC)
4865 mode_arg0 = GET_MODE (folded_arg0);
4866
4867 else if (GET_MODE (folded_arg1) != VOIDmode
4868 && GET_MODE_CLASS (GET_MODE (folded_arg1)) != MODE_CC)
4869 mode_arg0 = GET_MODE (folded_arg1);
4870
4871 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
4872 break;
4873
4874 /* If we do not now have two constants being compared, see if we
4875 can nevertheless deduce some things about the comparison. */
4876 if (const_arg0 == 0 || const_arg1 == 0)
4877 {
4878 /* Is FOLDED_ARG0 frame-pointer plus a constant? Or non-explicit
4879 constant? These aren't zero, but we don't know their sign. */
4880 if (const_arg1 == const0_rtx
4881 && (NONZERO_BASE_PLUS_P (folded_arg0)
4882 #if 0 /* Sad to say, on sysvr4, #pragma weak can make a symbol address
4883 come out as 0. */
4884 || GET_CODE (folded_arg0) == SYMBOL_REF
4885 #endif
4886 || GET_CODE (folded_arg0) == LABEL_REF
4887 || GET_CODE (folded_arg0) == CONST))
4888 {
4889 if (code == EQ)
4890 return false;
4891 else if (code == NE)
4892 return true;
4893 }
4894
4895 /* See if the two operands are the same. We don't do this
4896 for IEEE floating-point since we can't assume x == x
4897 since x might be a NaN. */
4898
4899 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
4900 || GET_MODE_CLASS (mode_arg0) != MODE_FLOAT)
4901 && (folded_arg0 == folded_arg1
4902 || (GET_CODE (folded_arg0) == REG
4903 && GET_CODE (folded_arg1) == REG
4904 && (reg_qty[REGNO (folded_arg0)]
4905 == reg_qty[REGNO (folded_arg1)]))
4906 || ((p0 = lookup (folded_arg0,
4907 (safe_hash (folded_arg0, mode_arg0)
4908 % NBUCKETS), mode_arg0))
4909 && (p1 = lookup (folded_arg1,
4910 (safe_hash (folded_arg1, mode_arg0)
4911 % NBUCKETS), mode_arg0))
4912 && p0->first_same_value == p1->first_same_value)))
4913 return ((code == EQ || code == LE || code == GE
4914 || code == LEU || code == GEU)
4915 ? true : false);
4916
4917 /* If FOLDED_ARG0 is a register, see if the comparison we are
4918 doing now is either the same as we did before or the reverse
4919 (we only check the reverse if not floating-point). */
4920 else if (GET_CODE (folded_arg0) == REG)
4921 {
4922 int qty = reg_qty[REGNO (folded_arg0)];
4923
4924 if (REGNO_QTY_VALID_P (REGNO (folded_arg0))
4925 && (comparison_dominates_p (qty_comparison_code[qty], code)
4926 || (comparison_dominates_p (qty_comparison_code[qty],
4927 reverse_condition (code))
4928 && GET_MODE_CLASS (mode_arg0) == MODE_INT))
4929 && (rtx_equal_p (qty_comparison_const[qty], folded_arg1)
4930 || (const_arg1
4931 && rtx_equal_p (qty_comparison_const[qty],
4932 const_arg1))
4933 || (GET_CODE (folded_arg1) == REG
4934 && (reg_qty[REGNO (folded_arg1)]
4935 == qty_comparison_qty[qty]))))
4936 return (comparison_dominates_p (qty_comparison_code[qty],
4937 code)
4938 ? true : false);
4939 }
4940 }
4941 }
4942
4943 /* If we are comparing against zero, see if the first operand is
4944 equivalent to an IOR with a constant. If so, we may be able to
4945 determine the result of this comparison. */
4946
4947 if (const_arg1 == const0_rtx)
4948 {
4949 rtx y = lookup_as_function (folded_arg0, IOR);
4950 rtx inner_const;
4951
4952 if (y != 0
4953 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
4954 && GET_CODE (inner_const) == CONST_INT
4955 && INTVAL (inner_const) != 0)
4956 {
4957 int sign_bitnum = GET_MODE_BITSIZE (mode_arg0) - 1;
4958 int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
4959 && (INTVAL (inner_const)
4960 & ((HOST_WIDE_INT) 1 << sign_bitnum)));
4961 rtx true = const_true_rtx, false = const0_rtx;
4962
4963 #ifdef FLOAT_STORE_FLAG_VALUE
4964 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
4965 {
4966 true = immed_real_const_1 (FLOAT_STORE_FLAG_VALUE, mode);
4967 false = CONST0_RTX (mode);
4968 }
4969 #endif
4970
4971 switch (code)
4972 {
4973 case EQ:
4974 return false;
4975 case NE:
4976 return true;
4977 case LT: case LE:
4978 if (has_sign)
4979 return true;
4980 break;
4981 case GT: case GE:
4982 if (has_sign)
4983 return false;
4984 break;
4985 }
4986 }
4987 }
4988
4989 new = simplify_relational_operation (code, mode_arg0,
4990 const_arg0 ? const_arg0 : folded_arg0,
4991 const_arg1 ? const_arg1 : folded_arg1);
4992 #ifdef FLOAT_STORE_FLAG_VALUE
4993 if (new != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
4994 new = ((new == const0_rtx) ? CONST0_RTX (mode)
4995 : immed_real_const_1 (FLOAT_STORE_FLAG_VALUE, mode));
4996 #endif
4997 break;
4998
4999 case '2':
5000 case 'c':
5001 switch (code)
5002 {
5003 case PLUS:
5004 /* If the second operand is a LABEL_REF, see if the first is a MINUS
5005 with that LABEL_REF as its second operand. If so, the result is
5006 the first operand of that MINUS. This handles switches with an
5007 ADDR_DIFF_VEC table. */
5008 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
5009 {
5010 rtx y = lookup_as_function (folded_arg0, MINUS);
5011
5012 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
5013 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
5014 return XEXP (y, 0);
5015 }
5016
5017 /* ... fall through ... */
5018
5019 case MINUS:
5020 case SMIN: case SMAX: case UMIN: case UMAX:
5021 case IOR: case AND: case XOR:
5022 case MULT: case DIV: case UDIV:
5023 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
5024 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
5025 is known to be of similar form, we may be able to replace the
5026 operation with a combined operation. This may eliminate the
5027 intermediate operation if every use is simplified in this way.
5028 Note that the similar optimization done by combine.c only works
5029 if the intermediate operation's result has only one reference. */
5030
5031 if (GET_CODE (folded_arg0) == REG
5032 && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
5033 {
5034 int is_shift
5035 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
5036 rtx y = lookup_as_function (folded_arg0, code);
5037 rtx inner_const;
5038 enum rtx_code associate_code;
5039 rtx new_const;
5040
5041 if (y == 0
5042 || 0 == (inner_const
5043 = equiv_constant (fold_rtx (XEXP (y, 1), 0)))
5044 || GET_CODE (inner_const) != CONST_INT
5045 /* If we have compiled a statement like
5046 "if (x == (x & mask1))", and now are looking at
5047 "x & mask2", we will have a case where the first operand
5048 of Y is the same as our first operand. Unless we detect
5049 this case, an infinite loop will result. */
5050 || XEXP (y, 0) == folded_arg0)
5051 break;
5052
5053 /* Don't associate these operations if they are a PLUS with the
5054 same constant and it is a power of two. These might be doable
5055 with a pre- or post-increment. Similarly for two subtracts of
5056 identical powers of two with post decrement. */
5057
5058 if (code == PLUS && INTVAL (const_arg1) == INTVAL (inner_const)
5059 && (0
5060 #if defined(HAVE_PRE_INCREMENT) || defined(HAVE_POST_INCREMENT)
5061 || exact_log2 (INTVAL (const_arg1)) >= 0
5062 #endif
5063 #if defined(HAVE_PRE_DECREMENT) || defined(HAVE_POST_DECREMENT)
5064 || exact_log2 (- INTVAL (const_arg1)) >= 0
5065 #endif
5066 ))
5067 break;
5068
5069 /* Compute the code used to compose the constants. For example,
5070 A/C1/C2 is A/(C1 * C2), so if CODE == DIV, we want MULT. */
5071
5072 associate_code
5073 = (code == MULT || code == DIV || code == UDIV ? MULT
5074 : is_shift || code == PLUS || code == MINUS ? PLUS : code);
5075
5076 new_const = simplify_binary_operation (associate_code, mode,
5077 const_arg1, inner_const);
5078
5079 if (new_const == 0)
5080 break;
5081
5082 /* If we are associating shift operations, don't let this
5083 produce a shift of larger than the object. This could
5084 occur when we following a sign-extend by a right shift on
5085 a machine that does a sign-extend as a pair of shifts. */
5086
5087 if (is_shift && GET_CODE (new_const) == CONST_INT
5088 && INTVAL (new_const) > GET_MODE_BITSIZE (mode))
5089 break;
5090
5091 y = copy_rtx (XEXP (y, 0));
5092
5093 /* If Y contains our first operand (the most common way this
5094 can happen is if Y is a MEM), we would do into an infinite
5095 loop if we tried to fold it. So don't in that case. */
5096
5097 if (! reg_mentioned_p (folded_arg0, y))
5098 y = fold_rtx (y, insn);
5099
5100 new = simplify_binary_operation (code, mode, y, new_const);
5101 if (new)
5102 return new;
5103
5104 return gen_rtx (code, mode, y, new_const);
5105 }
5106 }
5107
5108 new = simplify_binary_operation (code, mode,
5109 const_arg0 ? const_arg0 : folded_arg0,
5110 const_arg1 ? const_arg1 : folded_arg1);
5111 break;
5112
5113 case 'o':
5114 /* (lo_sum (high X) X) is simply X. */
5115 if (code == LO_SUM && const_arg0 != 0
5116 && GET_CODE (const_arg0) == HIGH
5117 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
5118 return const_arg1;
5119 break;
5120
5121 case '3':
5122 case 'b':
5123 new = simplify_ternary_operation (code, mode, mode_arg0,
5124 const_arg0 ? const_arg0 : folded_arg0,
5125 const_arg1 ? const_arg1 : folded_arg1,
5126 const_arg2 ? const_arg2 : XEXP (x, 2));
5127 break;
5128 }
5129
5130 return new ? new : x;
5131 }
5132 \f
5133 /* Return a constant value currently equivalent to X.
5134 Return 0 if we don't know one. */
5135
5136 static rtx
5137 equiv_constant (x)
5138 rtx x;
5139 {
5140 if (GET_CODE (x) == REG
5141 && REGNO_QTY_VALID_P (REGNO (x))
5142 && qty_const[reg_qty[REGNO (x)]])
5143 x = gen_lowpart_if_possible (GET_MODE (x), qty_const[reg_qty[REGNO (x)]]);
5144
5145 if (x != 0 && CONSTANT_P (x))
5146 return x;
5147
5148 /* If X is a MEM, try to fold it outside the context of any insn to see if
5149 it might be equivalent to a constant. That handles the case where it
5150 is a constant-pool reference. Then try to look it up in the hash table
5151 in case it is something whose value we have seen before. */
5152
5153 if (GET_CODE (x) == MEM)
5154 {
5155 struct table_elt *elt;
5156
5157 x = fold_rtx (x, NULL_RTX);
5158 if (CONSTANT_P (x))
5159 return x;
5160
5161 elt = lookup (x, safe_hash (x, GET_MODE (x)) % NBUCKETS, GET_MODE (x));
5162 if (elt == 0)
5163 return 0;
5164
5165 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
5166 if (elt->is_const && CONSTANT_P (elt->exp))
5167 return elt->exp;
5168 }
5169
5170 return 0;
5171 }
5172 \f
5173 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a fixed-point
5174 number, return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
5175 least-significant part of X.
5176 MODE specifies how big a part of X to return.
5177
5178 If the requested operation cannot be done, 0 is returned.
5179
5180 This is similar to gen_lowpart in emit-rtl.c. */
5181
5182 rtx
5183 gen_lowpart_if_possible (mode, x)
5184 enum machine_mode mode;
5185 register rtx x;
5186 {
5187 rtx result = gen_lowpart_common (mode, x);
5188
5189 if (result)
5190 return result;
5191 else if (GET_CODE (x) == MEM)
5192 {
5193 /* This is the only other case we handle. */
5194 register int offset = 0;
5195 rtx new;
5196
5197 #if WORDS_BIG_ENDIAN
5198 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
5199 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
5200 #endif
5201 #if BYTES_BIG_ENDIAN
5202 /* Adjust the address so that the address-after-the-data
5203 is unchanged. */
5204 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
5205 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
5206 #endif
5207 new = gen_rtx (MEM, mode, plus_constant (XEXP (x, 0), offset));
5208 if (! memory_address_p (mode, XEXP (new, 0)))
5209 return 0;
5210 MEM_VOLATILE_P (new) = MEM_VOLATILE_P (x);
5211 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x);
5212 MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (x);
5213 return new;
5214 }
5215 else
5216 return 0;
5217 }
5218 \f
5219 /* Given INSN, a jump insn, TAKEN indicates if we are following the "taken"
5220 branch. It will be zero if not.
5221
5222 In certain cases, this can cause us to add an equivalence. For example,
5223 if we are following the taken case of
5224 if (i == 2)
5225 we can add the fact that `i' and '2' are now equivalent.
5226
5227 In any case, we can record that this comparison was passed. If the same
5228 comparison is seen later, we will know its value. */
5229
5230 static void
5231 record_jump_equiv (insn, taken)
5232 rtx insn;
5233 int taken;
5234 {
5235 int cond_known_true;
5236 rtx op0, op1;
5237 enum machine_mode mode;
5238 int reversed_nonequality = 0;
5239 enum rtx_code code;
5240
5241 /* Ensure this is the right kind of insn. */
5242 if (! condjump_p (insn) || simplejump_p (insn))
5243 return;
5244
5245 /* See if this jump condition is known true or false. */
5246 if (taken)
5247 cond_known_true = (XEXP (SET_SRC (PATTERN (insn)), 2) == pc_rtx);
5248 else
5249 cond_known_true = (XEXP (SET_SRC (PATTERN (insn)), 1) == pc_rtx);
5250
5251 /* Get the type of comparison being done and the operands being compared.
5252 If we had to reverse a non-equality condition, record that fact so we
5253 know that it isn't valid for floating-point. */
5254 code = GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 0));
5255 op0 = fold_rtx (XEXP (XEXP (SET_SRC (PATTERN (insn)), 0), 0), insn);
5256 op1 = fold_rtx (XEXP (XEXP (SET_SRC (PATTERN (insn)), 0), 1), insn);
5257
5258 code = find_comparison_args (code, &op0, &op1);
5259 if (! cond_known_true)
5260 {
5261 reversed_nonequality = (code != EQ && code != NE);
5262 code = reverse_condition (code);
5263 }
5264
5265 /* The mode is the mode of the non-constant. */
5266 mode = GET_MODE (op0);
5267 if (mode == VOIDmode) mode = GET_MODE (op1);
5268
5269 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
5270 }
5271
5272 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
5273 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
5274 Make any useful entries we can with that information. Called from
5275 above function and called recursively. */
5276
5277 static void
5278 record_jump_cond (code, mode, op0, op1, reversed_nonequality)
5279 enum rtx_code code;
5280 enum machine_mode mode;
5281 rtx op0, op1;
5282 int reversed_nonequality;
5283 {
5284 int op0_hash_code, op1_hash_code;
5285 int op0_in_memory, op0_in_struct, op1_in_memory, op1_in_struct;
5286 struct table_elt *op0_elt, *op1_elt;
5287
5288 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
5289 we know that they are also equal in the smaller mode (this is also
5290 true for all smaller modes whether or not there is a SUBREG, but
5291 is not worth testing for with no SUBREG. */
5292
5293 if (code == EQ && GET_CODE (op0) == SUBREG
5294 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
5295 {
5296 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
5297 rtx tem = gen_lowpart_if_possible (inner_mode, op1);
5298
5299 record_jump_cond (code, mode, SUBREG_REG (op0),
5300 tem ? tem : gen_rtx (SUBREG, inner_mode, op1, 0),
5301 reversed_nonequality);
5302 }
5303
5304 if (code == EQ && GET_CODE (op1) == SUBREG
5305 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1))))
5306 {
5307 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
5308 rtx tem = gen_lowpart_if_possible (inner_mode, op0);
5309
5310 record_jump_cond (code, mode, SUBREG_REG (op1),
5311 tem ? tem : gen_rtx (SUBREG, inner_mode, op0, 0),
5312 reversed_nonequality);
5313 }
5314
5315 /* Similarly, if this is an NE comparison, and either is a SUBREG
5316 making a smaller mode, we know the whole thing is also NE. */
5317
5318 if (code == NE && GET_CODE (op0) == SUBREG
5319 && subreg_lowpart_p (op0)
5320 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
5321 {
5322 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
5323 rtx tem = gen_lowpart_if_possible (inner_mode, op1);
5324
5325 record_jump_cond (code, mode, SUBREG_REG (op0),
5326 tem ? tem : gen_rtx (SUBREG, inner_mode, op1, 0),
5327 reversed_nonequality);
5328 }
5329
5330 if (code == NE && GET_CODE (op1) == SUBREG
5331 && subreg_lowpart_p (op1)
5332 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1))))
5333 {
5334 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
5335 rtx tem = gen_lowpart_if_possible (inner_mode, op0);
5336
5337 record_jump_cond (code, mode, SUBREG_REG (op1),
5338 tem ? tem : gen_rtx (SUBREG, inner_mode, op0, 0),
5339 reversed_nonequality);
5340 }
5341
5342 /* Hash both operands. */
5343
5344 do_not_record = 0;
5345 hash_arg_in_memory = 0;
5346 hash_arg_in_struct = 0;
5347 op0_hash_code = HASH (op0, mode);
5348 op0_in_memory = hash_arg_in_memory;
5349 op0_in_struct = hash_arg_in_struct;
5350
5351 if (do_not_record)
5352 return;
5353
5354 do_not_record = 0;
5355 hash_arg_in_memory = 0;
5356 hash_arg_in_struct = 0;
5357 op1_hash_code = HASH (op1, mode);
5358 op1_in_memory = hash_arg_in_memory;
5359 op1_in_struct = hash_arg_in_struct;
5360
5361 if (do_not_record)
5362 return;
5363
5364 /* Look up both operands. */
5365 op0_elt = lookup (op0, op0_hash_code, mode);
5366 op1_elt = lookup (op1, op1_hash_code, mode);
5367
5368 /* If we aren't setting two things equal all we can do is save this
5369 comparison. Similarly if this is floating-point. In the latter
5370 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
5371 If we record the equality, we might inadvertently delete code
5372 whose intent was to change -0 to +0. */
5373
5374 if (code != EQ || GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
5375 {
5376 /* If we reversed a floating-point comparison, if OP0 is not a
5377 register, or if OP1 is neither a register or constant, we can't
5378 do anything. */
5379
5380 if (GET_CODE (op1) != REG)
5381 op1 = equiv_constant (op1);
5382
5383 if ((reversed_nonequality && GET_MODE_CLASS (mode) != MODE_INT)
5384 || GET_CODE (op0) != REG || op1 == 0)
5385 return;
5386
5387 /* Put OP0 in the hash table if it isn't already. This gives it a
5388 new quantity number. */
5389 if (op0_elt == 0)
5390 {
5391 if (insert_regs (op0, NULL_PTR, 0))
5392 {
5393 rehash_using_reg (op0);
5394 op0_hash_code = HASH (op0, mode);
5395 }
5396
5397 op0_elt = insert (op0, NULL_PTR, op0_hash_code, mode);
5398 op0_elt->in_memory = op0_in_memory;
5399 op0_elt->in_struct = op0_in_struct;
5400 }
5401
5402 qty_comparison_code[reg_qty[REGNO (op0)]] = code;
5403 if (GET_CODE (op1) == REG)
5404 {
5405 /* Put OP1 in the hash table so it gets a new quantity number. */
5406 if (op1_elt == 0)
5407 {
5408 if (insert_regs (op1, NULL_PTR, 0))
5409 {
5410 rehash_using_reg (op1);
5411 op1_hash_code = HASH (op1, mode);
5412 }
5413
5414 op1_elt = insert (op1, NULL_PTR, op1_hash_code, mode);
5415 op1_elt->in_memory = op1_in_memory;
5416 op1_elt->in_struct = op1_in_struct;
5417 }
5418
5419 qty_comparison_qty[reg_qty[REGNO (op0)]] = reg_qty[REGNO (op1)];
5420 qty_comparison_const[reg_qty[REGNO (op0)]] = 0;
5421 }
5422 else
5423 {
5424 qty_comparison_qty[reg_qty[REGNO (op0)]] = -1;
5425 qty_comparison_const[reg_qty[REGNO (op0)]] = op1;
5426 }
5427
5428 return;
5429 }
5430
5431 /* If both are equivalent, merge the two classes. Save this class for
5432 `cse_set_around_loop'. */
5433 if (op0_elt && op1_elt)
5434 {
5435 merge_equiv_classes (op0_elt, op1_elt);
5436 last_jump_equiv_class = op0_elt;
5437 }
5438
5439 /* For whichever side doesn't have an equivalence, make one. */
5440 if (op0_elt == 0)
5441 {
5442 if (insert_regs (op0, op1_elt, 0))
5443 {
5444 rehash_using_reg (op0);
5445 op0_hash_code = HASH (op0, mode);
5446 }
5447
5448 op0_elt = insert (op0, op1_elt, op0_hash_code, mode);
5449 op0_elt->in_memory = op0_in_memory;
5450 op0_elt->in_struct = op0_in_struct;
5451 last_jump_equiv_class = op0_elt;
5452 }
5453
5454 if (op1_elt == 0)
5455 {
5456 if (insert_regs (op1, op0_elt, 0))
5457 {
5458 rehash_using_reg (op1);
5459 op1_hash_code = HASH (op1, mode);
5460 }
5461
5462 op1_elt = insert (op1, op0_elt, op1_hash_code, mode);
5463 op1_elt->in_memory = op1_in_memory;
5464 op1_elt->in_struct = op1_in_struct;
5465 last_jump_equiv_class = op1_elt;
5466 }
5467 }
5468 \f
5469 /* CSE processing for one instruction.
5470 First simplify sources and addresses of all assignments
5471 in the instruction, using previously-computed equivalents values.
5472 Then install the new sources and destinations in the table
5473 of available values.
5474
5475 If IN_LIBCALL_BLOCK is nonzero, don't record any equivalence made in
5476 the insn. */
5477
5478 /* Data on one SET contained in the instruction. */
5479
5480 struct set
5481 {
5482 /* The SET rtx itself. */
5483 rtx rtl;
5484 /* The SET_SRC of the rtx (the original value, if it is changing). */
5485 rtx src;
5486 /* The hash-table element for the SET_SRC of the SET. */
5487 struct table_elt *src_elt;
5488 /* Hash code for the SET_SRC. */
5489 int src_hash_code;
5490 /* Hash code for the SET_DEST. */
5491 int dest_hash_code;
5492 /* The SET_DEST, with SUBREG, etc., stripped. */
5493 rtx inner_dest;
5494 /* Place where the pointer to the INNER_DEST was found. */
5495 rtx *inner_dest_loc;
5496 /* Nonzero if the SET_SRC is in memory. */
5497 char src_in_memory;
5498 /* Nonzero if the SET_SRC is in a structure. */
5499 char src_in_struct;
5500 /* Nonzero if the SET_SRC contains something
5501 whose value cannot be predicted and understood. */
5502 char src_volatile;
5503 /* Original machine mode, in case it becomes a CONST_INT. */
5504 enum machine_mode mode;
5505 /* A constant equivalent for SET_SRC, if any. */
5506 rtx src_const;
5507 /* Hash code of constant equivalent for SET_SRC. */
5508 int src_const_hash_code;
5509 /* Table entry for constant equivalent for SET_SRC, if any. */
5510 struct table_elt *src_const_elt;
5511 };
5512
5513 static void
5514 cse_insn (insn, in_libcall_block)
5515 rtx insn;
5516 int in_libcall_block;
5517 {
5518 register rtx x = PATTERN (insn);
5519 rtx tem;
5520 register int i;
5521 register int n_sets = 0;
5522
5523 /* Records what this insn does to set CC0. */
5524 rtx this_insn_cc0 = 0;
5525 enum machine_mode this_insn_cc0_mode;
5526 struct write_data writes_memory;
5527 static struct write_data init = {0, 0, 0, 0};
5528
5529 rtx src_eqv = 0;
5530 struct table_elt *src_eqv_elt = 0;
5531 int src_eqv_volatile;
5532 int src_eqv_in_memory;
5533 int src_eqv_in_struct;
5534 int src_eqv_hash_code;
5535
5536 struct set *sets;
5537
5538 this_insn = insn;
5539 writes_memory = init;
5540
5541 /* Find all the SETs and CLOBBERs in this instruction.
5542 Record all the SETs in the array `set' and count them.
5543 Also determine whether there is a CLOBBER that invalidates
5544 all memory references, or all references at varying addresses. */
5545
5546 if (GET_CODE (x) == SET)
5547 {
5548 sets = (struct set *) alloca (sizeof (struct set));
5549 sets[0].rtl = x;
5550
5551 /* Ignore SETs that are unconditional jumps.
5552 They never need cse processing, so this does not hurt.
5553 The reason is not efficiency but rather
5554 so that we can test at the end for instructions
5555 that have been simplified to unconditional jumps
5556 and not be misled by unchanged instructions
5557 that were unconditional jumps to begin with. */
5558 if (SET_DEST (x) == pc_rtx
5559 && GET_CODE (SET_SRC (x)) == LABEL_REF)
5560 ;
5561
5562 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
5563 The hard function value register is used only once, to copy to
5564 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
5565 Ensure we invalidate the destination register. On the 80386 no
5566 other code would invalidate it since it is a fixed_reg. */
5567
5568 else if (GET_CODE (SET_SRC (x)) == CALL)
5569 {
5570 canon_reg (SET_SRC (x), insn);
5571 apply_change_group ();
5572 fold_rtx (SET_SRC (x), insn);
5573 invalidate (SET_DEST (x));
5574 }
5575 else
5576 n_sets = 1;
5577 }
5578 else if (GET_CODE (x) == PARALLEL)
5579 {
5580 register int lim = XVECLEN (x, 0);
5581
5582 sets = (struct set *) alloca (lim * sizeof (struct set));
5583
5584 /* Find all regs explicitly clobbered in this insn,
5585 and ensure they are not replaced with any other regs
5586 elsewhere in this insn.
5587 When a reg that is clobbered is also used for input,
5588 we should presume that that is for a reason,
5589 and we should not substitute some other register
5590 which is not supposed to be clobbered.
5591 Therefore, this loop cannot be merged into the one below
5592 because a CALL may precede a CLOBBER and refer to the
5593 value clobbered. We must not let a canonicalization do
5594 anything in that case. */
5595 for (i = 0; i < lim; i++)
5596 {
5597 register rtx y = XVECEXP (x, 0, i);
5598 if (GET_CODE (y) == CLOBBER
5599 && (GET_CODE (XEXP (y, 0)) == REG
5600 || GET_CODE (XEXP (y, 0)) == SUBREG))
5601 invalidate (XEXP (y, 0));
5602 }
5603
5604 for (i = 0; i < lim; i++)
5605 {
5606 register rtx y = XVECEXP (x, 0, i);
5607 if (GET_CODE (y) == SET)
5608 {
5609 /* As above, we ignore unconditional jumps and call-insns. */
5610 if (GET_CODE (SET_SRC (y)) == CALL)
5611 {
5612 canon_reg (SET_SRC (y), insn);
5613 apply_change_group ();
5614 fold_rtx (SET_SRC (y), insn);
5615 invalidate (SET_DEST (y));
5616 }
5617 else if (SET_DEST (y) == pc_rtx
5618 && GET_CODE (SET_SRC (y)) == LABEL_REF)
5619 ;
5620 else
5621 sets[n_sets++].rtl = y;
5622 }
5623 else if (GET_CODE (y) == CLOBBER)
5624 {
5625 /* If we clobber memory, take note of that,
5626 and canon the address.
5627 This does nothing when a register is clobbered
5628 because we have already invalidated the reg. */
5629 if (GET_CODE (XEXP (y, 0)) == MEM)
5630 {
5631 canon_reg (XEXP (y, 0), NULL_RTX);
5632 note_mem_written (XEXP (y, 0), &writes_memory);
5633 }
5634 }
5635 else if (GET_CODE (y) == USE
5636 && ! (GET_CODE (XEXP (y, 0)) == REG
5637 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
5638 canon_reg (y, NULL_RTX);
5639 else if (GET_CODE (y) == CALL)
5640 {
5641 canon_reg (y, insn);
5642 apply_change_group ();
5643 fold_rtx (y, insn);
5644 }
5645 }
5646 }
5647 else if (GET_CODE (x) == CLOBBER)
5648 {
5649 if (GET_CODE (XEXP (x, 0)) == MEM)
5650 {
5651 canon_reg (XEXP (x, 0), NULL_RTX);
5652 note_mem_written (XEXP (x, 0), &writes_memory);
5653 }
5654 }
5655
5656 /* Canonicalize a USE of a pseudo register or memory location. */
5657 else if (GET_CODE (x) == USE
5658 && ! (GET_CODE (XEXP (x, 0)) == REG
5659 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
5660 canon_reg (XEXP (x, 0), NULL_RTX);
5661 else if (GET_CODE (x) == CALL)
5662 {
5663 canon_reg (x, insn);
5664 apply_change_group ();
5665 fold_rtx (x, insn);
5666 }
5667
5668 if (n_sets == 1 && REG_NOTES (insn) != 0)
5669 {
5670 /* Store the equivalent value in SRC_EQV, if different. */
5671 rtx tem = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5672
5673 if (tem && ! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)))
5674 src_eqv = canon_reg (XEXP (tem, 0), NULL_RTX);
5675 }
5676
5677 /* Canonicalize sources and addresses of destinations.
5678 We do this in a separate pass to avoid problems when a MATCH_DUP is
5679 present in the insn pattern. In that case, we want to ensure that
5680 we don't break the duplicate nature of the pattern. So we will replace
5681 both operands at the same time. Otherwise, we would fail to find an
5682 equivalent substitution in the loop calling validate_change below.
5683
5684 We used to suppress canonicalization of DEST if it appears in SRC,
5685 but we don't do this any more. */
5686
5687 for (i = 0; i < n_sets; i++)
5688 {
5689 rtx dest = SET_DEST (sets[i].rtl);
5690 rtx src = SET_SRC (sets[i].rtl);
5691 rtx new = canon_reg (src, insn);
5692
5693 if ((GET_CODE (new) == REG && GET_CODE (src) == REG
5694 && ((REGNO (new) < FIRST_PSEUDO_REGISTER)
5695 != (REGNO (src) < FIRST_PSEUDO_REGISTER)))
5696 || insn_n_dups[recog_memoized (insn)] > 0)
5697 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
5698 else
5699 SET_SRC (sets[i].rtl) = new;
5700
5701 if (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
5702 {
5703 validate_change (insn, &XEXP (dest, 1),
5704 canon_reg (XEXP (dest, 1), insn), 1);
5705 validate_change (insn, &XEXP (dest, 2),
5706 canon_reg (XEXP (dest, 2), insn), 1);
5707 }
5708
5709 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
5710 || GET_CODE (dest) == ZERO_EXTRACT
5711 || GET_CODE (dest) == SIGN_EXTRACT)
5712 dest = XEXP (dest, 0);
5713
5714 if (GET_CODE (dest) == MEM)
5715 canon_reg (dest, insn);
5716 }
5717
5718 /* Now that we have done all the replacements, we can apply the change
5719 group and see if they all work. Note that this will cause some
5720 canonicalizations that would have worked individually not to be applied
5721 because some other canonicalization didn't work, but this should not
5722 occur often. */
5723
5724 apply_change_group ();
5725
5726 /* Set sets[i].src_elt to the class each source belongs to.
5727 Detect assignments from or to volatile things
5728 and set set[i] to zero so they will be ignored
5729 in the rest of this function.
5730
5731 Nothing in this loop changes the hash table or the register chains. */
5732
5733 for (i = 0; i < n_sets; i++)
5734 {
5735 register rtx src, dest;
5736 register rtx src_folded;
5737 register struct table_elt *elt = 0, *p;
5738 enum machine_mode mode;
5739 rtx src_eqv_here;
5740 rtx src_const = 0;
5741 rtx src_related = 0;
5742 struct table_elt *src_const_elt = 0;
5743 int src_cost = 10000, src_eqv_cost = 10000, src_folded_cost = 10000;
5744 int src_related_cost = 10000, src_elt_cost = 10000;
5745 /* Set non-zero if we need to call force_const_mem on with the
5746 contents of src_folded before using it. */
5747 int src_folded_force_flag = 0;
5748
5749 dest = SET_DEST (sets[i].rtl);
5750 src = SET_SRC (sets[i].rtl);
5751
5752 /* If SRC is a constant that has no machine mode,
5753 hash it with the destination's machine mode.
5754 This way we can keep different modes separate. */
5755
5756 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5757 sets[i].mode = mode;
5758
5759 if (src_eqv)
5760 {
5761 enum machine_mode eqvmode = mode;
5762 if (GET_CODE (dest) == STRICT_LOW_PART)
5763 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5764 do_not_record = 0;
5765 hash_arg_in_memory = 0;
5766 hash_arg_in_struct = 0;
5767 src_eqv = fold_rtx (src_eqv, insn);
5768 src_eqv_hash_code = HASH (src_eqv, eqvmode);
5769
5770 /* Find the equivalence class for the equivalent expression. */
5771
5772 if (!do_not_record)
5773 src_eqv_elt = lookup (src_eqv, src_eqv_hash_code, eqvmode);
5774
5775 src_eqv_volatile = do_not_record;
5776 src_eqv_in_memory = hash_arg_in_memory;
5777 src_eqv_in_struct = hash_arg_in_struct;
5778 }
5779
5780 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
5781 value of the INNER register, not the destination. So it is not
5782 a legal substitution for the source. But save it for later. */
5783 if (GET_CODE (dest) == STRICT_LOW_PART)
5784 src_eqv_here = 0;
5785 else
5786 src_eqv_here = src_eqv;
5787
5788 /* Simplify and foldable subexpressions in SRC. Then get the fully-
5789 simplified result, which may not necessarily be valid. */
5790 src_folded = fold_rtx (src, insn);
5791
5792 /* If storing a constant in a bitfield, pre-truncate the constant
5793 so we will be able to record it later. */
5794 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5795 || GET_CODE (SET_DEST (sets[i].rtl)) == SIGN_EXTRACT)
5796 {
5797 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5798
5799 if (GET_CODE (src) == CONST_INT
5800 && GET_CODE (width) == CONST_INT
5801 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5802 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5803 src_folded
5804 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
5805 << INTVAL (width)) - 1));
5806 }
5807
5808 /* Compute SRC's hash code, and also notice if it
5809 should not be recorded at all. In that case,
5810 prevent any further processing of this assignment. */
5811 do_not_record = 0;
5812 hash_arg_in_memory = 0;
5813 hash_arg_in_struct = 0;
5814
5815 sets[i].src = src;
5816 sets[i].src_hash_code = HASH (src, mode);
5817 sets[i].src_volatile = do_not_record;
5818 sets[i].src_in_memory = hash_arg_in_memory;
5819 sets[i].src_in_struct = hash_arg_in_struct;
5820
5821 #if 0
5822 /* It is no longer clear why we used to do this, but it doesn't
5823 appear to still be needed. So let's try without it since this
5824 code hurts cse'ing widened ops. */
5825 /* If source is a perverse subreg (such as QI treated as an SI),
5826 treat it as volatile. It may do the work of an SI in one context
5827 where the extra bits are not being used, but cannot replace an SI
5828 in general. */
5829 if (GET_CODE (src) == SUBREG
5830 && (GET_MODE_SIZE (GET_MODE (src))
5831 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
5832 sets[i].src_volatile = 1;
5833 #endif
5834
5835 /* Locate all possible equivalent forms for SRC. Try to replace
5836 SRC in the insn with each cheaper equivalent.
5837
5838 We have the following types of equivalents: SRC itself, a folded
5839 version, a value given in a REG_EQUAL note, or a value related
5840 to a constant.
5841
5842 Each of these equivalents may be part of an additional class
5843 of equivalents (if more than one is in the table, they must be in
5844 the same class; we check for this).
5845
5846 If the source is volatile, we don't do any table lookups.
5847
5848 We note any constant equivalent for possible later use in a
5849 REG_NOTE. */
5850
5851 if (!sets[i].src_volatile)
5852 elt = lookup (src, sets[i].src_hash_code, mode);
5853
5854 sets[i].src_elt = elt;
5855
5856 if (elt && src_eqv_here && src_eqv_elt)
5857 {
5858 if (elt->first_same_value != src_eqv_elt->first_same_value)
5859 {
5860 /* The REG_EQUAL is indicating that two formerly distinct
5861 classes are now equivalent. So merge them. */
5862 merge_equiv_classes (elt, src_eqv_elt);
5863 src_eqv_hash_code = HASH (src_eqv, elt->mode);
5864 src_eqv_elt = lookup (src_eqv, src_eqv_hash_code, elt->mode);
5865 }
5866
5867 src_eqv_here = 0;
5868 }
5869
5870 else if (src_eqv_elt)
5871 elt = src_eqv_elt;
5872
5873 /* Try to find a constant somewhere and record it in `src_const'.
5874 Record its table element, if any, in `src_const_elt'. Look in
5875 any known equivalences first. (If the constant is not in the
5876 table, also set `sets[i].src_const_hash_code'). */
5877 if (elt)
5878 for (p = elt->first_same_value; p; p = p->next_same_value)
5879 if (p->is_const)
5880 {
5881 src_const = p->exp;
5882 src_const_elt = elt;
5883 break;
5884 }
5885
5886 if (src_const == 0
5887 && (CONSTANT_P (src_folded)
5888 /* Consider (minus (label_ref L1) (label_ref L2)) as
5889 "constant" here so we will record it. This allows us
5890 to fold switch statements when an ADDR_DIFF_VEC is used. */
5891 || (GET_CODE (src_folded) == MINUS
5892 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
5893 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
5894 src_const = src_folded, src_const_elt = elt;
5895 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
5896 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
5897
5898 /* If we don't know if the constant is in the table, get its
5899 hash code and look it up. */
5900 if (src_const && src_const_elt == 0)
5901 {
5902 sets[i].src_const_hash_code = HASH (src_const, mode);
5903 src_const_elt = lookup (src_const, sets[i].src_const_hash_code,
5904 mode);
5905 }
5906
5907 sets[i].src_const = src_const;
5908 sets[i].src_const_elt = src_const_elt;
5909
5910 /* If the constant and our source are both in the table, mark them as
5911 equivalent. Otherwise, if a constant is in the table but the source
5912 isn't, set ELT to it. */
5913 if (src_const_elt && elt
5914 && src_const_elt->first_same_value != elt->first_same_value)
5915 merge_equiv_classes (elt, src_const_elt);
5916 else if (src_const_elt && elt == 0)
5917 elt = src_const_elt;
5918
5919 /* See if there is a register linearly related to a constant
5920 equivalent of SRC. */
5921 if (src_const
5922 && (GET_CODE (src_const) == CONST
5923 || (src_const_elt && src_const_elt->related_value != 0)))
5924 {
5925 src_related = use_related_value (src_const, src_const_elt);
5926 if (src_related)
5927 {
5928 struct table_elt *src_related_elt
5929 = lookup (src_related, HASH (src_related, mode), mode);
5930 if (src_related_elt && elt)
5931 {
5932 if (elt->first_same_value
5933 != src_related_elt->first_same_value)
5934 /* This can occur when we previously saw a CONST
5935 involving a SYMBOL_REF and then see the SYMBOL_REF
5936 twice. Merge the involved classes. */
5937 merge_equiv_classes (elt, src_related_elt);
5938
5939 src_related = 0;
5940 src_related_elt = 0;
5941 }
5942 else if (src_related_elt && elt == 0)
5943 elt = src_related_elt;
5944 }
5945 }
5946
5947 /* See if we have a CONST_INT that is already in a register in a
5948 wider mode. */
5949
5950 if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
5951 && GET_MODE_CLASS (mode) == MODE_INT
5952 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
5953 {
5954 enum machine_mode wider_mode;
5955
5956 for (wider_mode = GET_MODE_WIDER_MODE (mode);
5957 GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
5958 && src_related == 0;
5959 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
5960 {
5961 struct table_elt *const_elt
5962 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
5963
5964 if (const_elt == 0)
5965 continue;
5966
5967 for (const_elt = const_elt->first_same_value;
5968 const_elt; const_elt = const_elt->next_same_value)
5969 if (GET_CODE (const_elt->exp) == REG)
5970 {
5971 src_related = gen_lowpart_if_possible (mode,
5972 const_elt->exp);
5973 break;
5974 }
5975 }
5976 }
5977
5978 /* Another possibility is that we have an AND with a constant in
5979 a mode narrower than a word. If so, it might have been generated
5980 as part of an "if" which would narrow the AND. If we already
5981 have done the AND in a wider mode, we can use a SUBREG of that
5982 value. */
5983
5984 if (flag_expensive_optimizations && ! src_related
5985 && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
5986 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5987 {
5988 enum machine_mode tmode;
5989 rtx new_and = gen_rtx (AND, VOIDmode, NULL_RTX, XEXP (src, 1));
5990
5991 for (tmode = GET_MODE_WIDER_MODE (mode);
5992 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
5993 tmode = GET_MODE_WIDER_MODE (tmode))
5994 {
5995 rtx inner = gen_lowpart_if_possible (tmode, XEXP (src, 0));
5996 struct table_elt *larger_elt;
5997
5998 if (inner)
5999 {
6000 PUT_MODE (new_and, tmode);
6001 XEXP (new_and, 0) = inner;
6002 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
6003 if (larger_elt == 0)
6004 continue;
6005
6006 for (larger_elt = larger_elt->first_same_value;
6007 larger_elt; larger_elt = larger_elt->next_same_value)
6008 if (GET_CODE (larger_elt->exp) == REG)
6009 {
6010 src_related
6011 = gen_lowpart_if_possible (mode, larger_elt->exp);
6012 break;
6013 }
6014
6015 if (src_related)
6016 break;
6017 }
6018 }
6019 }
6020
6021 if (src == src_folded)
6022 src_folded = 0;
6023
6024 /* At this point, ELT, if non-zero, points to a class of expressions
6025 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
6026 and SRC_RELATED, if non-zero, each contain additional equivalent
6027 expressions. Prune these latter expressions by deleting expressions
6028 already in the equivalence class.
6029
6030 Check for an equivalent identical to the destination. If found,
6031 this is the preferred equivalent since it will likely lead to
6032 elimination of the insn. Indicate this by placing it in
6033 `src_related'. */
6034
6035 if (elt) elt = elt->first_same_value;
6036 for (p = elt; p; p = p->next_same_value)
6037 {
6038 enum rtx_code code = GET_CODE (p->exp);
6039
6040 /* If the expression is not valid, ignore it. Then we do not
6041 have to check for validity below. In most cases, we can use
6042 `rtx_equal_p', since canonicalization has already been done. */
6043 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, 0))
6044 continue;
6045
6046 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
6047 src = 0;
6048 else if (src_folded && GET_CODE (src_folded) == code
6049 && rtx_equal_p (src_folded, p->exp))
6050 src_folded = 0;
6051 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
6052 && rtx_equal_p (src_eqv_here, p->exp))
6053 src_eqv_here = 0;
6054 else if (src_related && GET_CODE (src_related) == code
6055 && rtx_equal_p (src_related, p->exp))
6056 src_related = 0;
6057
6058 /* This is the same as the destination of the insns, we want
6059 to prefer it. Copy it to src_related. The code below will
6060 then give it a negative cost. */
6061 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
6062 src_related = dest;
6063
6064 }
6065
6066 /* Find the cheapest valid equivalent, trying all the available
6067 possibilities. Prefer items not in the hash table to ones
6068 that are when they are equal cost. Note that we can never
6069 worsen an insn as the current contents will also succeed.
6070 If we find an equivalent identical to the destination, use it as best,
6071 since this insn will probably be eliminated in that case. */
6072 if (src)
6073 {
6074 if (rtx_equal_p (src, dest))
6075 src_cost = -1;
6076 else
6077 src_cost = COST (src);
6078 }
6079
6080 if (src_eqv_here)
6081 {
6082 if (rtx_equal_p (src_eqv_here, dest))
6083 src_eqv_cost = -1;
6084 else
6085 src_eqv_cost = COST (src_eqv_here);
6086 }
6087
6088 if (src_folded)
6089 {
6090 if (rtx_equal_p (src_folded, dest))
6091 src_folded_cost = -1;
6092 else
6093 src_folded_cost = COST (src_folded);
6094 }
6095
6096 if (src_related)
6097 {
6098 if (rtx_equal_p (src_related, dest))
6099 src_related_cost = -1;
6100 else
6101 src_related_cost = COST (src_related);
6102 }
6103
6104 /* If this was an indirect jump insn, a known label will really be
6105 cheaper even though it looks more expensive. */
6106 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
6107 src_folded = src_const, src_folded_cost = -1;
6108
6109 /* Terminate loop when replacement made. This must terminate since
6110 the current contents will be tested and will always be valid. */
6111 while (1)
6112 {
6113 rtx trial;
6114
6115 /* Skip invalid entries. */
6116 while (elt && GET_CODE (elt->exp) != REG
6117 && ! exp_equiv_p (elt->exp, elt->exp, 1, 0))
6118 elt = elt->next_same_value;
6119
6120 if (elt) src_elt_cost = elt->cost;
6121
6122 /* Find cheapest and skip it for the next time. For items
6123 of equal cost, use this order:
6124 src_folded, src, src_eqv, src_related and hash table entry. */
6125 if (src_folded_cost <= src_cost
6126 && src_folded_cost <= src_eqv_cost
6127 && src_folded_cost <= src_related_cost
6128 && src_folded_cost <= src_elt_cost)
6129 {
6130 trial = src_folded, src_folded_cost = 10000;
6131 if (src_folded_force_flag)
6132 trial = force_const_mem (mode, trial);
6133 }
6134 else if (src_cost <= src_eqv_cost
6135 && src_cost <= src_related_cost
6136 && src_cost <= src_elt_cost)
6137 trial = src, src_cost = 10000;
6138 else if (src_eqv_cost <= src_related_cost
6139 && src_eqv_cost <= src_elt_cost)
6140 trial = src_eqv_here, src_eqv_cost = 10000;
6141 else if (src_related_cost <= src_elt_cost)
6142 trial = src_related, src_related_cost = 10000;
6143 else
6144 {
6145 trial = copy_rtx (elt->exp);
6146 elt = elt->next_same_value;
6147 src_elt_cost = 10000;
6148 }
6149
6150 /* We don't normally have an insn matching (set (pc) (pc)), so
6151 check for this separately here. We will delete such an
6152 insn below.
6153
6154 Tablejump insns contain a USE of the table, so simply replacing
6155 the operand with the constant won't match. This is simply an
6156 unconditional branch, however, and is therefore valid. Just
6157 insert the substitution here and we will delete and re-emit
6158 the insn later. */
6159
6160 if (n_sets == 1 && dest == pc_rtx
6161 && (trial == pc_rtx
6162 || (GET_CODE (trial) == LABEL_REF
6163 && ! condjump_p (insn))))
6164 {
6165 /* If TRIAL is a label in front of a jump table, we are
6166 really falling through the switch (this is how casesi
6167 insns work), so we must branch around the table. */
6168 if (GET_CODE (trial) == CODE_LABEL
6169 && NEXT_INSN (trial) != 0
6170 && GET_CODE (NEXT_INSN (trial)) == JUMP_INSN
6171 && (GET_CODE (PATTERN (NEXT_INSN (trial))) == ADDR_DIFF_VEC
6172 || GET_CODE (PATTERN (NEXT_INSN (trial))) == ADDR_VEC))
6173
6174 trial = gen_rtx (LABEL_REF, Pmode, get_label_after (trial));
6175
6176 SET_SRC (sets[i].rtl) = trial;
6177 break;
6178 }
6179
6180 /* Look for a substitution that makes a valid insn. */
6181 else if (validate_change (insn, &SET_SRC (sets[i].rtl), trial, 0))
6182 {
6183 SET_SRC (sets[i].rtl) = canon_reg (SET_SRC (sets[i].rtl), insn);
6184 break;
6185 }
6186
6187 /* If we previously found constant pool entries for
6188 constants and this is a constant, try making a
6189 pool entry. Put it in src_folded unless we already have done
6190 this since that is where it likely came from. */
6191
6192 else if (constant_pool_entries_cost
6193 && CONSTANT_P (trial)
6194 && (src_folded == 0 || GET_CODE (src_folded) != MEM)
6195 && GET_MODE_CLASS (mode) != MODE_CC)
6196 {
6197 src_folded_force_flag = 1;
6198 src_folded = trial;
6199 src_folded_cost = constant_pool_entries_cost;
6200 }
6201 }
6202
6203 src = SET_SRC (sets[i].rtl);
6204
6205 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
6206 However, there is an important exception: If both are registers
6207 that are not the head of their equivalence class, replace SET_SRC
6208 with the head of the class. If we do not do this, we will have
6209 both registers live over a portion of the basic block. This way,
6210 their lifetimes will likely abut instead of overlapping. */
6211 if (GET_CODE (dest) == REG
6212 && REGNO_QTY_VALID_P (REGNO (dest))
6213 && qty_mode[reg_qty[REGNO (dest)]] == GET_MODE (dest)
6214 && qty_first_reg[reg_qty[REGNO (dest)]] != REGNO (dest)
6215 && GET_CODE (src) == REG && REGNO (src) == REGNO (dest)
6216 /* Don't do this if the original insn had a hard reg as
6217 SET_SRC. */
6218 && (GET_CODE (sets[i].src) != REG
6219 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER))
6220 /* We can't call canon_reg here because it won't do anything if
6221 SRC is a hard register. */
6222 {
6223 int first = qty_first_reg[reg_qty[REGNO (src)]];
6224
6225 src = SET_SRC (sets[i].rtl)
6226 = first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
6227 : gen_rtx (REG, GET_MODE (src), first);
6228
6229 /* If we had a constant that is cheaper than what we are now
6230 setting SRC to, use that constant. We ignored it when we
6231 thought we could make this into a no-op. */
6232 if (src_const && COST (src_const) < COST (src)
6233 && validate_change (insn, &SET_SRC (sets[i].rtl), src_const, 0))
6234 src = src_const;
6235 }
6236
6237 /* If we made a change, recompute SRC values. */
6238 if (src != sets[i].src)
6239 {
6240 do_not_record = 0;
6241 hash_arg_in_memory = 0;
6242 hash_arg_in_struct = 0;
6243 sets[i].src = src;
6244 sets[i].src_hash_code = HASH (src, mode);
6245 sets[i].src_volatile = do_not_record;
6246 sets[i].src_in_memory = hash_arg_in_memory;
6247 sets[i].src_in_struct = hash_arg_in_struct;
6248 sets[i].src_elt = lookup (src, sets[i].src_hash_code, mode);
6249 }
6250
6251 /* If this is a single SET, we are setting a register, and we have an
6252 equivalent constant, we want to add a REG_NOTE. We don't want
6253 to write a REG_EQUAL note for a constant pseudo since verifying that
6254 that pseudo hasn't been eliminated is a pain. Such a note also
6255 won't help anything. */
6256 if (n_sets == 1 && src_const && GET_CODE (dest) == REG
6257 && GET_CODE (src_const) != REG)
6258 {
6259 rtx tem = find_reg_note (insn, REG_EQUAL, NULL_RTX);
6260
6261 /* Record the actual constant value in a REG_EQUAL note, making
6262 a new one if one does not already exist. */
6263 if (tem)
6264 XEXP (tem, 0) = src_const;
6265 else
6266 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL,
6267 src_const, REG_NOTES (insn));
6268
6269 /* If storing a constant value in a register that
6270 previously held the constant value 0,
6271 record this fact with a REG_WAS_0 note on this insn.
6272
6273 Note that the *register* is required to have previously held 0,
6274 not just any register in the quantity and we must point to the
6275 insn that set that register to zero.
6276
6277 Rather than track each register individually, we just see if
6278 the last set for this quantity was for this register. */
6279
6280 if (REGNO_QTY_VALID_P (REGNO (dest))
6281 && qty_const[reg_qty[REGNO (dest)]] == const0_rtx)
6282 {
6283 /* See if we previously had a REG_WAS_0 note. */
6284 rtx note = find_reg_note (insn, REG_WAS_0, NULL_RTX);
6285 rtx const_insn = qty_const_insn[reg_qty[REGNO (dest)]];
6286
6287 if ((tem = single_set (const_insn)) != 0
6288 && rtx_equal_p (SET_DEST (tem), dest))
6289 {
6290 if (note)
6291 XEXP (note, 0) = const_insn;
6292 else
6293 REG_NOTES (insn) = gen_rtx (INSN_LIST, REG_WAS_0,
6294 const_insn, REG_NOTES (insn));
6295 }
6296 }
6297 }
6298
6299 /* Now deal with the destination. */
6300 do_not_record = 0;
6301 sets[i].inner_dest_loc = &SET_DEST (sets[0].rtl);
6302
6303 /* Look within any SIGN_EXTRACT or ZERO_EXTRACT
6304 to the MEM or REG within it. */
6305 while (GET_CODE (dest) == SIGN_EXTRACT
6306 || GET_CODE (dest) == ZERO_EXTRACT
6307 || GET_CODE (dest) == SUBREG
6308 || GET_CODE (dest) == STRICT_LOW_PART)
6309 {
6310 sets[i].inner_dest_loc = &XEXP (dest, 0);
6311 dest = XEXP (dest, 0);
6312 }
6313
6314 sets[i].inner_dest = dest;
6315
6316 if (GET_CODE (dest) == MEM)
6317 {
6318 dest = fold_rtx (dest, insn);
6319
6320 /* Decide whether we invalidate everything in memory,
6321 or just things at non-fixed places.
6322 Writing a large aggregate must invalidate everything
6323 because we don't know how long it is. */
6324 note_mem_written (dest, &writes_memory);
6325 }
6326
6327 /* Compute the hash code of the destination now,
6328 before the effects of this instruction are recorded,
6329 since the register values used in the address computation
6330 are those before this instruction. */
6331 sets[i].dest_hash_code = HASH (dest, mode);
6332
6333 /* Don't enter a bit-field in the hash table
6334 because the value in it after the store
6335 may not equal what was stored, due to truncation. */
6336
6337 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
6338 || GET_CODE (SET_DEST (sets[i].rtl)) == SIGN_EXTRACT)
6339 {
6340 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
6341
6342 if (src_const != 0 && GET_CODE (src_const) == CONST_INT
6343 && GET_CODE (width) == CONST_INT
6344 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
6345 && ! (INTVAL (src_const)
6346 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
6347 /* Exception: if the value is constant,
6348 and it won't be truncated, record it. */
6349 ;
6350 else
6351 {
6352 /* This is chosen so that the destination will be invalidated
6353 but no new value will be recorded.
6354 We must invalidate because sometimes constant
6355 values can be recorded for bitfields. */
6356 sets[i].src_elt = 0;
6357 sets[i].src_volatile = 1;
6358 src_eqv = 0;
6359 src_eqv_elt = 0;
6360 }
6361 }
6362
6363 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
6364 the insn. */
6365 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
6366 {
6367 PUT_CODE (insn, NOTE);
6368 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
6369 NOTE_SOURCE_FILE (insn) = 0;
6370 cse_jumps_altered = 1;
6371 /* One less use of the label this insn used to jump to. */
6372 --LABEL_NUSES (JUMP_LABEL (insn));
6373 /* No more processing for this set. */
6374 sets[i].rtl = 0;
6375 }
6376
6377 /* If this SET is now setting PC to a label, we know it used to
6378 be a conditional or computed branch. So we see if we can follow
6379 it. If it was a computed branch, delete it and re-emit. */
6380 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF)
6381 {
6382 rtx p;
6383
6384 /* If this is not in the format for a simple branch and
6385 we are the only SET in it, re-emit it. */
6386 if (! simplejump_p (insn) && n_sets == 1)
6387 {
6388 rtx new = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
6389 JUMP_LABEL (new) = XEXP (src, 0);
6390 LABEL_NUSES (XEXP (src, 0))++;
6391 delete_insn (insn);
6392 insn = new;
6393 }
6394
6395 /* Now that we've converted this jump to an unconditional jump,
6396 there is dead code after it. Delete the dead code until we
6397 reach a BARRIER, the end of the function, or a label. Do
6398 not delete NOTEs except for NOTE_INSN_DELETED since later
6399 phases assume these notes are retained. */
6400
6401 p = insn;
6402
6403 while (NEXT_INSN (p) != 0
6404 && GET_CODE (NEXT_INSN (p)) != BARRIER
6405 && GET_CODE (NEXT_INSN (p)) != CODE_LABEL)
6406 {
6407 if (GET_CODE (NEXT_INSN (p)) != NOTE
6408 || NOTE_LINE_NUMBER (NEXT_INSN (p)) == NOTE_INSN_DELETED)
6409 delete_insn (NEXT_INSN (p));
6410 else
6411 p = NEXT_INSN (p);
6412 }
6413
6414 /* If we don't have a BARRIER immediately after INSN, put one there.
6415 Much code assumes that there are no NOTEs between a JUMP_INSN and
6416 BARRIER. */
6417
6418 if (NEXT_INSN (insn) == 0
6419 || GET_CODE (NEXT_INSN (insn)) != BARRIER)
6420 emit_barrier_after (insn);
6421
6422 /* We might have two BARRIERs separated by notes. Delete the second
6423 one if so. */
6424
6425 if (p != insn && NEXT_INSN (p) != 0
6426 && GET_CODE (NEXT_INSN (p)) == BARRIER)
6427 delete_insn (NEXT_INSN (p));
6428
6429 cse_jumps_altered = 1;
6430 sets[i].rtl = 0;
6431 }
6432
6433 /* If destination is volatile, invalidate it and then do no further
6434 processing for this assignment. */
6435
6436 else if (do_not_record)
6437 {
6438 if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG
6439 || GET_CODE (dest) == MEM)
6440 invalidate (dest);
6441 sets[i].rtl = 0;
6442 }
6443
6444 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
6445 sets[i].dest_hash_code = HASH (SET_DEST (sets[i].rtl), mode);
6446
6447 #ifdef HAVE_cc0
6448 /* If setting CC0, record what it was set to, or a constant, if it
6449 is equivalent to a constant. If it is being set to a floating-point
6450 value, make a COMPARE with the appropriate constant of 0. If we
6451 don't do this, later code can interpret this as a test against
6452 const0_rtx, which can cause problems if we try to put it into an
6453 insn as a floating-point operand. */
6454 if (dest == cc0_rtx)
6455 {
6456 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
6457 this_insn_cc0_mode = mode;
6458 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
6459 this_insn_cc0 = gen_rtx (COMPARE, VOIDmode, this_insn_cc0,
6460 CONST0_RTX (mode));
6461 }
6462 #endif
6463 }
6464
6465 /* Now enter all non-volatile source expressions in the hash table
6466 if they are not already present.
6467 Record their equivalence classes in src_elt.
6468 This way we can insert the corresponding destinations into
6469 the same classes even if the actual sources are no longer in them
6470 (having been invalidated). */
6471
6472 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
6473 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
6474 {
6475 register struct table_elt *elt;
6476 register struct table_elt *classp = sets[0].src_elt;
6477 rtx dest = SET_DEST (sets[0].rtl);
6478 enum machine_mode eqvmode = GET_MODE (dest);
6479
6480 if (GET_CODE (dest) == STRICT_LOW_PART)
6481 {
6482 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
6483 classp = 0;
6484 }
6485 if (insert_regs (src_eqv, classp, 0))
6486 src_eqv_hash_code = HASH (src_eqv, eqvmode);
6487 elt = insert (src_eqv, classp, src_eqv_hash_code, eqvmode);
6488 elt->in_memory = src_eqv_in_memory;
6489 elt->in_struct = src_eqv_in_struct;
6490 src_eqv_elt = elt;
6491 }
6492
6493 for (i = 0; i < n_sets; i++)
6494 if (sets[i].rtl && ! sets[i].src_volatile
6495 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
6496 {
6497 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
6498 {
6499 /* REG_EQUAL in setting a STRICT_LOW_PART
6500 gives an equivalent for the entire destination register,
6501 not just for the subreg being stored in now.
6502 This is a more interesting equivalence, so we arrange later
6503 to treat the entire reg as the destination. */
6504 sets[i].src_elt = src_eqv_elt;
6505 sets[i].src_hash_code = src_eqv_hash_code;
6506 }
6507 else
6508 {
6509 /* Insert source and constant equivalent into hash table, if not
6510 already present. */
6511 register struct table_elt *classp = src_eqv_elt;
6512 register rtx src = sets[i].src;
6513 register rtx dest = SET_DEST (sets[i].rtl);
6514 enum machine_mode mode
6515 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
6516
6517 if (sets[i].src_elt == 0)
6518 {
6519 register struct table_elt *elt;
6520
6521 /* Note that these insert_regs calls cannot remove
6522 any of the src_elt's, because they would have failed to
6523 match if not still valid. */
6524 if (insert_regs (src, classp, 0))
6525 sets[i].src_hash_code = HASH (src, mode);
6526 elt = insert (src, classp, sets[i].src_hash_code, mode);
6527 elt->in_memory = sets[i].src_in_memory;
6528 elt->in_struct = sets[i].src_in_struct;
6529 sets[i].src_elt = classp = elt;
6530 }
6531
6532 if (sets[i].src_const && sets[i].src_const_elt == 0
6533 && src != sets[i].src_const
6534 && ! rtx_equal_p (sets[i].src_const, src))
6535 sets[i].src_elt = insert (sets[i].src_const, classp,
6536 sets[i].src_const_hash_code, mode);
6537 }
6538 }
6539 else if (sets[i].src_elt == 0)
6540 /* If we did not insert the source into the hash table (e.g., it was
6541 volatile), note the equivalence class for the REG_EQUAL value, if any,
6542 so that the destination goes into that class. */
6543 sets[i].src_elt = src_eqv_elt;
6544
6545 invalidate_from_clobbers (&writes_memory, x);
6546
6547 /* Some registers are invalidated by subroutine calls. Memory is
6548 invalidated by non-constant calls. */
6549
6550 if (GET_CODE (insn) == CALL_INSN)
6551 {
6552 static struct write_data everything = {0, 1, 1, 1};
6553
6554 if (! CONST_CALL_P (insn))
6555 invalidate_memory (&everything);
6556 invalidate_for_call ();
6557 }
6558
6559 /* Now invalidate everything set by this instruction.
6560 If a SUBREG or other funny destination is being set,
6561 sets[i].rtl is still nonzero, so here we invalidate the reg
6562 a part of which is being set. */
6563
6564 for (i = 0; i < n_sets; i++)
6565 if (sets[i].rtl)
6566 {
6567 register rtx dest = sets[i].inner_dest;
6568
6569 /* Needed for registers to remove the register from its
6570 previous quantity's chain.
6571 Needed for memory if this is a nonvarying address, unless
6572 we have just done an invalidate_memory that covers even those. */
6573 if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG
6574 || (! writes_memory.all && ! cse_rtx_addr_varies_p (dest)))
6575 invalidate (dest);
6576 }
6577
6578 /* Make sure registers mentioned in destinations
6579 are safe for use in an expression to be inserted.
6580 This removes from the hash table
6581 any invalid entry that refers to one of these registers.
6582
6583 We don't care about the return value from mention_regs because
6584 we are going to hash the SET_DEST values unconditionally. */
6585
6586 for (i = 0; i < n_sets; i++)
6587 if (sets[i].rtl && GET_CODE (SET_DEST (sets[i].rtl)) != REG)
6588 mention_regs (SET_DEST (sets[i].rtl));
6589
6590 /* We may have just removed some of the src_elt's from the hash table.
6591 So replace each one with the current head of the same class. */
6592
6593 for (i = 0; i < n_sets; i++)
6594 if (sets[i].rtl)
6595 {
6596 if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
6597 /* If elt was removed, find current head of same class,
6598 or 0 if nothing remains of that class. */
6599 {
6600 register struct table_elt *elt = sets[i].src_elt;
6601
6602 while (elt && elt->prev_same_value)
6603 elt = elt->prev_same_value;
6604
6605 while (elt && elt->first_same_value == 0)
6606 elt = elt->next_same_value;
6607 sets[i].src_elt = elt ? elt->first_same_value : 0;
6608 }
6609 }
6610
6611 /* Now insert the destinations into their equivalence classes. */
6612
6613 for (i = 0; i < n_sets; i++)
6614 if (sets[i].rtl)
6615 {
6616 register rtx dest = SET_DEST (sets[i].rtl);
6617 register struct table_elt *elt;
6618
6619 /* Don't record value if we are not supposed to risk allocating
6620 floating-point values in registers that might be wider than
6621 memory. */
6622 if ((flag_float_store
6623 && GET_CODE (dest) == MEM
6624 && GET_MODE_CLASS (GET_MODE (dest)) == MODE_FLOAT)
6625 /* Don't record values of destinations set inside a libcall block
6626 since we might delete the libcall. Things should have been set
6627 up so we won't want to reuse such a value, but we play it safe
6628 here. */
6629 || in_libcall_block
6630 /* If we didn't put a REG_EQUAL value or a source into the hash
6631 table, there is no point is recording DEST. */
6632 || sets[i].src_elt == 0)
6633 continue;
6634
6635 /* STRICT_LOW_PART isn't part of the value BEING set,
6636 and neither is the SUBREG inside it.
6637 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
6638 if (GET_CODE (dest) == STRICT_LOW_PART)
6639 dest = SUBREG_REG (XEXP (dest, 0));
6640
6641 if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG)
6642 /* Registers must also be inserted into chains for quantities. */
6643 if (insert_regs (dest, sets[i].src_elt, 1))
6644 /* If `insert_regs' changes something, the hash code must be
6645 recalculated. */
6646 sets[i].dest_hash_code = HASH (dest, GET_MODE (dest));
6647
6648 elt = insert (dest, sets[i].src_elt,
6649 sets[i].dest_hash_code, GET_MODE (dest));
6650 elt->in_memory = GET_CODE (sets[i].inner_dest) == MEM;
6651 if (elt->in_memory)
6652 {
6653 /* This implicitly assumes a whole struct
6654 need not have MEM_IN_STRUCT_P.
6655 But a whole struct is *supposed* to have MEM_IN_STRUCT_P. */
6656 elt->in_struct = (MEM_IN_STRUCT_P (sets[i].inner_dest)
6657 || sets[i].inner_dest != SET_DEST (sets[i].rtl));
6658 }
6659
6660 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
6661 narrower than M2, and both M1 and M2 are the same number of words,
6662 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
6663 make that equivalence as well.
6664
6665 However, BAR may have equivalences for which gen_lowpart_if_possible
6666 will produce a simpler value than gen_lowpart_if_possible applied to
6667 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
6668 BAR's equivalences. If we don't get a simplified form, make
6669 the SUBREG. It will not be used in an equivalence, but will
6670 cause two similar assignments to be detected.
6671
6672 Note the loop below will find SUBREG_REG (DEST) since we have
6673 already entered SRC and DEST of the SET in the table. */
6674
6675 if (GET_CODE (dest) == SUBREG
6676 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) / UNITS_PER_WORD
6677 == GET_MODE_SIZE (GET_MODE (dest)) / UNITS_PER_WORD)
6678 && (GET_MODE_SIZE (GET_MODE (dest))
6679 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
6680 && sets[i].src_elt != 0)
6681 {
6682 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
6683 struct table_elt *elt, *classp = 0;
6684
6685 for (elt = sets[i].src_elt->first_same_value; elt;
6686 elt = elt->next_same_value)
6687 {
6688 rtx new_src = 0;
6689 int src_hash;
6690 struct table_elt *src_elt;
6691
6692 /* Ignore invalid entries. */
6693 if (GET_CODE (elt->exp) != REG
6694 && ! exp_equiv_p (elt->exp, elt->exp, 1, 0))
6695 continue;
6696
6697 new_src = gen_lowpart_if_possible (new_mode, elt->exp);
6698 if (new_src == 0)
6699 new_src = gen_rtx (SUBREG, new_mode, elt->exp, 0);
6700
6701 src_hash = HASH (new_src, new_mode);
6702 src_elt = lookup (new_src, src_hash, new_mode);
6703
6704 /* Put the new source in the hash table is if isn't
6705 already. */
6706 if (src_elt == 0)
6707 {
6708 if (insert_regs (new_src, classp, 0))
6709 src_hash = HASH (new_src, new_mode);
6710 src_elt = insert (new_src, classp, src_hash, new_mode);
6711 src_elt->in_memory = elt->in_memory;
6712 src_elt->in_struct = elt->in_struct;
6713 }
6714 else if (classp && classp != src_elt->first_same_value)
6715 /* Show that two things that we've seen before are
6716 actually the same. */
6717 merge_equiv_classes (src_elt, classp);
6718
6719 classp = src_elt->first_same_value;
6720 }
6721 }
6722 }
6723
6724 /* Special handling for (set REG0 REG1)
6725 where REG0 is the "cheapest", cheaper than REG1.
6726 After cse, REG1 will probably not be used in the sequel,
6727 so (if easily done) change this insn to (set REG1 REG0) and
6728 replace REG1 with REG0 in the previous insn that computed their value.
6729 Then REG1 will become a dead store and won't cloud the situation
6730 for later optimizations.
6731
6732 Do not make this change if REG1 is a hard register, because it will
6733 then be used in the sequel and we may be changing a two-operand insn
6734 into a three-operand insn.
6735
6736 Also do not do this if we are operating on a copy of INSN. */
6737
6738 if (n_sets == 1 && sets[0].rtl && GET_CODE (SET_DEST (sets[0].rtl)) == REG
6739 && NEXT_INSN (PREV_INSN (insn)) == insn
6740 && GET_CODE (SET_SRC (sets[0].rtl)) == REG
6741 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
6742 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl)))
6743 && (qty_first_reg[reg_qty[REGNO (SET_SRC (sets[0].rtl))]]
6744 == REGNO (SET_DEST (sets[0].rtl))))
6745 {
6746 rtx prev = PREV_INSN (insn);
6747 while (prev && GET_CODE (prev) == NOTE)
6748 prev = PREV_INSN (prev);
6749
6750 if (prev && GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SET
6751 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl))
6752 {
6753 rtx dest = SET_DEST (sets[0].rtl);
6754 rtx note = find_reg_note (prev, REG_EQUIV, NULL_RTX);
6755
6756 validate_change (prev, & SET_DEST (PATTERN (prev)), dest, 1);
6757 validate_change (insn, & SET_DEST (sets[0].rtl),
6758 SET_SRC (sets[0].rtl), 1);
6759 validate_change (insn, & SET_SRC (sets[0].rtl), dest, 1);
6760 apply_change_group ();
6761
6762 /* If REG1 was equivalent to a constant, REG0 is not. */
6763 if (note)
6764 PUT_REG_NOTE_KIND (note, REG_EQUAL);
6765
6766 /* If there was a REG_WAS_0 note on PREV, remove it. Move
6767 any REG_WAS_0 note on INSN to PREV. */
6768 note = find_reg_note (prev, REG_WAS_0, NULL_RTX);
6769 if (note)
6770 remove_note (prev, note);
6771
6772 note = find_reg_note (insn, REG_WAS_0, NULL_RTX);
6773 if (note)
6774 {
6775 remove_note (insn, note);
6776 XEXP (note, 1) = REG_NOTES (prev);
6777 REG_NOTES (prev) = note;
6778 }
6779 }
6780 }
6781
6782 /* If this is a conditional jump insn, record any known equivalences due to
6783 the condition being tested. */
6784
6785 last_jump_equiv_class = 0;
6786 if (GET_CODE (insn) == JUMP_INSN
6787 && n_sets == 1 && GET_CODE (x) == SET
6788 && GET_CODE (SET_SRC (x)) == IF_THEN_ELSE)
6789 record_jump_equiv (insn, 0);
6790
6791 #ifdef HAVE_cc0
6792 /* If the previous insn set CC0 and this insn no longer references CC0,
6793 delete the previous insn. Here we use the fact that nothing expects CC0
6794 to be valid over an insn, which is true until the final pass. */
6795 if (prev_insn && GET_CODE (prev_insn) == INSN
6796 && (tem = single_set (prev_insn)) != 0
6797 && SET_DEST (tem) == cc0_rtx
6798 && ! reg_mentioned_p (cc0_rtx, x))
6799 {
6800 PUT_CODE (prev_insn, NOTE);
6801 NOTE_LINE_NUMBER (prev_insn) = NOTE_INSN_DELETED;
6802 NOTE_SOURCE_FILE (prev_insn) = 0;
6803 }
6804
6805 prev_insn_cc0 = this_insn_cc0;
6806 prev_insn_cc0_mode = this_insn_cc0_mode;
6807 #endif
6808
6809 prev_insn = insn;
6810 }
6811 \f
6812 /* Store 1 in *WRITES_PTR for those categories of memory ref
6813 that must be invalidated when the expression WRITTEN is stored in.
6814 If WRITTEN is null, say everything must be invalidated. */
6815
6816 static void
6817 note_mem_written (written, writes_ptr)
6818 rtx written;
6819 struct write_data *writes_ptr;
6820 {
6821 static struct write_data everything = {0, 1, 1, 1};
6822
6823 if (written == 0)
6824 *writes_ptr = everything;
6825 else if (GET_CODE (written) == MEM)
6826 {
6827 /* Pushing or popping the stack invalidates just the stack pointer. */
6828 rtx addr = XEXP (written, 0);
6829 if ((GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
6830 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
6831 && GET_CODE (XEXP (addr, 0)) == REG
6832 && REGNO (XEXP (addr, 0)) == STACK_POINTER_REGNUM)
6833 {
6834 writes_ptr->sp = 1;
6835 return;
6836 }
6837 else if (GET_MODE (written) == BLKmode)
6838 *writes_ptr = everything;
6839 else if (cse_rtx_addr_varies_p (written))
6840 {
6841 /* A varying address that is a sum indicates an array element,
6842 and that's just as good as a structure element
6843 in implying that we need not invalidate scalar variables. */
6844 if (!(MEM_IN_STRUCT_P (written)
6845 || GET_CODE (XEXP (written, 0)) == PLUS))
6846 writes_ptr->all = 1;
6847 writes_ptr->nonscalar = 1;
6848 }
6849 writes_ptr->var = 1;
6850 }
6851 }
6852
6853 /* Perform invalidation on the basis of everything about an insn
6854 except for invalidating the actual places that are SET in it.
6855 This includes the places CLOBBERed, and anything that might
6856 alias with something that is SET or CLOBBERed.
6857
6858 W points to the writes_memory for this insn, a struct write_data
6859 saying which kinds of memory references must be invalidated.
6860 X is the pattern of the insn. */
6861
6862 static void
6863 invalidate_from_clobbers (w, x)
6864 struct write_data *w;
6865 rtx x;
6866 {
6867 /* If W->var is not set, W specifies no action.
6868 If W->all is set, this step gets all memory refs
6869 so they can be ignored in the rest of this function. */
6870 if (w->var)
6871 invalidate_memory (w);
6872
6873 if (w->sp)
6874 {
6875 if (reg_tick[STACK_POINTER_REGNUM] >= 0)
6876 reg_tick[STACK_POINTER_REGNUM]++;
6877
6878 /* This should be *very* rare. */
6879 if (TEST_HARD_REG_BIT (hard_regs_in_table, STACK_POINTER_REGNUM))
6880 invalidate (stack_pointer_rtx);
6881 }
6882
6883 if (GET_CODE (x) == CLOBBER)
6884 {
6885 rtx ref = XEXP (x, 0);
6886 if (ref
6887 && (GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
6888 || (GET_CODE (ref) == MEM && ! w->all)))
6889 invalidate (ref);
6890 }
6891 else if (GET_CODE (x) == PARALLEL)
6892 {
6893 register int i;
6894 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6895 {
6896 register rtx y = XVECEXP (x, 0, i);
6897 if (GET_CODE (y) == CLOBBER)
6898 {
6899 rtx ref = XEXP (y, 0);
6900 if (ref
6901 &&(GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
6902 || (GET_CODE (ref) == MEM && !w->all)))
6903 invalidate (ref);
6904 }
6905 }
6906 }
6907 }
6908 \f
6909 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6910 and replace any registers in them with either an equivalent constant
6911 or the canonical form of the register. If we are inside an address,
6912 only do this if the address remains valid.
6913
6914 OBJECT is 0 except when within a MEM in which case it is the MEM.
6915
6916 Return the replacement for X. */
6917
6918 static rtx
6919 cse_process_notes (x, object)
6920 rtx x;
6921 rtx object;
6922 {
6923 enum rtx_code code = GET_CODE (x);
6924 char *fmt = GET_RTX_FORMAT (code);
6925 int qty;
6926 int i;
6927
6928 switch (code)
6929 {
6930 case CONST_INT:
6931 case CONST:
6932 case SYMBOL_REF:
6933 case LABEL_REF:
6934 case CONST_DOUBLE:
6935 case PC:
6936 case CC0:
6937 case LO_SUM:
6938 return x;
6939
6940 case MEM:
6941 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), x);
6942 return x;
6943
6944 case EXPR_LIST:
6945 case INSN_LIST:
6946 if (REG_NOTE_KIND (x) == REG_EQUAL)
6947 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX);
6948 if (XEXP (x, 1))
6949 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX);
6950 return x;
6951
6952 case SIGN_EXTEND:
6953 case ZERO_EXTEND:
6954 {
6955 rtx new = cse_process_notes (XEXP (x, 0), object);
6956 /* We don't substitute VOIDmode constants into these rtx,
6957 since they would impede folding. */
6958 if (GET_MODE (new) != VOIDmode)
6959 validate_change (object, &XEXP (x, 0), new, 0);
6960 return x;
6961 }
6962
6963 case REG:
6964 i = reg_qty[REGNO (x)];
6965
6966 /* Return a constant or a constant register. */
6967 if (REGNO_QTY_VALID_P (REGNO (x))
6968 && qty_const[i] != 0
6969 && (CONSTANT_P (qty_const[i])
6970 || GET_CODE (qty_const[i]) == REG))
6971 {
6972 rtx new = gen_lowpart_if_possible (GET_MODE (x), qty_const[i]);
6973 if (new)
6974 return new;
6975 }
6976
6977 /* Otherwise, canonicalize this register. */
6978 return canon_reg (x, NULL_RTX);
6979 }
6980
6981 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6982 if (fmt[i] == 'e')
6983 validate_change (object, &XEXP (x, i),
6984 cse_process_notes (XEXP (x, i), object), NULL_RTX);
6985
6986 return x;
6987 }
6988 \f
6989 /* Find common subexpressions between the end test of a loop and the beginning
6990 of the loop. LOOP_START is the CODE_LABEL at the start of a loop.
6991
6992 Often we have a loop where an expression in the exit test is used
6993 in the body of the loop. For example "while (*p) *q++ = *p++;".
6994 Because of the way we duplicate the loop exit test in front of the loop,
6995 however, we don't detect that common subexpression. This will be caught
6996 when global cse is implemented, but this is a quite common case.
6997
6998 This function handles the most common cases of these common expressions.
6999 It is called after we have processed the basic block ending with the
7000 NOTE_INSN_LOOP_END note that ends a loop and the previous JUMP_INSN
7001 jumps to a label used only once. */
7002
7003 static void
7004 cse_around_loop (loop_start)
7005 rtx loop_start;
7006 {
7007 rtx insn;
7008 int i;
7009 struct table_elt *p;
7010
7011 /* If the jump at the end of the loop doesn't go to the start, we don't
7012 do anything. */
7013 for (insn = PREV_INSN (loop_start);
7014 insn && (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) >= 0);
7015 insn = PREV_INSN (insn))
7016 ;
7017
7018 if (insn == 0
7019 || GET_CODE (insn) != NOTE
7020 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG)
7021 return;
7022
7023 /* If the last insn of the loop (the end test) was an NE comparison,
7024 we will interpret it as an EQ comparison, since we fell through
7025 the loop. Any equivalences resulting from that comparison are
7026 therefore not valid and must be invalidated. */
7027 if (last_jump_equiv_class)
7028 for (p = last_jump_equiv_class->first_same_value; p;
7029 p = p->next_same_value)
7030 if (GET_CODE (p->exp) == MEM || GET_CODE (p->exp) == REG
7031 || GET_CODE (p->exp) == SUBREG)
7032 invalidate (p->exp);
7033
7034 /* Process insns starting after LOOP_START until we hit a CALL_INSN or
7035 a CODE_LABEL (we could handle a CALL_INSN, but it isn't worth it).
7036
7037 The only thing we do with SET_DEST is invalidate entries, so we
7038 can safely process each SET in order. It is slightly less efficient
7039 to do so, but we only want to handle the most common cases. */
7040
7041 for (insn = NEXT_INSN (loop_start);
7042 GET_CODE (insn) != CALL_INSN && GET_CODE (insn) != CODE_LABEL
7043 && ! (GET_CODE (insn) == NOTE
7044 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
7045 insn = NEXT_INSN (insn))
7046 {
7047 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
7048 && (GET_CODE (PATTERN (insn)) == SET
7049 || GET_CODE (PATTERN (insn)) == CLOBBER))
7050 cse_set_around_loop (PATTERN (insn), insn, loop_start);
7051 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
7052 && GET_CODE (PATTERN (insn)) == PARALLEL)
7053 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7054 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET
7055 || GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
7056 cse_set_around_loop (XVECEXP (PATTERN (insn), 0, i), insn,
7057 loop_start);
7058 }
7059 }
7060 \f
7061 /* Variable used for communications between the next two routines. */
7062
7063 static struct write_data skipped_writes_memory;
7064
7065 /* Process one SET of an insn that was skipped. We ignore CLOBBERs
7066 since they are done elsewhere. This function is called via note_stores. */
7067
7068 static void
7069 invalidate_skipped_set (dest, set)
7070 rtx set;
7071 rtx dest;
7072 {
7073 if (GET_CODE (set) == CLOBBER
7074 #ifdef HAVE_cc0
7075 || dest == cc0_rtx
7076 #endif
7077 || dest == pc_rtx)
7078 return;
7079
7080 if (GET_CODE (dest) == MEM)
7081 note_mem_written (dest, &skipped_writes_memory);
7082
7083 if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG
7084 || (! skipped_writes_memory.all && ! cse_rtx_addr_varies_p (dest)))
7085 invalidate (dest);
7086 }
7087
7088 /* Invalidate all insns from START up to the end of the function or the
7089 next label. This called when we wish to CSE around a block that is
7090 conditionally executed. */
7091
7092 static void
7093 invalidate_skipped_block (start)
7094 rtx start;
7095 {
7096 rtx insn;
7097 int i;
7098 static struct write_data init = {0, 0, 0, 0};
7099 static struct write_data everything = {0, 1, 1, 1};
7100
7101 for (insn = start; insn && GET_CODE (insn) != CODE_LABEL;
7102 insn = NEXT_INSN (insn))
7103 {
7104 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
7105 continue;
7106
7107 skipped_writes_memory = init;
7108
7109 if (GET_CODE (insn) == CALL_INSN)
7110 {
7111 invalidate_for_call ();
7112 skipped_writes_memory = everything;
7113 }
7114
7115 note_stores (PATTERN (insn), invalidate_skipped_set);
7116 invalidate_from_clobbers (&skipped_writes_memory, PATTERN (insn));
7117 }
7118 }
7119 \f
7120 /* Used for communication between the following two routines; contains a
7121 value to be checked for modification. */
7122
7123 static rtx cse_check_loop_start_value;
7124
7125 /* If modifying X will modify the value in CSE_CHECK_LOOP_START_VALUE,
7126 indicate that fact by setting CSE_CHECK_LOOP_START_VALUE to 0. */
7127
7128 static void
7129 cse_check_loop_start (x, set)
7130 rtx x;
7131 rtx set;
7132 {
7133 if (cse_check_loop_start_value == 0
7134 || GET_CODE (x) == CC0 || GET_CODE (x) == PC)
7135 return;
7136
7137 if ((GET_CODE (x) == MEM && GET_CODE (cse_check_loop_start_value) == MEM)
7138 || reg_overlap_mentioned_p (x, cse_check_loop_start_value))
7139 cse_check_loop_start_value = 0;
7140 }
7141
7142 /* X is a SET or CLOBBER contained in INSN that was found near the start of
7143 a loop that starts with the label at LOOP_START.
7144
7145 If X is a SET, we see if its SET_SRC is currently in our hash table.
7146 If so, we see if it has a value equal to some register used only in the
7147 loop exit code (as marked by jump.c).
7148
7149 If those two conditions are true, we search backwards from the start of
7150 the loop to see if that same value was loaded into a register that still
7151 retains its value at the start of the loop.
7152
7153 If so, we insert an insn after the load to copy the destination of that
7154 load into the equivalent register and (try to) replace our SET_SRC with that
7155 register.
7156
7157 In any event, we invalidate whatever this SET or CLOBBER modifies. */
7158
7159 static void
7160 cse_set_around_loop (x, insn, loop_start)
7161 rtx x;
7162 rtx insn;
7163 rtx loop_start;
7164 {
7165 rtx p;
7166 struct table_elt *src_elt;
7167 static struct write_data init = {0, 0, 0, 0};
7168 struct write_data writes_memory;
7169
7170 writes_memory = init;
7171
7172 /* If this is a SET, see if we can replace SET_SRC, but ignore SETs that
7173 are setting PC or CC0 or whose SET_SRC is already a register. */
7174 if (GET_CODE (x) == SET
7175 && GET_CODE (SET_DEST (x)) != PC && GET_CODE (SET_DEST (x)) != CC0
7176 && GET_CODE (SET_SRC (x)) != REG)
7177 {
7178 src_elt = lookup (SET_SRC (x),
7179 HASH (SET_SRC (x), GET_MODE (SET_DEST (x))),
7180 GET_MODE (SET_DEST (x)));
7181
7182 if (src_elt)
7183 for (src_elt = src_elt->first_same_value; src_elt;
7184 src_elt = src_elt->next_same_value)
7185 if (GET_CODE (src_elt->exp) == REG && REG_LOOP_TEST_P (src_elt->exp)
7186 && COST (src_elt->exp) < COST (SET_SRC (x)))
7187 {
7188 rtx p, set;
7189
7190 /* Look for an insn in front of LOOP_START that sets
7191 something in the desired mode to SET_SRC (x) before we hit
7192 a label or CALL_INSN. */
7193
7194 for (p = prev_nonnote_insn (loop_start);
7195 p && GET_CODE (p) != CALL_INSN
7196 && GET_CODE (p) != CODE_LABEL;
7197 p = prev_nonnote_insn (p))
7198 if ((set = single_set (p)) != 0
7199 && GET_CODE (SET_DEST (set)) == REG
7200 && GET_MODE (SET_DEST (set)) == src_elt->mode
7201 && rtx_equal_p (SET_SRC (set), SET_SRC (x)))
7202 {
7203 /* We now have to ensure that nothing between P
7204 and LOOP_START modified anything referenced in
7205 SET_SRC (x). We know that nothing within the loop
7206 can modify it, or we would have invalidated it in
7207 the hash table. */
7208 rtx q;
7209
7210 cse_check_loop_start_value = SET_SRC (x);
7211 for (q = p; q != loop_start; q = NEXT_INSN (q))
7212 if (GET_RTX_CLASS (GET_CODE (q)) == 'i')
7213 note_stores (PATTERN (q), cse_check_loop_start);
7214
7215 /* If nothing was changed and we can replace our
7216 SET_SRC, add an insn after P to copy its destination
7217 to what we will be replacing SET_SRC with. */
7218 if (cse_check_loop_start_value
7219 && validate_change (insn, &SET_SRC (x),
7220 src_elt->exp, 0))
7221 emit_insn_after (gen_move_insn (src_elt->exp,
7222 SET_DEST (set)),
7223 p);
7224 break;
7225 }
7226 }
7227 }
7228
7229 /* Now invalidate anything modified by X. */
7230 note_mem_written (SET_DEST (x), &writes_memory);
7231
7232 if (writes_memory.var)
7233 invalidate_memory (&writes_memory);
7234
7235 /* See comment on similar code in cse_insn for explanation of these tests. */
7236 if (GET_CODE (SET_DEST (x)) == REG || GET_CODE (SET_DEST (x)) == SUBREG
7237 || (GET_CODE (SET_DEST (x)) == MEM && ! writes_memory.all
7238 && ! cse_rtx_addr_varies_p (SET_DEST (x))))
7239 invalidate (SET_DEST (x));
7240 }
7241 \f
7242 /* Find the end of INSN's basic block and return its range,
7243 the total number of SETs in all the insns of the block, the last insn of the
7244 block, and the branch path.
7245
7246 The branch path indicates which branches should be followed. If a non-zero
7247 path size is specified, the block should be rescanned and a different set
7248 of branches will be taken. The branch path is only used if
7249 FLAG_CSE_FOLLOW_JUMPS or FLAG_CSE_SKIP_BLOCKS is non-zero.
7250
7251 DATA is a pointer to a struct cse_basic_block_data, defined below, that is
7252 used to describe the block. It is filled in with the information about
7253 the current block. The incoming structure's branch path, if any, is used
7254 to construct the output branch path. */
7255
7256 /* Define maximum length of a branch path. */
7257
7258 #define PATHLENGTH 20
7259
7260 struct cse_basic_block_data {
7261 /* Lowest CUID value of insns in block. */
7262 int low_cuid;
7263 /* Highest CUID value of insns in block. */
7264 int high_cuid;
7265 /* Total number of SETs in block. */
7266 int nsets;
7267 /* Last insn in the block. */
7268 rtx last;
7269 /* Size of current branch path, if any. */
7270 int path_size;
7271 /* Current branch path, indicating which branches will be taken. */
7272 struct branch_path {
7273 /* The branch insn. */
7274 rtx branch;
7275 /* Whether it should be taken or not. AROUND is the same as taken
7276 except that it is used when the destination label is not preceded
7277 by a BARRIER. */
7278 enum taken {TAKEN, NOT_TAKEN, AROUND} status;
7279 } path[PATHLENGTH];
7280 };
7281
7282 void
7283 cse_end_of_basic_block (insn, data, follow_jumps, after_loop, skip_blocks)
7284 rtx insn;
7285 struct cse_basic_block_data *data;
7286 int follow_jumps;
7287 int after_loop;
7288 int skip_blocks;
7289 {
7290 rtx p = insn, q;
7291 int nsets = 0;
7292 int low_cuid = INSN_CUID (insn), high_cuid = INSN_CUID (insn);
7293 rtx next = GET_RTX_CLASS (GET_CODE (insn)) == 'i' ? insn : next_real_insn (insn);
7294 int path_size = data->path_size;
7295 int path_entry = 0;
7296 int i;
7297
7298 /* Update the previous branch path, if any. If the last branch was
7299 previously TAKEN, mark it NOT_TAKEN. If it was previously NOT_TAKEN,
7300 shorten the path by one and look at the previous branch. We know that
7301 at least one branch must have been taken if PATH_SIZE is non-zero. */
7302 while (path_size > 0)
7303 {
7304 if (data->path[path_size - 1].status != NOT_TAKEN)
7305 {
7306 data->path[path_size - 1].status = NOT_TAKEN;
7307 break;
7308 }
7309 else
7310 path_size--;
7311 }
7312
7313 /* Scan to end of this basic block. */
7314 while (p && GET_CODE (p) != CODE_LABEL)
7315 {
7316 /* Don't cse out the end of a loop. This makes a difference
7317 only for the unusual loops that always execute at least once;
7318 all other loops have labels there so we will stop in any case.
7319 Cse'ing out the end of the loop is dangerous because it
7320 might cause an invariant expression inside the loop
7321 to be reused after the end of the loop. This would make it
7322 hard to move the expression out of the loop in loop.c,
7323 especially if it is one of several equivalent expressions
7324 and loop.c would like to eliminate it.
7325
7326 If we are running after loop.c has finished, we can ignore
7327 the NOTE_INSN_LOOP_END. */
7328
7329 if (! after_loop && GET_CODE (p) == NOTE
7330 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
7331 break;
7332
7333 /* Don't cse over a call to setjmp; on some machines (eg vax)
7334 the regs restored by the longjmp come from
7335 a later time than the setjmp. */
7336 if (GET_CODE (p) == NOTE
7337 && NOTE_LINE_NUMBER (p) == NOTE_INSN_SETJMP)
7338 break;
7339
7340 /* A PARALLEL can have lots of SETs in it,
7341 especially if it is really an ASM_OPERANDS. */
7342 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
7343 && GET_CODE (PATTERN (p)) == PARALLEL)
7344 nsets += XVECLEN (PATTERN (p), 0);
7345 else if (GET_CODE (p) != NOTE)
7346 nsets += 1;
7347
7348 if (INSN_CUID (p) > high_cuid)
7349 high_cuid = INSN_CUID (p);
7350 if (INSN_CUID (p) < low_cuid)
7351 low_cuid = INSN_CUID(p);
7352
7353 /* See if this insn is in our branch path. If it is and we are to
7354 take it, do so. */
7355 if (path_entry < path_size && data->path[path_entry].branch == p)
7356 {
7357 if (data->path[path_entry].status != NOT_TAKEN)
7358 p = JUMP_LABEL (p);
7359
7360 /* Point to next entry in path, if any. */
7361 path_entry++;
7362 }
7363
7364 /* If this is a conditional jump, we can follow it if -fcse-follow-jumps
7365 was specified, we haven't reached our maximum path length, there are
7366 insns following the target of the jump, this is the only use of the
7367 jump label, and the target label is preceded by a BARRIER.
7368
7369 Alternatively, we can follow the jump if it branches around a
7370 block of code and there are no other branches into the block.
7371 In this case invalidate_skipped_block will be called to invalidate any
7372 registers set in the block when following the jump. */
7373
7374 else if ((follow_jumps || skip_blocks) && path_size < PATHLENGTH - 1
7375 && GET_CODE (p) == JUMP_INSN
7376 && GET_CODE (PATTERN (p)) == SET
7377 && GET_CODE (SET_SRC (PATTERN (p))) == IF_THEN_ELSE
7378 && LABEL_NUSES (JUMP_LABEL (p)) == 1
7379 && NEXT_INSN (JUMP_LABEL (p)) != 0)
7380 {
7381 for (q = PREV_INSN (JUMP_LABEL (p)); q; q = PREV_INSN (q))
7382 if ((GET_CODE (q) != NOTE
7383 || NOTE_LINE_NUMBER (q) == NOTE_INSN_LOOP_END
7384 || NOTE_LINE_NUMBER (q) == NOTE_INSN_SETJMP)
7385 && (GET_CODE (q) != CODE_LABEL || LABEL_NUSES (q) != 0))
7386 break;
7387
7388 /* If we ran into a BARRIER, this code is an extension of the
7389 basic block when the branch is taken. */
7390 if (follow_jumps && q != 0 && GET_CODE (q) == BARRIER)
7391 {
7392 /* Don't allow ourself to keep walking around an
7393 always-executed loop. */
7394 if (next_real_insn (q) == next)
7395 {
7396 p = NEXT_INSN (p);
7397 continue;
7398 }
7399
7400 /* Similarly, don't put a branch in our path more than once. */
7401 for (i = 0; i < path_entry; i++)
7402 if (data->path[i].branch == p)
7403 break;
7404
7405 if (i != path_entry)
7406 break;
7407
7408 data->path[path_entry].branch = p;
7409 data->path[path_entry++].status = TAKEN;
7410
7411 /* This branch now ends our path. It was possible that we
7412 didn't see this branch the last time around (when the
7413 insn in front of the target was a JUMP_INSN that was
7414 turned into a no-op). */
7415 path_size = path_entry;
7416
7417 p = JUMP_LABEL (p);
7418 /* Mark block so we won't scan it again later. */
7419 PUT_MODE (NEXT_INSN (p), QImode);
7420 }
7421 /* Detect a branch around a block of code. */
7422 else if (skip_blocks && q != 0 && GET_CODE (q) != CODE_LABEL)
7423 {
7424 register rtx tmp;
7425
7426 if (next_real_insn (q) == next)
7427 {
7428 p = NEXT_INSN (p);
7429 continue;
7430 }
7431
7432 for (i = 0; i < path_entry; i++)
7433 if (data->path[i].branch == p)
7434 break;
7435
7436 if (i != path_entry)
7437 break;
7438
7439 /* This is no_labels_between_p (p, q) with an added check for
7440 reaching the end of a function (in case Q precedes P). */
7441 for (tmp = NEXT_INSN (p); tmp && tmp != q; tmp = NEXT_INSN (tmp))
7442 if (GET_CODE (tmp) == CODE_LABEL)
7443 break;
7444
7445 if (tmp == q)
7446 {
7447 data->path[path_entry].branch = p;
7448 data->path[path_entry++].status = AROUND;
7449
7450 path_size = path_entry;
7451
7452 p = JUMP_LABEL (p);
7453 /* Mark block so we won't scan it again later. */
7454 PUT_MODE (NEXT_INSN (p), QImode);
7455 }
7456 }
7457 }
7458 p = NEXT_INSN (p);
7459 }
7460
7461 data->low_cuid = low_cuid;
7462 data->high_cuid = high_cuid;
7463 data->nsets = nsets;
7464 data->last = p;
7465
7466 /* If all jumps in the path are not taken, set our path length to zero
7467 so a rescan won't be done. */
7468 for (i = path_size - 1; i >= 0; i--)
7469 if (data->path[i].status != NOT_TAKEN)
7470 break;
7471
7472 if (i == -1)
7473 data->path_size = 0;
7474 else
7475 data->path_size = path_size;
7476
7477 /* End the current branch path. */
7478 data->path[path_size].branch = 0;
7479 }
7480 \f
7481 static rtx cse_basic_block ();
7482
7483 /* Perform cse on the instructions of a function.
7484 F is the first instruction.
7485 NREGS is one plus the highest pseudo-reg number used in the instruction.
7486
7487 AFTER_LOOP is 1 if this is the cse call done after loop optimization
7488 (only if -frerun-cse-after-loop).
7489
7490 Returns 1 if jump_optimize should be redone due to simplifications
7491 in conditional jump instructions. */
7492
7493 int
7494 cse_main (f, nregs, after_loop, file)
7495 rtx f;
7496 int nregs;
7497 int after_loop;
7498 FILE *file;
7499 {
7500 struct cse_basic_block_data val;
7501 register rtx insn = f;
7502 register int i;
7503
7504 cse_jumps_altered = 0;
7505 constant_pool_entries_cost = 0;
7506 val.path_size = 0;
7507
7508 init_recog ();
7509
7510 max_reg = nregs;
7511
7512 all_minus_one = (int *) alloca (nregs * sizeof (int));
7513 consec_ints = (int *) alloca (nregs * sizeof (int));
7514
7515 for (i = 0; i < nregs; i++)
7516 {
7517 all_minus_one[i] = -1;
7518 consec_ints[i] = i;
7519 }
7520
7521 reg_next_eqv = (int *) alloca (nregs * sizeof (int));
7522 reg_prev_eqv = (int *) alloca (nregs * sizeof (int));
7523 reg_qty = (int *) alloca (nregs * sizeof (int));
7524 reg_in_table = (int *) alloca (nregs * sizeof (int));
7525 reg_tick = (int *) alloca (nregs * sizeof (int));
7526
7527 /* Discard all the free elements of the previous function
7528 since they are allocated in the temporarily obstack. */
7529 bzero (table, sizeof table);
7530 free_element_chain = 0;
7531 n_elements_made = 0;
7532
7533 /* Find the largest uid. */
7534
7535 i = get_max_uid ();
7536 uid_cuid = (int *) alloca ((i + 1) * sizeof (int));
7537 bzero (uid_cuid, (i + 1) * sizeof (int));
7538
7539 /* Compute the mapping from uids to cuids.
7540 CUIDs are numbers assigned to insns, like uids,
7541 except that cuids increase monotonically through the code.
7542 Don't assign cuids to line-number NOTEs, so that the distance in cuids
7543 between two insns is not affected by -g. */
7544
7545 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
7546 {
7547 if (GET_CODE (insn) != NOTE
7548 || NOTE_LINE_NUMBER (insn) < 0)
7549 INSN_CUID (insn) = ++i;
7550 else
7551 /* Give a line number note the same cuid as preceding insn. */
7552 INSN_CUID (insn) = i;
7553 }
7554
7555 /* Initialize which registers are clobbered by calls. */
7556
7557 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
7558
7559 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7560 if ((call_used_regs[i]
7561 /* Used to check !fixed_regs[i] here, but that isn't safe;
7562 fixed regs are still call-clobbered, and sched can get
7563 confused if they can "live across calls".
7564
7565 The frame pointer is always preserved across calls. The arg
7566 pointer is if it is fixed. The stack pointer usually is, unless
7567 RETURN_POPS_ARGS, in which case an explicit CLOBBER
7568 will be present. If we are generating PIC code, the PIC offset
7569 table register is preserved across calls. */
7570
7571 && i != STACK_POINTER_REGNUM
7572 && i != FRAME_POINTER_REGNUM
7573 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
7574 && ! (i == ARG_POINTER_REGNUM && fixed_regs[i])
7575 #endif
7576 #ifdef PIC_OFFSET_TABLE_REGNUM
7577 && ! (i == PIC_OFFSET_TABLE_REGNUM && flag_pic)
7578 #endif
7579 )
7580 || global_regs[i])
7581 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
7582
7583 /* Loop over basic blocks.
7584 Compute the maximum number of qty's needed for each basic block
7585 (which is 2 for each SET). */
7586 insn = f;
7587 while (insn)
7588 {
7589 cse_end_of_basic_block (insn, &val, flag_cse_follow_jumps, after_loop,
7590 flag_cse_skip_blocks);
7591
7592 /* If this basic block was already processed or has no sets, skip it. */
7593 if (val.nsets == 0 || GET_MODE (insn) == QImode)
7594 {
7595 PUT_MODE (insn, VOIDmode);
7596 insn = (val.last ? NEXT_INSN (val.last) : 0);
7597 val.path_size = 0;
7598 continue;
7599 }
7600
7601 cse_basic_block_start = val.low_cuid;
7602 cse_basic_block_end = val.high_cuid;
7603 max_qty = val.nsets * 2;
7604
7605 if (file)
7606 fprintf (file, ";; Processing block from %d to %d, %d sets.\n",
7607 INSN_UID (insn), val.last ? INSN_UID (val.last) : 0,
7608 val.nsets);
7609
7610 /* Make MAX_QTY bigger to give us room to optimize
7611 past the end of this basic block, if that should prove useful. */
7612 if (max_qty < 500)
7613 max_qty = 500;
7614
7615 max_qty += max_reg;
7616
7617 /* If this basic block is being extended by following certain jumps,
7618 (see `cse_end_of_basic_block'), we reprocess the code from the start.
7619 Otherwise, we start after this basic block. */
7620 if (val.path_size > 0)
7621 cse_basic_block (insn, val.last, val.path, 0);
7622 else
7623 {
7624 int old_cse_jumps_altered = cse_jumps_altered;
7625 rtx temp;
7626
7627 /* When cse changes a conditional jump to an unconditional
7628 jump, we want to reprocess the block, since it will give
7629 us a new branch path to investigate. */
7630 cse_jumps_altered = 0;
7631 temp = cse_basic_block (insn, val.last, val.path, ! after_loop);
7632 if (cse_jumps_altered == 0
7633 || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
7634 insn = temp;
7635
7636 cse_jumps_altered |= old_cse_jumps_altered;
7637 }
7638
7639 #ifdef USE_C_ALLOCA
7640 alloca (0);
7641 #endif
7642 }
7643
7644 /* Tell refers_to_mem_p that qty_const info is not available. */
7645 qty_const = 0;
7646
7647 if (max_elements_made < n_elements_made)
7648 max_elements_made = n_elements_made;
7649
7650 return cse_jumps_altered;
7651 }
7652
7653 /* Process a single basic block. FROM and TO and the limits of the basic
7654 block. NEXT_BRANCH points to the branch path when following jumps or
7655 a null path when not following jumps.
7656
7657 AROUND_LOOP is non-zero if we are to try to cse around to the start of a
7658 loop. This is true when we are being called for the last time on a
7659 block and this CSE pass is before loop.c. */
7660
7661 static rtx
7662 cse_basic_block (from, to, next_branch, around_loop)
7663 register rtx from, to;
7664 struct branch_path *next_branch;
7665 int around_loop;
7666 {
7667 register rtx insn;
7668 int to_usage = 0;
7669 int in_libcall_block = 0;
7670
7671 /* Each of these arrays is undefined before max_reg, so only allocate
7672 the space actually needed and adjust the start below. */
7673
7674 qty_first_reg = (int *) alloca ((max_qty - max_reg) * sizeof (int));
7675 qty_last_reg = (int *) alloca ((max_qty - max_reg) * sizeof (int));
7676 qty_mode= (enum machine_mode *) alloca ((max_qty - max_reg) * sizeof (enum machine_mode));
7677 qty_const = (rtx *) alloca ((max_qty - max_reg) * sizeof (rtx));
7678 qty_const_insn = (rtx *) alloca ((max_qty - max_reg) * sizeof (rtx));
7679 qty_comparison_code
7680 = (enum rtx_code *) alloca ((max_qty - max_reg) * sizeof (enum rtx_code));
7681 qty_comparison_qty = (int *) alloca ((max_qty - max_reg) * sizeof (int));
7682 qty_comparison_const = (rtx *) alloca ((max_qty - max_reg) * sizeof (rtx));
7683
7684 qty_first_reg -= max_reg;
7685 qty_last_reg -= max_reg;
7686 qty_mode -= max_reg;
7687 qty_const -= max_reg;
7688 qty_const_insn -= max_reg;
7689 qty_comparison_code -= max_reg;
7690 qty_comparison_qty -= max_reg;
7691 qty_comparison_const -= max_reg;
7692
7693 new_basic_block ();
7694
7695 /* TO might be a label. If so, protect it from being deleted. */
7696 if (to != 0 && GET_CODE (to) == CODE_LABEL)
7697 ++LABEL_NUSES (to);
7698
7699 for (insn = from; insn != to; insn = NEXT_INSN (insn))
7700 {
7701 register enum rtx_code code;
7702
7703 /* See if this is a branch that is part of the path. If so, and it is
7704 to be taken, do so. */
7705 if (next_branch->branch == insn)
7706 {
7707 enum taken status = next_branch++->status;
7708 if (status != NOT_TAKEN)
7709 {
7710 if (status == TAKEN)
7711 record_jump_equiv (insn, 1);
7712 else
7713 invalidate_skipped_block (NEXT_INSN (insn));
7714
7715 /* Set the last insn as the jump insn; it doesn't affect cc0.
7716 Then follow this branch. */
7717 #ifdef HAVE_cc0
7718 prev_insn_cc0 = 0;
7719 #endif
7720 prev_insn = insn;
7721 insn = JUMP_LABEL (insn);
7722 continue;
7723 }
7724 }
7725
7726 code = GET_CODE (insn);
7727 if (GET_MODE (insn) == QImode)
7728 PUT_MODE (insn, VOIDmode);
7729
7730 if (GET_RTX_CLASS (code) == 'i')
7731 {
7732 /* Process notes first so we have all notes in canonical forms when
7733 looking for duplicate operations. */
7734
7735 if (REG_NOTES (insn))
7736 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn), NULL_RTX);
7737
7738 /* Track when we are inside in LIBCALL block. Inside such a block,
7739 we do not want to record destinations. The last insn of a
7740 LIBCALL block is not considered to be part of the block, since
7741 its destination is the result of the block and hence should be
7742 recorded. */
7743
7744 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
7745 in_libcall_block = 1;
7746 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
7747 in_libcall_block = 0;
7748
7749 cse_insn (insn, in_libcall_block);
7750 }
7751
7752 /* If INSN is now an unconditional jump, skip to the end of our
7753 basic block by pretending that we just did the last insn in the
7754 basic block. If we are jumping to the end of our block, show
7755 that we can have one usage of TO. */
7756
7757 if (simplejump_p (insn))
7758 {
7759 if (to == 0)
7760 return 0;
7761
7762 if (JUMP_LABEL (insn) == to)
7763 to_usage = 1;
7764
7765 /* Maybe TO was deleted because the jump is unconditional.
7766 If so, there is nothing left in this basic block. */
7767 /* ??? Perhaps it would be smarter to set TO
7768 to whatever follows this insn,
7769 and pretend the basic block had always ended here. */
7770 if (INSN_DELETED_P (to))
7771 break;
7772
7773 insn = PREV_INSN (to);
7774 }
7775
7776 /* See if it is ok to keep on going past the label
7777 which used to end our basic block. Remember that we incremented
7778 the count of that label, so we decrement it here. If we made
7779 a jump unconditional, TO_USAGE will be one; in that case, we don't
7780 want to count the use in that jump. */
7781
7782 if (to != 0 && NEXT_INSN (insn) == to
7783 && GET_CODE (to) == CODE_LABEL && --LABEL_NUSES (to) == to_usage)
7784 {
7785 struct cse_basic_block_data val;
7786
7787 insn = NEXT_INSN (to);
7788
7789 if (LABEL_NUSES (to) == 0)
7790 delete_insn (to);
7791
7792 /* Find the end of the following block. Note that we won't be
7793 following branches in this case. If TO was the last insn
7794 in the function, we are done. Similarly, if we deleted the
7795 insn after TO, it must have been because it was preceded by
7796 a BARRIER. In that case, we are done with this block because it
7797 has no continuation. */
7798
7799 if (insn == 0 || INSN_DELETED_P (insn))
7800 return 0;
7801
7802 to_usage = 0;
7803 val.path_size = 0;
7804 cse_end_of_basic_block (insn, &val, 0, 0, 0);
7805
7806 /* If the tables we allocated have enough space left
7807 to handle all the SETs in the next basic block,
7808 continue through it. Otherwise, return,
7809 and that block will be scanned individually. */
7810 if (val.nsets * 2 + next_qty > max_qty)
7811 break;
7812
7813 cse_basic_block_start = val.low_cuid;
7814 cse_basic_block_end = val.high_cuid;
7815 to = val.last;
7816
7817 /* Prevent TO from being deleted if it is a label. */
7818 if (to != 0 && GET_CODE (to) == CODE_LABEL)
7819 ++LABEL_NUSES (to);
7820
7821 /* Back up so we process the first insn in the extension. */
7822 insn = PREV_INSN (insn);
7823 }
7824 }
7825
7826 if (next_qty > max_qty)
7827 abort ();
7828
7829 /* If we are running before loop.c, we stopped on a NOTE_INSN_LOOP_END, and
7830 the previous insn is the only insn that branches to the head of a loop,
7831 we can cse into the loop. Don't do this if we changed the jump
7832 structure of a loop unless we aren't going to be following jumps. */
7833
7834 if ((cse_jumps_altered == 0
7835 || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
7836 && around_loop && to != 0
7837 && GET_CODE (to) == NOTE && NOTE_LINE_NUMBER (to) == NOTE_INSN_LOOP_END
7838 && GET_CODE (PREV_INSN (to)) == JUMP_INSN
7839 && JUMP_LABEL (PREV_INSN (to)) != 0
7840 && LABEL_NUSES (JUMP_LABEL (PREV_INSN (to))) == 1)
7841 cse_around_loop (JUMP_LABEL (PREV_INSN (to)));
7842
7843 return to ? NEXT_INSN (to) : 0;
7844 }
7845 \f
7846 /* Count the number of times registers are used (not set) in X.
7847 COUNTS is an array in which we accumulate the count, INCR is how much
7848 we count each register usage. */
7849
7850 static void
7851 count_reg_usage (x, counts, incr)
7852 rtx x;
7853 int *counts;
7854 int incr;
7855 {
7856 enum rtx_code code = GET_CODE (x);
7857 char *fmt;
7858 int i, j;
7859
7860 switch (code)
7861 {
7862 case REG:
7863 counts[REGNO (x)] += incr;
7864 return;
7865
7866 case PC:
7867 case CC0:
7868 case CONST:
7869 case CONST_INT:
7870 case CONST_DOUBLE:
7871 case SYMBOL_REF:
7872 case LABEL_REF:
7873 case CLOBBER:
7874 return;
7875
7876 case SET:
7877 /* Unless we are setting a REG, count everything in SET_DEST. */
7878 if (GET_CODE (SET_DEST (x)) != REG)
7879 count_reg_usage (SET_DEST (x), counts, incr);
7880 count_reg_usage (SET_SRC (x), counts, incr);
7881 return;
7882
7883 case INSN:
7884 case JUMP_INSN:
7885 case CALL_INSN:
7886 count_reg_usage (PATTERN (x), counts, incr);
7887
7888 /* Things used in a REG_EQUAL note aren't dead since loop may try to
7889 use them. */
7890
7891 if (REG_NOTES (x))
7892 count_reg_usage (REG_NOTES (x), counts, incr);
7893 return;
7894
7895 case EXPR_LIST:
7896 case INSN_LIST:
7897 if (REG_NOTE_KIND (x) == REG_EQUAL)
7898 count_reg_usage (XEXP (x, 0), counts, incr);
7899 if (XEXP (x, 1))
7900 count_reg_usage (XEXP (x, 1), counts, incr);
7901 return;
7902 }
7903
7904 fmt = GET_RTX_FORMAT (code);
7905 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7906 {
7907 if (fmt[i] == 'e')
7908 count_reg_usage (XEXP (x, i), counts, incr);
7909 else if (fmt[i] == 'E')
7910 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7911 count_reg_usage (XVECEXP (x, i, j), counts, incr);
7912 }
7913 }
7914 \f
7915 /* Scan all the insns and delete any that are dead; i.e., they store a register
7916 that is never used or they copy a register to itself.
7917
7918 This is used to remove insns made obviously dead by cse. It improves the
7919 heuristics in loop since it won't try to move dead invariants out of loops
7920 or make givs for dead quantities. The remaining passes of the compilation
7921 are also sped up. */
7922
7923 void
7924 delete_dead_from_cse (insns, nreg)
7925 rtx insns;
7926 int nreg;
7927 {
7928 int *counts = (int *) alloca (nreg * sizeof (int));
7929 rtx insn, prev;
7930 rtx tem;
7931 int i;
7932 int in_libcall = 0;
7933
7934 /* First count the number of times each register is used. */
7935 bzero (counts, sizeof (int) * nreg);
7936 for (insn = next_real_insn (insns); insn; insn = next_real_insn (insn))
7937 count_reg_usage (insn, counts, 1);
7938
7939 /* Go from the last insn to the first and delete insns that only set unused
7940 registers or copy a register to itself. As we delete an insn, remove
7941 usage counts for registers it uses. */
7942 for (insn = prev_real_insn (get_last_insn ()); insn; insn = prev)
7943 {
7944 int live_insn = 0;
7945
7946 prev = prev_real_insn (insn);
7947
7948 /* Don't delete any insns that are part of a libcall block.
7949 Flow or loop might get confused if we did that. Remember
7950 that we are scanning backwards. */
7951 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
7952 in_libcall = 1;
7953
7954 if (in_libcall)
7955 live_insn = 1;
7956 else if (GET_CODE (PATTERN (insn)) == SET)
7957 {
7958 if (GET_CODE (SET_DEST (PATTERN (insn))) == REG
7959 && SET_DEST (PATTERN (insn)) == SET_SRC (PATTERN (insn)))
7960 ;
7961
7962 #ifdef HAVE_cc0
7963 else if (GET_CODE (SET_DEST (PATTERN (insn))) == CC0
7964 && ! side_effects_p (SET_SRC (PATTERN (insn)))
7965 && ((tem = next_nonnote_insn (insn)) == 0
7966 || GET_RTX_CLASS (GET_CODE (tem)) != 'i'
7967 || ! reg_referenced_p (cc0_rtx, PATTERN (tem))))
7968 ;
7969 #endif
7970 else if (GET_CODE (SET_DEST (PATTERN (insn))) != REG
7971 || REGNO (SET_DEST (PATTERN (insn))) < FIRST_PSEUDO_REGISTER
7972 || counts[REGNO (SET_DEST (PATTERN (insn)))] != 0
7973 || side_effects_p (SET_SRC (PATTERN (insn))))
7974 live_insn = 1;
7975 }
7976 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7977 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7978 {
7979 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7980
7981 if (GET_CODE (elt) == SET)
7982 {
7983 if (GET_CODE (SET_DEST (elt)) == REG
7984 && SET_DEST (elt) == SET_SRC (elt))
7985 ;
7986
7987 #ifdef HAVE_cc0
7988 else if (GET_CODE (SET_DEST (elt)) == CC0
7989 && ! side_effects_p (SET_SRC (elt))
7990 && ((tem = next_nonnote_insn (insn)) == 0
7991 || GET_RTX_CLASS (GET_CODE (tem)) != 'i'
7992 || ! reg_referenced_p (cc0_rtx, PATTERN (tem))))
7993 ;
7994 #endif
7995 else if (GET_CODE (SET_DEST (elt)) != REG
7996 || REGNO (SET_DEST (elt)) < FIRST_PSEUDO_REGISTER
7997 || counts[REGNO (SET_DEST (elt))] != 0
7998 || side_effects_p (SET_SRC (elt)))
7999 live_insn = 1;
8000 }
8001 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
8002 live_insn = 1;
8003 }
8004 else
8005 live_insn = 1;
8006
8007 /* If this is a dead insn, delete it and show registers in it aren't
8008 being used. */
8009
8010 if (! live_insn)
8011 {
8012 count_reg_usage (insn, counts, -1);
8013 delete_insn (insn);
8014 }
8015
8016 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
8017 in_libcall = 0;
8018 }
8019 }
This page took 0.452794 seconds and 6 git commands to generate.