1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
24 #include "hard-reg-set.h"
27 #include "insn-config.h"
33 /* The basic idea of common subexpression elimination is to go
34 through the code, keeping a record of expressions that would
35 have the same value at the current scan point, and replacing
36 expressions encountered with the cheapest equivalent expression.
38 It is too complicated to keep track of the different possibilities
39 when control paths merge; so, at each label, we forget all that is
40 known and start fresh. This can be described as processing each
41 basic block separately. Note, however, that these are not quite
42 the same as the basic blocks found by a later pass and used for
43 data flow analysis and register packing. We do not need to start fresh
44 after a conditional jump instruction if there is no label there.
46 We use two data structures to record the equivalent expressions:
47 a hash table for most expressions, and several vectors together
48 with "quantity numbers" to record equivalent (pseudo) registers.
50 The use of the special data structure for registers is desirable
51 because it is faster. It is possible because registers references
52 contain a fairly small number, the register number, taken from
53 a contiguously allocated series, and two register references are
54 identical if they have the same number. General expressions
55 do not have any such thing, so the only way to retrieve the
56 information recorded on an expression other than a register
57 is to keep it in a hash table.
59 Registers and "quantity numbers":
61 At the start of each basic block, all of the (hardware and pseudo)
62 registers used in the function are given distinct quantity
63 numbers to indicate their contents. During scan, when the code
64 copies one register into another, we copy the quantity number.
65 When a register is loaded in any other way, we allocate a new
66 quantity number to describe the value generated by this operation.
67 `reg_qty' records what quantity a register is currently thought
70 All real quantity numbers are greater than or equal to `max_reg'.
71 If register N has not been assigned a quantity, reg_qty[N] will equal N.
73 Quantity numbers below `max_reg' do not exist and none of the `qty_...'
74 variables should be referenced with an index below `max_reg'.
76 We also maintain a bidirectional chain of registers for each
77 quantity number. `qty_first_reg', `qty_last_reg',
78 `reg_next_eqv' and `reg_prev_eqv' hold these chains.
80 The first register in a chain is the one whose lifespan is least local.
81 Among equals, it is the one that was seen first.
82 We replace any equivalent register with that one.
84 If two registers have the same quantity number, it must be true that
85 REG expressions with `qty_mode' must be in the hash table for both
86 registers and must be in the same class.
88 The converse is not true. Since hard registers may be referenced in
89 any mode, two REG expressions might be equivalent in the hash table
90 but not have the same quantity number if the quantity number of one
91 of the registers is not the same mode as those expressions.
93 Constants and quantity numbers
95 When a quantity has a known constant value, that value is stored
96 in the appropriate element of qty_const. This is in addition to
97 putting the constant in the hash table as is usual for non-regs.
99 Whether a reg or a constant is preferred is determined by the configuration
100 macro CONST_COSTS and will often depend on the constant value. In any
101 event, expressions containing constants can be simplified, by fold_rtx.
103 When a quantity has a known nearly constant value (such as an address
104 of a stack slot), that value is stored in the appropriate element
107 Integer constants don't have a machine mode. However, cse
108 determines the intended machine mode from the destination
109 of the instruction that moves the constant. The machine mode
110 is recorded in the hash table along with the actual RTL
111 constant expression so that different modes are kept separate.
115 To record known equivalences among expressions in general
116 we use a hash table called `table'. It has a fixed number of buckets
117 that contain chains of `struct table_elt' elements for expressions.
118 These chains connect the elements whose expressions have the same
121 Other chains through the same elements connect the elements which
122 currently have equivalent values.
124 Register references in an expression are canonicalized before hashing
125 the expression. This is done using `reg_qty' and `qty_first_reg'.
126 The hash code of a register reference is computed using the quantity
127 number, not the register number.
129 When the value of an expression changes, it is necessary to remove from the
130 hash table not just that expression but all expressions whose values
131 could be different as a result.
133 1. If the value changing is in memory, except in special cases
134 ANYTHING referring to memory could be changed. That is because
135 nobody knows where a pointer does not point.
136 The function `invalidate_memory' removes what is necessary.
138 The special cases are when the address is constant or is
139 a constant plus a fixed register such as the frame pointer
140 or a static chain pointer. When such addresses are stored in,
141 we can tell exactly which other such addresses must be invalidated
142 due to overlap. `invalidate' does this.
143 All expressions that refer to non-constant
144 memory addresses are also invalidated. `invalidate_memory' does this.
146 2. If the value changing is a register, all expressions
147 containing references to that register, and only those,
150 Because searching the entire hash table for expressions that contain
151 a register is very slow, we try to figure out when it isn't necessary.
152 Precisely, this is necessary only when expressions have been
153 entered in the hash table using this register, and then the value has
154 changed, and then another expression wants to be added to refer to
155 the register's new value. This sequence of circumstances is rare
156 within any one basic block.
158 The vectors `reg_tick' and `reg_in_table' are used to detect this case.
159 reg_tick[i] is incremented whenever a value is stored in register i.
160 reg_in_table[i] holds -1 if no references to register i have been
161 entered in the table; otherwise, it contains the value reg_tick[i] had
162 when the references were entered. If we want to enter a reference
163 and reg_in_table[i] != reg_tick[i], we must scan and remove old references.
164 Until we want to enter a new entry, the mere fact that the two vectors
165 don't match makes the entries be ignored if anyone tries to match them.
167 Registers themselves are entered in the hash table as well as in
168 the equivalent-register chains. However, the vectors `reg_tick'
169 and `reg_in_table' do not apply to expressions which are simple
170 register references. These expressions are removed from the table
171 immediately when they become invalid, and this can be done even if
172 we do not immediately search for all the expressions that refer to
175 A CLOBBER rtx in an instruction invalidates its operand for further
176 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
177 invalidates everything that resides in memory.
181 Constant expressions that differ only by an additive integer
182 are called related. When a constant expression is put in
183 the table, the related expression with no constant term
184 is also entered. These are made to point at each other
185 so that it is possible to find out if there exists any
186 register equivalent to an expression related to a given expression. */
188 /* One plus largest register number used in this function. */
192 /* Length of vectors indexed by quantity number.
193 We know in advance we will not need a quantity number this big. */
197 /* Next quantity number to be allocated.
198 This is 1 + the largest number needed so far. */
202 /* Indexed by quantity number, gives the first (or last) (pseudo) register
203 in the chain of registers that currently contain this quantity. */
205 static int *qty_first_reg
;
206 static int *qty_last_reg
;
208 /* Index by quantity number, gives the mode of the quantity. */
210 static enum machine_mode
*qty_mode
;
212 /* Indexed by quantity number, gives the rtx of the constant value of the
213 quantity, or zero if it does not have a known value.
214 A sum of the frame pointer (or arg pointer) plus a constant
215 can also be entered here. */
217 static rtx
*qty_const
;
219 /* Indexed by qty number, gives the insn that stored the constant value
220 recorded in `qty_const'. */
222 static rtx
*qty_const_insn
;
224 /* The next three variables are used to track when a comparison between a
225 quantity and some constant or register has been passed. In that case, we
226 know the results of the comparison in case we see it again. These variables
227 record a comparison that is known to be true. */
229 /* Indexed by qty number, gives the rtx code of a comparison with a known
230 result involving this quantity. If none, it is UNKNOWN. */
231 static enum rtx_code
*qty_comparison_code
;
233 /* Indexed by qty number, gives the constant being compared against in a
234 comparison of known result. If no such comparison, it is undefined.
235 If the comparison is not with a constant, it is zero. */
237 static rtx
*qty_comparison_const
;
239 /* Indexed by qty number, gives the quantity being compared against in a
240 comparison of known result. If no such comparison, if it undefined.
241 If the comparison is not with a register, it is -1. */
243 static int *qty_comparison_qty
;
246 /* For machines that have a CC0, we do not record its value in the hash
247 table since its use is guaranteed to be the insn immediately following
248 its definition and any other insn is presumed to invalidate it.
250 Instead, we store below the value last assigned to CC0. If it should
251 happen to be a constant, it is stored in preference to the actual
252 assigned value. In case it is a constant, we store the mode in which
253 the constant should be interpreted. */
255 static rtx prev_insn_cc0
;
256 static enum machine_mode prev_insn_cc0_mode
;
259 /* Previous actual insn. 0 if at first insn of basic block. */
261 static rtx prev_insn
;
263 /* Insn being scanned. */
265 static rtx this_insn
;
267 /* Index by (pseudo) register number, gives the quantity number
268 of the register's current contents. */
272 /* Index by (pseudo) register number, gives the number of the next (or
273 previous) (pseudo) register in the chain of registers sharing the same
276 Or -1 if this register is at the end of the chain.
278 If reg_qty[N] == N, reg_next_eqv[N] is undefined. */
280 static int *reg_next_eqv
;
281 static int *reg_prev_eqv
;
283 /* Index by (pseudo) register number, gives the number of times
284 that register has been altered in the current basic block. */
286 static int *reg_tick
;
288 /* Index by (pseudo) register number, gives the reg_tick value at which
289 rtx's containing this register are valid in the hash table.
290 If this does not equal the current reg_tick value, such expressions
291 existing in the hash table are invalid.
292 If this is -1, no expressions containing this register have been
293 entered in the table. */
295 static int *reg_in_table
;
297 /* A HARD_REG_SET containing all the hard registers for which there is
298 currently a REG expression in the hash table. Note the difference
299 from the above variables, which indicate if the REG is mentioned in some
300 expression in the table. */
302 static HARD_REG_SET hard_regs_in_table
;
304 /* A HARD_REG_SET containing all the hard registers that are invalidated
307 static HARD_REG_SET regs_invalidated_by_call
;
309 /* Two vectors of ints:
310 one containing max_reg -1's; the other max_reg + 500 (an approximation
311 for max_qty) elements where element i contains i.
312 These are used to initialize various other vectors fast. */
314 static int *all_minus_one
;
315 static int *consec_ints
;
317 /* CUID of insn that starts the basic block currently being cse-processed. */
319 static int cse_basic_block_start
;
321 /* CUID of insn that ends the basic block currently being cse-processed. */
323 static int cse_basic_block_end
;
325 /* Vector mapping INSN_UIDs to cuids.
326 The cuids are like uids but increase monotonically always.
327 We use them to see whether a reg is used outside a given basic block. */
329 static int *uid_cuid
;
331 /* Get the cuid of an insn. */
333 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
335 /* Nonzero if cse has altered conditional jump insns
336 in such a way that jump optimization should be redone. */
338 static int cse_jumps_altered
;
340 /* canon_hash stores 1 in do_not_record
341 if it notices a reference to CC0, PC, or some other volatile
344 static int do_not_record
;
346 /* canon_hash stores 1 in hash_arg_in_memory
347 if it notices a reference to memory within the expression being hashed. */
349 static int hash_arg_in_memory
;
351 /* canon_hash stores 1 in hash_arg_in_struct
352 if it notices a reference to memory that's part of a structure. */
354 static int hash_arg_in_struct
;
356 /* The hash table contains buckets which are chains of `struct table_elt's,
357 each recording one expression's information.
358 That expression is in the `exp' field.
360 Those elements with the same hash code are chained in both directions
361 through the `next_same_hash' and `prev_same_hash' fields.
363 Each set of expressions with equivalent values
364 are on a two-way chain through the `next_same_value'
365 and `prev_same_value' fields, and all point with
366 the `first_same_value' field at the first element in
367 that chain. The chain is in order of increasing cost.
368 Each element's cost value is in its `cost' field.
370 The `in_memory' field is nonzero for elements that
371 involve any reference to memory. These elements are removed
372 whenever a write is done to an unidentified location in memory.
373 To be safe, we assume that a memory address is unidentified unless
374 the address is either a symbol constant or a constant plus
375 the frame pointer or argument pointer.
377 The `in_struct' field is nonzero for elements that
378 involve any reference to memory inside a structure or array.
380 The `related_value' field is used to connect related expressions
381 (that differ by adding an integer).
382 The related expressions are chained in a circular fashion.
383 `related_value' is zero for expressions for which this
386 The `cost' field stores the cost of this element's expression.
388 The `is_const' flag is set if the element is a constant (including
391 The `flag' field is used as a temporary during some search routines.
393 The `mode' field is usually the same as GET_MODE (`exp'), but
394 if `exp' is a CONST_INT and has no machine mode then the `mode'
395 field is the mode it was being used as. Each constant is
396 recorded separately for each mode it is used with. */
402 struct table_elt
*next_same_hash
;
403 struct table_elt
*prev_same_hash
;
404 struct table_elt
*next_same_value
;
405 struct table_elt
*prev_same_value
;
406 struct table_elt
*first_same_value
;
407 struct table_elt
*related_value
;
409 enum machine_mode mode
;
418 /* We don't want a lot of buckets, because we rarely have very many
419 things stored in the hash table, and a lot of buckets slows
420 down a lot of loops that happen frequently. */
423 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
424 register (hard registers may require `do_not_record' to be set). */
427 (GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER \
428 ? ((((int) REG << 7) + reg_qty[REGNO (X)]) % NBUCKETS) \
429 : canon_hash (X, M) % NBUCKETS)
431 /* Determine whether register number N is considered a fixed register for CSE.
432 It is desirable to replace other regs with fixed regs, to reduce need for
434 A reg wins if it is either the frame pointer or designated as fixed,
435 but not if it is an overlapping register. */
436 #ifdef OVERLAPPING_REGNO_P
437 #define FIXED_REGNO_P(N) \
438 (((N) == FRAME_POINTER_REGNUM || fixed_regs[N]) \
439 && ! OVERLAPPING_REGNO_P ((N)))
441 #define FIXED_REGNO_P(N) \
442 ((N) == FRAME_POINTER_REGNUM || fixed_regs[N])
445 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
446 hard registers are the cheapest with a cost of 0. Next come pseudos
447 with a cost of one and other hard registers with a cost of 2. Aside
448 from these special cases, call `rtx_cost'. */
451 (GET_CODE (X) == REG \
452 ? (REGNO (X) >= FIRST_PSEUDO_REGISTER ? 1 \
453 : (FIXED_REGNO_P (REGNO (X)) \
454 && REGNO_REG_CLASS (REGNO (X)) != NO_REGS) ? 0 \
456 : rtx_cost (X, SET) * 2)
458 /* Determine if the quantity number for register X represents a valid index
459 into the `qty_...' variables. */
461 #define REGNO_QTY_VALID_P(N) (reg_qty[N] != (N))
463 static struct table_elt
*table
[NBUCKETS
];
465 /* Chain of `struct table_elt's made so far for this function
466 but currently removed from the table. */
468 static struct table_elt
*free_element_chain
;
470 /* Number of `struct table_elt' structures made so far for this function. */
472 static int n_elements_made
;
474 /* Maximum value `n_elements_made' has had so far in this compilation
475 for functions previously processed. */
477 static int max_elements_made
;
479 /* Surviving equivalence class when two equivalence classes are merged
480 by recording the effects of a jump in the last insn. Zero if the
481 last insn was not a conditional jump. */
483 static struct table_elt
*last_jump_equiv_class
;
485 /* Set to the cost of a constant pool reference if one was found for a
486 symbolic constant. If this was found, it means we should try to
487 convert constants into constant pool entries if they don't fit in
490 static int constant_pool_entries_cost
;
492 /* Bits describing what kind of values in memory must be invalidated
493 for a particular instruction. If all three bits are zero,
494 no memory refs need to be invalidated. Each bit is more powerful
495 than the preceding ones, and if a bit is set then the preceding
498 Here is how the bits are set:
499 Pushing onto the stack invalidates only the stack pointer,
500 writing at a fixed address invalidates only variable addresses,
501 writing in a structure element at variable address
502 invalidates all but scalar variables,
503 and writing in anything else at variable address invalidates everything. */
507 int sp
: 1; /* Invalidate stack pointer. */
508 int var
: 1; /* Invalidate variable addresses. */
509 int nonscalar
: 1; /* Invalidate all but scalar variables. */
510 int all
: 1; /* Invalidate all memory refs. */
513 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
514 virtual regs here because the simplify_*_operation routines are called
515 by integrate.c, which is called before virtual register instantiation. */
517 #define FIXED_BASE_PLUS_P(X) \
518 ((X) == frame_pointer_rtx || (X) == arg_pointer_rtx \
519 || (X) == virtual_stack_vars_rtx \
520 || (X) == virtual_incoming_args_rtx \
521 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
522 && (XEXP (X, 0) == frame_pointer_rtx \
523 || XEXP (X, 0) == arg_pointer_rtx \
524 || XEXP (X, 0) == virtual_stack_vars_rtx \
525 || XEXP (X, 0) == virtual_incoming_args_rtx)))
527 /* Similar, but also allows reference to the stack pointer.
529 This used to include FIXED_BASE_PLUS_P, however, we can't assume that
530 arg_pointer_rtx by itself is nonzero, because on at least one machine,
531 the i960, the arg pointer is zero when it is unused. */
533 #define NONZERO_BASE_PLUS_P(X) \
534 ((X) == frame_pointer_rtx \
535 || (X) == virtual_stack_vars_rtx \
536 || (X) == virtual_incoming_args_rtx \
537 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
538 && (XEXP (X, 0) == frame_pointer_rtx \
539 || XEXP (X, 0) == arg_pointer_rtx \
540 || XEXP (X, 0) == virtual_stack_vars_rtx \
541 || XEXP (X, 0) == virtual_incoming_args_rtx)) \
542 || (X) == stack_pointer_rtx \
543 || (X) == virtual_stack_dynamic_rtx \
544 || (X) == virtual_outgoing_args_rtx \
545 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
546 && (XEXP (X, 0) == stack_pointer_rtx \
547 || XEXP (X, 0) == virtual_stack_dynamic_rtx \
548 || XEXP (X, 0) == virtual_outgoing_args_rtx)))
550 static struct table_elt
*lookup ();
551 static void free_element ();
553 static int insert_regs ();
554 static void rehash_using_reg ();
555 static void remove_invalid_refs ();
556 static int exp_equiv_p ();
558 int refers_to_mem_p ();
559 static void invalidate_from_clobbers ();
560 static int safe_hash ();
561 static int canon_hash ();
562 static rtx
fold_rtx ();
563 static rtx
equiv_constant ();
564 static void record_jump_cond ();
565 static void note_mem_written ();
566 static int cse_rtx_addr_varies_p ();
567 static enum rtx_code
find_comparison_args ();
568 static void cse_insn ();
569 static void cse_set_around_loop ();
571 /* Return an estimate of the cost of computing rtx X.
572 One use is in cse, to decide which expression to keep in the hash table.
573 Another is in rtl generation, to pick the cheapest way to multiply.
574 Other uses like the latter are expected in the future. */
576 /* Return the right cost to give to an operation
577 to make the cost of the corresponding register-to-register instruction
578 N times that of a fast register-to-register instruction. */
580 #define COSTS_N_INSNS(N) ((N) * 4 - 2)
583 rtx_cost (x
, outer_code
)
585 enum rtx_code outer_code
;
588 register enum rtx_code code
;
595 /* Compute the default costs of certain things.
596 Note that RTX_COSTS can override the defaults. */
602 /* Count multiplication by 2**n as a shift,
603 because if we are considering it, we would output it as a shift. */
604 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
605 && exact_log2 (INTVAL (XEXP (x
, 1))) >= 0)
608 total
= COSTS_N_INSNS (5);
614 total
= COSTS_N_INSNS (7);
617 /* Used in loop.c and combine.c as a marker. */
621 /* We don't want these to be used in substitutions because
622 we have no way of validating the resulting insn. So assign
623 anything containing an ASM_OPERANDS a very high cost. */
635 /* If we can't tie these modes, make this expensive. The larger
636 the mode, the more expensive it is. */
637 if (! MODES_TIEABLE_P (GET_MODE (x
), GET_MODE (SUBREG_REG (x
))))
638 return COSTS_N_INSNS (2
639 + GET_MODE_SIZE (GET_MODE (x
)) / UNITS_PER_WORD
);
642 RTX_COSTS (x
, code
, outer_code
);
644 CONST_COSTS (x
, code
, outer_code
);
647 /* Sum the costs of the sub-rtx's, plus cost of this operation,
648 which is already in total. */
650 fmt
= GET_RTX_FORMAT (code
);
651 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
653 total
+= rtx_cost (XEXP (x
, i
), code
);
654 else if (fmt
[i
] == 'E')
655 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
656 total
+= rtx_cost (XVECEXP (x
, i
, j
), code
);
661 /* Clear the hash table and initialize each register with its own quantity,
662 for a new basic block. */
671 bzero (reg_tick
, max_reg
* sizeof (int));
673 bcopy (all_minus_one
, reg_in_table
, max_reg
* sizeof (int));
674 bcopy (consec_ints
, reg_qty
, max_reg
* sizeof (int));
675 CLEAR_HARD_REG_SET (hard_regs_in_table
);
677 /* The per-quantity values used to be initialized here, but it is
678 much faster to initialize each as it is made in `make_new_qty'. */
680 for (i
= 0; i
< NBUCKETS
; i
++)
682 register struct table_elt
*this, *next
;
683 for (this = table
[i
]; this; this = next
)
685 next
= this->next_same_hash
;
690 bzero (table
, sizeof table
);
699 /* Say that register REG contains a quantity not in any register before
700 and initialize that quantity. */
708 if (next_qty
>= max_qty
)
711 q
= reg_qty
[reg
] = next_qty
++;
712 qty_first_reg
[q
] = reg
;
713 qty_last_reg
[q
] = reg
;
714 qty_const
[q
] = qty_const_insn
[q
] = 0;
715 qty_comparison_code
[q
] = UNKNOWN
;
717 reg_next_eqv
[reg
] = reg_prev_eqv
[reg
] = -1;
720 /* Make reg NEW equivalent to reg OLD.
721 OLD is not changing; NEW is. */
724 make_regs_eqv (new, old
)
725 register int new, old
;
727 register int lastr
, firstr
;
728 register int q
= reg_qty
[old
];
730 /* Nothing should become eqv until it has a "non-invalid" qty number. */
731 if (! REGNO_QTY_VALID_P (old
))
735 firstr
= qty_first_reg
[q
];
736 lastr
= qty_last_reg
[q
];
738 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
739 hard regs. Among pseudos, if NEW will live longer than any other reg
740 of the same qty, and that is beyond the current basic block,
741 make it the new canonical replacement for this qty. */
742 if (! (firstr
< FIRST_PSEUDO_REGISTER
&& FIXED_REGNO_P (firstr
))
743 /* Certain fixed registers might be of the class NO_REGS. This means
744 that not only can they not be allocated by the compiler, but
745 they cannot be used in substitutions or canonicalizations
747 && (new >= FIRST_PSEUDO_REGISTER
|| REGNO_REG_CLASS (new) != NO_REGS
)
748 && ((new < FIRST_PSEUDO_REGISTER
&& FIXED_REGNO_P (new))
749 || (new >= FIRST_PSEUDO_REGISTER
750 && (firstr
< FIRST_PSEUDO_REGISTER
751 || ((uid_cuid
[regno_last_uid
[new]] > cse_basic_block_end
752 || (uid_cuid
[regno_first_uid
[new]]
753 < cse_basic_block_start
))
754 && (uid_cuid
[regno_last_uid
[new]]
755 > uid_cuid
[regno_last_uid
[firstr
]]))))))
757 reg_prev_eqv
[firstr
] = new;
758 reg_next_eqv
[new] = firstr
;
759 reg_prev_eqv
[new] = -1;
760 qty_first_reg
[q
] = new;
764 /* If NEW is a hard reg (known to be non-fixed), insert at end.
765 Otherwise, insert before any non-fixed hard regs that are at the
766 end. Registers of class NO_REGS cannot be used as an
767 equivalent for anything. */
768 while (lastr
< FIRST_PSEUDO_REGISTER
&& reg_prev_eqv
[lastr
] >= 0
769 && (REGNO_REG_CLASS (lastr
) == NO_REGS
|| ! FIXED_REGNO_P (lastr
))
770 && new >= FIRST_PSEUDO_REGISTER
)
771 lastr
= reg_prev_eqv
[lastr
];
772 reg_next_eqv
[new] = reg_next_eqv
[lastr
];
773 if (reg_next_eqv
[lastr
] >= 0)
774 reg_prev_eqv
[reg_next_eqv
[lastr
]] = new;
776 qty_last_reg
[q
] = new;
777 reg_next_eqv
[lastr
] = new;
778 reg_prev_eqv
[new] = lastr
;
782 /* Remove REG from its equivalence class. */
785 delete_reg_equiv (reg
)
788 register int n
= reg_next_eqv
[reg
];
789 register int p
= reg_prev_eqv
[reg
];
790 register int q
= reg_qty
[reg
];
792 /* If invalid, do nothing. N and P above are undefined in that case. */
803 qty_first_reg
[q
] = n
;
808 /* Remove any invalid expressions from the hash table
809 that refer to any of the registers contained in expression X.
811 Make sure that newly inserted references to those registers
812 as subexpressions will be considered valid.
814 mention_regs is not called when a register itself
815 is being stored in the table.
817 Return 1 if we have done something that may have changed the hash code
824 register enum rtx_code code
;
827 register int changed
= 0;
835 register int regno
= REGNO (x
);
836 register int endregno
837 = regno
+ (regno
>= FIRST_PSEUDO_REGISTER
? 1
838 : HARD_REGNO_NREGS (regno
, GET_MODE (x
)));
841 for (i
= regno
; i
< endregno
; i
++)
843 if (reg_in_table
[i
] >= 0 && reg_in_table
[i
] != reg_tick
[i
])
844 remove_invalid_refs (i
);
846 reg_in_table
[i
] = reg_tick
[i
];
852 /* If X is a comparison or a COMPARE and either operand is a register
853 that does not have a quantity, give it one. This is so that a later
854 call to record_jump_equiv won't cause X to be assigned a different
855 hash code and not found in the table after that call.
857 It is not necessary to do this here, since rehash_using_reg can
858 fix up the table later, but doing this here eliminates the need to
859 call that expensive function in the most common case where the only
860 use of the register is in the comparison. */
862 if (code
== COMPARE
|| GET_RTX_CLASS (code
) == '<')
864 if (GET_CODE (XEXP (x
, 0)) == REG
865 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x
, 0))))
866 if (insert_regs (XEXP (x
, 0), NULL_PTR
, 0))
868 rehash_using_reg (XEXP (x
, 0));
872 if (GET_CODE (XEXP (x
, 1)) == REG
873 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x
, 1))))
874 if (insert_regs (XEXP (x
, 1), NULL_PTR
, 0))
876 rehash_using_reg (XEXP (x
, 1));
881 fmt
= GET_RTX_FORMAT (code
);
882 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
884 changed
|= mention_regs (XEXP (x
, i
));
885 else if (fmt
[i
] == 'E')
886 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
887 changed
|= mention_regs (XVECEXP (x
, i
, j
));
892 /* Update the register quantities for inserting X into the hash table
893 with a value equivalent to CLASSP.
894 (If the class does not contain a REG, it is irrelevant.)
895 If MODIFIED is nonzero, X is a destination; it is being modified.
896 Note that delete_reg_equiv should be called on a register
897 before insert_regs is done on that register with MODIFIED != 0.
899 Nonzero value means that elements of reg_qty have changed
900 so X's hash code may be different. */
903 insert_regs (x
, classp
, modified
)
905 struct table_elt
*classp
;
908 if (GET_CODE (x
) == REG
)
910 register int regno
= REGNO (x
);
913 || ! (REGNO_QTY_VALID_P (regno
)
914 && qty_mode
[reg_qty
[regno
]] == GET_MODE (x
)))
917 for (classp
= classp
->first_same_value
;
919 classp
= classp
->next_same_value
)
920 if (GET_CODE (classp
->exp
) == REG
921 && GET_MODE (classp
->exp
) == GET_MODE (x
))
923 make_regs_eqv (regno
, REGNO (classp
->exp
));
927 make_new_qty (regno
);
928 qty_mode
[reg_qty
[regno
]] = GET_MODE (x
);
933 /* If X is a SUBREG, we will likely be inserting the inner register in the
934 table. If that register doesn't have an assigned quantity number at
935 this point but does later, the insertion that we will be doing now will
936 not be accessible because its hash code will have changed. So assign
937 a quantity number now. */
939 else if (GET_CODE (x
) == SUBREG
&& GET_CODE (SUBREG_REG (x
)) == REG
940 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x
))))
942 insert_regs (SUBREG_REG (x
), NULL_PTR
, 0);
943 mention_regs (SUBREG_REG (x
));
947 return mention_regs (x
);
950 /* Look in or update the hash table. */
952 /* Put the element ELT on the list of free elements. */
956 struct table_elt
*elt
;
958 elt
->next_same_hash
= free_element_chain
;
959 free_element_chain
= elt
;
962 /* Return an element that is free for use. */
964 static struct table_elt
*
967 struct table_elt
*elt
= free_element_chain
;
970 free_element_chain
= elt
->next_same_hash
;
974 return (struct table_elt
*) oballoc (sizeof (struct table_elt
));
977 /* Remove table element ELT from use in the table.
978 HASH is its hash code, made using the HASH macro.
979 It's an argument because often that is known in advance
980 and we save much time not recomputing it. */
983 remove_from_table (elt
, hash
)
984 register struct table_elt
*elt
;
990 /* Mark this element as removed. See cse_insn. */
991 elt
->first_same_value
= 0;
993 /* Remove the table element from its equivalence class. */
996 register struct table_elt
*prev
= elt
->prev_same_value
;
997 register struct table_elt
*next
= elt
->next_same_value
;
999 if (next
) next
->prev_same_value
= prev
;
1002 prev
->next_same_value
= next
;
1005 register struct table_elt
*newfirst
= next
;
1008 next
->first_same_value
= newfirst
;
1009 next
= next
->next_same_value
;
1014 /* Remove the table element from its hash bucket. */
1017 register struct table_elt
*prev
= elt
->prev_same_hash
;
1018 register struct table_elt
*next
= elt
->next_same_hash
;
1020 if (next
) next
->prev_same_hash
= prev
;
1023 prev
->next_same_hash
= next
;
1024 else if (table
[hash
] == elt
)
1028 /* This entry is not in the proper hash bucket. This can happen
1029 when two classes were merged by `merge_equiv_classes'. Search
1030 for the hash bucket that it heads. This happens only very
1031 rarely, so the cost is acceptable. */
1032 for (hash
= 0; hash
< NBUCKETS
; hash
++)
1033 if (table
[hash
] == elt
)
1038 /* Remove the table element from its related-value circular chain. */
1040 if (elt
->related_value
!= 0 && elt
->related_value
!= elt
)
1042 register struct table_elt
*p
= elt
->related_value
;
1043 while (p
->related_value
!= elt
)
1044 p
= p
->related_value
;
1045 p
->related_value
= elt
->related_value
;
1046 if (p
->related_value
== p
)
1047 p
->related_value
= 0;
1053 /* Look up X in the hash table and return its table element,
1054 or 0 if X is not in the table.
1056 MODE is the machine-mode of X, or if X is an integer constant
1057 with VOIDmode then MODE is the mode with which X will be used.
1059 Here we are satisfied to find an expression whose tree structure
1062 static struct table_elt
*
1063 lookup (x
, hash
, mode
)
1066 enum machine_mode mode
;
1068 register struct table_elt
*p
;
1070 for (p
= table
[hash
]; p
; p
= p
->next_same_hash
)
1071 if (mode
== p
->mode
&& ((x
== p
->exp
&& GET_CODE (x
) == REG
)
1072 || exp_equiv_p (x
, p
->exp
, GET_CODE (x
) != REG
, 0)))
1078 /* Like `lookup' but don't care whether the table element uses invalid regs.
1079 Also ignore discrepancies in the machine mode of a register. */
1081 static struct table_elt
*
1082 lookup_for_remove (x
, hash
, mode
)
1085 enum machine_mode mode
;
1087 register struct table_elt
*p
;
1089 if (GET_CODE (x
) == REG
)
1091 int regno
= REGNO (x
);
1092 /* Don't check the machine mode when comparing registers;
1093 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1094 for (p
= table
[hash
]; p
; p
= p
->next_same_hash
)
1095 if (GET_CODE (p
->exp
) == REG
1096 && REGNO (p
->exp
) == regno
)
1101 for (p
= table
[hash
]; p
; p
= p
->next_same_hash
)
1102 if (mode
== p
->mode
&& (x
== p
->exp
|| exp_equiv_p (x
, p
->exp
, 0, 0)))
1109 /* Look for an expression equivalent to X and with code CODE.
1110 If one is found, return that expression. */
1113 lookup_as_function (x
, code
)
1117 register struct table_elt
*p
= lookup (x
, safe_hash (x
, VOIDmode
) % NBUCKETS
,
1122 for (p
= p
->first_same_value
; p
; p
= p
->next_same_value
)
1124 if (GET_CODE (p
->exp
) == code
1125 /* Make sure this is a valid entry in the table. */
1126 && exp_equiv_p (p
->exp
, p
->exp
, 1, 0))
1133 /* Insert X in the hash table, assuming HASH is its hash code
1134 and CLASSP is an element of the class it should go in
1135 (or 0 if a new class should be made).
1136 It is inserted at the proper position to keep the class in
1137 the order cheapest first.
1139 MODE is the machine-mode of X, or if X is an integer constant
1140 with VOIDmode then MODE is the mode with which X will be used.
1142 For elements of equal cheapness, the most recent one
1143 goes in front, except that the first element in the list
1144 remains first unless a cheaper element is added. The order of
1145 pseudo-registers does not matter, as canon_reg will be called to
1146 find the cheapest when a register is retrieved from the table.
1148 The in_memory field in the hash table element is set to 0.
1149 The caller must set it nonzero if appropriate.
1151 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1152 and if insert_regs returns a nonzero value
1153 you must then recompute its hash code before calling here.
1155 If necessary, update table showing constant values of quantities. */
1157 #define CHEAPER(X,Y) ((X)->cost < (Y)->cost)
1159 static struct table_elt
*
1160 insert (x
, classp
, hash
, mode
)
1162 register struct table_elt
*classp
;
1164 enum machine_mode mode
;
1166 register struct table_elt
*elt
;
1168 /* If X is a register and we haven't made a quantity for it,
1169 something is wrong. */
1170 if (GET_CODE (x
) == REG
&& ! REGNO_QTY_VALID_P (REGNO (x
)))
1173 /* If X is a hard register, show it is being put in the table. */
1174 if (GET_CODE (x
) == REG
&& REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1176 int regno
= REGNO (x
);
1177 int endregno
= regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (x
));
1180 for (i
= regno
; i
< endregno
; i
++)
1181 SET_HARD_REG_BIT (hard_regs_in_table
, i
);
1185 /* Put an element for X into the right hash bucket. */
1187 elt
= get_element ();
1189 elt
->cost
= COST (x
);
1190 elt
->next_same_value
= 0;
1191 elt
->prev_same_value
= 0;
1192 elt
->next_same_hash
= table
[hash
];
1193 elt
->prev_same_hash
= 0;
1194 elt
->related_value
= 0;
1197 elt
->is_const
= (CONSTANT_P (x
)
1198 /* GNU C++ takes advantage of this for `this'
1199 (and other const values). */
1200 || (RTX_UNCHANGING_P (x
)
1201 && GET_CODE (x
) == REG
1202 && REGNO (x
) >= FIRST_PSEUDO_REGISTER
)
1203 || FIXED_BASE_PLUS_P (x
));
1206 table
[hash
]->prev_same_hash
= elt
;
1209 /* Put it into the proper value-class. */
1212 classp
= classp
->first_same_value
;
1213 if (CHEAPER (elt
, classp
))
1214 /* Insert at the head of the class */
1216 register struct table_elt
*p
;
1217 elt
->next_same_value
= classp
;
1218 classp
->prev_same_value
= elt
;
1219 elt
->first_same_value
= elt
;
1221 for (p
= classp
; p
; p
= p
->next_same_value
)
1222 p
->first_same_value
= elt
;
1226 /* Insert not at head of the class. */
1227 /* Put it after the last element cheaper than X. */
1228 register struct table_elt
*p
, *next
;
1229 for (p
= classp
; (next
= p
->next_same_value
) && CHEAPER (next
, elt
);
1231 /* Put it after P and before NEXT. */
1232 elt
->next_same_value
= next
;
1234 next
->prev_same_value
= elt
;
1235 elt
->prev_same_value
= p
;
1236 p
->next_same_value
= elt
;
1237 elt
->first_same_value
= classp
;
1241 elt
->first_same_value
= elt
;
1243 /* If this is a constant being set equivalent to a register or a register
1244 being set equivalent to a constant, note the constant equivalence.
1246 If this is a constant, it cannot be equivalent to a different constant,
1247 and a constant is the only thing that can be cheaper than a register. So
1248 we know the register is the head of the class (before the constant was
1251 If this is a register that is not already known equivalent to a
1252 constant, we must check the entire class.
1254 If this is a register that is already known equivalent to an insn,
1255 update `qty_const_insn' to show that `this_insn' is the latest
1256 insn making that quantity equivalent to the constant. */
1258 if (elt
->is_const
&& classp
&& GET_CODE (classp
->exp
) == REG
)
1260 qty_const
[reg_qty
[REGNO (classp
->exp
)]]
1261 = gen_lowpart_if_possible (qty_mode
[reg_qty
[REGNO (classp
->exp
)]], x
);
1262 qty_const_insn
[reg_qty
[REGNO (classp
->exp
)]] = this_insn
;
1265 else if (GET_CODE (x
) == REG
&& classp
&& ! qty_const
[reg_qty
[REGNO (x
)]])
1267 register struct table_elt
*p
;
1269 for (p
= classp
; p
!= 0; p
= p
->next_same_value
)
1273 qty_const
[reg_qty
[REGNO (x
)]]
1274 = gen_lowpart_if_possible (GET_MODE (x
), p
->exp
);
1275 qty_const_insn
[reg_qty
[REGNO (x
)]] = this_insn
;
1281 else if (GET_CODE (x
) == REG
&& qty_const
[reg_qty
[REGNO (x
)]]
1282 && GET_MODE (x
) == qty_mode
[reg_qty
[REGNO (x
)]])
1283 qty_const_insn
[reg_qty
[REGNO (x
)]] = this_insn
;
1285 /* If this is a constant with symbolic value,
1286 and it has a term with an explicit integer value,
1287 link it up with related expressions. */
1288 if (GET_CODE (x
) == CONST
)
1290 rtx subexp
= get_related_value (x
);
1292 struct table_elt
*subelt
, *subelt_prev
;
1296 /* Get the integer-free subexpression in the hash table. */
1297 subhash
= safe_hash (subexp
, mode
) % NBUCKETS
;
1298 subelt
= lookup (subexp
, subhash
, mode
);
1300 subelt
= insert (subexp
, NULL_PTR
, subhash
, mode
);
1301 /* Initialize SUBELT's circular chain if it has none. */
1302 if (subelt
->related_value
== 0)
1303 subelt
->related_value
= subelt
;
1304 /* Find the element in the circular chain that precedes SUBELT. */
1305 subelt_prev
= subelt
;
1306 while (subelt_prev
->related_value
!= subelt
)
1307 subelt_prev
= subelt_prev
->related_value
;
1308 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1309 This way the element that follows SUBELT is the oldest one. */
1310 elt
->related_value
= subelt_prev
->related_value
;
1311 subelt_prev
->related_value
= elt
;
1318 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1319 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1320 the two classes equivalent.
1322 CLASS1 will be the surviving class; CLASS2 should not be used after this
1325 Any invalid entries in CLASS2 will not be copied. */
1328 merge_equiv_classes (class1
, class2
)
1329 struct table_elt
*class1
, *class2
;
1331 struct table_elt
*elt
, *next
, *new;
1333 /* Ensure we start with the head of the classes. */
1334 class1
= class1
->first_same_value
;
1335 class2
= class2
->first_same_value
;
1337 /* If they were already equal, forget it. */
1338 if (class1
== class2
)
1341 for (elt
= class2
; elt
; elt
= next
)
1345 enum machine_mode mode
= elt
->mode
;
1347 next
= elt
->next_same_value
;
1349 /* Remove old entry, make a new one in CLASS1's class.
1350 Don't do this for invalid entries as we cannot find their
1351 hash code (it also isn't necessary). */
1352 if (GET_CODE (exp
) == REG
|| exp_equiv_p (exp
, exp
, 1, 0))
1354 hash_arg_in_memory
= 0;
1355 hash_arg_in_struct
= 0;
1356 hash
= HASH (exp
, mode
);
1358 if (GET_CODE (exp
) == REG
)
1359 delete_reg_equiv (REGNO (exp
));
1361 remove_from_table (elt
, hash
);
1363 if (insert_regs (exp
, class1
, 0))
1364 hash
= HASH (exp
, mode
);
1365 new = insert (exp
, class1
, hash
, mode
);
1366 new->in_memory
= hash_arg_in_memory
;
1367 new->in_struct
= hash_arg_in_struct
;
1372 /* Remove from the hash table, or mark as invalid,
1373 all expressions whose values could be altered by storing in X.
1374 X is a register, a subreg, or a memory reference with nonvarying address
1375 (because, when a memory reference with a varying address is stored in,
1376 all memory references are removed by invalidate_memory
1377 so specific invalidation is superfluous).
1379 A nonvarying address may be just a register or just
1380 a symbol reference, or it may be either of those plus
1381 a numeric offset. */
1388 register struct table_elt
*p
;
1390 register HOST_WIDE_INT start
, end
;
1392 /* If X is a register, dependencies on its contents
1393 are recorded through the qty number mechanism.
1394 Just change the qty number of the register,
1395 mark it as invalid for expressions that refer to it,
1396 and remove it itself. */
1398 if (GET_CODE (x
) == REG
)
1400 register int regno
= REGNO (x
);
1401 register int hash
= HASH (x
, GET_MODE (x
));
1403 /* Remove REGNO from any quantity list it might be on and indicate
1404 that it's value might have changed. If it is a pseudo, remove its
1405 entry from the hash table.
1407 For a hard register, we do the first two actions above for any
1408 additional hard registers corresponding to X. Then, if any of these
1409 registers are in the table, we must remove any REG entries that
1410 overlap these registers. */
1412 delete_reg_equiv (regno
);
1415 if (regno
>= FIRST_PSEUDO_REGISTER
)
1416 remove_from_table (lookup_for_remove (x
, hash
, GET_MODE (x
)), hash
);
1419 int in_table
= TEST_HARD_REG_BIT (hard_regs_in_table
, regno
);
1420 int endregno
= regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (x
));
1421 int tregno
, tendregno
;
1422 register struct table_elt
*p
, *next
;
1424 CLEAR_HARD_REG_BIT (hard_regs_in_table
, regno
);
1426 for (i
= regno
+ 1; i
< endregno
; i
++)
1428 in_table
|= TEST_HARD_REG_BIT (hard_regs_in_table
, i
);
1429 CLEAR_HARD_REG_BIT (hard_regs_in_table
, i
);
1430 delete_reg_equiv (i
);
1435 for (hash
= 0; hash
< NBUCKETS
; hash
++)
1436 for (p
= table
[hash
]; p
; p
= next
)
1438 next
= p
->next_same_hash
;
1440 if (GET_CODE (p
->exp
) != REG
1441 || REGNO (p
->exp
) >= FIRST_PSEUDO_REGISTER
)
1444 tregno
= REGNO (p
->exp
);
1446 = tregno
+ HARD_REGNO_NREGS (tregno
, GET_MODE (p
->exp
));
1447 if (tendregno
> regno
&& tregno
< endregno
)
1448 remove_from_table (p
, hash
);
1455 if (GET_CODE (x
) == SUBREG
)
1457 if (GET_CODE (SUBREG_REG (x
)) != REG
)
1459 invalidate (SUBREG_REG (x
));
1463 /* X is not a register; it must be a memory reference with
1464 a nonvarying address. Remove all hash table elements
1465 that refer to overlapping pieces of memory. */
1467 if (GET_CODE (x
) != MEM
)
1472 /* Registers with nonvarying addresses usually have constant equivalents;
1473 but the frame pointer register is also possible. */
1474 if (GET_CODE (base
) == REG
1475 && REGNO_QTY_VALID_P (REGNO (base
))
1476 && qty_mode
[reg_qty
[REGNO (base
)]] == GET_MODE (base
)
1477 && qty_const
[reg_qty
[REGNO (base
)]] != 0)
1478 base
= qty_const
[reg_qty
[REGNO (base
)]];
1479 else if (GET_CODE (base
) == PLUS
1480 && GET_CODE (XEXP (base
, 1)) == CONST_INT
1481 && GET_CODE (XEXP (base
, 0)) == REG
1482 && REGNO_QTY_VALID_P (REGNO (XEXP (base
, 0)))
1483 && (qty_mode
[reg_qty
[REGNO (XEXP (base
, 0))]]
1484 == GET_MODE (XEXP (base
, 0)))
1485 && qty_const
[reg_qty
[REGNO (XEXP (base
, 0))]])
1487 start
= INTVAL (XEXP (base
, 1));
1488 base
= qty_const
[reg_qty
[REGNO (XEXP (base
, 0))]];
1491 if (GET_CODE (base
) == CONST
)
1492 base
= XEXP (base
, 0);
1493 if (GET_CODE (base
) == PLUS
1494 && GET_CODE (XEXP (base
, 1)) == CONST_INT
)
1496 start
+= INTVAL (XEXP (base
, 1));
1497 base
= XEXP (base
, 0);
1500 end
= start
+ GET_MODE_SIZE (GET_MODE (x
));
1501 for (i
= 0; i
< NBUCKETS
; i
++)
1503 register struct table_elt
*next
;
1504 for (p
= table
[i
]; p
; p
= next
)
1506 next
= p
->next_same_hash
;
1507 if (refers_to_mem_p (p
->exp
, base
, start
, end
))
1508 remove_from_table (p
, i
);
1513 /* Remove all expressions that refer to register REGNO,
1514 since they are already invalid, and we are about to
1515 mark that register valid again and don't want the old
1516 expressions to reappear as valid. */
1519 remove_invalid_refs (regno
)
1523 register struct table_elt
*p
, *next
;
1525 for (i
= 0; i
< NBUCKETS
; i
++)
1526 for (p
= table
[i
]; p
; p
= next
)
1528 next
= p
->next_same_hash
;
1529 if (GET_CODE (p
->exp
) != REG
1530 && refers_to_regno_p (regno
, regno
+ 1, p
->exp
, NULL_PTR
))
1531 remove_from_table (p
, i
);
1535 /* Recompute the hash codes of any valid entries in the hash table that
1536 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
1538 This is called when we make a jump equivalence. */
1541 rehash_using_reg (x
)
1545 struct table_elt
*p
, *next
;
1548 if (GET_CODE (x
) == SUBREG
)
1551 /* If X is not a register or if the register is known not to be in any
1552 valid entries in the table, we have no work to do. */
1554 if (GET_CODE (x
) != REG
1555 || reg_in_table
[REGNO (x
)] < 0
1556 || reg_in_table
[REGNO (x
)] != reg_tick
[REGNO (x
)])
1559 /* Scan all hash chains looking for valid entries that mention X.
1560 If we find one and it is in the wrong hash chain, move it. We can skip
1561 objects that are registers, since they are handled specially. */
1563 for (i
= 0; i
< NBUCKETS
; i
++)
1564 for (p
= table
[i
]; p
; p
= next
)
1566 next
= p
->next_same_hash
;
1567 if (GET_CODE (p
->exp
) != REG
&& reg_mentioned_p (x
, p
->exp
)
1568 && exp_equiv_p (p
->exp
, p
->exp
, 1, 0)
1569 && i
!= (hash
= safe_hash (p
->exp
, p
->mode
) % NBUCKETS
))
1571 if (p
->next_same_hash
)
1572 p
->next_same_hash
->prev_same_hash
= p
->prev_same_hash
;
1574 if (p
->prev_same_hash
)
1575 p
->prev_same_hash
->next_same_hash
= p
->next_same_hash
;
1577 table
[i
] = p
->next_same_hash
;
1579 p
->next_same_hash
= table
[hash
];
1580 p
->prev_same_hash
= 0;
1582 table
[hash
]->prev_same_hash
= p
;
1588 /* Remove from the hash table all expressions that reference memory,
1589 or some of them as specified by *WRITES. */
1592 invalidate_memory (writes
)
1593 struct write_data
*writes
;
1596 register struct table_elt
*p
, *next
;
1597 int all
= writes
->all
;
1598 int nonscalar
= writes
->nonscalar
;
1600 for (i
= 0; i
< NBUCKETS
; i
++)
1601 for (p
= table
[i
]; p
; p
= next
)
1603 next
= p
->next_same_hash
;
1606 || (nonscalar
&& p
->in_struct
)
1607 || cse_rtx_addr_varies_p (p
->exp
)))
1608 remove_from_table (p
, i
);
1612 /* Remove from the hash table any expression that is a call-clobbered
1613 register. Also update their TICK values. */
1616 invalidate_for_call ()
1618 int regno
, endregno
;
1621 struct table_elt
*p
, *next
;
1624 /* Go through all the hard registers. For each that is clobbered in
1625 a CALL_INSN, remove the register from quantity chains and update
1626 reg_tick if defined. Also see if any of these registers is currently
1629 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
1630 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
1632 delete_reg_equiv (regno
);
1633 if (reg_tick
[regno
] >= 0)
1636 in_table
|= TEST_HARD_REG_BIT (hard_regs_in_table
, regno
);
1639 /* In the case where we have no call-clobbered hard registers in the
1640 table, we are done. Otherwise, scan the table and remove any
1641 entry that overlaps a call-clobbered register. */
1644 for (hash
= 0; hash
< NBUCKETS
; hash
++)
1645 for (p
= table
[hash
]; p
; p
= next
)
1647 next
= p
->next_same_hash
;
1649 if (GET_CODE (p
->exp
) != REG
1650 || REGNO (p
->exp
) >= FIRST_PSEUDO_REGISTER
)
1653 regno
= REGNO (p
->exp
);
1654 endregno
= regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (p
->exp
));
1656 for (i
= regno
; i
< endregno
; i
++)
1657 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, i
))
1659 remove_from_table (p
, hash
);
1665 /* Given an expression X of type CONST,
1666 and ELT which is its table entry (or 0 if it
1667 is not in the hash table),
1668 return an alternate expression for X as a register plus integer.
1669 If none can be found, return 0. */
1672 use_related_value (x
, elt
)
1674 struct table_elt
*elt
;
1676 register struct table_elt
*relt
= 0;
1677 register struct table_elt
*p
, *q
;
1678 HOST_WIDE_INT offset
;
1680 /* First, is there anything related known?
1681 If we have a table element, we can tell from that.
1682 Otherwise, must look it up. */
1684 if (elt
!= 0 && elt
->related_value
!= 0)
1686 else if (elt
== 0 && GET_CODE (x
) == CONST
)
1688 rtx subexp
= get_related_value (x
);
1690 relt
= lookup (subexp
,
1691 safe_hash (subexp
, GET_MODE (subexp
)) % NBUCKETS
,
1698 /* Search all related table entries for one that has an
1699 equivalent register. */
1704 /* This loop is strange in that it is executed in two different cases.
1705 The first is when X is already in the table. Then it is searching
1706 the RELATED_VALUE list of X's class (RELT). The second case is when
1707 X is not in the table. Then RELT points to a class for the related
1710 Ensure that, whatever case we are in, that we ignore classes that have
1711 the same value as X. */
1713 if (rtx_equal_p (x
, p
->exp
))
1716 for (q
= p
->first_same_value
; q
; q
= q
->next_same_value
)
1717 if (GET_CODE (q
->exp
) == REG
)
1723 p
= p
->related_value
;
1725 /* We went all the way around, so there is nothing to be found.
1726 Alternatively, perhaps RELT was in the table for some other reason
1727 and it has no related values recorded. */
1728 if (p
== relt
|| p
== 0)
1735 offset
= (get_integer_term (x
) - get_integer_term (p
->exp
));
1736 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
1737 return plus_constant (q
->exp
, offset
);
1740 /* Hash an rtx. We are careful to make sure the value is never negative.
1741 Equivalent registers hash identically.
1742 MODE is used in hashing for CONST_INTs only;
1743 otherwise the mode of X is used.
1745 Store 1 in do_not_record if any subexpression is volatile.
1747 Store 1 in hash_arg_in_memory if X contains a MEM rtx
1748 which does not have the RTX_UNCHANGING_P bit set.
1749 In this case, also store 1 in hash_arg_in_struct
1750 if there is a MEM rtx which has the MEM_IN_STRUCT_P bit set.
1752 Note that cse_insn knows that the hash code of a MEM expression
1753 is just (int) MEM plus the hash code of the address. */
1756 canon_hash (x
, mode
)
1758 enum machine_mode mode
;
1761 register int hash
= 0;
1762 register enum rtx_code code
;
1765 /* repeat is used to turn tail-recursion into iteration. */
1770 code
= GET_CODE (x
);
1775 register int regno
= REGNO (x
);
1777 /* On some machines, we can't record any non-fixed hard register,
1778 because extending its life will cause reload problems. We
1779 consider ap, fp, and sp to be fixed for this purpose.
1780 On all machines, we can't record any global registers. */
1782 if (regno
< FIRST_PSEUDO_REGISTER
1783 && (global_regs
[regno
]
1784 #ifdef SMALL_REGISTER_CLASSES
1785 || (! fixed_regs
[regno
]
1786 && regno
!= FRAME_POINTER_REGNUM
1787 && regno
!= ARG_POINTER_REGNUM
1788 && regno
!= STACK_POINTER_REGNUM
)
1795 return hash
+ ((int) REG
<< 7) + reg_qty
[regno
];
1799 hash
+= ((int) mode
+ ((int) CONST_INT
<< 7)
1800 + INTVAL (x
) + (INTVAL (x
) >> HASHBITS
));
1801 return ((1 << HASHBITS
) - 1) & hash
;
1804 /* This is like the general case, except that it only counts
1805 the integers representing the constant. */
1806 hash
+= (int) code
+ (int) GET_MODE (x
);
1809 for (i
= 2; i
< GET_RTX_LENGTH (CONST_DOUBLE
); i
++)
1811 int tem
= XINT (x
, i
);
1812 hash
+= ((1 << HASHBITS
) - 1) & (tem
+ (tem
>> HASHBITS
));
1817 /* Assume there is only one rtx object for any given label. */
1819 /* Use `and' to ensure a positive number. */
1820 return (hash
+ ((HOST_WIDE_INT
) LABEL_REF
<< 7)
1821 + ((HOST_WIDE_INT
) XEXP (x
, 0) & ((1 << HASHBITS
) - 1)));
1824 return (hash
+ ((HOST_WIDE_INT
) SYMBOL_REF
<< 7)
1825 + ((HOST_WIDE_INT
) XEXP (x
, 0) & ((1 << HASHBITS
) - 1)));
1828 if (MEM_VOLATILE_P (x
))
1833 if (! RTX_UNCHANGING_P (x
))
1835 hash_arg_in_memory
= 1;
1836 if (MEM_IN_STRUCT_P (x
)) hash_arg_in_struct
= 1;
1838 /* Now that we have already found this special case,
1839 might as well speed it up as much as possible. */
1851 case UNSPEC_VOLATILE
:
1856 if (MEM_VOLATILE_P (x
))
1863 i
= GET_RTX_LENGTH (code
) - 1;
1864 hash
+= (int) code
+ (int) GET_MODE (x
);
1865 fmt
= GET_RTX_FORMAT (code
);
1870 rtx tem
= XEXP (x
, i
);
1873 /* If the operand is a REG that is equivalent to a constant, hash
1874 as if we were hashing the constant, since we will be comparing
1876 if (tem
!= 0 && GET_CODE (tem
) == REG
1877 && REGNO_QTY_VALID_P (REGNO (tem
))
1878 && qty_mode
[reg_qty
[REGNO (tem
)]] == GET_MODE (tem
)
1879 && (tem1
= qty_const
[reg_qty
[REGNO (tem
)]]) != 0
1880 && CONSTANT_P (tem1
))
1883 /* If we are about to do the last recursive call
1884 needed at this level, change it into iteration.
1885 This function is called enough to be worth it. */
1891 hash
+= canon_hash (tem
, 0);
1893 else if (fmt
[i
] == 'E')
1894 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1895 hash
+= canon_hash (XVECEXP (x
, i
, j
), 0);
1896 else if (fmt
[i
] == 's')
1898 register char *p
= XSTR (x
, i
);
1902 register int tem
= *p
++;
1903 hash
+= ((1 << HASHBITS
) - 1) & (tem
+ (tem
>> HASHBITS
));
1906 else if (fmt
[i
] == 'i')
1908 register int tem
= XINT (x
, i
);
1909 hash
+= ((1 << HASHBITS
) - 1) & (tem
+ (tem
>> HASHBITS
));
1917 /* Like canon_hash but with no side effects. */
1922 enum machine_mode mode
;
1924 int save_do_not_record
= do_not_record
;
1925 int save_hash_arg_in_memory
= hash_arg_in_memory
;
1926 int save_hash_arg_in_struct
= hash_arg_in_struct
;
1927 int hash
= canon_hash (x
, mode
);
1928 hash_arg_in_memory
= save_hash_arg_in_memory
;
1929 hash_arg_in_struct
= save_hash_arg_in_struct
;
1930 do_not_record
= save_do_not_record
;
1934 /* Return 1 iff X and Y would canonicalize into the same thing,
1935 without actually constructing the canonicalization of either one.
1936 If VALIDATE is nonzero,
1937 we assume X is an expression being processed from the rtl
1938 and Y was found in the hash table. We check register refs
1939 in Y for being marked as valid.
1941 If EQUAL_VALUES is nonzero, we allow a register to match a constant value
1942 that is known to be in the register. Ordinarily, we don't allow them
1943 to match, because letting them match would cause unpredictable results
1944 in all the places that search a hash table chain for an equivalent
1945 for a given value. A possible equivalent that has different structure
1946 has its hash code computed from different data. Whether the hash code
1947 is the same as that of the the given value is pure luck. */
1950 exp_equiv_p (x
, y
, validate
, equal_values
)
1956 register enum rtx_code code
;
1959 /* Note: it is incorrect to assume an expression is equivalent to itself
1960 if VALIDATE is nonzero. */
1961 if (x
== y
&& !validate
)
1963 if (x
== 0 || y
== 0)
1966 code
= GET_CODE (x
);
1967 if (code
!= GET_CODE (y
))
1972 /* If X is a constant and Y is a register or vice versa, they may be
1973 equivalent. We only have to validate if Y is a register. */
1974 if (CONSTANT_P (x
) && GET_CODE (y
) == REG
1975 && REGNO_QTY_VALID_P (REGNO (y
))
1976 && GET_MODE (y
) == qty_mode
[reg_qty
[REGNO (y
)]]
1977 && rtx_equal_p (x
, qty_const
[reg_qty
[REGNO (y
)]])
1978 && (! validate
|| reg_in_table
[REGNO (y
)] == reg_tick
[REGNO (y
)]))
1981 if (CONSTANT_P (y
) && code
== REG
1982 && REGNO_QTY_VALID_P (REGNO (x
))
1983 && GET_MODE (x
) == qty_mode
[reg_qty
[REGNO (x
)]]
1984 && rtx_equal_p (y
, qty_const
[reg_qty
[REGNO (x
)]]))
1990 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1991 if (GET_MODE (x
) != GET_MODE (y
))
2001 return INTVAL (x
) == INTVAL (y
);
2005 return XEXP (x
, 0) == XEXP (y
, 0);
2009 int regno
= REGNO (y
);
2011 = regno
+ (regno
>= FIRST_PSEUDO_REGISTER
? 1
2012 : HARD_REGNO_NREGS (regno
, GET_MODE (y
)));
2015 /* If the quantities are not the same, the expressions are not
2016 equivalent. If there are and we are not to validate, they
2017 are equivalent. Otherwise, ensure all regs are up-to-date. */
2019 if (reg_qty
[REGNO (x
)] != reg_qty
[regno
])
2025 for (i
= regno
; i
< endregno
; i
++)
2026 if (reg_in_table
[i
] != reg_tick
[i
])
2032 /* For commutative operations, check both orders. */
2040 return ((exp_equiv_p (XEXP (x
, 0), XEXP (y
, 0), validate
, equal_values
)
2041 && exp_equiv_p (XEXP (x
, 1), XEXP (y
, 1),
2042 validate
, equal_values
))
2043 || (exp_equiv_p (XEXP (x
, 0), XEXP (y
, 1),
2044 validate
, equal_values
)
2045 && exp_equiv_p (XEXP (x
, 1), XEXP (y
, 0),
2046 validate
, equal_values
)));
2049 /* Compare the elements. If any pair of corresponding elements
2050 fail to match, return 0 for the whole things. */
2052 fmt
= GET_RTX_FORMAT (code
);
2053 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2058 if (! exp_equiv_p (XEXP (x
, i
), XEXP (y
, i
), validate
, equal_values
))
2063 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
2065 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2066 if (! exp_equiv_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
),
2067 validate
, equal_values
))
2072 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
2077 if (XINT (x
, i
) != XINT (y
, i
))
2082 if (XWINT (x
, i
) != XWINT (y
, i
))
2097 /* Return 1 iff any subexpression of X matches Y.
2098 Here we do not require that X or Y be valid (for registers referred to)
2099 for being in the hash table. */
2106 register enum rtx_code code
;
2112 if (x
== 0 || y
== 0)
2115 code
= GET_CODE (x
);
2116 /* If X as a whole has the same code as Y, they may match.
2118 if (code
== GET_CODE (y
))
2120 if (exp_equiv_p (x
, y
, 0, 1))
2124 /* X does not match, so try its subexpressions. */
2126 fmt
= GET_RTX_FORMAT (code
);
2127 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2136 if (refers_to_p (XEXP (x
, i
), y
))
2139 else if (fmt
[i
] == 'E')
2142 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2143 if (refers_to_p (XVECEXP (x
, i
, j
), y
))
2150 /* Return 1 iff any subexpression of X refers to memory
2151 at an address of BASE plus some offset
2152 such that any of the bytes' offsets fall between START (inclusive)
2153 and END (exclusive).
2155 The value is undefined if X is a varying address.
2156 This function is not used in such cases.
2158 When used in the cse pass, `qty_const' is nonzero, and it is used
2159 to treat an address that is a register with a known constant value
2160 as if it were that constant value.
2161 In the loop pass, `qty_const' is zero, so this is not done. */
2164 refers_to_mem_p (x
, base
, start
, end
)
2166 HOST_WIDE_INT start
, end
;
2168 register HOST_WIDE_INT i
;
2169 register enum rtx_code code
;
2172 if (GET_CODE (base
) == CONST_INT
)
2174 start
+= INTVAL (base
);
2175 end
+= INTVAL (base
);
2183 code
= GET_CODE (x
);
2186 register rtx addr
= XEXP (x
, 0); /* Get the address. */
2190 if (GET_CODE (addr
) == REG
2191 /* qty_const is 0 when outside the cse pass;
2192 at such times, this info is not available. */
2194 && REGNO_QTY_VALID_P (REGNO (addr
))
2195 && GET_MODE (addr
) == qty_mode
[reg_qty
[REGNO (addr
)]]
2196 && qty_const
[reg_qty
[REGNO (addr
)]] != 0)
2197 addr
= qty_const
[reg_qty
[REGNO (addr
)]];
2198 else if (GET_CODE (addr
) == PLUS
2199 && GET_CODE (XEXP (addr
, 1)) == CONST_INT
2200 && GET_CODE (XEXP (addr
, 0)) == REG
2202 && REGNO_QTY_VALID_P (REGNO (XEXP (addr
, 0)))
2203 && (GET_MODE (XEXP (addr
, 0))
2204 == qty_mode
[reg_qty
[REGNO (XEXP (addr
, 0))]])
2205 && qty_const
[reg_qty
[REGNO (XEXP (addr
, 0))]])
2207 i
= INTVAL (XEXP (addr
, 1));
2208 addr
= qty_const
[reg_qty
[REGNO (XEXP (addr
, 0))]];
2212 if (GET_CODE (addr
) == CONST
)
2213 addr
= XEXP (addr
, 0);
2215 /* If ADDR is BASE, or BASE plus an integer, put
2216 the integer in I. */
2217 if (GET_CODE (addr
) == PLUS
2218 && XEXP (addr
, 0) == base
2219 && GET_CODE (XEXP (addr
, 1)) == CONST_INT
)
2220 i
+= INTVAL (XEXP (addr
, 1));
2221 else if (GET_CODE (addr
) == LO_SUM
)
2223 if (GET_CODE (base
) != LO_SUM
)
2225 /* The REG component of the LO_SUM is known by the
2226 const value in the XEXP part. */
2227 addr
= XEXP (addr
, 1);
2228 base
= XEXP (base
, 1);
2230 if (GET_CODE (base
) == CONST
)
2231 base
= XEXP (base
, 0);
2232 if (GET_CODE (base
) == PLUS
2233 && GET_CODE (XEXP (base
, 1)) == CONST_INT
)
2235 HOST_WIDE_INT tem
= INTVAL (XEXP (base
, 1));
2238 base
= XEXP (base
, 0);
2242 else if (GET_CODE (base
) == LO_SUM
)
2244 base
= XEXP (base
, 1);
2245 if (GET_CODE (base
) == CONST
)
2246 base
= XEXP (base
, 0);
2247 if (GET_CODE (base
) == PLUS
2248 && GET_CODE (XEXP (base
, 1)) == CONST_INT
)
2250 HOST_WIDE_INT tem
= INTVAL (XEXP (base
, 1));
2253 base
= XEXP (base
, 0);
2257 else if (GET_CODE (addr
) == CONST_INT
&& base
== const0_rtx
)
2259 else if (addr
!= base
)
2262 myend
= i
+ GET_MODE_SIZE (GET_MODE (x
));
2263 return myend
> start
&& i
< end
;
2266 /* X does not match, so try its subexpressions. */
2268 fmt
= GET_RTX_FORMAT (code
);
2269 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2278 if (refers_to_mem_p (XEXP (x
, i
), base
, start
, end
))
2281 else if (fmt
[i
] == 'E')
2284 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2285 if (refers_to_mem_p (XVECEXP (x
, i
, j
), base
, start
, end
))
2292 /* Nonzero if X refers to memory at a varying address;
2293 except that a register which has at the moment a known constant value
2294 isn't considered variable. */
2297 cse_rtx_addr_varies_p (x
)
2300 /* We need not check for X and the equivalence class being of the same
2301 mode because if X is equivalent to a constant in some mode, it
2302 doesn't vary in any mode. */
2304 if (GET_CODE (x
) == MEM
2305 && GET_CODE (XEXP (x
, 0)) == REG
2306 && REGNO_QTY_VALID_P (REGNO (XEXP (x
, 0)))
2307 && GET_MODE (XEXP (x
, 0)) == qty_mode
[reg_qty
[REGNO (XEXP (x
, 0))]]
2308 && qty_const
[reg_qty
[REGNO (XEXP (x
, 0))]] != 0)
2311 if (GET_CODE (x
) == MEM
2312 && GET_CODE (XEXP (x
, 0)) == PLUS
2313 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
2314 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == REG
2315 && REGNO_QTY_VALID_P (REGNO (XEXP (XEXP (x
, 0), 0)))
2316 && (GET_MODE (XEXP (XEXP (x
, 0), 0))
2317 == qty_mode
[reg_qty
[REGNO (XEXP (XEXP (x
, 0), 0))]])
2318 && qty_const
[reg_qty
[REGNO (XEXP (XEXP (x
, 0), 0))]])
2321 return rtx_addr_varies_p (x
);
2324 /* Canonicalize an expression:
2325 replace each register reference inside it
2326 with the "oldest" equivalent register.
2328 If INSN is non-zero and we are replacing a pseudo with a hard register
2329 or vice versa, verify that INSN remains valid after we make our
2338 register enum rtx_code code
;
2344 code
= GET_CODE (x
);
2362 /* Never replace a hard reg, because hard regs can appear
2363 in more than one machine mode, and we must preserve the mode
2364 of each occurrence. Also, some hard regs appear in
2365 MEMs that are shared and mustn't be altered. Don't try to
2366 replace any reg that maps to a reg of class NO_REGS. */
2367 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
2368 || ! REGNO_QTY_VALID_P (REGNO (x
)))
2371 first
= qty_first_reg
[reg_qty
[REGNO (x
)]];
2372 return (first
>= FIRST_PSEUDO_REGISTER
? regno_reg_rtx
[first
]
2373 : REGNO_REG_CLASS (first
) == NO_REGS
? x
2374 : gen_rtx (REG
, qty_mode
[reg_qty
[REGNO (x
)]], first
));
2378 fmt
= GET_RTX_FORMAT (code
);
2379 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2385 rtx
new = canon_reg (XEXP (x
, i
), insn
);
2387 /* If replacing pseudo with hard reg or vice versa, ensure the
2388 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2389 if (new && GET_CODE (new) == REG
&& GET_CODE (XEXP (x
, i
)) == REG
2390 && (((REGNO (new) < FIRST_PSEUDO_REGISTER
)
2391 != (REGNO (XEXP (x
, i
)) < FIRST_PSEUDO_REGISTER
))
2392 || (insn
!= 0 && insn_n_dups
[recog_memoized (insn
)] > 0)))
2393 validate_change (insn
, &XEXP (x
, i
), new, 1);
2397 else if (fmt
[i
] == 'E')
2398 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2399 XVECEXP (x
, i
, j
) = canon_reg (XVECEXP (x
, i
, j
), insn
);
2405 /* LOC is a location with INSN that is an operand address (the contents of
2406 a MEM). Find the best equivalent address to use that is valid for this
2409 On most CISC machines, complicated address modes are costly, and rtx_cost
2410 is a good approximation for that cost. However, most RISC machines have
2411 only a few (usually only one) memory reference formats. If an address is
2412 valid at all, it is often just as cheap as any other address. Hence, for
2413 RISC machines, we use the configuration macro `ADDRESS_COST' to compare the
2414 costs of various addresses. For two addresses of equal cost, choose the one
2415 with the highest `rtx_cost' value as that has the potential of eliminating
2416 the most insns. For equal costs, we choose the first in the equivalence
2417 class. Note that we ignore the fact that pseudo registers are cheaper
2418 than hard registers here because we would also prefer the pseudo registers.
2422 find_best_addr (insn
, loc
)
2426 struct table_elt
*elt
, *p
;
2429 int found_better
= 1;
2430 int save_do_not_record
= do_not_record
;
2431 int save_hash_arg_in_memory
= hash_arg_in_memory
;
2432 int save_hash_arg_in_struct
= hash_arg_in_struct
;
2437 /* Do not try to replace constant addresses or addresses of local and
2438 argument slots. These MEM expressions are made only once and inserted
2439 in many instructions, as well as being used to control symbol table
2440 output. It is not safe to clobber them.
2442 There are some uncommon cases where the address is already in a register
2443 for some reason, but we cannot take advantage of that because we have
2444 no easy way to unshare the MEM. In addition, looking up all stack
2445 addresses is costly. */
2446 if ((GET_CODE (addr
) == PLUS
2447 && GET_CODE (XEXP (addr
, 0)) == REG
2448 && GET_CODE (XEXP (addr
, 1)) == CONST_INT
2449 && (regno
= REGNO (XEXP (addr
, 0)),
2450 regno
== FRAME_POINTER_REGNUM
|| regno
== ARG_POINTER_REGNUM
))
2451 || (GET_CODE (addr
) == REG
2452 && (regno
= REGNO (addr
),
2453 regno
== FRAME_POINTER_REGNUM
|| regno
== ARG_POINTER_REGNUM
))
2454 || CONSTANT_ADDRESS_P (addr
))
2457 /* If this address is not simply a register, try to fold it. This will
2458 sometimes simplify the expression. Many simplifications
2459 will not be valid, but some, usually applying the associative rule, will
2460 be valid and produce better code. */
2461 if (GET_CODE (addr
) != REG
2462 && validate_change (insn
, loc
, fold_rtx (addr
, insn
), 0))
2465 /* If this address is not in the hash table, we can't look for equivalences
2466 of the whole address. Also, ignore if volatile. */
2469 hash_code
= HASH (addr
, Pmode
);
2470 addr_volatile
= do_not_record
;
2471 do_not_record
= save_do_not_record
;
2472 hash_arg_in_memory
= save_hash_arg_in_memory
;
2473 hash_arg_in_struct
= save_hash_arg_in_struct
;
2478 elt
= lookup (addr
, hash_code
, Pmode
);
2480 #ifndef ADDRESS_COST
2483 our_cost
= elt
->cost
;
2485 /* Find the lowest cost below ours that works. */
2486 for (elt
= elt
->first_same_value
; elt
; elt
= elt
->next_same_value
)
2487 if (elt
->cost
< our_cost
2488 && (GET_CODE (elt
->exp
) == REG
2489 || exp_equiv_p (elt
->exp
, elt
->exp
, 1, 0))
2490 && validate_change (insn
, loc
,
2491 canon_reg (copy_rtx (elt
->exp
), NULL_RTX
), 0))
2498 /* We need to find the best (under the criteria documented above) entry
2499 in the class that is valid. We use the `flag' field to indicate
2500 choices that were invalid and iterate until we can't find a better
2501 one that hasn't already been tried. */
2503 for (p
= elt
->first_same_value
; p
; p
= p
->next_same_value
)
2506 while (found_better
)
2508 int best_addr_cost
= ADDRESS_COST (*loc
);
2509 int best_rtx_cost
= (elt
->cost
+ 1) >> 1;
2510 struct table_elt
*best_elt
= elt
;
2513 for (p
= elt
->first_same_value
; p
; p
= p
->next_same_value
)
2515 && (GET_CODE (p
->exp
) == REG
2516 || exp_equiv_p (p
->exp
, p
->exp
, 1, 0))
2517 && (ADDRESS_COST (p
->exp
) < best_addr_cost
2518 || (ADDRESS_COST (p
->exp
) == best_addr_cost
2519 && (p
->cost
+ 1) >> 1 > best_rtx_cost
)))
2522 best_addr_cost
= ADDRESS_COST (p
->exp
);
2523 best_rtx_cost
= (p
->cost
+ 1) >> 1;
2529 if (validate_change (insn
, loc
,
2530 canon_reg (copy_rtx (best_elt
->exp
),
2539 /* If the address is a binary operation with the first operand a register
2540 and the second a constant, do the same as above, but looking for
2541 equivalences of the register. Then try to simplify before checking for
2542 the best address to use. This catches a few cases: First is when we
2543 have REG+const and the register is another REG+const. We can often merge
2544 the constants and eliminate one insn and one register. It may also be
2545 that a machine has a cheap REG+REG+const. Finally, this improves the
2546 code on the Alpha for unaligned byte stores. */
2548 if (flag_expensive_optimizations
2549 && (GET_RTX_CLASS (GET_CODE (*loc
)) == '2'
2550 || GET_RTX_CLASS (GET_CODE (*loc
)) == 'c')
2551 && GET_CODE (XEXP (*loc
, 0)) == REG
2552 && GET_CODE (XEXP (*loc
, 1)) == CONST_INT
)
2554 rtx c
= XEXP (*loc
, 1);
2557 hash_code
= HASH (XEXP (*loc
, 0), Pmode
);
2558 do_not_record
= save_do_not_record
;
2559 hash_arg_in_memory
= save_hash_arg_in_memory
;
2560 hash_arg_in_struct
= save_hash_arg_in_struct
;
2562 elt
= lookup (XEXP (*loc
, 0), hash_code
, Pmode
);
2566 /* We need to find the best (under the criteria documented above) entry
2567 in the class that is valid. We use the `flag' field to indicate
2568 choices that were invalid and iterate until we can't find a better
2569 one that hasn't already been tried. */
2571 for (p
= elt
->first_same_value
; p
; p
= p
->next_same_value
)
2574 while (found_better
)
2576 int best_addr_cost
= ADDRESS_COST (*loc
);
2577 int best_rtx_cost
= (COST (*loc
) + 1) >> 1;
2578 struct table_elt
*best_elt
= elt
;
2579 rtx best_rtx
= *loc
;
2582 for (p
= elt
->first_same_value
; p
; p
= p
->next_same_value
)
2584 && (GET_CODE (p
->exp
) == REG
2585 || exp_equiv_p (p
->exp
, p
->exp
, 1, 0)))
2587 rtx
new = simplify_binary_operation (GET_CODE (*loc
), Pmode
,
2591 new = gen_rtx (GET_CODE (*loc
), Pmode
, p
->exp
, c
);
2593 if ((ADDRESS_COST (new) < best_addr_cost
2594 || (ADDRESS_COST (new) == best_addr_cost
2595 && (COST (new) + 1) >> 1 > best_rtx_cost
)))
2598 best_addr_cost
= ADDRESS_COST (new);
2599 best_rtx_cost
= (COST (new) + 1) >> 1;
2607 if (validate_change (insn
, loc
,
2608 canon_reg (copy_rtx (best_rtx
),
2619 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2620 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2621 what values are being compared.
2623 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2624 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2625 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2626 compared to produce cc0.
2628 The return value is the comparison operator and is either the code of
2629 A or the code corresponding to the inverse of the comparison. */
2631 static enum rtx_code
2632 find_comparison_args (code
, parg1
, parg2
, pmode1
, pmode2
)
2635 enum machine_mode
*pmode1
, *pmode2
;
2639 arg1
= *parg1
, arg2
= *parg2
;
2641 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2643 while (arg2
== CONST0_RTX (GET_MODE (arg1
)))
2645 /* Set non-zero when we find something of interest. */
2647 int reverse_code
= 0;
2648 struct table_elt
*p
= 0;
2650 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2651 On machines with CC0, this is the only case that can occur, since
2652 fold_rtx will return the COMPARE or item being compared with zero
2655 if (GET_CODE (arg1
) == COMPARE
&& arg2
== const0_rtx
)
2658 /* If ARG1 is a comparison operator and CODE is testing for
2659 STORE_FLAG_VALUE, get the inner arguments. */
2661 else if (GET_RTX_CLASS (GET_CODE (arg1
)) == '<')
2664 || (GET_MODE_CLASS (GET_MODE (arg1
)) == MODE_INT
2665 && code
== LT
&& STORE_FLAG_VALUE
== -1)
2666 #ifdef FLOAT_STORE_FLAG_VALUE
2667 || (GET_MODE_CLASS (GET_MODE (arg1
)) == MODE_FLOAT
2668 && FLOAT_STORE_FLAG_VALUE
< 0)
2673 || (GET_MODE_CLASS (GET_MODE (arg1
)) == MODE_INT
2674 && code
== GE
&& STORE_FLAG_VALUE
== -1)
2675 #ifdef FLOAT_STORE_FLAG_VALUE
2676 || (GET_MODE_CLASS (GET_MODE (arg1
)) == MODE_FLOAT
2677 && FLOAT_STORE_FLAG_VALUE
< 0)
2680 x
= arg1
, reverse_code
= 1;
2683 /* ??? We could also check for
2685 (ne (and (eq (...) (const_int 1))) (const_int 0))
2687 and related forms, but let's wait until we see them occurring. */
2690 /* Look up ARG1 in the hash table and see if it has an equivalence
2691 that lets us see what is being compared. */
2692 p
= lookup (arg1
, safe_hash (arg1
, GET_MODE (arg1
)) % NBUCKETS
,
2694 if (p
) p
= p
->first_same_value
;
2696 for (; p
; p
= p
->next_same_value
)
2698 enum machine_mode inner_mode
= GET_MODE (p
->exp
);
2700 /* If the entry isn't valid, skip it. */
2701 if (! exp_equiv_p (p
->exp
, p
->exp
, 1, 0))
2704 if (GET_CODE (p
->exp
) == COMPARE
2705 /* Another possibility is that this machine has a compare insn
2706 that includes the comparison code. In that case, ARG1 would
2707 be equivalent to a comparison operation that would set ARG1 to
2708 either STORE_FLAG_VALUE or zero. If this is an NE operation,
2709 ORIG_CODE is the actual comparison being done; if it is an EQ,
2710 we must reverse ORIG_CODE. On machine with a negative value
2711 for STORE_FLAG_VALUE, also look at LT and GE operations. */
2714 && GET_MODE_CLASS (inner_mode
) == MODE_INT
2715 && (GET_MODE_BITSIZE (inner_mode
)
2716 <= HOST_BITS_PER_WIDE_INT
)
2717 && (STORE_FLAG_VALUE
2718 & ((HOST_WIDE_INT
) 1
2719 << (GET_MODE_BITSIZE (inner_mode
) - 1))))
2720 #ifdef FLOAT_STORE_FLAG_VALUE
2722 && GET_MODE_CLASS (inner_mode
) == MODE_FLOAT
2723 && FLOAT_STORE_FLAG_VALUE
< 0)
2726 && GET_RTX_CLASS (GET_CODE (p
->exp
)) == '<'))
2731 else if ((code
== EQ
2733 && GET_MODE_CLASS (inner_mode
) == MODE_INT
2734 && (GET_MODE_BITSIZE (inner_mode
)
2735 <= HOST_BITS_PER_WIDE_INT
)
2736 && (STORE_FLAG_VALUE
2737 & ((HOST_WIDE_INT
) 1
2738 << (GET_MODE_BITSIZE (inner_mode
) - 1))))
2739 #ifdef FLOAT_STORE_FLAG_VALUE
2741 && GET_MODE_CLASS (inner_mode
) == MODE_FLOAT
2742 && FLOAT_STORE_FLAG_VALUE
< 0)
2745 && GET_RTX_CLASS (GET_CODE (p
->exp
)) == '<')
2752 /* If this is fp + constant, the equivalent is a better operand since
2753 it may let us predict the value of the comparison. */
2754 else if (NONZERO_BASE_PLUS_P (p
->exp
))
2761 /* If we didn't find a useful equivalence for ARG1, we are done.
2762 Otherwise, set up for the next iteration. */
2766 arg1
= XEXP (x
, 0), arg2
= XEXP (x
, 1);
2767 if (GET_RTX_CLASS (GET_CODE (x
)) == '<')
2768 code
= GET_CODE (x
);
2771 code
= reverse_condition (code
);
2774 /* Return our results. Return the modes from before fold_rtx
2775 because fold_rtx might produce const_int, and then it's too late. */
2776 *pmode1
= GET_MODE (arg1
), *pmode2
= GET_MODE (arg2
);
2777 *parg1
= fold_rtx (arg1
, 0), *parg2
= fold_rtx (arg2
, 0);
2782 /* Try to simplify a unary operation CODE whose output mode is to be
2783 MODE with input operand OP whose mode was originally OP_MODE.
2784 Return zero if no simplification can be made. */
2787 simplify_unary_operation (code
, mode
, op
, op_mode
)
2789 enum machine_mode mode
;
2791 enum machine_mode op_mode
;
2793 register int width
= GET_MODE_BITSIZE (mode
);
2795 /* The order of these tests is critical so that, for example, we don't
2796 check the wrong mode (input vs. output) for a conversion operation,
2797 such as FIX. At some point, this should be simplified. */
2799 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
2800 if (code
== FLOAT
&& GET_CODE (op
) == CONST_INT
)
2804 #ifdef REAL_ARITHMETIC
2805 REAL_VALUE_FROM_INT (d
, INTVAL (op
), INTVAL (op
) < 0 ? ~0 : 0);
2807 d
= (double) INTVAL (op
);
2809 return CONST_DOUBLE_FROM_REAL_VALUE (d
, mode
);
2811 else if (code
== UNSIGNED_FLOAT
&& GET_CODE (op
) == CONST_INT
)
2815 #ifdef REAL_ARITHMETIC
2816 REAL_VALUE_FROM_INT (d
, INTVAL (op
), 0);
2818 d
= (double) (unsigned int) INTVAL (op
);
2820 return CONST_DOUBLE_FROM_REAL_VALUE (d
, mode
);
2823 else if (code
== FLOAT
&& GET_CODE (op
) == CONST_DOUBLE
2824 && GET_MODE (op
) == VOIDmode
)
2828 #ifdef REAL_ARITHMETIC
2829 REAL_VALUE_FROM_INT (d
, CONST_DOUBLE_LOW (op
), CONST_DOUBLE_HIGH (op
));
2831 if (CONST_DOUBLE_HIGH (op
) < 0)
2833 d
= (double) (~ CONST_DOUBLE_HIGH (op
));
2834 d
*= ((double) ((HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
/ 2))
2835 * (double) ((HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
/ 2)));
2836 d
+= (double) (unsigned HOST_WIDE_INT
) (~ CONST_DOUBLE_LOW (op
));
2841 d
= (double) CONST_DOUBLE_HIGH (op
);
2842 d
*= ((double) ((HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
/ 2))
2843 * (double) ((HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
/ 2)));
2844 d
+= (double) (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (op
);
2846 #endif /* REAL_ARITHMETIC */
2847 return CONST_DOUBLE_FROM_REAL_VALUE (d
, mode
);
2849 else if (code
== UNSIGNED_FLOAT
&& GET_CODE (op
) == CONST_DOUBLE
2850 && GET_MODE (op
) == VOIDmode
)
2854 #ifdef REAL_ARITHMETIC
2855 REAL_VALUE_FROM_UNSIGNED_INT (d
, CONST_DOUBLE_LOW (op
),
2856 CONST_DOUBLE_HIGH (op
));
2858 d
= (double) CONST_DOUBLE_HIGH (op
);
2859 d
*= ((double) ((HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
/ 2))
2860 * (double) ((HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
/ 2)));
2861 d
+= (double) (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (op
);
2862 #endif /* REAL_ARITHMETIC */
2863 return CONST_DOUBLE_FROM_REAL_VALUE (d
, mode
);
2867 if (GET_CODE (op
) == CONST_INT
2868 && width
<= HOST_BITS_PER_WIDE_INT
&& width
> 0)
2870 register HOST_WIDE_INT arg0
= INTVAL (op
);
2871 register HOST_WIDE_INT val
;
2884 val
= (arg0
>= 0 ? arg0
: - arg0
);
2888 /* Don't use ffs here. Instead, get low order bit and then its
2889 number. If arg0 is zero, this will return 0, as desired. */
2890 arg0
&= GET_MODE_MASK (mode
);
2891 val
= exact_log2 (arg0
& (- arg0
)) + 1;
2899 if (op_mode
== VOIDmode
)
2901 if (GET_MODE_BITSIZE (op_mode
) == HOST_BITS_PER_WIDE_INT
)
2903 /* If we were really extending the mode,
2904 we would have to distinguish between zero-extension
2905 and sign-extension. */
2906 if (width
!= GET_MODE_BITSIZE (op_mode
))
2910 else if (GET_MODE_BITSIZE (op_mode
) < HOST_BITS_PER_WIDE_INT
)
2911 val
= arg0
& ~((HOST_WIDE_INT
) (-1) << GET_MODE_BITSIZE (op_mode
));
2917 if (op_mode
== VOIDmode
)
2919 if (GET_MODE_BITSIZE (op_mode
) == HOST_BITS_PER_WIDE_INT
)
2921 /* If we were really extending the mode,
2922 we would have to distinguish between zero-extension
2923 and sign-extension. */
2924 if (width
!= GET_MODE_BITSIZE (op_mode
))
2928 else if (GET_MODE_BITSIZE (op_mode
) < HOST_BITS_PER_INT
)
2931 = arg0
& ~((HOST_WIDE_INT
) (-1) << GET_MODE_BITSIZE (op_mode
));
2933 & ((HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (op_mode
) - 1)))
2934 val
-= (HOST_WIDE_INT
) 1 << GET_MODE_BITSIZE (op_mode
);
2947 /* Clear the bits that don't belong in our mode,
2948 unless they and our sign bit are all one.
2949 So we get either a reasonable negative value or a reasonable
2950 unsigned value for this mode. */
2951 if (width
< HOST_BITS_PER_WIDE_INT
2952 && ((val
& ((HOST_WIDE_INT
) (-1) << (width
- 1)))
2953 != ((HOST_WIDE_INT
) (-1) << (width
- 1))))
2954 val
&= (1 << width
) - 1;
2956 return GEN_INT (val
);
2959 /* We can do some operations on integer CONST_DOUBLEs. Also allow
2960 for a DImode operation on a CONST_INT. */
2961 else if (GET_MODE (op
) == VOIDmode
2962 && (GET_CODE (op
) == CONST_DOUBLE
|| GET_CODE (op
) == CONST_INT
))
2964 HOST_WIDE_INT l1
, h1
, lv
, hv
;
2966 if (GET_CODE (op
) == CONST_DOUBLE
)
2967 l1
= CONST_DOUBLE_LOW (op
), h1
= CONST_DOUBLE_HIGH (op
);
2969 l1
= INTVAL (op
), h1
= l1
< 0 ? -1 : 0;
2979 neg_double (l1
, h1
, &lv
, &hv
);
2984 neg_double (l1
, h1
, &lv
, &hv
);
2992 lv
= HOST_BITS_PER_WIDE_INT
+ exact_log2 (h1
& (-h1
)) + 1;
2994 lv
= exact_log2 (l1
& (-l1
)) + 1;
2998 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
2999 return GEN_INT (l1
& GET_MODE_MASK (mode
));
3005 if (op_mode
== VOIDmode
3006 || GET_MODE_BITSIZE (op_mode
) > HOST_BITS_PER_WIDE_INT
)
3010 lv
= l1
& GET_MODE_MASK (op_mode
);
3014 if (op_mode
== VOIDmode
3015 || GET_MODE_BITSIZE (op_mode
) > HOST_BITS_PER_WIDE_INT
)
3019 lv
= l1
& GET_MODE_MASK (op_mode
);
3020 if (GET_MODE_BITSIZE (op_mode
) < HOST_BITS_PER_WIDE_INT
3021 && (lv
& ((HOST_WIDE_INT
) 1
3022 << (GET_MODE_BITSIZE (op_mode
) - 1))) != 0)
3023 lv
-= (HOST_WIDE_INT
) 1 << GET_MODE_BITSIZE (op_mode
);
3025 hv
= (lv
< 0) ? ~ (HOST_WIDE_INT
) 0 : 0;
3036 return immed_double_const (lv
, hv
, mode
);
3039 #if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
3040 else if (GET_CODE (op
) == CONST_DOUBLE
3041 && GET_MODE_CLASS (mode
) == MODE_FLOAT
)
3047 if (setjmp (handler
))
3048 /* There used to be a warning here, but that is inadvisable.
3049 People may want to cause traps, and the natural way
3050 to do it should not get a warning. */
3053 set_float_handler (handler
);
3055 REAL_VALUE_FROM_CONST_DOUBLE (d
, op
);
3060 d
= REAL_VALUE_NEGATE (d
);
3064 if (REAL_VALUE_NEGATIVE (d
))
3065 d
= REAL_VALUE_NEGATE (d
);
3068 case FLOAT_TRUNCATE
:
3069 d
= (double) real_value_truncate (mode
, d
);
3073 /* All this does is change the mode. */
3077 d
= (double) REAL_VALUE_FIX_TRUNCATE (d
);
3081 d
= (double) REAL_VALUE_UNSIGNED_FIX_TRUNCATE (d
);
3091 x
= immed_real_const_1 (d
, mode
);
3092 set_float_handler (NULL_PTR
);
3095 else if (GET_CODE (op
) == CONST_DOUBLE
&& GET_MODE_CLASS (mode
) == MODE_INT
3096 && width
<= HOST_BITS_PER_WIDE_INT
&& width
> 0)
3103 if (setjmp (handler
))
3106 set_float_handler (handler
);
3108 REAL_VALUE_FROM_CONST_DOUBLE (d
, op
);
3113 val
= REAL_VALUE_FIX (d
);
3117 val
= REAL_VALUE_UNSIGNED_FIX (d
);
3124 set_float_handler (NULL_PTR
);
3126 /* Clear the bits that don't belong in our mode,
3127 unless they and our sign bit are all one.
3128 So we get either a reasonable negative value or a reasonable
3129 unsigned value for this mode. */
3130 if (width
< HOST_BITS_PER_WIDE_INT
3131 && ((val
& ((HOST_WIDE_INT
) (-1) << (width
- 1)))
3132 != ((HOST_WIDE_INT
) (-1) << (width
- 1))))
3133 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
3135 return GEN_INT (val
);
3138 /* This was formerly used only for non-IEEE float.
3139 eggert@twinsun.com says it is safe for IEEE also. */
3142 /* There are some simplifications we can do even if the operands
3148 /* (not (not X)) == X, similarly for NEG. */
3149 if (GET_CODE (op
) == code
)
3150 return XEXP (op
, 0);
3154 /* (sign_extend (truncate (minus (label_ref L1) (label_ref L2))))
3155 becomes just the MINUS if its mode is MODE. This allows
3156 folding switch statements on machines using casesi (such as
3158 if (GET_CODE (op
) == TRUNCATE
3159 && GET_MODE (XEXP (op
, 0)) == mode
3160 && GET_CODE (XEXP (op
, 0)) == MINUS
3161 && GET_CODE (XEXP (XEXP (op
, 0), 0)) == LABEL_REF
3162 && GET_CODE (XEXP (XEXP (op
, 0), 1)) == LABEL_REF
)
3163 return XEXP (op
, 0);
3171 /* Simplify a binary operation CODE with result mode MODE, operating on OP0
3172 and OP1. Return 0 if no simplification is possible.
3174 Don't use this for relational operations such as EQ or LT.
3175 Use simplify_relational_operation instead. */
3178 simplify_binary_operation (code
, mode
, op0
, op1
)
3180 enum machine_mode mode
;
3183 register HOST_WIDE_INT arg0
, arg1
, arg0s
, arg1s
;
3185 int width
= GET_MODE_BITSIZE (mode
);
3187 /* Relational operations don't work here. We must know the mode
3188 of the operands in order to do the comparison correctly.
3189 Assuming a full word can give incorrect results.
3190 Consider comparing 128 with -128 in QImode. */
3192 if (GET_RTX_CLASS (code
) == '<')
3195 #if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
3196 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
3197 && GET_CODE (op0
) == CONST_DOUBLE
&& GET_CODE (op1
) == CONST_DOUBLE
3198 && mode
== GET_MODE (op0
) && mode
== GET_MODE (op1
))
3200 REAL_VALUE_TYPE f0
, f1
, value
;
3203 if (setjmp (handler
))
3206 set_float_handler (handler
);
3208 REAL_VALUE_FROM_CONST_DOUBLE (f0
, op0
);
3209 REAL_VALUE_FROM_CONST_DOUBLE (f1
, op1
);
3210 f0
= real_value_truncate (mode
, f0
);
3211 f1
= real_value_truncate (mode
, f1
);
3213 #ifdef REAL_ARITHMETIC
3214 REAL_ARITHMETIC (value
, code
, f0
, f1
);
3228 #ifndef REAL_INFINITY
3235 value
= MIN (f0
, f1
);
3238 value
= MAX (f0
, f1
);
3245 set_float_handler (NULL_PTR
);
3246 value
= real_value_truncate (mode
, value
);
3247 return immed_real_const_1 (value
, mode
);
3250 /* We can fold some multi-word operations. */
3251 else if (GET_MODE_CLASS (mode
) == MODE_INT
3252 && GET_CODE (op0
) == CONST_DOUBLE
3253 && (GET_CODE (op1
) == CONST_DOUBLE
|| GET_CODE (op1
) == CONST_INT
))
3255 HOST_WIDE_INT l1
, l2
, h1
, h2
, lv
, hv
;
3257 l1
= CONST_DOUBLE_LOW (op0
), h1
= CONST_DOUBLE_HIGH (op0
);
3259 if (GET_CODE (op1
) == CONST_DOUBLE
)
3260 l2
= CONST_DOUBLE_LOW (op1
), h2
= CONST_DOUBLE_HIGH (op1
);
3262 l2
= INTVAL (op1
), h2
= l2
< 0 ? -1 : 0;
3267 /* A - B == A + (-B). */
3268 neg_double (l2
, h2
, &lv
, &hv
);
3271 /* .. fall through ... */
3274 add_double (l1
, h1
, l2
, h2
, &lv
, &hv
);
3278 mul_double (l1
, h1
, l2
, h2
, &lv
, &hv
);
3281 case DIV
: case MOD
: case UDIV
: case UMOD
:
3282 /* We'd need to include tree.h to do this and it doesn't seem worth
3287 lv
= l1
& l2
, hv
= h1
& h2
;
3291 lv
= l1
| l2
, hv
= h1
| h2
;
3295 lv
= l1
^ l2
, hv
= h1
^ h2
;
3301 && ((unsigned HOST_WIDE_INT
) l1
3302 < (unsigned HOST_WIDE_INT
) l2
)))
3311 && ((unsigned HOST_WIDE_INT
) l1
3312 > (unsigned HOST_WIDE_INT
) l2
)))
3319 if ((unsigned HOST_WIDE_INT
) h1
< (unsigned HOST_WIDE_INT
) h2
3321 && ((unsigned HOST_WIDE_INT
) l1
3322 < (unsigned HOST_WIDE_INT
) l2
)))
3329 if ((unsigned HOST_WIDE_INT
) h1
> (unsigned HOST_WIDE_INT
) h2
3331 && ((unsigned HOST_WIDE_INT
) l1
3332 > (unsigned HOST_WIDE_INT
) l2
)))
3338 case LSHIFTRT
: case ASHIFTRT
:
3339 case ASHIFT
: case LSHIFT
:
3340 case ROTATE
: case ROTATERT
:
3341 #ifdef SHIFT_COUNT_TRUNCATED
3342 l2
&= (GET_MODE_BITSIZE (mode
) - 1), h2
= 0;
3345 if (h2
!= 0 || l2
< 0 || l2
>= GET_MODE_BITSIZE (mode
))
3348 if (code
== LSHIFTRT
|| code
== ASHIFTRT
)
3349 rshift_double (l1
, h1
, l2
, GET_MODE_BITSIZE (mode
), &lv
, &hv
,
3351 else if (code
== ASHIFT
|| code
== LSHIFT
)
3352 lshift_double (l1
, h1
, l2
, GET_MODE_BITSIZE (mode
), &lv
, &hv
,
3354 else if (code
== ROTATE
)
3355 lrotate_double (l1
, h1
, l2
, GET_MODE_BITSIZE (mode
), &lv
, &hv
);
3356 else /* code == ROTATERT */
3357 rrotate_double (l1
, h1
, l2
, GET_MODE_BITSIZE (mode
), &lv
, &hv
);
3364 return immed_double_const (lv
, hv
, mode
);
3366 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
3368 if (GET_CODE (op0
) != CONST_INT
|| GET_CODE (op1
) != CONST_INT
3369 || width
> HOST_BITS_PER_WIDE_INT
|| width
== 0)
3371 /* Even if we can't compute a constant result,
3372 there are some cases worth simplifying. */
3377 /* In IEEE floating point, x+0 is not the same as x. Similarly
3378 for the other optimizations below. */
3379 if (TARGET_FLOAT_FORMAT
== IEEE_FLOAT_FORMAT
3380 && GET_MODE_CLASS (mode
) != MODE_INT
)
3383 if (op1
== CONST0_RTX (mode
))
3386 /* Strip off any surrounding CONSTs. They don't matter in any of
3388 if (GET_CODE (op0
) == CONST
)
3389 op0
= XEXP (op0
, 0);
3390 if (GET_CODE (op1
) == CONST
)
3391 op1
= XEXP (op1
, 0);
3393 /* ((-a) + b) -> (b - a) and similarly for (a + (-b)) */
3394 if (GET_CODE (op0
) == NEG
)
3396 rtx tem
= simplify_binary_operation (MINUS
, mode
,
3397 op1
, XEXP (op0
, 0));
3398 return tem
? tem
: gen_rtx (MINUS
, mode
, op1
, XEXP (op0
, 0));
3400 else if (GET_CODE (op1
) == NEG
)
3402 rtx tem
= simplify_binary_operation (MINUS
, mode
,
3403 op0
, XEXP (op1
, 0));
3404 return tem
? tem
: gen_rtx (MINUS
, mode
, op0
, XEXP (op1
, 0));
3407 /* Don't use the associative law for floating point.
3408 The inaccuracy makes it nonassociative,
3409 and subtle programs can break if operations are associated. */
3410 if (GET_MODE_CLASS (mode
) != MODE_INT
)
3413 /* (a - b) + b -> a, similarly a + (b - a) -> a */
3414 if (GET_CODE (op0
) == MINUS
3415 && rtx_equal_p (XEXP (op0
, 1), op1
) && ! side_effects_p (op1
))
3416 return XEXP (op0
, 0);
3418 if (GET_CODE (op1
) == MINUS
3419 && rtx_equal_p (XEXP (op1
, 1), op0
) && ! side_effects_p (op0
))
3420 return XEXP (op1
, 0);
3422 /* (c1 - a) + c2 becomes (c1 + c2) - a. */
3423 if (GET_CODE (op1
) == CONST_INT
&& GET_CODE (op0
) == MINUS
3424 && GET_CODE (XEXP (op0
, 0)) == CONST_INT
)
3426 rtx tem
= simplify_binary_operation (PLUS
, mode
, op1
,
3429 return tem
? gen_rtx (MINUS
, mode
, tem
, XEXP (op0
, 1)) : 0;
3432 /* Handle both-operands-constant cases. */
3433 if (CONSTANT_P (op0
) && CONSTANT_P (op1
)
3434 && GET_CODE (op0
) != CONST_DOUBLE
3435 && GET_CODE (op1
) != CONST_DOUBLE
3436 && GET_MODE_CLASS (mode
) == MODE_INT
)
3438 if (GET_CODE (op1
) == CONST_INT
)
3439 return plus_constant (op0
, INTVAL (op1
));
3440 else if (GET_CODE (op0
) == CONST_INT
)
3441 return plus_constant (op1
, INTVAL (op0
));
3444 #if 0 /* No good, because this can produce the sum of two relocatable
3445 symbols, in an assembler instruction. Most UNIX assemblers can't
3448 return gen_rtx (CONST
, mode
,
3449 gen_rtx (PLUS
, mode
,
3450 GET_CODE (op0
) == CONST
3451 ? XEXP (op0
, 0) : op0
,
3452 GET_CODE (op1
) == CONST
3453 ? XEXP (op1
, 0) : op1
));
3456 else if (GET_CODE (op1
) == CONST_INT
3457 && GET_CODE (op0
) == PLUS
3458 && (CONSTANT_P (XEXP (op0
, 0))
3459 || CONSTANT_P (XEXP (op0
, 1))))
3460 /* constant + (variable + constant)
3461 can result if an index register is made constant.
3462 We simplify this by adding the constants.
3463 If we did not, it would become an invalid address. */
3464 return plus_constant (op0
, INTVAL (op1
));
3469 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
3470 using cc0, in which case we want to leave it as a COMPARE
3471 so we can distinguish it from a register-register-copy.
3473 In IEEE floating point, x-0 is not the same as x. */
3475 if ((TARGET_FLOAT_FORMAT
!= IEEE_FLOAT_FORMAT
3476 || GET_MODE_CLASS (mode
) == MODE_INT
)
3477 && op1
== CONST0_RTX (mode
))
3480 /* Do nothing here. */
3485 /* None of these optimizations can be done for IEEE
3487 if (TARGET_FLOAT_FORMAT
== IEEE_FLOAT_FORMAT
3488 && GET_MODE_CLASS (mode
) != MODE_INT
)
3491 /* We can't assume x-x is 0 even with non-IEEE floating point. */
3492 if (rtx_equal_p (op0
, op1
)
3493 && ! side_effects_p (op0
)
3494 && GET_MODE_CLASS (mode
) != MODE_FLOAT
)
3497 /* Change subtraction from zero into negation. */
3498 if (op0
== CONST0_RTX (mode
))
3499 return gen_rtx (NEG
, mode
, op1
);
3501 /* Subtracting 0 has no effect. */
3502 if (op1
== CONST0_RTX (mode
))
3505 /* Strip off any surrounding CONSTs. They don't matter in any of
3507 if (GET_CODE (op0
) == CONST
)
3508 op0
= XEXP (op0
, 0);
3509 if (GET_CODE (op1
) == CONST
)
3510 op1
= XEXP (op1
, 0);
3512 /* (a - (-b)) -> (a + b). */
3513 if (GET_CODE (op1
) == NEG
)
3515 rtx tem
= simplify_binary_operation (PLUS
, mode
,
3516 op0
, XEXP (op1
, 0));
3517 return tem
? tem
: gen_rtx (PLUS
, mode
, op0
, XEXP (op1
, 0));
3520 /* Don't use the associative law for floating point.
3521 The inaccuracy makes it nonassociative,
3522 and subtle programs can break if operations are associated. */
3523 if (GET_MODE_CLASS (mode
) != MODE_INT
)
3526 /* (a + b) - a -> b, and (b - (a + b)) -> -a */
3527 if (GET_CODE (op0
) == PLUS
3528 && rtx_equal_p (XEXP (op0
, 0), op1
)
3529 && ! side_effects_p (op1
))
3530 return XEXP (op0
, 1);
3531 else if (GET_CODE (op0
) == PLUS
3532 && rtx_equal_p (XEXP (op0
, 1), op1
)
3533 && ! side_effects_p (op1
))
3534 return XEXP (op0
, 0);
3536 if (GET_CODE (op1
) == PLUS
3537 && rtx_equal_p (XEXP (op1
, 0), op0
)
3538 && ! side_effects_p (op0
))
3540 rtx tem
= simplify_unary_operation (NEG
, mode
, XEXP (op1
, 1),
3543 return tem
? tem
: gen_rtx (NEG
, mode
, XEXP (op1
, 1));
3545 else if (GET_CODE (op1
) == PLUS
3546 && rtx_equal_p (XEXP (op1
, 1), op0
)
3547 && ! side_effects_p (op0
))
3549 rtx tem
= simplify_unary_operation (NEG
, mode
, XEXP (op1
, 0),
3552 return tem
? tem
: gen_rtx (NEG
, mode
, XEXP (op1
, 0));
3555 /* a - (a - b) -> b */
3556 if (GET_CODE (op1
) == MINUS
&& rtx_equal_p (op0
, XEXP (op1
, 0))
3557 && ! side_effects_p (op0
))
3558 return XEXP (op1
, 1);
3560 /* (a +/- b) - (a +/- c) can be simplified. Do variants of
3561 this involving commutativity. The most common case is
3562 (a + C1) - (a + C2), but it's not hard to do all the cases. */
3563 if ((GET_CODE (op0
) == PLUS
|| GET_CODE (op0
) == MINUS
)
3564 && (GET_CODE (op1
) == PLUS
|| GET_CODE (op1
) == MINUS
))
3566 rtx lhs0
= XEXP (op0
, 0), lhs1
= XEXP (op0
, 1);
3567 rtx rhs0
= XEXP (op1
, 0), rhs1
= XEXP (op1
, 1);
3568 int lhs_neg
= GET_CODE (op0
) == MINUS
;
3569 int rhs_neg
= GET_CODE (op1
) == MINUS
;
3570 rtx lhs
= 0, rhs
= 0;
3572 /* Set LHS and RHS to the two different terms. */
3573 if (rtx_equal_p (lhs0
, rhs0
) && ! side_effects_p (lhs0
))
3574 lhs
= lhs1
, rhs
= rhs1
;
3575 else if (! rhs_neg
&& rtx_equal_p (lhs0
, rhs1
)
3576 && ! side_effects_p (lhs0
))
3577 lhs
= lhs1
, rhs
= rhs0
;
3578 else if (! lhs_neg
&& rtx_equal_p (lhs1
, rhs0
)
3579 && ! side_effects_p (lhs1
))
3580 lhs
= lhs0
, rhs
= rhs1
;
3581 else if (! lhs_neg
&& ! rhs_neg
&& rtx_equal_p (lhs1
, rhs1
)
3582 && ! side_effects_p (lhs1
))
3583 lhs
= lhs0
, rhs
= rhs0
;
3585 /* The RHS is the operand of a MINUS, so its negation
3586 status should be complemented. */
3587 rhs_neg
= ! rhs_neg
;
3589 /* If we found two values equal, form the sum or difference
3590 of the remaining two terms. */
3593 rtx tem
= simplify_binary_operation (lhs_neg
== rhs_neg
3596 lhs_neg
? rhs
: lhs
,
3597 lhs_neg
? lhs
: rhs
);
3599 tem
= gen_rtx (lhs_neg
== rhs_neg
3601 mode
, lhs_neg
? rhs
: lhs
,
3602 lhs_neg
? lhs
: rhs
);
3604 /* If both sides negated, negate result. */
3605 if (lhs_neg
&& rhs_neg
)
3608 = simplify_unary_operation (NEG
, mode
, tem
, mode
);
3610 tem1
= gen_rtx (NEG
, mode
, tem
);
3620 /* c1 - (a + c2) becomes (c1 - c2) - a. */
3621 if (GET_CODE (op0
) == CONST_INT
&& GET_CODE (op1
) == PLUS
3622 && GET_CODE (XEXP (op1
, 1)) == CONST_INT
)
3624 rtx tem
= simplify_binary_operation (MINUS
, mode
, op0
,
3627 return tem
? gen_rtx (MINUS
, mode
, tem
, XEXP (op1
, 0)) : 0;
3630 /* c1 - (c2 - a) becomes (c1 - c2) + a. */
3631 if (GET_CODE (op0
) == CONST_INT
&& GET_CODE (op1
) == MINUS
3632 && GET_CODE (XEXP (op1
, 0)) == CONST_INT
)
3634 rtx tem
= simplify_binary_operation (MINUS
, mode
, op0
,
3637 return (tem
&& GET_CODE (tem
) == CONST_INT
3638 ? plus_constant (XEXP (op1
, 1), INTVAL (tem
))
3642 /* Don't let a relocatable value get a negative coeff. */
3643 if (GET_CODE (op1
) == CONST_INT
)
3644 return plus_constant (op0
, - INTVAL (op1
));
3648 if (op1
== constm1_rtx
)
3650 rtx tem
= simplify_unary_operation (NEG
, mode
, op0
, mode
);
3652 return tem
? tem
: gen_rtx (NEG
, mode
, op0
);
3655 /* In IEEE floating point, x*0 is not always 0. */
3656 if ((TARGET_FLOAT_FORMAT
!= IEEE_FLOAT_FORMAT
3657 || GET_MODE_CLASS (mode
) == MODE_INT
)
3658 && op1
== CONST0_RTX (mode
)
3659 && ! side_effects_p (op0
))
3662 /* In IEEE floating point, x*1 is not equivalent to x for nans.
3663 However, ANSI says we can drop signals,
3664 so we can do this anyway. */
3665 if (op1
== CONST1_RTX (mode
))
3668 /* Convert multiply by constant power of two into shift. */
3669 if (GET_CODE (op1
) == CONST_INT
3670 && (val
= exact_log2 (INTVAL (op1
))) >= 0)
3671 return gen_rtx (ASHIFT
, mode
, op0
, GEN_INT (val
));
3673 if (GET_CODE (op1
) == CONST_DOUBLE
3674 && GET_MODE_CLASS (GET_MODE (op1
)) == MODE_FLOAT
)
3677 REAL_VALUE_FROM_CONST_DOUBLE (d
, op1
);
3679 /* x*2 is x+x and x*(-1) is -x */
3680 if (REAL_VALUES_EQUAL (d
, dconst2
)
3681 && GET_MODE (op0
) == mode
)
3682 return gen_rtx (PLUS
, mode
, op0
, copy_rtx (op0
));
3684 else if (REAL_VALUES_EQUAL (d
, dconstm1
)
3685 && GET_MODE (op0
) == mode
)
3686 return gen_rtx (NEG
, mode
, op0
);
3691 if (op1
== const0_rtx
)
3693 if (GET_CODE (op1
) == CONST_INT
3694 && (INTVAL (op1
) & GET_MODE_MASK (mode
)) == GET_MODE_MASK (mode
))
3696 if (rtx_equal_p (op0
, op1
) && ! side_effects_p (op0
))
3698 /* A | (~A) -> -1 */
3699 if (((GET_CODE (op0
) == NOT
&& rtx_equal_p (XEXP (op0
, 0), op1
))
3700 || (GET_CODE (op1
) == NOT
&& rtx_equal_p (XEXP (op1
, 0), op0
)))
3701 && ! side_effects_p (op0
))
3706 if (op1
== const0_rtx
)
3708 if (GET_CODE (op1
) == CONST_INT
3709 && (INTVAL (op1
) & GET_MODE_MASK (mode
)) == GET_MODE_MASK (mode
))
3710 return gen_rtx (NOT
, mode
, op0
);
3711 if (op0
== op1
&& ! side_effects_p (op0
))
3716 if (op1
== const0_rtx
&& ! side_effects_p (op0
))
3718 if (GET_CODE (op1
) == CONST_INT
3719 && (INTVAL (op1
) & GET_MODE_MASK (mode
)) == GET_MODE_MASK (mode
))
3721 if (op0
== op1
&& ! side_effects_p (op0
))
3724 if (((GET_CODE (op0
) == NOT
&& rtx_equal_p (XEXP (op0
, 0), op1
))
3725 || (GET_CODE (op1
) == NOT
&& rtx_equal_p (XEXP (op1
, 0), op0
)))
3726 && ! side_effects_p (op0
))
3731 /* Convert divide by power of two into shift (divide by 1 handled
3733 if (GET_CODE (op1
) == CONST_INT
3734 && (arg1
= exact_log2 (INTVAL (op1
))) > 0)
3735 return gen_rtx (LSHIFTRT
, mode
, op0
, GEN_INT (arg1
));
3737 /* ... fall through ... */
3740 if (op1
== CONST1_RTX (mode
))
3743 /* In IEEE floating point, 0/x is not always 0. */
3744 if ((TARGET_FLOAT_FORMAT
!= IEEE_FLOAT_FORMAT
3745 || GET_MODE_CLASS (mode
) == MODE_INT
)
3746 && op0
== CONST0_RTX (mode
)
3747 && ! side_effects_p (op1
))
3750 #if 0 /* Turned off till an expert says this is a safe thing to do. */
3751 #if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
3752 /* Change division by a constant into multiplication. */
3753 else if (GET_CODE (op1
) == CONST_DOUBLE
3754 && GET_MODE_CLASS (GET_MODE (op1
)) == MODE_FLOAT
3755 && op1
!= CONST0_RTX (mode
))
3758 REAL_VALUE_FROM_CONST_DOUBLE (d
, op1
);
3759 if (REAL_VALUES_EQUAL (d
, dconst0
))
3761 #if defined (REAL_ARITHMETIC)
3762 REAL_ARITHMETIC (d
, RDIV_EXPR
, dconst1
, d
);
3763 return gen_rtx (MULT
, mode
, op0
,
3764 CONST_DOUBLE_FROM_REAL_VALUE (d
, mode
));
3766 return gen_rtx (MULT
, mode
, op0
,
3767 CONST_DOUBLE_FROM_REAL_VALUE (1./d
, mode
));
3775 /* Handle modulus by power of two (mod with 1 handled below). */
3776 if (GET_CODE (op1
) == CONST_INT
3777 && exact_log2 (INTVAL (op1
)) > 0)
3778 return gen_rtx (AND
, mode
, op0
, GEN_INT (INTVAL (op1
) - 1));
3780 /* ... fall through ... */
3783 if ((op0
== const0_rtx
|| op1
== const1_rtx
)
3784 && ! side_effects_p (op0
) && ! side_effects_p (op1
))
3790 /* Rotating ~0 always results in ~0. */
3791 if (GET_CODE (op0
) == CONST_INT
&& width
<= HOST_BITS_PER_WIDE_INT
3792 && INTVAL (op0
) == GET_MODE_MASK (mode
)
3793 && ! side_effects_p (op1
))
3796 /* ... fall through ... */
3802 if (op1
== const0_rtx
)
3804 if (op0
== const0_rtx
&& ! side_effects_p (op1
))
3809 if (width
<= HOST_BITS_PER_WIDE_INT
&& GET_CODE (op1
) == CONST_INT
3810 && INTVAL (op1
) == (HOST_WIDE_INT
) 1 << (width
-1)
3811 && ! side_effects_p (op0
))
3813 else if (rtx_equal_p (op0
, op1
) && ! side_effects_p (op0
))
3818 if (width
<= HOST_BITS_PER_WIDE_INT
&& GET_CODE (op1
) == CONST_INT
3819 && INTVAL (op1
) == GET_MODE_MASK (mode
) >> 1
3820 && ! side_effects_p (op0
))
3822 else if (rtx_equal_p (op0
, op1
) && ! side_effects_p (op0
))
3827 if (op1
== const0_rtx
&& ! side_effects_p (op0
))
3829 else if (rtx_equal_p (op0
, op1
) && ! side_effects_p (op0
))
3834 if (op1
== constm1_rtx
&& ! side_effects_p (op0
))
3836 else if (rtx_equal_p (op0
, op1
) && ! side_effects_p (op0
))
3847 /* Get the integer argument values in two forms:
3848 zero-extended in ARG0, ARG1 and sign-extended in ARG0S, ARG1S. */
3850 arg0
= INTVAL (op0
);
3851 arg1
= INTVAL (op1
);
3853 if (width
< HOST_BITS_PER_WIDE_INT
)
3855 arg0
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
3856 arg1
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
3859 if (arg0s
& ((HOST_WIDE_INT
) 1 << (width
- 1)))
3860 arg0s
|= ((HOST_WIDE_INT
) (-1) << width
);
3863 if (arg1s
& ((HOST_WIDE_INT
) 1 << (width
- 1)))
3864 arg1s
|= ((HOST_WIDE_INT
) (-1) << width
);
3872 /* Compute the value of the arithmetic. */
3877 val
= arg0s
+ arg1s
;
3881 val
= arg0s
- arg1s
;
3885 val
= arg0s
* arg1s
;
3891 val
= arg0s
/ arg1s
;
3897 val
= arg0s
% arg1s
;
3903 val
= (unsigned HOST_WIDE_INT
) arg0
/ arg1
;
3909 val
= (unsigned HOST_WIDE_INT
) arg0
% arg1
;
3925 /* If shift count is undefined, don't fold it; let the machine do
3926 what it wants. But truncate it if the machine will do that. */
3930 #ifdef SHIFT_COUNT_TRUNCATED
3931 arg1
&= (BITS_PER_WORD
- 1);
3937 val
= ((unsigned HOST_WIDE_INT
) arg0
) >> arg1
;
3945 #ifdef SHIFT_COUNT_TRUNCATED
3946 arg1
&= (BITS_PER_WORD
- 1);
3952 val
= ((unsigned HOST_WIDE_INT
) arg0
) << arg1
;
3959 #ifdef SHIFT_COUNT_TRUNCATED
3960 arg1
&= (BITS_PER_WORD
- 1);
3966 val
= arg0s
>> arg1
;
3974 val
= ((((unsigned HOST_WIDE_INT
) arg0
) << (width
- arg1
))
3975 | (((unsigned HOST_WIDE_INT
) arg0
) >> arg1
));
3983 val
= ((((unsigned HOST_WIDE_INT
) arg0
) << arg1
)
3984 | (((unsigned HOST_WIDE_INT
) arg0
) >> (width
- arg1
)));
3988 /* Do nothing here. */
3992 val
= arg0s
<= arg1s
? arg0s
: arg1s
;
3996 val
= ((unsigned HOST_WIDE_INT
) arg0
3997 <= (unsigned HOST_WIDE_INT
) arg1
? arg0
: arg1
);
4001 val
= arg0s
> arg1s
? arg0s
: arg1s
;
4005 val
= ((unsigned HOST_WIDE_INT
) arg0
4006 > (unsigned HOST_WIDE_INT
) arg1
? arg0
: arg1
);
4013 /* Clear the bits that don't belong in our mode, unless they and our sign
4014 bit are all one. So we get either a reasonable negative value or a
4015 reasonable unsigned value for this mode. */
4016 if (width
< HOST_BITS_PER_WIDE_INT
4017 && ((val
& ((HOST_WIDE_INT
) (-1) << (width
- 1)))
4018 != ((HOST_WIDE_INT
) (-1) << (width
- 1))))
4019 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
4021 return GEN_INT (val
);
4024 /* Like simplify_binary_operation except used for relational operators.
4025 MODE is the mode of the operands, not that of the result. */
4028 simplify_relational_operation (code
, mode
, op0
, op1
)
4030 enum machine_mode mode
;
4033 register HOST_WIDE_INT arg0
, arg1
, arg0s
, arg1s
;
4035 int width
= GET_MODE_BITSIZE (mode
);
4037 /* If op0 is a compare, extract the comparison arguments from it. */
4038 if (GET_CODE (op0
) == COMPARE
&& op1
== const0_rtx
)
4039 op1
= XEXP (op0
, 1), op0
= XEXP (op0
, 0);
4041 if (GET_CODE (op0
) != CONST_INT
|| GET_CODE (op1
) != CONST_INT
4042 || width
> HOST_BITS_PER_WIDE_INT
|| width
== 0)
4044 /* Even if we can't compute a constant result,
4045 there are some cases worth simplifying. */
4047 /* For non-IEEE floating-point, if the two operands are equal, we know
4049 if (rtx_equal_p (op0
, op1
)
4050 && (TARGET_FLOAT_FORMAT
!= IEEE_FLOAT_FORMAT
4051 || GET_MODE_CLASS (GET_MODE (op0
)) != MODE_FLOAT
))
4052 return (code
== EQ
|| code
== GE
|| code
== LE
|| code
== LEU
4053 || code
== GEU
) ? const_true_rtx
: const0_rtx
;
4054 else if (GET_CODE (op0
) == CONST_DOUBLE
4055 && GET_CODE (op1
) == CONST_DOUBLE
4056 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_FLOAT
)
4058 REAL_VALUE_TYPE d0
, d1
;
4060 int op0lt
, op1lt
, equal
;
4062 if (setjmp (handler
))
4065 set_float_handler (handler
);
4066 REAL_VALUE_FROM_CONST_DOUBLE (d0
, op0
);
4067 REAL_VALUE_FROM_CONST_DOUBLE (d1
, op1
);
4068 equal
= REAL_VALUES_EQUAL (d0
, d1
);
4069 op0lt
= REAL_VALUES_LESS (d0
, d1
);
4070 op1lt
= REAL_VALUES_LESS (d1
, d0
);
4071 set_float_handler (NULL_PTR
);
4076 return equal
? const_true_rtx
: const0_rtx
;
4078 return !equal
? const_true_rtx
: const0_rtx
;
4080 return equal
|| op0lt
? const_true_rtx
: const0_rtx
;
4082 return op0lt
? const_true_rtx
: const0_rtx
;
4084 return equal
|| op1lt
? const_true_rtx
: const0_rtx
;
4086 return op1lt
? const_true_rtx
: const0_rtx
;
4095 /* We can't make this assumption due to #pragma weak */
4096 if (CONSTANT_P (op0
) && op1
== const0_rtx
)
4099 if (NONZERO_BASE_PLUS_P (op0
) && op1
== const0_rtx
4100 /* On some machines, the ap reg can be 0 sometimes. */
4101 && op0
!= arg_pointer_rtx
)
4108 /* We can't make this assumption due to #pragma weak */
4109 if (CONSTANT_P (op0
) && op1
== const0_rtx
)
4110 return const_true_rtx
;
4112 if (NONZERO_BASE_PLUS_P (op0
) && op1
== const0_rtx
4113 /* On some machines, the ap reg can be 0 sometimes. */
4114 && op0
!= arg_pointer_rtx
)
4115 return const_true_rtx
;
4119 /* Unsigned values are never negative, but we must be sure we are
4120 actually comparing a value, not a CC operand. */
4121 if (op1
== const0_rtx
4122 && GET_MODE_CLASS (mode
) == MODE_INT
)
4123 return const_true_rtx
;
4127 if (op1
== const0_rtx
4128 && GET_MODE_CLASS (mode
) == MODE_INT
)
4133 /* Unsigned values are never greater than the largest
4135 if (GET_CODE (op1
) == CONST_INT
4136 && INTVAL (op1
) == GET_MODE_MASK (mode
)
4137 && GET_MODE_CLASS (mode
) == MODE_INT
)
4138 return const_true_rtx
;
4142 if (GET_CODE (op1
) == CONST_INT
4143 && INTVAL (op1
) == GET_MODE_MASK (mode
)
4144 && GET_MODE_CLASS (mode
) == MODE_INT
)
4152 /* Get the integer argument values in two forms:
4153 zero-extended in ARG0, ARG1 and sign-extended in ARG0S, ARG1S. */
4155 arg0
= INTVAL (op0
);
4156 arg1
= INTVAL (op1
);
4158 if (width
< HOST_BITS_PER_WIDE_INT
)
4160 arg0
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
4161 arg1
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
4164 if (arg0s
& ((HOST_WIDE_INT
) 1 << (width
- 1)))
4165 arg0s
|= ((HOST_WIDE_INT
) (-1) << width
);
4168 if (arg1s
& ((HOST_WIDE_INT
) 1 << (width
- 1)))
4169 arg1s
|= ((HOST_WIDE_INT
) (-1) << width
);
4177 /* Compute the value of the arithmetic. */
4182 val
= arg0
!= arg1
? STORE_FLAG_VALUE
: 0;
4186 val
= arg0
== arg1
? STORE_FLAG_VALUE
: 0;
4190 val
= arg0s
<= arg1s
? STORE_FLAG_VALUE
: 0;
4194 val
= arg0s
< arg1s
? STORE_FLAG_VALUE
: 0;
4198 val
= arg0s
>= arg1s
? STORE_FLAG_VALUE
: 0;
4202 val
= arg0s
> arg1s
? STORE_FLAG_VALUE
: 0;
4206 val
= (((unsigned HOST_WIDE_INT
) arg0
)
4207 <= ((unsigned HOST_WIDE_INT
) arg1
) ? STORE_FLAG_VALUE
: 0);
4211 val
= (((unsigned HOST_WIDE_INT
) arg0
)
4212 < ((unsigned HOST_WIDE_INT
) arg1
) ? STORE_FLAG_VALUE
: 0);
4216 val
= (((unsigned HOST_WIDE_INT
) arg0
)
4217 >= ((unsigned HOST_WIDE_INT
) arg1
) ? STORE_FLAG_VALUE
: 0);
4221 val
= (((unsigned HOST_WIDE_INT
) arg0
)
4222 > ((unsigned HOST_WIDE_INT
) arg1
) ? STORE_FLAG_VALUE
: 0);
4229 /* Clear the bits that don't belong in our mode, unless they and our sign
4230 bit are all one. So we get either a reasonable negative value or a
4231 reasonable unsigned value for this mode. */
4232 if (width
< HOST_BITS_PER_WIDE_INT
4233 && ((val
& ((HOST_WIDE_INT
) (-1) << (width
- 1)))
4234 != ((HOST_WIDE_INT
) (-1) << (width
- 1))))
4235 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
4237 return GEN_INT (val
);
4240 /* Simplify CODE, an operation with result mode MODE and three operands,
4241 OP0, OP1, and OP2. OP0_MODE was the mode of OP0 before it became
4242 a constant. Return 0 if no simplifications is possible. */
4245 simplify_ternary_operation (code
, mode
, op0_mode
, op0
, op1
, op2
)
4247 enum machine_mode mode
, op0_mode
;
4250 int width
= GET_MODE_BITSIZE (mode
);
4252 /* VOIDmode means "infinite" precision. */
4254 width
= HOST_BITS_PER_WIDE_INT
;
4260 if (GET_CODE (op0
) == CONST_INT
4261 && GET_CODE (op1
) == CONST_INT
4262 && GET_CODE (op2
) == CONST_INT
4263 && INTVAL (op1
) + INTVAL (op2
) <= GET_MODE_BITSIZE (op0_mode
)
4264 && width
<= HOST_BITS_PER_WIDE_INT
)
4266 /* Extracting a bit-field from a constant */
4267 HOST_WIDE_INT val
= INTVAL (op0
);
4270 val
>>= (GET_MODE_BITSIZE (op0_mode
) - INTVAL (op2
) - INTVAL (op1
));
4272 val
>>= INTVAL (op2
);
4274 if (HOST_BITS_PER_WIDE_INT
!= INTVAL (op1
))
4276 /* First zero-extend. */
4277 val
&= ((HOST_WIDE_INT
) 1 << INTVAL (op1
)) - 1;
4278 /* If desired, propagate sign bit. */
4279 if (code
== SIGN_EXTRACT
4280 && (val
& ((HOST_WIDE_INT
) 1 << (INTVAL (op1
) - 1))))
4281 val
|= ~ (((HOST_WIDE_INT
) 1 << INTVAL (op1
)) - 1);
4284 /* Clear the bits that don't belong in our mode,
4285 unless they and our sign bit are all one.
4286 So we get either a reasonable negative value or a reasonable
4287 unsigned value for this mode. */
4288 if (width
< HOST_BITS_PER_WIDE_INT
4289 && ((val
& ((HOST_WIDE_INT
) (-1) << (width
- 1)))
4290 != ((HOST_WIDE_INT
) (-1) << (width
- 1))))
4291 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
4293 return GEN_INT (val
);
4298 if (GET_CODE (op0
) == CONST_INT
)
4299 return op0
!= const0_rtx
? op1
: op2
;
4309 /* If X is a nontrivial arithmetic operation on an argument
4310 for which a constant value can be determined, return
4311 the result of operating on that value, as a constant.
4312 Otherwise, return X, possibly with one or more operands
4313 modified by recursive calls to this function.
4315 If X is a register whose contents are known, we do NOT
4316 return those contents. This is because an instruction that
4317 uses a register is usually faster than one that uses a constant.
4319 INSN is the insn that we may be modifying. If it is 0, make a copy
4320 of X before modifying it. */
4327 register enum rtx_code code
;
4328 register enum machine_mode mode
;
4335 /* Folded equivalents of first two operands of X. */
4339 /* Constant equivalents of first three operands of X;
4340 0 when no such equivalent is known. */
4345 /* The mode of the first operand of X. We need this for sign and zero
4347 enum machine_mode mode_arg0
;
4352 mode
= GET_MODE (x
);
4353 code
= GET_CODE (x
);
4362 /* No use simplifying an EXPR_LIST
4363 since they are used only for lists of args
4364 in a function call's REG_EQUAL note. */
4370 return prev_insn_cc0
;
4374 /* If the next insn is a CODE_LABEL followed by a jump table,
4375 PC's value is a LABEL_REF pointing to that label. That
4376 lets us fold switch statements on the Vax. */
4377 if (insn
&& GET_CODE (insn
) == JUMP_INSN
)
4379 rtx next
= next_nonnote_insn (insn
);
4381 if (next
&& GET_CODE (next
) == CODE_LABEL
4382 && NEXT_INSN (next
) != 0
4383 && GET_CODE (NEXT_INSN (next
)) == JUMP_INSN
4384 && (GET_CODE (PATTERN (NEXT_INSN (next
))) == ADDR_VEC
4385 || GET_CODE (PATTERN (NEXT_INSN (next
))) == ADDR_DIFF_VEC
))
4386 return gen_rtx (LABEL_REF
, Pmode
, next
);
4391 /* See if we previously assigned a constant value to this SUBREG. */
4392 if ((new = lookup_as_function (x
, CONST_INT
)) != 0
4393 || (new = lookup_as_function (x
, CONST_DOUBLE
)) != 0)
4396 /* If this is a paradoxical SUBREG, we have no idea what value the
4397 extra bits would have. However, if the operand is equivalent
4398 to a SUBREG whose operand is the same as our mode, and all the
4399 modes are within a word, we can just use the inner operand
4400 because these SUBREGs just say how to treat the register. */
4402 if (GET_MODE_SIZE (mode
) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
4404 enum machine_mode imode
= GET_MODE (SUBREG_REG (x
));
4405 struct table_elt
*elt
;
4407 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
4408 && GET_MODE_SIZE (imode
) <= UNITS_PER_WORD
4409 && (elt
= lookup (SUBREG_REG (x
), HASH (SUBREG_REG (x
), imode
),
4412 for (elt
= elt
->first_same_value
;
4413 elt
; elt
= elt
->next_same_value
)
4414 if (GET_CODE (elt
->exp
) == SUBREG
4415 && GET_MODE (SUBREG_REG (elt
->exp
)) == mode
4416 && exp_equiv_p (elt
->exp
, elt
->exp
, 1, 0))
4417 return copy_rtx (SUBREG_REG (elt
->exp
));
4423 /* Fold SUBREG_REG. If it changed, see if we can simplify the SUBREG.
4424 We might be able to if the SUBREG is extracting a single word in an
4425 integral mode or extracting the low part. */
4427 folded_arg0
= fold_rtx (SUBREG_REG (x
), insn
);
4428 const_arg0
= equiv_constant (folded_arg0
);
4430 folded_arg0
= const_arg0
;
4432 if (folded_arg0
!= SUBREG_REG (x
))
4436 if (GET_MODE_CLASS (mode
) == MODE_INT
4437 && GET_MODE_SIZE (mode
) == UNITS_PER_WORD
4438 && GET_MODE (SUBREG_REG (x
)) != VOIDmode
)
4439 new = operand_subword (folded_arg0
, SUBREG_WORD (x
), 0,
4440 GET_MODE (SUBREG_REG (x
)));
4441 if (new == 0 && subreg_lowpart_p (x
))
4442 new = gen_lowpart_if_possible (mode
, folded_arg0
);
4447 /* If this is a narrowing SUBREG and our operand is a REG, see if
4448 we can find an equivalence for REG that is an arithmetic operation
4449 in a wider mode where both operands are paradoxical SUBREGs
4450 from objects of our result mode. In that case, we couldn't report
4451 an equivalent value for that operation, since we don't know what the
4452 extra bits will be. But we can find an equivalence for this SUBREG
4453 by folding that operation is the narrow mode. This allows us to
4454 fold arithmetic in narrow modes when the machine only supports
4455 word-sized arithmetic.
4457 Also look for a case where we have a SUBREG whose operand is the
4458 same as our result. If both modes are smaller than a word, we
4459 are simply interpreting a register in different modes and we
4460 can use the inner value. */
4462 if (GET_CODE (folded_arg0
) == REG
4463 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (folded_arg0
))
4464 && subreg_lowpart_p (x
))
4466 struct table_elt
*elt
;
4468 /* We can use HASH here since we know that canon_hash won't be
4470 elt
= lookup (folded_arg0
,
4471 HASH (folded_arg0
, GET_MODE (folded_arg0
)),
4472 GET_MODE (folded_arg0
));
4475 elt
= elt
->first_same_value
;
4477 for (; elt
; elt
= elt
->next_same_value
)
4479 enum rtx_code eltcode
= GET_CODE (elt
->exp
);
4481 /* Just check for unary and binary operations. */
4482 if (GET_RTX_CLASS (GET_CODE (elt
->exp
)) == '1'
4483 && GET_CODE (elt
->exp
) != SIGN_EXTEND
4484 && GET_CODE (elt
->exp
) != ZERO_EXTEND
4485 && GET_CODE (XEXP (elt
->exp
, 0)) == SUBREG
4486 && GET_MODE (SUBREG_REG (XEXP (elt
->exp
, 0))) == mode
)
4488 rtx op0
= SUBREG_REG (XEXP (elt
->exp
, 0));
4490 if (GET_CODE (op0
) != REG
&& ! CONSTANT_P (op0
))
4491 op0
= fold_rtx (op0
, NULL_RTX
);
4493 op0
= equiv_constant (op0
);
4495 new = simplify_unary_operation (GET_CODE (elt
->exp
), mode
,
4498 else if ((GET_RTX_CLASS (GET_CODE (elt
->exp
)) == '2'
4499 || GET_RTX_CLASS (GET_CODE (elt
->exp
)) == 'c')
4500 && eltcode
!= DIV
&& eltcode
!= MOD
4501 && eltcode
!= UDIV
&& eltcode
!= UMOD
4502 && eltcode
!= ASHIFTRT
&& eltcode
!= LSHIFTRT
4503 && eltcode
!= ROTATE
&& eltcode
!= ROTATERT
4504 && ((GET_CODE (XEXP (elt
->exp
, 0)) == SUBREG
4505 && (GET_MODE (SUBREG_REG (XEXP (elt
->exp
, 0)))
4507 || CONSTANT_P (XEXP (elt
->exp
, 0)))
4508 && ((GET_CODE (XEXP (elt
->exp
, 1)) == SUBREG
4509 && (GET_MODE (SUBREG_REG (XEXP (elt
->exp
, 1)))
4511 || CONSTANT_P (XEXP (elt
->exp
, 1))))
4513 rtx op0
= gen_lowpart_common (mode
, XEXP (elt
->exp
, 0));
4514 rtx op1
= gen_lowpart_common (mode
, XEXP (elt
->exp
, 1));
4516 if (op0
&& GET_CODE (op0
) != REG
&& ! CONSTANT_P (op0
))
4517 op0
= fold_rtx (op0
, NULL_RTX
);
4520 op0
= equiv_constant (op0
);
4522 if (op1
&& GET_CODE (op1
) != REG
&& ! CONSTANT_P (op1
))
4523 op1
= fold_rtx (op1
, NULL_RTX
);
4526 op1
= equiv_constant (op1
);
4529 new = simplify_binary_operation (GET_CODE (elt
->exp
), mode
,
4533 else if (GET_CODE (elt
->exp
) == SUBREG
4534 && GET_MODE (SUBREG_REG (elt
->exp
)) == mode
4535 && (GET_MODE_SIZE (GET_MODE (folded_arg0
))
4537 && exp_equiv_p (elt
->exp
, elt
->exp
, 1, 0))
4538 new = copy_rtx (SUBREG_REG (elt
->exp
));
4549 /* If we have (NOT Y), see if Y is known to be (NOT Z).
4550 If so, (NOT Y) simplifies to Z. Similarly for NEG. */
4551 new = lookup_as_function (XEXP (x
, 0), code
);
4553 return fold_rtx (copy_rtx (XEXP (new, 0)), insn
);
4557 /* If we are not actually processing an insn, don't try to find the
4558 best address. Not only don't we care, but we could modify the
4559 MEM in an invalid way since we have no insn to validate against. */
4561 find_best_addr (insn
, &XEXP (x
, 0));
4564 /* Even if we don't fold in the insn itself,
4565 we can safely do so here, in hopes of getting a constant. */
4566 rtx addr
= fold_rtx (XEXP (x
, 0), NULL_RTX
);
4568 HOST_WIDE_INT offset
= 0;
4570 if (GET_CODE (addr
) == REG
4571 && REGNO_QTY_VALID_P (REGNO (addr
))
4572 && GET_MODE (addr
) == qty_mode
[reg_qty
[REGNO (addr
)]]
4573 && qty_const
[reg_qty
[REGNO (addr
)]] != 0)
4574 addr
= qty_const
[reg_qty
[REGNO (addr
)]];
4576 /* If address is constant, split it into a base and integer offset. */
4577 if (GET_CODE (addr
) == SYMBOL_REF
|| GET_CODE (addr
) == LABEL_REF
)
4579 else if (GET_CODE (addr
) == CONST
&& GET_CODE (XEXP (addr
, 0)) == PLUS
4580 && GET_CODE (XEXP (XEXP (addr
, 0), 1)) == CONST_INT
)
4582 base
= XEXP (XEXP (addr
, 0), 0);
4583 offset
= INTVAL (XEXP (XEXP (addr
, 0), 1));
4585 else if (GET_CODE (addr
) == LO_SUM
4586 && GET_CODE (XEXP (addr
, 1)) == SYMBOL_REF
)
4587 base
= XEXP (addr
, 1);
4589 /* If this is a constant pool reference, we can fold it into its
4590 constant to allow better value tracking. */
4591 if (base
&& GET_CODE (base
) == SYMBOL_REF
4592 && CONSTANT_POOL_ADDRESS_P (base
))
4594 rtx constant
= get_pool_constant (base
);
4595 enum machine_mode const_mode
= get_pool_mode (base
);
4598 if (CONSTANT_P (constant
) && GET_CODE (constant
) != CONST_INT
)
4599 constant_pool_entries_cost
= COST (constant
);
4601 /* If we are loading the full constant, we have an equivalence. */
4602 if (offset
== 0 && mode
== const_mode
)
4605 /* If this actually isn't a constant (wierd!), we can't do
4606 anything. Otherwise, handle the two most common cases:
4607 extracting a word from a multi-word constant, and extracting
4608 the low-order bits. Other cases don't seem common enough to
4610 if (! CONSTANT_P (constant
))
4613 if (GET_MODE_CLASS (mode
) == MODE_INT
4614 && GET_MODE_SIZE (mode
) == UNITS_PER_WORD
4615 && offset
% UNITS_PER_WORD
== 0
4616 && (new = operand_subword (constant
,
4617 offset
/ UNITS_PER_WORD
,
4618 0, const_mode
)) != 0)
4621 if (((BYTES_BIG_ENDIAN
4622 && offset
== GET_MODE_SIZE (GET_MODE (constant
)) - 1)
4623 || (! BYTES_BIG_ENDIAN
&& offset
== 0))
4624 && (new = gen_lowpart_if_possible (mode
, constant
)) != 0)
4628 /* If this is a reference to a label at a known position in a jump
4629 table, we also know its value. */
4630 if (base
&& GET_CODE (base
) == LABEL_REF
)
4632 rtx label
= XEXP (base
, 0);
4633 rtx table_insn
= NEXT_INSN (label
);
4635 if (table_insn
&& GET_CODE (table_insn
) == JUMP_INSN
4636 && GET_CODE (PATTERN (table_insn
)) == ADDR_VEC
)
4638 rtx table
= PATTERN (table_insn
);
4641 && (offset
/ GET_MODE_SIZE (GET_MODE (table
))
4642 < XVECLEN (table
, 0)))
4643 return XVECEXP (table
, 0,
4644 offset
/ GET_MODE_SIZE (GET_MODE (table
)));
4646 if (table_insn
&& GET_CODE (table_insn
) == JUMP_INSN
4647 && GET_CODE (PATTERN (table_insn
)) == ADDR_DIFF_VEC
)
4649 rtx table
= PATTERN (table_insn
);
4652 && (offset
/ GET_MODE_SIZE (GET_MODE (table
))
4653 < XVECLEN (table
, 1)))
4655 offset
/= GET_MODE_SIZE (GET_MODE (table
));
4656 new = gen_rtx (MINUS
, Pmode
, XVECEXP (table
, 1, offset
),
4659 if (GET_MODE (table
) != Pmode
)
4660 new = gen_rtx (TRUNCATE
, GET_MODE (table
), new);
4674 mode_arg0
= VOIDmode
;
4676 /* Try folding our operands.
4677 Then see which ones have constant values known. */
4679 fmt
= GET_RTX_FORMAT (code
);
4680 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4683 rtx arg
= XEXP (x
, i
);
4684 rtx folded_arg
= arg
, const_arg
= 0;
4685 enum machine_mode mode_arg
= GET_MODE (arg
);
4686 rtx cheap_arg
, expensive_arg
;
4687 rtx replacements
[2];
4690 /* Most arguments are cheap, so handle them specially. */
4691 switch (GET_CODE (arg
))
4694 /* This is the same as calling equiv_constant; it is duplicated
4696 if (REGNO_QTY_VALID_P (REGNO (arg
))
4697 && qty_const
[reg_qty
[REGNO (arg
)]] != 0
4698 && GET_CODE (qty_const
[reg_qty
[REGNO (arg
)]]) != REG
4699 && GET_CODE (qty_const
[reg_qty
[REGNO (arg
)]]) != PLUS
)
4701 = gen_lowpart_if_possible (GET_MODE (arg
),
4702 qty_const
[reg_qty
[REGNO (arg
)]]);
4715 folded_arg
= prev_insn_cc0
;
4716 mode_arg
= prev_insn_cc0_mode
;
4717 const_arg
= equiv_constant (folded_arg
);
4722 folded_arg
= fold_rtx (arg
, insn
);
4723 const_arg
= equiv_constant (folded_arg
);
4726 /* For the first three operands, see if the operand
4727 is constant or equivalent to a constant. */
4731 folded_arg0
= folded_arg
;
4732 const_arg0
= const_arg
;
4733 mode_arg0
= mode_arg
;
4736 folded_arg1
= folded_arg
;
4737 const_arg1
= const_arg
;
4740 const_arg2
= const_arg
;
4744 /* Pick the least expensive of the folded argument and an
4745 equivalent constant argument. */
4746 if (const_arg
== 0 || const_arg
== folded_arg
4747 || COST (const_arg
) > COST (folded_arg
))
4748 cheap_arg
= folded_arg
, expensive_arg
= const_arg
;
4750 cheap_arg
= const_arg
, expensive_arg
= folded_arg
;
4752 /* Try to replace the operand with the cheapest of the two
4753 possibilities. If it doesn't work and this is either of the first
4754 two operands of a commutative operation, try swapping them.
4755 If THAT fails, try the more expensive, provided it is cheaper
4756 than what is already there. */
4758 if (cheap_arg
== XEXP (x
, i
))
4761 if (insn
== 0 && ! copied
)
4767 replacements
[0] = cheap_arg
, replacements
[1] = expensive_arg
;
4769 j
< 2 && replacements
[j
]
4770 && COST (replacements
[j
]) < COST (XEXP (x
, i
));
4773 if (validate_change (insn
, &XEXP (x
, i
), replacements
[j
], 0))
4776 if (code
== NE
|| code
== EQ
|| GET_RTX_CLASS (code
) == 'c')
4778 validate_change (insn
, &XEXP (x
, i
), XEXP (x
, 1 - i
), 1);
4779 validate_change (insn
, &XEXP (x
, 1 - i
), replacements
[j
], 1);
4781 if (apply_change_group ())
4783 /* Swap them back to be invalid so that this loop can
4784 continue and flag them to be swapped back later. */
4787 tem
= XEXP (x
, 0); XEXP (x
, 0) = XEXP (x
, 1);
4796 else if (fmt
[i
] == 'E')
4797 /* Don't try to fold inside of a vector of expressions.
4798 Doing nothing is harmless. */
4801 /* If a commutative operation, place a constant integer as the second
4802 operand unless the first operand is also a constant integer. Otherwise,
4803 place any constant second unless the first operand is also a constant. */
4805 if (code
== EQ
|| code
== NE
|| GET_RTX_CLASS (code
) == 'c')
4807 if (must_swap
|| (const_arg0
4809 || (GET_CODE (const_arg0
) == CONST_INT
4810 && GET_CODE (const_arg1
) != CONST_INT
))))
4812 register rtx tem
= XEXP (x
, 0);
4814 if (insn
== 0 && ! copied
)
4820 validate_change (insn
, &XEXP (x
, 0), XEXP (x
, 1), 1);
4821 validate_change (insn
, &XEXP (x
, 1), tem
, 1);
4822 if (apply_change_group ())
4824 tem
= const_arg0
, const_arg0
= const_arg1
, const_arg1
= tem
;
4825 tem
= folded_arg0
, folded_arg0
= folded_arg1
, folded_arg1
= tem
;
4830 /* If X is an arithmetic operation, see if we can simplify it. */
4832 switch (GET_RTX_CLASS (code
))
4835 /* We can't simplify extension ops unless we know the original mode. */
4836 if ((code
== ZERO_EXTEND
|| code
== SIGN_EXTEND
)
4837 && mode_arg0
== VOIDmode
)
4839 new = simplify_unary_operation (code
, mode
,
4840 const_arg0
? const_arg0
: folded_arg0
,
4845 /* See what items are actually being compared and set FOLDED_ARG[01]
4846 to those values and CODE to the actual comparison code. If any are
4847 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
4848 do anything if both operands are already known to be constant. */
4850 if (const_arg0
== 0 || const_arg1
== 0)
4852 struct table_elt
*p0
, *p1
;
4853 rtx
true = const_true_rtx
, false = const0_rtx
;
4854 enum machine_mode mode_arg1
;
4856 #ifdef FLOAT_STORE_FLAG_VALUE
4857 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
4859 true = immed_real_const_1 (FLOAT_STORE_FLAG_VALUE
, mode
);
4860 false = CONST0_RTX (mode
);
4864 code
= find_comparison_args (code
, &folded_arg0
, &folded_arg1
,
4865 &mode_arg0
, &mode_arg1
);
4866 const_arg0
= equiv_constant (folded_arg0
);
4867 const_arg1
= equiv_constant (folded_arg1
);
4869 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
4870 what kinds of things are being compared, so we can't do
4871 anything with this comparison. */
4873 if (mode_arg0
== VOIDmode
|| GET_MODE_CLASS (mode_arg0
) == MODE_CC
)
4876 /* If we do not now have two constants being compared, see if we
4877 can nevertheless deduce some things about the comparison. */
4878 if (const_arg0
== 0 || const_arg1
== 0)
4880 /* Is FOLDED_ARG0 frame-pointer plus a constant? Or non-explicit
4881 constant? These aren't zero, but we don't know their sign. */
4882 if (const_arg1
== const0_rtx
4883 && (NONZERO_BASE_PLUS_P (folded_arg0
)
4884 #if 0 /* Sad to say, on sysvr4, #pragma weak can make a symbol address
4886 || GET_CODE (folded_arg0
) == SYMBOL_REF
4888 || GET_CODE (folded_arg0
) == LABEL_REF
4889 || GET_CODE (folded_arg0
) == CONST
))
4893 else if (code
== NE
)
4897 /* See if the two operands are the same. We don't do this
4898 for IEEE floating-point since we can't assume x == x
4899 since x might be a NaN. */
4901 if ((TARGET_FLOAT_FORMAT
!= IEEE_FLOAT_FORMAT
4902 || GET_MODE_CLASS (mode_arg0
) != MODE_FLOAT
)
4903 && (folded_arg0
== folded_arg1
4904 || (GET_CODE (folded_arg0
) == REG
4905 && GET_CODE (folded_arg1
) == REG
4906 && (reg_qty
[REGNO (folded_arg0
)]
4907 == reg_qty
[REGNO (folded_arg1
)]))
4908 || ((p0
= lookup (folded_arg0
,
4909 (safe_hash (folded_arg0
, mode_arg0
)
4910 % NBUCKETS
), mode_arg0
))
4911 && (p1
= lookup (folded_arg1
,
4912 (safe_hash (folded_arg1
, mode_arg0
)
4913 % NBUCKETS
), mode_arg0
))
4914 && p0
->first_same_value
== p1
->first_same_value
)))
4915 return ((code
== EQ
|| code
== LE
|| code
== GE
4916 || code
== LEU
|| code
== GEU
)
4919 /* If FOLDED_ARG0 is a register, see if the comparison we are
4920 doing now is either the same as we did before or the reverse
4921 (we only check the reverse if not floating-point). */
4922 else if (GET_CODE (folded_arg0
) == REG
)
4924 int qty
= reg_qty
[REGNO (folded_arg0
)];
4926 if (REGNO_QTY_VALID_P (REGNO (folded_arg0
))
4927 && (comparison_dominates_p (qty_comparison_code
[qty
], code
)
4928 || (comparison_dominates_p (qty_comparison_code
[qty
],
4929 reverse_condition (code
))
4930 && GET_MODE_CLASS (mode_arg0
) == MODE_INT
))
4931 && (rtx_equal_p (qty_comparison_const
[qty
], folded_arg1
)
4933 && rtx_equal_p (qty_comparison_const
[qty
],
4935 || (GET_CODE (folded_arg1
) == REG
4936 && (reg_qty
[REGNO (folded_arg1
)]
4937 == qty_comparison_qty
[qty
]))))
4938 return (comparison_dominates_p (qty_comparison_code
[qty
],
4945 /* If we are comparing against zero, see if the first operand is
4946 equivalent to an IOR with a constant. If so, we may be able to
4947 determine the result of this comparison. */
4949 if (const_arg1
== const0_rtx
)
4951 rtx y
= lookup_as_function (folded_arg0
, IOR
);
4955 && (inner_const
= equiv_constant (XEXP (y
, 1))) != 0
4956 && GET_CODE (inner_const
) == CONST_INT
4957 && INTVAL (inner_const
) != 0)
4959 int sign_bitnum
= GET_MODE_BITSIZE (mode_arg0
) - 1;
4960 int has_sign
= (HOST_BITS_PER_WIDE_INT
>= sign_bitnum
4961 && (INTVAL (inner_const
)
4962 & ((HOST_WIDE_INT
) 1 << sign_bitnum
)));
4963 rtx
true = const_true_rtx
, false = const0_rtx
;
4965 #ifdef FLOAT_STORE_FLAG_VALUE
4966 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
4968 true = immed_real_const_1 (FLOAT_STORE_FLAG_VALUE
, mode
);
4969 false = CONST0_RTX (mode
);
4991 new = simplify_relational_operation (code
, mode_arg0
,
4992 const_arg0
? const_arg0
: folded_arg0
,
4993 const_arg1
? const_arg1
: folded_arg1
);
4994 #ifdef FLOAT_STORE_FLAG_VALUE
4995 if (new != 0 && GET_MODE_CLASS (mode
) == MODE_FLOAT
)
4996 new = ((new == const0_rtx
) ? CONST0_RTX (mode
)
4997 : immed_real_const_1 (FLOAT_STORE_FLAG_VALUE
, mode
));
5006 /* If the second operand is a LABEL_REF, see if the first is a MINUS
5007 with that LABEL_REF as its second operand. If so, the result is
5008 the first operand of that MINUS. This handles switches with an
5009 ADDR_DIFF_VEC table. */
5010 if (const_arg1
&& GET_CODE (const_arg1
) == LABEL_REF
)
5012 rtx y
= lookup_as_function (folded_arg0
, MINUS
);
5014 if (y
!= 0 && GET_CODE (XEXP (y
, 1)) == LABEL_REF
5015 && XEXP (XEXP (y
, 1), 0) == XEXP (const_arg1
, 0))
5021 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
5022 If so, produce (PLUS Z C2-C). */
5023 if (const_arg1
!= 0 && GET_CODE (const_arg1
) == CONST_INT
)
5025 rtx y
= lookup_as_function (XEXP (x
, 0), PLUS
);
5026 if (y
&& GET_CODE (XEXP (y
, 1)) == CONST_INT
)
5027 return fold_rtx (plus_constant (y
, -INTVAL (const_arg1
)));
5030 /* ... fall through ... */
5033 case SMIN
: case SMAX
: case UMIN
: case UMAX
:
5034 case IOR
: case AND
: case XOR
:
5035 case MULT
: case DIV
: case UDIV
:
5036 case ASHIFT
: case LSHIFTRT
: case ASHIFTRT
:
5037 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
5038 is known to be of similar form, we may be able to replace the
5039 operation with a combined operation. This may eliminate the
5040 intermediate operation if every use is simplified in this way.
5041 Note that the similar optimization done by combine.c only works
5042 if the intermediate operation's result has only one reference. */
5044 if (GET_CODE (folded_arg0
) == REG
5045 && const_arg1
&& GET_CODE (const_arg1
) == CONST_INT
)
5048 = (code
== ASHIFT
|| code
== ASHIFTRT
|| code
== LSHIFTRT
);
5049 rtx y
= lookup_as_function (folded_arg0
, code
);
5051 enum rtx_code associate_code
;
5055 || 0 == (inner_const
5056 = equiv_constant (fold_rtx (XEXP (y
, 1), 0)))
5057 || GET_CODE (inner_const
) != CONST_INT
5058 /* If we have compiled a statement like
5059 "if (x == (x & mask1))", and now are looking at
5060 "x & mask2", we will have a case where the first operand
5061 of Y is the same as our first operand. Unless we detect
5062 this case, an infinite loop will result. */
5063 || XEXP (y
, 0) == folded_arg0
)
5066 /* Don't associate these operations if they are a PLUS with the
5067 same constant and it is a power of two. These might be doable
5068 with a pre- or post-increment. Similarly for two subtracts of
5069 identical powers of two with post decrement. */
5071 if (code
== PLUS
&& INTVAL (const_arg1
) == INTVAL (inner_const
)
5073 #if defined(HAVE_PRE_INCREMENT) || defined(HAVE_POST_INCREMENT)
5074 || exact_log2 (INTVAL (const_arg1
)) >= 0
5076 #if defined(HAVE_PRE_DECREMENT) || defined(HAVE_POST_DECREMENT)
5077 || exact_log2 (- INTVAL (const_arg1
)) >= 0
5082 /* Compute the code used to compose the constants. For example,
5083 A/C1/C2 is A/(C1 * C2), so if CODE == DIV, we want MULT. */
5086 = (code
== MULT
|| code
== DIV
|| code
== UDIV
? MULT
5087 : is_shift
|| code
== PLUS
|| code
== MINUS
? PLUS
: code
);
5089 new_const
= simplify_binary_operation (associate_code
, mode
,
5090 const_arg1
, inner_const
);
5095 /* If we are associating shift operations, don't let this
5096 produce a shift of larger than the object. This could
5097 occur when we following a sign-extend by a right shift on
5098 a machine that does a sign-extend as a pair of shifts. */
5100 if (is_shift
&& GET_CODE (new_const
) == CONST_INT
5101 && INTVAL (new_const
) > GET_MODE_BITSIZE (mode
))
5104 y
= copy_rtx (XEXP (y
, 0));
5106 /* If Y contains our first operand (the most common way this
5107 can happen is if Y is a MEM), we would do into an infinite
5108 loop if we tried to fold it. So don't in that case. */
5110 if (! reg_mentioned_p (folded_arg0
, y
))
5111 y
= fold_rtx (y
, insn
);
5113 new = simplify_binary_operation (code
, mode
, y
, new_const
);
5117 return gen_rtx (code
, mode
, y
, new_const
);
5121 new = simplify_binary_operation (code
, mode
,
5122 const_arg0
? const_arg0
: folded_arg0
,
5123 const_arg1
? const_arg1
: folded_arg1
);
5127 /* (lo_sum (high X) X) is simply X. */
5128 if (code
== LO_SUM
&& const_arg0
!= 0
5129 && GET_CODE (const_arg0
) == HIGH
5130 && rtx_equal_p (XEXP (const_arg0
, 0), const_arg1
))
5136 new = simplify_ternary_operation (code
, mode
, mode_arg0
,
5137 const_arg0
? const_arg0
: folded_arg0
,
5138 const_arg1
? const_arg1
: folded_arg1
,
5139 const_arg2
? const_arg2
: XEXP (x
, 2));
5143 return new ? new : x
;
5146 /* Return a constant value currently equivalent to X.
5147 Return 0 if we don't know one. */
5153 if (GET_CODE (x
) == REG
5154 && REGNO_QTY_VALID_P (REGNO (x
))
5155 && qty_const
[reg_qty
[REGNO (x
)]])
5156 x
= gen_lowpart_if_possible (GET_MODE (x
), qty_const
[reg_qty
[REGNO (x
)]]);
5158 if (x
!= 0 && CONSTANT_P (x
))
5161 /* If X is a MEM, try to fold it outside the context of any insn to see if
5162 it might be equivalent to a constant. That handles the case where it
5163 is a constant-pool reference. Then try to look it up in the hash table
5164 in case it is something whose value we have seen before. */
5166 if (GET_CODE (x
) == MEM
)
5168 struct table_elt
*elt
;
5170 x
= fold_rtx (x
, NULL_RTX
);
5174 elt
= lookup (x
, safe_hash (x
, GET_MODE (x
)) % NBUCKETS
, GET_MODE (x
));
5178 for (elt
= elt
->first_same_value
; elt
; elt
= elt
->next_same_value
)
5179 if (elt
->is_const
&& CONSTANT_P (elt
->exp
))
5186 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a fixed-point
5187 number, return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
5188 least-significant part of X.
5189 MODE specifies how big a part of X to return.
5191 If the requested operation cannot be done, 0 is returned.
5193 This is similar to gen_lowpart in emit-rtl.c. */
5196 gen_lowpart_if_possible (mode
, x
)
5197 enum machine_mode mode
;
5200 rtx result
= gen_lowpart_common (mode
, x
);
5204 else if (GET_CODE (x
) == MEM
)
5206 /* This is the only other case we handle. */
5207 register int offset
= 0;
5210 #if WORDS_BIG_ENDIAN
5211 offset
= (MAX (GET_MODE_SIZE (GET_MODE (x
)), UNITS_PER_WORD
)
5212 - MAX (GET_MODE_SIZE (mode
), UNITS_PER_WORD
));
5214 #if BYTES_BIG_ENDIAN
5215 /* Adjust the address so that the address-after-the-data
5217 offset
-= (MIN (UNITS_PER_WORD
, GET_MODE_SIZE (mode
))
5218 - MIN (UNITS_PER_WORD
, GET_MODE_SIZE (GET_MODE (x
))));
5220 new = gen_rtx (MEM
, mode
, plus_constant (XEXP (x
, 0), offset
));
5221 if (! memory_address_p (mode
, XEXP (new, 0)))
5223 MEM_VOLATILE_P (new) = MEM_VOLATILE_P (x
);
5224 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x
);
5225 MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (x
);
5232 /* Given INSN, a jump insn, TAKEN indicates if we are following the "taken"
5233 branch. It will be zero if not.
5235 In certain cases, this can cause us to add an equivalence. For example,
5236 if we are following the taken case of
5238 we can add the fact that `i' and '2' are now equivalent.
5240 In any case, we can record that this comparison was passed. If the same
5241 comparison is seen later, we will know its value. */
5244 record_jump_equiv (insn
, taken
)
5248 int cond_known_true
;
5250 enum machine_mode mode
, mode0
, mode1
;
5251 int reversed_nonequality
= 0;
5254 /* Ensure this is the right kind of insn. */
5255 if (! condjump_p (insn
) || simplejump_p (insn
))
5258 /* See if this jump condition is known true or false. */
5260 cond_known_true
= (XEXP (SET_SRC (PATTERN (insn
)), 2) == pc_rtx
);
5262 cond_known_true
= (XEXP (SET_SRC (PATTERN (insn
)), 1) == pc_rtx
);
5264 /* Get the type of comparison being done and the operands being compared.
5265 If we had to reverse a non-equality condition, record that fact so we
5266 know that it isn't valid for floating-point. */
5267 code
= GET_CODE (XEXP (SET_SRC (PATTERN (insn
)), 0));
5268 op0
= fold_rtx (XEXP (XEXP (SET_SRC (PATTERN (insn
)), 0), 0), insn
);
5269 op1
= fold_rtx (XEXP (XEXP (SET_SRC (PATTERN (insn
)), 0), 1), insn
);
5271 code
= find_comparison_args (code
, &op0
, &op1
, &mode0
, &mode1
);
5272 if (! cond_known_true
)
5274 reversed_nonequality
= (code
!= EQ
&& code
!= NE
);
5275 code
= reverse_condition (code
);
5278 /* The mode is the mode of the non-constant. */
5280 if (mode1
!= VOIDmode
)
5283 record_jump_cond (code
, mode
, op0
, op1
, reversed_nonequality
);
5286 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
5287 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
5288 Make any useful entries we can with that information. Called from
5289 above function and called recursively. */
5292 record_jump_cond (code
, mode
, op0
, op1
, reversed_nonequality
)
5294 enum machine_mode mode
;
5296 int reversed_nonequality
;
5298 int op0_hash_code
, op1_hash_code
;
5299 int op0_in_memory
, op0_in_struct
, op1_in_memory
, op1_in_struct
;
5300 struct table_elt
*op0_elt
, *op1_elt
;
5302 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
5303 we know that they are also equal in the smaller mode (this is also
5304 true for all smaller modes whether or not there is a SUBREG, but
5305 is not worth testing for with no SUBREG. */
5307 if (code
== EQ
&& GET_CODE (op0
) == SUBREG
5308 && GET_MODE_SIZE (mode
) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0
))))
5310 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (op0
));
5311 rtx tem
= gen_lowpart_if_possible (inner_mode
, op1
);
5313 record_jump_cond (code
, mode
, SUBREG_REG (op0
),
5314 tem
? tem
: gen_rtx (SUBREG
, inner_mode
, op1
, 0),
5315 reversed_nonequality
);
5318 if (code
== EQ
&& GET_CODE (op1
) == SUBREG
5319 && GET_MODE_SIZE (mode
) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1
))))
5321 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (op1
));
5322 rtx tem
= gen_lowpart_if_possible (inner_mode
, op0
);
5324 record_jump_cond (code
, mode
, SUBREG_REG (op1
),
5325 tem
? tem
: gen_rtx (SUBREG
, inner_mode
, op0
, 0),
5326 reversed_nonequality
);
5329 /* Similarly, if this is an NE comparison, and either is a SUBREG
5330 making a smaller mode, we know the whole thing is also NE. */
5332 if (code
== NE
&& GET_CODE (op0
) == SUBREG
5333 && subreg_lowpart_p (op0
)
5334 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0
))))
5336 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (op0
));
5337 rtx tem
= gen_lowpart_if_possible (inner_mode
, op1
);
5339 record_jump_cond (code
, mode
, SUBREG_REG (op0
),
5340 tem
? tem
: gen_rtx (SUBREG
, inner_mode
, op1
, 0),
5341 reversed_nonequality
);
5344 if (code
== NE
&& GET_CODE (op1
) == SUBREG
5345 && subreg_lowpart_p (op1
)
5346 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1
))))
5348 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (op1
));
5349 rtx tem
= gen_lowpart_if_possible (inner_mode
, op0
);
5351 record_jump_cond (code
, mode
, SUBREG_REG (op1
),
5352 tem
? tem
: gen_rtx (SUBREG
, inner_mode
, op0
, 0),
5353 reversed_nonequality
);
5356 /* Hash both operands. */
5359 hash_arg_in_memory
= 0;
5360 hash_arg_in_struct
= 0;
5361 op0_hash_code
= HASH (op0
, mode
);
5362 op0_in_memory
= hash_arg_in_memory
;
5363 op0_in_struct
= hash_arg_in_struct
;
5369 hash_arg_in_memory
= 0;
5370 hash_arg_in_struct
= 0;
5371 op1_hash_code
= HASH (op1
, mode
);
5372 op1_in_memory
= hash_arg_in_memory
;
5373 op1_in_struct
= hash_arg_in_struct
;
5378 /* Look up both operands. */
5379 op0_elt
= lookup (op0
, op0_hash_code
, mode
);
5380 op1_elt
= lookup (op1
, op1_hash_code
, mode
);
5382 /* If we aren't setting two things equal all we can do is save this
5383 comparison. Similarly if this is floating-point. In the latter
5384 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
5385 If we record the equality, we might inadvertently delete code
5386 whose intent was to change -0 to +0. */
5388 if (code
!= EQ
|| GET_MODE_CLASS (GET_MODE (op0
)) == MODE_FLOAT
)
5390 /* If we reversed a floating-point comparison, if OP0 is not a
5391 register, or if OP1 is neither a register or constant, we can't
5394 if (GET_CODE (op1
) != REG
)
5395 op1
= equiv_constant (op1
);
5397 if ((reversed_nonequality
&& GET_MODE_CLASS (mode
) != MODE_INT
)
5398 || GET_CODE (op0
) != REG
|| op1
== 0)
5401 /* Put OP0 in the hash table if it isn't already. This gives it a
5402 new quantity number. */
5405 if (insert_regs (op0
, NULL_PTR
, 0))
5407 rehash_using_reg (op0
);
5408 op0_hash_code
= HASH (op0
, mode
);
5411 op0_elt
= insert (op0
, NULL_PTR
, op0_hash_code
, mode
);
5412 op0_elt
->in_memory
= op0_in_memory
;
5413 op0_elt
->in_struct
= op0_in_struct
;
5416 qty_comparison_code
[reg_qty
[REGNO (op0
)]] = code
;
5417 if (GET_CODE (op1
) == REG
)
5419 /* Put OP1 in the hash table so it gets a new quantity number. */
5422 if (insert_regs (op1
, NULL_PTR
, 0))
5424 rehash_using_reg (op1
);
5425 op1_hash_code
= HASH (op1
, mode
);
5428 op1_elt
= insert (op1
, NULL_PTR
, op1_hash_code
, mode
);
5429 op1_elt
->in_memory
= op1_in_memory
;
5430 op1_elt
->in_struct
= op1_in_struct
;
5433 qty_comparison_qty
[reg_qty
[REGNO (op0
)]] = reg_qty
[REGNO (op1
)];
5434 qty_comparison_const
[reg_qty
[REGNO (op0
)]] = 0;
5438 qty_comparison_qty
[reg_qty
[REGNO (op0
)]] = -1;
5439 qty_comparison_const
[reg_qty
[REGNO (op0
)]] = op1
;
5445 /* If both are equivalent, merge the two classes. Save this class for
5446 `cse_set_around_loop'. */
5447 if (op0_elt
&& op1_elt
)
5449 merge_equiv_classes (op0_elt
, op1_elt
);
5450 last_jump_equiv_class
= op0_elt
;
5453 /* For whichever side doesn't have an equivalence, make one. */
5456 if (insert_regs (op0
, op1_elt
, 0))
5458 rehash_using_reg (op0
);
5459 op0_hash_code
= HASH (op0
, mode
);
5462 op0_elt
= insert (op0
, op1_elt
, op0_hash_code
, mode
);
5463 op0_elt
->in_memory
= op0_in_memory
;
5464 op0_elt
->in_struct
= op0_in_struct
;
5465 last_jump_equiv_class
= op0_elt
;
5470 if (insert_regs (op1
, op0_elt
, 0))
5472 rehash_using_reg (op1
);
5473 op1_hash_code
= HASH (op1
, mode
);
5476 op1_elt
= insert (op1
, op0_elt
, op1_hash_code
, mode
);
5477 op1_elt
->in_memory
= op1_in_memory
;
5478 op1_elt
->in_struct
= op1_in_struct
;
5479 last_jump_equiv_class
= op1_elt
;
5483 /* CSE processing for one instruction.
5484 First simplify sources and addresses of all assignments
5485 in the instruction, using previously-computed equivalents values.
5486 Then install the new sources and destinations in the table
5487 of available values.
5489 If IN_LIBCALL_BLOCK is nonzero, don't record any equivalence made in
5492 /* Data on one SET contained in the instruction. */
5496 /* The SET rtx itself. */
5498 /* The SET_SRC of the rtx (the original value, if it is changing). */
5500 /* The hash-table element for the SET_SRC of the SET. */
5501 struct table_elt
*src_elt
;
5502 /* Hash code for the SET_SRC. */
5504 /* Hash code for the SET_DEST. */
5506 /* The SET_DEST, with SUBREG, etc., stripped. */
5508 /* Place where the pointer to the INNER_DEST was found. */
5509 rtx
*inner_dest_loc
;
5510 /* Nonzero if the SET_SRC is in memory. */
5512 /* Nonzero if the SET_SRC is in a structure. */
5514 /* Nonzero if the SET_SRC contains something
5515 whose value cannot be predicted and understood. */
5517 /* Original machine mode, in case it becomes a CONST_INT. */
5518 enum machine_mode mode
;
5519 /* A constant equivalent for SET_SRC, if any. */
5521 /* Hash code of constant equivalent for SET_SRC. */
5522 int src_const_hash_code
;
5523 /* Table entry for constant equivalent for SET_SRC, if any. */
5524 struct table_elt
*src_const_elt
;
5528 cse_insn (insn
, in_libcall_block
)
5530 int in_libcall_block
;
5532 register rtx x
= PATTERN (insn
);
5535 register int n_sets
= 0;
5537 /* Records what this insn does to set CC0. */
5538 rtx this_insn_cc0
= 0;
5539 enum machine_mode this_insn_cc0_mode
;
5540 struct write_data writes_memory
;
5541 static struct write_data init
= {0, 0, 0, 0};
5544 struct table_elt
*src_eqv_elt
= 0;
5545 int src_eqv_volatile
;
5546 int src_eqv_in_memory
;
5547 int src_eqv_in_struct
;
5548 int src_eqv_hash_code
;
5553 writes_memory
= init
;
5555 /* Find all the SETs and CLOBBERs in this instruction.
5556 Record all the SETs in the array `set' and count them.
5557 Also determine whether there is a CLOBBER that invalidates
5558 all memory references, or all references at varying addresses. */
5560 if (GET_CODE (x
) == SET
)
5562 sets
= (struct set
*) alloca (sizeof (struct set
));
5565 /* Ignore SETs that are unconditional jumps.
5566 They never need cse processing, so this does not hurt.
5567 The reason is not efficiency but rather
5568 so that we can test at the end for instructions
5569 that have been simplified to unconditional jumps
5570 and not be misled by unchanged instructions
5571 that were unconditional jumps to begin with. */
5572 if (SET_DEST (x
) == pc_rtx
5573 && GET_CODE (SET_SRC (x
)) == LABEL_REF
)
5576 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
5577 The hard function value register is used only once, to copy to
5578 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
5579 Ensure we invalidate the destination register. On the 80386 no
5580 other code would invalidate it since it is a fixed_reg. */
5582 else if (GET_CODE (SET_SRC (x
)) == CALL
)
5584 canon_reg (SET_SRC (x
), insn
);
5585 apply_change_group ();
5586 fold_rtx (SET_SRC (x
), insn
);
5587 invalidate (SET_DEST (x
));
5592 else if (GET_CODE (x
) == PARALLEL
)
5594 register int lim
= XVECLEN (x
, 0);
5596 sets
= (struct set
*) alloca (lim
* sizeof (struct set
));
5598 /* Find all regs explicitly clobbered in this insn,
5599 and ensure they are not replaced with any other regs
5600 elsewhere in this insn.
5601 When a reg that is clobbered is also used for input,
5602 we should presume that that is for a reason,
5603 and we should not substitute some other register
5604 which is not supposed to be clobbered.
5605 Therefore, this loop cannot be merged into the one below
5606 because a CALL may precede a CLOBBER and refer to the
5607 value clobbered. We must not let a canonicalization do
5608 anything in that case. */
5609 for (i
= 0; i
< lim
; i
++)
5611 register rtx y
= XVECEXP (x
, 0, i
);
5612 if (GET_CODE (y
) == CLOBBER
5613 && (GET_CODE (XEXP (y
, 0)) == REG
5614 || GET_CODE (XEXP (y
, 0)) == SUBREG
))
5615 invalidate (XEXP (y
, 0));
5618 for (i
= 0; i
< lim
; i
++)
5620 register rtx y
= XVECEXP (x
, 0, i
);
5621 if (GET_CODE (y
) == SET
)
5623 /* As above, we ignore unconditional jumps and call-insns. */
5624 if (GET_CODE (SET_SRC (y
)) == CALL
)
5626 canon_reg (SET_SRC (y
), insn
);
5627 apply_change_group ();
5628 fold_rtx (SET_SRC (y
), insn
);
5629 invalidate (SET_DEST (y
));
5631 else if (SET_DEST (y
) == pc_rtx
5632 && GET_CODE (SET_SRC (y
)) == LABEL_REF
)
5635 sets
[n_sets
++].rtl
= y
;
5637 else if (GET_CODE (y
) == CLOBBER
)
5639 /* If we clobber memory, take note of that,
5640 and canon the address.
5641 This does nothing when a register is clobbered
5642 because we have already invalidated the reg. */
5643 if (GET_CODE (XEXP (y
, 0)) == MEM
)
5645 canon_reg (XEXP (y
, 0), NULL_RTX
);
5646 note_mem_written (XEXP (y
, 0), &writes_memory
);
5649 else if (GET_CODE (y
) == USE
5650 && ! (GET_CODE (XEXP (y
, 0)) == REG
5651 && REGNO (XEXP (y
, 0)) < FIRST_PSEUDO_REGISTER
))
5652 canon_reg (y
, NULL_RTX
);
5653 else if (GET_CODE (y
) == CALL
)
5655 canon_reg (y
, insn
);
5656 apply_change_group ();
5661 else if (GET_CODE (x
) == CLOBBER
)
5663 if (GET_CODE (XEXP (x
, 0)) == MEM
)
5665 canon_reg (XEXP (x
, 0), NULL_RTX
);
5666 note_mem_written (XEXP (x
, 0), &writes_memory
);
5670 /* Canonicalize a USE of a pseudo register or memory location. */
5671 else if (GET_CODE (x
) == USE
5672 && ! (GET_CODE (XEXP (x
, 0)) == REG
5673 && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
))
5674 canon_reg (XEXP (x
, 0), NULL_RTX
);
5675 else if (GET_CODE (x
) == CALL
)
5677 canon_reg (x
, insn
);
5678 apply_change_group ();
5682 if (n_sets
== 1 && REG_NOTES (insn
) != 0)
5684 /* Store the equivalent value in SRC_EQV, if different. */
5685 rtx tem
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
);
5687 if (tem
&& ! rtx_equal_p (XEXP (tem
, 0), SET_SRC (sets
[0].rtl
)))
5688 src_eqv
= canon_reg (XEXP (tem
, 0), NULL_RTX
);
5691 /* Canonicalize sources and addresses of destinations.
5692 We do this in a separate pass to avoid problems when a MATCH_DUP is
5693 present in the insn pattern. In that case, we want to ensure that
5694 we don't break the duplicate nature of the pattern. So we will replace
5695 both operands at the same time. Otherwise, we would fail to find an
5696 equivalent substitution in the loop calling validate_change below.
5698 We used to suppress canonicalization of DEST if it appears in SRC,
5699 but we don't do this any more. */
5701 for (i
= 0; i
< n_sets
; i
++)
5703 rtx dest
= SET_DEST (sets
[i
].rtl
);
5704 rtx src
= SET_SRC (sets
[i
].rtl
);
5705 rtx
new = canon_reg (src
, insn
);
5707 if ((GET_CODE (new) == REG
&& GET_CODE (src
) == REG
5708 && ((REGNO (new) < FIRST_PSEUDO_REGISTER
)
5709 != (REGNO (src
) < FIRST_PSEUDO_REGISTER
)))
5710 || insn_n_dups
[recog_memoized (insn
)] > 0)
5711 validate_change (insn
, &SET_SRC (sets
[i
].rtl
), new, 1);
5713 SET_SRC (sets
[i
].rtl
) = new;
5715 if (GET_CODE (dest
) == ZERO_EXTRACT
|| GET_CODE (dest
) == SIGN_EXTRACT
)
5717 validate_change (insn
, &XEXP (dest
, 1),
5718 canon_reg (XEXP (dest
, 1), insn
), 1);
5719 validate_change (insn
, &XEXP (dest
, 2),
5720 canon_reg (XEXP (dest
, 2), insn
), 1);
5723 while (GET_CODE (dest
) == SUBREG
|| GET_CODE (dest
) == STRICT_LOW_PART
5724 || GET_CODE (dest
) == ZERO_EXTRACT
5725 || GET_CODE (dest
) == SIGN_EXTRACT
)
5726 dest
= XEXP (dest
, 0);
5728 if (GET_CODE (dest
) == MEM
)
5729 canon_reg (dest
, insn
);
5732 /* Now that we have done all the replacements, we can apply the change
5733 group and see if they all work. Note that this will cause some
5734 canonicalizations that would have worked individually not to be applied
5735 because some other canonicalization didn't work, but this should not
5738 apply_change_group ();
5740 /* Set sets[i].src_elt to the class each source belongs to.
5741 Detect assignments from or to volatile things
5742 and set set[i] to zero so they will be ignored
5743 in the rest of this function.
5745 Nothing in this loop changes the hash table or the register chains. */
5747 for (i
= 0; i
< n_sets
; i
++)
5749 register rtx src
, dest
;
5750 register rtx src_folded
;
5751 register struct table_elt
*elt
= 0, *p
;
5752 enum machine_mode mode
;
5755 rtx src_related
= 0;
5756 struct table_elt
*src_const_elt
= 0;
5757 int src_cost
= 10000, src_eqv_cost
= 10000, src_folded_cost
= 10000;
5758 int src_related_cost
= 10000, src_elt_cost
= 10000;
5759 /* Set non-zero if we need to call force_const_mem on with the
5760 contents of src_folded before using it. */
5761 int src_folded_force_flag
= 0;
5763 dest
= SET_DEST (sets
[i
].rtl
);
5764 src
= SET_SRC (sets
[i
].rtl
);
5766 /* If SRC is a constant that has no machine mode,
5767 hash it with the destination's machine mode.
5768 This way we can keep different modes separate. */
5770 mode
= GET_MODE (src
) == VOIDmode
? GET_MODE (dest
) : GET_MODE (src
);
5771 sets
[i
].mode
= mode
;
5775 enum machine_mode eqvmode
= mode
;
5776 if (GET_CODE (dest
) == STRICT_LOW_PART
)
5777 eqvmode
= GET_MODE (SUBREG_REG (XEXP (dest
, 0)));
5779 hash_arg_in_memory
= 0;
5780 hash_arg_in_struct
= 0;
5781 src_eqv
= fold_rtx (src_eqv
, insn
);
5782 src_eqv_hash_code
= HASH (src_eqv
, eqvmode
);
5784 /* Find the equivalence class for the equivalent expression. */
5787 src_eqv_elt
= lookup (src_eqv
, src_eqv_hash_code
, eqvmode
);
5789 src_eqv_volatile
= do_not_record
;
5790 src_eqv_in_memory
= hash_arg_in_memory
;
5791 src_eqv_in_struct
= hash_arg_in_struct
;
5794 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
5795 value of the INNER register, not the destination. So it is not
5796 a legal substitution for the source. But save it for later. */
5797 if (GET_CODE (dest
) == STRICT_LOW_PART
)
5800 src_eqv_here
= src_eqv
;
5802 /* Simplify and foldable subexpressions in SRC. Then get the fully-
5803 simplified result, which may not necessarily be valid. */
5804 src_folded
= fold_rtx (src
, insn
);
5806 /* If storing a constant in a bitfield, pre-truncate the constant
5807 so we will be able to record it later. */
5808 if (GET_CODE (SET_DEST (sets
[i
].rtl
)) == ZERO_EXTRACT
5809 || GET_CODE (SET_DEST (sets
[i
].rtl
)) == SIGN_EXTRACT
)
5811 rtx width
= XEXP (SET_DEST (sets
[i
].rtl
), 1);
5813 if (GET_CODE (src
) == CONST_INT
5814 && GET_CODE (width
) == CONST_INT
5815 && INTVAL (width
) < HOST_BITS_PER_WIDE_INT
5816 && (INTVAL (src
) & ((HOST_WIDE_INT
) (-1) << INTVAL (width
))))
5818 = GEN_INT (INTVAL (src
) & (((HOST_WIDE_INT
) 1
5819 << INTVAL (width
)) - 1));
5822 /* Compute SRC's hash code, and also notice if it
5823 should not be recorded at all. In that case,
5824 prevent any further processing of this assignment. */
5826 hash_arg_in_memory
= 0;
5827 hash_arg_in_struct
= 0;
5830 sets
[i
].src_hash_code
= HASH (src
, mode
);
5831 sets
[i
].src_volatile
= do_not_record
;
5832 sets
[i
].src_in_memory
= hash_arg_in_memory
;
5833 sets
[i
].src_in_struct
= hash_arg_in_struct
;
5836 /* It is no longer clear why we used to do this, but it doesn't
5837 appear to still be needed. So let's try without it since this
5838 code hurts cse'ing widened ops. */
5839 /* If source is a perverse subreg (such as QI treated as an SI),
5840 treat it as volatile. It may do the work of an SI in one context
5841 where the extra bits are not being used, but cannot replace an SI
5843 if (GET_CODE (src
) == SUBREG
5844 && (GET_MODE_SIZE (GET_MODE (src
))
5845 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
)))))
5846 sets
[i
].src_volatile
= 1;
5849 /* Locate all possible equivalent forms for SRC. Try to replace
5850 SRC in the insn with each cheaper equivalent.
5852 We have the following types of equivalents: SRC itself, a folded
5853 version, a value given in a REG_EQUAL note, or a value related
5856 Each of these equivalents may be part of an additional class
5857 of equivalents (if more than one is in the table, they must be in
5858 the same class; we check for this).
5860 If the source is volatile, we don't do any table lookups.
5862 We note any constant equivalent for possible later use in a
5865 if (!sets
[i
].src_volatile
)
5866 elt
= lookup (src
, sets
[i
].src_hash_code
, mode
);
5868 sets
[i
].src_elt
= elt
;
5870 if (elt
&& src_eqv_here
&& src_eqv_elt
)
5872 if (elt
->first_same_value
!= src_eqv_elt
->first_same_value
)
5874 /* The REG_EQUAL is indicating that two formerly distinct
5875 classes are now equivalent. So merge them. */
5876 merge_equiv_classes (elt
, src_eqv_elt
);
5877 src_eqv_hash_code
= HASH (src_eqv
, elt
->mode
);
5878 src_eqv_elt
= lookup (src_eqv
, src_eqv_hash_code
, elt
->mode
);
5884 else if (src_eqv_elt
)
5887 /* Try to find a constant somewhere and record it in `src_const'.
5888 Record its table element, if any, in `src_const_elt'. Look in
5889 any known equivalences first. (If the constant is not in the
5890 table, also set `sets[i].src_const_hash_code'). */
5892 for (p
= elt
->first_same_value
; p
; p
= p
->next_same_value
)
5896 src_const_elt
= elt
;
5901 && (CONSTANT_P (src_folded
)
5902 /* Consider (minus (label_ref L1) (label_ref L2)) as
5903 "constant" here so we will record it. This allows us
5904 to fold switch statements when an ADDR_DIFF_VEC is used. */
5905 || (GET_CODE (src_folded
) == MINUS
5906 && GET_CODE (XEXP (src_folded
, 0)) == LABEL_REF
5907 && GET_CODE (XEXP (src_folded
, 1)) == LABEL_REF
)))
5908 src_const
= src_folded
, src_const_elt
= elt
;
5909 else if (src_const
== 0 && src_eqv_here
&& CONSTANT_P (src_eqv_here
))
5910 src_const
= src_eqv_here
, src_const_elt
= src_eqv_elt
;
5912 /* If we don't know if the constant is in the table, get its
5913 hash code and look it up. */
5914 if (src_const
&& src_const_elt
== 0)
5916 sets
[i
].src_const_hash_code
= HASH (src_const
, mode
);
5917 src_const_elt
= lookup (src_const
, sets
[i
].src_const_hash_code
,
5921 sets
[i
].src_const
= src_const
;
5922 sets
[i
].src_const_elt
= src_const_elt
;
5924 /* If the constant and our source are both in the table, mark them as
5925 equivalent. Otherwise, if a constant is in the table but the source
5926 isn't, set ELT to it. */
5927 if (src_const_elt
&& elt
5928 && src_const_elt
->first_same_value
!= elt
->first_same_value
)
5929 merge_equiv_classes (elt
, src_const_elt
);
5930 else if (src_const_elt
&& elt
== 0)
5931 elt
= src_const_elt
;
5933 /* See if there is a register linearly related to a constant
5934 equivalent of SRC. */
5936 && (GET_CODE (src_const
) == CONST
5937 || (src_const_elt
&& src_const_elt
->related_value
!= 0)))
5939 src_related
= use_related_value (src_const
, src_const_elt
);
5942 struct table_elt
*src_related_elt
5943 = lookup (src_related
, HASH (src_related
, mode
), mode
);
5944 if (src_related_elt
&& elt
)
5946 if (elt
->first_same_value
5947 != src_related_elt
->first_same_value
)
5948 /* This can occur when we previously saw a CONST
5949 involving a SYMBOL_REF and then see the SYMBOL_REF
5950 twice. Merge the involved classes. */
5951 merge_equiv_classes (elt
, src_related_elt
);
5954 src_related_elt
= 0;
5956 else if (src_related_elt
&& elt
== 0)
5957 elt
= src_related_elt
;
5961 /* See if we have a CONST_INT that is already in a register in a
5964 if (src_const
&& src_related
== 0 && GET_CODE (src_const
) == CONST_INT
5965 && GET_MODE_CLASS (mode
) == MODE_INT
5966 && GET_MODE_BITSIZE (mode
) < BITS_PER_WORD
)
5968 enum machine_mode wider_mode
;
5970 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
5971 GET_MODE_BITSIZE (wider_mode
) <= BITS_PER_WORD
5972 && src_related
== 0;
5973 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
5975 struct table_elt
*const_elt
5976 = lookup (src_const
, HASH (src_const
, wider_mode
), wider_mode
);
5981 for (const_elt
= const_elt
->first_same_value
;
5982 const_elt
; const_elt
= const_elt
->next_same_value
)
5983 if (GET_CODE (const_elt
->exp
) == REG
)
5985 src_related
= gen_lowpart_if_possible (mode
,
5992 /* Another possibility is that we have an AND with a constant in
5993 a mode narrower than a word. If so, it might have been generated
5994 as part of an "if" which would narrow the AND. If we already
5995 have done the AND in a wider mode, we can use a SUBREG of that
5998 if (flag_expensive_optimizations
&& ! src_related
5999 && GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 1)) == CONST_INT
6000 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
6002 enum machine_mode tmode
;
6003 rtx new_and
= gen_rtx (AND
, VOIDmode
, NULL_RTX
, XEXP (src
, 1));
6005 for (tmode
= GET_MODE_WIDER_MODE (mode
);
6006 GET_MODE_SIZE (tmode
) <= UNITS_PER_WORD
;
6007 tmode
= GET_MODE_WIDER_MODE (tmode
))
6009 rtx inner
= gen_lowpart_if_possible (tmode
, XEXP (src
, 0));
6010 struct table_elt
*larger_elt
;
6014 PUT_MODE (new_and
, tmode
);
6015 XEXP (new_and
, 0) = inner
;
6016 larger_elt
= lookup (new_and
, HASH (new_and
, tmode
), tmode
);
6017 if (larger_elt
== 0)
6020 for (larger_elt
= larger_elt
->first_same_value
;
6021 larger_elt
; larger_elt
= larger_elt
->next_same_value
)
6022 if (GET_CODE (larger_elt
->exp
) == REG
)
6025 = gen_lowpart_if_possible (mode
, larger_elt
->exp
);
6035 if (src
== src_folded
)
6038 /* At this point, ELT, if non-zero, points to a class of expressions
6039 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
6040 and SRC_RELATED, if non-zero, each contain additional equivalent
6041 expressions. Prune these latter expressions by deleting expressions
6042 already in the equivalence class.
6044 Check for an equivalent identical to the destination. If found,
6045 this is the preferred equivalent since it will likely lead to
6046 elimination of the insn. Indicate this by placing it in
6049 if (elt
) elt
= elt
->first_same_value
;
6050 for (p
= elt
; p
; p
= p
->next_same_value
)
6052 enum rtx_code code
= GET_CODE (p
->exp
);
6054 /* If the expression is not valid, ignore it. Then we do not
6055 have to check for validity below. In most cases, we can use
6056 `rtx_equal_p', since canonicalization has already been done. */
6057 if (code
!= REG
&& ! exp_equiv_p (p
->exp
, p
->exp
, 1, 0))
6060 if (src
&& GET_CODE (src
) == code
&& rtx_equal_p (src
, p
->exp
))
6062 else if (src_folded
&& GET_CODE (src_folded
) == code
6063 && rtx_equal_p (src_folded
, p
->exp
))
6065 else if (src_eqv_here
&& GET_CODE (src_eqv_here
) == code
6066 && rtx_equal_p (src_eqv_here
, p
->exp
))
6068 else if (src_related
&& GET_CODE (src_related
) == code
6069 && rtx_equal_p (src_related
, p
->exp
))
6072 /* This is the same as the destination of the insns, we want
6073 to prefer it. Copy it to src_related. The code below will
6074 then give it a negative cost. */
6075 if (GET_CODE (dest
) == code
&& rtx_equal_p (p
->exp
, dest
))
6080 /* Find the cheapest valid equivalent, trying all the available
6081 possibilities. Prefer items not in the hash table to ones
6082 that are when they are equal cost. Note that we can never
6083 worsen an insn as the current contents will also succeed.
6084 If we find an equivalent identical to the destination, use it as best,
6085 since this insn will probably be eliminated in that case. */
6088 if (rtx_equal_p (src
, dest
))
6091 src_cost
= COST (src
);
6096 if (rtx_equal_p (src_eqv_here
, dest
))
6099 src_eqv_cost
= COST (src_eqv_here
);
6104 if (rtx_equal_p (src_folded
, dest
))
6105 src_folded_cost
= -1;
6107 src_folded_cost
= COST (src_folded
);
6112 if (rtx_equal_p (src_related
, dest
))
6113 src_related_cost
= -1;
6115 src_related_cost
= COST (src_related
);
6118 /* If this was an indirect jump insn, a known label will really be
6119 cheaper even though it looks more expensive. */
6120 if (dest
== pc_rtx
&& src_const
&& GET_CODE (src_const
) == LABEL_REF
)
6121 src_folded
= src_const
, src_folded_cost
= -1;
6123 /* Terminate loop when replacement made. This must terminate since
6124 the current contents will be tested and will always be valid. */
6129 /* Skip invalid entries. */
6130 while (elt
&& GET_CODE (elt
->exp
) != REG
6131 && ! exp_equiv_p (elt
->exp
, elt
->exp
, 1, 0))
6132 elt
= elt
->next_same_value
;
6134 if (elt
) src_elt_cost
= elt
->cost
;
6136 /* Find cheapest and skip it for the next time. For items
6137 of equal cost, use this order:
6138 src_folded, src, src_eqv, src_related and hash table entry. */
6139 if (src_folded_cost
<= src_cost
6140 && src_folded_cost
<= src_eqv_cost
6141 && src_folded_cost
<= src_related_cost
6142 && src_folded_cost
<= src_elt_cost
)
6144 trial
= src_folded
, src_folded_cost
= 10000;
6145 if (src_folded_force_flag
)
6146 trial
= force_const_mem (mode
, trial
);
6148 else if (src_cost
<= src_eqv_cost
6149 && src_cost
<= src_related_cost
6150 && src_cost
<= src_elt_cost
)
6151 trial
= src
, src_cost
= 10000;
6152 else if (src_eqv_cost
<= src_related_cost
6153 && src_eqv_cost
<= src_elt_cost
)
6154 trial
= src_eqv_here
, src_eqv_cost
= 10000;
6155 else if (src_related_cost
<= src_elt_cost
)
6156 trial
= src_related
, src_related_cost
= 10000;
6159 trial
= copy_rtx (elt
->exp
);
6160 elt
= elt
->next_same_value
;
6161 src_elt_cost
= 10000;
6164 /* We don't normally have an insn matching (set (pc) (pc)), so
6165 check for this separately here. We will delete such an
6168 Tablejump insns contain a USE of the table, so simply replacing
6169 the operand with the constant won't match. This is simply an
6170 unconditional branch, however, and is therefore valid. Just
6171 insert the substitution here and we will delete and re-emit
6174 if (n_sets
== 1 && dest
== pc_rtx
6176 || (GET_CODE (trial
) == LABEL_REF
6177 && ! condjump_p (insn
))))
6179 /* If TRIAL is a label in front of a jump table, we are
6180 really falling through the switch (this is how casesi
6181 insns work), so we must branch around the table. */
6182 if (GET_CODE (trial
) == CODE_LABEL
6183 && NEXT_INSN (trial
) != 0
6184 && GET_CODE (NEXT_INSN (trial
)) == JUMP_INSN
6185 && (GET_CODE (PATTERN (NEXT_INSN (trial
))) == ADDR_DIFF_VEC
6186 || GET_CODE (PATTERN (NEXT_INSN (trial
))) == ADDR_VEC
))
6188 trial
= gen_rtx (LABEL_REF
, Pmode
, get_label_after (trial
));
6190 SET_SRC (sets
[i
].rtl
) = trial
;
6194 /* Look for a substitution that makes a valid insn. */
6195 else if (validate_change (insn
, &SET_SRC (sets
[i
].rtl
), trial
, 0))
6197 SET_SRC (sets
[i
].rtl
) = canon_reg (SET_SRC (sets
[i
].rtl
), insn
);
6201 /* If we previously found constant pool entries for
6202 constants and this is a constant, try making a
6203 pool entry. Put it in src_folded unless we already have done
6204 this since that is where it likely came from. */
6206 else if (constant_pool_entries_cost
6207 && CONSTANT_P (trial
)
6208 && (src_folded
== 0 || GET_CODE (src_folded
) != MEM
)
6209 && GET_MODE_CLASS (mode
) != MODE_CC
)
6211 src_folded_force_flag
= 1;
6213 src_folded_cost
= constant_pool_entries_cost
;
6217 src
= SET_SRC (sets
[i
].rtl
);
6219 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
6220 However, there is an important exception: If both are registers
6221 that are not the head of their equivalence class, replace SET_SRC
6222 with the head of the class. If we do not do this, we will have
6223 both registers live over a portion of the basic block. This way,
6224 their lifetimes will likely abut instead of overlapping. */
6225 if (GET_CODE (dest
) == REG
6226 && REGNO_QTY_VALID_P (REGNO (dest
))
6227 && qty_mode
[reg_qty
[REGNO (dest
)]] == GET_MODE (dest
)
6228 && qty_first_reg
[reg_qty
[REGNO (dest
)]] != REGNO (dest
)
6229 && GET_CODE (src
) == REG
&& REGNO (src
) == REGNO (dest
)
6230 /* Don't do this if the original insn had a hard reg as
6232 && (GET_CODE (sets
[i
].src
) != REG
6233 || REGNO (sets
[i
].src
) >= FIRST_PSEUDO_REGISTER
))
6234 /* We can't call canon_reg here because it won't do anything if
6235 SRC is a hard register. */
6237 int first
= qty_first_reg
[reg_qty
[REGNO (src
)]];
6239 src
= SET_SRC (sets
[i
].rtl
)
6240 = first
>= FIRST_PSEUDO_REGISTER
? regno_reg_rtx
[first
]
6241 : gen_rtx (REG
, GET_MODE (src
), first
);
6243 /* If we had a constant that is cheaper than what we are now
6244 setting SRC to, use that constant. We ignored it when we
6245 thought we could make this into a no-op. */
6246 if (src_const
&& COST (src_const
) < COST (src
)
6247 && validate_change (insn
, &SET_SRC (sets
[i
].rtl
), src_const
, 0))
6251 /* If we made a change, recompute SRC values. */
6252 if (src
!= sets
[i
].src
)
6255 hash_arg_in_memory
= 0;
6256 hash_arg_in_struct
= 0;
6258 sets
[i
].src_hash_code
= HASH (src
, mode
);
6259 sets
[i
].src_volatile
= do_not_record
;
6260 sets
[i
].src_in_memory
= hash_arg_in_memory
;
6261 sets
[i
].src_in_struct
= hash_arg_in_struct
;
6262 sets
[i
].src_elt
= lookup (src
, sets
[i
].src_hash_code
, mode
);
6265 /* If this is a single SET, we are setting a register, and we have an
6266 equivalent constant, we want to add a REG_NOTE. We don't want
6267 to write a REG_EQUAL note for a constant pseudo since verifying that
6268 that pseudo hasn't been eliminated is a pain. Such a note also
6269 won't help anything. */
6270 if (n_sets
== 1 && src_const
&& GET_CODE (dest
) == REG
6271 && GET_CODE (src_const
) != REG
)
6273 rtx tem
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
);
6275 /* Record the actual constant value in a REG_EQUAL note, making
6276 a new one if one does not already exist. */
6278 XEXP (tem
, 0) = src_const
;
6280 REG_NOTES (insn
) = gen_rtx (EXPR_LIST
, REG_EQUAL
,
6281 src_const
, REG_NOTES (insn
));
6283 /* If storing a constant value in a register that
6284 previously held the constant value 0,
6285 record this fact with a REG_WAS_0 note on this insn.
6287 Note that the *register* is required to have previously held 0,
6288 not just any register in the quantity and we must point to the
6289 insn that set that register to zero.
6291 Rather than track each register individually, we just see if
6292 the last set for this quantity was for this register. */
6294 if (REGNO_QTY_VALID_P (REGNO (dest
))
6295 && qty_const
[reg_qty
[REGNO (dest
)]] == const0_rtx
)
6297 /* See if we previously had a REG_WAS_0 note. */
6298 rtx note
= find_reg_note (insn
, REG_WAS_0
, NULL_RTX
);
6299 rtx const_insn
= qty_const_insn
[reg_qty
[REGNO (dest
)]];
6301 if ((tem
= single_set (const_insn
)) != 0
6302 && rtx_equal_p (SET_DEST (tem
), dest
))
6305 XEXP (note
, 0) = const_insn
;
6307 REG_NOTES (insn
) = gen_rtx (INSN_LIST
, REG_WAS_0
,
6308 const_insn
, REG_NOTES (insn
));
6313 /* Now deal with the destination. */
6315 sets
[i
].inner_dest_loc
= &SET_DEST (sets
[0].rtl
);
6317 /* Look within any SIGN_EXTRACT or ZERO_EXTRACT
6318 to the MEM or REG within it. */
6319 while (GET_CODE (dest
) == SIGN_EXTRACT
6320 || GET_CODE (dest
) == ZERO_EXTRACT
6321 || GET_CODE (dest
) == SUBREG
6322 || GET_CODE (dest
) == STRICT_LOW_PART
)
6324 sets
[i
].inner_dest_loc
= &XEXP (dest
, 0);
6325 dest
= XEXP (dest
, 0);
6328 sets
[i
].inner_dest
= dest
;
6330 if (GET_CODE (dest
) == MEM
)
6332 dest
= fold_rtx (dest
, insn
);
6334 /* Decide whether we invalidate everything in memory,
6335 or just things at non-fixed places.
6336 Writing a large aggregate must invalidate everything
6337 because we don't know how long it is. */
6338 note_mem_written (dest
, &writes_memory
);
6341 /* Compute the hash code of the destination now,
6342 before the effects of this instruction are recorded,
6343 since the register values used in the address computation
6344 are those before this instruction. */
6345 sets
[i
].dest_hash_code
= HASH (dest
, mode
);
6347 /* Don't enter a bit-field in the hash table
6348 because the value in it after the store
6349 may not equal what was stored, due to truncation. */
6351 if (GET_CODE (SET_DEST (sets
[i
].rtl
)) == ZERO_EXTRACT
6352 || GET_CODE (SET_DEST (sets
[i
].rtl
)) == SIGN_EXTRACT
)
6354 rtx width
= XEXP (SET_DEST (sets
[i
].rtl
), 1);
6356 if (src_const
!= 0 && GET_CODE (src_const
) == CONST_INT
6357 && GET_CODE (width
) == CONST_INT
6358 && INTVAL (width
) < HOST_BITS_PER_WIDE_INT
6359 && ! (INTVAL (src_const
)
6360 & ((HOST_WIDE_INT
) (-1) << INTVAL (width
))))
6361 /* Exception: if the value is constant,
6362 and it won't be truncated, record it. */
6366 /* This is chosen so that the destination will be invalidated
6367 but no new value will be recorded.
6368 We must invalidate because sometimes constant
6369 values can be recorded for bitfields. */
6370 sets
[i
].src_elt
= 0;
6371 sets
[i
].src_volatile
= 1;
6377 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
6379 else if (n_sets
== 1 && dest
== pc_rtx
&& src
== pc_rtx
)
6381 PUT_CODE (insn
, NOTE
);
6382 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
6383 NOTE_SOURCE_FILE (insn
) = 0;
6384 cse_jumps_altered
= 1;
6385 /* One less use of the label this insn used to jump to. */
6386 --LABEL_NUSES (JUMP_LABEL (insn
));
6387 /* No more processing for this set. */
6391 /* If this SET is now setting PC to a label, we know it used to
6392 be a conditional or computed branch. So we see if we can follow
6393 it. If it was a computed branch, delete it and re-emit. */
6394 else if (dest
== pc_rtx
&& GET_CODE (src
) == LABEL_REF
)
6398 /* If this is not in the format for a simple branch and
6399 we are the only SET in it, re-emit it. */
6400 if (! simplejump_p (insn
) && n_sets
== 1)
6402 rtx
new = emit_jump_insn_before (gen_jump (XEXP (src
, 0)), insn
);
6403 JUMP_LABEL (new) = XEXP (src
, 0);
6404 LABEL_NUSES (XEXP (src
, 0))++;
6409 /* Now that we've converted this jump to an unconditional jump,
6410 there is dead code after it. Delete the dead code until we
6411 reach a BARRIER, the end of the function, or a label. Do
6412 not delete NOTEs except for NOTE_INSN_DELETED since later
6413 phases assume these notes are retained. */
6417 while (NEXT_INSN (p
) != 0
6418 && GET_CODE (NEXT_INSN (p
)) != BARRIER
6419 && GET_CODE (NEXT_INSN (p
)) != CODE_LABEL
)
6421 if (GET_CODE (NEXT_INSN (p
)) != NOTE
6422 || NOTE_LINE_NUMBER (NEXT_INSN (p
)) == NOTE_INSN_DELETED
)
6423 delete_insn (NEXT_INSN (p
));
6428 /* If we don't have a BARRIER immediately after INSN, put one there.
6429 Much code assumes that there are no NOTEs between a JUMP_INSN and
6432 if (NEXT_INSN (insn
) == 0
6433 || GET_CODE (NEXT_INSN (insn
)) != BARRIER
)
6434 emit_barrier_after (insn
);
6436 /* We might have two BARRIERs separated by notes. Delete the second
6439 if (p
!= insn
&& NEXT_INSN (p
) != 0
6440 && GET_CODE (NEXT_INSN (p
)) == BARRIER
)
6441 delete_insn (NEXT_INSN (p
));
6443 cse_jumps_altered
= 1;
6447 /* If destination is volatile, invalidate it and then do no further
6448 processing for this assignment. */
6450 else if (do_not_record
)
6452 if (GET_CODE (dest
) == REG
|| GET_CODE (dest
) == SUBREG
6453 || GET_CODE (dest
) == MEM
)
6458 if (sets
[i
].rtl
!= 0 && dest
!= SET_DEST (sets
[i
].rtl
))
6459 sets
[i
].dest_hash_code
= HASH (SET_DEST (sets
[i
].rtl
), mode
);
6462 /* If setting CC0, record what it was set to, or a constant, if it
6463 is equivalent to a constant. If it is being set to a floating-point
6464 value, make a COMPARE with the appropriate constant of 0. If we
6465 don't do this, later code can interpret this as a test against
6466 const0_rtx, which can cause problems if we try to put it into an
6467 insn as a floating-point operand. */
6468 if (dest
== cc0_rtx
)
6470 this_insn_cc0
= src_const
&& mode
!= VOIDmode
? src_const
: src
;
6471 this_insn_cc0_mode
= mode
;
6472 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
6473 this_insn_cc0
= gen_rtx (COMPARE
, VOIDmode
, this_insn_cc0
,
6479 /* Now enter all non-volatile source expressions in the hash table
6480 if they are not already present.
6481 Record their equivalence classes in src_elt.
6482 This way we can insert the corresponding destinations into
6483 the same classes even if the actual sources are no longer in them
6484 (having been invalidated). */
6486 if (src_eqv
&& src_eqv_elt
== 0 && sets
[0].rtl
!= 0 && ! src_eqv_volatile
6487 && ! rtx_equal_p (src_eqv
, SET_DEST (sets
[0].rtl
)))
6489 register struct table_elt
*elt
;
6490 register struct table_elt
*classp
= sets
[0].src_elt
;
6491 rtx dest
= SET_DEST (sets
[0].rtl
);
6492 enum machine_mode eqvmode
= GET_MODE (dest
);
6494 if (GET_CODE (dest
) == STRICT_LOW_PART
)
6496 eqvmode
= GET_MODE (SUBREG_REG (XEXP (dest
, 0)));
6499 if (insert_regs (src_eqv
, classp
, 0))
6500 src_eqv_hash_code
= HASH (src_eqv
, eqvmode
);
6501 elt
= insert (src_eqv
, classp
, src_eqv_hash_code
, eqvmode
);
6502 elt
->in_memory
= src_eqv_in_memory
;
6503 elt
->in_struct
= src_eqv_in_struct
;
6507 for (i
= 0; i
< n_sets
; i
++)
6508 if (sets
[i
].rtl
&& ! sets
[i
].src_volatile
6509 && ! rtx_equal_p (SET_SRC (sets
[i
].rtl
), SET_DEST (sets
[i
].rtl
)))
6511 if (GET_CODE (SET_DEST (sets
[i
].rtl
)) == STRICT_LOW_PART
)
6513 /* REG_EQUAL in setting a STRICT_LOW_PART
6514 gives an equivalent for the entire destination register,
6515 not just for the subreg being stored in now.
6516 This is a more interesting equivalence, so we arrange later
6517 to treat the entire reg as the destination. */
6518 sets
[i
].src_elt
= src_eqv_elt
;
6519 sets
[i
].src_hash_code
= src_eqv_hash_code
;
6523 /* Insert source and constant equivalent into hash table, if not
6525 register struct table_elt
*classp
= src_eqv_elt
;
6526 register rtx src
= sets
[i
].src
;
6527 register rtx dest
= SET_DEST (sets
[i
].rtl
);
6528 enum machine_mode mode
6529 = GET_MODE (src
) == VOIDmode
? GET_MODE (dest
) : GET_MODE (src
);
6531 if (sets
[i
].src_elt
== 0)
6533 register struct table_elt
*elt
;
6535 /* Note that these insert_regs calls cannot remove
6536 any of the src_elt's, because they would have failed to
6537 match if not still valid. */
6538 if (insert_regs (src
, classp
, 0))
6539 sets
[i
].src_hash_code
= HASH (src
, mode
);
6540 elt
= insert (src
, classp
, sets
[i
].src_hash_code
, mode
);
6541 elt
->in_memory
= sets
[i
].src_in_memory
;
6542 elt
->in_struct
= sets
[i
].src_in_struct
;
6543 sets
[i
].src_elt
= classp
= elt
;
6546 if (sets
[i
].src_const
&& sets
[i
].src_const_elt
== 0
6547 && src
!= sets
[i
].src_const
6548 && ! rtx_equal_p (sets
[i
].src_const
, src
))
6549 sets
[i
].src_elt
= insert (sets
[i
].src_const
, classp
,
6550 sets
[i
].src_const_hash_code
, mode
);
6553 else if (sets
[i
].src_elt
== 0)
6554 /* If we did not insert the source into the hash table (e.g., it was
6555 volatile), note the equivalence class for the REG_EQUAL value, if any,
6556 so that the destination goes into that class. */
6557 sets
[i
].src_elt
= src_eqv_elt
;
6559 invalidate_from_clobbers (&writes_memory
, x
);
6561 /* Some registers are invalidated by subroutine calls. Memory is
6562 invalidated by non-constant calls. */
6564 if (GET_CODE (insn
) == CALL_INSN
)
6566 static struct write_data everything
= {0, 1, 1, 1};
6568 if (! CONST_CALL_P (insn
))
6569 invalidate_memory (&everything
);
6570 invalidate_for_call ();
6573 /* Now invalidate everything set by this instruction.
6574 If a SUBREG or other funny destination is being set,
6575 sets[i].rtl is still nonzero, so here we invalidate the reg
6576 a part of which is being set. */
6578 for (i
= 0; i
< n_sets
; i
++)
6581 register rtx dest
= sets
[i
].inner_dest
;
6583 /* Needed for registers to remove the register from its
6584 previous quantity's chain.
6585 Needed for memory if this is a nonvarying address, unless
6586 we have just done an invalidate_memory that covers even those. */
6587 if (GET_CODE (dest
) == REG
|| GET_CODE (dest
) == SUBREG
6588 || (! writes_memory
.all
&& ! cse_rtx_addr_varies_p (dest
)))
6592 /* Make sure registers mentioned in destinations
6593 are safe for use in an expression to be inserted.
6594 This removes from the hash table
6595 any invalid entry that refers to one of these registers.
6597 We don't care about the return value from mention_regs because
6598 we are going to hash the SET_DEST values unconditionally. */
6600 for (i
= 0; i
< n_sets
; i
++)
6601 if (sets
[i
].rtl
&& GET_CODE (SET_DEST (sets
[i
].rtl
)) != REG
)
6602 mention_regs (SET_DEST (sets
[i
].rtl
));
6604 /* We may have just removed some of the src_elt's from the hash table.
6605 So replace each one with the current head of the same class. */
6607 for (i
= 0; i
< n_sets
; i
++)
6610 if (sets
[i
].src_elt
&& sets
[i
].src_elt
->first_same_value
== 0)
6611 /* If elt was removed, find current head of same class,
6612 or 0 if nothing remains of that class. */
6614 register struct table_elt
*elt
= sets
[i
].src_elt
;
6616 while (elt
&& elt
->prev_same_value
)
6617 elt
= elt
->prev_same_value
;
6619 while (elt
&& elt
->first_same_value
== 0)
6620 elt
= elt
->next_same_value
;
6621 sets
[i
].src_elt
= elt
? elt
->first_same_value
: 0;
6625 /* Now insert the destinations into their equivalence classes. */
6627 for (i
= 0; i
< n_sets
; i
++)
6630 register rtx dest
= SET_DEST (sets
[i
].rtl
);
6631 register struct table_elt
*elt
;
6633 /* Don't record value if we are not supposed to risk allocating
6634 floating-point values in registers that might be wider than
6636 if ((flag_float_store
6637 && GET_CODE (dest
) == MEM
6638 && GET_MODE_CLASS (GET_MODE (dest
)) == MODE_FLOAT
)
6639 /* Don't record values of destinations set inside a libcall block
6640 since we might delete the libcall. Things should have been set
6641 up so we won't want to reuse such a value, but we play it safe
6644 /* If we didn't put a REG_EQUAL value or a source into the hash
6645 table, there is no point is recording DEST. */
6646 || sets
[i
].src_elt
== 0)
6649 /* STRICT_LOW_PART isn't part of the value BEING set,
6650 and neither is the SUBREG inside it.
6651 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
6652 if (GET_CODE (dest
) == STRICT_LOW_PART
)
6653 dest
= SUBREG_REG (XEXP (dest
, 0));
6655 if (GET_CODE (dest
) == REG
|| GET_CODE (dest
) == SUBREG
)
6656 /* Registers must also be inserted into chains for quantities. */
6657 if (insert_regs (dest
, sets
[i
].src_elt
, 1))
6658 /* If `insert_regs' changes something, the hash code must be
6660 sets
[i
].dest_hash_code
= HASH (dest
, GET_MODE (dest
));
6662 elt
= insert (dest
, sets
[i
].src_elt
,
6663 sets
[i
].dest_hash_code
, GET_MODE (dest
));
6664 elt
->in_memory
= GET_CODE (sets
[i
].inner_dest
) == MEM
;
6667 /* This implicitly assumes a whole struct
6668 need not have MEM_IN_STRUCT_P.
6669 But a whole struct is *supposed* to have MEM_IN_STRUCT_P. */
6670 elt
->in_struct
= (MEM_IN_STRUCT_P (sets
[i
].inner_dest
)
6671 || sets
[i
].inner_dest
!= SET_DEST (sets
[i
].rtl
));
6674 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
6675 narrower than M2, and both M1 and M2 are the same number of words,
6676 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
6677 make that equivalence as well.
6679 However, BAR may have equivalences for which gen_lowpart_if_possible
6680 will produce a simpler value than gen_lowpart_if_possible applied to
6681 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
6682 BAR's equivalences. If we don't get a simplified form, make
6683 the SUBREG. It will not be used in an equivalence, but will
6684 cause two similar assignments to be detected.
6686 Note the loop below will find SUBREG_REG (DEST) since we have
6687 already entered SRC and DEST of the SET in the table. */
6689 if (GET_CODE (dest
) == SUBREG
6690 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
))) / UNITS_PER_WORD
6691 == GET_MODE_SIZE (GET_MODE (dest
)) / UNITS_PER_WORD
)
6692 && (GET_MODE_SIZE (GET_MODE (dest
))
6693 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
))))
6694 && sets
[i
].src_elt
!= 0)
6696 enum machine_mode new_mode
= GET_MODE (SUBREG_REG (dest
));
6697 struct table_elt
*elt
, *classp
= 0;
6699 for (elt
= sets
[i
].src_elt
->first_same_value
; elt
;
6700 elt
= elt
->next_same_value
)
6704 struct table_elt
*src_elt
;
6706 /* Ignore invalid entries. */
6707 if (GET_CODE (elt
->exp
) != REG
6708 && ! exp_equiv_p (elt
->exp
, elt
->exp
, 1, 0))
6711 new_src
= gen_lowpart_if_possible (new_mode
, elt
->exp
);
6713 new_src
= gen_rtx (SUBREG
, new_mode
, elt
->exp
, 0);
6715 src_hash
= HASH (new_src
, new_mode
);
6716 src_elt
= lookup (new_src
, src_hash
, new_mode
);
6718 /* Put the new source in the hash table is if isn't
6722 if (insert_regs (new_src
, classp
, 0))
6723 src_hash
= HASH (new_src
, new_mode
);
6724 src_elt
= insert (new_src
, classp
, src_hash
, new_mode
);
6725 src_elt
->in_memory
= elt
->in_memory
;
6726 src_elt
->in_struct
= elt
->in_struct
;
6728 else if (classp
&& classp
!= src_elt
->first_same_value
)
6729 /* Show that two things that we've seen before are
6730 actually the same. */
6731 merge_equiv_classes (src_elt
, classp
);
6733 classp
= src_elt
->first_same_value
;
6738 /* Special handling for (set REG0 REG1)
6739 where REG0 is the "cheapest", cheaper than REG1.
6740 After cse, REG1 will probably not be used in the sequel,
6741 so (if easily done) change this insn to (set REG1 REG0) and
6742 replace REG1 with REG0 in the previous insn that computed their value.
6743 Then REG1 will become a dead store and won't cloud the situation
6744 for later optimizations.
6746 Do not make this change if REG1 is a hard register, because it will
6747 then be used in the sequel and we may be changing a two-operand insn
6748 into a three-operand insn.
6750 Also do not do this if we are operating on a copy of INSN. */
6752 if (n_sets
== 1 && sets
[0].rtl
&& GET_CODE (SET_DEST (sets
[0].rtl
)) == REG
6753 && NEXT_INSN (PREV_INSN (insn
)) == insn
6754 && GET_CODE (SET_SRC (sets
[0].rtl
)) == REG
6755 && REGNO (SET_SRC (sets
[0].rtl
)) >= FIRST_PSEUDO_REGISTER
6756 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets
[0].rtl
)))
6757 && (qty_first_reg
[reg_qty
[REGNO (SET_SRC (sets
[0].rtl
))]]
6758 == REGNO (SET_DEST (sets
[0].rtl
))))
6760 rtx prev
= PREV_INSN (insn
);
6761 while (prev
&& GET_CODE (prev
) == NOTE
)
6762 prev
= PREV_INSN (prev
);
6764 if (prev
&& GET_CODE (prev
) == INSN
&& GET_CODE (PATTERN (prev
)) == SET
6765 && SET_DEST (PATTERN (prev
)) == SET_SRC (sets
[0].rtl
))
6767 rtx dest
= SET_DEST (sets
[0].rtl
);
6768 rtx note
= find_reg_note (prev
, REG_EQUIV
, NULL_RTX
);
6770 validate_change (prev
, & SET_DEST (PATTERN (prev
)), dest
, 1);
6771 validate_change (insn
, & SET_DEST (sets
[0].rtl
),
6772 SET_SRC (sets
[0].rtl
), 1);
6773 validate_change (insn
, & SET_SRC (sets
[0].rtl
), dest
, 1);
6774 apply_change_group ();
6776 /* If REG1 was equivalent to a constant, REG0 is not. */
6778 PUT_REG_NOTE_KIND (note
, REG_EQUAL
);
6780 /* If there was a REG_WAS_0 note on PREV, remove it. Move
6781 any REG_WAS_0 note on INSN to PREV. */
6782 note
= find_reg_note (prev
, REG_WAS_0
, NULL_RTX
);
6784 remove_note (prev
, note
);
6786 note
= find_reg_note (insn
, REG_WAS_0
, NULL_RTX
);
6789 remove_note (insn
, note
);
6790 XEXP (note
, 1) = REG_NOTES (prev
);
6791 REG_NOTES (prev
) = note
;
6796 /* If this is a conditional jump insn, record any known equivalences due to
6797 the condition being tested. */
6799 last_jump_equiv_class
= 0;
6800 if (GET_CODE (insn
) == JUMP_INSN
6801 && n_sets
== 1 && GET_CODE (x
) == SET
6802 && GET_CODE (SET_SRC (x
)) == IF_THEN_ELSE
)
6803 record_jump_equiv (insn
, 0);
6806 /* If the previous insn set CC0 and this insn no longer references CC0,
6807 delete the previous insn. Here we use the fact that nothing expects CC0
6808 to be valid over an insn, which is true until the final pass. */
6809 if (prev_insn
&& GET_CODE (prev_insn
) == INSN
6810 && (tem
= single_set (prev_insn
)) != 0
6811 && SET_DEST (tem
) == cc0_rtx
6812 && ! reg_mentioned_p (cc0_rtx
, x
))
6814 PUT_CODE (prev_insn
, NOTE
);
6815 NOTE_LINE_NUMBER (prev_insn
) = NOTE_INSN_DELETED
;
6816 NOTE_SOURCE_FILE (prev_insn
) = 0;
6819 prev_insn_cc0
= this_insn_cc0
;
6820 prev_insn_cc0_mode
= this_insn_cc0_mode
;
6826 /* Store 1 in *WRITES_PTR for those categories of memory ref
6827 that must be invalidated when the expression WRITTEN is stored in.
6828 If WRITTEN is null, say everything must be invalidated. */
6831 note_mem_written (written
, writes_ptr
)
6833 struct write_data
*writes_ptr
;
6835 static struct write_data everything
= {0, 1, 1, 1};
6838 *writes_ptr
= everything
;
6839 else if (GET_CODE (written
) == MEM
)
6841 /* Pushing or popping the stack invalidates just the stack pointer. */
6842 rtx addr
= XEXP (written
, 0);
6843 if ((GET_CODE (addr
) == PRE_DEC
|| GET_CODE (addr
) == PRE_INC
6844 || GET_CODE (addr
) == POST_DEC
|| GET_CODE (addr
) == POST_INC
)
6845 && GET_CODE (XEXP (addr
, 0)) == REG
6846 && REGNO (XEXP (addr
, 0)) == STACK_POINTER_REGNUM
)
6851 else if (GET_MODE (written
) == BLKmode
)
6852 *writes_ptr
= everything
;
6853 else if (cse_rtx_addr_varies_p (written
))
6855 /* A varying address that is a sum indicates an array element,
6856 and that's just as good as a structure element
6857 in implying that we need not invalidate scalar variables. */
6858 if (!(MEM_IN_STRUCT_P (written
)
6859 || GET_CODE (XEXP (written
, 0)) == PLUS
))
6860 writes_ptr
->all
= 1;
6861 writes_ptr
->nonscalar
= 1;
6863 writes_ptr
->var
= 1;
6867 /* Perform invalidation on the basis of everything about an insn
6868 except for invalidating the actual places that are SET in it.
6869 This includes the places CLOBBERed, and anything that might
6870 alias with something that is SET or CLOBBERed.
6872 W points to the writes_memory for this insn, a struct write_data
6873 saying which kinds of memory references must be invalidated.
6874 X is the pattern of the insn. */
6877 invalidate_from_clobbers (w
, x
)
6878 struct write_data
*w
;
6881 /* If W->var is not set, W specifies no action.
6882 If W->all is set, this step gets all memory refs
6883 so they can be ignored in the rest of this function. */
6885 invalidate_memory (w
);
6889 if (reg_tick
[STACK_POINTER_REGNUM
] >= 0)
6890 reg_tick
[STACK_POINTER_REGNUM
]++;
6892 /* This should be *very* rare. */
6893 if (TEST_HARD_REG_BIT (hard_regs_in_table
, STACK_POINTER_REGNUM
))
6894 invalidate (stack_pointer_rtx
);
6897 if (GET_CODE (x
) == CLOBBER
)
6899 rtx ref
= XEXP (x
, 0);
6901 && (GET_CODE (ref
) == REG
|| GET_CODE (ref
) == SUBREG
6902 || (GET_CODE (ref
) == MEM
&& ! w
->all
)))
6905 else if (GET_CODE (x
) == PARALLEL
)
6908 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
6910 register rtx y
= XVECEXP (x
, 0, i
);
6911 if (GET_CODE (y
) == CLOBBER
)
6913 rtx ref
= XEXP (y
, 0);
6915 &&(GET_CODE (ref
) == REG
|| GET_CODE (ref
) == SUBREG
6916 || (GET_CODE (ref
) == MEM
&& !w
->all
)))
6923 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6924 and replace any registers in them with either an equivalent constant
6925 or the canonical form of the register. If we are inside an address,
6926 only do this if the address remains valid.
6928 OBJECT is 0 except when within a MEM in which case it is the MEM.
6930 Return the replacement for X. */
6933 cse_process_notes (x
, object
)
6937 enum rtx_code code
= GET_CODE (x
);
6938 char *fmt
= GET_RTX_FORMAT (code
);
6955 XEXP (x
, 0) = cse_process_notes (XEXP (x
, 0), x
);
6960 if (REG_NOTE_KIND (x
) == REG_EQUAL
)
6961 XEXP (x
, 0) = cse_process_notes (XEXP (x
, 0), NULL_RTX
);
6963 XEXP (x
, 1) = cse_process_notes (XEXP (x
, 1), NULL_RTX
);
6969 rtx
new = cse_process_notes (XEXP (x
, 0), object
);
6970 /* We don't substitute VOIDmode constants into these rtx,
6971 since they would impede folding. */
6972 if (GET_MODE (new) != VOIDmode
)
6973 validate_change (object
, &XEXP (x
, 0), new, 0);
6978 i
= reg_qty
[REGNO (x
)];
6980 /* Return a constant or a constant register. */
6981 if (REGNO_QTY_VALID_P (REGNO (x
))
6982 && qty_const
[i
] != 0
6983 && (CONSTANT_P (qty_const
[i
])
6984 || GET_CODE (qty_const
[i
]) == REG
))
6986 rtx
new = gen_lowpart_if_possible (GET_MODE (x
), qty_const
[i
]);
6991 /* Otherwise, canonicalize this register. */
6992 return canon_reg (x
, NULL_RTX
);
6995 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
6997 validate_change (object
, &XEXP (x
, i
),
6998 cse_process_notes (XEXP (x
, i
), object
), NULL_RTX
);
7003 /* Find common subexpressions between the end test of a loop and the beginning
7004 of the loop. LOOP_START is the CODE_LABEL at the start of a loop.
7006 Often we have a loop where an expression in the exit test is used
7007 in the body of the loop. For example "while (*p) *q++ = *p++;".
7008 Because of the way we duplicate the loop exit test in front of the loop,
7009 however, we don't detect that common subexpression. This will be caught
7010 when global cse is implemented, but this is a quite common case.
7012 This function handles the most common cases of these common expressions.
7013 It is called after we have processed the basic block ending with the
7014 NOTE_INSN_LOOP_END note that ends a loop and the previous JUMP_INSN
7015 jumps to a label used only once. */
7018 cse_around_loop (loop_start
)
7023 struct table_elt
*p
;
7025 /* If the jump at the end of the loop doesn't go to the start, we don't
7027 for (insn
= PREV_INSN (loop_start
);
7028 insn
&& (GET_CODE (insn
) == NOTE
&& NOTE_LINE_NUMBER (insn
) >= 0);
7029 insn
= PREV_INSN (insn
))
7033 || GET_CODE (insn
) != NOTE
7034 || NOTE_LINE_NUMBER (insn
) != NOTE_INSN_LOOP_BEG
)
7037 /* If the last insn of the loop (the end test) was an NE comparison,
7038 we will interpret it as an EQ comparison, since we fell through
7039 the loop. Any equivalences resulting from that comparison are
7040 therefore not valid and must be invalidated. */
7041 if (last_jump_equiv_class
)
7042 for (p
= last_jump_equiv_class
->first_same_value
; p
;
7043 p
= p
->next_same_value
)
7044 if (GET_CODE (p
->exp
) == MEM
|| GET_CODE (p
->exp
) == REG
7045 || GET_CODE (p
->exp
) == SUBREG
)
7046 invalidate (p
->exp
);
7048 /* Process insns starting after LOOP_START until we hit a CALL_INSN or
7049 a CODE_LABEL (we could handle a CALL_INSN, but it isn't worth it).
7051 The only thing we do with SET_DEST is invalidate entries, so we
7052 can safely process each SET in order. It is slightly less efficient
7053 to do so, but we only want to handle the most common cases. */
7055 for (insn
= NEXT_INSN (loop_start
);
7056 GET_CODE (insn
) != CALL_INSN
&& GET_CODE (insn
) != CODE_LABEL
7057 && ! (GET_CODE (insn
) == NOTE
7058 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_END
);
7059 insn
= NEXT_INSN (insn
))
7061 if (GET_RTX_CLASS (GET_CODE (insn
)) == 'i'
7062 && (GET_CODE (PATTERN (insn
)) == SET
7063 || GET_CODE (PATTERN (insn
)) == CLOBBER
))
7064 cse_set_around_loop (PATTERN (insn
), insn
, loop_start
);
7065 else if (GET_RTX_CLASS (GET_CODE (insn
)) == 'i'
7066 && GET_CODE (PATTERN (insn
)) == PARALLEL
)
7067 for (i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
7068 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == SET
7069 || GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == CLOBBER
)
7070 cse_set_around_loop (XVECEXP (PATTERN (insn
), 0, i
), insn
,
7075 /* Variable used for communications between the next two routines. */
7077 static struct write_data skipped_writes_memory
;
7079 /* Process one SET of an insn that was skipped. We ignore CLOBBERs
7080 since they are done elsewhere. This function is called via note_stores. */
7083 invalidate_skipped_set (dest
, set
)
7087 if (GET_CODE (set
) == CLOBBER
7094 if (GET_CODE (dest
) == MEM
)
7095 note_mem_written (dest
, &skipped_writes_memory
);
7097 if (GET_CODE (dest
) == REG
|| GET_CODE (dest
) == SUBREG
7098 || (! skipped_writes_memory
.all
&& ! cse_rtx_addr_varies_p (dest
)))
7102 /* Invalidate all insns from START up to the end of the function or the
7103 next label. This called when we wish to CSE around a block that is
7104 conditionally executed. */
7107 invalidate_skipped_block (start
)
7112 static struct write_data init
= {0, 0, 0, 0};
7113 static struct write_data everything
= {0, 1, 1, 1};
7115 for (insn
= start
; insn
&& GET_CODE (insn
) != CODE_LABEL
;
7116 insn
= NEXT_INSN (insn
))
7118 if (GET_RTX_CLASS (GET_CODE (insn
)) != 'i')
7121 skipped_writes_memory
= init
;
7123 if (GET_CODE (insn
) == CALL_INSN
)
7125 invalidate_for_call ();
7126 skipped_writes_memory
= everything
;
7129 note_stores (PATTERN (insn
), invalidate_skipped_set
);
7130 invalidate_from_clobbers (&skipped_writes_memory
, PATTERN (insn
));
7134 /* Used for communication between the following two routines; contains a
7135 value to be checked for modification. */
7137 static rtx cse_check_loop_start_value
;
7139 /* If modifying X will modify the value in CSE_CHECK_LOOP_START_VALUE,
7140 indicate that fact by setting CSE_CHECK_LOOP_START_VALUE to 0. */
7143 cse_check_loop_start (x
, set
)
7147 if (cse_check_loop_start_value
== 0
7148 || GET_CODE (x
) == CC0
|| GET_CODE (x
) == PC
)
7151 if ((GET_CODE (x
) == MEM
&& GET_CODE (cse_check_loop_start_value
) == MEM
)
7152 || reg_overlap_mentioned_p (x
, cse_check_loop_start_value
))
7153 cse_check_loop_start_value
= 0;
7156 /* X is a SET or CLOBBER contained in INSN that was found near the start of
7157 a loop that starts with the label at LOOP_START.
7159 If X is a SET, we see if its SET_SRC is currently in our hash table.
7160 If so, we see if it has a value equal to some register used only in the
7161 loop exit code (as marked by jump.c).
7163 If those two conditions are true, we search backwards from the start of
7164 the loop to see if that same value was loaded into a register that still
7165 retains its value at the start of the loop.
7167 If so, we insert an insn after the load to copy the destination of that
7168 load into the equivalent register and (try to) replace our SET_SRC with that
7171 In any event, we invalidate whatever this SET or CLOBBER modifies. */
7174 cse_set_around_loop (x
, insn
, loop_start
)
7180 struct table_elt
*src_elt
;
7181 static struct write_data init
= {0, 0, 0, 0};
7182 struct write_data writes_memory
;
7184 writes_memory
= init
;
7186 /* If this is a SET, see if we can replace SET_SRC, but ignore SETs that
7187 are setting PC or CC0 or whose SET_SRC is already a register. */
7188 if (GET_CODE (x
) == SET
7189 && GET_CODE (SET_DEST (x
)) != PC
&& GET_CODE (SET_DEST (x
)) != CC0
7190 && GET_CODE (SET_SRC (x
)) != REG
)
7192 src_elt
= lookup (SET_SRC (x
),
7193 HASH (SET_SRC (x
), GET_MODE (SET_DEST (x
))),
7194 GET_MODE (SET_DEST (x
)));
7197 for (src_elt
= src_elt
->first_same_value
; src_elt
;
7198 src_elt
= src_elt
->next_same_value
)
7199 if (GET_CODE (src_elt
->exp
) == REG
&& REG_LOOP_TEST_P (src_elt
->exp
)
7200 && COST (src_elt
->exp
) < COST (SET_SRC (x
)))
7204 /* Look for an insn in front of LOOP_START that sets
7205 something in the desired mode to SET_SRC (x) before we hit
7206 a label or CALL_INSN. */
7208 for (p
= prev_nonnote_insn (loop_start
);
7209 p
&& GET_CODE (p
) != CALL_INSN
7210 && GET_CODE (p
) != CODE_LABEL
;
7211 p
= prev_nonnote_insn (p
))
7212 if ((set
= single_set (p
)) != 0
7213 && GET_CODE (SET_DEST (set
)) == REG
7214 && GET_MODE (SET_DEST (set
)) == src_elt
->mode
7215 && rtx_equal_p (SET_SRC (set
), SET_SRC (x
)))
7217 /* We now have to ensure that nothing between P
7218 and LOOP_START modified anything referenced in
7219 SET_SRC (x). We know that nothing within the loop
7220 can modify it, or we would have invalidated it in
7224 cse_check_loop_start_value
= SET_SRC (x
);
7225 for (q
= p
; q
!= loop_start
; q
= NEXT_INSN (q
))
7226 if (GET_RTX_CLASS (GET_CODE (q
)) == 'i')
7227 note_stores (PATTERN (q
), cse_check_loop_start
);
7229 /* If nothing was changed and we can replace our
7230 SET_SRC, add an insn after P to copy its destination
7231 to what we will be replacing SET_SRC with. */
7232 if (cse_check_loop_start_value
7233 && validate_change (insn
, &SET_SRC (x
),
7235 emit_insn_after (gen_move_insn (src_elt
->exp
,
7243 /* Now invalidate anything modified by X. */
7244 note_mem_written (SET_DEST (x
), &writes_memory
);
7246 if (writes_memory
.var
)
7247 invalidate_memory (&writes_memory
);
7249 /* See comment on similar code in cse_insn for explanation of these tests. */
7250 if (GET_CODE (SET_DEST (x
)) == REG
|| GET_CODE (SET_DEST (x
)) == SUBREG
7251 || (GET_CODE (SET_DEST (x
)) == MEM
&& ! writes_memory
.all
7252 && ! cse_rtx_addr_varies_p (SET_DEST (x
))))
7253 invalidate (SET_DEST (x
));
7256 /* Find the end of INSN's basic block and return its range,
7257 the total number of SETs in all the insns of the block, the last insn of the
7258 block, and the branch path.
7260 The branch path indicates which branches should be followed. If a non-zero
7261 path size is specified, the block should be rescanned and a different set
7262 of branches will be taken. The branch path is only used if
7263 FLAG_CSE_FOLLOW_JUMPS or FLAG_CSE_SKIP_BLOCKS is non-zero.
7265 DATA is a pointer to a struct cse_basic_block_data, defined below, that is
7266 used to describe the block. It is filled in with the information about
7267 the current block. The incoming structure's branch path, if any, is used
7268 to construct the output branch path. */
7270 /* Define maximum length of a branch path. */
7272 #define PATHLENGTH 20
7274 struct cse_basic_block_data
{
7275 /* Lowest CUID value of insns in block. */
7277 /* Highest CUID value of insns in block. */
7279 /* Total number of SETs in block. */
7281 /* Last insn in the block. */
7283 /* Size of current branch path, if any. */
7285 /* Current branch path, indicating which branches will be taken. */
7286 struct branch_path
{
7287 /* The branch insn. */
7289 /* Whether it should be taken or not. AROUND is the same as taken
7290 except that it is used when the destination label is not preceded
7292 enum taken
{TAKEN
, NOT_TAKEN
, AROUND
} status
;
7297 cse_end_of_basic_block (insn
, data
, follow_jumps
, after_loop
, skip_blocks
)
7299 struct cse_basic_block_data
*data
;
7306 int low_cuid
= INSN_CUID (insn
), high_cuid
= INSN_CUID (insn
);
7307 rtx next
= GET_RTX_CLASS (GET_CODE (insn
)) == 'i' ? insn
: next_real_insn (insn
);
7308 int path_size
= data
->path_size
;
7312 /* Update the previous branch path, if any. If the last branch was
7313 previously TAKEN, mark it NOT_TAKEN. If it was previously NOT_TAKEN,
7314 shorten the path by one and look at the previous branch. We know that
7315 at least one branch must have been taken if PATH_SIZE is non-zero. */
7316 while (path_size
> 0)
7318 if (data
->path
[path_size
- 1].status
!= NOT_TAKEN
)
7320 data
->path
[path_size
- 1].status
= NOT_TAKEN
;
7327 /* Scan to end of this basic block. */
7328 while (p
&& GET_CODE (p
) != CODE_LABEL
)
7330 /* Don't cse out the end of a loop. This makes a difference
7331 only for the unusual loops that always execute at least once;
7332 all other loops have labels there so we will stop in any case.
7333 Cse'ing out the end of the loop is dangerous because it
7334 might cause an invariant expression inside the loop
7335 to be reused after the end of the loop. This would make it
7336 hard to move the expression out of the loop in loop.c,
7337 especially if it is one of several equivalent expressions
7338 and loop.c would like to eliminate it.
7340 If we are running after loop.c has finished, we can ignore
7341 the NOTE_INSN_LOOP_END. */
7343 if (! after_loop
&& GET_CODE (p
) == NOTE
7344 && NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_END
)
7347 /* Don't cse over a call to setjmp; on some machines (eg vax)
7348 the regs restored by the longjmp come from
7349 a later time than the setjmp. */
7350 if (GET_CODE (p
) == NOTE
7351 && NOTE_LINE_NUMBER (p
) == NOTE_INSN_SETJMP
)
7354 /* A PARALLEL can have lots of SETs in it,
7355 especially if it is really an ASM_OPERANDS. */
7356 if (GET_RTX_CLASS (GET_CODE (p
)) == 'i'
7357 && GET_CODE (PATTERN (p
)) == PARALLEL
)
7358 nsets
+= XVECLEN (PATTERN (p
), 0);
7359 else if (GET_CODE (p
) != NOTE
)
7362 if (INSN_CUID (p
) > high_cuid
)
7363 high_cuid
= INSN_CUID (p
);
7364 if (INSN_CUID (p
) < low_cuid
)
7365 low_cuid
= INSN_CUID(p
);
7367 /* See if this insn is in our branch path. If it is and we are to
7369 if (path_entry
< path_size
&& data
->path
[path_entry
].branch
== p
)
7371 if (data
->path
[path_entry
].status
!= NOT_TAKEN
)
7374 /* Point to next entry in path, if any. */
7378 /* If this is a conditional jump, we can follow it if -fcse-follow-jumps
7379 was specified, we haven't reached our maximum path length, there are
7380 insns following the target of the jump, this is the only use of the
7381 jump label, and the target label is preceded by a BARRIER.
7383 Alternatively, we can follow the jump if it branches around a
7384 block of code and there are no other branches into the block.
7385 In this case invalidate_skipped_block will be called to invalidate any
7386 registers set in the block when following the jump. */
7388 else if ((follow_jumps
|| skip_blocks
) && path_size
< PATHLENGTH
- 1
7389 && GET_CODE (p
) == JUMP_INSN
7390 && GET_CODE (PATTERN (p
)) == SET
7391 && GET_CODE (SET_SRC (PATTERN (p
))) == IF_THEN_ELSE
7392 && LABEL_NUSES (JUMP_LABEL (p
)) == 1
7393 && NEXT_INSN (JUMP_LABEL (p
)) != 0)
7395 for (q
= PREV_INSN (JUMP_LABEL (p
)); q
; q
= PREV_INSN (q
))
7396 if ((GET_CODE (q
) != NOTE
7397 || NOTE_LINE_NUMBER (q
) == NOTE_INSN_LOOP_END
7398 || NOTE_LINE_NUMBER (q
) == NOTE_INSN_SETJMP
)
7399 && (GET_CODE (q
) != CODE_LABEL
|| LABEL_NUSES (q
) != 0))
7402 /* If we ran into a BARRIER, this code is an extension of the
7403 basic block when the branch is taken. */
7404 if (follow_jumps
&& q
!= 0 && GET_CODE (q
) == BARRIER
)
7406 /* Don't allow ourself to keep walking around an
7407 always-executed loop. */
7408 if (next_real_insn (q
) == next
)
7414 /* Similarly, don't put a branch in our path more than once. */
7415 for (i
= 0; i
< path_entry
; i
++)
7416 if (data
->path
[i
].branch
== p
)
7419 if (i
!= path_entry
)
7422 data
->path
[path_entry
].branch
= p
;
7423 data
->path
[path_entry
++].status
= TAKEN
;
7425 /* This branch now ends our path. It was possible that we
7426 didn't see this branch the last time around (when the
7427 insn in front of the target was a JUMP_INSN that was
7428 turned into a no-op). */
7429 path_size
= path_entry
;
7432 /* Mark block so we won't scan it again later. */
7433 PUT_MODE (NEXT_INSN (p
), QImode
);
7435 /* Detect a branch around a block of code. */
7436 else if (skip_blocks
&& q
!= 0 && GET_CODE (q
) != CODE_LABEL
)
7440 if (next_real_insn (q
) == next
)
7446 for (i
= 0; i
< path_entry
; i
++)
7447 if (data
->path
[i
].branch
== p
)
7450 if (i
!= path_entry
)
7453 /* This is no_labels_between_p (p, q) with an added check for
7454 reaching the end of a function (in case Q precedes P). */
7455 for (tmp
= NEXT_INSN (p
); tmp
&& tmp
!= q
; tmp
= NEXT_INSN (tmp
))
7456 if (GET_CODE (tmp
) == CODE_LABEL
)
7461 data
->path
[path_entry
].branch
= p
;
7462 data
->path
[path_entry
++].status
= AROUND
;
7464 path_size
= path_entry
;
7467 /* Mark block so we won't scan it again later. */
7468 PUT_MODE (NEXT_INSN (p
), QImode
);
7475 data
->low_cuid
= low_cuid
;
7476 data
->high_cuid
= high_cuid
;
7477 data
->nsets
= nsets
;
7480 /* If all jumps in the path are not taken, set our path length to zero
7481 so a rescan won't be done. */
7482 for (i
= path_size
- 1; i
>= 0; i
--)
7483 if (data
->path
[i
].status
!= NOT_TAKEN
)
7487 data
->path_size
= 0;
7489 data
->path_size
= path_size
;
7491 /* End the current branch path. */
7492 data
->path
[path_size
].branch
= 0;
7495 static rtx
cse_basic_block ();
7497 /* Perform cse on the instructions of a function.
7498 F is the first instruction.
7499 NREGS is one plus the highest pseudo-reg number used in the instruction.
7501 AFTER_LOOP is 1 if this is the cse call done after loop optimization
7502 (only if -frerun-cse-after-loop).
7504 Returns 1 if jump_optimize should be redone due to simplifications
7505 in conditional jump instructions. */
7508 cse_main (f
, nregs
, after_loop
, file
)
7514 struct cse_basic_block_data val
;
7515 register rtx insn
= f
;
7518 cse_jumps_altered
= 0;
7519 constant_pool_entries_cost
= 0;
7526 all_minus_one
= (int *) alloca (nregs
* sizeof (int));
7527 consec_ints
= (int *) alloca (nregs
* sizeof (int));
7529 for (i
= 0; i
< nregs
; i
++)
7531 all_minus_one
[i
] = -1;
7535 reg_next_eqv
= (int *) alloca (nregs
* sizeof (int));
7536 reg_prev_eqv
= (int *) alloca (nregs
* sizeof (int));
7537 reg_qty
= (int *) alloca (nregs
* sizeof (int));
7538 reg_in_table
= (int *) alloca (nregs
* sizeof (int));
7539 reg_tick
= (int *) alloca (nregs
* sizeof (int));
7541 /* Discard all the free elements of the previous function
7542 since they are allocated in the temporarily obstack. */
7543 bzero (table
, sizeof table
);
7544 free_element_chain
= 0;
7545 n_elements_made
= 0;
7547 /* Find the largest uid. */
7550 uid_cuid
= (int *) alloca ((i
+ 1) * sizeof (int));
7551 bzero (uid_cuid
, (i
+ 1) * sizeof (int));
7553 /* Compute the mapping from uids to cuids.
7554 CUIDs are numbers assigned to insns, like uids,
7555 except that cuids increase monotonically through the code.
7556 Don't assign cuids to line-number NOTEs, so that the distance in cuids
7557 between two insns is not affected by -g. */
7559 for (insn
= f
, i
= 0; insn
; insn
= NEXT_INSN (insn
))
7561 if (GET_CODE (insn
) != NOTE
7562 || NOTE_LINE_NUMBER (insn
) < 0)
7563 INSN_CUID (insn
) = ++i
;
7565 /* Give a line number note the same cuid as preceding insn. */
7566 INSN_CUID (insn
) = i
;
7569 /* Initialize which registers are clobbered by calls. */
7571 CLEAR_HARD_REG_SET (regs_invalidated_by_call
);
7573 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
7574 if ((call_used_regs
[i
]
7575 /* Used to check !fixed_regs[i] here, but that isn't safe;
7576 fixed regs are still call-clobbered, and sched can get
7577 confused if they can "live across calls".
7579 The frame pointer is always preserved across calls. The arg
7580 pointer is if it is fixed. The stack pointer usually is, unless
7581 RETURN_POPS_ARGS, in which case an explicit CLOBBER
7582 will be present. If we are generating PIC code, the PIC offset
7583 table register is preserved across calls. */
7585 && i
!= STACK_POINTER_REGNUM
7586 && i
!= FRAME_POINTER_REGNUM
7587 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
7588 && ! (i
== ARG_POINTER_REGNUM
&& fixed_regs
[i
])
7590 #ifdef PIC_OFFSET_TABLE_REGNUM
7591 && ! (i
== PIC_OFFSET_TABLE_REGNUM
&& flag_pic
)
7595 SET_HARD_REG_BIT (regs_invalidated_by_call
, i
);
7597 /* Loop over basic blocks.
7598 Compute the maximum number of qty's needed for each basic block
7599 (which is 2 for each SET). */
7603 cse_end_of_basic_block (insn
, &val
, flag_cse_follow_jumps
, after_loop
,
7604 flag_cse_skip_blocks
);
7606 /* If this basic block was already processed or has no sets, skip it. */
7607 if (val
.nsets
== 0 || GET_MODE (insn
) == QImode
)
7609 PUT_MODE (insn
, VOIDmode
);
7610 insn
= (val
.last
? NEXT_INSN (val
.last
) : 0);
7615 cse_basic_block_start
= val
.low_cuid
;
7616 cse_basic_block_end
= val
.high_cuid
;
7617 max_qty
= val
.nsets
* 2;
7620 fprintf (file
, ";; Processing block from %d to %d, %d sets.\n",
7621 INSN_UID (insn
), val
.last
? INSN_UID (val
.last
) : 0,
7624 /* Make MAX_QTY bigger to give us room to optimize
7625 past the end of this basic block, if that should prove useful. */
7631 /* If this basic block is being extended by following certain jumps,
7632 (see `cse_end_of_basic_block'), we reprocess the code from the start.
7633 Otherwise, we start after this basic block. */
7634 if (val
.path_size
> 0)
7635 cse_basic_block (insn
, val
.last
, val
.path
, 0);
7638 int old_cse_jumps_altered
= cse_jumps_altered
;
7641 /* When cse changes a conditional jump to an unconditional
7642 jump, we want to reprocess the block, since it will give
7643 us a new branch path to investigate. */
7644 cse_jumps_altered
= 0;
7645 temp
= cse_basic_block (insn
, val
.last
, val
.path
, ! after_loop
);
7646 if (cse_jumps_altered
== 0
7647 || (flag_cse_follow_jumps
== 0 && flag_cse_skip_blocks
== 0))
7650 cse_jumps_altered
|= old_cse_jumps_altered
;
7658 /* Tell refers_to_mem_p that qty_const info is not available. */
7661 if (max_elements_made
< n_elements_made
)
7662 max_elements_made
= n_elements_made
;
7664 return cse_jumps_altered
;
7667 /* Process a single basic block. FROM and TO and the limits of the basic
7668 block. NEXT_BRANCH points to the branch path when following jumps or
7669 a null path when not following jumps.
7671 AROUND_LOOP is non-zero if we are to try to cse around to the start of a
7672 loop. This is true when we are being called for the last time on a
7673 block and this CSE pass is before loop.c. */
7676 cse_basic_block (from
, to
, next_branch
, around_loop
)
7677 register rtx from
, to
;
7678 struct branch_path
*next_branch
;
7683 int in_libcall_block
= 0;
7685 /* Each of these arrays is undefined before max_reg, so only allocate
7686 the space actually needed and adjust the start below. */
7688 qty_first_reg
= (int *) alloca ((max_qty
- max_reg
) * sizeof (int));
7689 qty_last_reg
= (int *) alloca ((max_qty
- max_reg
) * sizeof (int));
7690 qty_mode
= (enum machine_mode
*) alloca ((max_qty
- max_reg
) * sizeof (enum machine_mode
));
7691 qty_const
= (rtx
*) alloca ((max_qty
- max_reg
) * sizeof (rtx
));
7692 qty_const_insn
= (rtx
*) alloca ((max_qty
- max_reg
) * sizeof (rtx
));
7694 = (enum rtx_code
*) alloca ((max_qty
- max_reg
) * sizeof (enum rtx_code
));
7695 qty_comparison_qty
= (int *) alloca ((max_qty
- max_reg
) * sizeof (int));
7696 qty_comparison_const
= (rtx
*) alloca ((max_qty
- max_reg
) * sizeof (rtx
));
7698 qty_first_reg
-= max_reg
;
7699 qty_last_reg
-= max_reg
;
7700 qty_mode
-= max_reg
;
7701 qty_const
-= max_reg
;
7702 qty_const_insn
-= max_reg
;
7703 qty_comparison_code
-= max_reg
;
7704 qty_comparison_qty
-= max_reg
;
7705 qty_comparison_const
-= max_reg
;
7709 /* TO might be a label. If so, protect it from being deleted. */
7710 if (to
!= 0 && GET_CODE (to
) == CODE_LABEL
)
7713 for (insn
= from
; insn
!= to
; insn
= NEXT_INSN (insn
))
7715 register enum rtx_code code
;
7717 /* See if this is a branch that is part of the path. If so, and it is
7718 to be taken, do so. */
7719 if (next_branch
->branch
== insn
)
7721 enum taken status
= next_branch
++->status
;
7722 if (status
!= NOT_TAKEN
)
7724 if (status
== TAKEN
)
7725 record_jump_equiv (insn
, 1);
7727 invalidate_skipped_block (NEXT_INSN (insn
));
7729 /* Set the last insn as the jump insn; it doesn't affect cc0.
7730 Then follow this branch. */
7735 insn
= JUMP_LABEL (insn
);
7740 code
= GET_CODE (insn
);
7741 if (GET_MODE (insn
) == QImode
)
7742 PUT_MODE (insn
, VOIDmode
);
7744 if (GET_RTX_CLASS (code
) == 'i')
7746 /* Process notes first so we have all notes in canonical forms when
7747 looking for duplicate operations. */
7749 if (REG_NOTES (insn
))
7750 REG_NOTES (insn
) = cse_process_notes (REG_NOTES (insn
), NULL_RTX
);
7752 /* Track when we are inside in LIBCALL block. Inside such a block,
7753 we do not want to record destinations. The last insn of a
7754 LIBCALL block is not considered to be part of the block, since
7755 its destination is the result of the block and hence should be
7758 if (find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
))
7759 in_libcall_block
= 1;
7760 else if (find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
7761 in_libcall_block
= 0;
7763 cse_insn (insn
, in_libcall_block
);
7766 /* If INSN is now an unconditional jump, skip to the end of our
7767 basic block by pretending that we just did the last insn in the
7768 basic block. If we are jumping to the end of our block, show
7769 that we can have one usage of TO. */
7771 if (simplejump_p (insn
))
7776 if (JUMP_LABEL (insn
) == to
)
7779 /* Maybe TO was deleted because the jump is unconditional.
7780 If so, there is nothing left in this basic block. */
7781 /* ??? Perhaps it would be smarter to set TO
7782 to whatever follows this insn,
7783 and pretend the basic block had always ended here. */
7784 if (INSN_DELETED_P (to
))
7787 insn
= PREV_INSN (to
);
7790 /* See if it is ok to keep on going past the label
7791 which used to end our basic block. Remember that we incremented
7792 the count of that label, so we decrement it here. If we made
7793 a jump unconditional, TO_USAGE will be one; in that case, we don't
7794 want to count the use in that jump. */
7796 if (to
!= 0 && NEXT_INSN (insn
) == to
7797 && GET_CODE (to
) == CODE_LABEL
&& --LABEL_NUSES (to
) == to_usage
)
7799 struct cse_basic_block_data val
;
7801 insn
= NEXT_INSN (to
);
7803 if (LABEL_NUSES (to
) == 0)
7806 /* Find the end of the following block. Note that we won't be
7807 following branches in this case. If TO was the last insn
7808 in the function, we are done. Similarly, if we deleted the
7809 insn after TO, it must have been because it was preceded by
7810 a BARRIER. In that case, we are done with this block because it
7811 has no continuation. */
7813 if (insn
== 0 || INSN_DELETED_P (insn
))
7818 cse_end_of_basic_block (insn
, &val
, 0, 0, 0);
7820 /* If the tables we allocated have enough space left
7821 to handle all the SETs in the next basic block,
7822 continue through it. Otherwise, return,
7823 and that block will be scanned individually. */
7824 if (val
.nsets
* 2 + next_qty
> max_qty
)
7827 cse_basic_block_start
= val
.low_cuid
;
7828 cse_basic_block_end
= val
.high_cuid
;
7831 /* Prevent TO from being deleted if it is a label. */
7832 if (to
!= 0 && GET_CODE (to
) == CODE_LABEL
)
7835 /* Back up so we process the first insn in the extension. */
7836 insn
= PREV_INSN (insn
);
7840 if (next_qty
> max_qty
)
7843 /* If we are running before loop.c, we stopped on a NOTE_INSN_LOOP_END, and
7844 the previous insn is the only insn that branches to the head of a loop,
7845 we can cse into the loop. Don't do this if we changed the jump
7846 structure of a loop unless we aren't going to be following jumps. */
7848 if ((cse_jumps_altered
== 0
7849 || (flag_cse_follow_jumps
== 0 && flag_cse_skip_blocks
== 0))
7850 && around_loop
&& to
!= 0
7851 && GET_CODE (to
) == NOTE
&& NOTE_LINE_NUMBER (to
) == NOTE_INSN_LOOP_END
7852 && GET_CODE (PREV_INSN (to
)) == JUMP_INSN
7853 && JUMP_LABEL (PREV_INSN (to
)) != 0
7854 && LABEL_NUSES (JUMP_LABEL (PREV_INSN (to
))) == 1)
7855 cse_around_loop (JUMP_LABEL (PREV_INSN (to
)));
7857 return to
? NEXT_INSN (to
) : 0;
7860 /* Count the number of times registers are used (not set) in X.
7861 COUNTS is an array in which we accumulate the count, INCR is how much
7862 we count each register usage. */
7865 count_reg_usage (x
, counts
, incr
)
7870 enum rtx_code code
= GET_CODE (x
);
7877 counts
[REGNO (x
)] += incr
;
7891 /* Unless we are setting a REG, count everything in SET_DEST. */
7892 if (GET_CODE (SET_DEST (x
)) != REG
)
7893 count_reg_usage (SET_DEST (x
), counts
, incr
);
7894 count_reg_usage (SET_SRC (x
), counts
, incr
);
7900 count_reg_usage (PATTERN (x
), counts
, incr
);
7902 /* Things used in a REG_EQUAL note aren't dead since loop may try to
7906 count_reg_usage (REG_NOTES (x
), counts
, incr
);
7911 if (REG_NOTE_KIND (x
) == REG_EQUAL
)
7912 count_reg_usage (XEXP (x
, 0), counts
, incr
);
7914 count_reg_usage (XEXP (x
, 1), counts
, incr
);
7918 fmt
= GET_RTX_FORMAT (code
);
7919 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
7922 count_reg_usage (XEXP (x
, i
), counts
, incr
);
7923 else if (fmt
[i
] == 'E')
7924 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
7925 count_reg_usage (XVECEXP (x
, i
, j
), counts
, incr
);
7929 /* Scan all the insns and delete any that are dead; i.e., they store a register
7930 that is never used or they copy a register to itself.
7932 This is used to remove insns made obviously dead by cse. It improves the
7933 heuristics in loop since it won't try to move dead invariants out of loops
7934 or make givs for dead quantities. The remaining passes of the compilation
7935 are also sped up. */
7938 delete_dead_from_cse (insns
, nreg
)
7942 int *counts
= (int *) alloca (nreg
* sizeof (int));
7948 /* First count the number of times each register is used. */
7949 bzero (counts
, sizeof (int) * nreg
);
7950 for (insn
= next_real_insn (insns
); insn
; insn
= next_real_insn (insn
))
7951 count_reg_usage (insn
, counts
, 1);
7953 /* Go from the last insn to the first and delete insns that only set unused
7954 registers or copy a register to itself. As we delete an insn, remove
7955 usage counts for registers it uses. */
7956 for (insn
= prev_real_insn (get_last_insn ()); insn
; insn
= prev
)
7960 prev
= prev_real_insn (insn
);
7962 /* Don't delete any insns that are part of a libcall block.
7963 Flow or loop might get confused if we did that. Remember
7964 that we are scanning backwards. */
7965 if (find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
7970 else if (GET_CODE (PATTERN (insn
)) == SET
)
7972 if (GET_CODE (SET_DEST (PATTERN (insn
))) == REG
7973 && SET_DEST (PATTERN (insn
)) == SET_SRC (PATTERN (insn
)))
7977 else if (GET_CODE (SET_DEST (PATTERN (insn
))) == CC0
7978 && ! side_effects_p (SET_SRC (PATTERN (insn
)))
7979 && ((tem
= next_nonnote_insn (insn
)) == 0
7980 || GET_RTX_CLASS (GET_CODE (tem
)) != 'i'
7981 || ! reg_referenced_p (cc0_rtx
, PATTERN (tem
))))
7984 else if (GET_CODE (SET_DEST (PATTERN (insn
))) != REG
7985 || REGNO (SET_DEST (PATTERN (insn
))) < FIRST_PSEUDO_REGISTER
7986 || counts
[REGNO (SET_DEST (PATTERN (insn
)))] != 0
7987 || side_effects_p (SET_SRC (PATTERN (insn
))))
7990 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
7991 for (i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
7993 rtx elt
= XVECEXP (PATTERN (insn
), 0, i
);
7995 if (GET_CODE (elt
) == SET
)
7997 if (GET_CODE (SET_DEST (elt
)) == REG
7998 && SET_DEST (elt
) == SET_SRC (elt
))
8002 else if (GET_CODE (SET_DEST (elt
)) == CC0
8003 && ! side_effects_p (SET_SRC (elt
))
8004 && ((tem
= next_nonnote_insn (insn
)) == 0
8005 || GET_RTX_CLASS (GET_CODE (tem
)) != 'i'
8006 || ! reg_referenced_p (cc0_rtx
, PATTERN (tem
))))
8009 else if (GET_CODE (SET_DEST (elt
)) != REG
8010 || REGNO (SET_DEST (elt
)) < FIRST_PSEUDO_REGISTER
8011 || counts
[REGNO (SET_DEST (elt
))] != 0
8012 || side_effects_p (SET_SRC (elt
)))
8015 else if (GET_CODE (elt
) != CLOBBER
&& GET_CODE (elt
) != USE
)
8021 /* If this is a dead insn, delete it and show registers in it aren't
8026 count_reg_usage (insn
, counts
, -1);
8030 if (find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
))