]> gcc.gnu.org Git - gcc.git/blob - gcc/cse.c
(simplify_plus_minus): Correct sign error in expanding NOT.
[gcc.git] / gcc / cse.c
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21 #include "config.h"
22 #include "rtl.h"
23 #include "regs.h"
24 #include "hard-reg-set.h"
25 #include "flags.h"
26 #include "real.h"
27 #include "insn-config.h"
28 #include "recog.h"
29
30 #include <stdio.h>
31 #include <setjmp.h>
32
33 /* The basic idea of common subexpression elimination is to go
34 through the code, keeping a record of expressions that would
35 have the same value at the current scan point, and replacing
36 expressions encountered with the cheapest equivalent expression.
37
38 It is too complicated to keep track of the different possibilities
39 when control paths merge; so, at each label, we forget all that is
40 known and start fresh. This can be described as processing each
41 basic block separately. Note, however, that these are not quite
42 the same as the basic blocks found by a later pass and used for
43 data flow analysis and register packing. We do not need to start fresh
44 after a conditional jump instruction if there is no label there.
45
46 We use two data structures to record the equivalent expressions:
47 a hash table for most expressions, and several vectors together
48 with "quantity numbers" to record equivalent (pseudo) registers.
49
50 The use of the special data structure for registers is desirable
51 because it is faster. It is possible because registers references
52 contain a fairly small number, the register number, taken from
53 a contiguously allocated series, and two register references are
54 identical if they have the same number. General expressions
55 do not have any such thing, so the only way to retrieve the
56 information recorded on an expression other than a register
57 is to keep it in a hash table.
58
59 Registers and "quantity numbers":
60
61 At the start of each basic block, all of the (hardware and pseudo)
62 registers used in the function are given distinct quantity
63 numbers to indicate their contents. During scan, when the code
64 copies one register into another, we copy the quantity number.
65 When a register is loaded in any other way, we allocate a new
66 quantity number to describe the value generated by this operation.
67 `reg_qty' records what quantity a register is currently thought
68 of as containing.
69
70 All real quantity numbers are greater than or equal to `max_reg'.
71 If register N has not been assigned a quantity, reg_qty[N] will equal N.
72
73 Quantity numbers below `max_reg' do not exist and none of the `qty_...'
74 variables should be referenced with an index below `max_reg'.
75
76 We also maintain a bidirectional chain of registers for each
77 quantity number. `qty_first_reg', `qty_last_reg',
78 `reg_next_eqv' and `reg_prev_eqv' hold these chains.
79
80 The first register in a chain is the one whose lifespan is least local.
81 Among equals, it is the one that was seen first.
82 We replace any equivalent register with that one.
83
84 If two registers have the same quantity number, it must be true that
85 REG expressions with `qty_mode' must be in the hash table for both
86 registers and must be in the same class.
87
88 The converse is not true. Since hard registers may be referenced in
89 any mode, two REG expressions might be equivalent in the hash table
90 but not have the same quantity number if the quantity number of one
91 of the registers is not the same mode as those expressions.
92
93 Constants and quantity numbers
94
95 When a quantity has a known constant value, that value is stored
96 in the appropriate element of qty_const. This is in addition to
97 putting the constant in the hash table as is usual for non-regs.
98
99 Whether a reg or a constant is preferred is determined by the configuration
100 macro CONST_COSTS and will often depend on the constant value. In any
101 event, expressions containing constants can be simplified, by fold_rtx.
102
103 When a quantity has a known nearly constant value (such as an address
104 of a stack slot), that value is stored in the appropriate element
105 of qty_const.
106
107 Integer constants don't have a machine mode. However, cse
108 determines the intended machine mode from the destination
109 of the instruction that moves the constant. The machine mode
110 is recorded in the hash table along with the actual RTL
111 constant expression so that different modes are kept separate.
112
113 Other expressions:
114
115 To record known equivalences among expressions in general
116 we use a hash table called `table'. It has a fixed number of buckets
117 that contain chains of `struct table_elt' elements for expressions.
118 These chains connect the elements whose expressions have the same
119 hash codes.
120
121 Other chains through the same elements connect the elements which
122 currently have equivalent values.
123
124 Register references in an expression are canonicalized before hashing
125 the expression. This is done using `reg_qty' and `qty_first_reg'.
126 The hash code of a register reference is computed using the quantity
127 number, not the register number.
128
129 When the value of an expression changes, it is necessary to remove from the
130 hash table not just that expression but all expressions whose values
131 could be different as a result.
132
133 1. If the value changing is in memory, except in special cases
134 ANYTHING referring to memory could be changed. That is because
135 nobody knows where a pointer does not point.
136 The function `invalidate_memory' removes what is necessary.
137
138 The special cases are when the address is constant or is
139 a constant plus a fixed register such as the frame pointer
140 or a static chain pointer. When such addresses are stored in,
141 we can tell exactly which other such addresses must be invalidated
142 due to overlap. `invalidate' does this.
143 All expressions that refer to non-constant
144 memory addresses are also invalidated. `invalidate_memory' does this.
145
146 2. If the value changing is a register, all expressions
147 containing references to that register, and only those,
148 must be removed.
149
150 Because searching the entire hash table for expressions that contain
151 a register is very slow, we try to figure out when it isn't necessary.
152 Precisely, this is necessary only when expressions have been
153 entered in the hash table using this register, and then the value has
154 changed, and then another expression wants to be added to refer to
155 the register's new value. This sequence of circumstances is rare
156 within any one basic block.
157
158 The vectors `reg_tick' and `reg_in_table' are used to detect this case.
159 reg_tick[i] is incremented whenever a value is stored in register i.
160 reg_in_table[i] holds -1 if no references to register i have been
161 entered in the table; otherwise, it contains the value reg_tick[i] had
162 when the references were entered. If we want to enter a reference
163 and reg_in_table[i] != reg_tick[i], we must scan and remove old references.
164 Until we want to enter a new entry, the mere fact that the two vectors
165 don't match makes the entries be ignored if anyone tries to match them.
166
167 Registers themselves are entered in the hash table as well as in
168 the equivalent-register chains. However, the vectors `reg_tick'
169 and `reg_in_table' do not apply to expressions which are simple
170 register references. These expressions are removed from the table
171 immediately when they become invalid, and this can be done even if
172 we do not immediately search for all the expressions that refer to
173 the register.
174
175 A CLOBBER rtx in an instruction invalidates its operand for further
176 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
177 invalidates everything that resides in memory.
178
179 Related expressions:
180
181 Constant expressions that differ only by an additive integer
182 are called related. When a constant expression is put in
183 the table, the related expression with no constant term
184 is also entered. These are made to point at each other
185 so that it is possible to find out if there exists any
186 register equivalent to an expression related to a given expression. */
187
188 /* One plus largest register number used in this function. */
189
190 static int max_reg;
191
192 /* Length of vectors indexed by quantity number.
193 We know in advance we will not need a quantity number this big. */
194
195 static int max_qty;
196
197 /* Next quantity number to be allocated.
198 This is 1 + the largest number needed so far. */
199
200 static int next_qty;
201
202 /* Indexed by quantity number, gives the first (or last) (pseudo) register
203 in the chain of registers that currently contain this quantity. */
204
205 static int *qty_first_reg;
206 static int *qty_last_reg;
207
208 /* Index by quantity number, gives the mode of the quantity. */
209
210 static enum machine_mode *qty_mode;
211
212 /* Indexed by quantity number, gives the rtx of the constant value of the
213 quantity, or zero if it does not have a known value.
214 A sum of the frame pointer (or arg pointer) plus a constant
215 can also be entered here. */
216
217 static rtx *qty_const;
218
219 /* Indexed by qty number, gives the insn that stored the constant value
220 recorded in `qty_const'. */
221
222 static rtx *qty_const_insn;
223
224 /* The next three variables are used to track when a comparison between a
225 quantity and some constant or register has been passed. In that case, we
226 know the results of the comparison in case we see it again. These variables
227 record a comparison that is known to be true. */
228
229 /* Indexed by qty number, gives the rtx code of a comparison with a known
230 result involving this quantity. If none, it is UNKNOWN. */
231 static enum rtx_code *qty_comparison_code;
232
233 /* Indexed by qty number, gives the constant being compared against in a
234 comparison of known result. If no such comparison, it is undefined.
235 If the comparison is not with a constant, it is zero. */
236
237 static rtx *qty_comparison_const;
238
239 /* Indexed by qty number, gives the quantity being compared against in a
240 comparison of known result. If no such comparison, if it undefined.
241 If the comparison is not with a register, it is -1. */
242
243 static int *qty_comparison_qty;
244
245 #ifdef HAVE_cc0
246 /* For machines that have a CC0, we do not record its value in the hash
247 table since its use is guaranteed to be the insn immediately following
248 its definition and any other insn is presumed to invalidate it.
249
250 Instead, we store below the value last assigned to CC0. If it should
251 happen to be a constant, it is stored in preference to the actual
252 assigned value. In case it is a constant, we store the mode in which
253 the constant should be interpreted. */
254
255 static rtx prev_insn_cc0;
256 static enum machine_mode prev_insn_cc0_mode;
257 #endif
258
259 /* Previous actual insn. 0 if at first insn of basic block. */
260
261 static rtx prev_insn;
262
263 /* Insn being scanned. */
264
265 static rtx this_insn;
266
267 /* Index by (pseudo) register number, gives the quantity number
268 of the register's current contents. */
269
270 static int *reg_qty;
271
272 /* Index by (pseudo) register number, gives the number of the next (or
273 previous) (pseudo) register in the chain of registers sharing the same
274 value.
275
276 Or -1 if this register is at the end of the chain.
277
278 If reg_qty[N] == N, reg_next_eqv[N] is undefined. */
279
280 static int *reg_next_eqv;
281 static int *reg_prev_eqv;
282
283 /* Index by (pseudo) register number, gives the number of times
284 that register has been altered in the current basic block. */
285
286 static int *reg_tick;
287
288 /* Index by (pseudo) register number, gives the reg_tick value at which
289 rtx's containing this register are valid in the hash table.
290 If this does not equal the current reg_tick value, such expressions
291 existing in the hash table are invalid.
292 If this is -1, no expressions containing this register have been
293 entered in the table. */
294
295 static int *reg_in_table;
296
297 /* A HARD_REG_SET containing all the hard registers for which there is
298 currently a REG expression in the hash table. Note the difference
299 from the above variables, which indicate if the REG is mentioned in some
300 expression in the table. */
301
302 static HARD_REG_SET hard_regs_in_table;
303
304 /* A HARD_REG_SET containing all the hard registers that are invalidated
305 by a CALL_INSN. */
306
307 static HARD_REG_SET regs_invalidated_by_call;
308
309 /* Two vectors of ints:
310 one containing max_reg -1's; the other max_reg + 500 (an approximation
311 for max_qty) elements where element i contains i.
312 These are used to initialize various other vectors fast. */
313
314 static int *all_minus_one;
315 static int *consec_ints;
316
317 /* CUID of insn that starts the basic block currently being cse-processed. */
318
319 static int cse_basic_block_start;
320
321 /* CUID of insn that ends the basic block currently being cse-processed. */
322
323 static int cse_basic_block_end;
324
325 /* Vector mapping INSN_UIDs to cuids.
326 The cuids are like uids but increase monotonically always.
327 We use them to see whether a reg is used outside a given basic block. */
328
329 static int *uid_cuid;
330
331 /* Highest UID in UID_CUID. */
332 static int max_uid;
333
334 /* Get the cuid of an insn. */
335
336 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
337
338 /* Nonzero if cse has altered conditional jump insns
339 in such a way that jump optimization should be redone. */
340
341 static int cse_jumps_altered;
342
343 /* canon_hash stores 1 in do_not_record
344 if it notices a reference to CC0, PC, or some other volatile
345 subexpression. */
346
347 static int do_not_record;
348
349 /* canon_hash stores 1 in hash_arg_in_memory
350 if it notices a reference to memory within the expression being hashed. */
351
352 static int hash_arg_in_memory;
353
354 /* canon_hash stores 1 in hash_arg_in_struct
355 if it notices a reference to memory that's part of a structure. */
356
357 static int hash_arg_in_struct;
358
359 /* The hash table contains buckets which are chains of `struct table_elt's,
360 each recording one expression's information.
361 That expression is in the `exp' field.
362
363 Those elements with the same hash code are chained in both directions
364 through the `next_same_hash' and `prev_same_hash' fields.
365
366 Each set of expressions with equivalent values
367 are on a two-way chain through the `next_same_value'
368 and `prev_same_value' fields, and all point with
369 the `first_same_value' field at the first element in
370 that chain. The chain is in order of increasing cost.
371 Each element's cost value is in its `cost' field.
372
373 The `in_memory' field is nonzero for elements that
374 involve any reference to memory. These elements are removed
375 whenever a write is done to an unidentified location in memory.
376 To be safe, we assume that a memory address is unidentified unless
377 the address is either a symbol constant or a constant plus
378 the frame pointer or argument pointer.
379
380 The `in_struct' field is nonzero for elements that
381 involve any reference to memory inside a structure or array.
382
383 The `related_value' field is used to connect related expressions
384 (that differ by adding an integer).
385 The related expressions are chained in a circular fashion.
386 `related_value' is zero for expressions for which this
387 chain is not useful.
388
389 The `cost' field stores the cost of this element's expression.
390
391 The `is_const' flag is set if the element is a constant (including
392 a fixed address).
393
394 The `flag' field is used as a temporary during some search routines.
395
396 The `mode' field is usually the same as GET_MODE (`exp'), but
397 if `exp' is a CONST_INT and has no machine mode then the `mode'
398 field is the mode it was being used as. Each constant is
399 recorded separately for each mode it is used with. */
400
401
402 struct table_elt
403 {
404 rtx exp;
405 struct table_elt *next_same_hash;
406 struct table_elt *prev_same_hash;
407 struct table_elt *next_same_value;
408 struct table_elt *prev_same_value;
409 struct table_elt *first_same_value;
410 struct table_elt *related_value;
411 int cost;
412 enum machine_mode mode;
413 char in_memory;
414 char in_struct;
415 char is_const;
416 char flag;
417 };
418
419 #define HASHBITS 16
420
421 /* We don't want a lot of buckets, because we rarely have very many
422 things stored in the hash table, and a lot of buckets slows
423 down a lot of loops that happen frequently. */
424 #define NBUCKETS 31
425
426 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
427 register (hard registers may require `do_not_record' to be set). */
428
429 #define HASH(X, M) \
430 (GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER \
431 ? ((((int) REG << 7) + reg_qty[REGNO (X)]) % NBUCKETS) \
432 : canon_hash (X, M) % NBUCKETS)
433
434 /* Determine whether register number N is considered a fixed register for CSE.
435 It is desirable to replace other regs with fixed regs, to reduce need for
436 non-fixed hard regs.
437 A reg wins if it is either the frame pointer or designated as fixed,
438 but not if it is an overlapping register. */
439 #ifdef OVERLAPPING_REGNO_P
440 #define FIXED_REGNO_P(N) \
441 (((N) == FRAME_POINTER_REGNUM || fixed_regs[N]) \
442 && ! OVERLAPPING_REGNO_P ((N)))
443 #else
444 #define FIXED_REGNO_P(N) \
445 ((N) == FRAME_POINTER_REGNUM || fixed_regs[N])
446 #endif
447
448 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
449 hard registers and pointers into the frame are the cheapest with a cost
450 of 0. Next come pseudos with a cost of one and other hard registers with
451 a cost of 2. Aside from these special cases, call `rtx_cost'. */
452
453 #define CHEAP_REG(N) \
454 ((N) == FRAME_POINTER_REGNUM || (N) == STACK_POINTER_REGNUM \
455 || (N) == ARG_POINTER_REGNUM \
456 || (N) >= FIRST_VIRTUAL_REGISTER && (N) <= LAST_VIRTUAL_REGISTER \
457 || (FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
458
459 #define COST(X) \
460 (GET_CODE (X) == REG \
461 ? (CHEAP_REG (REGNO (X)) ? 0 \
462 : REGNO (X) >= FIRST_PSEUDO_REGISTER ? 1 \
463 : 2) \
464 : rtx_cost (X, SET) * 2)
465
466 /* Determine if the quantity number for register X represents a valid index
467 into the `qty_...' variables. */
468
469 #define REGNO_QTY_VALID_P(N) (reg_qty[N] != (N))
470
471 static struct table_elt *table[NBUCKETS];
472
473 /* Chain of `struct table_elt's made so far for this function
474 but currently removed from the table. */
475
476 static struct table_elt *free_element_chain;
477
478 /* Number of `struct table_elt' structures made so far for this function. */
479
480 static int n_elements_made;
481
482 /* Maximum value `n_elements_made' has had so far in this compilation
483 for functions previously processed. */
484
485 static int max_elements_made;
486
487 /* Surviving equivalence class when two equivalence classes are merged
488 by recording the effects of a jump in the last insn. Zero if the
489 last insn was not a conditional jump. */
490
491 static struct table_elt *last_jump_equiv_class;
492
493 /* Set to the cost of a constant pool reference if one was found for a
494 symbolic constant. If this was found, it means we should try to
495 convert constants into constant pool entries if they don't fit in
496 the insn. */
497
498 static int constant_pool_entries_cost;
499
500 /* Bits describing what kind of values in memory must be invalidated
501 for a particular instruction. If all three bits are zero,
502 no memory refs need to be invalidated. Each bit is more powerful
503 than the preceding ones, and if a bit is set then the preceding
504 bits are also set.
505
506 Here is how the bits are set:
507 Pushing onto the stack invalidates only the stack pointer,
508 writing at a fixed address invalidates only variable addresses,
509 writing in a structure element at variable address
510 invalidates all but scalar variables,
511 and writing in anything else at variable address invalidates everything. */
512
513 struct write_data
514 {
515 int sp : 1; /* Invalidate stack pointer. */
516 int var : 1; /* Invalidate variable addresses. */
517 int nonscalar : 1; /* Invalidate all but scalar variables. */
518 int all : 1; /* Invalidate all memory refs. */
519 };
520
521 /* Define maximum length of a branch path. */
522
523 #define PATHLENGTH 10
524
525 /* This data describes a block that will be processed by cse_basic_block. */
526
527 struct cse_basic_block_data {
528 /* Lowest CUID value of insns in block. */
529 int low_cuid;
530 /* Highest CUID value of insns in block. */
531 int high_cuid;
532 /* Total number of SETs in block. */
533 int nsets;
534 /* Last insn in the block. */
535 rtx last;
536 /* Size of current branch path, if any. */
537 int path_size;
538 /* Current branch path, indicating which branches will be taken. */
539 struct branch_path {
540 /* The branch insn. */
541 rtx branch;
542 /* Whether it should be taken or not. AROUND is the same as taken
543 except that it is used when the destination label is not preceded
544 by a BARRIER. */
545 enum taken {TAKEN, NOT_TAKEN, AROUND} status;
546 } path[PATHLENGTH];
547 };
548
549 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
550 virtual regs here because the simplify_*_operation routines are called
551 by integrate.c, which is called before virtual register instantiation. */
552
553 #define FIXED_BASE_PLUS_P(X) \
554 ((X) == frame_pointer_rtx || (X) == arg_pointer_rtx \
555 || (X) == virtual_stack_vars_rtx \
556 || (X) == virtual_incoming_args_rtx \
557 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
558 && (XEXP (X, 0) == frame_pointer_rtx \
559 || XEXP (X, 0) == arg_pointer_rtx \
560 || XEXP (X, 0) == virtual_stack_vars_rtx \
561 || XEXP (X, 0) == virtual_incoming_args_rtx)))
562
563 /* Similar, but also allows reference to the stack pointer.
564
565 This used to include FIXED_BASE_PLUS_P, however, we can't assume that
566 arg_pointer_rtx by itself is nonzero, because on at least one machine,
567 the i960, the arg pointer is zero when it is unused. */
568
569 #define NONZERO_BASE_PLUS_P(X) \
570 ((X) == frame_pointer_rtx \
571 || (X) == virtual_stack_vars_rtx \
572 || (X) == virtual_incoming_args_rtx \
573 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
574 && (XEXP (X, 0) == frame_pointer_rtx \
575 || XEXP (X, 0) == arg_pointer_rtx \
576 || XEXP (X, 0) == virtual_stack_vars_rtx \
577 || XEXP (X, 0) == virtual_incoming_args_rtx)) \
578 || (X) == stack_pointer_rtx \
579 || (X) == virtual_stack_dynamic_rtx \
580 || (X) == virtual_outgoing_args_rtx \
581 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
582 && (XEXP (X, 0) == stack_pointer_rtx \
583 || XEXP (X, 0) == virtual_stack_dynamic_rtx \
584 || XEXP (X, 0) == virtual_outgoing_args_rtx)))
585
586 static void new_basic_block PROTO((void));
587 static void make_new_qty PROTO((int));
588 static void make_regs_eqv PROTO((int, int));
589 static void delete_reg_equiv PROTO((int));
590 static int mention_regs PROTO((rtx));
591 static int insert_regs PROTO((rtx, struct table_elt *, int));
592 static void free_element PROTO((struct table_elt *));
593 static void remove_from_table PROTO((struct table_elt *, int));
594 static struct table_elt *get_element PROTO((void));
595 static struct table_elt *lookup PROTO((rtx, int, enum machine_mode)),
596 *lookup_for_remove PROTO((rtx, int, enum machine_mode));
597 static rtx lookup_as_function PROTO((rtx, enum rtx_code));
598 static struct table_elt *insert PROTO((rtx, struct table_elt *, int,
599 enum machine_mode));
600 static void merge_equiv_classes PROTO((struct table_elt *,
601 struct table_elt *));
602 static void invalidate PROTO((rtx));
603 static void remove_invalid_refs PROTO((int));
604 static void rehash_using_reg PROTO((rtx));
605 static void invalidate_memory PROTO((struct write_data *));
606 static void invalidate_for_call PROTO((void));
607 static rtx use_related_value PROTO((rtx, struct table_elt *));
608 static int canon_hash PROTO((rtx, enum machine_mode));
609 static int safe_hash PROTO((rtx, enum machine_mode));
610 static int exp_equiv_p PROTO((rtx, rtx, int, int));
611 static void set_nonvarying_address_components PROTO((rtx, int, rtx *,
612 HOST_WIDE_INT *,
613 HOST_WIDE_INT *));
614 static int refers_to_p PROTO((rtx, rtx));
615 static int refers_to_mem_p PROTO((rtx, rtx, HOST_WIDE_INT,
616 HOST_WIDE_INT));
617 static int cse_rtx_addr_varies_p PROTO((rtx));
618 static rtx canon_reg PROTO((rtx, rtx));
619 static void find_best_addr PROTO((rtx, rtx *));
620 static enum rtx_code find_comparison_args PROTO((enum rtx_code, rtx *, rtx *,
621 enum machine_mode *,
622 enum machine_mode *));
623 static rtx cse_gen_binary PROTO((enum rtx_code, enum machine_mode,
624 rtx, rtx));
625 static rtx simplify_plus_minus PROTO((enum rtx_code, enum machine_mode,
626 rtx, rtx));
627 static rtx fold_rtx PROTO((rtx, rtx));
628 static rtx equiv_constant PROTO((rtx));
629 static void record_jump_equiv PROTO((rtx, int));
630 static void record_jump_cond PROTO((enum rtx_code, enum machine_mode,
631 rtx, rtx, int));
632 static void cse_insn PROTO((rtx, int));
633 static void note_mem_written PROTO((rtx, struct write_data *));
634 static void invalidate_from_clobbers PROTO((struct write_data *, rtx));
635 static rtx cse_process_notes PROTO((rtx, rtx));
636 static void cse_around_loop PROTO((rtx));
637 static void invalidate_skipped_set PROTO((rtx, rtx));
638 static void invalidate_skipped_block PROTO((rtx));
639 static void cse_check_loop_start PROTO((rtx, rtx));
640 static void cse_set_around_loop PROTO((rtx, rtx, rtx));
641 static rtx cse_basic_block PROTO((rtx, rtx, struct branch_path *, int));
642 static void count_reg_usage PROTO((rtx, int *, int));
643 \f
644 /* Return an estimate of the cost of computing rtx X.
645 One use is in cse, to decide which expression to keep in the hash table.
646 Another is in rtl generation, to pick the cheapest way to multiply.
647 Other uses like the latter are expected in the future. */
648
649 /* Return the right cost to give to an operation
650 to make the cost of the corresponding register-to-register instruction
651 N times that of a fast register-to-register instruction. */
652
653 #define COSTS_N_INSNS(N) ((N) * 4 - 2)
654
655 int
656 rtx_cost (x, outer_code)
657 rtx x;
658 enum rtx_code outer_code;
659 {
660 register int i, j;
661 register enum rtx_code code;
662 register char *fmt;
663 register int total;
664
665 if (x == 0)
666 return 0;
667
668 /* Compute the default costs of certain things.
669 Note that RTX_COSTS can override the defaults. */
670
671 code = GET_CODE (x);
672 switch (code)
673 {
674 case MULT:
675 /* Count multiplication by 2**n as a shift,
676 because if we are considering it, we would output it as a shift. */
677 if (GET_CODE (XEXP (x, 1)) == CONST_INT
678 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0)
679 total = 2;
680 else
681 total = COSTS_N_INSNS (5);
682 break;
683 case DIV:
684 case UDIV:
685 case MOD:
686 case UMOD:
687 total = COSTS_N_INSNS (7);
688 break;
689 case USE:
690 /* Used in loop.c and combine.c as a marker. */
691 total = 0;
692 break;
693 case ASM_OPERANDS:
694 /* We don't want these to be used in substitutions because
695 we have no way of validating the resulting insn. So assign
696 anything containing an ASM_OPERANDS a very high cost. */
697 total = 1000;
698 break;
699 default:
700 total = 2;
701 }
702
703 switch (code)
704 {
705 case REG:
706 return ! CHEAP_REG (REGNO (x));
707
708 case SUBREG:
709 /* If we can't tie these modes, make this expensive. The larger
710 the mode, the more expensive it is. */
711 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
712 return COSTS_N_INSNS (2
713 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
714 return 2;
715 #ifdef RTX_COSTS
716 RTX_COSTS (x, code, outer_code);
717 #endif
718 CONST_COSTS (x, code, outer_code);
719 }
720
721 /* Sum the costs of the sub-rtx's, plus cost of this operation,
722 which is already in total. */
723
724 fmt = GET_RTX_FORMAT (code);
725 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
726 if (fmt[i] == 'e')
727 total += rtx_cost (XEXP (x, i), code);
728 else if (fmt[i] == 'E')
729 for (j = 0; j < XVECLEN (x, i); j++)
730 total += rtx_cost (XVECEXP (x, i, j), code);
731
732 return total;
733 }
734 \f
735 /* Clear the hash table and initialize each register with its own quantity,
736 for a new basic block. */
737
738 static void
739 new_basic_block ()
740 {
741 register int i;
742
743 next_qty = max_reg;
744
745 bzero (reg_tick, max_reg * sizeof (int));
746
747 bcopy (all_minus_one, reg_in_table, max_reg * sizeof (int));
748 bcopy (consec_ints, reg_qty, max_reg * sizeof (int));
749 CLEAR_HARD_REG_SET (hard_regs_in_table);
750
751 /* The per-quantity values used to be initialized here, but it is
752 much faster to initialize each as it is made in `make_new_qty'. */
753
754 for (i = 0; i < NBUCKETS; i++)
755 {
756 register struct table_elt *this, *next;
757 for (this = table[i]; this; this = next)
758 {
759 next = this->next_same_hash;
760 free_element (this);
761 }
762 }
763
764 bzero (table, sizeof table);
765
766 prev_insn = 0;
767
768 #ifdef HAVE_cc0
769 prev_insn_cc0 = 0;
770 #endif
771 }
772
773 /* Say that register REG contains a quantity not in any register before
774 and initialize that quantity. */
775
776 static void
777 make_new_qty (reg)
778 register int reg;
779 {
780 register int q;
781
782 if (next_qty >= max_qty)
783 abort ();
784
785 q = reg_qty[reg] = next_qty++;
786 qty_first_reg[q] = reg;
787 qty_last_reg[q] = reg;
788 qty_const[q] = qty_const_insn[q] = 0;
789 qty_comparison_code[q] = UNKNOWN;
790
791 reg_next_eqv[reg] = reg_prev_eqv[reg] = -1;
792 }
793
794 /* Make reg NEW equivalent to reg OLD.
795 OLD is not changing; NEW is. */
796
797 static void
798 make_regs_eqv (new, old)
799 register int new, old;
800 {
801 register int lastr, firstr;
802 register int q = reg_qty[old];
803
804 /* Nothing should become eqv until it has a "non-invalid" qty number. */
805 if (! REGNO_QTY_VALID_P (old))
806 abort ();
807
808 reg_qty[new] = q;
809 firstr = qty_first_reg[q];
810 lastr = qty_last_reg[q];
811
812 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
813 hard regs. Among pseudos, if NEW will live longer than any other reg
814 of the same qty, and that is beyond the current basic block,
815 make it the new canonical replacement for this qty. */
816 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
817 /* Certain fixed registers might be of the class NO_REGS. This means
818 that not only can they not be allocated by the compiler, but
819 they cannot be used in substitutions or canonicalizations
820 either. */
821 && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
822 && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
823 || (new >= FIRST_PSEUDO_REGISTER
824 && (firstr < FIRST_PSEUDO_REGISTER
825 || ((uid_cuid[regno_last_uid[new]] > cse_basic_block_end
826 || (uid_cuid[regno_first_uid[new]]
827 < cse_basic_block_start))
828 && (uid_cuid[regno_last_uid[new]]
829 > uid_cuid[regno_last_uid[firstr]]))))))
830 {
831 reg_prev_eqv[firstr] = new;
832 reg_next_eqv[new] = firstr;
833 reg_prev_eqv[new] = -1;
834 qty_first_reg[q] = new;
835 }
836 else
837 {
838 /* If NEW is a hard reg (known to be non-fixed), insert at end.
839 Otherwise, insert before any non-fixed hard regs that are at the
840 end. Registers of class NO_REGS cannot be used as an
841 equivalent for anything. */
842 while (lastr < FIRST_PSEUDO_REGISTER && reg_prev_eqv[lastr] >= 0
843 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
844 && new >= FIRST_PSEUDO_REGISTER)
845 lastr = reg_prev_eqv[lastr];
846 reg_next_eqv[new] = reg_next_eqv[lastr];
847 if (reg_next_eqv[lastr] >= 0)
848 reg_prev_eqv[reg_next_eqv[lastr]] = new;
849 else
850 qty_last_reg[q] = new;
851 reg_next_eqv[lastr] = new;
852 reg_prev_eqv[new] = lastr;
853 }
854 }
855
856 /* Remove REG from its equivalence class. */
857
858 static void
859 delete_reg_equiv (reg)
860 register int reg;
861 {
862 register int n = reg_next_eqv[reg];
863 register int p = reg_prev_eqv[reg];
864 register int q = reg_qty[reg];
865
866 /* If invalid, do nothing. N and P above are undefined in that case. */
867 if (q == reg)
868 return;
869
870 if (n != -1)
871 reg_prev_eqv[n] = p;
872 else
873 qty_last_reg[q] = p;
874 if (p != -1)
875 reg_next_eqv[p] = n;
876 else
877 qty_first_reg[q] = n;
878
879 reg_qty[reg] = reg;
880 }
881
882 /* Remove any invalid expressions from the hash table
883 that refer to any of the registers contained in expression X.
884
885 Make sure that newly inserted references to those registers
886 as subexpressions will be considered valid.
887
888 mention_regs is not called when a register itself
889 is being stored in the table.
890
891 Return 1 if we have done something that may have changed the hash code
892 of X. */
893
894 static int
895 mention_regs (x)
896 rtx x;
897 {
898 register enum rtx_code code;
899 register int i, j;
900 register char *fmt;
901 register int changed = 0;
902
903 if (x == 0)
904 return 0;
905
906 code = GET_CODE (x);
907 if (code == REG)
908 {
909 register int regno = REGNO (x);
910 register int endregno
911 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
912 : HARD_REGNO_NREGS (regno, GET_MODE (x)));
913 int i;
914
915 for (i = regno; i < endregno; i++)
916 {
917 if (reg_in_table[i] >= 0 && reg_in_table[i] != reg_tick[i])
918 remove_invalid_refs (i);
919
920 reg_in_table[i] = reg_tick[i];
921 }
922
923 return 0;
924 }
925
926 /* If X is a comparison or a COMPARE and either operand is a register
927 that does not have a quantity, give it one. This is so that a later
928 call to record_jump_equiv won't cause X to be assigned a different
929 hash code and not found in the table after that call.
930
931 It is not necessary to do this here, since rehash_using_reg can
932 fix up the table later, but doing this here eliminates the need to
933 call that expensive function in the most common case where the only
934 use of the register is in the comparison. */
935
936 if (code == COMPARE || GET_RTX_CLASS (code) == '<')
937 {
938 if (GET_CODE (XEXP (x, 0)) == REG
939 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
940 if (insert_regs (XEXP (x, 0), NULL_PTR, 0))
941 {
942 rehash_using_reg (XEXP (x, 0));
943 changed = 1;
944 }
945
946 if (GET_CODE (XEXP (x, 1)) == REG
947 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
948 if (insert_regs (XEXP (x, 1), NULL_PTR, 0))
949 {
950 rehash_using_reg (XEXP (x, 1));
951 changed = 1;
952 }
953 }
954
955 fmt = GET_RTX_FORMAT (code);
956 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
957 if (fmt[i] == 'e')
958 changed |= mention_regs (XEXP (x, i));
959 else if (fmt[i] == 'E')
960 for (j = 0; j < XVECLEN (x, i); j++)
961 changed |= mention_regs (XVECEXP (x, i, j));
962
963 return changed;
964 }
965
966 /* Update the register quantities for inserting X into the hash table
967 with a value equivalent to CLASSP.
968 (If the class does not contain a REG, it is irrelevant.)
969 If MODIFIED is nonzero, X is a destination; it is being modified.
970 Note that delete_reg_equiv should be called on a register
971 before insert_regs is done on that register with MODIFIED != 0.
972
973 Nonzero value means that elements of reg_qty have changed
974 so X's hash code may be different. */
975
976 static int
977 insert_regs (x, classp, modified)
978 rtx x;
979 struct table_elt *classp;
980 int modified;
981 {
982 if (GET_CODE (x) == REG)
983 {
984 register int regno = REGNO (x);
985
986 if (modified
987 || ! (REGNO_QTY_VALID_P (regno)
988 && qty_mode[reg_qty[regno]] == GET_MODE (x)))
989 {
990 if (classp)
991 for (classp = classp->first_same_value;
992 classp != 0;
993 classp = classp->next_same_value)
994 if (GET_CODE (classp->exp) == REG
995 && GET_MODE (classp->exp) == GET_MODE (x))
996 {
997 make_regs_eqv (regno, REGNO (classp->exp));
998 return 1;
999 }
1000
1001 make_new_qty (regno);
1002 qty_mode[reg_qty[regno]] = GET_MODE (x);
1003 return 1;
1004 }
1005 }
1006
1007 /* If X is a SUBREG, we will likely be inserting the inner register in the
1008 table. If that register doesn't have an assigned quantity number at
1009 this point but does later, the insertion that we will be doing now will
1010 not be accessible because its hash code will have changed. So assign
1011 a quantity number now. */
1012
1013 else if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == REG
1014 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1015 {
1016 insert_regs (SUBREG_REG (x), NULL_PTR, 0);
1017 mention_regs (SUBREG_REG (x));
1018 return 1;
1019 }
1020 else
1021 return mention_regs (x);
1022 }
1023 \f
1024 /* Look in or update the hash table. */
1025
1026 /* Put the element ELT on the list of free elements. */
1027
1028 static void
1029 free_element (elt)
1030 struct table_elt *elt;
1031 {
1032 elt->next_same_hash = free_element_chain;
1033 free_element_chain = elt;
1034 }
1035
1036 /* Return an element that is free for use. */
1037
1038 static struct table_elt *
1039 get_element ()
1040 {
1041 struct table_elt *elt = free_element_chain;
1042 if (elt)
1043 {
1044 free_element_chain = elt->next_same_hash;
1045 return elt;
1046 }
1047 n_elements_made++;
1048 return (struct table_elt *) oballoc (sizeof (struct table_elt));
1049 }
1050
1051 /* Remove table element ELT from use in the table.
1052 HASH is its hash code, made using the HASH macro.
1053 It's an argument because often that is known in advance
1054 and we save much time not recomputing it. */
1055
1056 static void
1057 remove_from_table (elt, hash)
1058 register struct table_elt *elt;
1059 int hash;
1060 {
1061 if (elt == 0)
1062 return;
1063
1064 /* Mark this element as removed. See cse_insn. */
1065 elt->first_same_value = 0;
1066
1067 /* Remove the table element from its equivalence class. */
1068
1069 {
1070 register struct table_elt *prev = elt->prev_same_value;
1071 register struct table_elt *next = elt->next_same_value;
1072
1073 if (next) next->prev_same_value = prev;
1074
1075 if (prev)
1076 prev->next_same_value = next;
1077 else
1078 {
1079 register struct table_elt *newfirst = next;
1080 while (next)
1081 {
1082 next->first_same_value = newfirst;
1083 next = next->next_same_value;
1084 }
1085 }
1086 }
1087
1088 /* Remove the table element from its hash bucket. */
1089
1090 {
1091 register struct table_elt *prev = elt->prev_same_hash;
1092 register struct table_elt *next = elt->next_same_hash;
1093
1094 if (next) next->prev_same_hash = prev;
1095
1096 if (prev)
1097 prev->next_same_hash = next;
1098 else if (table[hash] == elt)
1099 table[hash] = next;
1100 else
1101 {
1102 /* This entry is not in the proper hash bucket. This can happen
1103 when two classes were merged by `merge_equiv_classes'. Search
1104 for the hash bucket that it heads. This happens only very
1105 rarely, so the cost is acceptable. */
1106 for (hash = 0; hash < NBUCKETS; hash++)
1107 if (table[hash] == elt)
1108 table[hash] = next;
1109 }
1110 }
1111
1112 /* Remove the table element from its related-value circular chain. */
1113
1114 if (elt->related_value != 0 && elt->related_value != elt)
1115 {
1116 register struct table_elt *p = elt->related_value;
1117 while (p->related_value != elt)
1118 p = p->related_value;
1119 p->related_value = elt->related_value;
1120 if (p->related_value == p)
1121 p->related_value = 0;
1122 }
1123
1124 free_element (elt);
1125 }
1126
1127 /* Look up X in the hash table and return its table element,
1128 or 0 if X is not in the table.
1129
1130 MODE is the machine-mode of X, or if X is an integer constant
1131 with VOIDmode then MODE is the mode with which X will be used.
1132
1133 Here we are satisfied to find an expression whose tree structure
1134 looks like X. */
1135
1136 static struct table_elt *
1137 lookup (x, hash, mode)
1138 rtx x;
1139 int hash;
1140 enum machine_mode mode;
1141 {
1142 register struct table_elt *p;
1143
1144 for (p = table[hash]; p; p = p->next_same_hash)
1145 if (mode == p->mode && ((x == p->exp && GET_CODE (x) == REG)
1146 || exp_equiv_p (x, p->exp, GET_CODE (x) != REG, 0)))
1147 return p;
1148
1149 return 0;
1150 }
1151
1152 /* Like `lookup' but don't care whether the table element uses invalid regs.
1153 Also ignore discrepancies in the machine mode of a register. */
1154
1155 static struct table_elt *
1156 lookup_for_remove (x, hash, mode)
1157 rtx x;
1158 int hash;
1159 enum machine_mode mode;
1160 {
1161 register struct table_elt *p;
1162
1163 if (GET_CODE (x) == REG)
1164 {
1165 int regno = REGNO (x);
1166 /* Don't check the machine mode when comparing registers;
1167 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1168 for (p = table[hash]; p; p = p->next_same_hash)
1169 if (GET_CODE (p->exp) == REG
1170 && REGNO (p->exp) == regno)
1171 return p;
1172 }
1173 else
1174 {
1175 for (p = table[hash]; p; p = p->next_same_hash)
1176 if (mode == p->mode && (x == p->exp || exp_equiv_p (x, p->exp, 0, 0)))
1177 return p;
1178 }
1179
1180 return 0;
1181 }
1182
1183 /* Look for an expression equivalent to X and with code CODE.
1184 If one is found, return that expression. */
1185
1186 static rtx
1187 lookup_as_function (x, code)
1188 rtx x;
1189 enum rtx_code code;
1190 {
1191 register struct table_elt *p = lookup (x, safe_hash (x, VOIDmode) % NBUCKETS,
1192 GET_MODE (x));
1193 if (p == 0)
1194 return 0;
1195
1196 for (p = p->first_same_value; p; p = p->next_same_value)
1197 {
1198 if (GET_CODE (p->exp) == code
1199 /* Make sure this is a valid entry in the table. */
1200 && exp_equiv_p (p->exp, p->exp, 1, 0))
1201 return p->exp;
1202 }
1203
1204 return 0;
1205 }
1206
1207 /* Insert X in the hash table, assuming HASH is its hash code
1208 and CLASSP is an element of the class it should go in
1209 (or 0 if a new class should be made).
1210 It is inserted at the proper position to keep the class in
1211 the order cheapest first.
1212
1213 MODE is the machine-mode of X, or if X is an integer constant
1214 with VOIDmode then MODE is the mode with which X will be used.
1215
1216 For elements of equal cheapness, the most recent one
1217 goes in front, except that the first element in the list
1218 remains first unless a cheaper element is added. The order of
1219 pseudo-registers does not matter, as canon_reg will be called to
1220 find the cheapest when a register is retrieved from the table.
1221
1222 The in_memory field in the hash table element is set to 0.
1223 The caller must set it nonzero if appropriate.
1224
1225 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1226 and if insert_regs returns a nonzero value
1227 you must then recompute its hash code before calling here.
1228
1229 If necessary, update table showing constant values of quantities. */
1230
1231 #define CHEAPER(X,Y) ((X)->cost < (Y)->cost)
1232
1233 static struct table_elt *
1234 insert (x, classp, hash, mode)
1235 register rtx x;
1236 register struct table_elt *classp;
1237 int hash;
1238 enum machine_mode mode;
1239 {
1240 register struct table_elt *elt;
1241
1242 /* If X is a register and we haven't made a quantity for it,
1243 something is wrong. */
1244 if (GET_CODE (x) == REG && ! REGNO_QTY_VALID_P (REGNO (x)))
1245 abort ();
1246
1247 /* If X is a hard register, show it is being put in the table. */
1248 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
1249 {
1250 int regno = REGNO (x);
1251 int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
1252 int i;
1253
1254 for (i = regno; i < endregno; i++)
1255 SET_HARD_REG_BIT (hard_regs_in_table, i);
1256 }
1257
1258
1259 /* Put an element for X into the right hash bucket. */
1260
1261 elt = get_element ();
1262 elt->exp = x;
1263 elt->cost = COST (x);
1264 elt->next_same_value = 0;
1265 elt->prev_same_value = 0;
1266 elt->next_same_hash = table[hash];
1267 elt->prev_same_hash = 0;
1268 elt->related_value = 0;
1269 elt->in_memory = 0;
1270 elt->mode = mode;
1271 elt->is_const = (CONSTANT_P (x)
1272 /* GNU C++ takes advantage of this for `this'
1273 (and other const values). */
1274 || (RTX_UNCHANGING_P (x)
1275 && GET_CODE (x) == REG
1276 && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1277 || FIXED_BASE_PLUS_P (x));
1278
1279 if (table[hash])
1280 table[hash]->prev_same_hash = elt;
1281 table[hash] = elt;
1282
1283 /* Put it into the proper value-class. */
1284 if (classp)
1285 {
1286 classp = classp->first_same_value;
1287 if (CHEAPER (elt, classp))
1288 /* Insert at the head of the class */
1289 {
1290 register struct table_elt *p;
1291 elt->next_same_value = classp;
1292 classp->prev_same_value = elt;
1293 elt->first_same_value = elt;
1294
1295 for (p = classp; p; p = p->next_same_value)
1296 p->first_same_value = elt;
1297 }
1298 else
1299 {
1300 /* Insert not at head of the class. */
1301 /* Put it after the last element cheaper than X. */
1302 register struct table_elt *p, *next;
1303 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1304 p = next);
1305 /* Put it after P and before NEXT. */
1306 elt->next_same_value = next;
1307 if (next)
1308 next->prev_same_value = elt;
1309 elt->prev_same_value = p;
1310 p->next_same_value = elt;
1311 elt->first_same_value = classp;
1312 }
1313 }
1314 else
1315 elt->first_same_value = elt;
1316
1317 /* If this is a constant being set equivalent to a register or a register
1318 being set equivalent to a constant, note the constant equivalence.
1319
1320 If this is a constant, it cannot be equivalent to a different constant,
1321 and a constant is the only thing that can be cheaper than a register. So
1322 we know the register is the head of the class (before the constant was
1323 inserted).
1324
1325 If this is a register that is not already known equivalent to a
1326 constant, we must check the entire class.
1327
1328 If this is a register that is already known equivalent to an insn,
1329 update `qty_const_insn' to show that `this_insn' is the latest
1330 insn making that quantity equivalent to the constant. */
1331
1332 if (elt->is_const && classp && GET_CODE (classp->exp) == REG)
1333 {
1334 qty_const[reg_qty[REGNO (classp->exp)]]
1335 = gen_lowpart_if_possible (qty_mode[reg_qty[REGNO (classp->exp)]], x);
1336 qty_const_insn[reg_qty[REGNO (classp->exp)]] = this_insn;
1337 }
1338
1339 else if (GET_CODE (x) == REG && classp && ! qty_const[reg_qty[REGNO (x)]])
1340 {
1341 register struct table_elt *p;
1342
1343 for (p = classp; p != 0; p = p->next_same_value)
1344 {
1345 if (p->is_const)
1346 {
1347 qty_const[reg_qty[REGNO (x)]]
1348 = gen_lowpart_if_possible (GET_MODE (x), p->exp);
1349 qty_const_insn[reg_qty[REGNO (x)]] = this_insn;
1350 break;
1351 }
1352 }
1353 }
1354
1355 else if (GET_CODE (x) == REG && qty_const[reg_qty[REGNO (x)]]
1356 && GET_MODE (x) == qty_mode[reg_qty[REGNO (x)]])
1357 qty_const_insn[reg_qty[REGNO (x)]] = this_insn;
1358
1359 /* If this is a constant with symbolic value,
1360 and it has a term with an explicit integer value,
1361 link it up with related expressions. */
1362 if (GET_CODE (x) == CONST)
1363 {
1364 rtx subexp = get_related_value (x);
1365 int subhash;
1366 struct table_elt *subelt, *subelt_prev;
1367
1368 if (subexp != 0)
1369 {
1370 /* Get the integer-free subexpression in the hash table. */
1371 subhash = safe_hash (subexp, mode) % NBUCKETS;
1372 subelt = lookup (subexp, subhash, mode);
1373 if (subelt == 0)
1374 subelt = insert (subexp, NULL_PTR, subhash, mode);
1375 /* Initialize SUBELT's circular chain if it has none. */
1376 if (subelt->related_value == 0)
1377 subelt->related_value = subelt;
1378 /* Find the element in the circular chain that precedes SUBELT. */
1379 subelt_prev = subelt;
1380 while (subelt_prev->related_value != subelt)
1381 subelt_prev = subelt_prev->related_value;
1382 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1383 This way the element that follows SUBELT is the oldest one. */
1384 elt->related_value = subelt_prev->related_value;
1385 subelt_prev->related_value = elt;
1386 }
1387 }
1388
1389 return elt;
1390 }
1391 \f
1392 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1393 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1394 the two classes equivalent.
1395
1396 CLASS1 will be the surviving class; CLASS2 should not be used after this
1397 call.
1398
1399 Any invalid entries in CLASS2 will not be copied. */
1400
1401 static void
1402 merge_equiv_classes (class1, class2)
1403 struct table_elt *class1, *class2;
1404 {
1405 struct table_elt *elt, *next, *new;
1406
1407 /* Ensure we start with the head of the classes. */
1408 class1 = class1->first_same_value;
1409 class2 = class2->first_same_value;
1410
1411 /* If they were already equal, forget it. */
1412 if (class1 == class2)
1413 return;
1414
1415 for (elt = class2; elt; elt = next)
1416 {
1417 int hash;
1418 rtx exp = elt->exp;
1419 enum machine_mode mode = elt->mode;
1420
1421 next = elt->next_same_value;
1422
1423 /* Remove old entry, make a new one in CLASS1's class.
1424 Don't do this for invalid entries as we cannot find their
1425 hash code (it also isn't necessary). */
1426 if (GET_CODE (exp) == REG || exp_equiv_p (exp, exp, 1, 0))
1427 {
1428 hash_arg_in_memory = 0;
1429 hash_arg_in_struct = 0;
1430 hash = HASH (exp, mode);
1431
1432 if (GET_CODE (exp) == REG)
1433 delete_reg_equiv (REGNO (exp));
1434
1435 remove_from_table (elt, hash);
1436
1437 if (insert_regs (exp, class1, 0))
1438 hash = HASH (exp, mode);
1439 new = insert (exp, class1, hash, mode);
1440 new->in_memory = hash_arg_in_memory;
1441 new->in_struct = hash_arg_in_struct;
1442 }
1443 }
1444 }
1445 \f
1446 /* Remove from the hash table, or mark as invalid,
1447 all expressions whose values could be altered by storing in X.
1448 X is a register, a subreg, or a memory reference with nonvarying address
1449 (because, when a memory reference with a varying address is stored in,
1450 all memory references are removed by invalidate_memory
1451 so specific invalidation is superfluous).
1452
1453 A nonvarying address may be just a register or just
1454 a symbol reference, or it may be either of those plus
1455 a numeric offset. */
1456
1457 static void
1458 invalidate (x)
1459 rtx x;
1460 {
1461 register int i;
1462 register struct table_elt *p;
1463 rtx base;
1464 HOST_WIDE_INT start, end;
1465
1466 /* If X is a register, dependencies on its contents
1467 are recorded through the qty number mechanism.
1468 Just change the qty number of the register,
1469 mark it as invalid for expressions that refer to it,
1470 and remove it itself. */
1471
1472 if (GET_CODE (x) == REG)
1473 {
1474 register int regno = REGNO (x);
1475 register int hash = HASH (x, GET_MODE (x));
1476
1477 /* Remove REGNO from any quantity list it might be on and indicate
1478 that it's value might have changed. If it is a pseudo, remove its
1479 entry from the hash table.
1480
1481 For a hard register, we do the first two actions above for any
1482 additional hard registers corresponding to X. Then, if any of these
1483 registers are in the table, we must remove any REG entries that
1484 overlap these registers. */
1485
1486 delete_reg_equiv (regno);
1487 reg_tick[regno]++;
1488
1489 if (regno >= FIRST_PSEUDO_REGISTER)
1490 remove_from_table (lookup_for_remove (x, hash, GET_MODE (x)), hash);
1491 else
1492 {
1493 int in_table = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1494 int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
1495 int tregno, tendregno;
1496 register struct table_elt *p, *next;
1497
1498 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1499
1500 for (i = regno + 1; i < endregno; i++)
1501 {
1502 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, i);
1503 CLEAR_HARD_REG_BIT (hard_regs_in_table, i);
1504 delete_reg_equiv (i);
1505 reg_tick[i]++;
1506 }
1507
1508 if (in_table)
1509 for (hash = 0; hash < NBUCKETS; hash++)
1510 for (p = table[hash]; p; p = next)
1511 {
1512 next = p->next_same_hash;
1513
1514 if (GET_CODE (p->exp) != REG
1515 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1516 continue;
1517
1518 tregno = REGNO (p->exp);
1519 tendregno
1520 = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (p->exp));
1521 if (tendregno > regno && tregno < endregno)
1522 remove_from_table (p, hash);
1523 }
1524 }
1525
1526 return;
1527 }
1528
1529 if (GET_CODE (x) == SUBREG)
1530 {
1531 if (GET_CODE (SUBREG_REG (x)) != REG)
1532 abort ();
1533 invalidate (SUBREG_REG (x));
1534 return;
1535 }
1536
1537 /* X is not a register; it must be a memory reference with
1538 a nonvarying address. Remove all hash table elements
1539 that refer to overlapping pieces of memory. */
1540
1541 if (GET_CODE (x) != MEM)
1542 abort ();
1543
1544 set_nonvarying_address_components (XEXP (x, 0), GET_MODE_SIZE (GET_MODE (x)),
1545 &base, &start, &end);
1546
1547 for (i = 0; i < NBUCKETS; i++)
1548 {
1549 register struct table_elt *next;
1550 for (p = table[i]; p; p = next)
1551 {
1552 next = p->next_same_hash;
1553 if (refers_to_mem_p (p->exp, base, start, end))
1554 remove_from_table (p, i);
1555 }
1556 }
1557 }
1558
1559 /* Remove all expressions that refer to register REGNO,
1560 since they are already invalid, and we are about to
1561 mark that register valid again and don't want the old
1562 expressions to reappear as valid. */
1563
1564 static void
1565 remove_invalid_refs (regno)
1566 int regno;
1567 {
1568 register int i;
1569 register struct table_elt *p, *next;
1570
1571 for (i = 0; i < NBUCKETS; i++)
1572 for (p = table[i]; p; p = next)
1573 {
1574 next = p->next_same_hash;
1575 if (GET_CODE (p->exp) != REG
1576 && refers_to_regno_p (regno, regno + 1, p->exp, NULL_PTR))
1577 remove_from_table (p, i);
1578 }
1579 }
1580 \f
1581 /* Recompute the hash codes of any valid entries in the hash table that
1582 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
1583
1584 This is called when we make a jump equivalence. */
1585
1586 static void
1587 rehash_using_reg (x)
1588 rtx x;
1589 {
1590 int i;
1591 struct table_elt *p, *next;
1592 int hash;
1593
1594 if (GET_CODE (x) == SUBREG)
1595 x = SUBREG_REG (x);
1596
1597 /* If X is not a register or if the register is known not to be in any
1598 valid entries in the table, we have no work to do. */
1599
1600 if (GET_CODE (x) != REG
1601 || reg_in_table[REGNO (x)] < 0
1602 || reg_in_table[REGNO (x)] != reg_tick[REGNO (x)])
1603 return;
1604
1605 /* Scan all hash chains looking for valid entries that mention X.
1606 If we find one and it is in the wrong hash chain, move it. We can skip
1607 objects that are registers, since they are handled specially. */
1608
1609 for (i = 0; i < NBUCKETS; i++)
1610 for (p = table[i]; p; p = next)
1611 {
1612 next = p->next_same_hash;
1613 if (GET_CODE (p->exp) != REG && reg_mentioned_p (x, p->exp)
1614 && exp_equiv_p (p->exp, p->exp, 1, 0)
1615 && i != (hash = safe_hash (p->exp, p->mode) % NBUCKETS))
1616 {
1617 if (p->next_same_hash)
1618 p->next_same_hash->prev_same_hash = p->prev_same_hash;
1619
1620 if (p->prev_same_hash)
1621 p->prev_same_hash->next_same_hash = p->next_same_hash;
1622 else
1623 table[i] = p->next_same_hash;
1624
1625 p->next_same_hash = table[hash];
1626 p->prev_same_hash = 0;
1627 if (table[hash])
1628 table[hash]->prev_same_hash = p;
1629 table[hash] = p;
1630 }
1631 }
1632 }
1633 \f
1634 /* Remove from the hash table all expressions that reference memory,
1635 or some of them as specified by *WRITES. */
1636
1637 static void
1638 invalidate_memory (writes)
1639 struct write_data *writes;
1640 {
1641 register int i;
1642 register struct table_elt *p, *next;
1643 int all = writes->all;
1644 int nonscalar = writes->nonscalar;
1645
1646 for (i = 0; i < NBUCKETS; i++)
1647 for (p = table[i]; p; p = next)
1648 {
1649 next = p->next_same_hash;
1650 if (p->in_memory
1651 && (all
1652 || (nonscalar && p->in_struct)
1653 || cse_rtx_addr_varies_p (p->exp)))
1654 remove_from_table (p, i);
1655 }
1656 }
1657 \f
1658 /* Remove from the hash table any expression that is a call-clobbered
1659 register. Also update their TICK values. */
1660
1661 static void
1662 invalidate_for_call ()
1663 {
1664 int regno, endregno;
1665 int i;
1666 int hash;
1667 struct table_elt *p, *next;
1668 int in_table = 0;
1669
1670 /* Go through all the hard registers. For each that is clobbered in
1671 a CALL_INSN, remove the register from quantity chains and update
1672 reg_tick if defined. Also see if any of these registers is currently
1673 in the table. */
1674
1675 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1676 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
1677 {
1678 delete_reg_equiv (regno);
1679 if (reg_tick[regno] >= 0)
1680 reg_tick[regno]++;
1681
1682 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1683 }
1684
1685 /* In the case where we have no call-clobbered hard registers in the
1686 table, we are done. Otherwise, scan the table and remove any
1687 entry that overlaps a call-clobbered register. */
1688
1689 if (in_table)
1690 for (hash = 0; hash < NBUCKETS; hash++)
1691 for (p = table[hash]; p; p = next)
1692 {
1693 next = p->next_same_hash;
1694
1695 if (GET_CODE (p->exp) != REG
1696 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1697 continue;
1698
1699 regno = REGNO (p->exp);
1700 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (p->exp));
1701
1702 for (i = regno; i < endregno; i++)
1703 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1704 {
1705 remove_from_table (p, hash);
1706 break;
1707 }
1708 }
1709 }
1710 \f
1711 /* Given an expression X of type CONST,
1712 and ELT which is its table entry (or 0 if it
1713 is not in the hash table),
1714 return an alternate expression for X as a register plus integer.
1715 If none can be found, return 0. */
1716
1717 static rtx
1718 use_related_value (x, elt)
1719 rtx x;
1720 struct table_elt *elt;
1721 {
1722 register struct table_elt *relt = 0;
1723 register struct table_elt *p, *q;
1724 HOST_WIDE_INT offset;
1725
1726 /* First, is there anything related known?
1727 If we have a table element, we can tell from that.
1728 Otherwise, must look it up. */
1729
1730 if (elt != 0 && elt->related_value != 0)
1731 relt = elt;
1732 else if (elt == 0 && GET_CODE (x) == CONST)
1733 {
1734 rtx subexp = get_related_value (x);
1735 if (subexp != 0)
1736 relt = lookup (subexp,
1737 safe_hash (subexp, GET_MODE (subexp)) % NBUCKETS,
1738 GET_MODE (subexp));
1739 }
1740
1741 if (relt == 0)
1742 return 0;
1743
1744 /* Search all related table entries for one that has an
1745 equivalent register. */
1746
1747 p = relt;
1748 while (1)
1749 {
1750 /* This loop is strange in that it is executed in two different cases.
1751 The first is when X is already in the table. Then it is searching
1752 the RELATED_VALUE list of X's class (RELT). The second case is when
1753 X is not in the table. Then RELT points to a class for the related
1754 value.
1755
1756 Ensure that, whatever case we are in, that we ignore classes that have
1757 the same value as X. */
1758
1759 if (rtx_equal_p (x, p->exp))
1760 q = 0;
1761 else
1762 for (q = p->first_same_value; q; q = q->next_same_value)
1763 if (GET_CODE (q->exp) == REG)
1764 break;
1765
1766 if (q)
1767 break;
1768
1769 p = p->related_value;
1770
1771 /* We went all the way around, so there is nothing to be found.
1772 Alternatively, perhaps RELT was in the table for some other reason
1773 and it has no related values recorded. */
1774 if (p == relt || p == 0)
1775 break;
1776 }
1777
1778 if (q == 0)
1779 return 0;
1780
1781 offset = (get_integer_term (x) - get_integer_term (p->exp));
1782 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
1783 return plus_constant (q->exp, offset);
1784 }
1785 \f
1786 /* Hash an rtx. We are careful to make sure the value is never negative.
1787 Equivalent registers hash identically.
1788 MODE is used in hashing for CONST_INTs only;
1789 otherwise the mode of X is used.
1790
1791 Store 1 in do_not_record if any subexpression is volatile.
1792
1793 Store 1 in hash_arg_in_memory if X contains a MEM rtx
1794 which does not have the RTX_UNCHANGING_P bit set.
1795 In this case, also store 1 in hash_arg_in_struct
1796 if there is a MEM rtx which has the MEM_IN_STRUCT_P bit set.
1797
1798 Note that cse_insn knows that the hash code of a MEM expression
1799 is just (int) MEM plus the hash code of the address. */
1800
1801 static int
1802 canon_hash (x, mode)
1803 rtx x;
1804 enum machine_mode mode;
1805 {
1806 register int i, j;
1807 register int hash = 0;
1808 register enum rtx_code code;
1809 register char *fmt;
1810
1811 /* repeat is used to turn tail-recursion into iteration. */
1812 repeat:
1813 if (x == 0)
1814 return hash;
1815
1816 code = GET_CODE (x);
1817 switch (code)
1818 {
1819 case REG:
1820 {
1821 register int regno = REGNO (x);
1822
1823 /* On some machines, we can't record any non-fixed hard register,
1824 because extending its life will cause reload problems. We
1825 consider ap, fp, and sp to be fixed for this purpose.
1826 On all machines, we can't record any global registers. */
1827
1828 if (regno < FIRST_PSEUDO_REGISTER
1829 && (global_regs[regno]
1830 #ifdef SMALL_REGISTER_CLASSES
1831 || (! fixed_regs[regno]
1832 && regno != FRAME_POINTER_REGNUM
1833 && regno != ARG_POINTER_REGNUM
1834 && regno != STACK_POINTER_REGNUM)
1835 #endif
1836 ))
1837 {
1838 do_not_record = 1;
1839 return 0;
1840 }
1841 return hash + ((int) REG << 7) + reg_qty[regno];
1842 }
1843
1844 case CONST_INT:
1845 hash += ((int) mode + ((int) CONST_INT << 7)
1846 + INTVAL (x) + (INTVAL (x) >> HASHBITS));
1847 return ((1 << HASHBITS) - 1) & hash;
1848
1849 case CONST_DOUBLE:
1850 /* This is like the general case, except that it only counts
1851 the integers representing the constant. */
1852 hash += (int) code + (int) GET_MODE (x);
1853 {
1854 int i;
1855 for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
1856 {
1857 int tem = XINT (x, i);
1858 hash += ((1 << HASHBITS) - 1) & (tem + (tem >> HASHBITS));
1859 }
1860 }
1861 return hash;
1862
1863 /* Assume there is only one rtx object for any given label. */
1864 case LABEL_REF:
1865 /* Use `and' to ensure a positive number. */
1866 return (hash + ((HOST_WIDE_INT) LABEL_REF << 7)
1867 + ((HOST_WIDE_INT) XEXP (x, 0) & ((1 << HASHBITS) - 1)));
1868
1869 case SYMBOL_REF:
1870 return (hash + ((HOST_WIDE_INT) SYMBOL_REF << 7)
1871 + ((HOST_WIDE_INT) XEXP (x, 0) & ((1 << HASHBITS) - 1)));
1872
1873 case MEM:
1874 if (MEM_VOLATILE_P (x))
1875 {
1876 do_not_record = 1;
1877 return 0;
1878 }
1879 if (! RTX_UNCHANGING_P (x))
1880 {
1881 hash_arg_in_memory = 1;
1882 if (MEM_IN_STRUCT_P (x)) hash_arg_in_struct = 1;
1883 }
1884 /* Now that we have already found this special case,
1885 might as well speed it up as much as possible. */
1886 hash += (int) MEM;
1887 x = XEXP (x, 0);
1888 goto repeat;
1889
1890 case PRE_DEC:
1891 case PRE_INC:
1892 case POST_DEC:
1893 case POST_INC:
1894 case PC:
1895 case CC0:
1896 case CALL:
1897 case UNSPEC_VOLATILE:
1898 do_not_record = 1;
1899 return 0;
1900
1901 case ASM_OPERANDS:
1902 if (MEM_VOLATILE_P (x))
1903 {
1904 do_not_record = 1;
1905 return 0;
1906 }
1907 }
1908
1909 i = GET_RTX_LENGTH (code) - 1;
1910 hash += (int) code + (int) GET_MODE (x);
1911 fmt = GET_RTX_FORMAT (code);
1912 for (; i >= 0; i--)
1913 {
1914 if (fmt[i] == 'e')
1915 {
1916 rtx tem = XEXP (x, i);
1917 rtx tem1;
1918
1919 /* If the operand is a REG that is equivalent to a constant, hash
1920 as if we were hashing the constant, since we will be comparing
1921 that way. */
1922 if (tem != 0 && GET_CODE (tem) == REG
1923 && REGNO_QTY_VALID_P (REGNO (tem))
1924 && qty_mode[reg_qty[REGNO (tem)]] == GET_MODE (tem)
1925 && (tem1 = qty_const[reg_qty[REGNO (tem)]]) != 0
1926 && CONSTANT_P (tem1))
1927 tem = tem1;
1928
1929 /* If we are about to do the last recursive call
1930 needed at this level, change it into iteration.
1931 This function is called enough to be worth it. */
1932 if (i == 0)
1933 {
1934 x = tem;
1935 goto repeat;
1936 }
1937 hash += canon_hash (tem, 0);
1938 }
1939 else if (fmt[i] == 'E')
1940 for (j = 0; j < XVECLEN (x, i); j++)
1941 hash += canon_hash (XVECEXP (x, i, j), 0);
1942 else if (fmt[i] == 's')
1943 {
1944 register char *p = XSTR (x, i);
1945 if (p)
1946 while (*p)
1947 {
1948 register int tem = *p++;
1949 hash += ((1 << HASHBITS) - 1) & (tem + (tem >> HASHBITS));
1950 }
1951 }
1952 else if (fmt[i] == 'i')
1953 {
1954 register int tem = XINT (x, i);
1955 hash += ((1 << HASHBITS) - 1) & (tem + (tem >> HASHBITS));
1956 }
1957 else
1958 abort ();
1959 }
1960 return hash;
1961 }
1962
1963 /* Like canon_hash but with no side effects. */
1964
1965 static int
1966 safe_hash (x, mode)
1967 rtx x;
1968 enum machine_mode mode;
1969 {
1970 int save_do_not_record = do_not_record;
1971 int save_hash_arg_in_memory = hash_arg_in_memory;
1972 int save_hash_arg_in_struct = hash_arg_in_struct;
1973 int hash = canon_hash (x, mode);
1974 hash_arg_in_memory = save_hash_arg_in_memory;
1975 hash_arg_in_struct = save_hash_arg_in_struct;
1976 do_not_record = save_do_not_record;
1977 return hash;
1978 }
1979 \f
1980 /* Return 1 iff X and Y would canonicalize into the same thing,
1981 without actually constructing the canonicalization of either one.
1982 If VALIDATE is nonzero,
1983 we assume X is an expression being processed from the rtl
1984 and Y was found in the hash table. We check register refs
1985 in Y for being marked as valid.
1986
1987 If EQUAL_VALUES is nonzero, we allow a register to match a constant value
1988 that is known to be in the register. Ordinarily, we don't allow them
1989 to match, because letting them match would cause unpredictable results
1990 in all the places that search a hash table chain for an equivalent
1991 for a given value. A possible equivalent that has different structure
1992 has its hash code computed from different data. Whether the hash code
1993 is the same as that of the the given value is pure luck. */
1994
1995 static int
1996 exp_equiv_p (x, y, validate, equal_values)
1997 rtx x, y;
1998 int validate;
1999 int equal_values;
2000 {
2001 register int i, j;
2002 register enum rtx_code code;
2003 register char *fmt;
2004
2005 /* Note: it is incorrect to assume an expression is equivalent to itself
2006 if VALIDATE is nonzero. */
2007 if (x == y && !validate)
2008 return 1;
2009 if (x == 0 || y == 0)
2010 return x == y;
2011
2012 code = GET_CODE (x);
2013 if (code != GET_CODE (y))
2014 {
2015 if (!equal_values)
2016 return 0;
2017
2018 /* If X is a constant and Y is a register or vice versa, they may be
2019 equivalent. We only have to validate if Y is a register. */
2020 if (CONSTANT_P (x) && GET_CODE (y) == REG
2021 && REGNO_QTY_VALID_P (REGNO (y))
2022 && GET_MODE (y) == qty_mode[reg_qty[REGNO (y)]]
2023 && rtx_equal_p (x, qty_const[reg_qty[REGNO (y)]])
2024 && (! validate || reg_in_table[REGNO (y)] == reg_tick[REGNO (y)]))
2025 return 1;
2026
2027 if (CONSTANT_P (y) && code == REG
2028 && REGNO_QTY_VALID_P (REGNO (x))
2029 && GET_MODE (x) == qty_mode[reg_qty[REGNO (x)]]
2030 && rtx_equal_p (y, qty_const[reg_qty[REGNO (x)]]))
2031 return 1;
2032
2033 return 0;
2034 }
2035
2036 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2037 if (GET_MODE (x) != GET_MODE (y))
2038 return 0;
2039
2040 switch (code)
2041 {
2042 case PC:
2043 case CC0:
2044 return x == y;
2045
2046 case CONST_INT:
2047 return INTVAL (x) == INTVAL (y);
2048
2049 case LABEL_REF:
2050 case SYMBOL_REF:
2051 return XEXP (x, 0) == XEXP (y, 0);
2052
2053 case REG:
2054 {
2055 int regno = REGNO (y);
2056 int endregno
2057 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
2058 : HARD_REGNO_NREGS (regno, GET_MODE (y)));
2059 int i;
2060
2061 /* If the quantities are not the same, the expressions are not
2062 equivalent. If there are and we are not to validate, they
2063 are equivalent. Otherwise, ensure all regs are up-to-date. */
2064
2065 if (reg_qty[REGNO (x)] != reg_qty[regno])
2066 return 0;
2067
2068 if (! validate)
2069 return 1;
2070
2071 for (i = regno; i < endregno; i++)
2072 if (reg_in_table[i] != reg_tick[i])
2073 return 0;
2074
2075 return 1;
2076 }
2077
2078 /* For commutative operations, check both orders. */
2079 case PLUS:
2080 case MULT:
2081 case AND:
2082 case IOR:
2083 case XOR:
2084 case NE:
2085 case EQ:
2086 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0), validate, equal_values)
2087 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2088 validate, equal_values))
2089 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2090 validate, equal_values)
2091 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2092 validate, equal_values)));
2093 }
2094
2095 /* Compare the elements. If any pair of corresponding elements
2096 fail to match, return 0 for the whole things. */
2097
2098 fmt = GET_RTX_FORMAT (code);
2099 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2100 {
2101 switch (fmt[i])
2102 {
2103 case 'e':
2104 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i), validate, equal_values))
2105 return 0;
2106 break;
2107
2108 case 'E':
2109 if (XVECLEN (x, i) != XVECLEN (y, i))
2110 return 0;
2111 for (j = 0; j < XVECLEN (x, i); j++)
2112 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2113 validate, equal_values))
2114 return 0;
2115 break;
2116
2117 case 's':
2118 if (strcmp (XSTR (x, i), XSTR (y, i)))
2119 return 0;
2120 break;
2121
2122 case 'i':
2123 if (XINT (x, i) != XINT (y, i))
2124 return 0;
2125 break;
2126
2127 case 'w':
2128 if (XWINT (x, i) != XWINT (y, i))
2129 return 0;
2130 break;
2131
2132 case '0':
2133 break;
2134
2135 default:
2136 abort ();
2137 }
2138 }
2139
2140 return 1;
2141 }
2142 \f
2143 /* Return 1 iff any subexpression of X matches Y.
2144 Here we do not require that X or Y be valid (for registers referred to)
2145 for being in the hash table. */
2146
2147 static int
2148 refers_to_p (x, y)
2149 rtx x, y;
2150 {
2151 register int i;
2152 register enum rtx_code code;
2153 register char *fmt;
2154
2155 repeat:
2156 if (x == y)
2157 return 1;
2158 if (x == 0 || y == 0)
2159 return 0;
2160
2161 code = GET_CODE (x);
2162 /* If X as a whole has the same code as Y, they may match.
2163 If so, return 1. */
2164 if (code == GET_CODE (y))
2165 {
2166 if (exp_equiv_p (x, y, 0, 1))
2167 return 1;
2168 }
2169
2170 /* X does not match, so try its subexpressions. */
2171
2172 fmt = GET_RTX_FORMAT (code);
2173 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2174 if (fmt[i] == 'e')
2175 {
2176 if (i == 0)
2177 {
2178 x = XEXP (x, 0);
2179 goto repeat;
2180 }
2181 else
2182 if (refers_to_p (XEXP (x, i), y))
2183 return 1;
2184 }
2185 else if (fmt[i] == 'E')
2186 {
2187 int j;
2188 for (j = 0; j < XVECLEN (x, i); j++)
2189 if (refers_to_p (XVECEXP (x, i, j), y))
2190 return 1;
2191 }
2192
2193 return 0;
2194 }
2195 \f
2196 /* Given ADDR and SIZE (a memory address, and the size of the memory reference),
2197 set PBASE, PSTART, and PEND which correspond to the base of the address,
2198 the starting offset, and ending offset respectively.
2199
2200 ADDR is known to be a nonvarying address.
2201
2202 cse_address_varies_p returns zero for nonvarying addresses. */
2203
2204 static void
2205 set_nonvarying_address_components (addr, size, pbase, pstart, pend)
2206 rtx addr;
2207 int size;
2208 rtx *pbase;
2209 HOST_WIDE_INT *pstart, *pend;
2210 {
2211 rtx base;
2212 int start, end;
2213
2214 base = addr;
2215 start = 0;
2216 end = 0;
2217
2218 /* Registers with nonvarying addresses usually have constant equivalents;
2219 but the frame pointer register is also possible. */
2220 if (GET_CODE (base) == REG
2221 && qty_const != 0
2222 && REGNO_QTY_VALID_P (REGNO (base))
2223 && qty_mode[reg_qty[REGNO (base)]] == GET_MODE (base)
2224 && qty_const[reg_qty[REGNO (base)]] != 0)
2225 base = qty_const[reg_qty[REGNO (base)]];
2226 else if (GET_CODE (base) == PLUS
2227 && GET_CODE (XEXP (base, 1)) == CONST_INT
2228 && GET_CODE (XEXP (base, 0)) == REG
2229 && qty_const != 0
2230 && REGNO_QTY_VALID_P (REGNO (XEXP (base, 0)))
2231 && (qty_mode[reg_qty[REGNO (XEXP (base, 0))]]
2232 == GET_MODE (XEXP (base, 0)))
2233 && qty_const[reg_qty[REGNO (XEXP (base, 0))]])
2234 {
2235 start = INTVAL (XEXP (base, 1));
2236 base = qty_const[reg_qty[REGNO (XEXP (base, 0))]];
2237 }
2238
2239 /* By definition, operand1 of a LO_SUM is the associated constant
2240 address. Use the associated constant address as the base instead. */
2241 if (GET_CODE (base) == LO_SUM)
2242 base = XEXP (base, 1);
2243
2244 /* Strip off CONST. */
2245 if (GET_CODE (base) == CONST)
2246 base = XEXP (base, 0);
2247
2248 if (GET_CODE (base) == PLUS
2249 && GET_CODE (XEXP (base, 1)) == CONST_INT)
2250 {
2251 start += INTVAL (XEXP (base, 1));
2252 base = XEXP (base, 0);
2253 }
2254
2255 end = start + size;
2256
2257 /* Set the return values. */
2258 *pbase = base;
2259 *pstart = start;
2260 *pend = end;
2261 }
2262
2263 /* Return 1 iff any subexpression of X refers to memory
2264 at an address of BASE plus some offset
2265 such that any of the bytes' offsets fall between START (inclusive)
2266 and END (exclusive).
2267
2268 The value is undefined if X is a varying address (as determined by
2269 cse_rtx_addr_varies_p). This function is not used in such cases.
2270
2271 When used in the cse pass, `qty_const' is nonzero, and it is used
2272 to treat an address that is a register with a known constant value
2273 as if it were that constant value.
2274 In the loop pass, `qty_const' is zero, so this is not done. */
2275
2276 static int
2277 refers_to_mem_p (x, base, start, end)
2278 rtx x, base;
2279 HOST_WIDE_INT start, end;
2280 {
2281 register HOST_WIDE_INT i;
2282 register enum rtx_code code;
2283 register char *fmt;
2284
2285 if (GET_CODE (base) == CONST_INT)
2286 {
2287 start += INTVAL (base);
2288 end += INTVAL (base);
2289 base = const0_rtx;
2290 }
2291
2292 repeat:
2293 if (x == 0)
2294 return 0;
2295
2296 code = GET_CODE (x);
2297 if (code == MEM)
2298 {
2299 register rtx addr = XEXP (x, 0); /* Get the address. */
2300 rtx mybase;
2301 HOST_WIDE_INT mystart, myend;
2302
2303 set_nonvarying_address_components (addr, GET_MODE_SIZE (GET_MODE (x)),
2304 &mybase, &mystart, &myend);
2305
2306
2307 /* refers_to_mem_p is never called with varying addresses.
2308 If the base addresses are not equal, there is no chance
2309 of the memory addresses conflicting. */
2310 if (! rtx_equal_p (mybase, base))
2311 return 0;
2312
2313 return myend > start && mystart < end;
2314 }
2315
2316 /* X does not match, so try its subexpressions. */
2317
2318 fmt = GET_RTX_FORMAT (code);
2319 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2320 if (fmt[i] == 'e')
2321 {
2322 if (i == 0)
2323 {
2324 x = XEXP (x, 0);
2325 goto repeat;
2326 }
2327 else
2328 if (refers_to_mem_p (XEXP (x, i), base, start, end))
2329 return 1;
2330 }
2331 else if (fmt[i] == 'E')
2332 {
2333 int j;
2334 for (j = 0; j < XVECLEN (x, i); j++)
2335 if (refers_to_mem_p (XVECEXP (x, i, j), base, start, end))
2336 return 1;
2337 }
2338
2339 return 0;
2340 }
2341
2342 /* Nonzero if X refers to memory at a varying address;
2343 except that a register which has at the moment a known constant value
2344 isn't considered variable. */
2345
2346 static int
2347 cse_rtx_addr_varies_p (x)
2348 rtx x;
2349 {
2350 /* We need not check for X and the equivalence class being of the same
2351 mode because if X is equivalent to a constant in some mode, it
2352 doesn't vary in any mode. */
2353
2354 if (GET_CODE (x) == MEM
2355 && GET_CODE (XEXP (x, 0)) == REG
2356 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2357 && GET_MODE (XEXP (x, 0)) == qty_mode[reg_qty[REGNO (XEXP (x, 0))]]
2358 && qty_const[reg_qty[REGNO (XEXP (x, 0))]] != 0)
2359 return 0;
2360
2361 if (GET_CODE (x) == MEM
2362 && GET_CODE (XEXP (x, 0)) == PLUS
2363 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2364 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
2365 && REGNO_QTY_VALID_P (REGNO (XEXP (XEXP (x, 0), 0)))
2366 && (GET_MODE (XEXP (XEXP (x, 0), 0))
2367 == qty_mode[reg_qty[REGNO (XEXP (XEXP (x, 0), 0))]])
2368 && qty_const[reg_qty[REGNO (XEXP (XEXP (x, 0), 0))]])
2369 return 0;
2370
2371 return rtx_addr_varies_p (x);
2372 }
2373 \f
2374 /* Canonicalize an expression:
2375 replace each register reference inside it
2376 with the "oldest" equivalent register.
2377
2378 If INSN is non-zero and we are replacing a pseudo with a hard register
2379 or vice versa, validate_change is used to ensure that INSN remains valid
2380 after we make our substitution. The calls are made with IN_GROUP non-zero
2381 so apply_change_group must be called upon the outermost return from this
2382 function (unless INSN is zero). The result of apply_change_group can
2383 generally be discarded since the changes we are making are optional. */
2384
2385 static rtx
2386 canon_reg (x, insn)
2387 rtx x;
2388 rtx insn;
2389 {
2390 register int i;
2391 register enum rtx_code code;
2392 register char *fmt;
2393
2394 if (x == 0)
2395 return x;
2396
2397 code = GET_CODE (x);
2398 switch (code)
2399 {
2400 case PC:
2401 case CC0:
2402 case CONST:
2403 case CONST_INT:
2404 case CONST_DOUBLE:
2405 case SYMBOL_REF:
2406 case LABEL_REF:
2407 case ADDR_VEC:
2408 case ADDR_DIFF_VEC:
2409 return x;
2410
2411 case REG:
2412 {
2413 register int first;
2414
2415 /* Never replace a hard reg, because hard regs can appear
2416 in more than one machine mode, and we must preserve the mode
2417 of each occurrence. Also, some hard regs appear in
2418 MEMs that are shared and mustn't be altered. Don't try to
2419 replace any reg that maps to a reg of class NO_REGS. */
2420 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2421 || ! REGNO_QTY_VALID_P (REGNO (x)))
2422 return x;
2423
2424 first = qty_first_reg[reg_qty[REGNO (x)]];
2425 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2426 : REGNO_REG_CLASS (first) == NO_REGS ? x
2427 : gen_rtx (REG, qty_mode[reg_qty[REGNO (x)]], first));
2428 }
2429 }
2430
2431 fmt = GET_RTX_FORMAT (code);
2432 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2433 {
2434 register int j;
2435
2436 if (fmt[i] == 'e')
2437 {
2438 rtx new = canon_reg (XEXP (x, i), insn);
2439
2440 /* If replacing pseudo with hard reg or vice versa, ensure the
2441 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2442 if (insn != 0 && new != 0
2443 && GET_CODE (new) == REG && GET_CODE (XEXP (x, i)) == REG
2444 && (((REGNO (new) < FIRST_PSEUDO_REGISTER)
2445 != (REGNO (XEXP (x, i)) < FIRST_PSEUDO_REGISTER))
2446 || insn_n_dups[recog_memoized (insn)] > 0))
2447 validate_change (insn, &XEXP (x, i), new, 1);
2448 else
2449 XEXP (x, i) = new;
2450 }
2451 else if (fmt[i] == 'E')
2452 for (j = 0; j < XVECLEN (x, i); j++)
2453 XVECEXP (x, i, j) = canon_reg (XVECEXP (x, i, j), insn);
2454 }
2455
2456 return x;
2457 }
2458 \f
2459 /* LOC is a location with INSN that is an operand address (the contents of
2460 a MEM). Find the best equivalent address to use that is valid for this
2461 insn.
2462
2463 On most CISC machines, complicated address modes are costly, and rtx_cost
2464 is a good approximation for that cost. However, most RISC machines have
2465 only a few (usually only one) memory reference formats. If an address is
2466 valid at all, it is often just as cheap as any other address. Hence, for
2467 RISC machines, we use the configuration macro `ADDRESS_COST' to compare the
2468 costs of various addresses. For two addresses of equal cost, choose the one
2469 with the highest `rtx_cost' value as that has the potential of eliminating
2470 the most insns. For equal costs, we choose the first in the equivalence
2471 class. Note that we ignore the fact that pseudo registers are cheaper
2472 than hard registers here because we would also prefer the pseudo registers.
2473 */
2474
2475 static void
2476 find_best_addr (insn, loc)
2477 rtx insn;
2478 rtx *loc;
2479 {
2480 struct table_elt *elt, *p;
2481 rtx addr = *loc;
2482 int our_cost;
2483 int found_better = 1;
2484 int save_do_not_record = do_not_record;
2485 int save_hash_arg_in_memory = hash_arg_in_memory;
2486 int save_hash_arg_in_struct = hash_arg_in_struct;
2487 int hash_code;
2488 int addr_volatile;
2489 int regno;
2490
2491 /* Do not try to replace constant addresses or addresses of local and
2492 argument slots. These MEM expressions are made only once and inserted
2493 in many instructions, as well as being used to control symbol table
2494 output. It is not safe to clobber them.
2495
2496 There are some uncommon cases where the address is already in a register
2497 for some reason, but we cannot take advantage of that because we have
2498 no easy way to unshare the MEM. In addition, looking up all stack
2499 addresses is costly. */
2500 if ((GET_CODE (addr) == PLUS
2501 && GET_CODE (XEXP (addr, 0)) == REG
2502 && GET_CODE (XEXP (addr, 1)) == CONST_INT
2503 && (regno = REGNO (XEXP (addr, 0)),
2504 regno == FRAME_POINTER_REGNUM || regno == ARG_POINTER_REGNUM))
2505 || (GET_CODE (addr) == REG
2506 && (regno = REGNO (addr),
2507 regno == FRAME_POINTER_REGNUM || regno == ARG_POINTER_REGNUM))
2508 || CONSTANT_ADDRESS_P (addr))
2509 return;
2510
2511 /* If this address is not simply a register, try to fold it. This will
2512 sometimes simplify the expression. Many simplifications
2513 will not be valid, but some, usually applying the associative rule, will
2514 be valid and produce better code. */
2515 if (GET_CODE (addr) != REG
2516 && validate_change (insn, loc, fold_rtx (addr, insn), 0))
2517 addr = *loc;
2518
2519 /* If this address is not in the hash table, we can't look for equivalences
2520 of the whole address. Also, ignore if volatile. */
2521
2522 do_not_record = 0;
2523 hash_code = HASH (addr, Pmode);
2524 addr_volatile = do_not_record;
2525 do_not_record = save_do_not_record;
2526 hash_arg_in_memory = save_hash_arg_in_memory;
2527 hash_arg_in_struct = save_hash_arg_in_struct;
2528
2529 if (addr_volatile)
2530 return;
2531
2532 elt = lookup (addr, hash_code, Pmode);
2533
2534 #ifndef ADDRESS_COST
2535 if (elt)
2536 {
2537 our_cost = elt->cost;
2538
2539 /* Find the lowest cost below ours that works. */
2540 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
2541 if (elt->cost < our_cost
2542 && (GET_CODE (elt->exp) == REG
2543 || exp_equiv_p (elt->exp, elt->exp, 1, 0))
2544 && validate_change (insn, loc,
2545 canon_reg (copy_rtx (elt->exp), NULL_RTX), 0))
2546 return;
2547 }
2548 #else
2549
2550 if (elt)
2551 {
2552 /* We need to find the best (under the criteria documented above) entry
2553 in the class that is valid. We use the `flag' field to indicate
2554 choices that were invalid and iterate until we can't find a better
2555 one that hasn't already been tried. */
2556
2557 for (p = elt->first_same_value; p; p = p->next_same_value)
2558 p->flag = 0;
2559
2560 while (found_better)
2561 {
2562 int best_addr_cost = ADDRESS_COST (*loc);
2563 int best_rtx_cost = (elt->cost + 1) >> 1;
2564 struct table_elt *best_elt = elt;
2565
2566 found_better = 0;
2567 for (p = elt->first_same_value; p; p = p->next_same_value)
2568 if (! p->flag
2569 && (GET_CODE (p->exp) == REG
2570 || exp_equiv_p (p->exp, p->exp, 1, 0))
2571 && (ADDRESS_COST (p->exp) < best_addr_cost
2572 || (ADDRESS_COST (p->exp) == best_addr_cost
2573 && (p->cost + 1) >> 1 > best_rtx_cost)))
2574 {
2575 found_better = 1;
2576 best_addr_cost = ADDRESS_COST (p->exp);
2577 best_rtx_cost = (p->cost + 1) >> 1;
2578 best_elt = p;
2579 }
2580
2581 if (found_better)
2582 {
2583 if (validate_change (insn, loc,
2584 canon_reg (copy_rtx (best_elt->exp),
2585 NULL_RTX), 0))
2586 return;
2587 else
2588 best_elt->flag = 1;
2589 }
2590 }
2591 }
2592
2593 /* If the address is a binary operation with the first operand a register
2594 and the second a constant, do the same as above, but looking for
2595 equivalences of the register. Then try to simplify before checking for
2596 the best address to use. This catches a few cases: First is when we
2597 have REG+const and the register is another REG+const. We can often merge
2598 the constants and eliminate one insn and one register. It may also be
2599 that a machine has a cheap REG+REG+const. Finally, this improves the
2600 code on the Alpha for unaligned byte stores. */
2601
2602 if (flag_expensive_optimizations
2603 && (GET_RTX_CLASS (GET_CODE (*loc)) == '2'
2604 || GET_RTX_CLASS (GET_CODE (*loc)) == 'c')
2605 && GET_CODE (XEXP (*loc, 0)) == REG
2606 && GET_CODE (XEXP (*loc, 1)) == CONST_INT)
2607 {
2608 rtx c = XEXP (*loc, 1);
2609
2610 do_not_record = 0;
2611 hash_code = HASH (XEXP (*loc, 0), Pmode);
2612 do_not_record = save_do_not_record;
2613 hash_arg_in_memory = save_hash_arg_in_memory;
2614 hash_arg_in_struct = save_hash_arg_in_struct;
2615
2616 elt = lookup (XEXP (*loc, 0), hash_code, Pmode);
2617 if (elt == 0)
2618 return;
2619
2620 /* We need to find the best (under the criteria documented above) entry
2621 in the class that is valid. We use the `flag' field to indicate
2622 choices that were invalid and iterate until we can't find a better
2623 one that hasn't already been tried. */
2624
2625 for (p = elt->first_same_value; p; p = p->next_same_value)
2626 p->flag = 0;
2627
2628 while (found_better)
2629 {
2630 int best_addr_cost = ADDRESS_COST (*loc);
2631 int best_rtx_cost = (COST (*loc) + 1) >> 1;
2632 struct table_elt *best_elt = elt;
2633 rtx best_rtx = *loc;
2634
2635 found_better = 0;
2636 for (p = elt->first_same_value; p; p = p->next_same_value)
2637 if (! p->flag
2638 && (GET_CODE (p->exp) == REG
2639 || exp_equiv_p (p->exp, p->exp, 1, 0)))
2640 {
2641 rtx new = cse_gen_binary (GET_CODE (*loc), Pmode, p->exp, c);
2642
2643 if ((ADDRESS_COST (new) < best_addr_cost
2644 || (ADDRESS_COST (new) == best_addr_cost
2645 && (COST (new) + 1) >> 1 > best_rtx_cost)))
2646 {
2647 found_better = 1;
2648 best_addr_cost = ADDRESS_COST (new);
2649 best_rtx_cost = (COST (new) + 1) >> 1;
2650 best_elt = p;
2651 best_rtx = new;
2652 }
2653 }
2654
2655 if (found_better)
2656 {
2657 if (validate_change (insn, loc,
2658 canon_reg (copy_rtx (best_rtx),
2659 NULL_RTX), 0))
2660 return;
2661 else
2662 best_elt->flag = 1;
2663 }
2664 }
2665 }
2666 #endif
2667 }
2668 \f
2669 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2670 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2671 what values are being compared.
2672
2673 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2674 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2675 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2676 compared to produce cc0.
2677
2678 The return value is the comparison operator and is either the code of
2679 A or the code corresponding to the inverse of the comparison. */
2680
2681 static enum rtx_code
2682 find_comparison_args (code, parg1, parg2, pmode1, pmode2)
2683 enum rtx_code code;
2684 rtx *parg1, *parg2;
2685 enum machine_mode *pmode1, *pmode2;
2686 {
2687 rtx arg1, arg2;
2688
2689 arg1 = *parg1, arg2 = *parg2;
2690
2691 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2692
2693 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2694 {
2695 /* Set non-zero when we find something of interest. */
2696 rtx x = 0;
2697 int reverse_code = 0;
2698 struct table_elt *p = 0;
2699
2700 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2701 On machines with CC0, this is the only case that can occur, since
2702 fold_rtx will return the COMPARE or item being compared with zero
2703 when given CC0. */
2704
2705 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2706 x = arg1;
2707
2708 /* If ARG1 is a comparison operator and CODE is testing for
2709 STORE_FLAG_VALUE, get the inner arguments. */
2710
2711 else if (GET_RTX_CLASS (GET_CODE (arg1)) == '<')
2712 {
2713 if (code == NE
2714 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2715 && code == LT && STORE_FLAG_VALUE == -1)
2716 #ifdef FLOAT_STORE_FLAG_VALUE
2717 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
2718 && FLOAT_STORE_FLAG_VALUE < 0)
2719 #endif
2720 )
2721 x = arg1;
2722 else if (code == EQ
2723 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2724 && code == GE && STORE_FLAG_VALUE == -1)
2725 #ifdef FLOAT_STORE_FLAG_VALUE
2726 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
2727 && FLOAT_STORE_FLAG_VALUE < 0)
2728 #endif
2729 )
2730 x = arg1, reverse_code = 1;
2731 }
2732
2733 /* ??? We could also check for
2734
2735 (ne (and (eq (...) (const_int 1))) (const_int 0))
2736
2737 and related forms, but let's wait until we see them occurring. */
2738
2739 if (x == 0)
2740 /* Look up ARG1 in the hash table and see if it has an equivalence
2741 that lets us see what is being compared. */
2742 p = lookup (arg1, safe_hash (arg1, GET_MODE (arg1)) % NBUCKETS,
2743 GET_MODE (arg1));
2744 if (p) p = p->first_same_value;
2745
2746 for (; p; p = p->next_same_value)
2747 {
2748 enum machine_mode inner_mode = GET_MODE (p->exp);
2749
2750 /* If the entry isn't valid, skip it. */
2751 if (! exp_equiv_p (p->exp, p->exp, 1, 0))
2752 continue;
2753
2754 if (GET_CODE (p->exp) == COMPARE
2755 /* Another possibility is that this machine has a compare insn
2756 that includes the comparison code. In that case, ARG1 would
2757 be equivalent to a comparison operation that would set ARG1 to
2758 either STORE_FLAG_VALUE or zero. If this is an NE operation,
2759 ORIG_CODE is the actual comparison being done; if it is an EQ,
2760 we must reverse ORIG_CODE. On machine with a negative value
2761 for STORE_FLAG_VALUE, also look at LT and GE operations. */
2762 || ((code == NE
2763 || (code == LT
2764 && GET_MODE_CLASS (inner_mode) == MODE_INT
2765 && (GET_MODE_BITSIZE (inner_mode)
2766 <= HOST_BITS_PER_WIDE_INT)
2767 && (STORE_FLAG_VALUE
2768 & ((HOST_WIDE_INT) 1
2769 << (GET_MODE_BITSIZE (inner_mode) - 1))))
2770 #ifdef FLOAT_STORE_FLAG_VALUE
2771 || (code == LT
2772 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
2773 && FLOAT_STORE_FLAG_VALUE < 0)
2774 #endif
2775 )
2776 && GET_RTX_CLASS (GET_CODE (p->exp)) == '<'))
2777 {
2778 x = p->exp;
2779 break;
2780 }
2781 else if ((code == EQ
2782 || (code == GE
2783 && GET_MODE_CLASS (inner_mode) == MODE_INT
2784 && (GET_MODE_BITSIZE (inner_mode)
2785 <= HOST_BITS_PER_WIDE_INT)
2786 && (STORE_FLAG_VALUE
2787 & ((HOST_WIDE_INT) 1
2788 << (GET_MODE_BITSIZE (inner_mode) - 1))))
2789 #ifdef FLOAT_STORE_FLAG_VALUE
2790 || (code == GE
2791 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
2792 && FLOAT_STORE_FLAG_VALUE < 0)
2793 #endif
2794 )
2795 && GET_RTX_CLASS (GET_CODE (p->exp)) == '<')
2796 {
2797 reverse_code = 1;
2798 x = p->exp;
2799 break;
2800 }
2801
2802 /* If this is fp + constant, the equivalent is a better operand since
2803 it may let us predict the value of the comparison. */
2804 else if (NONZERO_BASE_PLUS_P (p->exp))
2805 {
2806 arg1 = p->exp;
2807 continue;
2808 }
2809 }
2810
2811 /* If we didn't find a useful equivalence for ARG1, we are done.
2812 Otherwise, set up for the next iteration. */
2813 if (x == 0)
2814 break;
2815
2816 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
2817 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
2818 code = GET_CODE (x);
2819
2820 if (reverse_code)
2821 code = reverse_condition (code);
2822 }
2823
2824 /* Return our results. Return the modes from before fold_rtx
2825 because fold_rtx might produce const_int, and then it's too late. */
2826 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
2827 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
2828
2829 return code;
2830 }
2831 \f
2832 /* Try to simplify a unary operation CODE whose output mode is to be
2833 MODE with input operand OP whose mode was originally OP_MODE.
2834 Return zero if no simplification can be made. */
2835
2836 rtx
2837 simplify_unary_operation (code, mode, op, op_mode)
2838 enum rtx_code code;
2839 enum machine_mode mode;
2840 rtx op;
2841 enum machine_mode op_mode;
2842 {
2843 register int width = GET_MODE_BITSIZE (mode);
2844
2845 /* The order of these tests is critical so that, for example, we don't
2846 check the wrong mode (input vs. output) for a conversion operation,
2847 such as FIX. At some point, this should be simplified. */
2848
2849 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
2850 if (code == FLOAT && GET_CODE (op) == CONST_INT)
2851 {
2852 REAL_VALUE_TYPE d;
2853
2854 #ifdef REAL_ARITHMETIC
2855 REAL_VALUE_FROM_INT (d, INTVAL (op), INTVAL (op) < 0 ? ~0 : 0);
2856 #else
2857 d = (double) INTVAL (op);
2858 #endif
2859 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
2860 }
2861 else if (code == UNSIGNED_FLOAT && GET_CODE (op) == CONST_INT)
2862 {
2863 REAL_VALUE_TYPE d;
2864
2865 #ifdef REAL_ARITHMETIC
2866 REAL_VALUE_FROM_INT (d, INTVAL (op), 0);
2867 #else
2868 d = (double) (unsigned int) INTVAL (op);
2869 #endif
2870 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
2871 }
2872
2873 else if (code == FLOAT && GET_CODE (op) == CONST_DOUBLE
2874 && GET_MODE (op) == VOIDmode)
2875 {
2876 REAL_VALUE_TYPE d;
2877
2878 #ifdef REAL_ARITHMETIC
2879 REAL_VALUE_FROM_INT (d, CONST_DOUBLE_LOW (op), CONST_DOUBLE_HIGH (op));
2880 #else
2881 if (CONST_DOUBLE_HIGH (op) < 0)
2882 {
2883 d = (double) (~ CONST_DOUBLE_HIGH (op));
2884 d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
2885 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
2886 d += (double) (unsigned HOST_WIDE_INT) (~ CONST_DOUBLE_LOW (op));
2887 d = (- d - 1.0);
2888 }
2889 else
2890 {
2891 d = (double) CONST_DOUBLE_HIGH (op);
2892 d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
2893 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
2894 d += (double) (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (op);
2895 }
2896 #endif /* REAL_ARITHMETIC */
2897 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
2898 }
2899 else if (code == UNSIGNED_FLOAT && GET_CODE (op) == CONST_DOUBLE
2900 && GET_MODE (op) == VOIDmode)
2901 {
2902 REAL_VALUE_TYPE d;
2903
2904 #ifdef REAL_ARITHMETIC
2905 REAL_VALUE_FROM_UNSIGNED_INT (d, CONST_DOUBLE_LOW (op),
2906 CONST_DOUBLE_HIGH (op));
2907 #else
2908 d = (double) CONST_DOUBLE_HIGH (op);
2909 d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
2910 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
2911 d += (double) (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (op);
2912 #endif /* REAL_ARITHMETIC */
2913 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
2914 }
2915 #endif
2916
2917 if (GET_CODE (op) == CONST_INT
2918 && width <= HOST_BITS_PER_WIDE_INT && width > 0)
2919 {
2920 register HOST_WIDE_INT arg0 = INTVAL (op);
2921 register HOST_WIDE_INT val;
2922
2923 switch (code)
2924 {
2925 case NOT:
2926 val = ~ arg0;
2927 break;
2928
2929 case NEG:
2930 val = - arg0;
2931 break;
2932
2933 case ABS:
2934 val = (arg0 >= 0 ? arg0 : - arg0);
2935 break;
2936
2937 case FFS:
2938 /* Don't use ffs here. Instead, get low order bit and then its
2939 number. If arg0 is zero, this will return 0, as desired. */
2940 arg0 &= GET_MODE_MASK (mode);
2941 val = exact_log2 (arg0 & (- arg0)) + 1;
2942 break;
2943
2944 case TRUNCATE:
2945 val = arg0;
2946 break;
2947
2948 case ZERO_EXTEND:
2949 if (op_mode == VOIDmode)
2950 op_mode = mode;
2951 if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
2952 {
2953 /* If we were really extending the mode,
2954 we would have to distinguish between zero-extension
2955 and sign-extension. */
2956 if (width != GET_MODE_BITSIZE (op_mode))
2957 abort ();
2958 val = arg0;
2959 }
2960 else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
2961 val = arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
2962 else
2963 return 0;
2964 break;
2965
2966 case SIGN_EXTEND:
2967 if (op_mode == VOIDmode)
2968 op_mode = mode;
2969 if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
2970 {
2971 /* If we were really extending the mode,
2972 we would have to distinguish between zero-extension
2973 and sign-extension. */
2974 if (width != GET_MODE_BITSIZE (op_mode))
2975 abort ();
2976 val = arg0;
2977 }
2978 else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
2979 {
2980 val
2981 = arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
2982 if (val
2983 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (op_mode) - 1)))
2984 val -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
2985 }
2986 else
2987 return 0;
2988 break;
2989
2990 case SQRT:
2991 return 0;
2992
2993 default:
2994 abort ();
2995 }
2996
2997 /* Clear the bits that don't belong in our mode,
2998 unless they and our sign bit are all one.
2999 So we get either a reasonable negative value or a reasonable
3000 unsigned value for this mode. */
3001 if (width < HOST_BITS_PER_WIDE_INT
3002 && ((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
3003 != ((HOST_WIDE_INT) (-1) << (width - 1))))
3004 val &= (1 << width) - 1;
3005
3006 return GEN_INT (val);
3007 }
3008
3009 /* We can do some operations on integer CONST_DOUBLEs. Also allow
3010 for a DImode operation on a CONST_INT. */
3011 else if (GET_MODE (op) == VOIDmode
3012 && (GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT))
3013 {
3014 HOST_WIDE_INT l1, h1, lv, hv;
3015
3016 if (GET_CODE (op) == CONST_DOUBLE)
3017 l1 = CONST_DOUBLE_LOW (op), h1 = CONST_DOUBLE_HIGH (op);
3018 else
3019 l1 = INTVAL (op), h1 = l1 < 0 ? -1 : 0;
3020
3021 switch (code)
3022 {
3023 case NOT:
3024 lv = ~ l1;
3025 hv = ~ h1;
3026 break;
3027
3028 case NEG:
3029 neg_double (l1, h1, &lv, &hv);
3030 break;
3031
3032 case ABS:
3033 if (h1 < 0)
3034 neg_double (l1, h1, &lv, &hv);
3035 else
3036 lv = l1, hv = h1;
3037 break;
3038
3039 case FFS:
3040 hv = 0;
3041 if (l1 == 0)
3042 lv = HOST_BITS_PER_WIDE_INT + exact_log2 (h1 & (-h1)) + 1;
3043 else
3044 lv = exact_log2 (l1 & (-l1)) + 1;
3045 break;
3046
3047 case TRUNCATE:
3048 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3049 return GEN_INT (l1 & GET_MODE_MASK (mode));
3050 else
3051 return 0;
3052 break;
3053
3054 case ZERO_EXTEND:
3055 if (op_mode == VOIDmode
3056 || GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
3057 return 0;
3058
3059 hv = 0;
3060 lv = l1 & GET_MODE_MASK (op_mode);
3061 break;
3062
3063 case SIGN_EXTEND:
3064 if (op_mode == VOIDmode
3065 || GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
3066 return 0;
3067 else
3068 {
3069 lv = l1 & GET_MODE_MASK (op_mode);
3070 if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT
3071 && (lv & ((HOST_WIDE_INT) 1
3072 << (GET_MODE_BITSIZE (op_mode) - 1))) != 0)
3073 lv -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
3074
3075 hv = (lv < 0) ? ~ (HOST_WIDE_INT) 0 : 0;
3076 }
3077 break;
3078
3079 case SQRT:
3080 return 0;
3081
3082 default:
3083 return 0;
3084 }
3085
3086 return immed_double_const (lv, hv, mode);
3087 }
3088
3089 #if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
3090 else if (GET_CODE (op) == CONST_DOUBLE
3091 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3092 {
3093 REAL_VALUE_TYPE d;
3094 jmp_buf handler;
3095 rtx x;
3096
3097 if (setjmp (handler))
3098 /* There used to be a warning here, but that is inadvisable.
3099 People may want to cause traps, and the natural way
3100 to do it should not get a warning. */
3101 return 0;
3102
3103 set_float_handler (handler);
3104
3105 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
3106
3107 switch (code)
3108 {
3109 case NEG:
3110 d = REAL_VALUE_NEGATE (d);
3111 break;
3112
3113 case ABS:
3114 if (REAL_VALUE_NEGATIVE (d))
3115 d = REAL_VALUE_NEGATE (d);
3116 break;
3117
3118 case FLOAT_TRUNCATE:
3119 d = (double) real_value_truncate (mode, d);
3120 break;
3121
3122 case FLOAT_EXTEND:
3123 /* All this does is change the mode. */
3124 break;
3125
3126 case FIX:
3127 d = (double) REAL_VALUE_FIX_TRUNCATE (d);
3128 break;
3129
3130 case UNSIGNED_FIX:
3131 d = (double) REAL_VALUE_UNSIGNED_FIX_TRUNCATE (d);
3132 break;
3133
3134 case SQRT:
3135 return 0;
3136
3137 default:
3138 abort ();
3139 }
3140
3141 x = immed_real_const_1 (d, mode);
3142 set_float_handler (NULL_PTR);
3143 return x;
3144 }
3145 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE_CLASS (mode) == MODE_INT
3146 && width <= HOST_BITS_PER_WIDE_INT && width > 0)
3147 {
3148 REAL_VALUE_TYPE d;
3149 jmp_buf handler;
3150 rtx x;
3151 HOST_WIDE_INT val;
3152
3153 if (setjmp (handler))
3154 return 0;
3155
3156 set_float_handler (handler);
3157
3158 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
3159
3160 switch (code)
3161 {
3162 case FIX:
3163 val = REAL_VALUE_FIX (d);
3164 break;
3165
3166 case UNSIGNED_FIX:
3167 val = REAL_VALUE_UNSIGNED_FIX (d);
3168 break;
3169
3170 default:
3171 abort ();
3172 }
3173
3174 set_float_handler (NULL_PTR);
3175
3176 /* Clear the bits that don't belong in our mode,
3177 unless they and our sign bit are all one.
3178 So we get either a reasonable negative value or a reasonable
3179 unsigned value for this mode. */
3180 if (width < HOST_BITS_PER_WIDE_INT
3181 && ((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
3182 != ((HOST_WIDE_INT) (-1) << (width - 1))))
3183 val &= ((HOST_WIDE_INT) 1 << width) - 1;
3184
3185 return GEN_INT (val);
3186 }
3187 #endif
3188 /* This was formerly used only for non-IEEE float.
3189 eggert@twinsun.com says it is safe for IEEE also. */
3190 else
3191 {
3192 /* There are some simplifications we can do even if the operands
3193 aren't constant. */
3194 switch (code)
3195 {
3196 case NEG:
3197 case NOT:
3198 /* (not (not X)) == X, similarly for NEG. */
3199 if (GET_CODE (op) == code)
3200 return XEXP (op, 0);
3201 break;
3202
3203 case SIGN_EXTEND:
3204 /* (sign_extend (truncate (minus (label_ref L1) (label_ref L2))))
3205 becomes just the MINUS if its mode is MODE. This allows
3206 folding switch statements on machines using casesi (such as
3207 the Vax). */
3208 if (GET_CODE (op) == TRUNCATE
3209 && GET_MODE (XEXP (op, 0)) == mode
3210 && GET_CODE (XEXP (op, 0)) == MINUS
3211 && GET_CODE (XEXP (XEXP (op, 0), 0)) == LABEL_REF
3212 && GET_CODE (XEXP (XEXP (op, 0), 1)) == LABEL_REF)
3213 return XEXP (op, 0);
3214 break;
3215 }
3216
3217 return 0;
3218 }
3219 }
3220 \f
3221 /* Simplify a binary operation CODE with result mode MODE, operating on OP0
3222 and OP1. Return 0 if no simplification is possible.
3223
3224 Don't use this for relational operations such as EQ or LT.
3225 Use simplify_relational_operation instead. */
3226
3227 rtx
3228 simplify_binary_operation (code, mode, op0, op1)
3229 enum rtx_code code;
3230 enum machine_mode mode;
3231 rtx op0, op1;
3232 {
3233 register HOST_WIDE_INT arg0, arg1, arg0s, arg1s;
3234 HOST_WIDE_INT val;
3235 int width = GET_MODE_BITSIZE (mode);
3236 rtx tem;
3237
3238 /* Relational operations don't work here. We must know the mode
3239 of the operands in order to do the comparison correctly.
3240 Assuming a full word can give incorrect results.
3241 Consider comparing 128 with -128 in QImode. */
3242
3243 if (GET_RTX_CLASS (code) == '<')
3244 abort ();
3245
3246 #if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
3247 if (GET_MODE_CLASS (mode) == MODE_FLOAT
3248 && GET_CODE (op0) == CONST_DOUBLE && GET_CODE (op1) == CONST_DOUBLE
3249 && mode == GET_MODE (op0) && mode == GET_MODE (op1))
3250 {
3251 REAL_VALUE_TYPE f0, f1, value;
3252 jmp_buf handler;
3253
3254 if (setjmp (handler))
3255 return 0;
3256
3257 set_float_handler (handler);
3258
3259 REAL_VALUE_FROM_CONST_DOUBLE (f0, op0);
3260 REAL_VALUE_FROM_CONST_DOUBLE (f1, op1);
3261 f0 = real_value_truncate (mode, f0);
3262 f1 = real_value_truncate (mode, f1);
3263
3264 #ifdef REAL_ARITHMETIC
3265 REAL_ARITHMETIC (value, code, f0, f1);
3266 #else
3267 switch (code)
3268 {
3269 case PLUS:
3270 value = f0 + f1;
3271 break;
3272 case MINUS:
3273 value = f0 - f1;
3274 break;
3275 case MULT:
3276 value = f0 * f1;
3277 break;
3278 case DIV:
3279 #ifndef REAL_INFINITY
3280 if (f1 == 0)
3281 return 0;
3282 #endif
3283 value = f0 / f1;
3284 break;
3285 case SMIN:
3286 value = MIN (f0, f1);
3287 break;
3288 case SMAX:
3289 value = MAX (f0, f1);
3290 break;
3291 default:
3292 abort ();
3293 }
3294 #endif
3295
3296 set_float_handler (NULL_PTR);
3297 value = real_value_truncate (mode, value);
3298 return immed_real_const_1 (value, mode);
3299 }
3300 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
3301
3302 /* We can fold some multi-word operations. */
3303 if (GET_MODE_CLASS (mode) == MODE_INT
3304 && GET_CODE (op0) == CONST_DOUBLE
3305 && (GET_CODE (op1) == CONST_DOUBLE || GET_CODE (op1) == CONST_INT))
3306 {
3307 HOST_WIDE_INT l1, l2, h1, h2, lv, hv;
3308
3309 l1 = CONST_DOUBLE_LOW (op0), h1 = CONST_DOUBLE_HIGH (op0);
3310
3311 if (GET_CODE (op1) == CONST_DOUBLE)
3312 l2 = CONST_DOUBLE_LOW (op1), h2 = CONST_DOUBLE_HIGH (op1);
3313 else
3314 l2 = INTVAL (op1), h2 = l2 < 0 ? -1 : 0;
3315
3316 switch (code)
3317 {
3318 case MINUS:
3319 /* A - B == A + (-B). */
3320 neg_double (l2, h2, &lv, &hv);
3321 l2 = lv, h2 = hv;
3322
3323 /* .. fall through ... */
3324
3325 case PLUS:
3326 add_double (l1, h1, l2, h2, &lv, &hv);
3327 break;
3328
3329 case MULT:
3330 mul_double (l1, h1, l2, h2, &lv, &hv);
3331 break;
3332
3333 case DIV: case MOD: case UDIV: case UMOD:
3334 /* We'd need to include tree.h to do this and it doesn't seem worth
3335 it. */
3336 return 0;
3337
3338 case AND:
3339 lv = l1 & l2, hv = h1 & h2;
3340 break;
3341
3342 case IOR:
3343 lv = l1 | l2, hv = h1 | h2;
3344 break;
3345
3346 case XOR:
3347 lv = l1 ^ l2, hv = h1 ^ h2;
3348 break;
3349
3350 case SMIN:
3351 if (h1 < h2
3352 || (h1 == h2
3353 && ((unsigned HOST_WIDE_INT) l1
3354 < (unsigned HOST_WIDE_INT) l2)))
3355 lv = l1, hv = h1;
3356 else
3357 lv = l2, hv = h2;
3358 break;
3359
3360 case SMAX:
3361 if (h1 > h2
3362 || (h1 == h2
3363 && ((unsigned HOST_WIDE_INT) l1
3364 > (unsigned HOST_WIDE_INT) l2)))
3365 lv = l1, hv = h1;
3366 else
3367 lv = l2, hv = h2;
3368 break;
3369
3370 case UMIN:
3371 if ((unsigned HOST_WIDE_INT) h1 < (unsigned HOST_WIDE_INT) h2
3372 || (h1 == h2
3373 && ((unsigned HOST_WIDE_INT) l1
3374 < (unsigned HOST_WIDE_INT) l2)))
3375 lv = l1, hv = h1;
3376 else
3377 lv = l2, hv = h2;
3378 break;
3379
3380 case UMAX:
3381 if ((unsigned HOST_WIDE_INT) h1 > (unsigned HOST_WIDE_INT) h2
3382 || (h1 == h2
3383 && ((unsigned HOST_WIDE_INT) l1
3384 > (unsigned HOST_WIDE_INT) l2)))
3385 lv = l1, hv = h1;
3386 else
3387 lv = l2, hv = h2;
3388 break;
3389
3390 case LSHIFTRT: case ASHIFTRT:
3391 case ASHIFT: case LSHIFT:
3392 case ROTATE: case ROTATERT:
3393 #ifdef SHIFT_COUNT_TRUNCATED
3394 l2 &= (GET_MODE_BITSIZE (mode) - 1), h2 = 0;
3395 #endif
3396
3397 if (h2 != 0 || l2 < 0 || l2 >= GET_MODE_BITSIZE (mode))
3398 return 0;
3399
3400 if (code == LSHIFTRT || code == ASHIFTRT)
3401 rshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv,
3402 code == ASHIFTRT);
3403 else if (code == ASHIFT || code == LSHIFT)
3404 lshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv,
3405 code == ASHIFT);
3406 else if (code == ROTATE)
3407 lrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
3408 else /* code == ROTATERT */
3409 rrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
3410 break;
3411
3412 default:
3413 return 0;
3414 }
3415
3416 return immed_double_const (lv, hv, mode);
3417 }
3418
3419 if (GET_CODE (op0) != CONST_INT || GET_CODE (op1) != CONST_INT
3420 || width > HOST_BITS_PER_WIDE_INT || width == 0)
3421 {
3422 /* Even if we can't compute a constant result,
3423 there are some cases worth simplifying. */
3424
3425 switch (code)
3426 {
3427 case PLUS:
3428 /* In IEEE floating point, x+0 is not the same as x. Similarly
3429 for the other optimizations below. */
3430 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
3431 && GET_MODE_CLASS (mode) != MODE_INT)
3432 break;
3433
3434 if (op1 == CONST0_RTX (mode))
3435 return op0;
3436
3437 /* ((-a) + b) -> (b - a) and similarly for (a + (-b)) */
3438 if (GET_CODE (op0) == NEG)
3439 return cse_gen_binary (MINUS, mode, op1, XEXP (op0, 0));
3440 else if (GET_CODE (op1) == NEG)
3441 return cse_gen_binary (MINUS, mode, op0, XEXP (op1, 0));
3442
3443 /* Handle both-operands-constant cases. We can only add
3444 CONST_INTs to constants since the sum of relocatable symbols
3445 can't be handled by most assemblers. */
3446
3447 if (CONSTANT_P (op0) && GET_CODE (op1) == CONST_INT)
3448 return plus_constant (op0, INTVAL (op1));
3449 else if (CONSTANT_P (op1) && GET_CODE (op0) == CONST_INT)
3450 return plus_constant (op1, INTVAL (op0));
3451
3452 /* If one of the operands is a PLUS or a MINUS, see if we can
3453 simplify this by the associative law.
3454 Don't use the associative law for floating point.
3455 The inaccuracy makes it nonassociative,
3456 and subtle programs can break if operations are associated. */
3457
3458 if ((GET_MODE_CLASS (mode) == MODE_INT
3459 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
3460 && (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS
3461 || GET_CODE (op1) == PLUS || GET_CODE (op1) == MINUS)
3462 && (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
3463 return tem;
3464 break;
3465
3466 case COMPARE:
3467 #ifdef HAVE_cc0
3468 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
3469 using cc0, in which case we want to leave it as a COMPARE
3470 so we can distinguish it from a register-register-copy.
3471
3472 In IEEE floating point, x-0 is not the same as x. */
3473
3474 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3475 || GET_MODE_CLASS (mode) == MODE_INT)
3476 && op1 == CONST0_RTX (mode))
3477 return op0;
3478 #else
3479 /* Do nothing here. */
3480 #endif
3481 break;
3482
3483 case MINUS:
3484 /* None of these optimizations can be done for IEEE
3485 floating point. */
3486 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
3487 && GET_MODE_CLASS (mode) != MODE_INT
3488 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
3489 break;
3490
3491 /* We can't assume x-x is 0 even with non-IEEE floating point. */
3492 if (rtx_equal_p (op0, op1)
3493 && ! side_effects_p (op0)
3494 && GET_MODE_CLASS (mode) != MODE_FLOAT
3495 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
3496 return const0_rtx;
3497
3498 /* Change subtraction from zero into negation. */
3499 if (op0 == CONST0_RTX (mode))
3500 return gen_rtx (NEG, mode, op1);
3501
3502 /* (-1 - a) is ~a. */
3503 if (op0 == constm1_rtx)
3504 return gen_rtx (NOT, mode, op1);
3505
3506 /* Subtracting 0 has no effect. */
3507 if (op1 == CONST0_RTX (mode))
3508 return op0;
3509
3510 /* (a - (-b)) -> (a + b). */
3511 if (GET_CODE (op1) == NEG)
3512 return cse_gen_binary (PLUS, mode, op0, XEXP (op1, 0));
3513
3514 /* If one of the operands is a PLUS or a MINUS, see if we can
3515 simplify this by the associative law.
3516 Don't use the associative law for floating point.
3517 The inaccuracy makes it nonassociative,
3518 and subtle programs can break if operations are associated. */
3519
3520 if ((GET_MODE_CLASS (mode) == MODE_INT
3521 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
3522 && (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS
3523 || GET_CODE (op1) == PLUS || GET_CODE (op1) == MINUS)
3524 && (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
3525 return tem;
3526
3527 /* Don't let a relocatable value get a negative coeff. */
3528 if (GET_CODE (op1) == CONST_INT)
3529 return plus_constant (op0, - INTVAL (op1));
3530 break;
3531
3532 case MULT:
3533 if (op1 == constm1_rtx)
3534 {
3535 tem = simplify_unary_operation (NEG, mode, op0, mode);
3536
3537 return tem ? tem : gen_rtx (NEG, mode, op0);
3538 }
3539
3540 /* In IEEE floating point, x*0 is not always 0. */
3541 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3542 || GET_MODE_CLASS (mode) == MODE_INT)
3543 && op1 == CONST0_RTX (mode)
3544 && ! side_effects_p (op0))
3545 return op1;
3546
3547 /* In IEEE floating point, x*1 is not equivalent to x for nans.
3548 However, ANSI says we can drop signals,
3549 so we can do this anyway. */
3550 if (op1 == CONST1_RTX (mode))
3551 return op0;
3552
3553 /* Convert multiply by constant power of two into shift. */
3554 if (GET_CODE (op1) == CONST_INT
3555 && (val = exact_log2 (INTVAL (op1))) >= 0)
3556 return gen_rtx (ASHIFT, mode, op0, GEN_INT (val));
3557
3558 if (GET_CODE (op1) == CONST_DOUBLE
3559 && GET_MODE_CLASS (GET_MODE (op1)) == MODE_FLOAT)
3560 {
3561 REAL_VALUE_TYPE d;
3562 REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
3563
3564 /* x*2 is x+x and x*(-1) is -x */
3565 if (REAL_VALUES_EQUAL (d, dconst2)
3566 && GET_MODE (op0) == mode)
3567 return gen_rtx (PLUS, mode, op0, copy_rtx (op0));
3568
3569 else if (REAL_VALUES_EQUAL (d, dconstm1)
3570 && GET_MODE (op0) == mode)
3571 return gen_rtx (NEG, mode, op0);
3572 }
3573 break;
3574
3575 case IOR:
3576 if (op1 == const0_rtx)
3577 return op0;
3578 if (GET_CODE (op1) == CONST_INT
3579 && (INTVAL (op1) & GET_MODE_MASK (mode)) == GET_MODE_MASK (mode))
3580 return op1;
3581 if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
3582 return op0;
3583 /* A | (~A) -> -1 */
3584 if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
3585 || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
3586 && ! side_effects_p (op0))
3587 return constm1_rtx;
3588 break;
3589
3590 case XOR:
3591 if (op1 == const0_rtx)
3592 return op0;
3593 if (GET_CODE (op1) == CONST_INT
3594 && (INTVAL (op1) & GET_MODE_MASK (mode)) == GET_MODE_MASK (mode))
3595 return gen_rtx (NOT, mode, op0);
3596 if (op0 == op1 && ! side_effects_p (op0))
3597 return const0_rtx;
3598 break;
3599
3600 case AND:
3601 if (op1 == const0_rtx && ! side_effects_p (op0))
3602 return const0_rtx;
3603 if (GET_CODE (op1) == CONST_INT
3604 && (INTVAL (op1) & GET_MODE_MASK (mode)) == GET_MODE_MASK (mode))
3605 return op0;
3606 if (op0 == op1 && ! side_effects_p (op0))
3607 return op0;
3608 /* A & (~A) -> 0 */
3609 if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
3610 || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
3611 && ! side_effects_p (op0))
3612 return const0_rtx;
3613 break;
3614
3615 case UDIV:
3616 /* Convert divide by power of two into shift (divide by 1 handled
3617 below). */
3618 if (GET_CODE (op1) == CONST_INT
3619 && (arg1 = exact_log2 (INTVAL (op1))) > 0)
3620 return gen_rtx (LSHIFTRT, mode, op0, GEN_INT (arg1));
3621
3622 /* ... fall through ... */
3623
3624 case DIV:
3625 if (op1 == CONST1_RTX (mode))
3626 return op0;
3627
3628 /* In IEEE floating point, 0/x is not always 0. */
3629 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3630 || GET_MODE_CLASS (mode) == MODE_INT)
3631 && op0 == CONST0_RTX (mode)
3632 && ! side_effects_p (op1))
3633 return op0;
3634
3635 #if 0 /* Turned off till an expert says this is a safe thing to do. */
3636 #if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
3637 /* Change division by a constant into multiplication. */
3638 else if (GET_CODE (op1) == CONST_DOUBLE
3639 && GET_MODE_CLASS (GET_MODE (op1)) == MODE_FLOAT
3640 && op1 != CONST0_RTX (mode))
3641 {
3642 REAL_VALUE_TYPE d;
3643 REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
3644 if (REAL_VALUES_EQUAL (d, dconst0))
3645 abort();
3646 #if defined (REAL_ARITHMETIC)
3647 REAL_ARITHMETIC (d, RDIV_EXPR, dconst1, d);
3648 return gen_rtx (MULT, mode, op0,
3649 CONST_DOUBLE_FROM_REAL_VALUE (d, mode));
3650 #else
3651 return gen_rtx (MULT, mode, op0,
3652 CONST_DOUBLE_FROM_REAL_VALUE (1./d, mode));
3653 }
3654 #endif
3655 #endif
3656 #endif
3657 break;
3658
3659 case UMOD:
3660 /* Handle modulus by power of two (mod with 1 handled below). */
3661 if (GET_CODE (op1) == CONST_INT
3662 && exact_log2 (INTVAL (op1)) > 0)
3663 return gen_rtx (AND, mode, op0, GEN_INT (INTVAL (op1) - 1));
3664
3665 /* ... fall through ... */
3666
3667 case MOD:
3668 if ((op0 == const0_rtx || op1 == const1_rtx)
3669 && ! side_effects_p (op0) && ! side_effects_p (op1))
3670 return const0_rtx;
3671 break;
3672
3673 case ROTATERT:
3674 case ROTATE:
3675 /* Rotating ~0 always results in ~0. */
3676 if (GET_CODE (op0) == CONST_INT && width <= HOST_BITS_PER_WIDE_INT
3677 && INTVAL (op0) == GET_MODE_MASK (mode)
3678 && ! side_effects_p (op1))
3679 return op0;
3680
3681 /* ... fall through ... */
3682
3683 case LSHIFT:
3684 case ASHIFT:
3685 case ASHIFTRT:
3686 case LSHIFTRT:
3687 if (op1 == const0_rtx)
3688 return op0;
3689 if (op0 == const0_rtx && ! side_effects_p (op1))
3690 return op0;
3691 break;
3692
3693 case SMIN:
3694 if (width <= HOST_BITS_PER_WIDE_INT && GET_CODE (op1) == CONST_INT
3695 && INTVAL (op1) == (HOST_WIDE_INT) 1 << (width -1)
3696 && ! side_effects_p (op0))
3697 return op1;
3698 else if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
3699 return op0;
3700 break;
3701
3702 case SMAX:
3703 if (width <= HOST_BITS_PER_WIDE_INT && GET_CODE (op1) == CONST_INT
3704 && INTVAL (op1) == (unsigned) GET_MODE_MASK (mode) >> 1
3705 && ! side_effects_p (op0))
3706 return op1;
3707 else if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
3708 return op0;
3709 break;
3710
3711 case UMIN:
3712 if (op1 == const0_rtx && ! side_effects_p (op0))
3713 return op1;
3714 else if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
3715 return op0;
3716 break;
3717
3718 case UMAX:
3719 if (op1 == constm1_rtx && ! side_effects_p (op0))
3720 return op1;
3721 else if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
3722 return op0;
3723 break;
3724
3725 default:
3726 abort ();
3727 }
3728
3729 return 0;
3730 }
3731
3732 /* Get the integer argument values in two forms:
3733 zero-extended in ARG0, ARG1 and sign-extended in ARG0S, ARG1S. */
3734
3735 arg0 = INTVAL (op0);
3736 arg1 = INTVAL (op1);
3737
3738 if (width < HOST_BITS_PER_WIDE_INT)
3739 {
3740 arg0 &= ((HOST_WIDE_INT) 1 << width) - 1;
3741 arg1 &= ((HOST_WIDE_INT) 1 << width) - 1;
3742
3743 arg0s = arg0;
3744 if (arg0s & ((HOST_WIDE_INT) 1 << (width - 1)))
3745 arg0s |= ((HOST_WIDE_INT) (-1) << width);
3746
3747 arg1s = arg1;
3748 if (arg1s & ((HOST_WIDE_INT) 1 << (width - 1)))
3749 arg1s |= ((HOST_WIDE_INT) (-1) << width);
3750 }
3751 else
3752 {
3753 arg0s = arg0;
3754 arg1s = arg1;
3755 }
3756
3757 /* Compute the value of the arithmetic. */
3758
3759 switch (code)
3760 {
3761 case PLUS:
3762 val = arg0s + arg1s;
3763 break;
3764
3765 case MINUS:
3766 val = arg0s - arg1s;
3767 break;
3768
3769 case MULT:
3770 val = arg0s * arg1s;
3771 break;
3772
3773 case DIV:
3774 if (arg1s == 0)
3775 return 0;
3776 val = arg0s / arg1s;
3777 break;
3778
3779 case MOD:
3780 if (arg1s == 0)
3781 return 0;
3782 val = arg0s % arg1s;
3783 break;
3784
3785 case UDIV:
3786 if (arg1 == 0)
3787 return 0;
3788 val = (unsigned HOST_WIDE_INT) arg0 / arg1;
3789 break;
3790
3791 case UMOD:
3792 if (arg1 == 0)
3793 return 0;
3794 val = (unsigned HOST_WIDE_INT) arg0 % arg1;
3795 break;
3796
3797 case AND:
3798 val = arg0 & arg1;
3799 break;
3800
3801 case IOR:
3802 val = arg0 | arg1;
3803 break;
3804
3805 case XOR:
3806 val = arg0 ^ arg1;
3807 break;
3808
3809 case LSHIFTRT:
3810 /* If shift count is undefined, don't fold it; let the machine do
3811 what it wants. But truncate it if the machine will do that. */
3812 if (arg1 < 0)
3813 return 0;
3814
3815 #ifdef SHIFT_COUNT_TRUNCATED
3816 arg1 &= (BITS_PER_WORD - 1);
3817 #endif
3818
3819 if (arg1 >= width)
3820 return 0;
3821
3822 val = ((unsigned HOST_WIDE_INT) arg0) >> arg1;
3823 break;
3824
3825 case ASHIFT:
3826 case LSHIFT:
3827 if (arg1 < 0)
3828 return 0;
3829
3830 #ifdef SHIFT_COUNT_TRUNCATED
3831 arg1 &= (BITS_PER_WORD - 1);
3832 #endif
3833
3834 if (arg1 >= width)
3835 return 0;
3836
3837 val = ((unsigned HOST_WIDE_INT) arg0) << arg1;
3838 break;
3839
3840 case ASHIFTRT:
3841 if (arg1 < 0)
3842 return 0;
3843
3844 #ifdef SHIFT_COUNT_TRUNCATED
3845 arg1 &= (BITS_PER_WORD - 1);
3846 #endif
3847
3848 if (arg1 >= width)
3849 return 0;
3850
3851 val = arg0s >> arg1;
3852
3853 /* Bootstrap compiler may not have sign extended the right shift.
3854 Manually extend the sign to insure bootstrap cc matches gcc. */
3855 if (arg0s < 0 && arg1 > 0)
3856 val |= ((HOST_WIDE_INT) -1) << (HOST_BITS_PER_WIDE_INT - arg1);
3857
3858 break;
3859
3860 case ROTATERT:
3861 if (arg1 < 0)
3862 return 0;
3863
3864 arg1 %= width;
3865 val = ((((unsigned HOST_WIDE_INT) arg0) << (width - arg1))
3866 | (((unsigned HOST_WIDE_INT) arg0) >> arg1));
3867 break;
3868
3869 case ROTATE:
3870 if (arg1 < 0)
3871 return 0;
3872
3873 arg1 %= width;
3874 val = ((((unsigned HOST_WIDE_INT) arg0) << arg1)
3875 | (((unsigned HOST_WIDE_INT) arg0) >> (width - arg1)));
3876 break;
3877
3878 case COMPARE:
3879 /* Do nothing here. */
3880 return 0;
3881
3882 case SMIN:
3883 val = arg0s <= arg1s ? arg0s : arg1s;
3884 break;
3885
3886 case UMIN:
3887 val = ((unsigned HOST_WIDE_INT) arg0
3888 <= (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
3889 break;
3890
3891 case SMAX:
3892 val = arg0s > arg1s ? arg0s : arg1s;
3893 break;
3894
3895 case UMAX:
3896 val = ((unsigned HOST_WIDE_INT) arg0
3897 > (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
3898 break;
3899
3900 default:
3901 abort ();
3902 }
3903
3904 /* Clear the bits that don't belong in our mode, unless they and our sign
3905 bit are all one. So we get either a reasonable negative value or a
3906 reasonable unsigned value for this mode. */
3907 if (width < HOST_BITS_PER_WIDE_INT
3908 && ((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
3909 != ((HOST_WIDE_INT) (-1) << (width - 1))))
3910 val &= ((HOST_WIDE_INT) 1 << width) - 1;
3911
3912 return GEN_INT (val);
3913 }
3914 \f
3915 /* Simplify a PLUS or MINUS, at least one of whose operands may be another
3916 PLUS or MINUS.
3917
3918 Rather than test for specific case, we do this by a brute-force method
3919 and do all possible simplifications until no more changes occur. Then
3920 we rebuild the operation. */
3921
3922 static rtx
3923 simplify_plus_minus (code, mode, op0, op1)
3924 enum rtx_code code;
3925 enum machine_mode mode;
3926 rtx op0, op1;
3927 {
3928 rtx ops[8];
3929 int negs[8];
3930 rtx result, tem;
3931 int n_ops = 2;
3932 int i, j, k;
3933 int first = 1, negate = 0, changed;
3934
3935 bzero (ops, sizeof ops);
3936
3937 /* Set up the two operands and then expand them until nothing has been
3938 changed. If we run out of room in our array, give up; this should
3939 almost never happen. */
3940
3941 ops[0] = op0, ops[1] = op1, negs[0] = 0, negs[1] = (code == MINUS);
3942
3943 changed = 1;
3944 while (changed)
3945 {
3946 changed = 0;
3947
3948 for (i = 0; i < n_ops; i++)
3949 switch (GET_CODE (ops[i]))
3950 {
3951 case PLUS:
3952 case MINUS:
3953 if (n_ops == 7)
3954 return 0;
3955
3956 ops[n_ops] = XEXP (ops[i], 1);
3957 negs[n_ops++] = GET_CODE (ops[i]) == MINUS ? !negs[i] : negs[i];
3958 ops[i] = XEXP (ops[i], 0);
3959 changed = 1;
3960 break;
3961
3962 case NEG:
3963 ops[i] = XEXP (ops[i], 0);
3964 negs[i] = ! negs[i];
3965 changed = 1;
3966 break;
3967
3968 case CONST:
3969 ops[i] = XEXP (ops[i], 0);
3970 changed = 1;
3971 break;
3972
3973 case NOT:
3974 /* ~a -> (-a - 1) */
3975 if (n_ops != 7)
3976 {
3977 ops[n_ops] = constm1_rtx;
3978 negs[n_ops++] = negs[i];
3979 ops[i] = XEXP (ops[i], 0);
3980 negs[i] = ! negs[i];
3981 changed = 1;
3982 }
3983 break;
3984
3985 case CONST_INT:
3986 if (negs[i])
3987 ops[i] = GEN_INT (- INTVAL (ops[i])), negs[i] = 0, changed = 1;
3988 break;
3989 }
3990 }
3991
3992 /* If we only have two operands, we can't do anything. */
3993 if (n_ops <= 2)
3994 return 0;
3995
3996 /* Now simplify each pair of operands until nothing changes. The first
3997 time through just simplify constants against each other. */
3998
3999 changed = 1;
4000 while (changed)
4001 {
4002 changed = first;
4003
4004 for (i = 0; i < n_ops - 1; i++)
4005 for (j = i + 1; j < n_ops; j++)
4006 if (ops[i] != 0 && ops[j] != 0
4007 && (! first || (CONSTANT_P (ops[i]) && CONSTANT_P (ops[j]))))
4008 {
4009 rtx lhs = ops[i], rhs = ops[j];
4010 enum rtx_code ncode = PLUS;
4011
4012 if (negs[i] && ! negs[j])
4013 lhs = ops[j], rhs = ops[i], ncode = MINUS;
4014 else if (! negs[i] && negs[j])
4015 ncode = MINUS;
4016
4017 tem = simplify_binary_operation (ncode, mode, lhs, rhs);
4018 if (tem)
4019 {
4020 ops[i] = tem, ops[j] = 0;
4021 negs[i] = negs[i] && negs[j];
4022 if (GET_CODE (tem) == NEG)
4023 ops[i] = XEXP (tem, 0), negs[i] = ! negs[i];
4024
4025 if (GET_CODE (ops[i]) == CONST_INT && negs[i])
4026 ops[i] = GEN_INT (- INTVAL (ops[i])), negs[i] = 0;
4027 changed = 1;
4028 }
4029 }
4030
4031 first = 0;
4032 }
4033
4034 /* Pack all the operands to the lower-numbered entries and give up if
4035 we didn't reduce the number of operands we had. Make sure we
4036 count a CONST as two operands. */
4037
4038 for (i = 0, j = 0, k = 0; j < n_ops; j++)
4039 if (ops[j] != 0)
4040 {
4041 ops[i] = ops[j], negs[i++] = negs[j];
4042 if (GET_CODE (ops[j]) == CONST)
4043 k++;
4044 }
4045
4046 if (i + k >= n_ops)
4047 return 0;
4048
4049 n_ops = i;
4050
4051 /* If we have a CONST_INT, put it last. */
4052 for (i = 0; i < n_ops - 1; i++)
4053 if (GET_CODE (ops[i]) == CONST_INT)
4054 {
4055 tem = ops[n_ops - 1], ops[n_ops - 1] = ops[i] , ops[i] = tem;
4056 j = negs[n_ops - 1], negs[n_ops - 1] = negs[i], negs[i] = j;
4057 }
4058
4059 /* Put a non-negated operand first. If there aren't any, make all
4060 operands positive and negate the whole thing later. */
4061 for (i = 0; i < n_ops && negs[i]; i++)
4062 ;
4063
4064 if (i == n_ops)
4065 {
4066 for (i = 0; i < n_ops; i++)
4067 negs[i] = 0;
4068 negate = 1;
4069 }
4070 else if (i != 0)
4071 {
4072 tem = ops[0], ops[0] = ops[i], ops[i] = tem;
4073 j = negs[0], negs[0] = negs[i], negs[i] = j;
4074 }
4075
4076 /* Now make the result by performing the requested operations. */
4077 result = ops[0];
4078 for (i = 1; i < n_ops; i++)
4079 result = cse_gen_binary (negs[i] ? MINUS : PLUS, mode, result, ops[i]);
4080
4081 return negate ? gen_rtx (NEG, mode, result) : result;
4082 }
4083 \f
4084 /* Make a binary operation by properly ordering the operands and
4085 seeing if the expression folds. */
4086
4087 static rtx
4088 cse_gen_binary (code, mode, op0, op1)
4089 enum rtx_code code;
4090 enum machine_mode mode;
4091 rtx op0, op1;
4092 {
4093 rtx tem;
4094
4095 /* Put complex operands first and constants second if commutative. */
4096 if (GET_RTX_CLASS (code) == 'c'
4097 && ((CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)
4098 || (GET_RTX_CLASS (GET_CODE (op0)) == 'o'
4099 && GET_RTX_CLASS (GET_CODE (op1)) != 'o')
4100 || (GET_CODE (op0) == SUBREG
4101 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (op0))) == 'o'
4102 && GET_RTX_CLASS (GET_CODE (op1)) != 'o')))
4103 tem = op0, op0 = op1, op1 = tem;
4104
4105 /* If this simplifies, do it. */
4106 tem = simplify_binary_operation (code, mode, op0, op1);
4107
4108 if (tem)
4109 return tem;
4110
4111 /* Handle addition and subtraction of CONST_INT specially. Otherwise,
4112 just form the operation. */
4113
4114 if (code == PLUS && GET_CODE (op1) == CONST_INT
4115 && GET_MODE (op0) != VOIDmode)
4116 return plus_constant (op0, INTVAL (op1));
4117 else if (code == MINUS && GET_CODE (op1) == CONST_INT
4118 && GET_MODE (op0) != VOIDmode)
4119 return plus_constant (op0, - INTVAL (op1));
4120 else
4121 return gen_rtx (code, mode, op0, op1);
4122 }
4123 \f
4124 /* Like simplify_binary_operation except used for relational operators.
4125 MODE is the mode of the operands, not that of the result. */
4126
4127 rtx
4128 simplify_relational_operation (code, mode, op0, op1)
4129 enum rtx_code code;
4130 enum machine_mode mode;
4131 rtx op0, op1;
4132 {
4133 register HOST_WIDE_INT arg0, arg1, arg0s, arg1s;
4134 HOST_WIDE_INT val;
4135 int width = GET_MODE_BITSIZE (mode);
4136
4137 /* If op0 is a compare, extract the comparison arguments from it. */
4138 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
4139 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4140
4141 /* Unlike the arithmetic operations, we can do the comparison whether
4142 or not WIDTH is larger than HOST_BITS_PER_WIDE_INT because the
4143 CONST_INTs are to be understood as being infinite precision as
4144 is the comparison. So there is no question of overflow. */
4145
4146 if (GET_CODE (op0) != CONST_INT || GET_CODE (op1) != CONST_INT || width == 0)
4147 {
4148 /* Even if we can't compute a constant result,
4149 there are some cases worth simplifying. */
4150
4151 /* For non-IEEE floating-point, if the two operands are equal, we know
4152 the result. */
4153 if (rtx_equal_p (op0, op1)
4154 && (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
4155 || GET_MODE_CLASS (GET_MODE (op0)) != MODE_FLOAT))
4156 return (code == EQ || code == GE || code == LE || code == LEU
4157 || code == GEU) ? const_true_rtx : const0_rtx;
4158
4159 #if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
4160 else if (GET_CODE (op0) == CONST_DOUBLE
4161 && GET_CODE (op1) == CONST_DOUBLE
4162 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
4163 {
4164 REAL_VALUE_TYPE d0, d1;
4165 jmp_buf handler;
4166 int op0lt, op1lt, equal;
4167
4168 if (setjmp (handler))
4169 return 0;
4170
4171 set_float_handler (handler);
4172 REAL_VALUE_FROM_CONST_DOUBLE (d0, op0);
4173 REAL_VALUE_FROM_CONST_DOUBLE (d1, op1);
4174 equal = REAL_VALUES_EQUAL (d0, d1);
4175 op0lt = REAL_VALUES_LESS (d0, d1);
4176 op1lt = REAL_VALUES_LESS (d1, d0);
4177 set_float_handler (NULL_PTR);
4178
4179 switch (code)
4180 {
4181 case EQ:
4182 return equal ? const_true_rtx : const0_rtx;
4183 case NE:
4184 return !equal ? const_true_rtx : const0_rtx;
4185 case LE:
4186 return equal || op0lt ? const_true_rtx : const0_rtx;
4187 case LT:
4188 return op0lt ? const_true_rtx : const0_rtx;
4189 case GE:
4190 return equal || op1lt ? const_true_rtx : const0_rtx;
4191 case GT:
4192 return op1lt ? const_true_rtx : const0_rtx;
4193 }
4194 }
4195 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
4196
4197 else if (GET_MODE_CLASS (mode) == MODE_INT
4198 && width > HOST_BITS_PER_WIDE_INT
4199 && (GET_CODE (op0) == CONST_DOUBLE
4200 || GET_CODE (op0) == CONST_INT)
4201 && (GET_CODE (op1) == CONST_DOUBLE
4202 || GET_CODE (op1) == CONST_INT))
4203 {
4204 HOST_WIDE_INT h0, l0, h1, l1;
4205 unsigned HOST_WIDE_INT uh0, ul0, uh1, ul1;
4206 int op0lt, op0ltu, equal;
4207
4208 if (GET_CODE (op0) == CONST_DOUBLE)
4209 l0 = CONST_DOUBLE_LOW (op0), h0 = CONST_DOUBLE_HIGH (op0);
4210 else
4211 l0 = INTVAL (op0), h0 = l0 < 0 ? -1 : 0;
4212
4213 if (GET_CODE (op1) == CONST_DOUBLE)
4214 l1 = CONST_DOUBLE_LOW (op1), h1 = CONST_DOUBLE_HIGH (op1);
4215 else
4216 l1 = INTVAL (op1), h1 = l1 < 0 ? -1 : 0;
4217
4218 uh0 = h0, ul0 = l0, uh1 = h1, ul1 = l1;
4219
4220 equal = (h0 == h1 && l0 == l1);
4221 op0lt = (h0 < h1 || (h0 == h1 && l0 < l1));
4222 op0ltu = (uh0 < uh1 || (uh0 == uh1 && ul0 < ul1));
4223
4224 switch (code)
4225 {
4226 case EQ:
4227 return equal ? const_true_rtx : const0_rtx;
4228 case NE:
4229 return !equal ? const_true_rtx : const0_rtx;
4230 case LE:
4231 return equal || op0lt ? const_true_rtx : const0_rtx;
4232 case LT:
4233 return op0lt ? const_true_rtx : const0_rtx;
4234 case GE:
4235 return !op0lt ? const_true_rtx : const0_rtx;
4236 case GT:
4237 return !equal && !op0lt ? const_true_rtx : const0_rtx;
4238 case LEU:
4239 return equal || op0ltu ? const_true_rtx : const0_rtx;
4240 case LTU:
4241 return op0ltu ? const_true_rtx : const0_rtx;
4242 case GEU:
4243 return !op0ltu ? const_true_rtx : const0_rtx;
4244 case GTU:
4245 return !equal && !op0ltu ? const_true_rtx : const0_rtx;
4246 }
4247 }
4248
4249 switch (code)
4250 {
4251 case EQ:
4252 {
4253 #if 0
4254 /* We can't make this assumption due to #pragma weak */
4255 if (CONSTANT_P (op0) && op1 == const0_rtx)
4256 return const0_rtx;
4257 #endif
4258 if (NONZERO_BASE_PLUS_P (op0) && op1 == const0_rtx
4259 /* On some machines, the ap reg can be 0 sometimes. */
4260 && op0 != arg_pointer_rtx)
4261 return const0_rtx;
4262 break;
4263 }
4264
4265 case NE:
4266 #if 0
4267 /* We can't make this assumption due to #pragma weak */
4268 if (CONSTANT_P (op0) && op1 == const0_rtx)
4269 return const_true_rtx;
4270 #endif
4271 if (NONZERO_BASE_PLUS_P (op0) && op1 == const0_rtx
4272 /* On some machines, the ap reg can be 0 sometimes. */
4273 && op0 != arg_pointer_rtx)
4274 return const_true_rtx;
4275 break;
4276
4277 case GEU:
4278 /* Unsigned values are never negative, but we must be sure we are
4279 actually comparing a value, not a CC operand. */
4280 if (op1 == const0_rtx
4281 && GET_MODE_CLASS (mode) == MODE_INT)
4282 return const_true_rtx;
4283 break;
4284
4285 case LTU:
4286 if (op1 == const0_rtx
4287 && GET_MODE_CLASS (mode) == MODE_INT)
4288 return const0_rtx;
4289 break;
4290
4291 case LEU:
4292 /* Unsigned values are never greater than the largest
4293 unsigned value. */
4294 if (GET_CODE (op1) == CONST_INT
4295 && INTVAL (op1) == GET_MODE_MASK (mode)
4296 && GET_MODE_CLASS (mode) == MODE_INT)
4297 return const_true_rtx;
4298 break;
4299
4300 case GTU:
4301 if (GET_CODE (op1) == CONST_INT
4302 && INTVAL (op1) == GET_MODE_MASK (mode)
4303 && GET_MODE_CLASS (mode) == MODE_INT)
4304 return const0_rtx;
4305 break;
4306 }
4307
4308 return 0;
4309 }
4310
4311 /* Get the integer argument values in two forms:
4312 zero-extended in ARG0, ARG1 and sign-extended in ARG0S, ARG1S. */
4313
4314 arg0 = INTVAL (op0);
4315 arg1 = INTVAL (op1);
4316
4317 if (width < HOST_BITS_PER_WIDE_INT)
4318 {
4319 arg0 &= ((HOST_WIDE_INT) 1 << width) - 1;
4320 arg1 &= ((HOST_WIDE_INT) 1 << width) - 1;
4321
4322 arg0s = arg0;
4323 if (arg0s & ((HOST_WIDE_INT) 1 << (width - 1)))
4324 arg0s |= ((HOST_WIDE_INT) (-1) << width);
4325
4326 arg1s = arg1;
4327 if (arg1s & ((HOST_WIDE_INT) 1 << (width - 1)))
4328 arg1s |= ((HOST_WIDE_INT) (-1) << width);
4329 }
4330 else
4331 {
4332 arg0s = arg0;
4333 arg1s = arg1;
4334 }
4335
4336 /* Compute the value of the arithmetic. */
4337
4338 switch (code)
4339 {
4340 case NE:
4341 val = arg0 != arg1 ? STORE_FLAG_VALUE : 0;
4342 break;
4343
4344 case EQ:
4345 val = arg0 == arg1 ? STORE_FLAG_VALUE : 0;
4346 break;
4347
4348 case LE:
4349 val = arg0s <= arg1s ? STORE_FLAG_VALUE : 0;
4350 break;
4351
4352 case LT:
4353 val = arg0s < arg1s ? STORE_FLAG_VALUE : 0;
4354 break;
4355
4356 case GE:
4357 val = arg0s >= arg1s ? STORE_FLAG_VALUE : 0;
4358 break;
4359
4360 case GT:
4361 val = arg0s > arg1s ? STORE_FLAG_VALUE : 0;
4362 break;
4363
4364 case LEU:
4365 val = (((unsigned HOST_WIDE_INT) arg0)
4366 <= ((unsigned HOST_WIDE_INT) arg1) ? STORE_FLAG_VALUE : 0);
4367 break;
4368
4369 case LTU:
4370 val = (((unsigned HOST_WIDE_INT) arg0)
4371 < ((unsigned HOST_WIDE_INT) arg1) ? STORE_FLAG_VALUE : 0);
4372 break;
4373
4374 case GEU:
4375 val = (((unsigned HOST_WIDE_INT) arg0)
4376 >= ((unsigned HOST_WIDE_INT) arg1) ? STORE_FLAG_VALUE : 0);
4377 break;
4378
4379 case GTU:
4380 val = (((unsigned HOST_WIDE_INT) arg0)
4381 > ((unsigned HOST_WIDE_INT) arg1) ? STORE_FLAG_VALUE : 0);
4382 break;
4383
4384 default:
4385 abort ();
4386 }
4387
4388 /* Clear the bits that don't belong in our mode, unless they and our sign
4389 bit are all one. So we get either a reasonable negative value or a
4390 reasonable unsigned value for this mode. */
4391 if (width < HOST_BITS_PER_WIDE_INT
4392 && ((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
4393 != ((HOST_WIDE_INT) (-1) << (width - 1))))
4394 val &= ((HOST_WIDE_INT) 1 << width) - 1;
4395
4396 return GEN_INT (val);
4397 }
4398 \f
4399 /* Simplify CODE, an operation with result mode MODE and three operands,
4400 OP0, OP1, and OP2. OP0_MODE was the mode of OP0 before it became
4401 a constant. Return 0 if no simplifications is possible. */
4402
4403 rtx
4404 simplify_ternary_operation (code, mode, op0_mode, op0, op1, op2)
4405 enum rtx_code code;
4406 enum machine_mode mode, op0_mode;
4407 rtx op0, op1, op2;
4408 {
4409 int width = GET_MODE_BITSIZE (mode);
4410
4411 /* VOIDmode means "infinite" precision. */
4412 if (width == 0)
4413 width = HOST_BITS_PER_WIDE_INT;
4414
4415 switch (code)
4416 {
4417 case SIGN_EXTRACT:
4418 case ZERO_EXTRACT:
4419 if (GET_CODE (op0) == CONST_INT
4420 && GET_CODE (op1) == CONST_INT
4421 && GET_CODE (op2) == CONST_INT
4422 && INTVAL (op1) + INTVAL (op2) <= GET_MODE_BITSIZE (op0_mode)
4423 && width <= HOST_BITS_PER_WIDE_INT)
4424 {
4425 /* Extracting a bit-field from a constant */
4426 HOST_WIDE_INT val = INTVAL (op0);
4427
4428 #if BITS_BIG_ENDIAN
4429 val >>= (GET_MODE_BITSIZE (op0_mode) - INTVAL (op2) - INTVAL (op1));
4430 #else
4431 val >>= INTVAL (op2);
4432 #endif
4433 if (HOST_BITS_PER_WIDE_INT != INTVAL (op1))
4434 {
4435 /* First zero-extend. */
4436 val &= ((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1;
4437 /* If desired, propagate sign bit. */
4438 if (code == SIGN_EXTRACT
4439 && (val & ((HOST_WIDE_INT) 1 << (INTVAL (op1) - 1))))
4440 val |= ~ (((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1);
4441 }
4442
4443 /* Clear the bits that don't belong in our mode,
4444 unless they and our sign bit are all one.
4445 So we get either a reasonable negative value or a reasonable
4446 unsigned value for this mode. */
4447 if (width < HOST_BITS_PER_WIDE_INT
4448 && ((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
4449 != ((HOST_WIDE_INT) (-1) << (width - 1))))
4450 val &= ((HOST_WIDE_INT) 1 << width) - 1;
4451
4452 return GEN_INT (val);
4453 }
4454 break;
4455
4456 case IF_THEN_ELSE:
4457 if (GET_CODE (op0) == CONST_INT)
4458 return op0 != const0_rtx ? op1 : op2;
4459 break;
4460
4461 default:
4462 abort ();
4463 }
4464
4465 return 0;
4466 }
4467 \f
4468 /* If X is a nontrivial arithmetic operation on an argument
4469 for which a constant value can be determined, return
4470 the result of operating on that value, as a constant.
4471 Otherwise, return X, possibly with one or more operands
4472 modified by recursive calls to this function.
4473
4474 If X is a register whose contents are known, we do NOT
4475 return those contents. This is because an instruction that
4476 uses a register is usually faster than one that uses a constant.
4477
4478 INSN is the insn that we may be modifying. If it is 0, make a copy
4479 of X before modifying it. */
4480
4481 static rtx
4482 fold_rtx (x, insn)
4483 rtx x;
4484 rtx insn;
4485 {
4486 register enum rtx_code code;
4487 register enum machine_mode mode;
4488 register char *fmt;
4489 register int i;
4490 rtx new = 0;
4491 int copied = 0;
4492 int must_swap = 0;
4493
4494 /* Folded equivalents of first two operands of X. */
4495 rtx folded_arg0;
4496 rtx folded_arg1;
4497
4498 /* Constant equivalents of first three operands of X;
4499 0 when no such equivalent is known. */
4500 rtx const_arg0;
4501 rtx const_arg1;
4502 rtx const_arg2;
4503
4504 /* The mode of the first operand of X. We need this for sign and zero
4505 extends. */
4506 enum machine_mode mode_arg0;
4507
4508 if (x == 0)
4509 return x;
4510
4511 mode = GET_MODE (x);
4512 code = GET_CODE (x);
4513 switch (code)
4514 {
4515 case CONST:
4516 case CONST_INT:
4517 case CONST_DOUBLE:
4518 case SYMBOL_REF:
4519 case LABEL_REF:
4520 case REG:
4521 /* No use simplifying an EXPR_LIST
4522 since they are used only for lists of args
4523 in a function call's REG_EQUAL note. */
4524 case EXPR_LIST:
4525 return x;
4526
4527 #ifdef HAVE_cc0
4528 case CC0:
4529 return prev_insn_cc0;
4530 #endif
4531
4532 case PC:
4533 /* If the next insn is a CODE_LABEL followed by a jump table,
4534 PC's value is a LABEL_REF pointing to that label. That
4535 lets us fold switch statements on the Vax. */
4536 if (insn && GET_CODE (insn) == JUMP_INSN)
4537 {
4538 rtx next = next_nonnote_insn (insn);
4539
4540 if (next && GET_CODE (next) == CODE_LABEL
4541 && NEXT_INSN (next) != 0
4542 && GET_CODE (NEXT_INSN (next)) == JUMP_INSN
4543 && (GET_CODE (PATTERN (NEXT_INSN (next))) == ADDR_VEC
4544 || GET_CODE (PATTERN (NEXT_INSN (next))) == ADDR_DIFF_VEC))
4545 return gen_rtx (LABEL_REF, Pmode, next);
4546 }
4547 break;
4548
4549 case SUBREG:
4550 /* See if we previously assigned a constant value to this SUBREG. */
4551 if ((new = lookup_as_function (x, CONST_INT)) != 0
4552 || (new = lookup_as_function (x, CONST_DOUBLE)) != 0)
4553 return new;
4554
4555 /* If this is a paradoxical SUBREG, we have no idea what value the
4556 extra bits would have. However, if the operand is equivalent
4557 to a SUBREG whose operand is the same as our mode, and all the
4558 modes are within a word, we can just use the inner operand
4559 because these SUBREGs just say how to treat the register. */
4560
4561 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4562 {
4563 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
4564 struct table_elt *elt;
4565
4566 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
4567 && GET_MODE_SIZE (imode) <= UNITS_PER_WORD
4568 && (elt = lookup (SUBREG_REG (x), HASH (SUBREG_REG (x), imode),
4569 imode)) != 0)
4570 {
4571 for (elt = elt->first_same_value;
4572 elt; elt = elt->next_same_value)
4573 if (GET_CODE (elt->exp) == SUBREG
4574 && GET_MODE (SUBREG_REG (elt->exp)) == mode
4575 && exp_equiv_p (elt->exp, elt->exp, 1, 0))
4576 return copy_rtx (SUBREG_REG (elt->exp));
4577 }
4578
4579 return x;
4580 }
4581
4582 /* Fold SUBREG_REG. If it changed, see if we can simplify the SUBREG.
4583 We might be able to if the SUBREG is extracting a single word in an
4584 integral mode or extracting the low part. */
4585
4586 folded_arg0 = fold_rtx (SUBREG_REG (x), insn);
4587 const_arg0 = equiv_constant (folded_arg0);
4588 if (const_arg0)
4589 folded_arg0 = const_arg0;
4590
4591 if (folded_arg0 != SUBREG_REG (x))
4592 {
4593 new = 0;
4594
4595 if (GET_MODE_CLASS (mode) == MODE_INT
4596 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
4597 && GET_MODE (SUBREG_REG (x)) != VOIDmode)
4598 new = operand_subword (folded_arg0, SUBREG_WORD (x), 0,
4599 GET_MODE (SUBREG_REG (x)));
4600 if (new == 0 && subreg_lowpart_p (x))
4601 new = gen_lowpart_if_possible (mode, folded_arg0);
4602 if (new)
4603 return new;
4604 }
4605
4606 /* If this is a narrowing SUBREG and our operand is a REG, see if
4607 we can find an equivalence for REG that is an arithmetic operation
4608 in a wider mode where both operands are paradoxical SUBREGs
4609 from objects of our result mode. In that case, we couldn't report
4610 an equivalent value for that operation, since we don't know what the
4611 extra bits will be. But we can find an equivalence for this SUBREG
4612 by folding that operation is the narrow mode. This allows us to
4613 fold arithmetic in narrow modes when the machine only supports
4614 word-sized arithmetic.
4615
4616 Also look for a case where we have a SUBREG whose operand is the
4617 same as our result. If both modes are smaller than a word, we
4618 are simply interpreting a register in different modes and we
4619 can use the inner value. */
4620
4621 if (GET_CODE (folded_arg0) == REG
4622 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (folded_arg0))
4623 && subreg_lowpart_p (x))
4624 {
4625 struct table_elt *elt;
4626
4627 /* We can use HASH here since we know that canon_hash won't be
4628 called. */
4629 elt = lookup (folded_arg0,
4630 HASH (folded_arg0, GET_MODE (folded_arg0)),
4631 GET_MODE (folded_arg0));
4632
4633 if (elt)
4634 elt = elt->first_same_value;
4635
4636 for (; elt; elt = elt->next_same_value)
4637 {
4638 enum rtx_code eltcode = GET_CODE (elt->exp);
4639
4640 /* Just check for unary and binary operations. */
4641 if (GET_RTX_CLASS (GET_CODE (elt->exp)) == '1'
4642 && GET_CODE (elt->exp) != SIGN_EXTEND
4643 && GET_CODE (elt->exp) != ZERO_EXTEND
4644 && GET_CODE (XEXP (elt->exp, 0)) == SUBREG
4645 && GET_MODE (SUBREG_REG (XEXP (elt->exp, 0))) == mode)
4646 {
4647 rtx op0 = SUBREG_REG (XEXP (elt->exp, 0));
4648
4649 if (GET_CODE (op0) != REG && ! CONSTANT_P (op0))
4650 op0 = fold_rtx (op0, NULL_RTX);
4651
4652 op0 = equiv_constant (op0);
4653 if (op0)
4654 new = simplify_unary_operation (GET_CODE (elt->exp), mode,
4655 op0, mode);
4656 }
4657 else if ((GET_RTX_CLASS (GET_CODE (elt->exp)) == '2'
4658 || GET_RTX_CLASS (GET_CODE (elt->exp)) == 'c')
4659 && eltcode != DIV && eltcode != MOD
4660 && eltcode != UDIV && eltcode != UMOD
4661 && eltcode != ASHIFTRT && eltcode != LSHIFTRT
4662 && eltcode != ROTATE && eltcode != ROTATERT
4663 && ((GET_CODE (XEXP (elt->exp, 0)) == SUBREG
4664 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 0)))
4665 == mode))
4666 || CONSTANT_P (XEXP (elt->exp, 0)))
4667 && ((GET_CODE (XEXP (elt->exp, 1)) == SUBREG
4668 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 1)))
4669 == mode))
4670 || CONSTANT_P (XEXP (elt->exp, 1))))
4671 {
4672 rtx op0 = gen_lowpart_common (mode, XEXP (elt->exp, 0));
4673 rtx op1 = gen_lowpart_common (mode, XEXP (elt->exp, 1));
4674
4675 if (op0 && GET_CODE (op0) != REG && ! CONSTANT_P (op0))
4676 op0 = fold_rtx (op0, NULL_RTX);
4677
4678 if (op0)
4679 op0 = equiv_constant (op0);
4680
4681 if (op1 && GET_CODE (op1) != REG && ! CONSTANT_P (op1))
4682 op1 = fold_rtx (op1, NULL_RTX);
4683
4684 if (op1)
4685 op1 = equiv_constant (op1);
4686
4687 if (op0 && op1)
4688 new = simplify_binary_operation (GET_CODE (elt->exp), mode,
4689 op0, op1);
4690 }
4691
4692 else if (GET_CODE (elt->exp) == SUBREG
4693 && GET_MODE (SUBREG_REG (elt->exp)) == mode
4694 && (GET_MODE_SIZE (GET_MODE (folded_arg0))
4695 <= UNITS_PER_WORD)
4696 && exp_equiv_p (elt->exp, elt->exp, 1, 0))
4697 new = copy_rtx (SUBREG_REG (elt->exp));
4698
4699 if (new)
4700 return new;
4701 }
4702 }
4703
4704 return x;
4705
4706 case NOT:
4707 case NEG:
4708 /* If we have (NOT Y), see if Y is known to be (NOT Z).
4709 If so, (NOT Y) simplifies to Z. Similarly for NEG. */
4710 new = lookup_as_function (XEXP (x, 0), code);
4711 if (new)
4712 return fold_rtx (copy_rtx (XEXP (new, 0)), insn);
4713 break;
4714
4715 case MEM:
4716 /* If we are not actually processing an insn, don't try to find the
4717 best address. Not only don't we care, but we could modify the
4718 MEM in an invalid way since we have no insn to validate against. */
4719 if (insn != 0)
4720 find_best_addr (insn, &XEXP (x, 0));
4721
4722 {
4723 /* Even if we don't fold in the insn itself,
4724 we can safely do so here, in hopes of getting a constant. */
4725 rtx addr = fold_rtx (XEXP (x, 0), NULL_RTX);
4726 rtx base = 0;
4727 HOST_WIDE_INT offset = 0;
4728
4729 if (GET_CODE (addr) == REG
4730 && REGNO_QTY_VALID_P (REGNO (addr))
4731 && GET_MODE (addr) == qty_mode[reg_qty[REGNO (addr)]]
4732 && qty_const[reg_qty[REGNO (addr)]] != 0)
4733 addr = qty_const[reg_qty[REGNO (addr)]];
4734
4735 /* If address is constant, split it into a base and integer offset. */
4736 if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
4737 base = addr;
4738 else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS
4739 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
4740 {
4741 base = XEXP (XEXP (addr, 0), 0);
4742 offset = INTVAL (XEXP (XEXP (addr, 0), 1));
4743 }
4744 else if (GET_CODE (addr) == LO_SUM
4745 && GET_CODE (XEXP (addr, 1)) == SYMBOL_REF)
4746 base = XEXP (addr, 1);
4747
4748 /* If this is a constant pool reference, we can fold it into its
4749 constant to allow better value tracking. */
4750 if (base && GET_CODE (base) == SYMBOL_REF
4751 && CONSTANT_POOL_ADDRESS_P (base))
4752 {
4753 rtx constant = get_pool_constant (base);
4754 enum machine_mode const_mode = get_pool_mode (base);
4755 rtx new;
4756
4757 if (CONSTANT_P (constant) && GET_CODE (constant) != CONST_INT)
4758 constant_pool_entries_cost = COST (constant);
4759
4760 /* If we are loading the full constant, we have an equivalence. */
4761 if (offset == 0 && mode == const_mode)
4762 return constant;
4763
4764 /* If this actually isn't a constant (wierd!), we can't do
4765 anything. Otherwise, handle the two most common cases:
4766 extracting a word from a multi-word constant, and extracting
4767 the low-order bits. Other cases don't seem common enough to
4768 worry about. */
4769 if (! CONSTANT_P (constant))
4770 return x;
4771
4772 if (GET_MODE_CLASS (mode) == MODE_INT
4773 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
4774 && offset % UNITS_PER_WORD == 0
4775 && (new = operand_subword (constant,
4776 offset / UNITS_PER_WORD,
4777 0, const_mode)) != 0)
4778 return new;
4779
4780 if (((BYTES_BIG_ENDIAN
4781 && offset == GET_MODE_SIZE (GET_MODE (constant)) - 1)
4782 || (! BYTES_BIG_ENDIAN && offset == 0))
4783 && (new = gen_lowpart_if_possible (mode, constant)) != 0)
4784 return new;
4785 }
4786
4787 /* If this is a reference to a label at a known position in a jump
4788 table, we also know its value. */
4789 if (base && GET_CODE (base) == LABEL_REF)
4790 {
4791 rtx label = XEXP (base, 0);
4792 rtx table_insn = NEXT_INSN (label);
4793
4794 if (table_insn && GET_CODE (table_insn) == JUMP_INSN
4795 && GET_CODE (PATTERN (table_insn)) == ADDR_VEC)
4796 {
4797 rtx table = PATTERN (table_insn);
4798
4799 if (offset >= 0
4800 && (offset / GET_MODE_SIZE (GET_MODE (table))
4801 < XVECLEN (table, 0)))
4802 return XVECEXP (table, 0,
4803 offset / GET_MODE_SIZE (GET_MODE (table)));
4804 }
4805 if (table_insn && GET_CODE (table_insn) == JUMP_INSN
4806 && GET_CODE (PATTERN (table_insn)) == ADDR_DIFF_VEC)
4807 {
4808 rtx table = PATTERN (table_insn);
4809
4810 if (offset >= 0
4811 && (offset / GET_MODE_SIZE (GET_MODE (table))
4812 < XVECLEN (table, 1)))
4813 {
4814 offset /= GET_MODE_SIZE (GET_MODE (table));
4815 new = gen_rtx (MINUS, Pmode, XVECEXP (table, 1, offset),
4816 XEXP (table, 0));
4817
4818 if (GET_MODE (table) != Pmode)
4819 new = gen_rtx (TRUNCATE, GET_MODE (table), new);
4820
4821 return new;
4822 }
4823 }
4824 }
4825
4826 return x;
4827 }
4828 }
4829
4830 const_arg0 = 0;
4831 const_arg1 = 0;
4832 const_arg2 = 0;
4833 mode_arg0 = VOIDmode;
4834
4835 /* Try folding our operands.
4836 Then see which ones have constant values known. */
4837
4838 fmt = GET_RTX_FORMAT (code);
4839 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4840 if (fmt[i] == 'e')
4841 {
4842 rtx arg = XEXP (x, i);
4843 rtx folded_arg = arg, const_arg = 0;
4844 enum machine_mode mode_arg = GET_MODE (arg);
4845 rtx cheap_arg, expensive_arg;
4846 rtx replacements[2];
4847 int j;
4848
4849 /* Most arguments are cheap, so handle them specially. */
4850 switch (GET_CODE (arg))
4851 {
4852 case REG:
4853 /* This is the same as calling equiv_constant; it is duplicated
4854 here for speed. */
4855 if (REGNO_QTY_VALID_P (REGNO (arg))
4856 && qty_const[reg_qty[REGNO (arg)]] != 0
4857 && GET_CODE (qty_const[reg_qty[REGNO (arg)]]) != REG
4858 && GET_CODE (qty_const[reg_qty[REGNO (arg)]]) != PLUS)
4859 const_arg
4860 = gen_lowpart_if_possible (GET_MODE (arg),
4861 qty_const[reg_qty[REGNO (arg)]]);
4862 break;
4863
4864 case CONST:
4865 case CONST_INT:
4866 case SYMBOL_REF:
4867 case LABEL_REF:
4868 case CONST_DOUBLE:
4869 const_arg = arg;
4870 break;
4871
4872 #ifdef HAVE_cc0
4873 case CC0:
4874 folded_arg = prev_insn_cc0;
4875 mode_arg = prev_insn_cc0_mode;
4876 const_arg = equiv_constant (folded_arg);
4877 break;
4878 #endif
4879
4880 default:
4881 folded_arg = fold_rtx (arg, insn);
4882 const_arg = equiv_constant (folded_arg);
4883 }
4884
4885 /* For the first three operands, see if the operand
4886 is constant or equivalent to a constant. */
4887 switch (i)
4888 {
4889 case 0:
4890 folded_arg0 = folded_arg;
4891 const_arg0 = const_arg;
4892 mode_arg0 = mode_arg;
4893 break;
4894 case 1:
4895 folded_arg1 = folded_arg;
4896 const_arg1 = const_arg;
4897 break;
4898 case 2:
4899 const_arg2 = const_arg;
4900 break;
4901 }
4902
4903 /* Pick the least expensive of the folded argument and an
4904 equivalent constant argument. */
4905 if (const_arg == 0 || const_arg == folded_arg
4906 || COST (const_arg) > COST (folded_arg))
4907 cheap_arg = folded_arg, expensive_arg = const_arg;
4908 else
4909 cheap_arg = const_arg, expensive_arg = folded_arg;
4910
4911 /* Try to replace the operand with the cheapest of the two
4912 possibilities. If it doesn't work and this is either of the first
4913 two operands of a commutative operation, try swapping them.
4914 If THAT fails, try the more expensive, provided it is cheaper
4915 than what is already there. */
4916
4917 if (cheap_arg == XEXP (x, i))
4918 continue;
4919
4920 if (insn == 0 && ! copied)
4921 {
4922 x = copy_rtx (x);
4923 copied = 1;
4924 }
4925
4926 replacements[0] = cheap_arg, replacements[1] = expensive_arg;
4927 for (j = 0;
4928 j < 2 && replacements[j]
4929 && COST (replacements[j]) < COST (XEXP (x, i));
4930 j++)
4931 {
4932 if (validate_change (insn, &XEXP (x, i), replacements[j], 0))
4933 break;
4934
4935 if (code == NE || code == EQ || GET_RTX_CLASS (code) == 'c')
4936 {
4937 validate_change (insn, &XEXP (x, i), XEXP (x, 1 - i), 1);
4938 validate_change (insn, &XEXP (x, 1 - i), replacements[j], 1);
4939
4940 if (apply_change_group ())
4941 {
4942 /* Swap them back to be invalid so that this loop can
4943 continue and flag them to be swapped back later. */
4944 rtx tem;
4945
4946 tem = XEXP (x, 0); XEXP (x, 0) = XEXP (x, 1);
4947 XEXP (x, 1) = tem;
4948 must_swap = 1;
4949 break;
4950 }
4951 }
4952 }
4953 }
4954
4955 else if (fmt[i] == 'E')
4956 /* Don't try to fold inside of a vector of expressions.
4957 Doing nothing is harmless. */
4958 ;
4959
4960 /* If a commutative operation, place a constant integer as the second
4961 operand unless the first operand is also a constant integer. Otherwise,
4962 place any constant second unless the first operand is also a constant. */
4963
4964 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
4965 {
4966 if (must_swap || (const_arg0
4967 && (const_arg1 == 0
4968 || (GET_CODE (const_arg0) == CONST_INT
4969 && GET_CODE (const_arg1) != CONST_INT))))
4970 {
4971 register rtx tem = XEXP (x, 0);
4972
4973 if (insn == 0 && ! copied)
4974 {
4975 x = copy_rtx (x);
4976 copied = 1;
4977 }
4978
4979 validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
4980 validate_change (insn, &XEXP (x, 1), tem, 1);
4981 if (apply_change_group ())
4982 {
4983 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
4984 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
4985 }
4986 }
4987 }
4988
4989 /* If X is an arithmetic operation, see if we can simplify it. */
4990
4991 switch (GET_RTX_CLASS (code))
4992 {
4993 case '1':
4994 /* We can't simplify extension ops unless we know the original mode. */
4995 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
4996 && mode_arg0 == VOIDmode)
4997 break;
4998 new = simplify_unary_operation (code, mode,
4999 const_arg0 ? const_arg0 : folded_arg0,
5000 mode_arg0);
5001 break;
5002
5003 case '<':
5004 /* See what items are actually being compared and set FOLDED_ARG[01]
5005 to those values and CODE to the actual comparison code. If any are
5006 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
5007 do anything if both operands are already known to be constant. */
5008
5009 if (const_arg0 == 0 || const_arg1 == 0)
5010 {
5011 struct table_elt *p0, *p1;
5012 rtx true = const_true_rtx, false = const0_rtx;
5013 enum machine_mode mode_arg1;
5014
5015 #ifdef FLOAT_STORE_FLAG_VALUE
5016 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5017 {
5018 true = immed_real_const_1 (FLOAT_STORE_FLAG_VALUE, mode);
5019 false = CONST0_RTX (mode);
5020 }
5021 #endif
5022
5023 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
5024 &mode_arg0, &mode_arg1);
5025 const_arg0 = equiv_constant (folded_arg0);
5026 const_arg1 = equiv_constant (folded_arg1);
5027
5028 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
5029 what kinds of things are being compared, so we can't do
5030 anything with this comparison. */
5031
5032 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
5033 break;
5034
5035 /* If we do not now have two constants being compared, see if we
5036 can nevertheless deduce some things about the comparison. */
5037 if (const_arg0 == 0 || const_arg1 == 0)
5038 {
5039 /* Is FOLDED_ARG0 frame-pointer plus a constant? Or non-explicit
5040 constant? These aren't zero, but we don't know their sign. */
5041 if (const_arg1 == const0_rtx
5042 && (NONZERO_BASE_PLUS_P (folded_arg0)
5043 #if 0 /* Sad to say, on sysvr4, #pragma weak can make a symbol address
5044 come out as 0. */
5045 || GET_CODE (folded_arg0) == SYMBOL_REF
5046 #endif
5047 || GET_CODE (folded_arg0) == LABEL_REF
5048 || GET_CODE (folded_arg0) == CONST))
5049 {
5050 if (code == EQ)
5051 return false;
5052 else if (code == NE)
5053 return true;
5054 }
5055
5056 /* See if the two operands are the same. We don't do this
5057 for IEEE floating-point since we can't assume x == x
5058 since x might be a NaN. */
5059
5060 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
5061 || GET_MODE_CLASS (mode_arg0) != MODE_FLOAT)
5062 && (folded_arg0 == folded_arg1
5063 || (GET_CODE (folded_arg0) == REG
5064 && GET_CODE (folded_arg1) == REG
5065 && (reg_qty[REGNO (folded_arg0)]
5066 == reg_qty[REGNO (folded_arg1)]))
5067 || ((p0 = lookup (folded_arg0,
5068 (safe_hash (folded_arg0, mode_arg0)
5069 % NBUCKETS), mode_arg0))
5070 && (p1 = lookup (folded_arg1,
5071 (safe_hash (folded_arg1, mode_arg0)
5072 % NBUCKETS), mode_arg0))
5073 && p0->first_same_value == p1->first_same_value)))
5074 return ((code == EQ || code == LE || code == GE
5075 || code == LEU || code == GEU)
5076 ? true : false);
5077
5078 /* If FOLDED_ARG0 is a register, see if the comparison we are
5079 doing now is either the same as we did before or the reverse
5080 (we only check the reverse if not floating-point). */
5081 else if (GET_CODE (folded_arg0) == REG)
5082 {
5083 int qty = reg_qty[REGNO (folded_arg0)];
5084
5085 if (REGNO_QTY_VALID_P (REGNO (folded_arg0))
5086 && (comparison_dominates_p (qty_comparison_code[qty], code)
5087 || (comparison_dominates_p (qty_comparison_code[qty],
5088 reverse_condition (code))
5089 && GET_MODE_CLASS (mode_arg0) == MODE_INT))
5090 && (rtx_equal_p (qty_comparison_const[qty], folded_arg1)
5091 || (const_arg1
5092 && rtx_equal_p (qty_comparison_const[qty],
5093 const_arg1))
5094 || (GET_CODE (folded_arg1) == REG
5095 && (reg_qty[REGNO (folded_arg1)]
5096 == qty_comparison_qty[qty]))))
5097 return (comparison_dominates_p (qty_comparison_code[qty],
5098 code)
5099 ? true : false);
5100 }
5101 }
5102 }
5103
5104 /* If we are comparing against zero, see if the first operand is
5105 equivalent to an IOR with a constant. If so, we may be able to
5106 determine the result of this comparison. */
5107
5108 if (const_arg1 == const0_rtx)
5109 {
5110 rtx y = lookup_as_function (folded_arg0, IOR);
5111 rtx inner_const;
5112
5113 if (y != 0
5114 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
5115 && GET_CODE (inner_const) == CONST_INT
5116 && INTVAL (inner_const) != 0)
5117 {
5118 int sign_bitnum = GET_MODE_BITSIZE (mode_arg0) - 1;
5119 int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
5120 && (INTVAL (inner_const)
5121 & ((HOST_WIDE_INT) 1 << sign_bitnum)));
5122 rtx true = const_true_rtx, false = const0_rtx;
5123
5124 #ifdef FLOAT_STORE_FLAG_VALUE
5125 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5126 {
5127 true = immed_real_const_1 (FLOAT_STORE_FLAG_VALUE, mode);
5128 false = CONST0_RTX (mode);
5129 }
5130 #endif
5131
5132 switch (code)
5133 {
5134 case EQ:
5135 return false;
5136 case NE:
5137 return true;
5138 case LT: case LE:
5139 if (has_sign)
5140 return true;
5141 break;
5142 case GT: case GE:
5143 if (has_sign)
5144 return false;
5145 break;
5146 }
5147 }
5148 }
5149
5150 new = simplify_relational_operation (code, mode_arg0,
5151 const_arg0 ? const_arg0 : folded_arg0,
5152 const_arg1 ? const_arg1 : folded_arg1);
5153 #ifdef FLOAT_STORE_FLAG_VALUE
5154 if (new != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
5155 new = ((new == const0_rtx) ? CONST0_RTX (mode)
5156 : immed_real_const_1 (FLOAT_STORE_FLAG_VALUE, mode));
5157 #endif
5158 break;
5159
5160 case '2':
5161 case 'c':
5162 switch (code)
5163 {
5164 case PLUS:
5165 /* If the second operand is a LABEL_REF, see if the first is a MINUS
5166 with that LABEL_REF as its second operand. If so, the result is
5167 the first operand of that MINUS. This handles switches with an
5168 ADDR_DIFF_VEC table. */
5169 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
5170 {
5171 rtx y = lookup_as_function (folded_arg0, MINUS);
5172
5173 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
5174 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
5175 return XEXP (y, 0);
5176 }
5177 goto from_plus;
5178
5179 case MINUS:
5180 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
5181 If so, produce (PLUS Z C2-C). */
5182 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
5183 {
5184 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
5185 if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
5186 return fold_rtx (plus_constant (y, -INTVAL (const_arg1)),
5187 NULL_RTX);
5188 }
5189
5190 /* ... fall through ... */
5191
5192 from_plus:
5193 case SMIN: case SMAX: case UMIN: case UMAX:
5194 case IOR: case AND: case XOR:
5195 case MULT: case DIV: case UDIV:
5196 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
5197 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
5198 is known to be of similar form, we may be able to replace the
5199 operation with a combined operation. This may eliminate the
5200 intermediate operation if every use is simplified in this way.
5201 Note that the similar optimization done by combine.c only works
5202 if the intermediate operation's result has only one reference. */
5203
5204 if (GET_CODE (folded_arg0) == REG
5205 && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
5206 {
5207 int is_shift
5208 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
5209 rtx y = lookup_as_function (folded_arg0, code);
5210 rtx inner_const;
5211 enum rtx_code associate_code;
5212 rtx new_const;
5213
5214 if (y == 0
5215 || 0 == (inner_const
5216 = equiv_constant (fold_rtx (XEXP (y, 1), 0)))
5217 || GET_CODE (inner_const) != CONST_INT
5218 /* If we have compiled a statement like
5219 "if (x == (x & mask1))", and now are looking at
5220 "x & mask2", we will have a case where the first operand
5221 of Y is the same as our first operand. Unless we detect
5222 this case, an infinite loop will result. */
5223 || XEXP (y, 0) == folded_arg0)
5224 break;
5225
5226 /* Don't associate these operations if they are a PLUS with the
5227 same constant and it is a power of two. These might be doable
5228 with a pre- or post-increment. Similarly for two subtracts of
5229 identical powers of two with post decrement. */
5230
5231 if (code == PLUS && INTVAL (const_arg1) == INTVAL (inner_const)
5232 && (0
5233 #if defined(HAVE_PRE_INCREMENT) || defined(HAVE_POST_INCREMENT)
5234 || exact_log2 (INTVAL (const_arg1)) >= 0
5235 #endif
5236 #if defined(HAVE_PRE_DECREMENT) || defined(HAVE_POST_DECREMENT)
5237 || exact_log2 (- INTVAL (const_arg1)) >= 0
5238 #endif
5239 ))
5240 break;
5241
5242 /* Compute the code used to compose the constants. For example,
5243 A/C1/C2 is A/(C1 * C2), so if CODE == DIV, we want MULT. */
5244
5245 associate_code
5246 = (code == MULT || code == DIV || code == UDIV ? MULT
5247 : is_shift || code == PLUS || code == MINUS ? PLUS : code);
5248
5249 new_const = simplify_binary_operation (associate_code, mode,
5250 const_arg1, inner_const);
5251
5252 if (new_const == 0)
5253 break;
5254
5255 /* If we are associating shift operations, don't let this
5256 produce a shift of larger than the object. This could
5257 occur when we following a sign-extend by a right shift on
5258 a machine that does a sign-extend as a pair of shifts. */
5259
5260 if (is_shift && GET_CODE (new_const) == CONST_INT
5261 && INTVAL (new_const) > GET_MODE_BITSIZE (mode))
5262 break;
5263
5264 y = copy_rtx (XEXP (y, 0));
5265
5266 /* If Y contains our first operand (the most common way this
5267 can happen is if Y is a MEM), we would do into an infinite
5268 loop if we tried to fold it. So don't in that case. */
5269
5270 if (! reg_mentioned_p (folded_arg0, y))
5271 y = fold_rtx (y, insn);
5272
5273 return cse_gen_binary (code, mode, y, new_const);
5274 }
5275 }
5276
5277 new = simplify_binary_operation (code, mode,
5278 const_arg0 ? const_arg0 : folded_arg0,
5279 const_arg1 ? const_arg1 : folded_arg1);
5280 break;
5281
5282 case 'o':
5283 /* (lo_sum (high X) X) is simply X. */
5284 if (code == LO_SUM && const_arg0 != 0
5285 && GET_CODE (const_arg0) == HIGH
5286 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
5287 return const_arg1;
5288 break;
5289
5290 case '3':
5291 case 'b':
5292 new = simplify_ternary_operation (code, mode, mode_arg0,
5293 const_arg0 ? const_arg0 : folded_arg0,
5294 const_arg1 ? const_arg1 : folded_arg1,
5295 const_arg2 ? const_arg2 : XEXP (x, 2));
5296 break;
5297 }
5298
5299 return new ? new : x;
5300 }
5301 \f
5302 /* Return a constant value currently equivalent to X.
5303 Return 0 if we don't know one. */
5304
5305 static rtx
5306 equiv_constant (x)
5307 rtx x;
5308 {
5309 if (GET_CODE (x) == REG
5310 && REGNO_QTY_VALID_P (REGNO (x))
5311 && qty_const[reg_qty[REGNO (x)]])
5312 x = gen_lowpart_if_possible (GET_MODE (x), qty_const[reg_qty[REGNO (x)]]);
5313
5314 if (x != 0 && CONSTANT_P (x))
5315 return x;
5316
5317 /* If X is a MEM, try to fold it outside the context of any insn to see if
5318 it might be equivalent to a constant. That handles the case where it
5319 is a constant-pool reference. Then try to look it up in the hash table
5320 in case it is something whose value we have seen before. */
5321
5322 if (GET_CODE (x) == MEM)
5323 {
5324 struct table_elt *elt;
5325
5326 x = fold_rtx (x, NULL_RTX);
5327 if (CONSTANT_P (x))
5328 return x;
5329
5330 elt = lookup (x, safe_hash (x, GET_MODE (x)) % NBUCKETS, GET_MODE (x));
5331 if (elt == 0)
5332 return 0;
5333
5334 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
5335 if (elt->is_const && CONSTANT_P (elt->exp))
5336 return elt->exp;
5337 }
5338
5339 return 0;
5340 }
5341 \f
5342 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a fixed-point
5343 number, return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
5344 least-significant part of X.
5345 MODE specifies how big a part of X to return.
5346
5347 If the requested operation cannot be done, 0 is returned.
5348
5349 This is similar to gen_lowpart in emit-rtl.c. */
5350
5351 rtx
5352 gen_lowpart_if_possible (mode, x)
5353 enum machine_mode mode;
5354 register rtx x;
5355 {
5356 rtx result = gen_lowpart_common (mode, x);
5357
5358 if (result)
5359 return result;
5360 else if (GET_CODE (x) == MEM)
5361 {
5362 /* This is the only other case we handle. */
5363 register int offset = 0;
5364 rtx new;
5365
5366 #if WORDS_BIG_ENDIAN
5367 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
5368 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
5369 #endif
5370 #if BYTES_BIG_ENDIAN
5371 /* Adjust the address so that the address-after-the-data
5372 is unchanged. */
5373 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
5374 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
5375 #endif
5376 new = gen_rtx (MEM, mode, plus_constant (XEXP (x, 0), offset));
5377 if (! memory_address_p (mode, XEXP (new, 0)))
5378 return 0;
5379 MEM_VOLATILE_P (new) = MEM_VOLATILE_P (x);
5380 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x);
5381 MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (x);
5382 return new;
5383 }
5384 else
5385 return 0;
5386 }
5387 \f
5388 /* Given INSN, a jump insn, TAKEN indicates if we are following the "taken"
5389 branch. It will be zero if not.
5390
5391 In certain cases, this can cause us to add an equivalence. For example,
5392 if we are following the taken case of
5393 if (i == 2)
5394 we can add the fact that `i' and '2' are now equivalent.
5395
5396 In any case, we can record that this comparison was passed. If the same
5397 comparison is seen later, we will know its value. */
5398
5399 static void
5400 record_jump_equiv (insn, taken)
5401 rtx insn;
5402 int taken;
5403 {
5404 int cond_known_true;
5405 rtx op0, op1;
5406 enum machine_mode mode, mode0, mode1;
5407 int reversed_nonequality = 0;
5408 enum rtx_code code;
5409
5410 /* Ensure this is the right kind of insn. */
5411 if (! condjump_p (insn) || simplejump_p (insn))
5412 return;
5413
5414 /* See if this jump condition is known true or false. */
5415 if (taken)
5416 cond_known_true = (XEXP (SET_SRC (PATTERN (insn)), 2) == pc_rtx);
5417 else
5418 cond_known_true = (XEXP (SET_SRC (PATTERN (insn)), 1) == pc_rtx);
5419
5420 /* Get the type of comparison being done and the operands being compared.
5421 If we had to reverse a non-equality condition, record that fact so we
5422 know that it isn't valid for floating-point. */
5423 code = GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 0));
5424 op0 = fold_rtx (XEXP (XEXP (SET_SRC (PATTERN (insn)), 0), 0), insn);
5425 op1 = fold_rtx (XEXP (XEXP (SET_SRC (PATTERN (insn)), 0), 1), insn);
5426
5427 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
5428 if (! cond_known_true)
5429 {
5430 reversed_nonequality = (code != EQ && code != NE);
5431 code = reverse_condition (code);
5432 }
5433
5434 /* The mode is the mode of the non-constant. */
5435 mode = mode0;
5436 if (mode1 != VOIDmode)
5437 mode = mode1;
5438
5439 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
5440 }
5441
5442 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
5443 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
5444 Make any useful entries we can with that information. Called from
5445 above function and called recursively. */
5446
5447 static void
5448 record_jump_cond (code, mode, op0, op1, reversed_nonequality)
5449 enum rtx_code code;
5450 enum machine_mode mode;
5451 rtx op0, op1;
5452 int reversed_nonequality;
5453 {
5454 int op0_hash_code, op1_hash_code;
5455 int op0_in_memory, op0_in_struct, op1_in_memory, op1_in_struct;
5456 struct table_elt *op0_elt, *op1_elt;
5457
5458 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
5459 we know that they are also equal in the smaller mode (this is also
5460 true for all smaller modes whether or not there is a SUBREG, but
5461 is not worth testing for with no SUBREG. */
5462
5463 if (code == EQ && GET_CODE (op0) == SUBREG
5464 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
5465 {
5466 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
5467 rtx tem = gen_lowpart_if_possible (inner_mode, op1);
5468
5469 record_jump_cond (code, mode, SUBREG_REG (op0),
5470 tem ? tem : gen_rtx (SUBREG, inner_mode, op1, 0),
5471 reversed_nonequality);
5472 }
5473
5474 if (code == EQ && GET_CODE (op1) == SUBREG
5475 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1))))
5476 {
5477 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
5478 rtx tem = gen_lowpart_if_possible (inner_mode, op0);
5479
5480 record_jump_cond (code, mode, SUBREG_REG (op1),
5481 tem ? tem : gen_rtx (SUBREG, inner_mode, op0, 0),
5482 reversed_nonequality);
5483 }
5484
5485 /* Similarly, if this is an NE comparison, and either is a SUBREG
5486 making a smaller mode, we know the whole thing is also NE. */
5487
5488 if (code == NE && GET_CODE (op0) == SUBREG
5489 && subreg_lowpart_p (op0)
5490 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
5491 {
5492 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
5493 rtx tem = gen_lowpart_if_possible (inner_mode, op1);
5494
5495 record_jump_cond (code, mode, SUBREG_REG (op0),
5496 tem ? tem : gen_rtx (SUBREG, inner_mode, op1, 0),
5497 reversed_nonequality);
5498 }
5499
5500 if (code == NE && GET_CODE (op1) == SUBREG
5501 && subreg_lowpart_p (op1)
5502 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1))))
5503 {
5504 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
5505 rtx tem = gen_lowpart_if_possible (inner_mode, op0);
5506
5507 record_jump_cond (code, mode, SUBREG_REG (op1),
5508 tem ? tem : gen_rtx (SUBREG, inner_mode, op0, 0),
5509 reversed_nonequality);
5510 }
5511
5512 /* Hash both operands. */
5513
5514 do_not_record = 0;
5515 hash_arg_in_memory = 0;
5516 hash_arg_in_struct = 0;
5517 op0_hash_code = HASH (op0, mode);
5518 op0_in_memory = hash_arg_in_memory;
5519 op0_in_struct = hash_arg_in_struct;
5520
5521 if (do_not_record)
5522 return;
5523
5524 do_not_record = 0;
5525 hash_arg_in_memory = 0;
5526 hash_arg_in_struct = 0;
5527 op1_hash_code = HASH (op1, mode);
5528 op1_in_memory = hash_arg_in_memory;
5529 op1_in_struct = hash_arg_in_struct;
5530
5531 if (do_not_record)
5532 return;
5533
5534 /* Look up both operands. */
5535 op0_elt = lookup (op0, op0_hash_code, mode);
5536 op1_elt = lookup (op1, op1_hash_code, mode);
5537
5538 /* If we aren't setting two things equal all we can do is save this
5539 comparison. Similarly if this is floating-point. In the latter
5540 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
5541 If we record the equality, we might inadvertently delete code
5542 whose intent was to change -0 to +0. */
5543
5544 if (code != EQ || GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
5545 {
5546 /* If we reversed a floating-point comparison, if OP0 is not a
5547 register, or if OP1 is neither a register or constant, we can't
5548 do anything. */
5549
5550 if (GET_CODE (op1) != REG)
5551 op1 = equiv_constant (op1);
5552
5553 if ((reversed_nonequality && GET_MODE_CLASS (mode) != MODE_INT)
5554 || GET_CODE (op0) != REG || op1 == 0)
5555 return;
5556
5557 /* Put OP0 in the hash table if it isn't already. This gives it a
5558 new quantity number. */
5559 if (op0_elt == 0)
5560 {
5561 if (insert_regs (op0, NULL_PTR, 0))
5562 {
5563 rehash_using_reg (op0);
5564 op0_hash_code = HASH (op0, mode);
5565 }
5566
5567 op0_elt = insert (op0, NULL_PTR, op0_hash_code, mode);
5568 op0_elt->in_memory = op0_in_memory;
5569 op0_elt->in_struct = op0_in_struct;
5570 }
5571
5572 qty_comparison_code[reg_qty[REGNO (op0)]] = code;
5573 if (GET_CODE (op1) == REG)
5574 {
5575 /* Put OP1 in the hash table so it gets a new quantity number. */
5576 if (op1_elt == 0)
5577 {
5578 if (insert_regs (op1, NULL_PTR, 0))
5579 {
5580 rehash_using_reg (op1);
5581 op1_hash_code = HASH (op1, mode);
5582 }
5583
5584 op1_elt = insert (op1, NULL_PTR, op1_hash_code, mode);
5585 op1_elt->in_memory = op1_in_memory;
5586 op1_elt->in_struct = op1_in_struct;
5587 }
5588
5589 qty_comparison_qty[reg_qty[REGNO (op0)]] = reg_qty[REGNO (op1)];
5590 qty_comparison_const[reg_qty[REGNO (op0)]] = 0;
5591 }
5592 else
5593 {
5594 qty_comparison_qty[reg_qty[REGNO (op0)]] = -1;
5595 qty_comparison_const[reg_qty[REGNO (op0)]] = op1;
5596 }
5597
5598 return;
5599 }
5600
5601 /* If both are equivalent, merge the two classes. Save this class for
5602 `cse_set_around_loop'. */
5603 if (op0_elt && op1_elt)
5604 {
5605 merge_equiv_classes (op0_elt, op1_elt);
5606 last_jump_equiv_class = op0_elt;
5607 }
5608
5609 /* For whichever side doesn't have an equivalence, make one. */
5610 if (op0_elt == 0)
5611 {
5612 if (insert_regs (op0, op1_elt, 0))
5613 {
5614 rehash_using_reg (op0);
5615 op0_hash_code = HASH (op0, mode);
5616 }
5617
5618 op0_elt = insert (op0, op1_elt, op0_hash_code, mode);
5619 op0_elt->in_memory = op0_in_memory;
5620 op0_elt->in_struct = op0_in_struct;
5621 last_jump_equiv_class = op0_elt;
5622 }
5623
5624 if (op1_elt == 0)
5625 {
5626 if (insert_regs (op1, op0_elt, 0))
5627 {
5628 rehash_using_reg (op1);
5629 op1_hash_code = HASH (op1, mode);
5630 }
5631
5632 op1_elt = insert (op1, op0_elt, op1_hash_code, mode);
5633 op1_elt->in_memory = op1_in_memory;
5634 op1_elt->in_struct = op1_in_struct;
5635 last_jump_equiv_class = op1_elt;
5636 }
5637 }
5638 \f
5639 /* CSE processing for one instruction.
5640 First simplify sources and addresses of all assignments
5641 in the instruction, using previously-computed equivalents values.
5642 Then install the new sources and destinations in the table
5643 of available values.
5644
5645 If IN_LIBCALL_BLOCK is nonzero, don't record any equivalence made in
5646 the insn. */
5647
5648 /* Data on one SET contained in the instruction. */
5649
5650 struct set
5651 {
5652 /* The SET rtx itself. */
5653 rtx rtl;
5654 /* The SET_SRC of the rtx (the original value, if it is changing). */
5655 rtx src;
5656 /* The hash-table element for the SET_SRC of the SET. */
5657 struct table_elt *src_elt;
5658 /* Hash code for the SET_SRC. */
5659 int src_hash_code;
5660 /* Hash code for the SET_DEST. */
5661 int dest_hash_code;
5662 /* The SET_DEST, with SUBREG, etc., stripped. */
5663 rtx inner_dest;
5664 /* Place where the pointer to the INNER_DEST was found. */
5665 rtx *inner_dest_loc;
5666 /* Nonzero if the SET_SRC is in memory. */
5667 char src_in_memory;
5668 /* Nonzero if the SET_SRC is in a structure. */
5669 char src_in_struct;
5670 /* Nonzero if the SET_SRC contains something
5671 whose value cannot be predicted and understood. */
5672 char src_volatile;
5673 /* Original machine mode, in case it becomes a CONST_INT. */
5674 enum machine_mode mode;
5675 /* A constant equivalent for SET_SRC, if any. */
5676 rtx src_const;
5677 /* Hash code of constant equivalent for SET_SRC. */
5678 int src_const_hash_code;
5679 /* Table entry for constant equivalent for SET_SRC, if any. */
5680 struct table_elt *src_const_elt;
5681 };
5682
5683 static void
5684 cse_insn (insn, in_libcall_block)
5685 rtx insn;
5686 int in_libcall_block;
5687 {
5688 register rtx x = PATTERN (insn);
5689 rtx tem;
5690 register int i;
5691 register int n_sets = 0;
5692
5693 /* Records what this insn does to set CC0. */
5694 rtx this_insn_cc0 = 0;
5695 enum machine_mode this_insn_cc0_mode;
5696 struct write_data writes_memory;
5697 static struct write_data init = {0, 0, 0, 0};
5698
5699 rtx src_eqv = 0;
5700 struct table_elt *src_eqv_elt = 0;
5701 int src_eqv_volatile;
5702 int src_eqv_in_memory;
5703 int src_eqv_in_struct;
5704 int src_eqv_hash_code;
5705
5706 struct set *sets;
5707
5708 this_insn = insn;
5709 writes_memory = init;
5710
5711 /* Find all the SETs and CLOBBERs in this instruction.
5712 Record all the SETs in the array `set' and count them.
5713 Also determine whether there is a CLOBBER that invalidates
5714 all memory references, or all references at varying addresses. */
5715
5716 if (GET_CODE (x) == SET)
5717 {
5718 sets = (struct set *) alloca (sizeof (struct set));
5719 sets[0].rtl = x;
5720
5721 /* Ignore SETs that are unconditional jumps.
5722 They never need cse processing, so this does not hurt.
5723 The reason is not efficiency but rather
5724 so that we can test at the end for instructions
5725 that have been simplified to unconditional jumps
5726 and not be misled by unchanged instructions
5727 that were unconditional jumps to begin with. */
5728 if (SET_DEST (x) == pc_rtx
5729 && GET_CODE (SET_SRC (x)) == LABEL_REF)
5730 ;
5731
5732 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
5733 The hard function value register is used only once, to copy to
5734 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
5735 Ensure we invalidate the destination register. On the 80386 no
5736 other code would invalidate it since it is a fixed_reg.
5737 We need not check the return of apply_change_group; see canon_reg. */
5738
5739 else if (GET_CODE (SET_SRC (x)) == CALL)
5740 {
5741 canon_reg (SET_SRC (x), insn);
5742 apply_change_group ();
5743 fold_rtx (SET_SRC (x), insn);
5744 invalidate (SET_DEST (x));
5745 }
5746 else
5747 n_sets = 1;
5748 }
5749 else if (GET_CODE (x) == PARALLEL)
5750 {
5751 register int lim = XVECLEN (x, 0);
5752
5753 sets = (struct set *) alloca (lim * sizeof (struct set));
5754
5755 /* Find all regs explicitly clobbered in this insn,
5756 and ensure they are not replaced with any other regs
5757 elsewhere in this insn.
5758 When a reg that is clobbered is also used for input,
5759 we should presume that that is for a reason,
5760 and we should not substitute some other register
5761 which is not supposed to be clobbered.
5762 Therefore, this loop cannot be merged into the one below
5763 because a CALL may precede a CLOBBER and refer to the
5764 value clobbered. We must not let a canonicalization do
5765 anything in that case. */
5766 for (i = 0; i < lim; i++)
5767 {
5768 register rtx y = XVECEXP (x, 0, i);
5769 if (GET_CODE (y) == CLOBBER
5770 && (GET_CODE (XEXP (y, 0)) == REG
5771 || GET_CODE (XEXP (y, 0)) == SUBREG))
5772 invalidate (XEXP (y, 0));
5773 }
5774
5775 for (i = 0; i < lim; i++)
5776 {
5777 register rtx y = XVECEXP (x, 0, i);
5778 if (GET_CODE (y) == SET)
5779 {
5780 /* As above, we ignore unconditional jumps and call-insns and
5781 ignore the result of apply_change_group. */
5782 if (GET_CODE (SET_SRC (y)) == CALL)
5783 {
5784 canon_reg (SET_SRC (y), insn);
5785 apply_change_group ();
5786 fold_rtx (SET_SRC (y), insn);
5787 invalidate (SET_DEST (y));
5788 }
5789 else if (SET_DEST (y) == pc_rtx
5790 && GET_CODE (SET_SRC (y)) == LABEL_REF)
5791 ;
5792 else
5793 sets[n_sets++].rtl = y;
5794 }
5795 else if (GET_CODE (y) == CLOBBER)
5796 {
5797 /* If we clobber memory, take note of that,
5798 and canon the address.
5799 This does nothing when a register is clobbered
5800 because we have already invalidated the reg. */
5801 if (GET_CODE (XEXP (y, 0)) == MEM)
5802 {
5803 canon_reg (XEXP (y, 0), NULL_RTX);
5804 note_mem_written (XEXP (y, 0), &writes_memory);
5805 }
5806 }
5807 else if (GET_CODE (y) == USE
5808 && ! (GET_CODE (XEXP (y, 0)) == REG
5809 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
5810 canon_reg (y, NULL_RTX);
5811 else if (GET_CODE (y) == CALL)
5812 {
5813 /* The result of apply_change_group can be ignored; see
5814 canon_reg. */
5815 canon_reg (y, insn);
5816 apply_change_group ();
5817 fold_rtx (y, insn);
5818 }
5819 }
5820 }
5821 else if (GET_CODE (x) == CLOBBER)
5822 {
5823 if (GET_CODE (XEXP (x, 0)) == MEM)
5824 {
5825 canon_reg (XEXP (x, 0), NULL_RTX);
5826 note_mem_written (XEXP (x, 0), &writes_memory);
5827 }
5828 }
5829
5830 /* Canonicalize a USE of a pseudo register or memory location. */
5831 else if (GET_CODE (x) == USE
5832 && ! (GET_CODE (XEXP (x, 0)) == REG
5833 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
5834 canon_reg (XEXP (x, 0), NULL_RTX);
5835 else if (GET_CODE (x) == CALL)
5836 {
5837 /* The result of apply_change_group can be ignored; see canon_reg. */
5838 canon_reg (x, insn);
5839 apply_change_group ();
5840 fold_rtx (x, insn);
5841 }
5842
5843 if (n_sets == 1 && REG_NOTES (insn) != 0)
5844 {
5845 /* Store the equivalent value in SRC_EQV, if different. */
5846 rtx tem = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5847
5848 if (tem && ! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)))
5849 src_eqv = canon_reg (XEXP (tem, 0), NULL_RTX);
5850 }
5851
5852 /* Canonicalize sources and addresses of destinations.
5853 We do this in a separate pass to avoid problems when a MATCH_DUP is
5854 present in the insn pattern. In that case, we want to ensure that
5855 we don't break the duplicate nature of the pattern. So we will replace
5856 both operands at the same time. Otherwise, we would fail to find an
5857 equivalent substitution in the loop calling validate_change below.
5858
5859 We used to suppress canonicalization of DEST if it appears in SRC,
5860 but we don't do this any more. */
5861
5862 for (i = 0; i < n_sets; i++)
5863 {
5864 rtx dest = SET_DEST (sets[i].rtl);
5865 rtx src = SET_SRC (sets[i].rtl);
5866 rtx new = canon_reg (src, insn);
5867
5868 if ((GET_CODE (new) == REG && GET_CODE (src) == REG
5869 && ((REGNO (new) < FIRST_PSEUDO_REGISTER)
5870 != (REGNO (src) < FIRST_PSEUDO_REGISTER)))
5871 || insn_n_dups[recog_memoized (insn)] > 0)
5872 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
5873 else
5874 SET_SRC (sets[i].rtl) = new;
5875
5876 if (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
5877 {
5878 validate_change (insn, &XEXP (dest, 1),
5879 canon_reg (XEXP (dest, 1), insn), 1);
5880 validate_change (insn, &XEXP (dest, 2),
5881 canon_reg (XEXP (dest, 2), insn), 1);
5882 }
5883
5884 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
5885 || GET_CODE (dest) == ZERO_EXTRACT
5886 || GET_CODE (dest) == SIGN_EXTRACT)
5887 dest = XEXP (dest, 0);
5888
5889 if (GET_CODE (dest) == MEM)
5890 canon_reg (dest, insn);
5891 }
5892
5893 /* Now that we have done all the replacements, we can apply the change
5894 group and see if they all work. Note that this will cause some
5895 canonicalizations that would have worked individually not to be applied
5896 because some other canonicalization didn't work, but this should not
5897 occur often.
5898
5899 The result of apply_change_group can be ignored; see canon_reg. */
5900
5901 apply_change_group ();
5902
5903 /* Set sets[i].src_elt to the class each source belongs to.
5904 Detect assignments from or to volatile things
5905 and set set[i] to zero so they will be ignored
5906 in the rest of this function.
5907
5908 Nothing in this loop changes the hash table or the register chains. */
5909
5910 for (i = 0; i < n_sets; i++)
5911 {
5912 register rtx src, dest;
5913 register rtx src_folded;
5914 register struct table_elt *elt = 0, *p;
5915 enum machine_mode mode;
5916 rtx src_eqv_here;
5917 rtx src_const = 0;
5918 rtx src_related = 0;
5919 struct table_elt *src_const_elt = 0;
5920 int src_cost = 10000, src_eqv_cost = 10000, src_folded_cost = 10000;
5921 int src_related_cost = 10000, src_elt_cost = 10000;
5922 /* Set non-zero if we need to call force_const_mem on with the
5923 contents of src_folded before using it. */
5924 int src_folded_force_flag = 0;
5925
5926 dest = SET_DEST (sets[i].rtl);
5927 src = SET_SRC (sets[i].rtl);
5928
5929 /* If SRC is a constant that has no machine mode,
5930 hash it with the destination's machine mode.
5931 This way we can keep different modes separate. */
5932
5933 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5934 sets[i].mode = mode;
5935
5936 if (src_eqv)
5937 {
5938 enum machine_mode eqvmode = mode;
5939 if (GET_CODE (dest) == STRICT_LOW_PART)
5940 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5941 do_not_record = 0;
5942 hash_arg_in_memory = 0;
5943 hash_arg_in_struct = 0;
5944 src_eqv = fold_rtx (src_eqv, insn);
5945 src_eqv_hash_code = HASH (src_eqv, eqvmode);
5946
5947 /* Find the equivalence class for the equivalent expression. */
5948
5949 if (!do_not_record)
5950 src_eqv_elt = lookup (src_eqv, src_eqv_hash_code, eqvmode);
5951
5952 src_eqv_volatile = do_not_record;
5953 src_eqv_in_memory = hash_arg_in_memory;
5954 src_eqv_in_struct = hash_arg_in_struct;
5955 }
5956
5957 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
5958 value of the INNER register, not the destination. So it is not
5959 a legal substitution for the source. But save it for later. */
5960 if (GET_CODE (dest) == STRICT_LOW_PART)
5961 src_eqv_here = 0;
5962 else
5963 src_eqv_here = src_eqv;
5964
5965 /* Simplify and foldable subexpressions in SRC. Then get the fully-
5966 simplified result, which may not necessarily be valid. */
5967 src_folded = fold_rtx (src, insn);
5968
5969 /* If storing a constant in a bitfield, pre-truncate the constant
5970 so we will be able to record it later. */
5971 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5972 || GET_CODE (SET_DEST (sets[i].rtl)) == SIGN_EXTRACT)
5973 {
5974 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5975
5976 if (GET_CODE (src) == CONST_INT
5977 && GET_CODE (width) == CONST_INT
5978 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5979 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5980 src_folded
5981 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
5982 << INTVAL (width)) - 1));
5983 }
5984
5985 /* Compute SRC's hash code, and also notice if it
5986 should not be recorded at all. In that case,
5987 prevent any further processing of this assignment. */
5988 do_not_record = 0;
5989 hash_arg_in_memory = 0;
5990 hash_arg_in_struct = 0;
5991
5992 sets[i].src = src;
5993 sets[i].src_hash_code = HASH (src, mode);
5994 sets[i].src_volatile = do_not_record;
5995 sets[i].src_in_memory = hash_arg_in_memory;
5996 sets[i].src_in_struct = hash_arg_in_struct;
5997
5998 #if 0
5999 /* It is no longer clear why we used to do this, but it doesn't
6000 appear to still be needed. So let's try without it since this
6001 code hurts cse'ing widened ops. */
6002 /* If source is a perverse subreg (such as QI treated as an SI),
6003 treat it as volatile. It may do the work of an SI in one context
6004 where the extra bits are not being used, but cannot replace an SI
6005 in general. */
6006 if (GET_CODE (src) == SUBREG
6007 && (GET_MODE_SIZE (GET_MODE (src))
6008 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
6009 sets[i].src_volatile = 1;
6010 #endif
6011
6012 /* Locate all possible equivalent forms for SRC. Try to replace
6013 SRC in the insn with each cheaper equivalent.
6014
6015 We have the following types of equivalents: SRC itself, a folded
6016 version, a value given in a REG_EQUAL note, or a value related
6017 to a constant.
6018
6019 Each of these equivalents may be part of an additional class
6020 of equivalents (if more than one is in the table, they must be in
6021 the same class; we check for this).
6022
6023 If the source is volatile, we don't do any table lookups.
6024
6025 We note any constant equivalent for possible later use in a
6026 REG_NOTE. */
6027
6028 if (!sets[i].src_volatile)
6029 elt = lookup (src, sets[i].src_hash_code, mode);
6030
6031 sets[i].src_elt = elt;
6032
6033 if (elt && src_eqv_here && src_eqv_elt)
6034 {
6035 if (elt->first_same_value != src_eqv_elt->first_same_value)
6036 {
6037 /* The REG_EQUAL is indicating that two formerly distinct
6038 classes are now equivalent. So merge them. */
6039 merge_equiv_classes (elt, src_eqv_elt);
6040 src_eqv_hash_code = HASH (src_eqv, elt->mode);
6041 src_eqv_elt = lookup (src_eqv, src_eqv_hash_code, elt->mode);
6042 }
6043
6044 src_eqv_here = 0;
6045 }
6046
6047 else if (src_eqv_elt)
6048 elt = src_eqv_elt;
6049
6050 /* Try to find a constant somewhere and record it in `src_const'.
6051 Record its table element, if any, in `src_const_elt'. Look in
6052 any known equivalences first. (If the constant is not in the
6053 table, also set `sets[i].src_const_hash_code'). */
6054 if (elt)
6055 for (p = elt->first_same_value; p; p = p->next_same_value)
6056 if (p->is_const)
6057 {
6058 src_const = p->exp;
6059 src_const_elt = elt;
6060 break;
6061 }
6062
6063 if (src_const == 0
6064 && (CONSTANT_P (src_folded)
6065 /* Consider (minus (label_ref L1) (label_ref L2)) as
6066 "constant" here so we will record it. This allows us
6067 to fold switch statements when an ADDR_DIFF_VEC is used. */
6068 || (GET_CODE (src_folded) == MINUS
6069 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
6070 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
6071 src_const = src_folded, src_const_elt = elt;
6072 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
6073 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
6074
6075 /* If we don't know if the constant is in the table, get its
6076 hash code and look it up. */
6077 if (src_const && src_const_elt == 0)
6078 {
6079 sets[i].src_const_hash_code = HASH (src_const, mode);
6080 src_const_elt = lookup (src_const, sets[i].src_const_hash_code,
6081 mode);
6082 }
6083
6084 sets[i].src_const = src_const;
6085 sets[i].src_const_elt = src_const_elt;
6086
6087 /* If the constant and our source are both in the table, mark them as
6088 equivalent. Otherwise, if a constant is in the table but the source
6089 isn't, set ELT to it. */
6090 if (src_const_elt && elt
6091 && src_const_elt->first_same_value != elt->first_same_value)
6092 merge_equiv_classes (elt, src_const_elt);
6093 else if (src_const_elt && elt == 0)
6094 elt = src_const_elt;
6095
6096 /* See if there is a register linearly related to a constant
6097 equivalent of SRC. */
6098 if (src_const
6099 && (GET_CODE (src_const) == CONST
6100 || (src_const_elt && src_const_elt->related_value != 0)))
6101 {
6102 src_related = use_related_value (src_const, src_const_elt);
6103 if (src_related)
6104 {
6105 struct table_elt *src_related_elt
6106 = lookup (src_related, HASH (src_related, mode), mode);
6107 if (src_related_elt && elt)
6108 {
6109 if (elt->first_same_value
6110 != src_related_elt->first_same_value)
6111 /* This can occur when we previously saw a CONST
6112 involving a SYMBOL_REF and then see the SYMBOL_REF
6113 twice. Merge the involved classes. */
6114 merge_equiv_classes (elt, src_related_elt);
6115
6116 src_related = 0;
6117 src_related_elt = 0;
6118 }
6119 else if (src_related_elt && elt == 0)
6120 elt = src_related_elt;
6121 }
6122 }
6123
6124 /* See if we have a CONST_INT that is already in a register in a
6125 wider mode. */
6126
6127 if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
6128 && GET_MODE_CLASS (mode) == MODE_INT
6129 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
6130 {
6131 enum machine_mode wider_mode;
6132
6133 for (wider_mode = GET_MODE_WIDER_MODE (mode);
6134 GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
6135 && src_related == 0;
6136 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
6137 {
6138 struct table_elt *const_elt
6139 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
6140
6141 if (const_elt == 0)
6142 continue;
6143
6144 for (const_elt = const_elt->first_same_value;
6145 const_elt; const_elt = const_elt->next_same_value)
6146 if (GET_CODE (const_elt->exp) == REG)
6147 {
6148 src_related = gen_lowpart_if_possible (mode,
6149 const_elt->exp);
6150 break;
6151 }
6152 }
6153 }
6154
6155 /* Another possibility is that we have an AND with a constant in
6156 a mode narrower than a word. If so, it might have been generated
6157 as part of an "if" which would narrow the AND. If we already
6158 have done the AND in a wider mode, we can use a SUBREG of that
6159 value. */
6160
6161 if (flag_expensive_optimizations && ! src_related
6162 && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
6163 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
6164 {
6165 enum machine_mode tmode;
6166 rtx new_and = gen_rtx (AND, VOIDmode, NULL_RTX, XEXP (src, 1));
6167
6168 for (tmode = GET_MODE_WIDER_MODE (mode);
6169 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
6170 tmode = GET_MODE_WIDER_MODE (tmode))
6171 {
6172 rtx inner = gen_lowpart_if_possible (tmode, XEXP (src, 0));
6173 struct table_elt *larger_elt;
6174
6175 if (inner)
6176 {
6177 PUT_MODE (new_and, tmode);
6178 XEXP (new_and, 0) = inner;
6179 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
6180 if (larger_elt == 0)
6181 continue;
6182
6183 for (larger_elt = larger_elt->first_same_value;
6184 larger_elt; larger_elt = larger_elt->next_same_value)
6185 if (GET_CODE (larger_elt->exp) == REG)
6186 {
6187 src_related
6188 = gen_lowpart_if_possible (mode, larger_elt->exp);
6189 break;
6190 }
6191
6192 if (src_related)
6193 break;
6194 }
6195 }
6196 }
6197
6198 if (src == src_folded)
6199 src_folded = 0;
6200
6201 /* At this point, ELT, if non-zero, points to a class of expressions
6202 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
6203 and SRC_RELATED, if non-zero, each contain additional equivalent
6204 expressions. Prune these latter expressions by deleting expressions
6205 already in the equivalence class.
6206
6207 Check for an equivalent identical to the destination. If found,
6208 this is the preferred equivalent since it will likely lead to
6209 elimination of the insn. Indicate this by placing it in
6210 `src_related'. */
6211
6212 if (elt) elt = elt->first_same_value;
6213 for (p = elt; p; p = p->next_same_value)
6214 {
6215 enum rtx_code code = GET_CODE (p->exp);
6216
6217 /* If the expression is not valid, ignore it. Then we do not
6218 have to check for validity below. In most cases, we can use
6219 `rtx_equal_p', since canonicalization has already been done. */
6220 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, 0))
6221 continue;
6222
6223 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
6224 src = 0;
6225 else if (src_folded && GET_CODE (src_folded) == code
6226 && rtx_equal_p (src_folded, p->exp))
6227 src_folded = 0;
6228 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
6229 && rtx_equal_p (src_eqv_here, p->exp))
6230 src_eqv_here = 0;
6231 else if (src_related && GET_CODE (src_related) == code
6232 && rtx_equal_p (src_related, p->exp))
6233 src_related = 0;
6234
6235 /* This is the same as the destination of the insns, we want
6236 to prefer it. Copy it to src_related. The code below will
6237 then give it a negative cost. */
6238 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
6239 src_related = dest;
6240
6241 }
6242
6243 /* Find the cheapest valid equivalent, trying all the available
6244 possibilities. Prefer items not in the hash table to ones
6245 that are when they are equal cost. Note that we can never
6246 worsen an insn as the current contents will also succeed.
6247 If we find an equivalent identical to the destination, use it as best,
6248 since this insn will probably be eliminated in that case. */
6249 if (src)
6250 {
6251 if (rtx_equal_p (src, dest))
6252 src_cost = -1;
6253 else
6254 src_cost = COST (src);
6255 }
6256
6257 if (src_eqv_here)
6258 {
6259 if (rtx_equal_p (src_eqv_here, dest))
6260 src_eqv_cost = -1;
6261 else
6262 src_eqv_cost = COST (src_eqv_here);
6263 }
6264
6265 if (src_folded)
6266 {
6267 if (rtx_equal_p (src_folded, dest))
6268 src_folded_cost = -1;
6269 else
6270 src_folded_cost = COST (src_folded);
6271 }
6272
6273 if (src_related)
6274 {
6275 if (rtx_equal_p (src_related, dest))
6276 src_related_cost = -1;
6277 else
6278 src_related_cost = COST (src_related);
6279 }
6280
6281 /* If this was an indirect jump insn, a known label will really be
6282 cheaper even though it looks more expensive. */
6283 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
6284 src_folded = src_const, src_folded_cost = -1;
6285
6286 /* Terminate loop when replacement made. This must terminate since
6287 the current contents will be tested and will always be valid. */
6288 while (1)
6289 {
6290 rtx trial;
6291
6292 /* Skip invalid entries. */
6293 while (elt && GET_CODE (elt->exp) != REG
6294 && ! exp_equiv_p (elt->exp, elt->exp, 1, 0))
6295 elt = elt->next_same_value;
6296
6297 if (elt) src_elt_cost = elt->cost;
6298
6299 /* Find cheapest and skip it for the next time. For items
6300 of equal cost, use this order:
6301 src_folded, src, src_eqv, src_related and hash table entry. */
6302 if (src_folded_cost <= src_cost
6303 && src_folded_cost <= src_eqv_cost
6304 && src_folded_cost <= src_related_cost
6305 && src_folded_cost <= src_elt_cost)
6306 {
6307 trial = src_folded, src_folded_cost = 10000;
6308 if (src_folded_force_flag)
6309 trial = force_const_mem (mode, trial);
6310 }
6311 else if (src_cost <= src_eqv_cost
6312 && src_cost <= src_related_cost
6313 && src_cost <= src_elt_cost)
6314 trial = src, src_cost = 10000;
6315 else if (src_eqv_cost <= src_related_cost
6316 && src_eqv_cost <= src_elt_cost)
6317 trial = src_eqv_here, src_eqv_cost = 10000;
6318 else if (src_related_cost <= src_elt_cost)
6319 trial = src_related, src_related_cost = 10000;
6320 else
6321 {
6322 trial = copy_rtx (elt->exp);
6323 elt = elt->next_same_value;
6324 src_elt_cost = 10000;
6325 }
6326
6327 /* We don't normally have an insn matching (set (pc) (pc)), so
6328 check for this separately here. We will delete such an
6329 insn below.
6330
6331 Tablejump insns contain a USE of the table, so simply replacing
6332 the operand with the constant won't match. This is simply an
6333 unconditional branch, however, and is therefore valid. Just
6334 insert the substitution here and we will delete and re-emit
6335 the insn later. */
6336
6337 if (n_sets == 1 && dest == pc_rtx
6338 && (trial == pc_rtx
6339 || (GET_CODE (trial) == LABEL_REF
6340 && ! condjump_p (insn))))
6341 {
6342 /* If TRIAL is a label in front of a jump table, we are
6343 really falling through the switch (this is how casesi
6344 insns work), so we must branch around the table. */
6345 if (GET_CODE (trial) == CODE_LABEL
6346 && NEXT_INSN (trial) != 0
6347 && GET_CODE (NEXT_INSN (trial)) == JUMP_INSN
6348 && (GET_CODE (PATTERN (NEXT_INSN (trial))) == ADDR_DIFF_VEC
6349 || GET_CODE (PATTERN (NEXT_INSN (trial))) == ADDR_VEC))
6350
6351 trial = gen_rtx (LABEL_REF, Pmode, get_label_after (trial));
6352
6353 SET_SRC (sets[i].rtl) = trial;
6354 break;
6355 }
6356
6357 /* Look for a substitution that makes a valid insn. */
6358 else if (validate_change (insn, &SET_SRC (sets[i].rtl), trial, 0))
6359 {
6360 /* The result of apply_change_group can be ignored; see
6361 canon_reg. */
6362
6363 validate_change (insn, &SET_SRC (sets[i].rtl),
6364 canon_reg (SET_SRC (sets[i].rtl), insn),
6365 1);
6366 apply_change_group ();
6367 break;
6368 }
6369
6370 /* If we previously found constant pool entries for
6371 constants and this is a constant, try making a
6372 pool entry. Put it in src_folded unless we already have done
6373 this since that is where it likely came from. */
6374
6375 else if (constant_pool_entries_cost
6376 && CONSTANT_P (trial)
6377 && (src_folded == 0 || GET_CODE (src_folded) != MEM)
6378 && GET_MODE_CLASS (mode) != MODE_CC)
6379 {
6380 src_folded_force_flag = 1;
6381 src_folded = trial;
6382 src_folded_cost = constant_pool_entries_cost;
6383 }
6384 }
6385
6386 src = SET_SRC (sets[i].rtl);
6387
6388 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
6389 However, there is an important exception: If both are registers
6390 that are not the head of their equivalence class, replace SET_SRC
6391 with the head of the class. If we do not do this, we will have
6392 both registers live over a portion of the basic block. This way,
6393 their lifetimes will likely abut instead of overlapping. */
6394 if (GET_CODE (dest) == REG
6395 && REGNO_QTY_VALID_P (REGNO (dest))
6396 && qty_mode[reg_qty[REGNO (dest)]] == GET_MODE (dest)
6397 && qty_first_reg[reg_qty[REGNO (dest)]] != REGNO (dest)
6398 && GET_CODE (src) == REG && REGNO (src) == REGNO (dest)
6399 /* Don't do this if the original insn had a hard reg as
6400 SET_SRC. */
6401 && (GET_CODE (sets[i].src) != REG
6402 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER))
6403 /* We can't call canon_reg here because it won't do anything if
6404 SRC is a hard register. */
6405 {
6406 int first = qty_first_reg[reg_qty[REGNO (src)]];
6407
6408 src = SET_SRC (sets[i].rtl)
6409 = first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
6410 : gen_rtx (REG, GET_MODE (src), first);
6411
6412 /* If we had a constant that is cheaper than what we are now
6413 setting SRC to, use that constant. We ignored it when we
6414 thought we could make this into a no-op. */
6415 if (src_const && COST (src_const) < COST (src)
6416 && validate_change (insn, &SET_SRC (sets[i].rtl), src_const, 0))
6417 src = src_const;
6418 }
6419
6420 /* If we made a change, recompute SRC values. */
6421 if (src != sets[i].src)
6422 {
6423 do_not_record = 0;
6424 hash_arg_in_memory = 0;
6425 hash_arg_in_struct = 0;
6426 sets[i].src = src;
6427 sets[i].src_hash_code = HASH (src, mode);
6428 sets[i].src_volatile = do_not_record;
6429 sets[i].src_in_memory = hash_arg_in_memory;
6430 sets[i].src_in_struct = hash_arg_in_struct;
6431 sets[i].src_elt = lookup (src, sets[i].src_hash_code, mode);
6432 }
6433
6434 /* If this is a single SET, we are setting a register, and we have an
6435 equivalent constant, we want to add a REG_NOTE. We don't want
6436 to write a REG_EQUAL note for a constant pseudo since verifying that
6437 that pseudo hasn't been eliminated is a pain. Such a note also
6438 won't help anything. */
6439 if (n_sets == 1 && src_const && GET_CODE (dest) == REG
6440 && GET_CODE (src_const) != REG)
6441 {
6442 rtx tem = find_reg_note (insn, REG_EQUAL, NULL_RTX);
6443
6444 /* Record the actual constant value in a REG_EQUAL note, making
6445 a new one if one does not already exist. */
6446 if (tem)
6447 XEXP (tem, 0) = src_const;
6448 else
6449 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL,
6450 src_const, REG_NOTES (insn));
6451
6452 /* If storing a constant value in a register that
6453 previously held the constant value 0,
6454 record this fact with a REG_WAS_0 note on this insn.
6455
6456 Note that the *register* is required to have previously held 0,
6457 not just any register in the quantity and we must point to the
6458 insn that set that register to zero.
6459
6460 Rather than track each register individually, we just see if
6461 the last set for this quantity was for this register. */
6462
6463 if (REGNO_QTY_VALID_P (REGNO (dest))
6464 && qty_const[reg_qty[REGNO (dest)]] == const0_rtx)
6465 {
6466 /* See if we previously had a REG_WAS_0 note. */
6467 rtx note = find_reg_note (insn, REG_WAS_0, NULL_RTX);
6468 rtx const_insn = qty_const_insn[reg_qty[REGNO (dest)]];
6469
6470 if ((tem = single_set (const_insn)) != 0
6471 && rtx_equal_p (SET_DEST (tem), dest))
6472 {
6473 if (note)
6474 XEXP (note, 0) = const_insn;
6475 else
6476 REG_NOTES (insn) = gen_rtx (INSN_LIST, REG_WAS_0,
6477 const_insn, REG_NOTES (insn));
6478 }
6479 }
6480 }
6481
6482 /* Now deal with the destination. */
6483 do_not_record = 0;
6484 sets[i].inner_dest_loc = &SET_DEST (sets[0].rtl);
6485
6486 /* Look within any SIGN_EXTRACT or ZERO_EXTRACT
6487 to the MEM or REG within it. */
6488 while (GET_CODE (dest) == SIGN_EXTRACT
6489 || GET_CODE (dest) == ZERO_EXTRACT
6490 || GET_CODE (dest) == SUBREG
6491 || GET_CODE (dest) == STRICT_LOW_PART)
6492 {
6493 sets[i].inner_dest_loc = &XEXP (dest, 0);
6494 dest = XEXP (dest, 0);
6495 }
6496
6497 sets[i].inner_dest = dest;
6498
6499 if (GET_CODE (dest) == MEM)
6500 {
6501 dest = fold_rtx (dest, insn);
6502
6503 /* Decide whether we invalidate everything in memory,
6504 or just things at non-fixed places.
6505 Writing a large aggregate must invalidate everything
6506 because we don't know how long it is. */
6507 note_mem_written (dest, &writes_memory);
6508 }
6509
6510 /* Compute the hash code of the destination now,
6511 before the effects of this instruction are recorded,
6512 since the register values used in the address computation
6513 are those before this instruction. */
6514 sets[i].dest_hash_code = HASH (dest, mode);
6515
6516 /* Don't enter a bit-field in the hash table
6517 because the value in it after the store
6518 may not equal what was stored, due to truncation. */
6519
6520 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
6521 || GET_CODE (SET_DEST (sets[i].rtl)) == SIGN_EXTRACT)
6522 {
6523 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
6524
6525 if (src_const != 0 && GET_CODE (src_const) == CONST_INT
6526 && GET_CODE (width) == CONST_INT
6527 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
6528 && ! (INTVAL (src_const)
6529 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
6530 /* Exception: if the value is constant,
6531 and it won't be truncated, record it. */
6532 ;
6533 else
6534 {
6535 /* This is chosen so that the destination will be invalidated
6536 but no new value will be recorded.
6537 We must invalidate because sometimes constant
6538 values can be recorded for bitfields. */
6539 sets[i].src_elt = 0;
6540 sets[i].src_volatile = 1;
6541 src_eqv = 0;
6542 src_eqv_elt = 0;
6543 }
6544 }
6545
6546 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
6547 the insn. */
6548 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
6549 {
6550 PUT_CODE (insn, NOTE);
6551 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
6552 NOTE_SOURCE_FILE (insn) = 0;
6553 cse_jumps_altered = 1;
6554 /* One less use of the label this insn used to jump to. */
6555 --LABEL_NUSES (JUMP_LABEL (insn));
6556 /* No more processing for this set. */
6557 sets[i].rtl = 0;
6558 }
6559
6560 /* If this SET is now setting PC to a label, we know it used to
6561 be a conditional or computed branch. So we see if we can follow
6562 it. If it was a computed branch, delete it and re-emit. */
6563 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF)
6564 {
6565 rtx p;
6566
6567 /* If this is not in the format for a simple branch and
6568 we are the only SET in it, re-emit it. */
6569 if (! simplejump_p (insn) && n_sets == 1)
6570 {
6571 rtx new = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
6572 JUMP_LABEL (new) = XEXP (src, 0);
6573 LABEL_NUSES (XEXP (src, 0))++;
6574 delete_insn (insn);
6575 insn = new;
6576 }
6577
6578 /* Now that we've converted this jump to an unconditional jump,
6579 there is dead code after it. Delete the dead code until we
6580 reach a BARRIER, the end of the function, or a label. Do
6581 not delete NOTEs except for NOTE_INSN_DELETED since later
6582 phases assume these notes are retained. */
6583
6584 p = insn;
6585
6586 while (NEXT_INSN (p) != 0
6587 && GET_CODE (NEXT_INSN (p)) != BARRIER
6588 && GET_CODE (NEXT_INSN (p)) != CODE_LABEL)
6589 {
6590 if (GET_CODE (NEXT_INSN (p)) != NOTE
6591 || NOTE_LINE_NUMBER (NEXT_INSN (p)) == NOTE_INSN_DELETED)
6592 delete_insn (NEXT_INSN (p));
6593 else
6594 p = NEXT_INSN (p);
6595 }
6596
6597 /* If we don't have a BARRIER immediately after INSN, put one there.
6598 Much code assumes that there are no NOTEs between a JUMP_INSN and
6599 BARRIER. */
6600
6601 if (NEXT_INSN (insn) == 0
6602 || GET_CODE (NEXT_INSN (insn)) != BARRIER)
6603 emit_barrier_after (insn);
6604
6605 /* We might have two BARRIERs separated by notes. Delete the second
6606 one if so. */
6607
6608 if (p != insn && NEXT_INSN (p) != 0
6609 && GET_CODE (NEXT_INSN (p)) == BARRIER)
6610 delete_insn (NEXT_INSN (p));
6611
6612 cse_jumps_altered = 1;
6613 sets[i].rtl = 0;
6614 }
6615
6616 /* If destination is volatile, invalidate it and then do no further
6617 processing for this assignment. */
6618
6619 else if (do_not_record)
6620 {
6621 if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG
6622 || GET_CODE (dest) == MEM)
6623 invalidate (dest);
6624 sets[i].rtl = 0;
6625 }
6626
6627 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
6628 sets[i].dest_hash_code = HASH (SET_DEST (sets[i].rtl), mode);
6629
6630 #ifdef HAVE_cc0
6631 /* If setting CC0, record what it was set to, or a constant, if it
6632 is equivalent to a constant. If it is being set to a floating-point
6633 value, make a COMPARE with the appropriate constant of 0. If we
6634 don't do this, later code can interpret this as a test against
6635 const0_rtx, which can cause problems if we try to put it into an
6636 insn as a floating-point operand. */
6637 if (dest == cc0_rtx)
6638 {
6639 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
6640 this_insn_cc0_mode = mode;
6641 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
6642 this_insn_cc0 = gen_rtx (COMPARE, VOIDmode, this_insn_cc0,
6643 CONST0_RTX (mode));
6644 }
6645 #endif
6646 }
6647
6648 /* Now enter all non-volatile source expressions in the hash table
6649 if they are not already present.
6650 Record their equivalence classes in src_elt.
6651 This way we can insert the corresponding destinations into
6652 the same classes even if the actual sources are no longer in them
6653 (having been invalidated). */
6654
6655 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
6656 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
6657 {
6658 register struct table_elt *elt;
6659 register struct table_elt *classp = sets[0].src_elt;
6660 rtx dest = SET_DEST (sets[0].rtl);
6661 enum machine_mode eqvmode = GET_MODE (dest);
6662
6663 if (GET_CODE (dest) == STRICT_LOW_PART)
6664 {
6665 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
6666 classp = 0;
6667 }
6668 if (insert_regs (src_eqv, classp, 0))
6669 src_eqv_hash_code = HASH (src_eqv, eqvmode);
6670 elt = insert (src_eqv, classp, src_eqv_hash_code, eqvmode);
6671 elt->in_memory = src_eqv_in_memory;
6672 elt->in_struct = src_eqv_in_struct;
6673 src_eqv_elt = elt;
6674 }
6675
6676 for (i = 0; i < n_sets; i++)
6677 if (sets[i].rtl && ! sets[i].src_volatile
6678 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
6679 {
6680 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
6681 {
6682 /* REG_EQUAL in setting a STRICT_LOW_PART
6683 gives an equivalent for the entire destination register,
6684 not just for the subreg being stored in now.
6685 This is a more interesting equivalence, so we arrange later
6686 to treat the entire reg as the destination. */
6687 sets[i].src_elt = src_eqv_elt;
6688 sets[i].src_hash_code = src_eqv_hash_code;
6689 }
6690 else
6691 {
6692 /* Insert source and constant equivalent into hash table, if not
6693 already present. */
6694 register struct table_elt *classp = src_eqv_elt;
6695 register rtx src = sets[i].src;
6696 register rtx dest = SET_DEST (sets[i].rtl);
6697 enum machine_mode mode
6698 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
6699
6700 if (sets[i].src_elt == 0)
6701 {
6702 register struct table_elt *elt;
6703
6704 /* Note that these insert_regs calls cannot remove
6705 any of the src_elt's, because they would have failed to
6706 match if not still valid. */
6707 if (insert_regs (src, classp, 0))
6708 sets[i].src_hash_code = HASH (src, mode);
6709 elt = insert (src, classp, sets[i].src_hash_code, mode);
6710 elt->in_memory = sets[i].src_in_memory;
6711 elt->in_struct = sets[i].src_in_struct;
6712 sets[i].src_elt = classp = elt;
6713 }
6714
6715 if (sets[i].src_const && sets[i].src_const_elt == 0
6716 && src != sets[i].src_const
6717 && ! rtx_equal_p (sets[i].src_const, src))
6718 sets[i].src_elt = insert (sets[i].src_const, classp,
6719 sets[i].src_const_hash_code, mode);
6720 }
6721 }
6722 else if (sets[i].src_elt == 0)
6723 /* If we did not insert the source into the hash table (e.g., it was
6724 volatile), note the equivalence class for the REG_EQUAL value, if any,
6725 so that the destination goes into that class. */
6726 sets[i].src_elt = src_eqv_elt;
6727
6728 invalidate_from_clobbers (&writes_memory, x);
6729
6730 /* Some registers are invalidated by subroutine calls. Memory is
6731 invalidated by non-constant calls. */
6732
6733 if (GET_CODE (insn) == CALL_INSN)
6734 {
6735 static struct write_data everything = {0, 1, 1, 1};
6736
6737 if (! CONST_CALL_P (insn))
6738 invalidate_memory (&everything);
6739 invalidate_for_call ();
6740 }
6741
6742 /* Now invalidate everything set by this instruction.
6743 If a SUBREG or other funny destination is being set,
6744 sets[i].rtl is still nonzero, so here we invalidate the reg
6745 a part of which is being set. */
6746
6747 for (i = 0; i < n_sets; i++)
6748 if (sets[i].rtl)
6749 {
6750 register rtx dest = sets[i].inner_dest;
6751
6752 /* Needed for registers to remove the register from its
6753 previous quantity's chain.
6754 Needed for memory if this is a nonvarying address, unless
6755 we have just done an invalidate_memory that covers even those. */
6756 if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG
6757 || (! writes_memory.all && ! cse_rtx_addr_varies_p (dest)))
6758 invalidate (dest);
6759 }
6760
6761 /* Make sure registers mentioned in destinations
6762 are safe for use in an expression to be inserted.
6763 This removes from the hash table
6764 any invalid entry that refers to one of these registers.
6765
6766 We don't care about the return value from mention_regs because
6767 we are going to hash the SET_DEST values unconditionally. */
6768
6769 for (i = 0; i < n_sets; i++)
6770 if (sets[i].rtl && GET_CODE (SET_DEST (sets[i].rtl)) != REG)
6771 mention_regs (SET_DEST (sets[i].rtl));
6772
6773 /* We may have just removed some of the src_elt's from the hash table.
6774 So replace each one with the current head of the same class. */
6775
6776 for (i = 0; i < n_sets; i++)
6777 if (sets[i].rtl)
6778 {
6779 if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
6780 /* If elt was removed, find current head of same class,
6781 or 0 if nothing remains of that class. */
6782 {
6783 register struct table_elt *elt = sets[i].src_elt;
6784
6785 while (elt && elt->prev_same_value)
6786 elt = elt->prev_same_value;
6787
6788 while (elt && elt->first_same_value == 0)
6789 elt = elt->next_same_value;
6790 sets[i].src_elt = elt ? elt->first_same_value : 0;
6791 }
6792 }
6793
6794 /* Now insert the destinations into their equivalence classes. */
6795
6796 for (i = 0; i < n_sets; i++)
6797 if (sets[i].rtl)
6798 {
6799 register rtx dest = SET_DEST (sets[i].rtl);
6800 register struct table_elt *elt;
6801
6802 /* Don't record value if we are not supposed to risk allocating
6803 floating-point values in registers that might be wider than
6804 memory. */
6805 if ((flag_float_store
6806 && GET_CODE (dest) == MEM
6807 && GET_MODE_CLASS (GET_MODE (dest)) == MODE_FLOAT)
6808 /* Don't record values of destinations set inside a libcall block
6809 since we might delete the libcall. Things should have been set
6810 up so we won't want to reuse such a value, but we play it safe
6811 here. */
6812 || in_libcall_block
6813 /* If we didn't put a REG_EQUAL value or a source into the hash
6814 table, there is no point is recording DEST. */
6815 || sets[i].src_elt == 0)
6816 continue;
6817
6818 /* STRICT_LOW_PART isn't part of the value BEING set,
6819 and neither is the SUBREG inside it.
6820 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
6821 if (GET_CODE (dest) == STRICT_LOW_PART)
6822 dest = SUBREG_REG (XEXP (dest, 0));
6823
6824 if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG)
6825 /* Registers must also be inserted into chains for quantities. */
6826 if (insert_regs (dest, sets[i].src_elt, 1))
6827 /* If `insert_regs' changes something, the hash code must be
6828 recalculated. */
6829 sets[i].dest_hash_code = HASH (dest, GET_MODE (dest));
6830
6831 elt = insert (dest, sets[i].src_elt,
6832 sets[i].dest_hash_code, GET_MODE (dest));
6833 elt->in_memory = GET_CODE (sets[i].inner_dest) == MEM;
6834 if (elt->in_memory)
6835 {
6836 /* This implicitly assumes a whole struct
6837 need not have MEM_IN_STRUCT_P.
6838 But a whole struct is *supposed* to have MEM_IN_STRUCT_P. */
6839 elt->in_struct = (MEM_IN_STRUCT_P (sets[i].inner_dest)
6840 || sets[i].inner_dest != SET_DEST (sets[i].rtl));
6841 }
6842
6843 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
6844 narrower than M2, and both M1 and M2 are the same number of words,
6845 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
6846 make that equivalence as well.
6847
6848 However, BAR may have equivalences for which gen_lowpart_if_possible
6849 will produce a simpler value than gen_lowpart_if_possible applied to
6850 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
6851 BAR's equivalences. If we don't get a simplified form, make
6852 the SUBREG. It will not be used in an equivalence, but will
6853 cause two similar assignments to be detected.
6854
6855 Note the loop below will find SUBREG_REG (DEST) since we have
6856 already entered SRC and DEST of the SET in the table. */
6857
6858 if (GET_CODE (dest) == SUBREG
6859 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) / UNITS_PER_WORD
6860 == GET_MODE_SIZE (GET_MODE (dest)) / UNITS_PER_WORD)
6861 && (GET_MODE_SIZE (GET_MODE (dest))
6862 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
6863 && sets[i].src_elt != 0)
6864 {
6865 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
6866 struct table_elt *elt, *classp = 0;
6867
6868 for (elt = sets[i].src_elt->first_same_value; elt;
6869 elt = elt->next_same_value)
6870 {
6871 rtx new_src = 0;
6872 int src_hash;
6873 struct table_elt *src_elt;
6874
6875 /* Ignore invalid entries. */
6876 if (GET_CODE (elt->exp) != REG
6877 && ! exp_equiv_p (elt->exp, elt->exp, 1, 0))
6878 continue;
6879
6880 new_src = gen_lowpart_if_possible (new_mode, elt->exp);
6881 if (new_src == 0)
6882 new_src = gen_rtx (SUBREG, new_mode, elt->exp, 0);
6883
6884 src_hash = HASH (new_src, new_mode);
6885 src_elt = lookup (new_src, src_hash, new_mode);
6886
6887 /* Put the new source in the hash table is if isn't
6888 already. */
6889 if (src_elt == 0)
6890 {
6891 if (insert_regs (new_src, classp, 0))
6892 src_hash = HASH (new_src, new_mode);
6893 src_elt = insert (new_src, classp, src_hash, new_mode);
6894 src_elt->in_memory = elt->in_memory;
6895 src_elt->in_struct = elt->in_struct;
6896 }
6897 else if (classp && classp != src_elt->first_same_value)
6898 /* Show that two things that we've seen before are
6899 actually the same. */
6900 merge_equiv_classes (src_elt, classp);
6901
6902 classp = src_elt->first_same_value;
6903 }
6904 }
6905 }
6906
6907 /* Special handling for (set REG0 REG1)
6908 where REG0 is the "cheapest", cheaper than REG1.
6909 After cse, REG1 will probably not be used in the sequel,
6910 so (if easily done) change this insn to (set REG1 REG0) and
6911 replace REG1 with REG0 in the previous insn that computed their value.
6912 Then REG1 will become a dead store and won't cloud the situation
6913 for later optimizations.
6914
6915 Do not make this change if REG1 is a hard register, because it will
6916 then be used in the sequel and we may be changing a two-operand insn
6917 into a three-operand insn.
6918
6919 Also do not do this if we are operating on a copy of INSN. */
6920
6921 if (n_sets == 1 && sets[0].rtl && GET_CODE (SET_DEST (sets[0].rtl)) == REG
6922 && NEXT_INSN (PREV_INSN (insn)) == insn
6923 && GET_CODE (SET_SRC (sets[0].rtl)) == REG
6924 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
6925 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl)))
6926 && (qty_first_reg[reg_qty[REGNO (SET_SRC (sets[0].rtl))]]
6927 == REGNO (SET_DEST (sets[0].rtl))))
6928 {
6929 rtx prev = PREV_INSN (insn);
6930 while (prev && GET_CODE (prev) == NOTE)
6931 prev = PREV_INSN (prev);
6932
6933 if (prev && GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SET
6934 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl))
6935 {
6936 rtx dest = SET_DEST (sets[0].rtl);
6937 rtx note = find_reg_note (prev, REG_EQUIV, NULL_RTX);
6938
6939 validate_change (prev, & SET_DEST (PATTERN (prev)), dest, 1);
6940 validate_change (insn, & SET_DEST (sets[0].rtl),
6941 SET_SRC (sets[0].rtl), 1);
6942 validate_change (insn, & SET_SRC (sets[0].rtl), dest, 1);
6943 apply_change_group ();
6944
6945 /* If REG1 was equivalent to a constant, REG0 is not. */
6946 if (note)
6947 PUT_REG_NOTE_KIND (note, REG_EQUAL);
6948
6949 /* If there was a REG_WAS_0 note on PREV, remove it. Move
6950 any REG_WAS_0 note on INSN to PREV. */
6951 note = find_reg_note (prev, REG_WAS_0, NULL_RTX);
6952 if (note)
6953 remove_note (prev, note);
6954
6955 note = find_reg_note (insn, REG_WAS_0, NULL_RTX);
6956 if (note)
6957 {
6958 remove_note (insn, note);
6959 XEXP (note, 1) = REG_NOTES (prev);
6960 REG_NOTES (prev) = note;
6961 }
6962 }
6963 }
6964
6965 /* If this is a conditional jump insn, record any known equivalences due to
6966 the condition being tested. */
6967
6968 last_jump_equiv_class = 0;
6969 if (GET_CODE (insn) == JUMP_INSN
6970 && n_sets == 1 && GET_CODE (x) == SET
6971 && GET_CODE (SET_SRC (x)) == IF_THEN_ELSE)
6972 record_jump_equiv (insn, 0);
6973
6974 #ifdef HAVE_cc0
6975 /* If the previous insn set CC0 and this insn no longer references CC0,
6976 delete the previous insn. Here we use the fact that nothing expects CC0
6977 to be valid over an insn, which is true until the final pass. */
6978 if (prev_insn && GET_CODE (prev_insn) == INSN
6979 && (tem = single_set (prev_insn)) != 0
6980 && SET_DEST (tem) == cc0_rtx
6981 && ! reg_mentioned_p (cc0_rtx, x))
6982 {
6983 PUT_CODE (prev_insn, NOTE);
6984 NOTE_LINE_NUMBER (prev_insn) = NOTE_INSN_DELETED;
6985 NOTE_SOURCE_FILE (prev_insn) = 0;
6986 }
6987
6988 prev_insn_cc0 = this_insn_cc0;
6989 prev_insn_cc0_mode = this_insn_cc0_mode;
6990 #endif
6991
6992 prev_insn = insn;
6993 }
6994 \f
6995 /* Store 1 in *WRITES_PTR for those categories of memory ref
6996 that must be invalidated when the expression WRITTEN is stored in.
6997 If WRITTEN is null, say everything must be invalidated. */
6998
6999 static void
7000 note_mem_written (written, writes_ptr)
7001 rtx written;
7002 struct write_data *writes_ptr;
7003 {
7004 static struct write_data everything = {0, 1, 1, 1};
7005
7006 if (written == 0)
7007 *writes_ptr = everything;
7008 else if (GET_CODE (written) == MEM)
7009 {
7010 /* Pushing or popping the stack invalidates just the stack pointer. */
7011 rtx addr = XEXP (written, 0);
7012 if ((GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
7013 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
7014 && GET_CODE (XEXP (addr, 0)) == REG
7015 && REGNO (XEXP (addr, 0)) == STACK_POINTER_REGNUM)
7016 {
7017 writes_ptr->sp = 1;
7018 return;
7019 }
7020 else if (GET_MODE (written) == BLKmode)
7021 *writes_ptr = everything;
7022 else if (cse_rtx_addr_varies_p (written))
7023 {
7024 /* A varying address that is a sum indicates an array element,
7025 and that's just as good as a structure element
7026 in implying that we need not invalidate scalar variables.
7027 However, we must allow QImode aliasing of scalars, because the
7028 ANSI C standard allows character pointers to alias anything. */
7029 if (! ((MEM_IN_STRUCT_P (written)
7030 || GET_CODE (XEXP (written, 0)) == PLUS)
7031 && GET_MODE (written) != QImode))
7032 writes_ptr->all = 1;
7033 writes_ptr->nonscalar = 1;
7034 }
7035 writes_ptr->var = 1;
7036 }
7037 }
7038
7039 /* Perform invalidation on the basis of everything about an insn
7040 except for invalidating the actual places that are SET in it.
7041 This includes the places CLOBBERed, and anything that might
7042 alias with something that is SET or CLOBBERed.
7043
7044 W points to the writes_memory for this insn, a struct write_data
7045 saying which kinds of memory references must be invalidated.
7046 X is the pattern of the insn. */
7047
7048 static void
7049 invalidate_from_clobbers (w, x)
7050 struct write_data *w;
7051 rtx x;
7052 {
7053 /* If W->var is not set, W specifies no action.
7054 If W->all is set, this step gets all memory refs
7055 so they can be ignored in the rest of this function. */
7056 if (w->var)
7057 invalidate_memory (w);
7058
7059 if (w->sp)
7060 {
7061 if (reg_tick[STACK_POINTER_REGNUM] >= 0)
7062 reg_tick[STACK_POINTER_REGNUM]++;
7063
7064 /* This should be *very* rare. */
7065 if (TEST_HARD_REG_BIT (hard_regs_in_table, STACK_POINTER_REGNUM))
7066 invalidate (stack_pointer_rtx);
7067 }
7068
7069 if (GET_CODE (x) == CLOBBER)
7070 {
7071 rtx ref = XEXP (x, 0);
7072 if (ref
7073 && (GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
7074 || (GET_CODE (ref) == MEM && ! w->all)))
7075 invalidate (ref);
7076 }
7077 else if (GET_CODE (x) == PARALLEL)
7078 {
7079 register int i;
7080 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
7081 {
7082 register rtx y = XVECEXP (x, 0, i);
7083 if (GET_CODE (y) == CLOBBER)
7084 {
7085 rtx ref = XEXP (y, 0);
7086 if (ref
7087 &&(GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
7088 || (GET_CODE (ref) == MEM && !w->all)))
7089 invalidate (ref);
7090 }
7091 }
7092 }
7093 }
7094 \f
7095 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
7096 and replace any registers in them with either an equivalent constant
7097 or the canonical form of the register. If we are inside an address,
7098 only do this if the address remains valid.
7099
7100 OBJECT is 0 except when within a MEM in which case it is the MEM.
7101
7102 Return the replacement for X. */
7103
7104 static rtx
7105 cse_process_notes (x, object)
7106 rtx x;
7107 rtx object;
7108 {
7109 enum rtx_code code = GET_CODE (x);
7110 char *fmt = GET_RTX_FORMAT (code);
7111 int qty;
7112 int i;
7113
7114 switch (code)
7115 {
7116 case CONST_INT:
7117 case CONST:
7118 case SYMBOL_REF:
7119 case LABEL_REF:
7120 case CONST_DOUBLE:
7121 case PC:
7122 case CC0:
7123 case LO_SUM:
7124 return x;
7125
7126 case MEM:
7127 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), x);
7128 return x;
7129
7130 case EXPR_LIST:
7131 case INSN_LIST:
7132 if (REG_NOTE_KIND (x) == REG_EQUAL)
7133 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX);
7134 if (XEXP (x, 1))
7135 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX);
7136 return x;
7137
7138 case SIGN_EXTEND:
7139 case ZERO_EXTEND:
7140 {
7141 rtx new = cse_process_notes (XEXP (x, 0), object);
7142 /* We don't substitute VOIDmode constants into these rtx,
7143 since they would impede folding. */
7144 if (GET_MODE (new) != VOIDmode)
7145 validate_change (object, &XEXP (x, 0), new, 0);
7146 return x;
7147 }
7148
7149 case REG:
7150 i = reg_qty[REGNO (x)];
7151
7152 /* Return a constant or a constant register. */
7153 if (REGNO_QTY_VALID_P (REGNO (x))
7154 && qty_const[i] != 0
7155 && (CONSTANT_P (qty_const[i])
7156 || GET_CODE (qty_const[i]) == REG))
7157 {
7158 rtx new = gen_lowpart_if_possible (GET_MODE (x), qty_const[i]);
7159 if (new)
7160 return new;
7161 }
7162
7163 /* Otherwise, canonicalize this register. */
7164 return canon_reg (x, NULL_RTX);
7165 }
7166
7167 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7168 if (fmt[i] == 'e')
7169 validate_change (object, &XEXP (x, i),
7170 cse_process_notes (XEXP (x, i), object), NULL_RTX);
7171
7172 return x;
7173 }
7174 \f
7175 /* Find common subexpressions between the end test of a loop and the beginning
7176 of the loop. LOOP_START is the CODE_LABEL at the start of a loop.
7177
7178 Often we have a loop where an expression in the exit test is used
7179 in the body of the loop. For example "while (*p) *q++ = *p++;".
7180 Because of the way we duplicate the loop exit test in front of the loop,
7181 however, we don't detect that common subexpression. This will be caught
7182 when global cse is implemented, but this is a quite common case.
7183
7184 This function handles the most common cases of these common expressions.
7185 It is called after we have processed the basic block ending with the
7186 NOTE_INSN_LOOP_END note that ends a loop and the previous JUMP_INSN
7187 jumps to a label used only once. */
7188
7189 static void
7190 cse_around_loop (loop_start)
7191 rtx loop_start;
7192 {
7193 rtx insn;
7194 int i;
7195 struct table_elt *p;
7196
7197 /* If the jump at the end of the loop doesn't go to the start, we don't
7198 do anything. */
7199 for (insn = PREV_INSN (loop_start);
7200 insn && (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) >= 0);
7201 insn = PREV_INSN (insn))
7202 ;
7203
7204 if (insn == 0
7205 || GET_CODE (insn) != NOTE
7206 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG)
7207 return;
7208
7209 /* If the last insn of the loop (the end test) was an NE comparison,
7210 we will interpret it as an EQ comparison, since we fell through
7211 the loop. Any equivalences resulting from that comparison are
7212 therefore not valid and must be invalidated. */
7213 if (last_jump_equiv_class)
7214 for (p = last_jump_equiv_class->first_same_value; p;
7215 p = p->next_same_value)
7216 if (GET_CODE (p->exp) == MEM || GET_CODE (p->exp) == REG
7217 || GET_CODE (p->exp) == SUBREG)
7218 invalidate (p->exp);
7219
7220 /* Process insns starting after LOOP_START until we hit a CALL_INSN or
7221 a CODE_LABEL (we could handle a CALL_INSN, but it isn't worth it).
7222
7223 The only thing we do with SET_DEST is invalidate entries, so we
7224 can safely process each SET in order. It is slightly less efficient
7225 to do so, but we only want to handle the most common cases. */
7226
7227 for (insn = NEXT_INSN (loop_start);
7228 GET_CODE (insn) != CALL_INSN && GET_CODE (insn) != CODE_LABEL
7229 && ! (GET_CODE (insn) == NOTE
7230 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
7231 insn = NEXT_INSN (insn))
7232 {
7233 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
7234 && (GET_CODE (PATTERN (insn)) == SET
7235 || GET_CODE (PATTERN (insn)) == CLOBBER))
7236 cse_set_around_loop (PATTERN (insn), insn, loop_start);
7237 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
7238 && GET_CODE (PATTERN (insn)) == PARALLEL)
7239 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7240 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET
7241 || GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
7242 cse_set_around_loop (XVECEXP (PATTERN (insn), 0, i), insn,
7243 loop_start);
7244 }
7245 }
7246 \f
7247 /* Variable used for communications between the next two routines. */
7248
7249 static struct write_data skipped_writes_memory;
7250
7251 /* Process one SET of an insn that was skipped. We ignore CLOBBERs
7252 since they are done elsewhere. This function is called via note_stores. */
7253
7254 static void
7255 invalidate_skipped_set (dest, set)
7256 rtx set;
7257 rtx dest;
7258 {
7259 if (GET_CODE (set) == CLOBBER
7260 #ifdef HAVE_cc0
7261 || dest == cc0_rtx
7262 #endif
7263 || dest == pc_rtx)
7264 return;
7265
7266 if (GET_CODE (dest) == MEM)
7267 note_mem_written (dest, &skipped_writes_memory);
7268
7269 if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG
7270 || (! skipped_writes_memory.all && ! cse_rtx_addr_varies_p (dest)))
7271 invalidate (dest);
7272 }
7273
7274 /* Invalidate all insns from START up to the end of the function or the
7275 next label. This called when we wish to CSE around a block that is
7276 conditionally executed. */
7277
7278 static void
7279 invalidate_skipped_block (start)
7280 rtx start;
7281 {
7282 rtx insn;
7283 int i;
7284 static struct write_data init = {0, 0, 0, 0};
7285 static struct write_data everything = {0, 1, 1, 1};
7286
7287 for (insn = start; insn && GET_CODE (insn) != CODE_LABEL;
7288 insn = NEXT_INSN (insn))
7289 {
7290 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
7291 continue;
7292
7293 skipped_writes_memory = init;
7294
7295 if (GET_CODE (insn) == CALL_INSN)
7296 {
7297 invalidate_for_call ();
7298 skipped_writes_memory = everything;
7299 }
7300
7301 note_stores (PATTERN (insn), invalidate_skipped_set);
7302 invalidate_from_clobbers (&skipped_writes_memory, PATTERN (insn));
7303 }
7304 }
7305 \f
7306 /* Used for communication between the following two routines; contains a
7307 value to be checked for modification. */
7308
7309 static rtx cse_check_loop_start_value;
7310
7311 /* If modifying X will modify the value in CSE_CHECK_LOOP_START_VALUE,
7312 indicate that fact by setting CSE_CHECK_LOOP_START_VALUE to 0. */
7313
7314 static void
7315 cse_check_loop_start (x, set)
7316 rtx x;
7317 rtx set;
7318 {
7319 if (cse_check_loop_start_value == 0
7320 || GET_CODE (x) == CC0 || GET_CODE (x) == PC)
7321 return;
7322
7323 if ((GET_CODE (x) == MEM && GET_CODE (cse_check_loop_start_value) == MEM)
7324 || reg_overlap_mentioned_p (x, cse_check_loop_start_value))
7325 cse_check_loop_start_value = 0;
7326 }
7327
7328 /* X is a SET or CLOBBER contained in INSN that was found near the start of
7329 a loop that starts with the label at LOOP_START.
7330
7331 If X is a SET, we see if its SET_SRC is currently in our hash table.
7332 If so, we see if it has a value equal to some register used only in the
7333 loop exit code (as marked by jump.c).
7334
7335 If those two conditions are true, we search backwards from the start of
7336 the loop to see if that same value was loaded into a register that still
7337 retains its value at the start of the loop.
7338
7339 If so, we insert an insn after the load to copy the destination of that
7340 load into the equivalent register and (try to) replace our SET_SRC with that
7341 register.
7342
7343 In any event, we invalidate whatever this SET or CLOBBER modifies. */
7344
7345 static void
7346 cse_set_around_loop (x, insn, loop_start)
7347 rtx x;
7348 rtx insn;
7349 rtx loop_start;
7350 {
7351 rtx p;
7352 struct table_elt *src_elt;
7353 static struct write_data init = {0, 0, 0, 0};
7354 struct write_data writes_memory;
7355
7356 writes_memory = init;
7357
7358 /* If this is a SET, see if we can replace SET_SRC, but ignore SETs that
7359 are setting PC or CC0 or whose SET_SRC is already a register. */
7360 if (GET_CODE (x) == SET
7361 && GET_CODE (SET_DEST (x)) != PC && GET_CODE (SET_DEST (x)) != CC0
7362 && GET_CODE (SET_SRC (x)) != REG)
7363 {
7364 src_elt = lookup (SET_SRC (x),
7365 HASH (SET_SRC (x), GET_MODE (SET_DEST (x))),
7366 GET_MODE (SET_DEST (x)));
7367
7368 if (src_elt)
7369 for (src_elt = src_elt->first_same_value; src_elt;
7370 src_elt = src_elt->next_same_value)
7371 if (GET_CODE (src_elt->exp) == REG && REG_LOOP_TEST_P (src_elt->exp)
7372 && COST (src_elt->exp) < COST (SET_SRC (x)))
7373 {
7374 rtx p, set;
7375
7376 /* Look for an insn in front of LOOP_START that sets
7377 something in the desired mode to SET_SRC (x) before we hit
7378 a label or CALL_INSN. */
7379
7380 for (p = prev_nonnote_insn (loop_start);
7381 p && GET_CODE (p) != CALL_INSN
7382 && GET_CODE (p) != CODE_LABEL;
7383 p = prev_nonnote_insn (p))
7384 if ((set = single_set (p)) != 0
7385 && GET_CODE (SET_DEST (set)) == REG
7386 && GET_MODE (SET_DEST (set)) == src_elt->mode
7387 && rtx_equal_p (SET_SRC (set), SET_SRC (x)))
7388 {
7389 /* We now have to ensure that nothing between P
7390 and LOOP_START modified anything referenced in
7391 SET_SRC (x). We know that nothing within the loop
7392 can modify it, or we would have invalidated it in
7393 the hash table. */
7394 rtx q;
7395
7396 cse_check_loop_start_value = SET_SRC (x);
7397 for (q = p; q != loop_start; q = NEXT_INSN (q))
7398 if (GET_RTX_CLASS (GET_CODE (q)) == 'i')
7399 note_stores (PATTERN (q), cse_check_loop_start);
7400
7401 /* If nothing was changed and we can replace our
7402 SET_SRC, add an insn after P to copy its destination
7403 to what we will be replacing SET_SRC with. */
7404 if (cse_check_loop_start_value
7405 && validate_change (insn, &SET_SRC (x),
7406 src_elt->exp, 0))
7407 emit_insn_after (gen_move_insn (src_elt->exp,
7408 SET_DEST (set)),
7409 p);
7410 break;
7411 }
7412 }
7413 }
7414
7415 /* Now invalidate anything modified by X. */
7416 note_mem_written (SET_DEST (x), &writes_memory);
7417
7418 if (writes_memory.var)
7419 invalidate_memory (&writes_memory);
7420
7421 /* See comment on similar code in cse_insn for explanation of these tests. */
7422 if (GET_CODE (SET_DEST (x)) == REG || GET_CODE (SET_DEST (x)) == SUBREG
7423 || (GET_CODE (SET_DEST (x)) == MEM && ! writes_memory.all
7424 && ! cse_rtx_addr_varies_p (SET_DEST (x))))
7425 invalidate (SET_DEST (x));
7426 }
7427 \f
7428 /* Find the end of INSN's basic block and return its range,
7429 the total number of SETs in all the insns of the block, the last insn of the
7430 block, and the branch path.
7431
7432 The branch path indicates which branches should be followed. If a non-zero
7433 path size is specified, the block should be rescanned and a different set
7434 of branches will be taken. The branch path is only used if
7435 FLAG_CSE_FOLLOW_JUMPS or FLAG_CSE_SKIP_BLOCKS is non-zero.
7436
7437 DATA is a pointer to a struct cse_basic_block_data, defined below, that is
7438 used to describe the block. It is filled in with the information about
7439 the current block. The incoming structure's branch path, if any, is used
7440 to construct the output branch path. */
7441
7442 void
7443 cse_end_of_basic_block (insn, data, follow_jumps, after_loop, skip_blocks)
7444 rtx insn;
7445 struct cse_basic_block_data *data;
7446 int follow_jumps;
7447 int after_loop;
7448 int skip_blocks;
7449 {
7450 rtx p = insn, q;
7451 int nsets = 0;
7452 int low_cuid = INSN_CUID (insn), high_cuid = INSN_CUID (insn);
7453 rtx next = GET_RTX_CLASS (GET_CODE (insn)) == 'i' ? insn : next_real_insn (insn);
7454 int path_size = data->path_size;
7455 int path_entry = 0;
7456 int i;
7457
7458 /* Update the previous branch path, if any. If the last branch was
7459 previously TAKEN, mark it NOT_TAKEN. If it was previously NOT_TAKEN,
7460 shorten the path by one and look at the previous branch. We know that
7461 at least one branch must have been taken if PATH_SIZE is non-zero. */
7462 while (path_size > 0)
7463 {
7464 if (data->path[path_size - 1].status != NOT_TAKEN)
7465 {
7466 data->path[path_size - 1].status = NOT_TAKEN;
7467 break;
7468 }
7469 else
7470 path_size--;
7471 }
7472
7473 /* Scan to end of this basic block. */
7474 while (p && GET_CODE (p) != CODE_LABEL)
7475 {
7476 /* Don't cse out the end of a loop. This makes a difference
7477 only for the unusual loops that always execute at least once;
7478 all other loops have labels there so we will stop in any case.
7479 Cse'ing out the end of the loop is dangerous because it
7480 might cause an invariant expression inside the loop
7481 to be reused after the end of the loop. This would make it
7482 hard to move the expression out of the loop in loop.c,
7483 especially if it is one of several equivalent expressions
7484 and loop.c would like to eliminate it.
7485
7486 If we are running after loop.c has finished, we can ignore
7487 the NOTE_INSN_LOOP_END. */
7488
7489 if (! after_loop && GET_CODE (p) == NOTE
7490 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
7491 break;
7492
7493 /* Don't cse over a call to setjmp; on some machines (eg vax)
7494 the regs restored by the longjmp come from
7495 a later time than the setjmp. */
7496 if (GET_CODE (p) == NOTE
7497 && NOTE_LINE_NUMBER (p) == NOTE_INSN_SETJMP)
7498 break;
7499
7500 /* A PARALLEL can have lots of SETs in it,
7501 especially if it is really an ASM_OPERANDS. */
7502 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
7503 && GET_CODE (PATTERN (p)) == PARALLEL)
7504 nsets += XVECLEN (PATTERN (p), 0);
7505 else if (GET_CODE (p) != NOTE)
7506 nsets += 1;
7507
7508 /* Ignore insns made by CSE; they cannot affect the boundaries of
7509 the basic block. */
7510
7511 if (INSN_UID (p) <= max_uid && INSN_CUID (p) > high_cuid)
7512 high_cuid = INSN_CUID (p);
7513 if (INSN_UID (p) <= max_uid && INSN_CUID (p) < low_cuid)
7514 low_cuid = INSN_CUID (p);
7515
7516 /* See if this insn is in our branch path. If it is and we are to
7517 take it, do so. */
7518 if (path_entry < path_size && data->path[path_entry].branch == p)
7519 {
7520 if (data->path[path_entry].status != NOT_TAKEN)
7521 p = JUMP_LABEL (p);
7522
7523 /* Point to next entry in path, if any. */
7524 path_entry++;
7525 }
7526
7527 /* If this is a conditional jump, we can follow it if -fcse-follow-jumps
7528 was specified, we haven't reached our maximum path length, there are
7529 insns following the target of the jump, this is the only use of the
7530 jump label, and the target label is preceded by a BARRIER.
7531
7532 Alternatively, we can follow the jump if it branches around a
7533 block of code and there are no other branches into the block.
7534 In this case invalidate_skipped_block will be called to invalidate any
7535 registers set in the block when following the jump. */
7536
7537 else if ((follow_jumps || skip_blocks) && path_size < PATHLENGTH - 1
7538 && GET_CODE (p) == JUMP_INSN
7539 && GET_CODE (PATTERN (p)) == SET
7540 && GET_CODE (SET_SRC (PATTERN (p))) == IF_THEN_ELSE
7541 && LABEL_NUSES (JUMP_LABEL (p)) == 1
7542 && NEXT_INSN (JUMP_LABEL (p)) != 0)
7543 {
7544 for (q = PREV_INSN (JUMP_LABEL (p)); q; q = PREV_INSN (q))
7545 if ((GET_CODE (q) != NOTE
7546 || NOTE_LINE_NUMBER (q) == NOTE_INSN_LOOP_END
7547 || NOTE_LINE_NUMBER (q) == NOTE_INSN_SETJMP)
7548 && (GET_CODE (q) != CODE_LABEL || LABEL_NUSES (q) != 0))
7549 break;
7550
7551 /* If we ran into a BARRIER, this code is an extension of the
7552 basic block when the branch is taken. */
7553 if (follow_jumps && q != 0 && GET_CODE (q) == BARRIER)
7554 {
7555 /* Don't allow ourself to keep walking around an
7556 always-executed loop. */
7557 if (next_real_insn (q) == next)
7558 {
7559 p = NEXT_INSN (p);
7560 continue;
7561 }
7562
7563 /* Similarly, don't put a branch in our path more than once. */
7564 for (i = 0; i < path_entry; i++)
7565 if (data->path[i].branch == p)
7566 break;
7567
7568 if (i != path_entry)
7569 break;
7570
7571 data->path[path_entry].branch = p;
7572 data->path[path_entry++].status = TAKEN;
7573
7574 /* This branch now ends our path. It was possible that we
7575 didn't see this branch the last time around (when the
7576 insn in front of the target was a JUMP_INSN that was
7577 turned into a no-op). */
7578 path_size = path_entry;
7579
7580 p = JUMP_LABEL (p);
7581 /* Mark block so we won't scan it again later. */
7582 PUT_MODE (NEXT_INSN (p), QImode);
7583 }
7584 /* Detect a branch around a block of code. */
7585 else if (skip_blocks && q != 0 && GET_CODE (q) != CODE_LABEL)
7586 {
7587 register rtx tmp;
7588
7589 if (next_real_insn (q) == next)
7590 {
7591 p = NEXT_INSN (p);
7592 continue;
7593 }
7594
7595 for (i = 0; i < path_entry; i++)
7596 if (data->path[i].branch == p)
7597 break;
7598
7599 if (i != path_entry)
7600 break;
7601
7602 /* This is no_labels_between_p (p, q) with an added check for
7603 reaching the end of a function (in case Q precedes P). */
7604 for (tmp = NEXT_INSN (p); tmp && tmp != q; tmp = NEXT_INSN (tmp))
7605 if (GET_CODE (tmp) == CODE_LABEL)
7606 break;
7607
7608 if (tmp == q)
7609 {
7610 data->path[path_entry].branch = p;
7611 data->path[path_entry++].status = AROUND;
7612
7613 path_size = path_entry;
7614
7615 p = JUMP_LABEL (p);
7616 /* Mark block so we won't scan it again later. */
7617 PUT_MODE (NEXT_INSN (p), QImode);
7618 }
7619 }
7620 }
7621 p = NEXT_INSN (p);
7622 }
7623
7624 data->low_cuid = low_cuid;
7625 data->high_cuid = high_cuid;
7626 data->nsets = nsets;
7627 data->last = p;
7628
7629 /* If all jumps in the path are not taken, set our path length to zero
7630 so a rescan won't be done. */
7631 for (i = path_size - 1; i >= 0; i--)
7632 if (data->path[i].status != NOT_TAKEN)
7633 break;
7634
7635 if (i == -1)
7636 data->path_size = 0;
7637 else
7638 data->path_size = path_size;
7639
7640 /* End the current branch path. */
7641 data->path[path_size].branch = 0;
7642 }
7643 \f
7644 /* Perform cse on the instructions of a function.
7645 F is the first instruction.
7646 NREGS is one plus the highest pseudo-reg number used in the instruction.
7647
7648 AFTER_LOOP is 1 if this is the cse call done after loop optimization
7649 (only if -frerun-cse-after-loop).
7650
7651 Returns 1 if jump_optimize should be redone due to simplifications
7652 in conditional jump instructions. */
7653
7654 int
7655 cse_main (f, nregs, after_loop, file)
7656 rtx f;
7657 int nregs;
7658 int after_loop;
7659 FILE *file;
7660 {
7661 struct cse_basic_block_data val;
7662 register rtx insn = f;
7663 register int i;
7664
7665 cse_jumps_altered = 0;
7666 constant_pool_entries_cost = 0;
7667 val.path_size = 0;
7668
7669 init_recog ();
7670
7671 max_reg = nregs;
7672
7673 all_minus_one = (int *) alloca (nregs * sizeof (int));
7674 consec_ints = (int *) alloca (nregs * sizeof (int));
7675
7676 for (i = 0; i < nregs; i++)
7677 {
7678 all_minus_one[i] = -1;
7679 consec_ints[i] = i;
7680 }
7681
7682 reg_next_eqv = (int *) alloca (nregs * sizeof (int));
7683 reg_prev_eqv = (int *) alloca (nregs * sizeof (int));
7684 reg_qty = (int *) alloca (nregs * sizeof (int));
7685 reg_in_table = (int *) alloca (nregs * sizeof (int));
7686 reg_tick = (int *) alloca (nregs * sizeof (int));
7687
7688 /* Discard all the free elements of the previous function
7689 since they are allocated in the temporarily obstack. */
7690 bzero (table, sizeof table);
7691 free_element_chain = 0;
7692 n_elements_made = 0;
7693
7694 /* Find the largest uid. */
7695
7696 max_uid = get_max_uid ();
7697 uid_cuid = (int *) alloca ((max_uid + 1) * sizeof (int));
7698 bzero (uid_cuid, (max_uid + 1) * sizeof (int));
7699
7700 /* Compute the mapping from uids to cuids.
7701 CUIDs are numbers assigned to insns, like uids,
7702 except that cuids increase monotonically through the code.
7703 Don't assign cuids to line-number NOTEs, so that the distance in cuids
7704 between two insns is not affected by -g. */
7705
7706 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
7707 {
7708 if (GET_CODE (insn) != NOTE
7709 || NOTE_LINE_NUMBER (insn) < 0)
7710 INSN_CUID (insn) = ++i;
7711 else
7712 /* Give a line number note the same cuid as preceding insn. */
7713 INSN_CUID (insn) = i;
7714 }
7715
7716 /* Initialize which registers are clobbered by calls. */
7717
7718 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
7719
7720 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7721 if ((call_used_regs[i]
7722 /* Used to check !fixed_regs[i] here, but that isn't safe;
7723 fixed regs are still call-clobbered, and sched can get
7724 confused if they can "live across calls".
7725
7726 The frame pointer is always preserved across calls. The arg
7727 pointer is if it is fixed. The stack pointer usually is, unless
7728 RETURN_POPS_ARGS, in which case an explicit CLOBBER
7729 will be present. If we are generating PIC code, the PIC offset
7730 table register is preserved across calls. */
7731
7732 && i != STACK_POINTER_REGNUM
7733 && i != FRAME_POINTER_REGNUM
7734 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
7735 && ! (i == ARG_POINTER_REGNUM && fixed_regs[i])
7736 #endif
7737 #ifdef PIC_OFFSET_TABLE_REGNUM
7738 && ! (i == PIC_OFFSET_TABLE_REGNUM && flag_pic)
7739 #endif
7740 )
7741 || global_regs[i])
7742 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
7743
7744 /* Loop over basic blocks.
7745 Compute the maximum number of qty's needed for each basic block
7746 (which is 2 for each SET). */
7747 insn = f;
7748 while (insn)
7749 {
7750 cse_end_of_basic_block (insn, &val, flag_cse_follow_jumps, after_loop,
7751 flag_cse_skip_blocks);
7752
7753 /* If this basic block was already processed or has no sets, skip it. */
7754 if (val.nsets == 0 || GET_MODE (insn) == QImode)
7755 {
7756 PUT_MODE (insn, VOIDmode);
7757 insn = (val.last ? NEXT_INSN (val.last) : 0);
7758 val.path_size = 0;
7759 continue;
7760 }
7761
7762 cse_basic_block_start = val.low_cuid;
7763 cse_basic_block_end = val.high_cuid;
7764 max_qty = val.nsets * 2;
7765
7766 if (file)
7767 fprintf (file, ";; Processing block from %d to %d, %d sets.\n",
7768 INSN_UID (insn), val.last ? INSN_UID (val.last) : 0,
7769 val.nsets);
7770
7771 /* Make MAX_QTY bigger to give us room to optimize
7772 past the end of this basic block, if that should prove useful. */
7773 if (max_qty < 500)
7774 max_qty = 500;
7775
7776 max_qty += max_reg;
7777
7778 /* If this basic block is being extended by following certain jumps,
7779 (see `cse_end_of_basic_block'), we reprocess the code from the start.
7780 Otherwise, we start after this basic block. */
7781 if (val.path_size > 0)
7782 cse_basic_block (insn, val.last, val.path, 0);
7783 else
7784 {
7785 int old_cse_jumps_altered = cse_jumps_altered;
7786 rtx temp;
7787
7788 /* When cse changes a conditional jump to an unconditional
7789 jump, we want to reprocess the block, since it will give
7790 us a new branch path to investigate. */
7791 cse_jumps_altered = 0;
7792 temp = cse_basic_block (insn, val.last, val.path, ! after_loop);
7793 if (cse_jumps_altered == 0
7794 || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
7795 insn = temp;
7796
7797 cse_jumps_altered |= old_cse_jumps_altered;
7798 }
7799
7800 #ifdef USE_C_ALLOCA
7801 alloca (0);
7802 #endif
7803 }
7804
7805 /* Tell refers_to_mem_p that qty_const info is not available. */
7806 qty_const = 0;
7807
7808 if (max_elements_made < n_elements_made)
7809 max_elements_made = n_elements_made;
7810
7811 return cse_jumps_altered;
7812 }
7813
7814 /* Process a single basic block. FROM and TO and the limits of the basic
7815 block. NEXT_BRANCH points to the branch path when following jumps or
7816 a null path when not following jumps.
7817
7818 AROUND_LOOP is non-zero if we are to try to cse around to the start of a
7819 loop. This is true when we are being called for the last time on a
7820 block and this CSE pass is before loop.c. */
7821
7822 static rtx
7823 cse_basic_block (from, to, next_branch, around_loop)
7824 register rtx from, to;
7825 struct branch_path *next_branch;
7826 int around_loop;
7827 {
7828 register rtx insn;
7829 int to_usage = 0;
7830 int in_libcall_block = 0;
7831
7832 /* Each of these arrays is undefined before max_reg, so only allocate
7833 the space actually needed and adjust the start below. */
7834
7835 qty_first_reg = (int *) alloca ((max_qty - max_reg) * sizeof (int));
7836 qty_last_reg = (int *) alloca ((max_qty - max_reg) * sizeof (int));
7837 qty_mode= (enum machine_mode *) alloca ((max_qty - max_reg) * sizeof (enum machine_mode));
7838 qty_const = (rtx *) alloca ((max_qty - max_reg) * sizeof (rtx));
7839 qty_const_insn = (rtx *) alloca ((max_qty - max_reg) * sizeof (rtx));
7840 qty_comparison_code
7841 = (enum rtx_code *) alloca ((max_qty - max_reg) * sizeof (enum rtx_code));
7842 qty_comparison_qty = (int *) alloca ((max_qty - max_reg) * sizeof (int));
7843 qty_comparison_const = (rtx *) alloca ((max_qty - max_reg) * sizeof (rtx));
7844
7845 qty_first_reg -= max_reg;
7846 qty_last_reg -= max_reg;
7847 qty_mode -= max_reg;
7848 qty_const -= max_reg;
7849 qty_const_insn -= max_reg;
7850 qty_comparison_code -= max_reg;
7851 qty_comparison_qty -= max_reg;
7852 qty_comparison_const -= max_reg;
7853
7854 new_basic_block ();
7855
7856 /* TO might be a label. If so, protect it from being deleted. */
7857 if (to != 0 && GET_CODE (to) == CODE_LABEL)
7858 ++LABEL_NUSES (to);
7859
7860 for (insn = from; insn != to; insn = NEXT_INSN (insn))
7861 {
7862 register enum rtx_code code;
7863
7864 /* See if this is a branch that is part of the path. If so, and it is
7865 to be taken, do so. */
7866 if (next_branch->branch == insn)
7867 {
7868 enum taken status = next_branch++->status;
7869 if (status != NOT_TAKEN)
7870 {
7871 if (status == TAKEN)
7872 record_jump_equiv (insn, 1);
7873 else
7874 invalidate_skipped_block (NEXT_INSN (insn));
7875
7876 /* Set the last insn as the jump insn; it doesn't affect cc0.
7877 Then follow this branch. */
7878 #ifdef HAVE_cc0
7879 prev_insn_cc0 = 0;
7880 #endif
7881 prev_insn = insn;
7882 insn = JUMP_LABEL (insn);
7883 continue;
7884 }
7885 }
7886
7887 code = GET_CODE (insn);
7888 if (GET_MODE (insn) == QImode)
7889 PUT_MODE (insn, VOIDmode);
7890
7891 if (GET_RTX_CLASS (code) == 'i')
7892 {
7893 /* Process notes first so we have all notes in canonical forms when
7894 looking for duplicate operations. */
7895
7896 if (REG_NOTES (insn))
7897 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn), NULL_RTX);
7898
7899 /* Track when we are inside in LIBCALL block. Inside such a block,
7900 we do not want to record destinations. The last insn of a
7901 LIBCALL block is not considered to be part of the block, since
7902 its destination is the result of the block and hence should be
7903 recorded. */
7904
7905 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
7906 in_libcall_block = 1;
7907 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
7908 in_libcall_block = 0;
7909
7910 cse_insn (insn, in_libcall_block);
7911 }
7912
7913 /* If INSN is now an unconditional jump, skip to the end of our
7914 basic block by pretending that we just did the last insn in the
7915 basic block. If we are jumping to the end of our block, show
7916 that we can have one usage of TO. */
7917
7918 if (simplejump_p (insn))
7919 {
7920 if (to == 0)
7921 return 0;
7922
7923 if (JUMP_LABEL (insn) == to)
7924 to_usage = 1;
7925
7926 /* Maybe TO was deleted because the jump is unconditional.
7927 If so, there is nothing left in this basic block. */
7928 /* ??? Perhaps it would be smarter to set TO
7929 to whatever follows this insn,
7930 and pretend the basic block had always ended here. */
7931 if (INSN_DELETED_P (to))
7932 break;
7933
7934 insn = PREV_INSN (to);
7935 }
7936
7937 /* See if it is ok to keep on going past the label
7938 which used to end our basic block. Remember that we incremented
7939 the count of that label, so we decrement it here. If we made
7940 a jump unconditional, TO_USAGE will be one; in that case, we don't
7941 want to count the use in that jump. */
7942
7943 if (to != 0 && NEXT_INSN (insn) == to
7944 && GET_CODE (to) == CODE_LABEL && --LABEL_NUSES (to) == to_usage)
7945 {
7946 struct cse_basic_block_data val;
7947
7948 insn = NEXT_INSN (to);
7949
7950 if (LABEL_NUSES (to) == 0)
7951 delete_insn (to);
7952
7953 /* Find the end of the following block. Note that we won't be
7954 following branches in this case. If TO was the last insn
7955 in the function, we are done. Similarly, if we deleted the
7956 insn after TO, it must have been because it was preceded by
7957 a BARRIER. In that case, we are done with this block because it
7958 has no continuation. */
7959
7960 if (insn == 0 || INSN_DELETED_P (insn))
7961 return 0;
7962
7963 to_usage = 0;
7964 val.path_size = 0;
7965 cse_end_of_basic_block (insn, &val, 0, 0, 0);
7966
7967 /* If the tables we allocated have enough space left
7968 to handle all the SETs in the next basic block,
7969 continue through it. Otherwise, return,
7970 and that block will be scanned individually. */
7971 if (val.nsets * 2 + next_qty > max_qty)
7972 break;
7973
7974 cse_basic_block_start = val.low_cuid;
7975 cse_basic_block_end = val.high_cuid;
7976 to = val.last;
7977
7978 /* Prevent TO from being deleted if it is a label. */
7979 if (to != 0 && GET_CODE (to) == CODE_LABEL)
7980 ++LABEL_NUSES (to);
7981
7982 /* Back up so we process the first insn in the extension. */
7983 insn = PREV_INSN (insn);
7984 }
7985 }
7986
7987 if (next_qty > max_qty)
7988 abort ();
7989
7990 /* If we are running before loop.c, we stopped on a NOTE_INSN_LOOP_END, and
7991 the previous insn is the only insn that branches to the head of a loop,
7992 we can cse into the loop. Don't do this if we changed the jump
7993 structure of a loop unless we aren't going to be following jumps. */
7994
7995 if ((cse_jumps_altered == 0
7996 || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
7997 && around_loop && to != 0
7998 && GET_CODE (to) == NOTE && NOTE_LINE_NUMBER (to) == NOTE_INSN_LOOP_END
7999 && GET_CODE (PREV_INSN (to)) == JUMP_INSN
8000 && JUMP_LABEL (PREV_INSN (to)) != 0
8001 && LABEL_NUSES (JUMP_LABEL (PREV_INSN (to))) == 1)
8002 cse_around_loop (JUMP_LABEL (PREV_INSN (to)));
8003
8004 return to ? NEXT_INSN (to) : 0;
8005 }
8006 \f
8007 /* Count the number of times registers are used (not set) in X.
8008 COUNTS is an array in which we accumulate the count, INCR is how much
8009 we count each register usage. */
8010
8011 static void
8012 count_reg_usage (x, counts, incr)
8013 rtx x;
8014 int *counts;
8015 int incr;
8016 {
8017 enum rtx_code code = GET_CODE (x);
8018 char *fmt;
8019 int i, j;
8020
8021 switch (code)
8022 {
8023 case REG:
8024 counts[REGNO (x)] += incr;
8025 return;
8026
8027 case PC:
8028 case CC0:
8029 case CONST:
8030 case CONST_INT:
8031 case CONST_DOUBLE:
8032 case SYMBOL_REF:
8033 case LABEL_REF:
8034 case CLOBBER:
8035 return;
8036
8037 case SET:
8038 /* Unless we are setting a REG, count everything in SET_DEST. */
8039 if (GET_CODE (SET_DEST (x)) != REG)
8040 count_reg_usage (SET_DEST (x), counts, incr);
8041 count_reg_usage (SET_SRC (x), counts, incr);
8042 return;
8043
8044 case INSN:
8045 case JUMP_INSN:
8046 case CALL_INSN:
8047 count_reg_usage (PATTERN (x), counts, incr);
8048
8049 /* Things used in a REG_EQUAL note aren't dead since loop may try to
8050 use them. */
8051
8052 if (REG_NOTES (x))
8053 count_reg_usage (REG_NOTES (x), counts, incr);
8054 return;
8055
8056 case EXPR_LIST:
8057 case INSN_LIST:
8058 if (REG_NOTE_KIND (x) == REG_EQUAL)
8059 count_reg_usage (XEXP (x, 0), counts, incr);
8060 if (XEXP (x, 1))
8061 count_reg_usage (XEXP (x, 1), counts, incr);
8062 return;
8063 }
8064
8065 fmt = GET_RTX_FORMAT (code);
8066 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8067 {
8068 if (fmt[i] == 'e')
8069 count_reg_usage (XEXP (x, i), counts, incr);
8070 else if (fmt[i] == 'E')
8071 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8072 count_reg_usage (XVECEXP (x, i, j), counts, incr);
8073 }
8074 }
8075 \f
8076 /* Scan all the insns and delete any that are dead; i.e., they store a register
8077 that is never used or they copy a register to itself.
8078
8079 This is used to remove insns made obviously dead by cse. It improves the
8080 heuristics in loop since it won't try to move dead invariants out of loops
8081 or make givs for dead quantities. The remaining passes of the compilation
8082 are also sped up. */
8083
8084 void
8085 delete_dead_from_cse (insns, nreg)
8086 rtx insns;
8087 int nreg;
8088 {
8089 int *counts = (int *) alloca (nreg * sizeof (int));
8090 rtx insn, prev;
8091 rtx tem;
8092 int i;
8093 int in_libcall = 0;
8094
8095 /* First count the number of times each register is used. */
8096 bzero (counts, sizeof (int) * nreg);
8097 for (insn = next_real_insn (insns); insn; insn = next_real_insn (insn))
8098 count_reg_usage (insn, counts, 1);
8099
8100 /* Go from the last insn to the first and delete insns that only set unused
8101 registers or copy a register to itself. As we delete an insn, remove
8102 usage counts for registers it uses. */
8103 for (insn = prev_real_insn (get_last_insn ()); insn; insn = prev)
8104 {
8105 int live_insn = 0;
8106
8107 prev = prev_real_insn (insn);
8108
8109 /* Don't delete any insns that are part of a libcall block.
8110 Flow or loop might get confused if we did that. Remember
8111 that we are scanning backwards. */
8112 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
8113 in_libcall = 1;
8114
8115 if (in_libcall)
8116 live_insn = 1;
8117 else if (GET_CODE (PATTERN (insn)) == SET)
8118 {
8119 if (GET_CODE (SET_DEST (PATTERN (insn))) == REG
8120 && SET_DEST (PATTERN (insn)) == SET_SRC (PATTERN (insn)))
8121 ;
8122
8123 #ifdef HAVE_cc0
8124 else if (GET_CODE (SET_DEST (PATTERN (insn))) == CC0
8125 && ! side_effects_p (SET_SRC (PATTERN (insn)))
8126 && ((tem = next_nonnote_insn (insn)) == 0
8127 || GET_RTX_CLASS (GET_CODE (tem)) != 'i'
8128 || ! reg_referenced_p (cc0_rtx, PATTERN (tem))))
8129 ;
8130 #endif
8131 else if (GET_CODE (SET_DEST (PATTERN (insn))) != REG
8132 || REGNO (SET_DEST (PATTERN (insn))) < FIRST_PSEUDO_REGISTER
8133 || counts[REGNO (SET_DEST (PATTERN (insn)))] != 0
8134 || side_effects_p (SET_SRC (PATTERN (insn))))
8135 live_insn = 1;
8136 }
8137 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
8138 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
8139 {
8140 rtx elt = XVECEXP (PATTERN (insn), 0, i);
8141
8142 if (GET_CODE (elt) == SET)
8143 {
8144 if (GET_CODE (SET_DEST (elt)) == REG
8145 && SET_DEST (elt) == SET_SRC (elt))
8146 ;
8147
8148 #ifdef HAVE_cc0
8149 else if (GET_CODE (SET_DEST (elt)) == CC0
8150 && ! side_effects_p (SET_SRC (elt))
8151 && ((tem = next_nonnote_insn (insn)) == 0
8152 || GET_RTX_CLASS (GET_CODE (tem)) != 'i'
8153 || ! reg_referenced_p (cc0_rtx, PATTERN (tem))))
8154 ;
8155 #endif
8156 else if (GET_CODE (SET_DEST (elt)) != REG
8157 || REGNO (SET_DEST (elt)) < FIRST_PSEUDO_REGISTER
8158 || counts[REGNO (SET_DEST (elt))] != 0
8159 || side_effects_p (SET_SRC (elt)))
8160 live_insn = 1;
8161 }
8162 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
8163 live_insn = 1;
8164 }
8165 else
8166 live_insn = 1;
8167
8168 /* If this is a dead insn, delete it and show registers in it aren't
8169 being used. */
8170
8171 if (! live_insn)
8172 {
8173 count_reg_usage (insn, counts, -1);
8174 delete_insn (insn);
8175 }
8176
8177 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
8178 in_libcall = 0;
8179 }
8180 }
This page took 0.407122 seconds and 6 git commands to generate.