]> gcc.gnu.org Git - gcc.git/blob - gcc/cse.c
Merge remote-tracking branch 'origin/releases/gcc-11' into devel/omp/gcc-11
[gcc.git] / gcc / cse.c
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987-2021 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "cfghooks.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
35 #include "cfgrtl.h"
36 #include "cfganal.h"
37 #include "cfgcleanup.h"
38 #include "alias.h"
39 #include "toplev.h"
40 #include "rtlhooks-def.h"
41 #include "tree-pass.h"
42 #include "dbgcnt.h"
43 #include "rtl-iter.h"
44 #include "regs.h"
45 #include "function-abi.h"
46
47 /* The basic idea of common subexpression elimination is to go
48 through the code, keeping a record of expressions that would
49 have the same value at the current scan point, and replacing
50 expressions encountered with the cheapest equivalent expression.
51
52 It is too complicated to keep track of the different possibilities
53 when control paths merge in this code; so, at each label, we forget all
54 that is known and start fresh. This can be described as processing each
55 extended basic block separately. We have a separate pass to perform
56 global CSE.
57
58 Note CSE can turn a conditional or computed jump into a nop or
59 an unconditional jump. When this occurs we arrange to run the jump
60 optimizer after CSE to delete the unreachable code.
61
62 We use two data structures to record the equivalent expressions:
63 a hash table for most expressions, and a vector of "quantity
64 numbers" to record equivalent (pseudo) registers.
65
66 The use of the special data structure for registers is desirable
67 because it is faster. It is possible because registers references
68 contain a fairly small number, the register number, taken from
69 a contiguously allocated series, and two register references are
70 identical if they have the same number. General expressions
71 do not have any such thing, so the only way to retrieve the
72 information recorded on an expression other than a register
73 is to keep it in a hash table.
74
75 Registers and "quantity numbers":
76
77 At the start of each basic block, all of the (hardware and pseudo)
78 registers used in the function are given distinct quantity
79 numbers to indicate their contents. During scan, when the code
80 copies one register into another, we copy the quantity number.
81 When a register is loaded in any other way, we allocate a new
82 quantity number to describe the value generated by this operation.
83 `REG_QTY (N)' records what quantity register N is currently thought
84 of as containing.
85
86 All real quantity numbers are greater than or equal to zero.
87 If register N has not been assigned a quantity, `REG_QTY (N)' will
88 equal -N - 1, which is always negative.
89
90 Quantity numbers below zero do not exist and none of the `qty_table'
91 entries should be referenced with a negative index.
92
93 We also maintain a bidirectional chain of registers for each
94 quantity number. The `qty_table` members `first_reg' and `last_reg',
95 and `reg_eqv_table' members `next' and `prev' hold these chains.
96
97 The first register in a chain is the one whose lifespan is least local.
98 Among equals, it is the one that was seen first.
99 We replace any equivalent register with that one.
100
101 If two registers have the same quantity number, it must be true that
102 REG expressions with qty_table `mode' must be in the hash table for both
103 registers and must be in the same class.
104
105 The converse is not true. Since hard registers may be referenced in
106 any mode, two REG expressions might be equivalent in the hash table
107 but not have the same quantity number if the quantity number of one
108 of the registers is not the same mode as those expressions.
109
110 Constants and quantity numbers
111
112 When a quantity has a known constant value, that value is stored
113 in the appropriate qty_table `const_rtx'. This is in addition to
114 putting the constant in the hash table as is usual for non-regs.
115
116 Whether a reg or a constant is preferred is determined by the configuration
117 macro CONST_COSTS and will often depend on the constant value. In any
118 event, expressions containing constants can be simplified, by fold_rtx.
119
120 When a quantity has a known nearly constant value (such as an address
121 of a stack slot), that value is stored in the appropriate qty_table
122 `const_rtx'.
123
124 Integer constants don't have a machine mode. However, cse
125 determines the intended machine mode from the destination
126 of the instruction that moves the constant. The machine mode
127 is recorded in the hash table along with the actual RTL
128 constant expression so that different modes are kept separate.
129
130 Other expressions:
131
132 To record known equivalences among expressions in general
133 we use a hash table called `table'. It has a fixed number of buckets
134 that contain chains of `struct table_elt' elements for expressions.
135 These chains connect the elements whose expressions have the same
136 hash codes.
137
138 Other chains through the same elements connect the elements which
139 currently have equivalent values.
140
141 Register references in an expression are canonicalized before hashing
142 the expression. This is done using `reg_qty' and qty_table `first_reg'.
143 The hash code of a register reference is computed using the quantity
144 number, not the register number.
145
146 When the value of an expression changes, it is necessary to remove from the
147 hash table not just that expression but all expressions whose values
148 could be different as a result.
149
150 1. If the value changing is in memory, except in special cases
151 ANYTHING referring to memory could be changed. That is because
152 nobody knows where a pointer does not point.
153 The function `invalidate_memory' removes what is necessary.
154
155 The special cases are when the address is constant or is
156 a constant plus a fixed register such as the frame pointer
157 or a static chain pointer. When such addresses are stored in,
158 we can tell exactly which other such addresses must be invalidated
159 due to overlap. `invalidate' does this.
160 All expressions that refer to non-constant
161 memory addresses are also invalidated. `invalidate_memory' does this.
162
163 2. If the value changing is a register, all expressions
164 containing references to that register, and only those,
165 must be removed.
166
167 Because searching the entire hash table for expressions that contain
168 a register is very slow, we try to figure out when it isn't necessary.
169 Precisely, this is necessary only when expressions have been
170 entered in the hash table using this register, and then the value has
171 changed, and then another expression wants to be added to refer to
172 the register's new value. This sequence of circumstances is rare
173 within any one basic block.
174
175 `REG_TICK' and `REG_IN_TABLE', accessors for members of
176 cse_reg_info, are used to detect this case. REG_TICK (i) is
177 incremented whenever a value is stored in register i.
178 REG_IN_TABLE (i) holds -1 if no references to register i have been
179 entered in the table; otherwise, it contains the value REG_TICK (i)
180 had when the references were entered. If we want to enter a
181 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
182 remove old references. Until we want to enter a new entry, the
183 mere fact that the two vectors don't match makes the entries be
184 ignored if anyone tries to match them.
185
186 Registers themselves are entered in the hash table as well as in
187 the equivalent-register chains. However, `REG_TICK' and
188 `REG_IN_TABLE' do not apply to expressions which are simple
189 register references. These expressions are removed from the table
190 immediately when they become invalid, and this can be done even if
191 we do not immediately search for all the expressions that refer to
192 the register.
193
194 A CLOBBER rtx in an instruction invalidates its operand for further
195 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
196 invalidates everything that resides in memory.
197
198 Related expressions:
199
200 Constant expressions that differ only by an additive integer
201 are called related. When a constant expression is put in
202 the table, the related expression with no constant term
203 is also entered. These are made to point at each other
204 so that it is possible to find out if there exists any
205 register equivalent to an expression related to a given expression. */
206
207 /* Length of qty_table vector. We know in advance we will not need
208 a quantity number this big. */
209
210 static int max_qty;
211
212 /* Next quantity number to be allocated.
213 This is 1 + the largest number needed so far. */
214
215 static int next_qty;
216
217 /* Per-qty information tracking.
218
219 `first_reg' and `last_reg' track the head and tail of the
220 chain of registers which currently contain this quantity.
221
222 `mode' contains the machine mode of this quantity.
223
224 `const_rtx' holds the rtx of the constant value of this
225 quantity, if known. A summations of the frame/arg pointer
226 and a constant can also be entered here. When this holds
227 a known value, `const_insn' is the insn which stored the
228 constant value.
229
230 `comparison_{code,const,qty}' are used to track when a
231 comparison between a quantity and some constant or register has
232 been passed. In such a case, we know the results of the comparison
233 in case we see it again. These members record a comparison that
234 is known to be true. `comparison_code' holds the rtx code of such
235 a comparison, else it is set to UNKNOWN and the other two
236 comparison members are undefined. `comparison_const' holds
237 the constant being compared against, or zero if the comparison
238 is not against a constant. `comparison_qty' holds the quantity
239 being compared against when the result is known. If the comparison
240 is not with a register, `comparison_qty' is -1. */
241
242 struct qty_table_elem
243 {
244 rtx const_rtx;
245 rtx_insn *const_insn;
246 rtx comparison_const;
247 int comparison_qty;
248 unsigned int first_reg, last_reg;
249 /* The sizes of these fields should match the sizes of the
250 code and mode fields of struct rtx_def (see rtl.h). */
251 ENUM_BITFIELD(rtx_code) comparison_code : 16;
252 ENUM_BITFIELD(machine_mode) mode : 8;
253 };
254
255 /* The table of all qtys, indexed by qty number. */
256 static struct qty_table_elem *qty_table;
257
258 /* For machines that have a CC0, we do not record its value in the hash
259 table since its use is guaranteed to be the insn immediately following
260 its definition and any other insn is presumed to invalidate it.
261
262 Instead, we store below the current and last value assigned to CC0.
263 If it should happen to be a constant, it is stored in preference
264 to the actual assigned value. In case it is a constant, we store
265 the mode in which the constant should be interpreted. */
266
267 static rtx this_insn_cc0, prev_insn_cc0;
268 static machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
269
270 /* Insn being scanned. */
271
272 static rtx_insn *this_insn;
273 static bool optimize_this_for_speed_p;
274
275 /* Index by register number, gives the number of the next (or
276 previous) register in the chain of registers sharing the same
277 value.
278
279 Or -1 if this register is at the end of the chain.
280
281 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
282
283 /* Per-register equivalence chain. */
284 struct reg_eqv_elem
285 {
286 int next, prev;
287 };
288
289 /* The table of all register equivalence chains. */
290 static struct reg_eqv_elem *reg_eqv_table;
291
292 struct cse_reg_info
293 {
294 /* The timestamp at which this register is initialized. */
295 unsigned int timestamp;
296
297 /* The quantity number of the register's current contents. */
298 int reg_qty;
299
300 /* The number of times the register has been altered in the current
301 basic block. */
302 int reg_tick;
303
304 /* The REG_TICK value at which rtx's containing this register are
305 valid in the hash table. If this does not equal the current
306 reg_tick value, such expressions existing in the hash table are
307 invalid. */
308 int reg_in_table;
309
310 /* The SUBREG that was set when REG_TICK was last incremented. Set
311 to -1 if the last store was to the whole register, not a subreg. */
312 unsigned int subreg_ticked;
313 };
314
315 /* A table of cse_reg_info indexed by register numbers. */
316 static struct cse_reg_info *cse_reg_info_table;
317
318 /* The size of the above table. */
319 static unsigned int cse_reg_info_table_size;
320
321 /* The index of the first entry that has not been initialized. */
322 static unsigned int cse_reg_info_table_first_uninitialized;
323
324 /* The timestamp at the beginning of the current run of
325 cse_extended_basic_block. We increment this variable at the beginning of
326 the current run of cse_extended_basic_block. The timestamp field of a
327 cse_reg_info entry matches the value of this variable if and only
328 if the entry has been initialized during the current run of
329 cse_extended_basic_block. */
330 static unsigned int cse_reg_info_timestamp;
331
332 /* A HARD_REG_SET containing all the hard registers for which there is
333 currently a REG expression in the hash table. Note the difference
334 from the above variables, which indicate if the REG is mentioned in some
335 expression in the table. */
336
337 static HARD_REG_SET hard_regs_in_table;
338
339 /* True if CSE has altered the CFG. */
340 static bool cse_cfg_altered;
341
342 /* True if CSE has altered conditional jump insns in such a way
343 that jump optimization should be redone. */
344 static bool cse_jumps_altered;
345
346 /* True if we put a LABEL_REF into the hash table for an INSN
347 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
348 to put in the note. */
349 static bool recorded_label_ref;
350
351 /* canon_hash stores 1 in do_not_record
352 if it notices a reference to CC0, PC, or some other volatile
353 subexpression. */
354
355 static int do_not_record;
356
357 /* canon_hash stores 1 in hash_arg_in_memory
358 if it notices a reference to memory within the expression being hashed. */
359
360 static int hash_arg_in_memory;
361
362 /* The hash table contains buckets which are chains of `struct table_elt's,
363 each recording one expression's information.
364 That expression is in the `exp' field.
365
366 The canon_exp field contains a canonical (from the point of view of
367 alias analysis) version of the `exp' field.
368
369 Those elements with the same hash code are chained in both directions
370 through the `next_same_hash' and `prev_same_hash' fields.
371
372 Each set of expressions with equivalent values
373 are on a two-way chain through the `next_same_value'
374 and `prev_same_value' fields, and all point with
375 the `first_same_value' field at the first element in
376 that chain. The chain is in order of increasing cost.
377 Each element's cost value is in its `cost' field.
378
379 The `in_memory' field is nonzero for elements that
380 involve any reference to memory. These elements are removed
381 whenever a write is done to an unidentified location in memory.
382 To be safe, we assume that a memory address is unidentified unless
383 the address is either a symbol constant or a constant plus
384 the frame pointer or argument pointer.
385
386 The `related_value' field is used to connect related expressions
387 (that differ by adding an integer).
388 The related expressions are chained in a circular fashion.
389 `related_value' is zero for expressions for which this
390 chain is not useful.
391
392 The `cost' field stores the cost of this element's expression.
393 The `regcost' field stores the value returned by approx_reg_cost for
394 this element's expression.
395
396 The `is_const' flag is set if the element is a constant (including
397 a fixed address).
398
399 The `flag' field is used as a temporary during some search routines.
400
401 The `mode' field is usually the same as GET_MODE (`exp'), but
402 if `exp' is a CONST_INT and has no machine mode then the `mode'
403 field is the mode it was being used as. Each constant is
404 recorded separately for each mode it is used with. */
405
406 struct table_elt
407 {
408 rtx exp;
409 rtx canon_exp;
410 struct table_elt *next_same_hash;
411 struct table_elt *prev_same_hash;
412 struct table_elt *next_same_value;
413 struct table_elt *prev_same_value;
414 struct table_elt *first_same_value;
415 struct table_elt *related_value;
416 int cost;
417 int regcost;
418 /* The size of this field should match the size
419 of the mode field of struct rtx_def (see rtl.h). */
420 ENUM_BITFIELD(machine_mode) mode : 8;
421 char in_memory;
422 char is_const;
423 char flag;
424 };
425
426 /* We don't want a lot of buckets, because we rarely have very many
427 things stored in the hash table, and a lot of buckets slows
428 down a lot of loops that happen frequently. */
429 #define HASH_SHIFT 5
430 #define HASH_SIZE (1 << HASH_SHIFT)
431 #define HASH_MASK (HASH_SIZE - 1)
432
433 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
434 register (hard registers may require `do_not_record' to be set). */
435
436 #define HASH(X, M) \
437 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
438 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
439 : canon_hash (X, M)) & HASH_MASK)
440
441 /* Like HASH, but without side-effects. */
442 #define SAFE_HASH(X, M) \
443 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
444 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
445 : safe_hash (X, M)) & HASH_MASK)
446
447 /* Determine whether register number N is considered a fixed register for the
448 purpose of approximating register costs.
449 It is desirable to replace other regs with fixed regs, to reduce need for
450 non-fixed hard regs.
451 A reg wins if it is either the frame pointer or designated as fixed. */
452 #define FIXED_REGNO_P(N) \
453 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
454 || fixed_regs[N] || global_regs[N])
455
456 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
457 hard registers and pointers into the frame are the cheapest with a cost
458 of 0. Next come pseudos with a cost of one and other hard registers with
459 a cost of 2. Aside from these special cases, call `rtx_cost'. */
460
461 #define CHEAP_REGNO(N) \
462 (REGNO_PTR_FRAME_P (N) \
463 || (HARD_REGISTER_NUM_P (N) \
464 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
465
466 #define COST(X, MODE) \
467 (REG_P (X) ? 0 : notreg_cost (X, MODE, SET, 1))
468 #define COST_IN(X, MODE, OUTER, OPNO) \
469 (REG_P (X) ? 0 : notreg_cost (X, MODE, OUTER, OPNO))
470
471 /* Get the number of times this register has been updated in this
472 basic block. */
473
474 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
475
476 /* Get the point at which REG was recorded in the table. */
477
478 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
479
480 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
481 SUBREG). */
482
483 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
484
485 /* Get the quantity number for REG. */
486
487 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
488
489 /* Determine if the quantity number for register X represents a valid index
490 into the qty_table. */
491
492 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
493
494 /* Compare table_elt X and Y and return true iff X is cheaper than Y. */
495
496 #define CHEAPER(X, Y) \
497 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
498
499 static struct table_elt *table[HASH_SIZE];
500
501 /* Chain of `struct table_elt's made so far for this function
502 but currently removed from the table. */
503
504 static struct table_elt *free_element_chain;
505
506 /* Set to the cost of a constant pool reference if one was found for a
507 symbolic constant. If this was found, it means we should try to
508 convert constants into constant pool entries if they don't fit in
509 the insn. */
510
511 static int constant_pool_entries_cost;
512 static int constant_pool_entries_regcost;
513
514 /* Trace a patch through the CFG. */
515
516 struct branch_path
517 {
518 /* The basic block for this path entry. */
519 basic_block bb;
520 };
521
522 /* This data describes a block that will be processed by
523 cse_extended_basic_block. */
524
525 struct cse_basic_block_data
526 {
527 /* Total number of SETs in block. */
528 int nsets;
529 /* Size of current branch path, if any. */
530 int path_size;
531 /* Current path, indicating which basic_blocks will be processed. */
532 struct branch_path *path;
533 };
534
535
536 /* Pointers to the live in/live out bitmaps for the boundaries of the
537 current EBB. */
538 static bitmap cse_ebb_live_in, cse_ebb_live_out;
539
540 /* A simple bitmap to track which basic blocks have been visited
541 already as part of an already processed extended basic block. */
542 static sbitmap cse_visited_basic_blocks;
543
544 static bool fixed_base_plus_p (rtx x);
545 static int notreg_cost (rtx, machine_mode, enum rtx_code, int);
546 static int preferable (int, int, int, int);
547 static void new_basic_block (void);
548 static void make_new_qty (unsigned int, machine_mode);
549 static void make_regs_eqv (unsigned int, unsigned int);
550 static void delete_reg_equiv (unsigned int);
551 static int mention_regs (rtx);
552 static int insert_regs (rtx, struct table_elt *, int);
553 static void remove_from_table (struct table_elt *, unsigned);
554 static void remove_pseudo_from_table (rtx, unsigned);
555 static struct table_elt *lookup (rtx, unsigned, machine_mode);
556 static struct table_elt *lookup_for_remove (rtx, unsigned, machine_mode);
557 static rtx lookup_as_function (rtx, enum rtx_code);
558 static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
559 machine_mode, int, int);
560 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
561 machine_mode);
562 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
563 static void invalidate (rtx, machine_mode);
564 static void remove_invalid_refs (unsigned int);
565 static void remove_invalid_subreg_refs (unsigned int, poly_uint64,
566 machine_mode);
567 static void rehash_using_reg (rtx);
568 static void invalidate_memory (void);
569 static rtx use_related_value (rtx, struct table_elt *);
570
571 static inline unsigned canon_hash (rtx, machine_mode);
572 static inline unsigned safe_hash (rtx, machine_mode);
573 static inline unsigned hash_rtx_string (const char *);
574
575 static rtx canon_reg (rtx, rtx_insn *);
576 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
577 machine_mode *,
578 machine_mode *);
579 static rtx fold_rtx (rtx, rtx_insn *);
580 static rtx equiv_constant (rtx);
581 static void record_jump_equiv (rtx_insn *, bool);
582 static void record_jump_cond (enum rtx_code, machine_mode, rtx, rtx,
583 int);
584 static void cse_insn (rtx_insn *);
585 static void cse_prescan_path (struct cse_basic_block_data *);
586 static void invalidate_from_clobbers (rtx_insn *);
587 static void invalidate_from_sets_and_clobbers (rtx_insn *);
588 static void cse_extended_basic_block (struct cse_basic_block_data *);
589 extern void dump_class (struct table_elt*);
590 static void get_cse_reg_info_1 (unsigned int regno);
591 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
592
593 static void flush_hash_table (void);
594 static bool insn_live_p (rtx_insn *, int *);
595 static bool set_live_p (rtx, rtx_insn *, int *);
596 static void cse_change_cc_mode_insn (rtx_insn *, rtx);
597 static void cse_change_cc_mode_insns (rtx_insn *, rtx_insn *, rtx);
598 static machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
599 bool);
600 \f
601
602 #undef RTL_HOOKS_GEN_LOWPART
603 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
604
605 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
606 \f
607 /* Nonzero if X has the form (PLUS frame-pointer integer). */
608
609 static bool
610 fixed_base_plus_p (rtx x)
611 {
612 switch (GET_CODE (x))
613 {
614 case REG:
615 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
616 return true;
617 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
618 return true;
619 return false;
620
621 case PLUS:
622 if (!CONST_INT_P (XEXP (x, 1)))
623 return false;
624 return fixed_base_plus_p (XEXP (x, 0));
625
626 default:
627 return false;
628 }
629 }
630
631 /* Dump the expressions in the equivalence class indicated by CLASSP.
632 This function is used only for debugging. */
633 DEBUG_FUNCTION void
634 dump_class (struct table_elt *classp)
635 {
636 struct table_elt *elt;
637
638 fprintf (stderr, "Equivalence chain for ");
639 print_rtl (stderr, classp->exp);
640 fprintf (stderr, ": \n");
641
642 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
643 {
644 print_rtl (stderr, elt->exp);
645 fprintf (stderr, "\n");
646 }
647 }
648
649 /* Return an estimate of the cost of the registers used in an rtx.
650 This is mostly the number of different REG expressions in the rtx;
651 however for some exceptions like fixed registers we use a cost of
652 0. If any other hard register reference occurs, return MAX_COST. */
653
654 static int
655 approx_reg_cost (const_rtx x)
656 {
657 int cost = 0;
658 subrtx_iterator::array_type array;
659 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
660 {
661 const_rtx x = *iter;
662 if (REG_P (x))
663 {
664 unsigned int regno = REGNO (x);
665 if (!CHEAP_REGNO (regno))
666 {
667 if (regno < FIRST_PSEUDO_REGISTER)
668 {
669 if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
670 return MAX_COST;
671 cost += 2;
672 }
673 else
674 cost += 1;
675 }
676 }
677 }
678 return cost;
679 }
680
681 /* Return a negative value if an rtx A, whose costs are given by COST_A
682 and REGCOST_A, is more desirable than an rtx B.
683 Return a positive value if A is less desirable, or 0 if the two are
684 equally good. */
685 static int
686 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
687 {
688 /* First, get rid of cases involving expressions that are entirely
689 unwanted. */
690 if (cost_a != cost_b)
691 {
692 if (cost_a == MAX_COST)
693 return 1;
694 if (cost_b == MAX_COST)
695 return -1;
696 }
697
698 /* Avoid extending lifetimes of hardregs. */
699 if (regcost_a != regcost_b)
700 {
701 if (regcost_a == MAX_COST)
702 return 1;
703 if (regcost_b == MAX_COST)
704 return -1;
705 }
706
707 /* Normal operation costs take precedence. */
708 if (cost_a != cost_b)
709 return cost_a - cost_b;
710 /* Only if these are identical consider effects on register pressure. */
711 if (regcost_a != regcost_b)
712 return regcost_a - regcost_b;
713 return 0;
714 }
715
716 /* Internal function, to compute cost when X is not a register; called
717 from COST macro to keep it simple. */
718
719 static int
720 notreg_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno)
721 {
722 scalar_int_mode int_mode, inner_mode;
723 return ((GET_CODE (x) == SUBREG
724 && REG_P (SUBREG_REG (x))
725 && is_int_mode (mode, &int_mode)
726 && is_int_mode (GET_MODE (SUBREG_REG (x)), &inner_mode)
727 && GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (inner_mode)
728 && subreg_lowpart_p (x)
729 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, inner_mode))
730 ? 0
731 : rtx_cost (x, mode, outer, opno, optimize_this_for_speed_p) * 2);
732 }
733
734 \f
735 /* Initialize CSE_REG_INFO_TABLE. */
736
737 static void
738 init_cse_reg_info (unsigned int nregs)
739 {
740 /* Do we need to grow the table? */
741 if (nregs > cse_reg_info_table_size)
742 {
743 unsigned int new_size;
744
745 if (cse_reg_info_table_size < 2048)
746 {
747 /* Compute a new size that is a power of 2 and no smaller
748 than the large of NREGS and 64. */
749 new_size = (cse_reg_info_table_size
750 ? cse_reg_info_table_size : 64);
751
752 while (new_size < nregs)
753 new_size *= 2;
754 }
755 else
756 {
757 /* If we need a big table, allocate just enough to hold
758 NREGS registers. */
759 new_size = nregs;
760 }
761
762 /* Reallocate the table with NEW_SIZE entries. */
763 free (cse_reg_info_table);
764 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
765 cse_reg_info_table_size = new_size;
766 cse_reg_info_table_first_uninitialized = 0;
767 }
768
769 /* Do we have all of the first NREGS entries initialized? */
770 if (cse_reg_info_table_first_uninitialized < nregs)
771 {
772 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
773 unsigned int i;
774
775 /* Put the old timestamp on newly allocated entries so that they
776 will all be considered out of date. We do not touch those
777 entries beyond the first NREGS entries to be nice to the
778 virtual memory. */
779 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
780 cse_reg_info_table[i].timestamp = old_timestamp;
781
782 cse_reg_info_table_first_uninitialized = nregs;
783 }
784 }
785
786 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
787
788 static void
789 get_cse_reg_info_1 (unsigned int regno)
790 {
791 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
792 entry will be considered to have been initialized. */
793 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
794
795 /* Initialize the rest of the entry. */
796 cse_reg_info_table[regno].reg_tick = 1;
797 cse_reg_info_table[regno].reg_in_table = -1;
798 cse_reg_info_table[regno].subreg_ticked = -1;
799 cse_reg_info_table[regno].reg_qty = -regno - 1;
800 }
801
802 /* Find a cse_reg_info entry for REGNO. */
803
804 static inline struct cse_reg_info *
805 get_cse_reg_info (unsigned int regno)
806 {
807 struct cse_reg_info *p = &cse_reg_info_table[regno];
808
809 /* If this entry has not been initialized, go ahead and initialize
810 it. */
811 if (p->timestamp != cse_reg_info_timestamp)
812 get_cse_reg_info_1 (regno);
813
814 return p;
815 }
816
817 /* Clear the hash table and initialize each register with its own quantity,
818 for a new basic block. */
819
820 static void
821 new_basic_block (void)
822 {
823 int i;
824
825 next_qty = 0;
826
827 /* Invalidate cse_reg_info_table. */
828 cse_reg_info_timestamp++;
829
830 /* Clear out hash table state for this pass. */
831 CLEAR_HARD_REG_SET (hard_regs_in_table);
832
833 /* The per-quantity values used to be initialized here, but it is
834 much faster to initialize each as it is made in `make_new_qty'. */
835
836 for (i = 0; i < HASH_SIZE; i++)
837 {
838 struct table_elt *first;
839
840 first = table[i];
841 if (first != NULL)
842 {
843 struct table_elt *last = first;
844
845 table[i] = NULL;
846
847 while (last->next_same_hash != NULL)
848 last = last->next_same_hash;
849
850 /* Now relink this hash entire chain into
851 the free element list. */
852
853 last->next_same_hash = free_element_chain;
854 free_element_chain = first;
855 }
856 }
857
858 prev_insn_cc0 = 0;
859 }
860
861 /* Say that register REG contains a quantity in mode MODE not in any
862 register before and initialize that quantity. */
863
864 static void
865 make_new_qty (unsigned int reg, machine_mode mode)
866 {
867 int q;
868 struct qty_table_elem *ent;
869 struct reg_eqv_elem *eqv;
870
871 gcc_assert (next_qty < max_qty);
872
873 q = REG_QTY (reg) = next_qty++;
874 ent = &qty_table[q];
875 ent->first_reg = reg;
876 ent->last_reg = reg;
877 ent->mode = mode;
878 ent->const_rtx = ent->const_insn = NULL;
879 ent->comparison_code = UNKNOWN;
880
881 eqv = &reg_eqv_table[reg];
882 eqv->next = eqv->prev = -1;
883 }
884
885 /* Make reg NEW equivalent to reg OLD.
886 OLD is not changing; NEW is. */
887
888 static void
889 make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
890 {
891 unsigned int lastr, firstr;
892 int q = REG_QTY (old_reg);
893 struct qty_table_elem *ent;
894
895 ent = &qty_table[q];
896
897 /* Nothing should become eqv until it has a "non-invalid" qty number. */
898 gcc_assert (REGNO_QTY_VALID_P (old_reg));
899
900 REG_QTY (new_reg) = q;
901 firstr = ent->first_reg;
902 lastr = ent->last_reg;
903
904 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
905 hard regs. Among pseudos, if NEW will live longer than any other reg
906 of the same qty, and that is beyond the current basic block,
907 make it the new canonical replacement for this qty. */
908 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
909 /* Certain fixed registers might be of the class NO_REGS. This means
910 that not only can they not be allocated by the compiler, but
911 they cannot be used in substitutions or canonicalizations
912 either. */
913 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
914 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
915 || (new_reg >= FIRST_PSEUDO_REGISTER
916 && (firstr < FIRST_PSEUDO_REGISTER
917 || (bitmap_bit_p (cse_ebb_live_out, new_reg)
918 && !bitmap_bit_p (cse_ebb_live_out, firstr))
919 || (bitmap_bit_p (cse_ebb_live_in, new_reg)
920 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
921 {
922 reg_eqv_table[firstr].prev = new_reg;
923 reg_eqv_table[new_reg].next = firstr;
924 reg_eqv_table[new_reg].prev = -1;
925 ent->first_reg = new_reg;
926 }
927 else
928 {
929 /* If NEW is a hard reg (known to be non-fixed), insert at end.
930 Otherwise, insert before any non-fixed hard regs that are at the
931 end. Registers of class NO_REGS cannot be used as an
932 equivalent for anything. */
933 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
934 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
935 && new_reg >= FIRST_PSEUDO_REGISTER)
936 lastr = reg_eqv_table[lastr].prev;
937 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
938 if (reg_eqv_table[lastr].next >= 0)
939 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
940 else
941 qty_table[q].last_reg = new_reg;
942 reg_eqv_table[lastr].next = new_reg;
943 reg_eqv_table[new_reg].prev = lastr;
944 }
945 }
946
947 /* Remove REG from its equivalence class. */
948
949 static void
950 delete_reg_equiv (unsigned int reg)
951 {
952 struct qty_table_elem *ent;
953 int q = REG_QTY (reg);
954 int p, n;
955
956 /* If invalid, do nothing. */
957 if (! REGNO_QTY_VALID_P (reg))
958 return;
959
960 ent = &qty_table[q];
961
962 p = reg_eqv_table[reg].prev;
963 n = reg_eqv_table[reg].next;
964
965 if (n != -1)
966 reg_eqv_table[n].prev = p;
967 else
968 ent->last_reg = p;
969 if (p != -1)
970 reg_eqv_table[p].next = n;
971 else
972 ent->first_reg = n;
973
974 REG_QTY (reg) = -reg - 1;
975 }
976
977 /* Remove any invalid expressions from the hash table
978 that refer to any of the registers contained in expression X.
979
980 Make sure that newly inserted references to those registers
981 as subexpressions will be considered valid.
982
983 mention_regs is not called when a register itself
984 is being stored in the table.
985
986 Return 1 if we have done something that may have changed the hash code
987 of X. */
988
989 static int
990 mention_regs (rtx x)
991 {
992 enum rtx_code code;
993 int i, j;
994 const char *fmt;
995 int changed = 0;
996
997 if (x == 0)
998 return 0;
999
1000 code = GET_CODE (x);
1001 if (code == REG)
1002 {
1003 unsigned int regno = REGNO (x);
1004 unsigned int endregno = END_REGNO (x);
1005 unsigned int i;
1006
1007 for (i = regno; i < endregno; i++)
1008 {
1009 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1010 remove_invalid_refs (i);
1011
1012 REG_IN_TABLE (i) = REG_TICK (i);
1013 SUBREG_TICKED (i) = -1;
1014 }
1015
1016 return 0;
1017 }
1018
1019 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1020 pseudo if they don't use overlapping words. We handle only pseudos
1021 here for simplicity. */
1022 if (code == SUBREG && REG_P (SUBREG_REG (x))
1023 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1024 {
1025 unsigned int i = REGNO (SUBREG_REG (x));
1026
1027 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1028 {
1029 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1030 the last store to this register really stored into this
1031 subreg, then remove the memory of this subreg.
1032 Otherwise, remove any memory of the entire register and
1033 all its subregs from the table. */
1034 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1035 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1036 remove_invalid_refs (i);
1037 else
1038 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1039 }
1040
1041 REG_IN_TABLE (i) = REG_TICK (i);
1042 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1043 return 0;
1044 }
1045
1046 /* If X is a comparison or a COMPARE and either operand is a register
1047 that does not have a quantity, give it one. This is so that a later
1048 call to record_jump_equiv won't cause X to be assigned a different
1049 hash code and not found in the table after that call.
1050
1051 It is not necessary to do this here, since rehash_using_reg can
1052 fix up the table later, but doing this here eliminates the need to
1053 call that expensive function in the most common case where the only
1054 use of the register is in the comparison. */
1055
1056 if (code == COMPARE || COMPARISON_P (x))
1057 {
1058 if (REG_P (XEXP (x, 0))
1059 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1060 if (insert_regs (XEXP (x, 0), NULL, 0))
1061 {
1062 rehash_using_reg (XEXP (x, 0));
1063 changed = 1;
1064 }
1065
1066 if (REG_P (XEXP (x, 1))
1067 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1068 if (insert_regs (XEXP (x, 1), NULL, 0))
1069 {
1070 rehash_using_reg (XEXP (x, 1));
1071 changed = 1;
1072 }
1073 }
1074
1075 fmt = GET_RTX_FORMAT (code);
1076 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1077 if (fmt[i] == 'e')
1078 changed |= mention_regs (XEXP (x, i));
1079 else if (fmt[i] == 'E')
1080 for (j = 0; j < XVECLEN (x, i); j++)
1081 changed |= mention_regs (XVECEXP (x, i, j));
1082
1083 return changed;
1084 }
1085
1086 /* Update the register quantities for inserting X into the hash table
1087 with a value equivalent to CLASSP.
1088 (If the class does not contain a REG, it is irrelevant.)
1089 If MODIFIED is nonzero, X is a destination; it is being modified.
1090 Note that delete_reg_equiv should be called on a register
1091 before insert_regs is done on that register with MODIFIED != 0.
1092
1093 Nonzero value means that elements of reg_qty have changed
1094 so X's hash code may be different. */
1095
1096 static int
1097 insert_regs (rtx x, struct table_elt *classp, int modified)
1098 {
1099 if (REG_P (x))
1100 {
1101 unsigned int regno = REGNO (x);
1102 int qty_valid;
1103
1104 /* If REGNO is in the equivalence table already but is of the
1105 wrong mode for that equivalence, don't do anything here. */
1106
1107 qty_valid = REGNO_QTY_VALID_P (regno);
1108 if (qty_valid)
1109 {
1110 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1111
1112 if (ent->mode != GET_MODE (x))
1113 return 0;
1114 }
1115
1116 if (modified || ! qty_valid)
1117 {
1118 if (classp)
1119 for (classp = classp->first_same_value;
1120 classp != 0;
1121 classp = classp->next_same_value)
1122 if (REG_P (classp->exp)
1123 && GET_MODE (classp->exp) == GET_MODE (x))
1124 {
1125 unsigned c_regno = REGNO (classp->exp);
1126
1127 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1128
1129 /* Suppose that 5 is hard reg and 100 and 101 are
1130 pseudos. Consider
1131
1132 (set (reg:si 100) (reg:si 5))
1133 (set (reg:si 5) (reg:si 100))
1134 (set (reg:di 101) (reg:di 5))
1135
1136 We would now set REG_QTY (101) = REG_QTY (5), but the
1137 entry for 5 is in SImode. When we use this later in
1138 copy propagation, we get the register in wrong mode. */
1139 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1140 continue;
1141
1142 make_regs_eqv (regno, c_regno);
1143 return 1;
1144 }
1145
1146 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1147 than REG_IN_TABLE to find out if there was only a single preceding
1148 invalidation - for the SUBREG - or another one, which would be
1149 for the full register. However, if we find here that REG_TICK
1150 indicates that the register is invalid, it means that it has
1151 been invalidated in a separate operation. The SUBREG might be used
1152 now (then this is a recursive call), or we might use the full REG
1153 now and a SUBREG of it later. So bump up REG_TICK so that
1154 mention_regs will do the right thing. */
1155 if (! modified
1156 && REG_IN_TABLE (regno) >= 0
1157 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1158 REG_TICK (regno)++;
1159 make_new_qty (regno, GET_MODE (x));
1160 return 1;
1161 }
1162
1163 return 0;
1164 }
1165
1166 /* If X is a SUBREG, we will likely be inserting the inner register in the
1167 table. If that register doesn't have an assigned quantity number at
1168 this point but does later, the insertion that we will be doing now will
1169 not be accessible because its hash code will have changed. So assign
1170 a quantity number now. */
1171
1172 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1173 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1174 {
1175 insert_regs (SUBREG_REG (x), NULL, 0);
1176 mention_regs (x);
1177 return 1;
1178 }
1179 else
1180 return mention_regs (x);
1181 }
1182 \f
1183
1184 /* Compute upper and lower anchors for CST. Also compute the offset of CST
1185 from these anchors/bases such that *_BASE + *_OFFS = CST. Return false iff
1186 CST is equal to an anchor. */
1187
1188 static bool
1189 compute_const_anchors (rtx cst,
1190 HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1191 HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1192 {
1193 HOST_WIDE_INT n = INTVAL (cst);
1194
1195 *lower_base = n & ~(targetm.const_anchor - 1);
1196 if (*lower_base == n)
1197 return false;
1198
1199 *upper_base =
1200 (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1);
1201 *upper_offs = n - *upper_base;
1202 *lower_offs = n - *lower_base;
1203 return true;
1204 }
1205
1206 /* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE. */
1207
1208 static void
1209 insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
1210 machine_mode mode)
1211 {
1212 struct table_elt *elt;
1213 unsigned hash;
1214 rtx anchor_exp;
1215 rtx exp;
1216
1217 anchor_exp = GEN_INT (anchor);
1218 hash = HASH (anchor_exp, mode);
1219 elt = lookup (anchor_exp, hash, mode);
1220 if (!elt)
1221 elt = insert (anchor_exp, NULL, hash, mode);
1222
1223 exp = plus_constant (mode, reg, offs);
1224 /* REG has just been inserted and the hash codes recomputed. */
1225 mention_regs (exp);
1226 hash = HASH (exp, mode);
1227
1228 /* Use the cost of the register rather than the whole expression. When
1229 looking up constant anchors we will further offset the corresponding
1230 expression therefore it does not make sense to prefer REGs over
1231 reg-immediate additions. Prefer instead the oldest expression. Also
1232 don't prefer pseudos over hard regs so that we derive constants in
1233 argument registers from other argument registers rather than from the
1234 original pseudo that was used to synthesize the constant. */
1235 insert_with_costs (exp, elt, hash, mode, COST (reg, mode), 1);
1236 }
1237
1238 /* The constant CST is equivalent to the register REG. Create
1239 equivalences between the two anchors of CST and the corresponding
1240 register-offset expressions using REG. */
1241
1242 static void
1243 insert_const_anchors (rtx reg, rtx cst, machine_mode mode)
1244 {
1245 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1246
1247 if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1248 &upper_base, &upper_offs))
1249 return;
1250
1251 /* Ignore anchors of value 0. Constants accessible from zero are
1252 simple. */
1253 if (lower_base != 0)
1254 insert_const_anchor (lower_base, reg, -lower_offs, mode);
1255
1256 if (upper_base != 0)
1257 insert_const_anchor (upper_base, reg, -upper_offs, mode);
1258 }
1259
1260 /* We need to express ANCHOR_ELT->exp + OFFS. Walk the equivalence list of
1261 ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1262 valid expression. Return the cheapest and oldest of such expressions. In
1263 *OLD, return how old the resulting expression is compared to the other
1264 equivalent expressions. */
1265
1266 static rtx
1267 find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1268 unsigned *old)
1269 {
1270 struct table_elt *elt;
1271 unsigned idx;
1272 struct table_elt *match_elt;
1273 rtx match;
1274
1275 /* Find the cheapest and *oldest* expression to maximize the chance of
1276 reusing the same pseudo. */
1277
1278 match_elt = NULL;
1279 match = NULL_RTX;
1280 for (elt = anchor_elt->first_same_value, idx = 0;
1281 elt;
1282 elt = elt->next_same_value, idx++)
1283 {
1284 if (match_elt && CHEAPER (match_elt, elt))
1285 return match;
1286
1287 if (REG_P (elt->exp)
1288 || (GET_CODE (elt->exp) == PLUS
1289 && REG_P (XEXP (elt->exp, 0))
1290 && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1291 {
1292 rtx x;
1293
1294 /* Ignore expressions that are no longer valid. */
1295 if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1296 continue;
1297
1298 x = plus_constant (GET_MODE (elt->exp), elt->exp, offs);
1299 if (REG_P (x)
1300 || (GET_CODE (x) == PLUS
1301 && IN_RANGE (INTVAL (XEXP (x, 1)),
1302 -targetm.const_anchor,
1303 targetm.const_anchor - 1)))
1304 {
1305 match = x;
1306 match_elt = elt;
1307 *old = idx;
1308 }
1309 }
1310 }
1311
1312 return match;
1313 }
1314
1315 /* Try to express the constant SRC_CONST using a register+offset expression
1316 derived from a constant anchor. Return it if successful or NULL_RTX,
1317 otherwise. */
1318
1319 static rtx
1320 try_const_anchors (rtx src_const, machine_mode mode)
1321 {
1322 struct table_elt *lower_elt, *upper_elt;
1323 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1324 rtx lower_anchor_rtx, upper_anchor_rtx;
1325 rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1326 unsigned lower_old, upper_old;
1327
1328 /* CONST_INT is used for CC modes, but we should leave those alone. */
1329 if (GET_MODE_CLASS (mode) == MODE_CC)
1330 return NULL_RTX;
1331
1332 gcc_assert (SCALAR_INT_MODE_P (mode));
1333 if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1334 &upper_base, &upper_offs))
1335 return NULL_RTX;
1336
1337 lower_anchor_rtx = GEN_INT (lower_base);
1338 upper_anchor_rtx = GEN_INT (upper_base);
1339 lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1340 upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1341
1342 if (lower_elt)
1343 lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1344 if (upper_elt)
1345 upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1346
1347 if (!lower_exp)
1348 return upper_exp;
1349 if (!upper_exp)
1350 return lower_exp;
1351
1352 /* Return the older expression. */
1353 return (upper_old > lower_old ? upper_exp : lower_exp);
1354 }
1355 \f
1356 /* Look in or update the hash table. */
1357
1358 /* Remove table element ELT from use in the table.
1359 HASH is its hash code, made using the HASH macro.
1360 It's an argument because often that is known in advance
1361 and we save much time not recomputing it. */
1362
1363 static void
1364 remove_from_table (struct table_elt *elt, unsigned int hash)
1365 {
1366 if (elt == 0)
1367 return;
1368
1369 /* Mark this element as removed. See cse_insn. */
1370 elt->first_same_value = 0;
1371
1372 /* Remove the table element from its equivalence class. */
1373
1374 {
1375 struct table_elt *prev = elt->prev_same_value;
1376 struct table_elt *next = elt->next_same_value;
1377
1378 if (next)
1379 next->prev_same_value = prev;
1380
1381 if (prev)
1382 prev->next_same_value = next;
1383 else
1384 {
1385 struct table_elt *newfirst = next;
1386 while (next)
1387 {
1388 next->first_same_value = newfirst;
1389 next = next->next_same_value;
1390 }
1391 }
1392 }
1393
1394 /* Remove the table element from its hash bucket. */
1395
1396 {
1397 struct table_elt *prev = elt->prev_same_hash;
1398 struct table_elt *next = elt->next_same_hash;
1399
1400 if (next)
1401 next->prev_same_hash = prev;
1402
1403 if (prev)
1404 prev->next_same_hash = next;
1405 else if (table[hash] == elt)
1406 table[hash] = next;
1407 else
1408 {
1409 /* This entry is not in the proper hash bucket. This can happen
1410 when two classes were merged by `merge_equiv_classes'. Search
1411 for the hash bucket that it heads. This happens only very
1412 rarely, so the cost is acceptable. */
1413 for (hash = 0; hash < HASH_SIZE; hash++)
1414 if (table[hash] == elt)
1415 table[hash] = next;
1416 }
1417 }
1418
1419 /* Remove the table element from its related-value circular chain. */
1420
1421 if (elt->related_value != 0 && elt->related_value != elt)
1422 {
1423 struct table_elt *p = elt->related_value;
1424
1425 while (p->related_value != elt)
1426 p = p->related_value;
1427 p->related_value = elt->related_value;
1428 if (p->related_value == p)
1429 p->related_value = 0;
1430 }
1431
1432 /* Now add it to the free element chain. */
1433 elt->next_same_hash = free_element_chain;
1434 free_element_chain = elt;
1435 }
1436
1437 /* Same as above, but X is a pseudo-register. */
1438
1439 static void
1440 remove_pseudo_from_table (rtx x, unsigned int hash)
1441 {
1442 struct table_elt *elt;
1443
1444 /* Because a pseudo-register can be referenced in more than one
1445 mode, we might have to remove more than one table entry. */
1446 while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1447 remove_from_table (elt, hash);
1448 }
1449
1450 /* Look up X in the hash table and return its table element,
1451 or 0 if X is not in the table.
1452
1453 MODE is the machine-mode of X, or if X is an integer constant
1454 with VOIDmode then MODE is the mode with which X will be used.
1455
1456 Here we are satisfied to find an expression whose tree structure
1457 looks like X. */
1458
1459 static struct table_elt *
1460 lookup (rtx x, unsigned int hash, machine_mode mode)
1461 {
1462 struct table_elt *p;
1463
1464 for (p = table[hash]; p; p = p->next_same_hash)
1465 if (mode == p->mode && ((x == p->exp && REG_P (x))
1466 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1467 return p;
1468
1469 return 0;
1470 }
1471
1472 /* Like `lookup' but don't care whether the table element uses invalid regs.
1473 Also ignore discrepancies in the machine mode of a register. */
1474
1475 static struct table_elt *
1476 lookup_for_remove (rtx x, unsigned int hash, machine_mode mode)
1477 {
1478 struct table_elt *p;
1479
1480 if (REG_P (x))
1481 {
1482 unsigned int regno = REGNO (x);
1483
1484 /* Don't check the machine mode when comparing registers;
1485 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1486 for (p = table[hash]; p; p = p->next_same_hash)
1487 if (REG_P (p->exp)
1488 && REGNO (p->exp) == regno)
1489 return p;
1490 }
1491 else
1492 {
1493 for (p = table[hash]; p; p = p->next_same_hash)
1494 if (mode == p->mode
1495 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1496 return p;
1497 }
1498
1499 return 0;
1500 }
1501
1502 /* Look for an expression equivalent to X and with code CODE.
1503 If one is found, return that expression. */
1504
1505 static rtx
1506 lookup_as_function (rtx x, enum rtx_code code)
1507 {
1508 struct table_elt *p
1509 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1510
1511 if (p == 0)
1512 return 0;
1513
1514 for (p = p->first_same_value; p; p = p->next_same_value)
1515 if (GET_CODE (p->exp) == code
1516 /* Make sure this is a valid entry in the table. */
1517 && exp_equiv_p (p->exp, p->exp, 1, false))
1518 return p->exp;
1519
1520 return 0;
1521 }
1522
1523 /* Insert X in the hash table, assuming HASH is its hash code and
1524 CLASSP is an element of the class it should go in (or 0 if a new
1525 class should be made). COST is the code of X and reg_cost is the
1526 cost of registers in X. It is inserted at the proper position to
1527 keep the class in the order cheapest first.
1528
1529 MODE is the machine-mode of X, or if X is an integer constant
1530 with VOIDmode then MODE is the mode with which X will be used.
1531
1532 For elements of equal cheapness, the most recent one
1533 goes in front, except that the first element in the list
1534 remains first unless a cheaper element is added. The order of
1535 pseudo-registers does not matter, as canon_reg will be called to
1536 find the cheapest when a register is retrieved from the table.
1537
1538 The in_memory field in the hash table element is set to 0.
1539 The caller must set it nonzero if appropriate.
1540
1541 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1542 and if insert_regs returns a nonzero value
1543 you must then recompute its hash code before calling here.
1544
1545 If necessary, update table showing constant values of quantities. */
1546
1547 static struct table_elt *
1548 insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
1549 machine_mode mode, int cost, int reg_cost)
1550 {
1551 struct table_elt *elt;
1552
1553 /* If X is a register and we haven't made a quantity for it,
1554 something is wrong. */
1555 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1556
1557 /* If X is a hard register, show it is being put in the table. */
1558 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1559 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1560
1561 /* Put an element for X into the right hash bucket. */
1562
1563 elt = free_element_chain;
1564 if (elt)
1565 free_element_chain = elt->next_same_hash;
1566 else
1567 elt = XNEW (struct table_elt);
1568
1569 elt->exp = x;
1570 elt->canon_exp = NULL_RTX;
1571 elt->cost = cost;
1572 elt->regcost = reg_cost;
1573 elt->next_same_value = 0;
1574 elt->prev_same_value = 0;
1575 elt->next_same_hash = table[hash];
1576 elt->prev_same_hash = 0;
1577 elt->related_value = 0;
1578 elt->in_memory = 0;
1579 elt->mode = mode;
1580 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1581
1582 if (table[hash])
1583 table[hash]->prev_same_hash = elt;
1584 table[hash] = elt;
1585
1586 /* Put it into the proper value-class. */
1587 if (classp)
1588 {
1589 classp = classp->first_same_value;
1590 if (CHEAPER (elt, classp))
1591 /* Insert at the head of the class. */
1592 {
1593 struct table_elt *p;
1594 elt->next_same_value = classp;
1595 classp->prev_same_value = elt;
1596 elt->first_same_value = elt;
1597
1598 for (p = classp; p; p = p->next_same_value)
1599 p->first_same_value = elt;
1600 }
1601 else
1602 {
1603 /* Insert not at head of the class. */
1604 /* Put it after the last element cheaper than X. */
1605 struct table_elt *p, *next;
1606
1607 for (p = classp;
1608 (next = p->next_same_value) && CHEAPER (next, elt);
1609 p = next)
1610 ;
1611
1612 /* Put it after P and before NEXT. */
1613 elt->next_same_value = next;
1614 if (next)
1615 next->prev_same_value = elt;
1616
1617 elt->prev_same_value = p;
1618 p->next_same_value = elt;
1619 elt->first_same_value = classp;
1620 }
1621 }
1622 else
1623 elt->first_same_value = elt;
1624
1625 /* If this is a constant being set equivalent to a register or a register
1626 being set equivalent to a constant, note the constant equivalence.
1627
1628 If this is a constant, it cannot be equivalent to a different constant,
1629 and a constant is the only thing that can be cheaper than a register. So
1630 we know the register is the head of the class (before the constant was
1631 inserted).
1632
1633 If this is a register that is not already known equivalent to a
1634 constant, we must check the entire class.
1635
1636 If this is a register that is already known equivalent to an insn,
1637 update the qtys `const_insn' to show that `this_insn' is the latest
1638 insn making that quantity equivalent to the constant. */
1639
1640 if (elt->is_const && classp && REG_P (classp->exp)
1641 && !REG_P (x))
1642 {
1643 int exp_q = REG_QTY (REGNO (classp->exp));
1644 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1645
1646 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1647 exp_ent->const_insn = this_insn;
1648 }
1649
1650 else if (REG_P (x)
1651 && classp
1652 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1653 && ! elt->is_const)
1654 {
1655 struct table_elt *p;
1656
1657 for (p = classp; p != 0; p = p->next_same_value)
1658 {
1659 if (p->is_const && !REG_P (p->exp))
1660 {
1661 int x_q = REG_QTY (REGNO (x));
1662 struct qty_table_elem *x_ent = &qty_table[x_q];
1663
1664 x_ent->const_rtx
1665 = gen_lowpart (GET_MODE (x), p->exp);
1666 x_ent->const_insn = this_insn;
1667 break;
1668 }
1669 }
1670 }
1671
1672 else if (REG_P (x)
1673 && qty_table[REG_QTY (REGNO (x))].const_rtx
1674 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1675 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1676
1677 /* If this is a constant with symbolic value,
1678 and it has a term with an explicit integer value,
1679 link it up with related expressions. */
1680 if (GET_CODE (x) == CONST)
1681 {
1682 rtx subexp = get_related_value (x);
1683 unsigned subhash;
1684 struct table_elt *subelt, *subelt_prev;
1685
1686 if (subexp != 0)
1687 {
1688 /* Get the integer-free subexpression in the hash table. */
1689 subhash = SAFE_HASH (subexp, mode);
1690 subelt = lookup (subexp, subhash, mode);
1691 if (subelt == 0)
1692 subelt = insert (subexp, NULL, subhash, mode);
1693 /* Initialize SUBELT's circular chain if it has none. */
1694 if (subelt->related_value == 0)
1695 subelt->related_value = subelt;
1696 /* Find the element in the circular chain that precedes SUBELT. */
1697 subelt_prev = subelt;
1698 while (subelt_prev->related_value != subelt)
1699 subelt_prev = subelt_prev->related_value;
1700 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1701 This way the element that follows SUBELT is the oldest one. */
1702 elt->related_value = subelt_prev->related_value;
1703 subelt_prev->related_value = elt;
1704 }
1705 }
1706
1707 return elt;
1708 }
1709
1710 /* Wrap insert_with_costs by passing the default costs. */
1711
1712 static struct table_elt *
1713 insert (rtx x, struct table_elt *classp, unsigned int hash,
1714 machine_mode mode)
1715 {
1716 return insert_with_costs (x, classp, hash, mode,
1717 COST (x, mode), approx_reg_cost (x));
1718 }
1719
1720 \f
1721 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1722 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1723 the two classes equivalent.
1724
1725 CLASS1 will be the surviving class; CLASS2 should not be used after this
1726 call.
1727
1728 Any invalid entries in CLASS2 will not be copied. */
1729
1730 static void
1731 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1732 {
1733 struct table_elt *elt, *next, *new_elt;
1734
1735 /* Ensure we start with the head of the classes. */
1736 class1 = class1->first_same_value;
1737 class2 = class2->first_same_value;
1738
1739 /* If they were already equal, forget it. */
1740 if (class1 == class2)
1741 return;
1742
1743 for (elt = class2; elt; elt = next)
1744 {
1745 unsigned int hash;
1746 rtx exp = elt->exp;
1747 machine_mode mode = elt->mode;
1748
1749 next = elt->next_same_value;
1750
1751 /* Remove old entry, make a new one in CLASS1's class.
1752 Don't do this for invalid entries as we cannot find their
1753 hash code (it also isn't necessary). */
1754 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1755 {
1756 bool need_rehash = false;
1757
1758 hash_arg_in_memory = 0;
1759 hash = HASH (exp, mode);
1760
1761 if (REG_P (exp))
1762 {
1763 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1764 delete_reg_equiv (REGNO (exp));
1765 }
1766
1767 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1768 remove_pseudo_from_table (exp, hash);
1769 else
1770 remove_from_table (elt, hash);
1771
1772 if (insert_regs (exp, class1, 0) || need_rehash)
1773 {
1774 rehash_using_reg (exp);
1775 hash = HASH (exp, mode);
1776 }
1777 new_elt = insert (exp, class1, hash, mode);
1778 new_elt->in_memory = hash_arg_in_memory;
1779 if (GET_CODE (exp) == ASM_OPERANDS && elt->cost == MAX_COST)
1780 new_elt->cost = MAX_COST;
1781 }
1782 }
1783 }
1784 \f
1785 /* Flush the entire hash table. */
1786
1787 static void
1788 flush_hash_table (void)
1789 {
1790 int i;
1791 struct table_elt *p;
1792
1793 for (i = 0; i < HASH_SIZE; i++)
1794 for (p = table[i]; p; p = table[i])
1795 {
1796 /* Note that invalidate can remove elements
1797 after P in the current hash chain. */
1798 if (REG_P (p->exp))
1799 invalidate (p->exp, VOIDmode);
1800 else
1801 remove_from_table (p, i);
1802 }
1803 }
1804 \f
1805 /* Check whether an anti dependence exists between X and EXP. MODE and
1806 ADDR are as for canon_anti_dependence. */
1807
1808 static bool
1809 check_dependence (const_rtx x, rtx exp, machine_mode mode, rtx addr)
1810 {
1811 subrtx_iterator::array_type array;
1812 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1813 {
1814 const_rtx x = *iter;
1815 if (MEM_P (x) && canon_anti_dependence (x, true, exp, mode, addr))
1816 return true;
1817 }
1818 return false;
1819 }
1820
1821 /* Remove from the hash table, or mark as invalid, all expressions whose
1822 values could be altered by storing in register X. */
1823
1824 static void
1825 invalidate_reg (rtx x)
1826 {
1827 gcc_assert (GET_CODE (x) == REG);
1828
1829 /* If X is a register, dependencies on its contents are recorded
1830 through the qty number mechanism. Just change the qty number of
1831 the register, mark it as invalid for expressions that refer to it,
1832 and remove it itself. */
1833 unsigned int regno = REGNO (x);
1834 unsigned int hash = HASH (x, GET_MODE (x));
1835
1836 /* Remove REGNO from any quantity list it might be on and indicate
1837 that its value might have changed. If it is a pseudo, remove its
1838 entry from the hash table.
1839
1840 For a hard register, we do the first two actions above for any
1841 additional hard registers corresponding to X. Then, if any of these
1842 registers are in the table, we must remove any REG entries that
1843 overlap these registers. */
1844
1845 delete_reg_equiv (regno);
1846 REG_TICK (regno)++;
1847 SUBREG_TICKED (regno) = -1;
1848
1849 if (regno >= FIRST_PSEUDO_REGISTER)
1850 remove_pseudo_from_table (x, hash);
1851 else
1852 {
1853 HOST_WIDE_INT in_table = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1854 unsigned int endregno = END_REGNO (x);
1855 unsigned int rn;
1856 struct table_elt *p, *next;
1857
1858 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1859
1860 for (rn = regno + 1; rn < endregno; rn++)
1861 {
1862 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1863 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1864 delete_reg_equiv (rn);
1865 REG_TICK (rn)++;
1866 SUBREG_TICKED (rn) = -1;
1867 }
1868
1869 if (in_table)
1870 for (hash = 0; hash < HASH_SIZE; hash++)
1871 for (p = table[hash]; p; p = next)
1872 {
1873 next = p->next_same_hash;
1874
1875 if (!REG_P (p->exp) || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1876 continue;
1877
1878 unsigned int tregno = REGNO (p->exp);
1879 unsigned int tendregno = END_REGNO (p->exp);
1880 if (tendregno > regno && tregno < endregno)
1881 remove_from_table (p, hash);
1882 }
1883 }
1884 }
1885
1886 /* Remove from the hash table, or mark as invalid, all expressions whose
1887 values could be altered by storing in X. X is a register, a subreg, or
1888 a memory reference with nonvarying address (because, when a memory
1889 reference with a varying address is stored in, all memory references are
1890 removed by invalidate_memory so specific invalidation is superfluous).
1891 FULL_MODE, if not VOIDmode, indicates that this much should be
1892 invalidated instead of just the amount indicated by the mode of X. This
1893 is only used for bitfield stores into memory.
1894
1895 A nonvarying address may be just a register or just a symbol reference,
1896 or it may be either of those plus a numeric offset. */
1897
1898 static void
1899 invalidate (rtx x, machine_mode full_mode)
1900 {
1901 int i;
1902 struct table_elt *p;
1903 rtx addr;
1904
1905 switch (GET_CODE (x))
1906 {
1907 case REG:
1908 invalidate_reg (x);
1909 return;
1910
1911 case SUBREG:
1912 invalidate (SUBREG_REG (x), VOIDmode);
1913 return;
1914
1915 case PARALLEL:
1916 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1917 invalidate (XVECEXP (x, 0, i), VOIDmode);
1918 return;
1919
1920 case EXPR_LIST:
1921 /* This is part of a disjoint return value; extract the location in
1922 question ignoring the offset. */
1923 invalidate (XEXP (x, 0), VOIDmode);
1924 return;
1925
1926 case MEM:
1927 addr = canon_rtx (get_addr (XEXP (x, 0)));
1928 /* Calculate the canonical version of X here so that
1929 true_dependence doesn't generate new RTL for X on each call. */
1930 x = canon_rtx (x);
1931
1932 /* Remove all hash table elements that refer to overlapping pieces of
1933 memory. */
1934 if (full_mode == VOIDmode)
1935 full_mode = GET_MODE (x);
1936
1937 for (i = 0; i < HASH_SIZE; i++)
1938 {
1939 struct table_elt *next;
1940
1941 for (p = table[i]; p; p = next)
1942 {
1943 next = p->next_same_hash;
1944 if (p->in_memory)
1945 {
1946 /* Just canonicalize the expression once;
1947 otherwise each time we call invalidate
1948 true_dependence will canonicalize the
1949 expression again. */
1950 if (!p->canon_exp)
1951 p->canon_exp = canon_rtx (p->exp);
1952 if (check_dependence (p->canon_exp, x, full_mode, addr))
1953 remove_from_table (p, i);
1954 }
1955 }
1956 }
1957 return;
1958
1959 default:
1960 gcc_unreachable ();
1961 }
1962 }
1963
1964 /* Invalidate DEST. Used when DEST is not going to be added
1965 into the hash table for some reason, e.g. do_not_record
1966 flagged on it. */
1967
1968 static void
1969 invalidate_dest (rtx dest)
1970 {
1971 if (REG_P (dest)
1972 || GET_CODE (dest) == SUBREG
1973 || MEM_P (dest))
1974 invalidate (dest, VOIDmode);
1975 else if (GET_CODE (dest) == STRICT_LOW_PART
1976 || GET_CODE (dest) == ZERO_EXTRACT)
1977 invalidate (XEXP (dest, 0), GET_MODE (dest));
1978 }
1979 \f
1980 /* Remove all expressions that refer to register REGNO,
1981 since they are already invalid, and we are about to
1982 mark that register valid again and don't want the old
1983 expressions to reappear as valid. */
1984
1985 static void
1986 remove_invalid_refs (unsigned int regno)
1987 {
1988 unsigned int i;
1989 struct table_elt *p, *next;
1990
1991 for (i = 0; i < HASH_SIZE; i++)
1992 for (p = table[i]; p; p = next)
1993 {
1994 next = p->next_same_hash;
1995 if (!REG_P (p->exp) && refers_to_regno_p (regno, p->exp))
1996 remove_from_table (p, i);
1997 }
1998 }
1999
2000 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
2001 and mode MODE. */
2002 static void
2003 remove_invalid_subreg_refs (unsigned int regno, poly_uint64 offset,
2004 machine_mode mode)
2005 {
2006 unsigned int i;
2007 struct table_elt *p, *next;
2008
2009 for (i = 0; i < HASH_SIZE; i++)
2010 for (p = table[i]; p; p = next)
2011 {
2012 rtx exp = p->exp;
2013 next = p->next_same_hash;
2014
2015 if (!REG_P (exp)
2016 && (GET_CODE (exp) != SUBREG
2017 || !REG_P (SUBREG_REG (exp))
2018 || REGNO (SUBREG_REG (exp)) != regno
2019 || ranges_maybe_overlap_p (SUBREG_BYTE (exp),
2020 GET_MODE_SIZE (GET_MODE (exp)),
2021 offset, GET_MODE_SIZE (mode)))
2022 && refers_to_regno_p (regno, p->exp))
2023 remove_from_table (p, i);
2024 }
2025 }
2026 \f
2027 /* Recompute the hash codes of any valid entries in the hash table that
2028 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2029
2030 This is called when we make a jump equivalence. */
2031
2032 static void
2033 rehash_using_reg (rtx x)
2034 {
2035 unsigned int i;
2036 struct table_elt *p, *next;
2037 unsigned hash;
2038
2039 if (GET_CODE (x) == SUBREG)
2040 x = SUBREG_REG (x);
2041
2042 /* If X is not a register or if the register is known not to be in any
2043 valid entries in the table, we have no work to do. */
2044
2045 if (!REG_P (x)
2046 || REG_IN_TABLE (REGNO (x)) < 0
2047 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
2048 return;
2049
2050 /* Scan all hash chains looking for valid entries that mention X.
2051 If we find one and it is in the wrong hash chain, move it. */
2052
2053 for (i = 0; i < HASH_SIZE; i++)
2054 for (p = table[i]; p; p = next)
2055 {
2056 next = p->next_same_hash;
2057 if (reg_mentioned_p (x, p->exp)
2058 && exp_equiv_p (p->exp, p->exp, 1, false)
2059 && i != (hash = SAFE_HASH (p->exp, p->mode)))
2060 {
2061 if (p->next_same_hash)
2062 p->next_same_hash->prev_same_hash = p->prev_same_hash;
2063
2064 if (p->prev_same_hash)
2065 p->prev_same_hash->next_same_hash = p->next_same_hash;
2066 else
2067 table[i] = p->next_same_hash;
2068
2069 p->next_same_hash = table[hash];
2070 p->prev_same_hash = 0;
2071 if (table[hash])
2072 table[hash]->prev_same_hash = p;
2073 table[hash] = p;
2074 }
2075 }
2076 }
2077 \f
2078 /* Remove from the hash table any expression that is a call-clobbered
2079 register in INSN. Also update their TICK values. */
2080
2081 static void
2082 invalidate_for_call (rtx_insn *insn)
2083 {
2084 unsigned int regno;
2085 unsigned hash;
2086 struct table_elt *p, *next;
2087 int in_table = 0;
2088 hard_reg_set_iterator hrsi;
2089
2090 /* Go through all the hard registers. For each that might be clobbered
2091 in call insn INSN, remove the register from quantity chains and update
2092 reg_tick if defined. Also see if any of these registers is currently
2093 in the table.
2094
2095 ??? We could be more precise for partially-clobbered registers,
2096 and only invalidate values that actually occupy the clobbered part
2097 of the registers. It doesn't seem worth the effort though, since
2098 we shouldn't see this situation much before RA. Whatever choice
2099 we make here has to be consistent with the table walk below,
2100 so any change to this test will require a change there too. */
2101 HARD_REG_SET callee_clobbers
2102 = insn_callee_abi (insn).full_and_partial_reg_clobbers ();
2103 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, regno, hrsi)
2104 {
2105 delete_reg_equiv (regno);
2106 if (REG_TICK (regno) >= 0)
2107 {
2108 REG_TICK (regno)++;
2109 SUBREG_TICKED (regno) = -1;
2110 }
2111 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2112 }
2113
2114 /* In the case where we have no call-clobbered hard registers in the
2115 table, we are done. Otherwise, scan the table and remove any
2116 entry that overlaps a call-clobbered register. */
2117
2118 if (in_table)
2119 for (hash = 0; hash < HASH_SIZE; hash++)
2120 for (p = table[hash]; p; p = next)
2121 {
2122 next = p->next_same_hash;
2123
2124 if (!REG_P (p->exp)
2125 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2126 continue;
2127
2128 /* This must use the same test as above rather than the
2129 more accurate clobbers_reg_p. */
2130 if (overlaps_hard_reg_set_p (callee_clobbers, GET_MODE (p->exp),
2131 REGNO (p->exp)))
2132 remove_from_table (p, hash);
2133 }
2134 }
2135 \f
2136 /* Given an expression X of type CONST,
2137 and ELT which is its table entry (or 0 if it
2138 is not in the hash table),
2139 return an alternate expression for X as a register plus integer.
2140 If none can be found, return 0. */
2141
2142 static rtx
2143 use_related_value (rtx x, struct table_elt *elt)
2144 {
2145 struct table_elt *relt = 0;
2146 struct table_elt *p, *q;
2147 HOST_WIDE_INT offset;
2148
2149 /* First, is there anything related known?
2150 If we have a table element, we can tell from that.
2151 Otherwise, must look it up. */
2152
2153 if (elt != 0 && elt->related_value != 0)
2154 relt = elt;
2155 else if (elt == 0 && GET_CODE (x) == CONST)
2156 {
2157 rtx subexp = get_related_value (x);
2158 if (subexp != 0)
2159 relt = lookup (subexp,
2160 SAFE_HASH (subexp, GET_MODE (subexp)),
2161 GET_MODE (subexp));
2162 }
2163
2164 if (relt == 0)
2165 return 0;
2166
2167 /* Search all related table entries for one that has an
2168 equivalent register. */
2169
2170 p = relt;
2171 while (1)
2172 {
2173 /* This loop is strange in that it is executed in two different cases.
2174 The first is when X is already in the table. Then it is searching
2175 the RELATED_VALUE list of X's class (RELT). The second case is when
2176 X is not in the table. Then RELT points to a class for the related
2177 value.
2178
2179 Ensure that, whatever case we are in, that we ignore classes that have
2180 the same value as X. */
2181
2182 if (rtx_equal_p (x, p->exp))
2183 q = 0;
2184 else
2185 for (q = p->first_same_value; q; q = q->next_same_value)
2186 if (REG_P (q->exp))
2187 break;
2188
2189 if (q)
2190 break;
2191
2192 p = p->related_value;
2193
2194 /* We went all the way around, so there is nothing to be found.
2195 Alternatively, perhaps RELT was in the table for some other reason
2196 and it has no related values recorded. */
2197 if (p == relt || p == 0)
2198 break;
2199 }
2200
2201 if (q == 0)
2202 return 0;
2203
2204 offset = (get_integer_term (x) - get_integer_term (p->exp));
2205 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2206 return plus_constant (q->mode, q->exp, offset);
2207 }
2208 \f
2209
2210 /* Hash a string. Just add its bytes up. */
2211 static inline unsigned
2212 hash_rtx_string (const char *ps)
2213 {
2214 unsigned hash = 0;
2215 const unsigned char *p = (const unsigned char *) ps;
2216
2217 if (p)
2218 while (*p)
2219 hash += *p++;
2220
2221 return hash;
2222 }
2223
2224 /* Same as hash_rtx, but call CB on each rtx if it is not NULL.
2225 When the callback returns true, we continue with the new rtx. */
2226
2227 unsigned
2228 hash_rtx_cb (const_rtx x, machine_mode mode,
2229 int *do_not_record_p, int *hash_arg_in_memory_p,
2230 bool have_reg_qty, hash_rtx_callback_function cb)
2231 {
2232 int i, j;
2233 unsigned hash = 0;
2234 enum rtx_code code;
2235 const char *fmt;
2236 machine_mode newmode;
2237 rtx newx;
2238
2239 /* Used to turn recursion into iteration. We can't rely on GCC's
2240 tail-recursion elimination since we need to keep accumulating values
2241 in HASH. */
2242 repeat:
2243 if (x == 0)
2244 return hash;
2245
2246 /* Invoke the callback first. */
2247 if (cb != NULL
2248 && ((*cb) (x, mode, &newx, &newmode)))
2249 {
2250 hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2251 hash_arg_in_memory_p, have_reg_qty, cb);
2252 return hash;
2253 }
2254
2255 code = GET_CODE (x);
2256 switch (code)
2257 {
2258 case REG:
2259 {
2260 unsigned int regno = REGNO (x);
2261
2262 if (do_not_record_p && !reload_completed)
2263 {
2264 /* On some machines, we can't record any non-fixed hard register,
2265 because extending its life will cause reload problems. We
2266 consider ap, fp, sp, gp to be fixed for this purpose.
2267
2268 We also consider CCmode registers to be fixed for this purpose;
2269 failure to do so leads to failure to simplify 0<100 type of
2270 conditionals.
2271
2272 On all machines, we can't record any global registers.
2273 Nor should we record any register that is in a small
2274 class, as defined by TARGET_CLASS_LIKELY_SPILLED_P. */
2275 bool record;
2276
2277 if (regno >= FIRST_PSEUDO_REGISTER)
2278 record = true;
2279 else if (x == frame_pointer_rtx
2280 || x == hard_frame_pointer_rtx
2281 || x == arg_pointer_rtx
2282 || x == stack_pointer_rtx
2283 || x == pic_offset_table_rtx)
2284 record = true;
2285 else if (global_regs[regno])
2286 record = false;
2287 else if (fixed_regs[regno])
2288 record = true;
2289 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2290 record = true;
2291 else if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
2292 record = false;
2293 else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
2294 record = false;
2295 else
2296 record = true;
2297
2298 if (!record)
2299 {
2300 *do_not_record_p = 1;
2301 return 0;
2302 }
2303 }
2304
2305 hash += ((unsigned int) REG << 7);
2306 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2307 return hash;
2308 }
2309
2310 /* We handle SUBREG of a REG specially because the underlying
2311 reg changes its hash value with every value change; we don't
2312 want to have to forget unrelated subregs when one subreg changes. */
2313 case SUBREG:
2314 {
2315 if (REG_P (SUBREG_REG (x)))
2316 {
2317 hash += (((unsigned int) SUBREG << 7)
2318 + REGNO (SUBREG_REG (x))
2319 + (constant_lower_bound (SUBREG_BYTE (x))
2320 / UNITS_PER_WORD));
2321 return hash;
2322 }
2323 break;
2324 }
2325
2326 case CONST_INT:
2327 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2328 + (unsigned int) INTVAL (x));
2329 return hash;
2330
2331 case CONST_WIDE_INT:
2332 for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
2333 hash += CONST_WIDE_INT_ELT (x, i);
2334 return hash;
2335
2336 case CONST_POLY_INT:
2337 {
2338 inchash::hash h;
2339 h.add_int (hash);
2340 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2341 h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
2342 return h.end ();
2343 }
2344
2345 case CONST_DOUBLE:
2346 /* This is like the general case, except that it only counts
2347 the integers representing the constant. */
2348 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2349 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
2350 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2351 + (unsigned int) CONST_DOUBLE_HIGH (x));
2352 else
2353 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2354 return hash;
2355
2356 case CONST_FIXED:
2357 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2358 hash += fixed_hash (CONST_FIXED_VALUE (x));
2359 return hash;
2360
2361 case CONST_VECTOR:
2362 {
2363 int units;
2364 rtx elt;
2365
2366 units = const_vector_encoded_nelts (x);
2367
2368 for (i = 0; i < units; ++i)
2369 {
2370 elt = CONST_VECTOR_ENCODED_ELT (x, i);
2371 hash += hash_rtx_cb (elt, GET_MODE (elt),
2372 do_not_record_p, hash_arg_in_memory_p,
2373 have_reg_qty, cb);
2374 }
2375
2376 return hash;
2377 }
2378
2379 /* Assume there is only one rtx object for any given label. */
2380 case LABEL_REF:
2381 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2382 differences and differences between each stage's debugging dumps. */
2383 hash += (((unsigned int) LABEL_REF << 7)
2384 + CODE_LABEL_NUMBER (label_ref_label (x)));
2385 return hash;
2386
2387 case SYMBOL_REF:
2388 {
2389 /* Don't hash on the symbol's address to avoid bootstrap differences.
2390 Different hash values may cause expressions to be recorded in
2391 different orders and thus different registers to be used in the
2392 final assembler. This also avoids differences in the dump files
2393 between various stages. */
2394 unsigned int h = 0;
2395 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2396
2397 while (*p)
2398 h += (h << 7) + *p++; /* ??? revisit */
2399
2400 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2401 return hash;
2402 }
2403
2404 case MEM:
2405 /* We don't record if marked volatile or if BLKmode since we don't
2406 know the size of the move. */
2407 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2408 {
2409 *do_not_record_p = 1;
2410 return 0;
2411 }
2412 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2413 *hash_arg_in_memory_p = 1;
2414
2415 /* Now that we have already found this special case,
2416 might as well speed it up as much as possible. */
2417 hash += (unsigned) MEM;
2418 x = XEXP (x, 0);
2419 goto repeat;
2420
2421 case USE:
2422 /* A USE that mentions non-volatile memory needs special
2423 handling since the MEM may be BLKmode which normally
2424 prevents an entry from being made. Pure calls are
2425 marked by a USE which mentions BLKmode memory.
2426 See calls.c:emit_call_1. */
2427 if (MEM_P (XEXP (x, 0))
2428 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2429 {
2430 hash += (unsigned) USE;
2431 x = XEXP (x, 0);
2432
2433 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2434 *hash_arg_in_memory_p = 1;
2435
2436 /* Now that we have already found this special case,
2437 might as well speed it up as much as possible. */
2438 hash += (unsigned) MEM;
2439 x = XEXP (x, 0);
2440 goto repeat;
2441 }
2442 break;
2443
2444 case PRE_DEC:
2445 case PRE_INC:
2446 case POST_DEC:
2447 case POST_INC:
2448 case PRE_MODIFY:
2449 case POST_MODIFY:
2450 case PC:
2451 case CC0:
2452 case CALL:
2453 case UNSPEC_VOLATILE:
2454 if (do_not_record_p) {
2455 *do_not_record_p = 1;
2456 return 0;
2457 }
2458 else
2459 return hash;
2460 break;
2461
2462 case ASM_OPERANDS:
2463 if (do_not_record_p && MEM_VOLATILE_P (x))
2464 {
2465 *do_not_record_p = 1;
2466 return 0;
2467 }
2468 else
2469 {
2470 /* We don't want to take the filename and line into account. */
2471 hash += (unsigned) code + (unsigned) GET_MODE (x)
2472 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2473 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2474 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2475
2476 if (ASM_OPERANDS_INPUT_LENGTH (x))
2477 {
2478 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2479 {
2480 hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2481 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2482 do_not_record_p, hash_arg_in_memory_p,
2483 have_reg_qty, cb)
2484 + hash_rtx_string
2485 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2486 }
2487
2488 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2489 x = ASM_OPERANDS_INPUT (x, 0);
2490 mode = GET_MODE (x);
2491 goto repeat;
2492 }
2493
2494 return hash;
2495 }
2496 break;
2497
2498 default:
2499 break;
2500 }
2501
2502 i = GET_RTX_LENGTH (code) - 1;
2503 hash += (unsigned) code + (unsigned) GET_MODE (x);
2504 fmt = GET_RTX_FORMAT (code);
2505 for (; i >= 0; i--)
2506 {
2507 switch (fmt[i])
2508 {
2509 case 'e':
2510 /* If we are about to do the last recursive call
2511 needed at this level, change it into iteration.
2512 This function is called enough to be worth it. */
2513 if (i == 0)
2514 {
2515 x = XEXP (x, i);
2516 goto repeat;
2517 }
2518
2519 hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
2520 hash_arg_in_memory_p,
2521 have_reg_qty, cb);
2522 break;
2523
2524 case 'E':
2525 for (j = 0; j < XVECLEN (x, i); j++)
2526 hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
2527 hash_arg_in_memory_p,
2528 have_reg_qty, cb);
2529 break;
2530
2531 case 's':
2532 hash += hash_rtx_string (XSTR (x, i));
2533 break;
2534
2535 case 'i':
2536 hash += (unsigned int) XINT (x, i);
2537 break;
2538
2539 case 'p':
2540 hash += constant_lower_bound (SUBREG_BYTE (x));
2541 break;
2542
2543 case '0': case 't':
2544 /* Unused. */
2545 break;
2546
2547 default:
2548 gcc_unreachable ();
2549 }
2550 }
2551
2552 return hash;
2553 }
2554
2555 /* Hash an rtx. We are careful to make sure the value is never negative.
2556 Equivalent registers hash identically.
2557 MODE is used in hashing for CONST_INTs only;
2558 otherwise the mode of X is used.
2559
2560 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2561
2562 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2563 a MEM rtx which does not have the MEM_READONLY_P flag set.
2564
2565 Note that cse_insn knows that the hash code of a MEM expression
2566 is just (int) MEM plus the hash code of the address. */
2567
2568 unsigned
2569 hash_rtx (const_rtx x, machine_mode mode, int *do_not_record_p,
2570 int *hash_arg_in_memory_p, bool have_reg_qty)
2571 {
2572 return hash_rtx_cb (x, mode, do_not_record_p,
2573 hash_arg_in_memory_p, have_reg_qty, NULL);
2574 }
2575
2576 /* Hash an rtx X for cse via hash_rtx.
2577 Stores 1 in do_not_record if any subexpression is volatile.
2578 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2579 does not have the MEM_READONLY_P flag set. */
2580
2581 static inline unsigned
2582 canon_hash (rtx x, machine_mode mode)
2583 {
2584 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2585 }
2586
2587 /* Like canon_hash but with no side effects, i.e. do_not_record
2588 and hash_arg_in_memory are not changed. */
2589
2590 static inline unsigned
2591 safe_hash (rtx x, machine_mode mode)
2592 {
2593 int dummy_do_not_record;
2594 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2595 }
2596 \f
2597 /* Return 1 iff X and Y would canonicalize into the same thing,
2598 without actually constructing the canonicalization of either one.
2599 If VALIDATE is nonzero,
2600 we assume X is an expression being processed from the rtl
2601 and Y was found in the hash table. We check register refs
2602 in Y for being marked as valid.
2603
2604 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2605
2606 int
2607 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2608 {
2609 int i, j;
2610 enum rtx_code code;
2611 const char *fmt;
2612
2613 /* Note: it is incorrect to assume an expression is equivalent to itself
2614 if VALIDATE is nonzero. */
2615 if (x == y && !validate)
2616 return 1;
2617
2618 if (x == 0 || y == 0)
2619 return x == y;
2620
2621 code = GET_CODE (x);
2622 if (code != GET_CODE (y))
2623 return 0;
2624
2625 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2626 if (GET_MODE (x) != GET_MODE (y))
2627 return 0;
2628
2629 /* MEMs referring to different address space are not equivalent. */
2630 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2631 return 0;
2632
2633 switch (code)
2634 {
2635 case PC:
2636 case CC0:
2637 CASE_CONST_UNIQUE:
2638 return x == y;
2639
2640 case CONST_VECTOR:
2641 if (!same_vector_encodings_p (x, y))
2642 return false;
2643 break;
2644
2645 case LABEL_REF:
2646 return label_ref_label (x) == label_ref_label (y);
2647
2648 case SYMBOL_REF:
2649 return XSTR (x, 0) == XSTR (y, 0);
2650
2651 case REG:
2652 if (for_gcse)
2653 return REGNO (x) == REGNO (y);
2654 else
2655 {
2656 unsigned int regno = REGNO (y);
2657 unsigned int i;
2658 unsigned int endregno = END_REGNO (y);
2659
2660 /* If the quantities are not the same, the expressions are not
2661 equivalent. If there are and we are not to validate, they
2662 are equivalent. Otherwise, ensure all regs are up-to-date. */
2663
2664 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2665 return 0;
2666
2667 if (! validate)
2668 return 1;
2669
2670 for (i = regno; i < endregno; i++)
2671 if (REG_IN_TABLE (i) != REG_TICK (i))
2672 return 0;
2673
2674 return 1;
2675 }
2676
2677 case MEM:
2678 if (for_gcse)
2679 {
2680 /* A volatile mem should not be considered equivalent to any
2681 other. */
2682 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2683 return 0;
2684
2685 /* Can't merge two expressions in different alias sets, since we
2686 can decide that the expression is transparent in a block when
2687 it isn't, due to it being set with the different alias set.
2688
2689 Also, can't merge two expressions with different MEM_ATTRS.
2690 They could e.g. be two different entities allocated into the
2691 same space on the stack (see e.g. PR25130). In that case, the
2692 MEM addresses can be the same, even though the two MEMs are
2693 absolutely not equivalent.
2694
2695 But because really all MEM attributes should be the same for
2696 equivalent MEMs, we just use the invariant that MEMs that have
2697 the same attributes share the same mem_attrs data structure. */
2698 if (!mem_attrs_eq_p (MEM_ATTRS (x), MEM_ATTRS (y)))
2699 return 0;
2700
2701 /* If we are handling exceptions, we cannot consider two expressions
2702 with different trapping status as equivalent, because simple_mem
2703 might accept one and reject the other. */
2704 if (cfun->can_throw_non_call_exceptions
2705 && (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y)))
2706 return 0;
2707 }
2708 break;
2709
2710 /* For commutative operations, check both orders. */
2711 case PLUS:
2712 case MULT:
2713 case AND:
2714 case IOR:
2715 case XOR:
2716 case NE:
2717 case EQ:
2718 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2719 validate, for_gcse)
2720 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2721 validate, for_gcse))
2722 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2723 validate, for_gcse)
2724 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2725 validate, for_gcse)));
2726
2727 case ASM_OPERANDS:
2728 /* We don't use the generic code below because we want to
2729 disregard filename and line numbers. */
2730
2731 /* A volatile asm isn't equivalent to any other. */
2732 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2733 return 0;
2734
2735 if (GET_MODE (x) != GET_MODE (y)
2736 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2737 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2738 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2739 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2740 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2741 return 0;
2742
2743 if (ASM_OPERANDS_INPUT_LENGTH (x))
2744 {
2745 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2746 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2747 ASM_OPERANDS_INPUT (y, i),
2748 validate, for_gcse)
2749 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2750 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2751 return 0;
2752 }
2753
2754 return 1;
2755
2756 default:
2757 break;
2758 }
2759
2760 /* Compare the elements. If any pair of corresponding elements
2761 fail to match, return 0 for the whole thing. */
2762
2763 fmt = GET_RTX_FORMAT (code);
2764 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2765 {
2766 switch (fmt[i])
2767 {
2768 case 'e':
2769 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2770 validate, for_gcse))
2771 return 0;
2772 break;
2773
2774 case 'E':
2775 if (XVECLEN (x, i) != XVECLEN (y, i))
2776 return 0;
2777 for (j = 0; j < XVECLEN (x, i); j++)
2778 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2779 validate, for_gcse))
2780 return 0;
2781 break;
2782
2783 case 's':
2784 if (strcmp (XSTR (x, i), XSTR (y, i)))
2785 return 0;
2786 break;
2787
2788 case 'i':
2789 if (XINT (x, i) != XINT (y, i))
2790 return 0;
2791 break;
2792
2793 case 'w':
2794 if (XWINT (x, i) != XWINT (y, i))
2795 return 0;
2796 break;
2797
2798 case 'p':
2799 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
2800 return 0;
2801 break;
2802
2803 case '0':
2804 case 't':
2805 break;
2806
2807 default:
2808 gcc_unreachable ();
2809 }
2810 }
2811
2812 return 1;
2813 }
2814 \f
2815 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2816 the result if necessary. INSN is as for canon_reg. */
2817
2818 static void
2819 validate_canon_reg (rtx *xloc, rtx_insn *insn)
2820 {
2821 if (*xloc)
2822 {
2823 rtx new_rtx = canon_reg (*xloc, insn);
2824
2825 /* If replacing pseudo with hard reg or vice versa, ensure the
2826 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2827 gcc_assert (insn && new_rtx);
2828 validate_change (insn, xloc, new_rtx, 1);
2829 }
2830 }
2831
2832 /* Canonicalize an expression:
2833 replace each register reference inside it
2834 with the "oldest" equivalent register.
2835
2836 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2837 after we make our substitution. The calls are made with IN_GROUP nonzero
2838 so apply_change_group must be called upon the outermost return from this
2839 function (unless INSN is zero). The result of apply_change_group can
2840 generally be discarded since the changes we are making are optional. */
2841
2842 static rtx
2843 canon_reg (rtx x, rtx_insn *insn)
2844 {
2845 int i;
2846 enum rtx_code code;
2847 const char *fmt;
2848
2849 if (x == 0)
2850 return x;
2851
2852 code = GET_CODE (x);
2853 switch (code)
2854 {
2855 case PC:
2856 case CC0:
2857 case CONST:
2858 CASE_CONST_ANY:
2859 case SYMBOL_REF:
2860 case LABEL_REF:
2861 case ADDR_VEC:
2862 case ADDR_DIFF_VEC:
2863 return x;
2864
2865 case REG:
2866 {
2867 int first;
2868 int q;
2869 struct qty_table_elem *ent;
2870
2871 /* Never replace a hard reg, because hard regs can appear
2872 in more than one machine mode, and we must preserve the mode
2873 of each occurrence. Also, some hard regs appear in
2874 MEMs that are shared and mustn't be altered. Don't try to
2875 replace any reg that maps to a reg of class NO_REGS. */
2876 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2877 || ! REGNO_QTY_VALID_P (REGNO (x)))
2878 return x;
2879
2880 q = REG_QTY (REGNO (x));
2881 ent = &qty_table[q];
2882 first = ent->first_reg;
2883 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2884 : REGNO_REG_CLASS (first) == NO_REGS ? x
2885 : gen_rtx_REG (ent->mode, first));
2886 }
2887
2888 default:
2889 break;
2890 }
2891
2892 fmt = GET_RTX_FORMAT (code);
2893 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2894 {
2895 int j;
2896
2897 if (fmt[i] == 'e')
2898 validate_canon_reg (&XEXP (x, i), insn);
2899 else if (fmt[i] == 'E')
2900 for (j = 0; j < XVECLEN (x, i); j++)
2901 validate_canon_reg (&XVECEXP (x, i, j), insn);
2902 }
2903
2904 return x;
2905 }
2906 \f
2907 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2908 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2909 what values are being compared.
2910
2911 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2912 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2913 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2914 compared to produce cc0.
2915
2916 The return value is the comparison operator and is either the code of
2917 A or the code corresponding to the inverse of the comparison. */
2918
2919 static enum rtx_code
2920 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2921 machine_mode *pmode1, machine_mode *pmode2)
2922 {
2923 rtx arg1, arg2;
2924 hash_set<rtx> *visited = NULL;
2925 /* Set nonzero when we find something of interest. */
2926 rtx x = NULL;
2927
2928 arg1 = *parg1, arg2 = *parg2;
2929
2930 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2931
2932 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2933 {
2934 int reverse_code = 0;
2935 struct table_elt *p = 0;
2936
2937 /* Remember state from previous iteration. */
2938 if (x)
2939 {
2940 if (!visited)
2941 visited = new hash_set<rtx>;
2942 visited->add (x);
2943 x = 0;
2944 }
2945
2946 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2947 On machines with CC0, this is the only case that can occur, since
2948 fold_rtx will return the COMPARE or item being compared with zero
2949 when given CC0. */
2950
2951 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2952 x = arg1;
2953
2954 /* If ARG1 is a comparison operator and CODE is testing for
2955 STORE_FLAG_VALUE, get the inner arguments. */
2956
2957 else if (COMPARISON_P (arg1))
2958 {
2959 #ifdef FLOAT_STORE_FLAG_VALUE
2960 REAL_VALUE_TYPE fsfv;
2961 #endif
2962
2963 if (code == NE
2964 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2965 && code == LT && STORE_FLAG_VALUE == -1)
2966 #ifdef FLOAT_STORE_FLAG_VALUE
2967 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2968 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2969 REAL_VALUE_NEGATIVE (fsfv)))
2970 #endif
2971 )
2972 x = arg1;
2973 else if (code == EQ
2974 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2975 && code == GE && STORE_FLAG_VALUE == -1)
2976 #ifdef FLOAT_STORE_FLAG_VALUE
2977 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2978 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2979 REAL_VALUE_NEGATIVE (fsfv)))
2980 #endif
2981 )
2982 x = arg1, reverse_code = 1;
2983 }
2984
2985 /* ??? We could also check for
2986
2987 (ne (and (eq (...) (const_int 1))) (const_int 0))
2988
2989 and related forms, but let's wait until we see them occurring. */
2990
2991 if (x == 0)
2992 /* Look up ARG1 in the hash table and see if it has an equivalence
2993 that lets us see what is being compared. */
2994 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2995 if (p)
2996 {
2997 p = p->first_same_value;
2998
2999 /* If what we compare is already known to be constant, that is as
3000 good as it gets.
3001 We need to break the loop in this case, because otherwise we
3002 can have an infinite loop when looking at a reg that is known
3003 to be a constant which is the same as a comparison of a reg
3004 against zero which appears later in the insn stream, which in
3005 turn is constant and the same as the comparison of the first reg
3006 against zero... */
3007 if (p->is_const)
3008 break;
3009 }
3010
3011 for (; p; p = p->next_same_value)
3012 {
3013 machine_mode inner_mode = GET_MODE (p->exp);
3014 #ifdef FLOAT_STORE_FLAG_VALUE
3015 REAL_VALUE_TYPE fsfv;
3016 #endif
3017
3018 /* If the entry isn't valid, skip it. */
3019 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3020 continue;
3021
3022 /* If it's a comparison we've used before, skip it. */
3023 if (visited && visited->contains (p->exp))
3024 continue;
3025
3026 if (GET_CODE (p->exp) == COMPARE
3027 /* Another possibility is that this machine has a compare insn
3028 that includes the comparison code. In that case, ARG1 would
3029 be equivalent to a comparison operation that would set ARG1 to
3030 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3031 ORIG_CODE is the actual comparison being done; if it is an EQ,
3032 we must reverse ORIG_CODE. On machine with a negative value
3033 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3034 || ((code == NE
3035 || (code == LT
3036 && val_signbit_known_set_p (inner_mode,
3037 STORE_FLAG_VALUE))
3038 #ifdef FLOAT_STORE_FLAG_VALUE
3039 || (code == LT
3040 && SCALAR_FLOAT_MODE_P (inner_mode)
3041 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3042 REAL_VALUE_NEGATIVE (fsfv)))
3043 #endif
3044 )
3045 && COMPARISON_P (p->exp)))
3046 {
3047 x = p->exp;
3048 break;
3049 }
3050 else if ((code == EQ
3051 || (code == GE
3052 && val_signbit_known_set_p (inner_mode,
3053 STORE_FLAG_VALUE))
3054 #ifdef FLOAT_STORE_FLAG_VALUE
3055 || (code == GE
3056 && SCALAR_FLOAT_MODE_P (inner_mode)
3057 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3058 REAL_VALUE_NEGATIVE (fsfv)))
3059 #endif
3060 )
3061 && COMPARISON_P (p->exp))
3062 {
3063 reverse_code = 1;
3064 x = p->exp;
3065 break;
3066 }
3067
3068 /* If this non-trapping address, e.g. fp + constant, the
3069 equivalent is a better operand since it may let us predict
3070 the value of the comparison. */
3071 else if (!rtx_addr_can_trap_p (p->exp))
3072 {
3073 arg1 = p->exp;
3074 continue;
3075 }
3076 }
3077
3078 /* If we didn't find a useful equivalence for ARG1, we are done.
3079 Otherwise, set up for the next iteration. */
3080 if (x == 0)
3081 break;
3082
3083 /* If we need to reverse the comparison, make sure that is
3084 possible -- we can't necessarily infer the value of GE from LT
3085 with floating-point operands. */
3086 if (reverse_code)
3087 {
3088 enum rtx_code reversed = reversed_comparison_code (x, NULL);
3089 if (reversed == UNKNOWN)
3090 break;
3091 else
3092 code = reversed;
3093 }
3094 else if (COMPARISON_P (x))
3095 code = GET_CODE (x);
3096 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3097 }
3098
3099 /* Return our results. Return the modes from before fold_rtx
3100 because fold_rtx might produce const_int, and then it's too late. */
3101 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3102 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3103
3104 if (visited)
3105 delete visited;
3106 return code;
3107 }
3108 \f
3109 /* If X is a nontrivial arithmetic operation on an argument for which
3110 a constant value can be determined, return the result of operating
3111 on that value, as a constant. Otherwise, return X, possibly with
3112 one or more operands changed to a forward-propagated constant.
3113
3114 If X is a register whose contents are known, we do NOT return
3115 those contents here; equiv_constant is called to perform that task.
3116 For SUBREGs and MEMs, we do that both here and in equiv_constant.
3117
3118 INSN is the insn that we may be modifying. If it is 0, make a copy
3119 of X before modifying it. */
3120
3121 static rtx
3122 fold_rtx (rtx x, rtx_insn *insn)
3123 {
3124 enum rtx_code code;
3125 machine_mode mode;
3126 const char *fmt;
3127 int i;
3128 rtx new_rtx = 0;
3129 int changed = 0;
3130 poly_int64 xval;
3131
3132 /* Operands of X. */
3133 /* Workaround -Wmaybe-uninitialized false positive during
3134 profiledbootstrap by initializing them. */
3135 rtx folded_arg0 = NULL_RTX;
3136 rtx folded_arg1 = NULL_RTX;
3137
3138 /* Constant equivalents of first three operands of X;
3139 0 when no such equivalent is known. */
3140 rtx const_arg0;
3141 rtx const_arg1;
3142 rtx const_arg2;
3143
3144 /* The mode of the first operand of X. We need this for sign and zero
3145 extends. */
3146 machine_mode mode_arg0;
3147
3148 if (x == 0)
3149 return x;
3150
3151 /* Try to perform some initial simplifications on X. */
3152 code = GET_CODE (x);
3153 switch (code)
3154 {
3155 case MEM:
3156 case SUBREG:
3157 /* The first operand of a SIGN/ZERO_EXTRACT has a different meaning
3158 than it would in other contexts. Basically its mode does not
3159 signify the size of the object read. That information is carried
3160 by size operand. If we happen to have a MEM of the appropriate
3161 mode in our tables with a constant value we could simplify the
3162 extraction incorrectly if we allowed substitution of that value
3163 for the MEM. */
3164 case ZERO_EXTRACT:
3165 case SIGN_EXTRACT:
3166 if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3167 return new_rtx;
3168 return x;
3169
3170 case CONST:
3171 CASE_CONST_ANY:
3172 case SYMBOL_REF:
3173 case LABEL_REF:
3174 case REG:
3175 case PC:
3176 /* No use simplifying an EXPR_LIST
3177 since they are used only for lists of args
3178 in a function call's REG_EQUAL note. */
3179 case EXPR_LIST:
3180 return x;
3181
3182 case CC0:
3183 return prev_insn_cc0;
3184
3185 case ASM_OPERANDS:
3186 if (insn)
3187 {
3188 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3189 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3190 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3191 }
3192 return x;
3193
3194 case CALL:
3195 if (NO_FUNCTION_CSE && CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3196 return x;
3197 break;
3198
3199 /* Anything else goes through the loop below. */
3200 default:
3201 break;
3202 }
3203
3204 mode = GET_MODE (x);
3205 const_arg0 = 0;
3206 const_arg1 = 0;
3207 const_arg2 = 0;
3208 mode_arg0 = VOIDmode;
3209
3210 /* Try folding our operands.
3211 Then see which ones have constant values known. */
3212
3213 fmt = GET_RTX_FORMAT (code);
3214 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3215 if (fmt[i] == 'e')
3216 {
3217 rtx folded_arg = XEXP (x, i), const_arg;
3218 machine_mode mode_arg = GET_MODE (folded_arg);
3219
3220 switch (GET_CODE (folded_arg))
3221 {
3222 case MEM:
3223 case REG:
3224 case SUBREG:
3225 const_arg = equiv_constant (folded_arg);
3226 break;
3227
3228 case CONST:
3229 CASE_CONST_ANY:
3230 case SYMBOL_REF:
3231 case LABEL_REF:
3232 const_arg = folded_arg;
3233 break;
3234
3235 case CC0:
3236 /* The cc0-user and cc0-setter may be in different blocks if
3237 the cc0-setter potentially traps. In that case PREV_INSN_CC0
3238 will have been cleared as we exited the block with the
3239 setter.
3240
3241 While we could potentially track cc0 in this case, it just
3242 doesn't seem to be worth it given that cc0 targets are not
3243 terribly common or important these days and trapping math
3244 is rarely used. The combination of those two conditions
3245 necessary to trip this situation is exceedingly rare in the
3246 real world. */
3247 if (!prev_insn_cc0)
3248 {
3249 const_arg = NULL_RTX;
3250 }
3251 else
3252 {
3253 folded_arg = prev_insn_cc0;
3254 mode_arg = prev_insn_cc0_mode;
3255 const_arg = equiv_constant (folded_arg);
3256 }
3257 break;
3258
3259 default:
3260 folded_arg = fold_rtx (folded_arg, insn);
3261 const_arg = equiv_constant (folded_arg);
3262 break;
3263 }
3264
3265 /* For the first three operands, see if the operand
3266 is constant or equivalent to a constant. */
3267 switch (i)
3268 {
3269 case 0:
3270 folded_arg0 = folded_arg;
3271 const_arg0 = const_arg;
3272 mode_arg0 = mode_arg;
3273 break;
3274 case 1:
3275 folded_arg1 = folded_arg;
3276 const_arg1 = const_arg;
3277 break;
3278 case 2:
3279 const_arg2 = const_arg;
3280 break;
3281 }
3282
3283 /* Pick the least expensive of the argument and an equivalent constant
3284 argument. */
3285 if (const_arg != 0
3286 && const_arg != folded_arg
3287 && (COST_IN (const_arg, mode_arg, code, i)
3288 <= COST_IN (folded_arg, mode_arg, code, i))
3289
3290 /* It's not safe to substitute the operand of a conversion
3291 operator with a constant, as the conversion's identity
3292 depends upon the mode of its operand. This optimization
3293 is handled by the call to simplify_unary_operation. */
3294 && (GET_RTX_CLASS (code) != RTX_UNARY
3295 || GET_MODE (const_arg) == mode_arg0
3296 || (code != ZERO_EXTEND
3297 && code != SIGN_EXTEND
3298 && code != TRUNCATE
3299 && code != FLOAT_TRUNCATE
3300 && code != FLOAT_EXTEND
3301 && code != FLOAT
3302 && code != FIX
3303 && code != UNSIGNED_FLOAT
3304 && code != UNSIGNED_FIX)))
3305 folded_arg = const_arg;
3306
3307 if (folded_arg == XEXP (x, i))
3308 continue;
3309
3310 if (insn == NULL_RTX && !changed)
3311 x = copy_rtx (x);
3312 changed = 1;
3313 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3314 }
3315
3316 if (changed)
3317 {
3318 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3319 consistent with the order in X. */
3320 if (canonicalize_change_group (insn, x))
3321 {
3322 std::swap (const_arg0, const_arg1);
3323 std::swap (folded_arg0, folded_arg1);
3324 }
3325
3326 apply_change_group ();
3327 }
3328
3329 /* If X is an arithmetic operation, see if we can simplify it. */
3330
3331 switch (GET_RTX_CLASS (code))
3332 {
3333 case RTX_UNARY:
3334 {
3335 /* We can't simplify extension ops unless we know the
3336 original mode. */
3337 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3338 && mode_arg0 == VOIDmode)
3339 break;
3340
3341 new_rtx = simplify_unary_operation (code, mode,
3342 const_arg0 ? const_arg0 : folded_arg0,
3343 mode_arg0);
3344 }
3345 break;
3346
3347 case RTX_COMPARE:
3348 case RTX_COMM_COMPARE:
3349 /* See what items are actually being compared and set FOLDED_ARG[01]
3350 to those values and CODE to the actual comparison code. If any are
3351 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3352 do anything if both operands are already known to be constant. */
3353
3354 /* ??? Vector mode comparisons are not supported yet. */
3355 if (VECTOR_MODE_P (mode))
3356 break;
3357
3358 if (const_arg0 == 0 || const_arg1 == 0)
3359 {
3360 struct table_elt *p0, *p1;
3361 rtx true_rtx, false_rtx;
3362 machine_mode mode_arg1;
3363
3364 if (SCALAR_FLOAT_MODE_P (mode))
3365 {
3366 #ifdef FLOAT_STORE_FLAG_VALUE
3367 true_rtx = (const_double_from_real_value
3368 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3369 #else
3370 true_rtx = NULL_RTX;
3371 #endif
3372 false_rtx = CONST0_RTX (mode);
3373 }
3374 else
3375 {
3376 true_rtx = const_true_rtx;
3377 false_rtx = const0_rtx;
3378 }
3379
3380 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3381 &mode_arg0, &mode_arg1);
3382
3383 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3384 what kinds of things are being compared, so we can't do
3385 anything with this comparison. */
3386
3387 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3388 break;
3389
3390 const_arg0 = equiv_constant (folded_arg0);
3391 const_arg1 = equiv_constant (folded_arg1);
3392
3393 /* If we do not now have two constants being compared, see
3394 if we can nevertheless deduce some things about the
3395 comparison. */
3396 if (const_arg0 == 0 || const_arg1 == 0)
3397 {
3398 if (const_arg1 != NULL)
3399 {
3400 rtx cheapest_simplification;
3401 int cheapest_cost;
3402 rtx simp_result;
3403 struct table_elt *p;
3404
3405 /* See if we can find an equivalent of folded_arg0
3406 that gets us a cheaper expression, possibly a
3407 constant through simplifications. */
3408 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3409 mode_arg0);
3410
3411 if (p != NULL)
3412 {
3413 cheapest_simplification = x;
3414 cheapest_cost = COST (x, mode);
3415
3416 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3417 {
3418 int cost;
3419
3420 /* If the entry isn't valid, skip it. */
3421 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3422 continue;
3423
3424 /* Try to simplify using this equivalence. */
3425 simp_result
3426 = simplify_relational_operation (code, mode,
3427 mode_arg0,
3428 p->exp,
3429 const_arg1);
3430
3431 if (simp_result == NULL)
3432 continue;
3433
3434 cost = COST (simp_result, mode);
3435 if (cost < cheapest_cost)
3436 {
3437 cheapest_cost = cost;
3438 cheapest_simplification = simp_result;
3439 }
3440 }
3441
3442 /* If we have a cheaper expression now, use that
3443 and try folding it further, from the top. */
3444 if (cheapest_simplification != x)
3445 return fold_rtx (copy_rtx (cheapest_simplification),
3446 insn);
3447 }
3448 }
3449
3450 /* See if the two operands are the same. */
3451
3452 if ((REG_P (folded_arg0)
3453 && REG_P (folded_arg1)
3454 && (REG_QTY (REGNO (folded_arg0))
3455 == REG_QTY (REGNO (folded_arg1))))
3456 || ((p0 = lookup (folded_arg0,
3457 SAFE_HASH (folded_arg0, mode_arg0),
3458 mode_arg0))
3459 && (p1 = lookup (folded_arg1,
3460 SAFE_HASH (folded_arg1, mode_arg0),
3461 mode_arg0))
3462 && p0->first_same_value == p1->first_same_value))
3463 folded_arg1 = folded_arg0;
3464
3465 /* If FOLDED_ARG0 is a register, see if the comparison we are
3466 doing now is either the same as we did before or the reverse
3467 (we only check the reverse if not floating-point). */
3468 else if (REG_P (folded_arg0))
3469 {
3470 int qty = REG_QTY (REGNO (folded_arg0));
3471
3472 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3473 {
3474 struct qty_table_elem *ent = &qty_table[qty];
3475
3476 if ((comparison_dominates_p (ent->comparison_code, code)
3477 || (! FLOAT_MODE_P (mode_arg0)
3478 && comparison_dominates_p (ent->comparison_code,
3479 reverse_condition (code))))
3480 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3481 || (const_arg1
3482 && rtx_equal_p (ent->comparison_const,
3483 const_arg1))
3484 || (REG_P (folded_arg1)
3485 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3486 {
3487 if (comparison_dominates_p (ent->comparison_code, code))
3488 {
3489 if (true_rtx)
3490 return true_rtx;
3491 else
3492 break;
3493 }
3494 else
3495 return false_rtx;
3496 }
3497 }
3498 }
3499 }
3500 }
3501
3502 /* If we are comparing against zero, see if the first operand is
3503 equivalent to an IOR with a constant. If so, we may be able to
3504 determine the result of this comparison. */
3505 if (const_arg1 == const0_rtx && !const_arg0)
3506 {
3507 rtx y = lookup_as_function (folded_arg0, IOR);
3508 rtx inner_const;
3509
3510 if (y != 0
3511 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3512 && CONST_INT_P (inner_const)
3513 && INTVAL (inner_const) != 0)
3514 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3515 }
3516
3517 {
3518 rtx op0 = const_arg0 ? const_arg0 : copy_rtx (folded_arg0);
3519 rtx op1 = const_arg1 ? const_arg1 : copy_rtx (folded_arg1);
3520 new_rtx = simplify_relational_operation (code, mode, mode_arg0,
3521 op0, op1);
3522 }
3523 break;
3524
3525 case RTX_BIN_ARITH:
3526 case RTX_COMM_ARITH:
3527 switch (code)
3528 {
3529 case PLUS:
3530 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3531 with that LABEL_REF as its second operand. If so, the result is
3532 the first operand of that MINUS. This handles switches with an
3533 ADDR_DIFF_VEC table. */
3534 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3535 {
3536 rtx y
3537 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3538 : lookup_as_function (folded_arg0, MINUS);
3539
3540 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3541 && label_ref_label (XEXP (y, 1)) == label_ref_label (const_arg1))
3542 return XEXP (y, 0);
3543
3544 /* Now try for a CONST of a MINUS like the above. */
3545 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3546 : lookup_as_function (folded_arg0, CONST))) != 0
3547 && GET_CODE (XEXP (y, 0)) == MINUS
3548 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3549 && label_ref_label (XEXP (XEXP (y, 0), 1)) == label_ref_label (const_arg1))
3550 return XEXP (XEXP (y, 0), 0);
3551 }
3552
3553 /* Likewise if the operands are in the other order. */
3554 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3555 {
3556 rtx y
3557 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3558 : lookup_as_function (folded_arg1, MINUS);
3559
3560 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3561 && label_ref_label (XEXP (y, 1)) == label_ref_label (const_arg0))
3562 return XEXP (y, 0);
3563
3564 /* Now try for a CONST of a MINUS like the above. */
3565 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3566 : lookup_as_function (folded_arg1, CONST))) != 0
3567 && GET_CODE (XEXP (y, 0)) == MINUS
3568 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3569 && label_ref_label (XEXP (XEXP (y, 0), 1)) == label_ref_label (const_arg0))
3570 return XEXP (XEXP (y, 0), 0);
3571 }
3572
3573 /* If second operand is a register equivalent to a negative
3574 CONST_INT, see if we can find a register equivalent to the
3575 positive constant. Make a MINUS if so. Don't do this for
3576 a non-negative constant since we might then alternate between
3577 choosing positive and negative constants. Having the positive
3578 constant previously-used is the more common case. Be sure
3579 the resulting constant is non-negative; if const_arg1 were
3580 the smallest negative number this would overflow: depending
3581 on the mode, this would either just be the same value (and
3582 hence not save anything) or be incorrect. */
3583 if (const_arg1 != 0 && CONST_INT_P (const_arg1)
3584 && INTVAL (const_arg1) < 0
3585 /* This used to test
3586
3587 -INTVAL (const_arg1) >= 0
3588
3589 But The Sun V5.0 compilers mis-compiled that test. So
3590 instead we test for the problematic value in a more direct
3591 manner and hope the Sun compilers get it correct. */
3592 && INTVAL (const_arg1) !=
3593 (HOST_WIDE_INT_1 << (HOST_BITS_PER_WIDE_INT - 1))
3594 && REG_P (folded_arg1))
3595 {
3596 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3597 struct table_elt *p
3598 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3599
3600 if (p)
3601 for (p = p->first_same_value; p; p = p->next_same_value)
3602 if (REG_P (p->exp))
3603 return simplify_gen_binary (MINUS, mode, folded_arg0,
3604 canon_reg (p->exp, NULL));
3605 }
3606 goto from_plus;
3607
3608 case MINUS:
3609 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3610 If so, produce (PLUS Z C2-C). */
3611 if (const_arg1 != 0 && poly_int_rtx_p (const_arg1, &xval))
3612 {
3613 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3614 if (y && poly_int_rtx_p (XEXP (y, 1)))
3615 return fold_rtx (plus_constant (mode, copy_rtx (y), -xval),
3616 NULL);
3617 }
3618
3619 /* Fall through. */
3620
3621 from_plus:
3622 case SMIN: case SMAX: case UMIN: case UMAX:
3623 case IOR: case AND: case XOR:
3624 case MULT:
3625 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3626 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3627 is known to be of similar form, we may be able to replace the
3628 operation with a combined operation. This may eliminate the
3629 intermediate operation if every use is simplified in this way.
3630 Note that the similar optimization done by combine.c only works
3631 if the intermediate operation's result has only one reference. */
3632
3633 if (REG_P (folded_arg0)
3634 && const_arg1 && CONST_INT_P (const_arg1))
3635 {
3636 int is_shift
3637 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3638 rtx y, inner_const, new_const;
3639 rtx canon_const_arg1 = const_arg1;
3640 enum rtx_code associate_code;
3641
3642 if (is_shift
3643 && (INTVAL (const_arg1) >= GET_MODE_UNIT_PRECISION (mode)
3644 || INTVAL (const_arg1) < 0))
3645 {
3646 if (SHIFT_COUNT_TRUNCATED)
3647 canon_const_arg1 = gen_int_shift_amount
3648 (mode, (INTVAL (const_arg1)
3649 & (GET_MODE_UNIT_BITSIZE (mode) - 1)));
3650 else
3651 break;
3652 }
3653
3654 y = lookup_as_function (folded_arg0, code);
3655 if (y == 0)
3656 break;
3657
3658 /* If we have compiled a statement like
3659 "if (x == (x & mask1))", and now are looking at
3660 "x & mask2", we will have a case where the first operand
3661 of Y is the same as our first operand. Unless we detect
3662 this case, an infinite loop will result. */
3663 if (XEXP (y, 0) == folded_arg0)
3664 break;
3665
3666 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3667 if (!inner_const || !CONST_INT_P (inner_const))
3668 break;
3669
3670 /* Don't associate these operations if they are a PLUS with the
3671 same constant and it is a power of two. These might be doable
3672 with a pre- or post-increment. Similarly for two subtracts of
3673 identical powers of two with post decrement. */
3674
3675 if (code == PLUS && const_arg1 == inner_const
3676 && ((HAVE_PRE_INCREMENT
3677 && pow2p_hwi (INTVAL (const_arg1)))
3678 || (HAVE_POST_INCREMENT
3679 && pow2p_hwi (INTVAL (const_arg1)))
3680 || (HAVE_PRE_DECREMENT
3681 && pow2p_hwi (- INTVAL (const_arg1)))
3682 || (HAVE_POST_DECREMENT
3683 && pow2p_hwi (- INTVAL (const_arg1)))))
3684 break;
3685
3686 /* ??? Vector mode shifts by scalar
3687 shift operand are not supported yet. */
3688 if (is_shift && VECTOR_MODE_P (mode))
3689 break;
3690
3691 if (is_shift
3692 && (INTVAL (inner_const) >= GET_MODE_UNIT_PRECISION (mode)
3693 || INTVAL (inner_const) < 0))
3694 {
3695 if (SHIFT_COUNT_TRUNCATED)
3696 inner_const = gen_int_shift_amount
3697 (mode, (INTVAL (inner_const)
3698 & (GET_MODE_UNIT_BITSIZE (mode) - 1)));
3699 else
3700 break;
3701 }
3702
3703 /* Compute the code used to compose the constants. For example,
3704 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3705
3706 associate_code = (is_shift || code == MINUS ? PLUS : code);
3707
3708 new_const = simplify_binary_operation (associate_code, mode,
3709 canon_const_arg1,
3710 inner_const);
3711
3712 if (new_const == 0)
3713 break;
3714
3715 /* If we are associating shift operations, don't let this
3716 produce a shift of the size of the object or larger.
3717 This could occur when we follow a sign-extend by a right
3718 shift on a machine that does a sign-extend as a pair
3719 of shifts. */
3720
3721 if (is_shift
3722 && CONST_INT_P (new_const)
3723 && INTVAL (new_const) >= GET_MODE_UNIT_PRECISION (mode))
3724 {
3725 /* As an exception, we can turn an ASHIFTRT of this
3726 form into a shift of the number of bits - 1. */
3727 if (code == ASHIFTRT)
3728 new_const = gen_int_shift_amount
3729 (mode, GET_MODE_UNIT_BITSIZE (mode) - 1);
3730 else if (!side_effects_p (XEXP (y, 0)))
3731 return CONST0_RTX (mode);
3732 else
3733 break;
3734 }
3735
3736 y = copy_rtx (XEXP (y, 0));
3737
3738 /* If Y contains our first operand (the most common way this
3739 can happen is if Y is a MEM), we would do into an infinite
3740 loop if we tried to fold it. So don't in that case. */
3741
3742 if (! reg_mentioned_p (folded_arg0, y))
3743 y = fold_rtx (y, insn);
3744
3745 return simplify_gen_binary (code, mode, y, new_const);
3746 }
3747 break;
3748
3749 case DIV: case UDIV:
3750 /* ??? The associative optimization performed immediately above is
3751 also possible for DIV and UDIV using associate_code of MULT.
3752 However, we would need extra code to verify that the
3753 multiplication does not overflow, that is, there is no overflow
3754 in the calculation of new_const. */
3755 break;
3756
3757 default:
3758 break;
3759 }
3760
3761 new_rtx = simplify_binary_operation (code, mode,
3762 const_arg0 ? const_arg0 : folded_arg0,
3763 const_arg1 ? const_arg1 : folded_arg1);
3764 break;
3765
3766 case RTX_OBJ:
3767 /* (lo_sum (high X) X) is simply X. */
3768 if (code == LO_SUM && const_arg0 != 0
3769 && GET_CODE (const_arg0) == HIGH
3770 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3771 return const_arg1;
3772 break;
3773
3774 case RTX_TERNARY:
3775 case RTX_BITFIELD_OPS:
3776 new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
3777 const_arg0 ? const_arg0 : folded_arg0,
3778 const_arg1 ? const_arg1 : folded_arg1,
3779 const_arg2 ? const_arg2 : XEXP (x, 2));
3780 break;
3781
3782 default:
3783 break;
3784 }
3785
3786 return new_rtx ? new_rtx : x;
3787 }
3788 \f
3789 /* Return a constant value currently equivalent to X.
3790 Return 0 if we don't know one. */
3791
3792 static rtx
3793 equiv_constant (rtx x)
3794 {
3795 if (REG_P (x)
3796 && REGNO_QTY_VALID_P (REGNO (x)))
3797 {
3798 int x_q = REG_QTY (REGNO (x));
3799 struct qty_table_elem *x_ent = &qty_table[x_q];
3800
3801 if (x_ent->const_rtx)
3802 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3803 }
3804
3805 if (x == 0 || CONSTANT_P (x))
3806 return x;
3807
3808 if (GET_CODE (x) == SUBREG)
3809 {
3810 machine_mode mode = GET_MODE (x);
3811 machine_mode imode = GET_MODE (SUBREG_REG (x));
3812 rtx new_rtx;
3813
3814 /* See if we previously assigned a constant value to this SUBREG. */
3815 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
3816 || (new_rtx = lookup_as_function (x, CONST_WIDE_INT)) != 0
3817 || (NUM_POLY_INT_COEFFS > 1
3818 && (new_rtx = lookup_as_function (x, CONST_POLY_INT)) != 0)
3819 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3820 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3821 return new_rtx;
3822
3823 /* If we didn't and if doing so makes sense, see if we previously
3824 assigned a constant value to the enclosing word mode SUBREG. */
3825 if (known_lt (GET_MODE_SIZE (mode), UNITS_PER_WORD)
3826 && known_lt (UNITS_PER_WORD, GET_MODE_SIZE (imode)))
3827 {
3828 poly_int64 byte = (SUBREG_BYTE (x)
3829 - subreg_lowpart_offset (mode, word_mode));
3830 if (known_ge (byte, 0) && multiple_p (byte, UNITS_PER_WORD))
3831 {
3832 rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3833 new_rtx = lookup_as_function (y, CONST_INT);
3834 if (new_rtx)
3835 return gen_lowpart (mode, new_rtx);
3836 }
3837 }
3838
3839 /* Otherwise see if we already have a constant for the inner REG,
3840 and if that is enough to calculate an equivalent constant for
3841 the subreg. Note that the upper bits of paradoxical subregs
3842 are undefined, so they cannot be said to equal anything. */
3843 if (REG_P (SUBREG_REG (x))
3844 && !paradoxical_subreg_p (x)
3845 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
3846 return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
3847
3848 return 0;
3849 }
3850
3851 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3852 the hash table in case its value was seen before. */
3853
3854 if (MEM_P (x))
3855 {
3856 struct table_elt *elt;
3857
3858 x = avoid_constant_pool_reference (x);
3859 if (CONSTANT_P (x))
3860 return x;
3861
3862 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3863 if (elt == 0)
3864 return 0;
3865
3866 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3867 if (elt->is_const && CONSTANT_P (elt->exp))
3868 return elt->exp;
3869 }
3870
3871 return 0;
3872 }
3873 \f
3874 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3875 "taken" branch.
3876
3877 In certain cases, this can cause us to add an equivalence. For example,
3878 if we are following the taken case of
3879 if (i == 2)
3880 we can add the fact that `i' and '2' are now equivalent.
3881
3882 In any case, we can record that this comparison was passed. If the same
3883 comparison is seen later, we will know its value. */
3884
3885 static void
3886 record_jump_equiv (rtx_insn *insn, bool taken)
3887 {
3888 int cond_known_true;
3889 rtx op0, op1;
3890 rtx set;
3891 machine_mode mode, mode0, mode1;
3892 int reversed_nonequality = 0;
3893 enum rtx_code code;
3894
3895 /* Ensure this is the right kind of insn. */
3896 gcc_assert (any_condjump_p (insn));
3897
3898 set = pc_set (insn);
3899
3900 /* See if this jump condition is known true or false. */
3901 if (taken)
3902 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3903 else
3904 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3905
3906 /* Get the type of comparison being done and the operands being compared.
3907 If we had to reverse a non-equality condition, record that fact so we
3908 know that it isn't valid for floating-point. */
3909 code = GET_CODE (XEXP (SET_SRC (set), 0));
3910 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3911 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3912
3913 /* On a cc0 target the cc0-setter and cc0-user may end up in different
3914 blocks. When that happens the tracking of the cc0-setter via
3915 PREV_INSN_CC0 is spoiled. That means that fold_rtx may return
3916 NULL_RTX. In those cases, there's nothing to record. */
3917 if (op0 == NULL_RTX || op1 == NULL_RTX)
3918 return;
3919
3920 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3921 if (! cond_known_true)
3922 {
3923 code = reversed_comparison_code_parts (code, op0, op1, insn);
3924
3925 /* Don't remember if we can't find the inverse. */
3926 if (code == UNKNOWN)
3927 return;
3928 }
3929
3930 /* The mode is the mode of the non-constant. */
3931 mode = mode0;
3932 if (mode1 != VOIDmode)
3933 mode = mode1;
3934
3935 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3936 }
3937
3938 /* Yet another form of subreg creation. In this case, we want something in
3939 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3940
3941 static rtx
3942 record_jump_cond_subreg (machine_mode mode, rtx op)
3943 {
3944 machine_mode op_mode = GET_MODE (op);
3945 if (op_mode == mode || op_mode == VOIDmode)
3946 return op;
3947 return lowpart_subreg (mode, op, op_mode);
3948 }
3949
3950 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3951 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3952 Make any useful entries we can with that information. Called from
3953 above function and called recursively. */
3954
3955 static void
3956 record_jump_cond (enum rtx_code code, machine_mode mode, rtx op0,
3957 rtx op1, int reversed_nonequality)
3958 {
3959 unsigned op0_hash, op1_hash;
3960 int op0_in_memory, op1_in_memory;
3961 struct table_elt *op0_elt, *op1_elt;
3962
3963 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3964 we know that they are also equal in the smaller mode (this is also
3965 true for all smaller modes whether or not there is a SUBREG, but
3966 is not worth testing for with no SUBREG). */
3967
3968 /* Note that GET_MODE (op0) may not equal MODE. */
3969 if (code == EQ && paradoxical_subreg_p (op0))
3970 {
3971 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3972 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3973 if (tem)
3974 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3975 reversed_nonequality);
3976 }
3977
3978 if (code == EQ && paradoxical_subreg_p (op1))
3979 {
3980 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3981 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3982 if (tem)
3983 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3984 reversed_nonequality);
3985 }
3986
3987 /* Similarly, if this is an NE comparison, and either is a SUBREG
3988 making a smaller mode, we know the whole thing is also NE. */
3989
3990 /* Note that GET_MODE (op0) may not equal MODE;
3991 if we test MODE instead, we can get an infinite recursion
3992 alternating between two modes each wider than MODE. */
3993
3994 if (code == NE
3995 && partial_subreg_p (op0)
3996 && subreg_lowpart_p (op0))
3997 {
3998 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3999 rtx tem = record_jump_cond_subreg (inner_mode, op1);
4000 if (tem)
4001 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
4002 reversed_nonequality);
4003 }
4004
4005 if (code == NE
4006 && partial_subreg_p (op1)
4007 && subreg_lowpart_p (op1))
4008 {
4009 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4010 rtx tem = record_jump_cond_subreg (inner_mode, op0);
4011 if (tem)
4012 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
4013 reversed_nonequality);
4014 }
4015
4016 /* Hash both operands. */
4017
4018 do_not_record = 0;
4019 hash_arg_in_memory = 0;
4020 op0_hash = HASH (op0, mode);
4021 op0_in_memory = hash_arg_in_memory;
4022
4023 if (do_not_record)
4024 return;
4025
4026 do_not_record = 0;
4027 hash_arg_in_memory = 0;
4028 op1_hash = HASH (op1, mode);
4029 op1_in_memory = hash_arg_in_memory;
4030
4031 if (do_not_record)
4032 return;
4033
4034 /* Look up both operands. */
4035 op0_elt = lookup (op0, op0_hash, mode);
4036 op1_elt = lookup (op1, op1_hash, mode);
4037
4038 /* If both operands are already equivalent or if they are not in the
4039 table but are identical, do nothing. */
4040 if ((op0_elt != 0 && op1_elt != 0
4041 && op0_elt->first_same_value == op1_elt->first_same_value)
4042 || op0 == op1 || rtx_equal_p (op0, op1))
4043 return;
4044
4045 /* If we aren't setting two things equal all we can do is save this
4046 comparison. Similarly if this is floating-point. In the latter
4047 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4048 If we record the equality, we might inadvertently delete code
4049 whose intent was to change -0 to +0. */
4050
4051 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
4052 {
4053 struct qty_table_elem *ent;
4054 int qty;
4055
4056 /* If we reversed a floating-point comparison, if OP0 is not a
4057 register, or if OP1 is neither a register or constant, we can't
4058 do anything. */
4059
4060 if (!REG_P (op1))
4061 op1 = equiv_constant (op1);
4062
4063 if ((reversed_nonequality && FLOAT_MODE_P (mode))
4064 || !REG_P (op0) || op1 == 0)
4065 return;
4066
4067 /* Put OP0 in the hash table if it isn't already. This gives it a
4068 new quantity number. */
4069 if (op0_elt == 0)
4070 {
4071 if (insert_regs (op0, NULL, 0))
4072 {
4073 rehash_using_reg (op0);
4074 op0_hash = HASH (op0, mode);
4075
4076 /* If OP0 is contained in OP1, this changes its hash code
4077 as well. Faster to rehash than to check, except
4078 for the simple case of a constant. */
4079 if (! CONSTANT_P (op1))
4080 op1_hash = HASH (op1,mode);
4081 }
4082
4083 op0_elt = insert (op0, NULL, op0_hash, mode);
4084 op0_elt->in_memory = op0_in_memory;
4085 }
4086
4087 qty = REG_QTY (REGNO (op0));
4088 ent = &qty_table[qty];
4089
4090 ent->comparison_code = code;
4091 if (REG_P (op1))
4092 {
4093 /* Look it up again--in case op0 and op1 are the same. */
4094 op1_elt = lookup (op1, op1_hash, mode);
4095
4096 /* Put OP1 in the hash table so it gets a new quantity number. */
4097 if (op1_elt == 0)
4098 {
4099 if (insert_regs (op1, NULL, 0))
4100 {
4101 rehash_using_reg (op1);
4102 op1_hash = HASH (op1, mode);
4103 }
4104
4105 op1_elt = insert (op1, NULL, op1_hash, mode);
4106 op1_elt->in_memory = op1_in_memory;
4107 }
4108
4109 ent->comparison_const = NULL_RTX;
4110 ent->comparison_qty = REG_QTY (REGNO (op1));
4111 }
4112 else
4113 {
4114 ent->comparison_const = op1;
4115 ent->comparison_qty = -1;
4116 }
4117
4118 return;
4119 }
4120
4121 /* If either side is still missing an equivalence, make it now,
4122 then merge the equivalences. */
4123
4124 if (op0_elt == 0)
4125 {
4126 if (insert_regs (op0, NULL, 0))
4127 {
4128 rehash_using_reg (op0);
4129 op0_hash = HASH (op0, mode);
4130 }
4131
4132 op0_elt = insert (op0, NULL, op0_hash, mode);
4133 op0_elt->in_memory = op0_in_memory;
4134 }
4135
4136 if (op1_elt == 0)
4137 {
4138 if (insert_regs (op1, NULL, 0))
4139 {
4140 rehash_using_reg (op1);
4141 op1_hash = HASH (op1, mode);
4142 }
4143
4144 op1_elt = insert (op1, NULL, op1_hash, mode);
4145 op1_elt->in_memory = op1_in_memory;
4146 }
4147
4148 merge_equiv_classes (op0_elt, op1_elt);
4149 }
4150 \f
4151 /* CSE processing for one instruction.
4152
4153 Most "true" common subexpressions are mostly optimized away in GIMPLE,
4154 but the few that "leak through" are cleaned up by cse_insn, and complex
4155 addressing modes are often formed here.
4156
4157 The main function is cse_insn, and between here and that function
4158 a couple of helper functions is defined to keep the size of cse_insn
4159 within reasonable proportions.
4160
4161 Data is shared between the main and helper functions via STRUCT SET,
4162 that contains all data related for every set in the instruction that
4163 is being processed.
4164
4165 Note that cse_main processes all sets in the instruction. Most
4166 passes in GCC only process simple SET insns or single_set insns, but
4167 CSE processes insns with multiple sets as well. */
4168
4169 /* Data on one SET contained in the instruction. */
4170
4171 struct set
4172 {
4173 /* The SET rtx itself. */
4174 rtx rtl;
4175 /* The SET_SRC of the rtx (the original value, if it is changing). */
4176 rtx src;
4177 /* The hash-table element for the SET_SRC of the SET. */
4178 struct table_elt *src_elt;
4179 /* Hash value for the SET_SRC. */
4180 unsigned src_hash;
4181 /* Hash value for the SET_DEST. */
4182 unsigned dest_hash;
4183 /* The SET_DEST, with SUBREG, etc., stripped. */
4184 rtx inner_dest;
4185 /* Nonzero if the SET_SRC is in memory. */
4186 char src_in_memory;
4187 /* Nonzero if the SET_SRC contains something
4188 whose value cannot be predicted and understood. */
4189 char src_volatile;
4190 /* Original machine mode, in case it becomes a CONST_INT.
4191 The size of this field should match the size of the mode
4192 field of struct rtx_def (see rtl.h). */
4193 ENUM_BITFIELD(machine_mode) mode : 8;
4194 /* Hash value of constant equivalent for SET_SRC. */
4195 unsigned src_const_hash;
4196 /* A constant equivalent for SET_SRC, if any. */
4197 rtx src_const;
4198 /* Table entry for constant equivalent for SET_SRC, if any. */
4199 struct table_elt *src_const_elt;
4200 /* Table entry for the destination address. */
4201 struct table_elt *dest_addr_elt;
4202 };
4203 \f
4204 /* Special handling for (set REG0 REG1) where REG0 is the
4205 "cheapest", cheaper than REG1. After cse, REG1 will probably not
4206 be used in the sequel, so (if easily done) change this insn to
4207 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
4208 that computed their value. Then REG1 will become a dead store
4209 and won't cloud the situation for later optimizations.
4210
4211 Do not make this change if REG1 is a hard register, because it will
4212 then be used in the sequel and we may be changing a two-operand insn
4213 into a three-operand insn.
4214
4215 This is the last transformation that cse_insn will try to do. */
4216
4217 static void
4218 try_back_substitute_reg (rtx set, rtx_insn *insn)
4219 {
4220 rtx dest = SET_DEST (set);
4221 rtx src = SET_SRC (set);
4222
4223 if (REG_P (dest)
4224 && REG_P (src) && ! HARD_REGISTER_P (src)
4225 && REGNO_QTY_VALID_P (REGNO (src)))
4226 {
4227 int src_q = REG_QTY (REGNO (src));
4228 struct qty_table_elem *src_ent = &qty_table[src_q];
4229
4230 if (src_ent->first_reg == REGNO (dest))
4231 {
4232 /* Scan for the previous nonnote insn, but stop at a basic
4233 block boundary. */
4234 rtx_insn *prev = insn;
4235 rtx_insn *bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
4236 do
4237 {
4238 prev = PREV_INSN (prev);
4239 }
4240 while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
4241
4242 /* Do not swap the registers around if the previous instruction
4243 attaches a REG_EQUIV note to REG1.
4244
4245 ??? It's not entirely clear whether we can transfer a REG_EQUIV
4246 from the pseudo that originally shadowed an incoming argument
4247 to another register. Some uses of REG_EQUIV might rely on it
4248 being attached to REG1 rather than REG2.
4249
4250 This section previously turned the REG_EQUIV into a REG_EQUAL
4251 note. We cannot do that because REG_EQUIV may provide an
4252 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
4253 if (NONJUMP_INSN_P (prev)
4254 && GET_CODE (PATTERN (prev)) == SET
4255 && SET_DEST (PATTERN (prev)) == src
4256 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
4257 {
4258 rtx note;
4259
4260 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
4261 validate_change (insn, &SET_DEST (set), src, 1);
4262 validate_change (insn, &SET_SRC (set), dest, 1);
4263 apply_change_group ();
4264
4265 /* If INSN has a REG_EQUAL note, and this note mentions
4266 REG0, then we must delete it, because the value in
4267 REG0 has changed. If the note's value is REG1, we must
4268 also delete it because that is now this insn's dest. */
4269 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4270 if (note != 0
4271 && (reg_mentioned_p (dest, XEXP (note, 0))
4272 || rtx_equal_p (src, XEXP (note, 0))))
4273 remove_note (insn, note);
4274
4275 /* If INSN has a REG_ARGS_SIZE note, move it to PREV. */
4276 note = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4277 if (note != 0)
4278 {
4279 remove_note (insn, note);
4280 gcc_assert (!find_reg_note (prev, REG_ARGS_SIZE, NULL_RTX));
4281 set_unique_reg_note (prev, REG_ARGS_SIZE, XEXP (note, 0));
4282 }
4283 }
4284 }
4285 }
4286 }
4287 \f
4288 /* Record all the SETs in this instruction into SETS_PTR,
4289 and return the number of recorded sets. */
4290 static int
4291 find_sets_in_insn (rtx_insn *insn, struct set **psets)
4292 {
4293 struct set *sets = *psets;
4294 int n_sets = 0;
4295 rtx x = PATTERN (insn);
4296
4297 if (GET_CODE (x) == SET)
4298 {
4299 /* Ignore SETs that are unconditional jumps.
4300 They never need cse processing, so this does not hurt.
4301 The reason is not efficiency but rather
4302 so that we can test at the end for instructions
4303 that have been simplified to unconditional jumps
4304 and not be misled by unchanged instructions
4305 that were unconditional jumps to begin with. */
4306 if (SET_DEST (x) == pc_rtx
4307 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4308 ;
4309 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4310 The hard function value register is used only once, to copy to
4311 someplace else, so it isn't worth cse'ing. */
4312 else if (GET_CODE (SET_SRC (x)) == CALL)
4313 ;
4314 else
4315 sets[n_sets++].rtl = x;
4316 }
4317 else if (GET_CODE (x) == PARALLEL)
4318 {
4319 int i, lim = XVECLEN (x, 0);
4320
4321 /* Go over the expressions of the PARALLEL in forward order, to
4322 put them in the same order in the SETS array. */
4323 for (i = 0; i < lim; i++)
4324 {
4325 rtx y = XVECEXP (x, 0, i);
4326 if (GET_CODE (y) == SET)
4327 {
4328 /* As above, we ignore unconditional jumps and call-insns and
4329 ignore the result of apply_change_group. */
4330 if (SET_DEST (y) == pc_rtx
4331 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4332 ;
4333 else if (GET_CODE (SET_SRC (y)) == CALL)
4334 ;
4335 else
4336 sets[n_sets++].rtl = y;
4337 }
4338 }
4339 }
4340
4341 return n_sets;
4342 }
4343 \f
4344 /* Subroutine of canonicalize_insn. X is an ASM_OPERANDS in INSN. */
4345
4346 static void
4347 canon_asm_operands (rtx x, rtx_insn *insn)
4348 {
4349 for (int i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
4350 {
4351 rtx input = ASM_OPERANDS_INPUT (x, i);
4352 if (!(REG_P (input) && HARD_REGISTER_P (input)))
4353 {
4354 input = canon_reg (input, insn);
4355 validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1);
4356 }
4357 }
4358 }
4359
4360 /* Where possible, substitute every register reference in the N_SETS
4361 number of SETS in INSN with the canonical register.
4362
4363 Register canonicalization propagatest the earliest register (i.e.
4364 one that is set before INSN) with the same value. This is a very
4365 useful, simple form of CSE, to clean up warts from expanding GIMPLE
4366 to RTL. For instance, a CONST for an address is usually expanded
4367 multiple times to loads into different registers, thus creating many
4368 subexpressions of the form:
4369
4370 (set (reg1) (some_const))
4371 (set (mem (... reg1 ...) (thing)))
4372 (set (reg2) (some_const))
4373 (set (mem (... reg2 ...) (thing)))
4374
4375 After canonicalizing, the code takes the following form:
4376
4377 (set (reg1) (some_const))
4378 (set (mem (... reg1 ...) (thing)))
4379 (set (reg2) (some_const))
4380 (set (mem (... reg1 ...) (thing)))
4381
4382 The set to reg2 is now trivially dead, and the memory reference (or
4383 address, or whatever) may be a candidate for further CSEing.
4384
4385 In this function, the result of apply_change_group can be ignored;
4386 see canon_reg. */
4387
4388 static void
4389 canonicalize_insn (rtx_insn *insn, struct set **psets, int n_sets)
4390 {
4391 struct set *sets = *psets;
4392 rtx tem;
4393 rtx x = PATTERN (insn);
4394 int i;
4395
4396 if (CALL_P (insn))
4397 {
4398 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4399 if (GET_CODE (XEXP (tem, 0)) != SET)
4400 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4401 }
4402
4403 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
4404 {
4405 canon_reg (SET_SRC (x), insn);
4406 apply_change_group ();
4407 fold_rtx (SET_SRC (x), insn);
4408 }
4409 else if (GET_CODE (x) == CLOBBER)
4410 {
4411 /* If we clobber memory, canon the address.
4412 This does nothing when a register is clobbered
4413 because we have already invalidated the reg. */
4414 if (MEM_P (XEXP (x, 0)))
4415 canon_reg (XEXP (x, 0), insn);
4416 }
4417 else if (GET_CODE (x) == USE
4418 && ! (REG_P (XEXP (x, 0))
4419 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4420 /* Canonicalize a USE of a pseudo register or memory location. */
4421 canon_reg (x, insn);
4422 else if (GET_CODE (x) == ASM_OPERANDS)
4423 canon_asm_operands (x, insn);
4424 else if (GET_CODE (x) == CALL)
4425 {
4426 canon_reg (x, insn);
4427 apply_change_group ();
4428 fold_rtx (x, insn);
4429 }
4430 else if (DEBUG_INSN_P (insn))
4431 canon_reg (PATTERN (insn), insn);
4432 else if (GET_CODE (x) == PARALLEL)
4433 {
4434 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4435 {
4436 rtx y = XVECEXP (x, 0, i);
4437 if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
4438 {
4439 canon_reg (SET_SRC (y), insn);
4440 apply_change_group ();
4441 fold_rtx (SET_SRC (y), insn);
4442 }
4443 else if (GET_CODE (y) == CLOBBER)
4444 {
4445 if (MEM_P (XEXP (y, 0)))
4446 canon_reg (XEXP (y, 0), insn);
4447 }
4448 else if (GET_CODE (y) == USE
4449 && ! (REG_P (XEXP (y, 0))
4450 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4451 canon_reg (y, insn);
4452 else if (GET_CODE (y) == ASM_OPERANDS)
4453 canon_asm_operands (y, insn);
4454 else if (GET_CODE (y) == CALL)
4455 {
4456 canon_reg (y, insn);
4457 apply_change_group ();
4458 fold_rtx (y, insn);
4459 }
4460 }
4461 }
4462
4463 if (n_sets == 1 && REG_NOTES (insn) != 0
4464 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4465 {
4466 /* We potentially will process this insn many times. Therefore,
4467 drop the REG_EQUAL note if it is equal to the SET_SRC of the
4468 unique set in INSN.
4469
4470 Do not do so if the REG_EQUAL note is for a STRICT_LOW_PART,
4471 because cse_insn handles those specially. */
4472 if (GET_CODE (SET_DEST (sets[0].rtl)) != STRICT_LOW_PART
4473 && rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)))
4474 remove_note (insn, tem);
4475 else
4476 {
4477 canon_reg (XEXP (tem, 0), insn);
4478 apply_change_group ();
4479 XEXP (tem, 0) = fold_rtx (XEXP (tem, 0), insn);
4480 df_notes_rescan (insn);
4481 }
4482 }
4483
4484 /* Canonicalize sources and addresses of destinations.
4485 We do this in a separate pass to avoid problems when a MATCH_DUP is
4486 present in the insn pattern. In that case, we want to ensure that
4487 we don't break the duplicate nature of the pattern. So we will replace
4488 both operands at the same time. Otherwise, we would fail to find an
4489 equivalent substitution in the loop calling validate_change below.
4490
4491 We used to suppress canonicalization of DEST if it appears in SRC,
4492 but we don't do this any more. */
4493
4494 for (i = 0; i < n_sets; i++)
4495 {
4496 rtx dest = SET_DEST (sets[i].rtl);
4497 rtx src = SET_SRC (sets[i].rtl);
4498 rtx new_rtx = canon_reg (src, insn);
4499
4500 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4501
4502 if (GET_CODE (dest) == ZERO_EXTRACT)
4503 {
4504 validate_change (insn, &XEXP (dest, 1),
4505 canon_reg (XEXP (dest, 1), insn), 1);
4506 validate_change (insn, &XEXP (dest, 2),
4507 canon_reg (XEXP (dest, 2), insn), 1);
4508 }
4509
4510 while (GET_CODE (dest) == SUBREG
4511 || GET_CODE (dest) == ZERO_EXTRACT
4512 || GET_CODE (dest) == STRICT_LOW_PART)
4513 dest = XEXP (dest, 0);
4514
4515 if (MEM_P (dest))
4516 canon_reg (dest, insn);
4517 }
4518
4519 /* Now that we have done all the replacements, we can apply the change
4520 group and see if they all work. Note that this will cause some
4521 canonicalizations that would have worked individually not to be applied
4522 because some other canonicalization didn't work, but this should not
4523 occur often.
4524
4525 The result of apply_change_group can be ignored; see canon_reg. */
4526
4527 apply_change_group ();
4528 }
4529 \f
4530 /* Main function of CSE.
4531 First simplify sources and addresses of all assignments
4532 in the instruction, using previously-computed equivalents values.
4533 Then install the new sources and destinations in the table
4534 of available values. */
4535
4536 static void
4537 cse_insn (rtx_insn *insn)
4538 {
4539 rtx x = PATTERN (insn);
4540 int i;
4541 rtx tem;
4542 int n_sets = 0;
4543
4544 rtx src_eqv = 0;
4545 struct table_elt *src_eqv_elt = 0;
4546 int src_eqv_volatile = 0;
4547 int src_eqv_in_memory = 0;
4548 unsigned src_eqv_hash = 0;
4549
4550 struct set *sets = (struct set *) 0;
4551
4552 if (GET_CODE (x) == SET)
4553 sets = XALLOCA (struct set);
4554 else if (GET_CODE (x) == PARALLEL)
4555 sets = XALLOCAVEC (struct set, XVECLEN (x, 0));
4556
4557 this_insn = insn;
4558 /* Records what this insn does to set CC0. */
4559 this_insn_cc0 = 0;
4560 this_insn_cc0_mode = VOIDmode;
4561
4562 /* Find all regs explicitly clobbered in this insn,
4563 to ensure they are not replaced with any other regs
4564 elsewhere in this insn. */
4565 invalidate_from_sets_and_clobbers (insn);
4566
4567 /* Record all the SETs in this instruction. */
4568 n_sets = find_sets_in_insn (insn, &sets);
4569
4570 /* Substitute the canonical register where possible. */
4571 canonicalize_insn (insn, &sets, n_sets);
4572
4573 /* If this insn has a REG_EQUAL note, store the equivalent value in SRC_EQV,
4574 if different, or if the DEST is a STRICT_LOW_PART/ZERO_EXTRACT. The
4575 latter condition is necessary because SRC_EQV is handled specially for
4576 this case, and if it isn't set, then there will be no equivalence
4577 for the destination. */
4578 if (n_sets == 1 && REG_NOTES (insn) != 0
4579 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4580 {
4581
4582 if (GET_CODE (SET_DEST (sets[0].rtl)) != ZERO_EXTRACT
4583 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4584 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4585 src_eqv = copy_rtx (XEXP (tem, 0));
4586 /* If DEST is of the form ZERO_EXTACT, as in:
4587 (set (zero_extract:SI (reg:SI 119)
4588 (const_int 16 [0x10])
4589 (const_int 16 [0x10]))
4590 (const_int 51154 [0xc7d2]))
4591 REG_EQUAL note will specify the value of register (reg:SI 119) at this
4592 point. Note that this is different from SRC_EQV. We can however
4593 calculate SRC_EQV with the position and width of ZERO_EXTRACT. */
4594 else if (GET_CODE (SET_DEST (sets[0].rtl)) == ZERO_EXTRACT
4595 && CONST_INT_P (XEXP (tem, 0))
4596 && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 1))
4597 && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 2)))
4598 {
4599 rtx dest_reg = XEXP (SET_DEST (sets[0].rtl), 0);
4600 /* This is the mode of XEXP (tem, 0) as well. */
4601 scalar_int_mode dest_mode
4602 = as_a <scalar_int_mode> (GET_MODE (dest_reg));
4603 rtx width = XEXP (SET_DEST (sets[0].rtl), 1);
4604 rtx pos = XEXP (SET_DEST (sets[0].rtl), 2);
4605 HOST_WIDE_INT val = INTVAL (XEXP (tem, 0));
4606 HOST_WIDE_INT mask;
4607 unsigned int shift;
4608 if (BITS_BIG_ENDIAN)
4609 shift = (GET_MODE_PRECISION (dest_mode)
4610 - INTVAL (pos) - INTVAL (width));
4611 else
4612 shift = INTVAL (pos);
4613 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
4614 mask = HOST_WIDE_INT_M1;
4615 else
4616 mask = (HOST_WIDE_INT_1 << INTVAL (width)) - 1;
4617 val = (val >> shift) & mask;
4618 src_eqv = GEN_INT (val);
4619 }
4620 }
4621
4622 /* Set sets[i].src_elt to the class each source belongs to.
4623 Detect assignments from or to volatile things
4624 and set set[i] to zero so they will be ignored
4625 in the rest of this function.
4626
4627 Nothing in this loop changes the hash table or the register chains. */
4628
4629 for (i = 0; i < n_sets; i++)
4630 {
4631 bool repeat = false;
4632 bool noop_insn = false;
4633 rtx src, dest;
4634 rtx src_folded;
4635 struct table_elt *elt = 0, *p;
4636 machine_mode mode;
4637 rtx src_eqv_here;
4638 rtx src_const = 0;
4639 rtx src_related = 0;
4640 bool src_related_is_const_anchor = false;
4641 struct table_elt *src_const_elt = 0;
4642 int src_cost = MAX_COST;
4643 int src_eqv_cost = MAX_COST;
4644 int src_folded_cost = MAX_COST;
4645 int src_related_cost = MAX_COST;
4646 int src_elt_cost = MAX_COST;
4647 int src_regcost = MAX_COST;
4648 int src_eqv_regcost = MAX_COST;
4649 int src_folded_regcost = MAX_COST;
4650 int src_related_regcost = MAX_COST;
4651 int src_elt_regcost = MAX_COST;
4652 /* Set nonzero if we need to call force_const_mem on with the
4653 contents of src_folded before using it. */
4654 int src_folded_force_flag = 0;
4655 scalar_int_mode int_mode;
4656
4657 dest = SET_DEST (sets[i].rtl);
4658 src = SET_SRC (sets[i].rtl);
4659
4660 /* If SRC is a constant that has no machine mode,
4661 hash it with the destination's machine mode.
4662 This way we can keep different modes separate. */
4663
4664 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4665 sets[i].mode = mode;
4666
4667 if (src_eqv)
4668 {
4669 machine_mode eqvmode = mode;
4670 if (GET_CODE (dest) == STRICT_LOW_PART)
4671 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4672 do_not_record = 0;
4673 hash_arg_in_memory = 0;
4674 src_eqv_hash = HASH (src_eqv, eqvmode);
4675
4676 /* Find the equivalence class for the equivalent expression. */
4677
4678 if (!do_not_record)
4679 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4680
4681 src_eqv_volatile = do_not_record;
4682 src_eqv_in_memory = hash_arg_in_memory;
4683 }
4684
4685 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4686 value of the INNER register, not the destination. So it is not
4687 a valid substitution for the source. But save it for later. */
4688 if (GET_CODE (dest) == STRICT_LOW_PART)
4689 src_eqv_here = 0;
4690 else
4691 src_eqv_here = src_eqv;
4692
4693 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4694 simplified result, which may not necessarily be valid. */
4695 src_folded = fold_rtx (src, NULL);
4696
4697 #if 0
4698 /* ??? This caused bad code to be generated for the m68k port with -O2.
4699 Suppose src is (CONST_INT -1), and that after truncation src_folded
4700 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4701 At the end we will add src and src_const to the same equivalence
4702 class. We now have 3 and -1 on the same equivalence class. This
4703 causes later instructions to be mis-optimized. */
4704 /* If storing a constant in a bitfield, pre-truncate the constant
4705 so we will be able to record it later. */
4706 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4707 {
4708 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4709
4710 if (CONST_INT_P (src)
4711 && CONST_INT_P (width)
4712 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4713 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4714 src_folded
4715 = GEN_INT (INTVAL (src) & ((HOST_WIDE_INT_1
4716 << INTVAL (width)) - 1));
4717 }
4718 #endif
4719
4720 /* Compute SRC's hash code, and also notice if it
4721 should not be recorded at all. In that case,
4722 prevent any further processing of this assignment.
4723
4724 We set DO_NOT_RECORD if the destination has a REG_UNUSED note.
4725 This avoids getting the source register into the tables, where it
4726 may be invalidated later (via REG_QTY), then trigger an ICE upon
4727 re-insertion.
4728
4729 This is only a problem in multi-set insns. If it were a single
4730 set the dead copy would have been removed. If the RHS were anything
4731 but a simple REG, then we won't call insert_regs and thus there's
4732 no potential for triggering the ICE. */
4733 do_not_record = (REG_P (dest)
4734 && REG_P (src)
4735 && find_reg_note (insn, REG_UNUSED, dest));
4736 hash_arg_in_memory = 0;
4737
4738 sets[i].src = src;
4739 sets[i].src_hash = HASH (src, mode);
4740 sets[i].src_volatile = do_not_record;
4741 sets[i].src_in_memory = hash_arg_in_memory;
4742
4743 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4744 a pseudo, do not record SRC. Using SRC as a replacement for
4745 anything else will be incorrect in that situation. Note that
4746 this usually occurs only for stack slots, in which case all the
4747 RTL would be referring to SRC, so we don't lose any optimization
4748 opportunities by not having SRC in the hash table. */
4749
4750 if (MEM_P (src)
4751 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4752 && REG_P (dest)
4753 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4754 sets[i].src_volatile = 1;
4755
4756 else if (GET_CODE (src) == ASM_OPERANDS
4757 && GET_CODE (x) == PARALLEL)
4758 {
4759 /* Do not record result of a non-volatile inline asm with
4760 more than one result. */
4761 if (n_sets > 1)
4762 sets[i].src_volatile = 1;
4763
4764 int j, lim = XVECLEN (x, 0);
4765 for (j = 0; j < lim; j++)
4766 {
4767 rtx y = XVECEXP (x, 0, j);
4768 /* And do not record result of a non-volatile inline asm
4769 with "memory" clobber. */
4770 if (GET_CODE (y) == CLOBBER && MEM_P (XEXP (y, 0)))
4771 {
4772 sets[i].src_volatile = 1;
4773 break;
4774 }
4775 }
4776 }
4777
4778 #if 0
4779 /* It is no longer clear why we used to do this, but it doesn't
4780 appear to still be needed. So let's try without it since this
4781 code hurts cse'ing widened ops. */
4782 /* If source is a paradoxical subreg (such as QI treated as an SI),
4783 treat it as volatile. It may do the work of an SI in one context
4784 where the extra bits are not being used, but cannot replace an SI
4785 in general. */
4786 if (paradoxical_subreg_p (src))
4787 sets[i].src_volatile = 1;
4788 #endif
4789
4790 /* Locate all possible equivalent forms for SRC. Try to replace
4791 SRC in the insn with each cheaper equivalent.
4792
4793 We have the following types of equivalents: SRC itself, a folded
4794 version, a value given in a REG_EQUAL note, or a value related
4795 to a constant.
4796
4797 Each of these equivalents may be part of an additional class
4798 of equivalents (if more than one is in the table, they must be in
4799 the same class; we check for this).
4800
4801 If the source is volatile, we don't do any table lookups.
4802
4803 We note any constant equivalent for possible later use in a
4804 REG_NOTE. */
4805
4806 if (!sets[i].src_volatile)
4807 elt = lookup (src, sets[i].src_hash, mode);
4808
4809 sets[i].src_elt = elt;
4810
4811 if (elt && src_eqv_here && src_eqv_elt)
4812 {
4813 if (elt->first_same_value != src_eqv_elt->first_same_value)
4814 {
4815 /* The REG_EQUAL is indicating that two formerly distinct
4816 classes are now equivalent. So merge them. */
4817 merge_equiv_classes (elt, src_eqv_elt);
4818 src_eqv_hash = HASH (src_eqv, elt->mode);
4819 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4820 }
4821
4822 src_eqv_here = 0;
4823 }
4824
4825 else if (src_eqv_elt)
4826 elt = src_eqv_elt;
4827
4828 /* Try to find a constant somewhere and record it in `src_const'.
4829 Record its table element, if any, in `src_const_elt'. Look in
4830 any known equivalences first. (If the constant is not in the
4831 table, also set `sets[i].src_const_hash'). */
4832 if (elt)
4833 for (p = elt->first_same_value; p; p = p->next_same_value)
4834 if (p->is_const)
4835 {
4836 src_const = p->exp;
4837 src_const_elt = elt;
4838 break;
4839 }
4840
4841 if (src_const == 0
4842 && (CONSTANT_P (src_folded)
4843 /* Consider (minus (label_ref L1) (label_ref L2)) as
4844 "constant" here so we will record it. This allows us
4845 to fold switch statements when an ADDR_DIFF_VEC is used. */
4846 || (GET_CODE (src_folded) == MINUS
4847 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4848 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4849 src_const = src_folded, src_const_elt = elt;
4850 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4851 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4852
4853 /* If we don't know if the constant is in the table, get its
4854 hash code and look it up. */
4855 if (src_const && src_const_elt == 0)
4856 {
4857 sets[i].src_const_hash = HASH (src_const, mode);
4858 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4859 }
4860
4861 sets[i].src_const = src_const;
4862 sets[i].src_const_elt = src_const_elt;
4863
4864 /* If the constant and our source are both in the table, mark them as
4865 equivalent. Otherwise, if a constant is in the table but the source
4866 isn't, set ELT to it. */
4867 if (src_const_elt && elt
4868 && src_const_elt->first_same_value != elt->first_same_value)
4869 merge_equiv_classes (elt, src_const_elt);
4870 else if (src_const_elt && elt == 0)
4871 elt = src_const_elt;
4872
4873 /* See if there is a register linearly related to a constant
4874 equivalent of SRC. */
4875 if (src_const
4876 && (GET_CODE (src_const) == CONST
4877 || (src_const_elt && src_const_elt->related_value != 0)))
4878 {
4879 src_related = use_related_value (src_const, src_const_elt);
4880 if (src_related)
4881 {
4882 struct table_elt *src_related_elt
4883 = lookup (src_related, HASH (src_related, mode), mode);
4884 if (src_related_elt && elt)
4885 {
4886 if (elt->first_same_value
4887 != src_related_elt->first_same_value)
4888 /* This can occur when we previously saw a CONST
4889 involving a SYMBOL_REF and then see the SYMBOL_REF
4890 twice. Merge the involved classes. */
4891 merge_equiv_classes (elt, src_related_elt);
4892
4893 src_related = 0;
4894 src_related_elt = 0;
4895 }
4896 else if (src_related_elt && elt == 0)
4897 elt = src_related_elt;
4898 }
4899 }
4900
4901 /* See if we have a CONST_INT that is already in a register in a
4902 wider mode. */
4903
4904 if (src_const && src_related == 0 && CONST_INT_P (src_const)
4905 && is_int_mode (mode, &int_mode)
4906 && GET_MODE_PRECISION (int_mode) < BITS_PER_WORD)
4907 {
4908 opt_scalar_int_mode wider_mode_iter;
4909 FOR_EACH_WIDER_MODE (wider_mode_iter, int_mode)
4910 {
4911 scalar_int_mode wider_mode = wider_mode_iter.require ();
4912 if (GET_MODE_PRECISION (wider_mode) > BITS_PER_WORD)
4913 break;
4914
4915 struct table_elt *const_elt
4916 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4917
4918 if (const_elt == 0)
4919 continue;
4920
4921 for (const_elt = const_elt->first_same_value;
4922 const_elt; const_elt = const_elt->next_same_value)
4923 if (REG_P (const_elt->exp))
4924 {
4925 src_related = gen_lowpart (int_mode, const_elt->exp);
4926 break;
4927 }
4928
4929 if (src_related != 0)
4930 break;
4931 }
4932 }
4933
4934 /* Another possibility is that we have an AND with a constant in
4935 a mode narrower than a word. If so, it might have been generated
4936 as part of an "if" which would narrow the AND. If we already
4937 have done the AND in a wider mode, we can use a SUBREG of that
4938 value. */
4939
4940 if (flag_expensive_optimizations && ! src_related
4941 && is_a <scalar_int_mode> (mode, &int_mode)
4942 && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
4943 && GET_MODE_SIZE (int_mode) < UNITS_PER_WORD)
4944 {
4945 opt_scalar_int_mode tmode_iter;
4946 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4947
4948 FOR_EACH_WIDER_MODE (tmode_iter, int_mode)
4949 {
4950 scalar_int_mode tmode = tmode_iter.require ();
4951 if (GET_MODE_SIZE (tmode) > UNITS_PER_WORD)
4952 break;
4953
4954 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4955 struct table_elt *larger_elt;
4956
4957 if (inner)
4958 {
4959 PUT_MODE (new_and, tmode);
4960 XEXP (new_and, 0) = inner;
4961 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4962 if (larger_elt == 0)
4963 continue;
4964
4965 for (larger_elt = larger_elt->first_same_value;
4966 larger_elt; larger_elt = larger_elt->next_same_value)
4967 if (REG_P (larger_elt->exp))
4968 {
4969 src_related
4970 = gen_lowpart (int_mode, larger_elt->exp);
4971 break;
4972 }
4973
4974 if (src_related)
4975 break;
4976 }
4977 }
4978 }
4979
4980 /* See if a MEM has already been loaded with a widening operation;
4981 if it has, we can use a subreg of that. Many CISC machines
4982 also have such operations, but this is only likely to be
4983 beneficial on these machines. */
4984
4985 rtx_code extend_op;
4986 if (flag_expensive_optimizations && src_related == 0
4987 && MEM_P (src) && ! do_not_record
4988 && is_a <scalar_int_mode> (mode, &int_mode)
4989 && (extend_op = load_extend_op (int_mode)) != UNKNOWN)
4990 {
4991 struct rtx_def memory_extend_buf;
4992 rtx memory_extend_rtx = &memory_extend_buf;
4993
4994 /* Set what we are trying to extend and the operation it might
4995 have been extended with. */
4996 memset (memory_extend_rtx, 0, sizeof (*memory_extend_rtx));
4997 PUT_CODE (memory_extend_rtx, extend_op);
4998 XEXP (memory_extend_rtx, 0) = src;
4999
5000 opt_scalar_int_mode tmode_iter;
5001 FOR_EACH_WIDER_MODE (tmode_iter, int_mode)
5002 {
5003 struct table_elt *larger_elt;
5004
5005 scalar_int_mode tmode = tmode_iter.require ();
5006 if (GET_MODE_SIZE (tmode) > UNITS_PER_WORD)
5007 break;
5008
5009 PUT_MODE (memory_extend_rtx, tmode);
5010 larger_elt = lookup (memory_extend_rtx,
5011 HASH (memory_extend_rtx, tmode), tmode);
5012 if (larger_elt == 0)
5013 continue;
5014
5015 for (larger_elt = larger_elt->first_same_value;
5016 larger_elt; larger_elt = larger_elt->next_same_value)
5017 if (REG_P (larger_elt->exp))
5018 {
5019 src_related = gen_lowpart (int_mode, larger_elt->exp);
5020 break;
5021 }
5022
5023 if (src_related)
5024 break;
5025 }
5026 }
5027
5028 /* Try to express the constant using a register+offset expression
5029 derived from a constant anchor. */
5030
5031 if (targetm.const_anchor
5032 && !src_related
5033 && src_const
5034 && GET_CODE (src_const) == CONST_INT)
5035 {
5036 src_related = try_const_anchors (src_const, mode);
5037 src_related_is_const_anchor = src_related != NULL_RTX;
5038 }
5039
5040
5041 if (src == src_folded)
5042 src_folded = 0;
5043
5044 /* At this point, ELT, if nonzero, points to a class of expressions
5045 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
5046 and SRC_RELATED, if nonzero, each contain additional equivalent
5047 expressions. Prune these latter expressions by deleting expressions
5048 already in the equivalence class.
5049
5050 Check for an equivalent identical to the destination. If found,
5051 this is the preferred equivalent since it will likely lead to
5052 elimination of the insn. Indicate this by placing it in
5053 `src_related'. */
5054
5055 if (elt)
5056 elt = elt->first_same_value;
5057 for (p = elt; p; p = p->next_same_value)
5058 {
5059 enum rtx_code code = GET_CODE (p->exp);
5060
5061 /* If the expression is not valid, ignore it. Then we do not
5062 have to check for validity below. In most cases, we can use
5063 `rtx_equal_p', since canonicalization has already been done. */
5064 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
5065 continue;
5066
5067 /* Also skip paradoxical subregs, unless that's what we're
5068 looking for. */
5069 if (paradoxical_subreg_p (p->exp)
5070 && ! (src != 0
5071 && GET_CODE (src) == SUBREG
5072 && GET_MODE (src) == GET_MODE (p->exp)
5073 && partial_subreg_p (GET_MODE (SUBREG_REG (src)),
5074 GET_MODE (SUBREG_REG (p->exp)))))
5075 continue;
5076
5077 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
5078 src = 0;
5079 else if (src_folded && GET_CODE (src_folded) == code
5080 && rtx_equal_p (src_folded, p->exp))
5081 src_folded = 0;
5082 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
5083 && rtx_equal_p (src_eqv_here, p->exp))
5084 src_eqv_here = 0;
5085 else if (src_related && GET_CODE (src_related) == code
5086 && rtx_equal_p (src_related, p->exp))
5087 src_related = 0;
5088
5089 /* This is the same as the destination of the insns, we want
5090 to prefer it. Copy it to src_related. The code below will
5091 then give it a negative cost. */
5092 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
5093 src_related = p->exp;
5094 }
5095
5096 /* Find the cheapest valid equivalent, trying all the available
5097 possibilities. Prefer items not in the hash table to ones
5098 that are when they are equal cost. Note that we can never
5099 worsen an insn as the current contents will also succeed.
5100 If we find an equivalent identical to the destination, use it as best,
5101 since this insn will probably be eliminated in that case. */
5102 if (src)
5103 {
5104 if (rtx_equal_p (src, dest))
5105 src_cost = src_regcost = -1;
5106 else
5107 {
5108 src_cost = COST (src, mode);
5109 src_regcost = approx_reg_cost (src);
5110 }
5111 }
5112
5113 if (src_eqv_here)
5114 {
5115 if (rtx_equal_p (src_eqv_here, dest))
5116 src_eqv_cost = src_eqv_regcost = -1;
5117 else
5118 {
5119 src_eqv_cost = COST (src_eqv_here, mode);
5120 src_eqv_regcost = approx_reg_cost (src_eqv_here);
5121 }
5122 }
5123
5124 if (src_folded)
5125 {
5126 if (rtx_equal_p (src_folded, dest))
5127 src_folded_cost = src_folded_regcost = -1;
5128 else
5129 {
5130 src_folded_cost = COST (src_folded, mode);
5131 src_folded_regcost = approx_reg_cost (src_folded);
5132 }
5133 }
5134
5135 if (src_related)
5136 {
5137 if (rtx_equal_p (src_related, dest))
5138 src_related_cost = src_related_regcost = -1;
5139 else
5140 {
5141 src_related_cost = COST (src_related, mode);
5142 src_related_regcost = approx_reg_cost (src_related);
5143
5144 /* If a const-anchor is used to synthesize a constant that
5145 normally requires multiple instructions then slightly prefer
5146 it over the original sequence. These instructions are likely
5147 to become redundant now. We can't compare against the cost
5148 of src_eqv_here because, on MIPS for example, multi-insn
5149 constants have zero cost; they are assumed to be hoisted from
5150 loops. */
5151 if (src_related_is_const_anchor
5152 && src_related_cost == src_cost
5153 && src_eqv_here)
5154 src_related_cost--;
5155 }
5156 }
5157
5158 /* If this was an indirect jump insn, a known label will really be
5159 cheaper even though it looks more expensive. */
5160 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5161 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5162
5163 /* Terminate loop when replacement made. This must terminate since
5164 the current contents will be tested and will always be valid. */
5165 while (1)
5166 {
5167 rtx trial;
5168
5169 /* Skip invalid entries. */
5170 while (elt && !REG_P (elt->exp)
5171 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5172 elt = elt->next_same_value;
5173
5174 /* A paradoxical subreg would be bad here: it'll be the right
5175 size, but later may be adjusted so that the upper bits aren't
5176 what we want. So reject it. */
5177 if (elt != 0
5178 && paradoxical_subreg_p (elt->exp)
5179 /* It is okay, though, if the rtx we're trying to match
5180 will ignore any of the bits we can't predict. */
5181 && ! (src != 0
5182 && GET_CODE (src) == SUBREG
5183 && GET_MODE (src) == GET_MODE (elt->exp)
5184 && partial_subreg_p (GET_MODE (SUBREG_REG (src)),
5185 GET_MODE (SUBREG_REG (elt->exp)))))
5186 {
5187 elt = elt->next_same_value;
5188 continue;
5189 }
5190
5191 if (elt)
5192 {
5193 src_elt_cost = elt->cost;
5194 src_elt_regcost = elt->regcost;
5195 }
5196
5197 /* Find cheapest and skip it for the next time. For items
5198 of equal cost, use this order:
5199 src_folded, src, src_eqv, src_related and hash table entry. */
5200 if (src_folded
5201 && preferable (src_folded_cost, src_folded_regcost,
5202 src_cost, src_regcost) <= 0
5203 && preferable (src_folded_cost, src_folded_regcost,
5204 src_eqv_cost, src_eqv_regcost) <= 0
5205 && preferable (src_folded_cost, src_folded_regcost,
5206 src_related_cost, src_related_regcost) <= 0
5207 && preferable (src_folded_cost, src_folded_regcost,
5208 src_elt_cost, src_elt_regcost) <= 0)
5209 {
5210 trial = src_folded, src_folded_cost = MAX_COST;
5211 if (src_folded_force_flag)
5212 {
5213 rtx forced = force_const_mem (mode, trial);
5214 if (forced)
5215 trial = forced;
5216 }
5217 }
5218 else if (src
5219 && preferable (src_cost, src_regcost,
5220 src_eqv_cost, src_eqv_regcost) <= 0
5221 && preferable (src_cost, src_regcost,
5222 src_related_cost, src_related_regcost) <= 0
5223 && preferable (src_cost, src_regcost,
5224 src_elt_cost, src_elt_regcost) <= 0)
5225 trial = src, src_cost = MAX_COST;
5226 else if (src_eqv_here
5227 && preferable (src_eqv_cost, src_eqv_regcost,
5228 src_related_cost, src_related_regcost) <= 0
5229 && preferable (src_eqv_cost, src_eqv_regcost,
5230 src_elt_cost, src_elt_regcost) <= 0)
5231 trial = src_eqv_here, src_eqv_cost = MAX_COST;
5232 else if (src_related
5233 && preferable (src_related_cost, src_related_regcost,
5234 src_elt_cost, src_elt_regcost) <= 0)
5235 trial = src_related, src_related_cost = MAX_COST;
5236 else
5237 {
5238 trial = elt->exp;
5239 elt = elt->next_same_value;
5240 src_elt_cost = MAX_COST;
5241 }
5242
5243 /* Try to optimize
5244 (set (reg:M N) (const_int A))
5245 (set (reg:M2 O) (const_int B))
5246 (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
5247 (reg:M2 O)). */
5248 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5249 && CONST_INT_P (trial)
5250 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
5251 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
5252 && REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
5253 && (known_ge
5254 (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets[i].rtl))),
5255 INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))))
5256 && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
5257 + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
5258 <= HOST_BITS_PER_WIDE_INT))
5259 {
5260 rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
5261 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5262 rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
5263 unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
5264 struct table_elt *dest_elt
5265 = lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
5266 rtx dest_cst = NULL;
5267
5268 if (dest_elt)
5269 for (p = dest_elt->first_same_value; p; p = p->next_same_value)
5270 if (p->is_const && CONST_INT_P (p->exp))
5271 {
5272 dest_cst = p->exp;
5273 break;
5274 }
5275 if (dest_cst)
5276 {
5277 HOST_WIDE_INT val = INTVAL (dest_cst);
5278 HOST_WIDE_INT mask;
5279 unsigned int shift;
5280 /* This is the mode of DEST_CST as well. */
5281 scalar_int_mode dest_mode
5282 = as_a <scalar_int_mode> (GET_MODE (dest_reg));
5283 if (BITS_BIG_ENDIAN)
5284 shift = GET_MODE_PRECISION (dest_mode)
5285 - INTVAL (pos) - INTVAL (width);
5286 else
5287 shift = INTVAL (pos);
5288 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
5289 mask = HOST_WIDE_INT_M1;
5290 else
5291 mask = (HOST_WIDE_INT_1 << INTVAL (width)) - 1;
5292 val &= ~(mask << shift);
5293 val |= (INTVAL (trial) & mask) << shift;
5294 val = trunc_int_for_mode (val, dest_mode);
5295 validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
5296 dest_reg, 1);
5297 validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5298 GEN_INT (val), 1);
5299 if (apply_change_group ())
5300 {
5301 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5302 if (note)
5303 {
5304 remove_note (insn, note);
5305 df_notes_rescan (insn);
5306 }
5307 src_eqv = NULL_RTX;
5308 src_eqv_elt = NULL;
5309 src_eqv_volatile = 0;
5310 src_eqv_in_memory = 0;
5311 src_eqv_hash = 0;
5312 repeat = true;
5313 break;
5314 }
5315 }
5316 }
5317
5318 /* We don't normally have an insn matching (set (pc) (pc)), so
5319 check for this separately here. We will delete such an
5320 insn below.
5321
5322 For other cases such as a table jump or conditional jump
5323 where we know the ultimate target, go ahead and replace the
5324 operand. While that may not make a valid insn, we will
5325 reemit the jump below (and also insert any necessary
5326 barriers). */
5327 if (n_sets == 1 && dest == pc_rtx
5328 && (trial == pc_rtx
5329 || (GET_CODE (trial) == LABEL_REF
5330 && ! condjump_p (insn))))
5331 {
5332 /* Don't substitute non-local labels, this confuses CFG. */
5333 if (GET_CODE (trial) == LABEL_REF
5334 && LABEL_REF_NONLOCAL_P (trial))
5335 continue;
5336
5337 SET_SRC (sets[i].rtl) = trial;
5338 cse_jumps_altered = true;
5339 break;
5340 }
5341
5342 /* Similarly, lots of targets don't allow no-op
5343 (set (mem x) (mem x)) moves. Even (set (reg x) (reg x))
5344 might be impossible for certain registers (like CC registers). */
5345 else if (n_sets == 1
5346 && !CALL_P (insn)
5347 && (MEM_P (trial) || REG_P (trial))
5348 && rtx_equal_p (trial, dest)
5349 && !side_effects_p (dest)
5350 && (cfun->can_delete_dead_exceptions
5351 || insn_nothrow_p (insn))
5352 /* We can only remove the later store if the earlier aliases
5353 at least all accesses the later one. */
5354 && (!MEM_P (trial)
5355 || ((MEM_ALIAS_SET (dest) == MEM_ALIAS_SET (trial)
5356 || alias_set_subset_of (MEM_ALIAS_SET (dest),
5357 MEM_ALIAS_SET (trial)))
5358 && (!MEM_EXPR (trial)
5359 || refs_same_for_tbaa_p (MEM_EXPR (trial),
5360 MEM_EXPR (dest))))))
5361 {
5362 SET_SRC (sets[i].rtl) = trial;
5363 noop_insn = true;
5364 break;
5365 }
5366
5367 /* Reject certain invalid forms of CONST that we create. */
5368 else if (CONSTANT_P (trial)
5369 && GET_CODE (trial) == CONST
5370 /* Reject cases that will cause decode_rtx_const to
5371 die. On the alpha when simplifying a switch, we
5372 get (const (truncate (minus (label_ref)
5373 (label_ref)))). */
5374 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5375 /* Likewise on IA-64, except without the
5376 truncate. */
5377 || (GET_CODE (XEXP (trial, 0)) == MINUS
5378 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5379 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5380 /* Do nothing for this case. */
5381 ;
5382
5383 /* Do not replace anything with a MEM, except the replacement
5384 is a no-op. This allows this loop to terminate. */
5385 else if (MEM_P (trial) && !rtx_equal_p (trial, SET_SRC(sets[i].rtl)))
5386 /* Do nothing for this case. */
5387 ;
5388
5389 /* Look for a substitution that makes a valid insn. */
5390 else if (validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5391 trial, 0))
5392 {
5393 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
5394
5395 /* The result of apply_change_group can be ignored; see
5396 canon_reg. */
5397
5398 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
5399 apply_change_group ();
5400
5401 break;
5402 }
5403
5404 /* If we previously found constant pool entries for
5405 constants and this is a constant, try making a
5406 pool entry. Put it in src_folded unless we already have done
5407 this since that is where it likely came from. */
5408
5409 else if (constant_pool_entries_cost
5410 && CONSTANT_P (trial)
5411 && (src_folded == 0
5412 || (!MEM_P (src_folded)
5413 && ! src_folded_force_flag))
5414 && GET_MODE_CLASS (mode) != MODE_CC
5415 && mode != VOIDmode)
5416 {
5417 src_folded_force_flag = 1;
5418 src_folded = trial;
5419 src_folded_cost = constant_pool_entries_cost;
5420 src_folded_regcost = constant_pool_entries_regcost;
5421 }
5422 }
5423
5424 /* If we changed the insn too much, handle this set from scratch. */
5425 if (repeat)
5426 {
5427 i--;
5428 continue;
5429 }
5430
5431 src = SET_SRC (sets[i].rtl);
5432
5433 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5434 However, there is an important exception: If both are registers
5435 that are not the head of their equivalence class, replace SET_SRC
5436 with the head of the class. If we do not do this, we will have
5437 both registers live over a portion of the basic block. This way,
5438 their lifetimes will likely abut instead of overlapping. */
5439 if (REG_P (dest)
5440 && REGNO_QTY_VALID_P (REGNO (dest)))
5441 {
5442 int dest_q = REG_QTY (REGNO (dest));
5443 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5444
5445 if (dest_ent->mode == GET_MODE (dest)
5446 && dest_ent->first_reg != REGNO (dest)
5447 && REG_P (src) && REGNO (src) == REGNO (dest)
5448 /* Don't do this if the original insn had a hard reg as
5449 SET_SRC or SET_DEST. */
5450 && (!REG_P (sets[i].src)
5451 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5452 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5453 /* We can't call canon_reg here because it won't do anything if
5454 SRC is a hard register. */
5455 {
5456 int src_q = REG_QTY (REGNO (src));
5457 struct qty_table_elem *src_ent = &qty_table[src_q];
5458 int first = src_ent->first_reg;
5459 rtx new_src
5460 = (first >= FIRST_PSEUDO_REGISTER
5461 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5462
5463 /* We must use validate-change even for this, because this
5464 might be a special no-op instruction, suitable only to
5465 tag notes onto. */
5466 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5467 {
5468 src = new_src;
5469 /* If we had a constant that is cheaper than what we are now
5470 setting SRC to, use that constant. We ignored it when we
5471 thought we could make this into a no-op. */
5472 if (src_const && COST (src_const, mode) < COST (src, mode)
5473 && validate_change (insn, &SET_SRC (sets[i].rtl),
5474 src_const, 0))
5475 src = src_const;
5476 }
5477 }
5478 }
5479
5480 /* If we made a change, recompute SRC values. */
5481 if (src != sets[i].src)
5482 {
5483 do_not_record = 0;
5484 hash_arg_in_memory = 0;
5485 sets[i].src = src;
5486 sets[i].src_hash = HASH (src, mode);
5487 sets[i].src_volatile = do_not_record;
5488 sets[i].src_in_memory = hash_arg_in_memory;
5489 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5490 }
5491
5492 /* If this is a single SET, we are setting a register, and we have an
5493 equivalent constant, we want to add a REG_EQUAL note if the constant
5494 is different from the source. We don't want to do it for a constant
5495 pseudo since verifying that this pseudo hasn't been eliminated is a
5496 pain; moreover such a note won't help anything.
5497
5498 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5499 which can be created for a reference to a compile time computable
5500 entry in a jump table. */
5501 if (n_sets == 1
5502 && REG_P (dest)
5503 && src_const
5504 && !REG_P (src_const)
5505 && !(GET_CODE (src_const) == SUBREG
5506 && REG_P (SUBREG_REG (src_const)))
5507 && !(GET_CODE (src_const) == CONST
5508 && GET_CODE (XEXP (src_const, 0)) == MINUS
5509 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5510 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF)
5511 && !rtx_equal_p (src, src_const))
5512 {
5513 /* Make sure that the rtx is not shared. */
5514 src_const = copy_rtx (src_const);
5515
5516 /* Record the actual constant value in a REG_EQUAL note,
5517 making a new one if one does not already exist. */
5518 set_unique_reg_note (insn, REG_EQUAL, src_const);
5519 df_notes_rescan (insn);
5520 }
5521
5522 /* Now deal with the destination. */
5523 do_not_record = 0;
5524
5525 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5526 while (GET_CODE (dest) == SUBREG
5527 || GET_CODE (dest) == ZERO_EXTRACT
5528 || GET_CODE (dest) == STRICT_LOW_PART)
5529 dest = XEXP (dest, 0);
5530
5531 sets[i].inner_dest = dest;
5532
5533 if (MEM_P (dest))
5534 {
5535 #ifdef PUSH_ROUNDING
5536 /* Stack pushes invalidate the stack pointer. */
5537 rtx addr = XEXP (dest, 0);
5538 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5539 && XEXP (addr, 0) == stack_pointer_rtx)
5540 invalidate (stack_pointer_rtx, VOIDmode);
5541 #endif
5542 dest = fold_rtx (dest, insn);
5543 }
5544
5545 /* Compute the hash code of the destination now,
5546 before the effects of this instruction are recorded,
5547 since the register values used in the address computation
5548 are those before this instruction. */
5549 sets[i].dest_hash = HASH (dest, mode);
5550
5551 /* Don't enter a bit-field in the hash table
5552 because the value in it after the store
5553 may not equal what was stored, due to truncation. */
5554
5555 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5556 {
5557 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5558
5559 if (src_const != 0 && CONST_INT_P (src_const)
5560 && CONST_INT_P (width)
5561 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5562 && ! (INTVAL (src_const)
5563 & (HOST_WIDE_INT_M1U << INTVAL (width))))
5564 /* Exception: if the value is constant,
5565 and it won't be truncated, record it. */
5566 ;
5567 else
5568 {
5569 /* This is chosen so that the destination will be invalidated
5570 but no new value will be recorded.
5571 We must invalidate because sometimes constant
5572 values can be recorded for bitfields. */
5573 sets[i].src_elt = 0;
5574 sets[i].src_volatile = 1;
5575 src_eqv = 0;
5576 src_eqv_elt = 0;
5577 }
5578 }
5579
5580 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5581 the insn. */
5582 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5583 {
5584 /* One less use of the label this insn used to jump to. */
5585 cse_cfg_altered |= delete_insn_and_edges (insn);
5586 cse_jumps_altered = true;
5587 /* No more processing for this set. */
5588 sets[i].rtl = 0;
5589 }
5590
5591 /* Similarly for no-op moves. */
5592 else if (noop_insn)
5593 {
5594 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5595 cse_cfg_altered = true;
5596 cse_cfg_altered |= delete_insn_and_edges (insn);
5597 /* No more processing for this set. */
5598 sets[i].rtl = 0;
5599 }
5600
5601 /* If this SET is now setting PC to a label, we know it used to
5602 be a conditional or computed branch. */
5603 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5604 && !LABEL_REF_NONLOCAL_P (src))
5605 {
5606 /* We reemit the jump in as many cases as possible just in
5607 case the form of an unconditional jump is significantly
5608 different than a computed jump or conditional jump.
5609
5610 If this insn has multiple sets, then reemitting the
5611 jump is nontrivial. So instead we just force rerecognition
5612 and hope for the best. */
5613 if (n_sets == 1)
5614 {
5615 rtx_jump_insn *new_rtx;
5616 rtx note;
5617
5618 rtx_insn *seq = targetm.gen_jump (XEXP (src, 0));
5619 new_rtx = emit_jump_insn_before (seq, insn);
5620 JUMP_LABEL (new_rtx) = XEXP (src, 0);
5621 LABEL_NUSES (XEXP (src, 0))++;
5622
5623 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5624 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5625 if (note)
5626 {
5627 XEXP (note, 1) = NULL_RTX;
5628 REG_NOTES (new_rtx) = note;
5629 }
5630
5631 cse_cfg_altered |= delete_insn_and_edges (insn);
5632 insn = new_rtx;
5633 }
5634 else
5635 INSN_CODE (insn) = -1;
5636
5637 /* Do not bother deleting any unreachable code, let jump do it. */
5638 cse_jumps_altered = true;
5639 sets[i].rtl = 0;
5640 }
5641
5642 /* If destination is volatile, invalidate it and then do no further
5643 processing for this assignment. */
5644
5645 else if (do_not_record)
5646 {
5647 invalidate_dest (dest);
5648 sets[i].rtl = 0;
5649 }
5650
5651 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5652 {
5653 do_not_record = 0;
5654 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5655 if (do_not_record)
5656 {
5657 invalidate_dest (SET_DEST (sets[i].rtl));
5658 sets[i].rtl = 0;
5659 }
5660 }
5661
5662 /* If setting CC0, record what it was set to, or a constant, if it
5663 is equivalent to a constant. If it is being set to a floating-point
5664 value, make a COMPARE with the appropriate constant of 0. If we
5665 don't do this, later code can interpret this as a test against
5666 const0_rtx, which can cause problems if we try to put it into an
5667 insn as a floating-point operand. */
5668 if (dest == cc0_rtx)
5669 {
5670 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5671 this_insn_cc0_mode = mode;
5672 if (FLOAT_MODE_P (mode))
5673 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5674 CONST0_RTX (mode));
5675 }
5676 }
5677
5678 /* Now enter all non-volatile source expressions in the hash table
5679 if they are not already present.
5680 Record their equivalence classes in src_elt.
5681 This way we can insert the corresponding destinations into
5682 the same classes even if the actual sources are no longer in them
5683 (having been invalidated). */
5684
5685 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5686 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5687 {
5688 struct table_elt *elt;
5689 struct table_elt *classp = sets[0].src_elt;
5690 rtx dest = SET_DEST (sets[0].rtl);
5691 machine_mode eqvmode = GET_MODE (dest);
5692
5693 if (GET_CODE (dest) == STRICT_LOW_PART)
5694 {
5695 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5696 classp = 0;
5697 }
5698 if (insert_regs (src_eqv, classp, 0))
5699 {
5700 rehash_using_reg (src_eqv);
5701 src_eqv_hash = HASH (src_eqv, eqvmode);
5702 }
5703 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5704 elt->in_memory = src_eqv_in_memory;
5705 src_eqv_elt = elt;
5706
5707 /* Check to see if src_eqv_elt is the same as a set source which
5708 does not yet have an elt, and if so set the elt of the set source
5709 to src_eqv_elt. */
5710 for (i = 0; i < n_sets; i++)
5711 if (sets[i].rtl && sets[i].src_elt == 0
5712 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5713 sets[i].src_elt = src_eqv_elt;
5714 }
5715
5716 for (i = 0; i < n_sets; i++)
5717 if (sets[i].rtl && ! sets[i].src_volatile
5718 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5719 {
5720 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5721 {
5722 /* REG_EQUAL in setting a STRICT_LOW_PART
5723 gives an equivalent for the entire destination register,
5724 not just for the subreg being stored in now.
5725 This is a more interesting equivalence, so we arrange later
5726 to treat the entire reg as the destination. */
5727 sets[i].src_elt = src_eqv_elt;
5728 sets[i].src_hash = src_eqv_hash;
5729 }
5730 else
5731 {
5732 /* Insert source and constant equivalent into hash table, if not
5733 already present. */
5734 struct table_elt *classp = src_eqv_elt;
5735 rtx src = sets[i].src;
5736 rtx dest = SET_DEST (sets[i].rtl);
5737 machine_mode mode
5738 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5739
5740 /* It's possible that we have a source value known to be
5741 constant but don't have a REG_EQUAL note on the insn.
5742 Lack of a note will mean src_eqv_elt will be NULL. This
5743 can happen where we've generated a SUBREG to access a
5744 CONST_INT that is already in a register in a wider mode.
5745 Ensure that the source expression is put in the proper
5746 constant class. */
5747 if (!classp)
5748 classp = sets[i].src_const_elt;
5749
5750 if (sets[i].src_elt == 0)
5751 {
5752 struct table_elt *elt;
5753
5754 /* Note that these insert_regs calls cannot remove
5755 any of the src_elt's, because they would have failed to
5756 match if not still valid. */
5757 if (insert_regs (src, classp, 0))
5758 {
5759 rehash_using_reg (src);
5760 sets[i].src_hash = HASH (src, mode);
5761 }
5762 elt = insert (src, classp, sets[i].src_hash, mode);
5763 elt->in_memory = sets[i].src_in_memory;
5764 /* If inline asm has any clobbers, ensure we only reuse
5765 existing inline asms and never try to put the ASM_OPERANDS
5766 into an insn that isn't inline asm. */
5767 if (GET_CODE (src) == ASM_OPERANDS
5768 && GET_CODE (x) == PARALLEL)
5769 elt->cost = MAX_COST;
5770 sets[i].src_elt = classp = elt;
5771 }
5772 if (sets[i].src_const && sets[i].src_const_elt == 0
5773 && src != sets[i].src_const
5774 && ! rtx_equal_p (sets[i].src_const, src))
5775 sets[i].src_elt = insert (sets[i].src_const, classp,
5776 sets[i].src_const_hash, mode);
5777 }
5778 }
5779 else if (sets[i].src_elt == 0)
5780 /* If we did not insert the source into the hash table (e.g., it was
5781 volatile), note the equivalence class for the REG_EQUAL value, if any,
5782 so that the destination goes into that class. */
5783 sets[i].src_elt = src_eqv_elt;
5784
5785 /* Record destination addresses in the hash table. This allows us to
5786 check if they are invalidated by other sets. */
5787 for (i = 0; i < n_sets; i++)
5788 {
5789 if (sets[i].rtl)
5790 {
5791 rtx x = sets[i].inner_dest;
5792 struct table_elt *elt;
5793 machine_mode mode;
5794 unsigned hash;
5795
5796 if (MEM_P (x))
5797 {
5798 x = XEXP (x, 0);
5799 mode = GET_MODE (x);
5800 hash = HASH (x, mode);
5801 elt = lookup (x, hash, mode);
5802 if (!elt)
5803 {
5804 if (insert_regs (x, NULL, 0))
5805 {
5806 rtx dest = SET_DEST (sets[i].rtl);
5807
5808 rehash_using_reg (x);
5809 hash = HASH (x, mode);
5810 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5811 }
5812 elt = insert (x, NULL, hash, mode);
5813 }
5814
5815 sets[i].dest_addr_elt = elt;
5816 }
5817 else
5818 sets[i].dest_addr_elt = NULL;
5819 }
5820 }
5821
5822 invalidate_from_clobbers (insn);
5823
5824 /* Some registers are invalidated by subroutine calls. Memory is
5825 invalidated by non-constant calls. */
5826
5827 if (CALL_P (insn))
5828 {
5829 if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
5830 invalidate_memory ();
5831 else
5832 /* For const/pure calls, invalidate any argument slots, because
5833 those are owned by the callee. */
5834 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
5835 if (GET_CODE (XEXP (tem, 0)) == USE
5836 && MEM_P (XEXP (XEXP (tem, 0), 0)))
5837 invalidate (XEXP (XEXP (tem, 0), 0), VOIDmode);
5838 invalidate_for_call (insn);
5839 }
5840
5841 /* Now invalidate everything set by this instruction.
5842 If a SUBREG or other funny destination is being set,
5843 sets[i].rtl is still nonzero, so here we invalidate the reg
5844 a part of which is being set. */
5845
5846 for (i = 0; i < n_sets; i++)
5847 if (sets[i].rtl)
5848 {
5849 /* We can't use the inner dest, because the mode associated with
5850 a ZERO_EXTRACT is significant. */
5851 rtx dest = SET_DEST (sets[i].rtl);
5852
5853 /* Needed for registers to remove the register from its
5854 previous quantity's chain.
5855 Needed for memory if this is a nonvarying address, unless
5856 we have just done an invalidate_memory that covers even those. */
5857 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5858 invalidate (dest, VOIDmode);
5859 else if (MEM_P (dest))
5860 invalidate (dest, VOIDmode);
5861 else if (GET_CODE (dest) == STRICT_LOW_PART
5862 || GET_CODE (dest) == ZERO_EXTRACT)
5863 invalidate (XEXP (dest, 0), GET_MODE (dest));
5864 }
5865
5866 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5867 the regs restored by the longjmp come from a later time
5868 than the setjmp. */
5869 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5870 {
5871 flush_hash_table ();
5872 goto done;
5873 }
5874
5875 /* Make sure registers mentioned in destinations
5876 are safe for use in an expression to be inserted.
5877 This removes from the hash table
5878 any invalid entry that refers to one of these registers.
5879
5880 We don't care about the return value from mention_regs because
5881 we are going to hash the SET_DEST values unconditionally. */
5882
5883 for (i = 0; i < n_sets; i++)
5884 {
5885 if (sets[i].rtl)
5886 {
5887 rtx x = SET_DEST (sets[i].rtl);
5888
5889 if (!REG_P (x))
5890 mention_regs (x);
5891 else
5892 {
5893 /* We used to rely on all references to a register becoming
5894 inaccessible when a register changes to a new quantity,
5895 since that changes the hash code. However, that is not
5896 safe, since after HASH_SIZE new quantities we get a
5897 hash 'collision' of a register with its own invalid
5898 entries. And since SUBREGs have been changed not to
5899 change their hash code with the hash code of the register,
5900 it wouldn't work any longer at all. So we have to check
5901 for any invalid references lying around now.
5902 This code is similar to the REG case in mention_regs,
5903 but it knows that reg_tick has been incremented, and
5904 it leaves reg_in_table as -1 . */
5905 unsigned int regno = REGNO (x);
5906 unsigned int endregno = END_REGNO (x);
5907 unsigned int i;
5908
5909 for (i = regno; i < endregno; i++)
5910 {
5911 if (REG_IN_TABLE (i) >= 0)
5912 {
5913 remove_invalid_refs (i);
5914 REG_IN_TABLE (i) = -1;
5915 }
5916 }
5917 }
5918 }
5919 }
5920
5921 /* We may have just removed some of the src_elt's from the hash table.
5922 So replace each one with the current head of the same class.
5923 Also check if destination addresses have been removed. */
5924
5925 for (i = 0; i < n_sets; i++)
5926 if (sets[i].rtl)
5927 {
5928 if (sets[i].dest_addr_elt
5929 && sets[i].dest_addr_elt->first_same_value == 0)
5930 {
5931 /* The elt was removed, which means this destination is not
5932 valid after this instruction. */
5933 sets[i].rtl = NULL_RTX;
5934 }
5935 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5936 /* If elt was removed, find current head of same class,
5937 or 0 if nothing remains of that class. */
5938 {
5939 struct table_elt *elt = sets[i].src_elt;
5940
5941 while (elt && elt->prev_same_value)
5942 elt = elt->prev_same_value;
5943
5944 while (elt && elt->first_same_value == 0)
5945 elt = elt->next_same_value;
5946 sets[i].src_elt = elt ? elt->first_same_value : 0;
5947 }
5948 }
5949
5950 /* Now insert the destinations into their equivalence classes. */
5951
5952 for (i = 0; i < n_sets; i++)
5953 if (sets[i].rtl)
5954 {
5955 rtx dest = SET_DEST (sets[i].rtl);
5956 struct table_elt *elt;
5957
5958 /* Don't record value if we are not supposed to risk allocating
5959 floating-point values in registers that might be wider than
5960 memory. */
5961 if ((flag_float_store
5962 && MEM_P (dest)
5963 && FLOAT_MODE_P (GET_MODE (dest)))
5964 /* Don't record BLKmode values, because we don't know the
5965 size of it, and can't be sure that other BLKmode values
5966 have the same or smaller size. */
5967 || GET_MODE (dest) == BLKmode
5968 /* If we didn't put a REG_EQUAL value or a source into the hash
5969 table, there is no point is recording DEST. */
5970 || sets[i].src_elt == 0)
5971 continue;
5972
5973 /* STRICT_LOW_PART isn't part of the value BEING set,
5974 and neither is the SUBREG inside it.
5975 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5976 if (GET_CODE (dest) == STRICT_LOW_PART)
5977 dest = SUBREG_REG (XEXP (dest, 0));
5978
5979 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5980 /* Registers must also be inserted into chains for quantities. */
5981 if (insert_regs (dest, sets[i].src_elt, 1))
5982 {
5983 /* If `insert_regs' changes something, the hash code must be
5984 recalculated. */
5985 rehash_using_reg (dest);
5986 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5987 }
5988
5989 /* If DEST is a paradoxical SUBREG, don't record DEST since the bits
5990 outside the mode of GET_MODE (SUBREG_REG (dest)) are undefined. */
5991 if (paradoxical_subreg_p (dest))
5992 continue;
5993
5994 elt = insert (dest, sets[i].src_elt,
5995 sets[i].dest_hash, GET_MODE (dest));
5996
5997 /* If this is a constant, insert the constant anchors with the
5998 equivalent register-offset expressions using register DEST. */
5999 if (targetm.const_anchor
6000 && REG_P (dest)
6001 && SCALAR_INT_MODE_P (GET_MODE (dest))
6002 && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
6003 insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
6004
6005 elt->in_memory = (MEM_P (sets[i].inner_dest)
6006 && !MEM_READONLY_P (sets[i].inner_dest));
6007
6008 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
6009 narrower than M2, and both M1 and M2 are the same number of words,
6010 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
6011 make that equivalence as well.
6012
6013 However, BAR may have equivalences for which gen_lowpart
6014 will produce a simpler value than gen_lowpart applied to
6015 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
6016 BAR's equivalences. If we don't get a simplified form, make
6017 the SUBREG. It will not be used in an equivalence, but will
6018 cause two similar assignments to be detected.
6019
6020 Note the loop below will find SUBREG_REG (DEST) since we have
6021 already entered SRC and DEST of the SET in the table. */
6022
6023 if (GET_CODE (dest) == SUBREG
6024 && (known_equal_after_align_down
6025 (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1,
6026 GET_MODE_SIZE (GET_MODE (dest)) - 1,
6027 UNITS_PER_WORD))
6028 && !partial_subreg_p (dest)
6029 && sets[i].src_elt != 0)
6030 {
6031 machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
6032 struct table_elt *elt, *classp = 0;
6033
6034 for (elt = sets[i].src_elt->first_same_value; elt;
6035 elt = elt->next_same_value)
6036 {
6037 rtx new_src = 0;
6038 unsigned src_hash;
6039 struct table_elt *src_elt;
6040
6041 /* Ignore invalid entries. */
6042 if (!REG_P (elt->exp)
6043 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
6044 continue;
6045
6046 /* We may have already been playing subreg games. If the
6047 mode is already correct for the destination, use it. */
6048 if (GET_MODE (elt->exp) == new_mode)
6049 new_src = elt->exp;
6050 else
6051 {
6052 poly_uint64 byte
6053 = subreg_lowpart_offset (new_mode, GET_MODE (dest));
6054 new_src = simplify_gen_subreg (new_mode, elt->exp,
6055 GET_MODE (dest), byte);
6056 }
6057
6058 /* The call to simplify_gen_subreg fails if the value
6059 is VOIDmode, yet we can't do any simplification, e.g.
6060 for EXPR_LISTs denoting function call results.
6061 It is invalid to construct a SUBREG with a VOIDmode
6062 SUBREG_REG, hence a zero new_src means we can't do
6063 this substitution. */
6064 if (! new_src)
6065 continue;
6066
6067 src_hash = HASH (new_src, new_mode);
6068 src_elt = lookup (new_src, src_hash, new_mode);
6069
6070 /* Put the new source in the hash table is if isn't
6071 already. */
6072 if (src_elt == 0)
6073 {
6074 if (insert_regs (new_src, classp, 0))
6075 {
6076 rehash_using_reg (new_src);
6077 src_hash = HASH (new_src, new_mode);
6078 }
6079 src_elt = insert (new_src, classp, src_hash, new_mode);
6080 src_elt->in_memory = elt->in_memory;
6081 if (GET_CODE (new_src) == ASM_OPERANDS
6082 && elt->cost == MAX_COST)
6083 src_elt->cost = MAX_COST;
6084 }
6085 else if (classp && classp != src_elt->first_same_value)
6086 /* Show that two things that we've seen before are
6087 actually the same. */
6088 merge_equiv_classes (src_elt, classp);
6089
6090 classp = src_elt->first_same_value;
6091 /* Ignore invalid entries. */
6092 while (classp
6093 && !REG_P (classp->exp)
6094 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
6095 classp = classp->next_same_value;
6096 }
6097 }
6098 }
6099
6100 /* Special handling for (set REG0 REG1) where REG0 is the
6101 "cheapest", cheaper than REG1. After cse, REG1 will probably not
6102 be used in the sequel, so (if easily done) change this insn to
6103 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
6104 that computed their value. Then REG1 will become a dead store
6105 and won't cloud the situation for later optimizations.
6106
6107 Do not make this change if REG1 is a hard register, because it will
6108 then be used in the sequel and we may be changing a two-operand insn
6109 into a three-operand insn.
6110
6111 Also do not do this if we are operating on a copy of INSN. */
6112
6113 if (n_sets == 1 && sets[0].rtl)
6114 try_back_substitute_reg (sets[0].rtl, insn);
6115
6116 done:;
6117 }
6118 \f
6119 /* Remove from the hash table all expressions that reference memory. */
6120
6121 static void
6122 invalidate_memory (void)
6123 {
6124 int i;
6125 struct table_elt *p, *next;
6126
6127 for (i = 0; i < HASH_SIZE; i++)
6128 for (p = table[i]; p; p = next)
6129 {
6130 next = p->next_same_hash;
6131 if (p->in_memory)
6132 remove_from_table (p, i);
6133 }
6134 }
6135
6136 /* Perform invalidation on the basis of everything about INSN,
6137 except for invalidating the actual places that are SET in it.
6138 This includes the places CLOBBERed, and anything that might
6139 alias with something that is SET or CLOBBERed. */
6140
6141 static void
6142 invalidate_from_clobbers (rtx_insn *insn)
6143 {
6144 rtx x = PATTERN (insn);
6145
6146 if (GET_CODE (x) == CLOBBER)
6147 {
6148 rtx ref = XEXP (x, 0);
6149 if (ref)
6150 {
6151 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6152 || MEM_P (ref))
6153 invalidate (ref, VOIDmode);
6154 else if (GET_CODE (ref) == STRICT_LOW_PART
6155 || GET_CODE (ref) == ZERO_EXTRACT)
6156 invalidate (XEXP (ref, 0), GET_MODE (ref));
6157 }
6158 }
6159 else if (GET_CODE (x) == PARALLEL)
6160 {
6161 int i;
6162 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6163 {
6164 rtx y = XVECEXP (x, 0, i);
6165 if (GET_CODE (y) == CLOBBER)
6166 {
6167 rtx ref = XEXP (y, 0);
6168 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6169 || MEM_P (ref))
6170 invalidate (ref, VOIDmode);
6171 else if (GET_CODE (ref) == STRICT_LOW_PART
6172 || GET_CODE (ref) == ZERO_EXTRACT)
6173 invalidate (XEXP (ref, 0), GET_MODE (ref));
6174 }
6175 }
6176 }
6177 }
6178 \f
6179 /* Perform invalidation on the basis of everything about INSN.
6180 This includes the places CLOBBERed, and anything that might
6181 alias with something that is SET or CLOBBERed. */
6182
6183 static void
6184 invalidate_from_sets_and_clobbers (rtx_insn *insn)
6185 {
6186 rtx tem;
6187 rtx x = PATTERN (insn);
6188
6189 if (CALL_P (insn))
6190 {
6191 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
6192 {
6193 rtx temx = XEXP (tem, 0);
6194 if (GET_CODE (temx) == CLOBBER)
6195 invalidate (SET_DEST (temx), VOIDmode);
6196 }
6197 }
6198
6199 /* Ensure we invalidate the destination register of a CALL insn.
6200 This is necessary for machines where this register is a fixed_reg,
6201 because no other code would invalidate it. */
6202 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
6203 invalidate (SET_DEST (x), VOIDmode);
6204
6205 else if (GET_CODE (x) == PARALLEL)
6206 {
6207 int i;
6208
6209 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6210 {
6211 rtx y = XVECEXP (x, 0, i);
6212 if (GET_CODE (y) == CLOBBER)
6213 {
6214 rtx clobbered = XEXP (y, 0);
6215
6216 if (REG_P (clobbered)
6217 || GET_CODE (clobbered) == SUBREG)
6218 invalidate (clobbered, VOIDmode);
6219 else if (GET_CODE (clobbered) == STRICT_LOW_PART
6220 || GET_CODE (clobbered) == ZERO_EXTRACT)
6221 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
6222 }
6223 else if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
6224 invalidate (SET_DEST (y), VOIDmode);
6225 }
6226 }
6227 }
6228 \f
6229 static rtx cse_process_note (rtx);
6230
6231 /* A simplify_replace_fn_rtx callback for cse_process_note. Process X,
6232 part of the REG_NOTES of an insn. Replace any registers with either
6233 an equivalent constant or the canonical form of the register.
6234 Only replace addresses if the containing MEM remains valid.
6235
6236 Return the replacement for X, or null if it should be simplified
6237 recursively. */
6238
6239 static rtx
6240 cse_process_note_1 (rtx x, const_rtx, void *)
6241 {
6242 if (MEM_P (x))
6243 {
6244 validate_change (x, &XEXP (x, 0), cse_process_note (XEXP (x, 0)), false);
6245 return x;
6246 }
6247
6248 if (REG_P (x))
6249 {
6250 int i = REG_QTY (REGNO (x));
6251
6252 /* Return a constant or a constant register. */
6253 if (REGNO_QTY_VALID_P (REGNO (x)))
6254 {
6255 struct qty_table_elem *ent = &qty_table[i];
6256
6257 if (ent->const_rtx != NULL_RTX
6258 && (CONSTANT_P (ent->const_rtx)
6259 || REG_P (ent->const_rtx)))
6260 {
6261 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
6262 if (new_rtx)
6263 return copy_rtx (new_rtx);
6264 }
6265 }
6266
6267 /* Otherwise, canonicalize this register. */
6268 return canon_reg (x, NULL);
6269 }
6270
6271 return NULL_RTX;
6272 }
6273
6274 /* Process X, part of the REG_NOTES of an insn. Replace any registers in it
6275 with either an equivalent constant or the canonical form of the register.
6276 Only replace addresses if the containing MEM remains valid. */
6277
6278 static rtx
6279 cse_process_note (rtx x)
6280 {
6281 return simplify_replace_fn_rtx (x, NULL_RTX, cse_process_note_1, NULL);
6282 }
6283
6284 \f
6285 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
6286
6287 DATA is a pointer to a struct cse_basic_block_data, that is used to
6288 describe the path.
6289 It is filled with a queue of basic blocks, starting with FIRST_BB
6290 and following a trace through the CFG.
6291
6292 If all paths starting at FIRST_BB have been followed, or no new path
6293 starting at FIRST_BB can be constructed, this function returns FALSE.
6294 Otherwise, DATA->path is filled and the function returns TRUE indicating
6295 that a path to follow was found.
6296
6297 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
6298 block in the path will be FIRST_BB. */
6299
6300 static bool
6301 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6302 int follow_jumps)
6303 {
6304 basic_block bb;
6305 edge e;
6306 int path_size;
6307
6308 bitmap_set_bit (cse_visited_basic_blocks, first_bb->index);
6309
6310 /* See if there is a previous path. */
6311 path_size = data->path_size;
6312
6313 /* There is a previous path. Make sure it started with FIRST_BB. */
6314 if (path_size)
6315 gcc_assert (data->path[0].bb == first_bb);
6316
6317 /* There was only one basic block in the last path. Clear the path and
6318 return, so that paths starting at another basic block can be tried. */
6319 if (path_size == 1)
6320 {
6321 path_size = 0;
6322 goto done;
6323 }
6324
6325 /* If the path was empty from the beginning, construct a new path. */
6326 if (path_size == 0)
6327 data->path[path_size++].bb = first_bb;
6328 else
6329 {
6330 /* Otherwise, path_size must be equal to or greater than 2, because
6331 a previous path exists that is at least two basic blocks long.
6332
6333 Update the previous branch path, if any. If the last branch was
6334 previously along the branch edge, take the fallthrough edge now. */
6335 while (path_size >= 2)
6336 {
6337 basic_block last_bb_in_path, previous_bb_in_path;
6338 edge e;
6339
6340 --path_size;
6341 last_bb_in_path = data->path[path_size].bb;
6342 previous_bb_in_path = data->path[path_size - 1].bb;
6343
6344 /* If we previously followed a path along the branch edge, try
6345 the fallthru edge now. */
6346 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6347 && any_condjump_p (BB_END (previous_bb_in_path))
6348 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6349 && e == BRANCH_EDGE (previous_bb_in_path))
6350 {
6351 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
6352 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
6353 && single_pred_p (bb)
6354 /* We used to assert here that we would only see blocks
6355 that we have not visited yet. But we may end up
6356 visiting basic blocks twice if the CFG has changed
6357 in this run of cse_main, because when the CFG changes
6358 the topological sort of the CFG also changes. A basic
6359 blocks that previously had more than two predecessors
6360 may now have a single predecessor, and become part of
6361 a path that starts at another basic block.
6362
6363 We still want to visit each basic block only once, so
6364 halt the path here if we have already visited BB. */
6365 && !bitmap_bit_p (cse_visited_basic_blocks, bb->index))
6366 {
6367 bitmap_set_bit (cse_visited_basic_blocks, bb->index);
6368 data->path[path_size++].bb = bb;
6369 break;
6370 }
6371 }
6372
6373 data->path[path_size].bb = NULL;
6374 }
6375
6376 /* If only one block remains in the path, bail. */
6377 if (path_size == 1)
6378 {
6379 path_size = 0;
6380 goto done;
6381 }
6382 }
6383
6384 /* Extend the path if possible. */
6385 if (follow_jumps)
6386 {
6387 bb = data->path[path_size - 1].bb;
6388 while (bb && path_size < param_max_cse_path_length)
6389 {
6390 if (single_succ_p (bb))
6391 e = single_succ_edge (bb);
6392 else if (EDGE_COUNT (bb->succs) == 2
6393 && any_condjump_p (BB_END (bb)))
6394 {
6395 /* First try to follow the branch. If that doesn't lead
6396 to a useful path, follow the fallthru edge. */
6397 e = BRANCH_EDGE (bb);
6398 if (!single_pred_p (e->dest))
6399 e = FALLTHRU_EDGE (bb);
6400 }
6401 else
6402 e = NULL;
6403
6404 if (e
6405 && !((e->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
6406 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
6407 && single_pred_p (e->dest)
6408 /* Avoid visiting basic blocks twice. The large comment
6409 above explains why this can happen. */
6410 && !bitmap_bit_p (cse_visited_basic_blocks, e->dest->index))
6411 {
6412 basic_block bb2 = e->dest;
6413 bitmap_set_bit (cse_visited_basic_blocks, bb2->index);
6414 data->path[path_size++].bb = bb2;
6415 bb = bb2;
6416 }
6417 else
6418 bb = NULL;
6419 }
6420 }
6421
6422 done:
6423 data->path_size = path_size;
6424 return path_size != 0;
6425 }
6426 \f
6427 /* Dump the path in DATA to file F. NSETS is the number of sets
6428 in the path. */
6429
6430 static void
6431 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6432 {
6433 int path_entry;
6434
6435 fprintf (f, ";; Following path with %d sets: ", nsets);
6436 for (path_entry = 0; path_entry < data->path_size; path_entry++)
6437 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
6438 fputc ('\n', f);
6439 fflush (f);
6440 }
6441
6442 \f
6443 /* Return true if BB has exception handling successor edges. */
6444
6445 static bool
6446 have_eh_succ_edges (basic_block bb)
6447 {
6448 edge e;
6449 edge_iterator ei;
6450
6451 FOR_EACH_EDGE (e, ei, bb->succs)
6452 if (e->flags & EDGE_EH)
6453 return true;
6454
6455 return false;
6456 }
6457
6458 \f
6459 /* Scan to the end of the path described by DATA. Return an estimate of
6460 the total number of SETs of all insns in the path. */
6461
6462 static void
6463 cse_prescan_path (struct cse_basic_block_data *data)
6464 {
6465 int nsets = 0;
6466 int path_size = data->path_size;
6467 int path_entry;
6468
6469 /* Scan to end of each basic block in the path. */
6470 for (path_entry = 0; path_entry < path_size; path_entry++)
6471 {
6472 basic_block bb;
6473 rtx_insn *insn;
6474
6475 bb = data->path[path_entry].bb;
6476
6477 FOR_BB_INSNS (bb, insn)
6478 {
6479 if (!INSN_P (insn))
6480 continue;
6481
6482 /* A PARALLEL can have lots of SETs in it,
6483 especially if it is really an ASM_OPERANDS. */
6484 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6485 nsets += XVECLEN (PATTERN (insn), 0);
6486 else
6487 nsets += 1;
6488 }
6489 }
6490
6491 data->nsets = nsets;
6492 }
6493 \f
6494 /* Return true if the pattern of INSN uses a LABEL_REF for which
6495 there isn't a REG_LABEL_OPERAND note. */
6496
6497 static bool
6498 check_for_label_ref (rtx_insn *insn)
6499 {
6500 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6501 note for it, we must rerun jump since it needs to place the note. If
6502 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6503 don't do this since no REG_LABEL_OPERAND will be added. */
6504 subrtx_iterator::array_type array;
6505 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
6506 {
6507 const_rtx x = *iter;
6508 if (GET_CODE (x) == LABEL_REF
6509 && !LABEL_REF_NONLOCAL_P (x)
6510 && (!JUMP_P (insn)
6511 || !label_is_jump_target_p (label_ref_label (x), insn))
6512 && LABEL_P (label_ref_label (x))
6513 && INSN_UID (label_ref_label (x)) != 0
6514 && !find_reg_note (insn, REG_LABEL_OPERAND, label_ref_label (x)))
6515 return true;
6516 }
6517 return false;
6518 }
6519
6520 /* Process a single extended basic block described by EBB_DATA. */
6521
6522 static void
6523 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6524 {
6525 int path_size = ebb_data->path_size;
6526 int path_entry;
6527 int num_insns = 0;
6528
6529 /* Allocate the space needed by qty_table. */
6530 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6531
6532 new_basic_block ();
6533 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6534 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
6535 for (path_entry = 0; path_entry < path_size; path_entry++)
6536 {
6537 basic_block bb;
6538 rtx_insn *insn;
6539
6540 bb = ebb_data->path[path_entry].bb;
6541
6542 /* Invalidate recorded information for eh regs if there is an EH
6543 edge pointing to that bb. */
6544 if (bb_has_eh_pred (bb))
6545 {
6546 df_ref def;
6547
6548 FOR_EACH_ARTIFICIAL_DEF (def, bb->index)
6549 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6550 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6551 }
6552
6553 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
6554 FOR_BB_INSNS (bb, insn)
6555 {
6556 /* If we have processed 1,000 insns, flush the hash table to
6557 avoid extreme quadratic behavior. We must not include NOTEs
6558 in the count since there may be more of them when generating
6559 debugging information. If we clear the table at different
6560 times, code generated with -g -O might be different than code
6561 generated with -O but not -g.
6562
6563 FIXME: This is a real kludge and needs to be done some other
6564 way. */
6565 if (NONDEBUG_INSN_P (insn)
6566 && num_insns++ > param_max_cse_insns)
6567 {
6568 flush_hash_table ();
6569 num_insns = 0;
6570 }
6571
6572 if (INSN_P (insn))
6573 {
6574 /* Process notes first so we have all notes in canonical forms
6575 when looking for duplicate operations. */
6576 bool changed = false;
6577 for (rtx note = REG_NOTES (insn); note; note = XEXP (note, 1))
6578 if (REG_NOTE_KIND (note) == REG_EQUAL)
6579 {
6580 rtx newval = cse_process_note (XEXP (note, 0));
6581 if (newval != XEXP (note, 0))
6582 {
6583 XEXP (note, 0) = newval;
6584 changed = true;
6585 }
6586 }
6587 if (changed)
6588 df_notes_rescan (insn);
6589
6590 cse_insn (insn);
6591
6592 /* If we haven't already found an insn where we added a LABEL_REF,
6593 check this one. */
6594 if (INSN_P (insn) && !recorded_label_ref
6595 && check_for_label_ref (insn))
6596 recorded_label_ref = true;
6597
6598 if (HAVE_cc0 && NONDEBUG_INSN_P (insn))
6599 {
6600 /* If the previous insn sets CC0 and this insn no
6601 longer references CC0, delete the previous insn.
6602 Here we use fact that nothing expects CC0 to be
6603 valid over an insn, which is true until the final
6604 pass. */
6605 rtx_insn *prev_insn;
6606 rtx tem;
6607
6608 prev_insn = prev_nonnote_nondebug_insn (insn);
6609 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6610 && (tem = single_set (prev_insn)) != NULL_RTX
6611 && SET_DEST (tem) == cc0_rtx
6612 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6613 delete_insn (prev_insn);
6614
6615 /* If this insn is not the last insn in the basic
6616 block, it will be PREV_INSN(insn) in the next
6617 iteration. If we recorded any CC0-related
6618 information for this insn, remember it. */
6619 if (insn != BB_END (bb))
6620 {
6621 prev_insn_cc0 = this_insn_cc0;
6622 prev_insn_cc0_mode = this_insn_cc0_mode;
6623 }
6624 }
6625 }
6626 }
6627
6628 /* With non-call exceptions, we are not always able to update
6629 the CFG properly inside cse_insn. So clean up possibly
6630 redundant EH edges here. */
6631 if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb))
6632 cse_cfg_altered |= purge_dead_edges (bb);
6633
6634 /* If we changed a conditional jump, we may have terminated
6635 the path we are following. Check that by verifying that
6636 the edge we would take still exists. If the edge does
6637 not exist anymore, purge the remainder of the path.
6638 Note that this will cause us to return to the caller. */
6639 if (path_entry < path_size - 1)
6640 {
6641 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6642 if (!find_edge (bb, next_bb))
6643 {
6644 do
6645 {
6646 path_size--;
6647
6648 /* If we truncate the path, we must also reset the
6649 visited bit on the remaining blocks in the path,
6650 or we will never visit them at all. */
6651 bitmap_clear_bit (cse_visited_basic_blocks,
6652 ebb_data->path[path_size].bb->index);
6653 ebb_data->path[path_size].bb = NULL;
6654 }
6655 while (path_size - 1 != path_entry);
6656 ebb_data->path_size = path_size;
6657 }
6658 }
6659
6660 /* If this is a conditional jump insn, record any known
6661 equivalences due to the condition being tested. */
6662 insn = BB_END (bb);
6663 if (path_entry < path_size - 1
6664 && EDGE_COUNT (bb->succs) == 2
6665 && JUMP_P (insn)
6666 && single_set (insn)
6667 && any_condjump_p (insn))
6668 {
6669 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6670 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6671 record_jump_equiv (insn, taken);
6672 }
6673
6674 /* Clear the CC0-tracking related insns, they can't provide
6675 useful information across basic block boundaries. */
6676 prev_insn_cc0 = 0;
6677 }
6678
6679 gcc_assert (next_qty <= max_qty);
6680
6681 free (qty_table);
6682 }
6683
6684 \f
6685 /* Perform cse on the instructions of a function.
6686 F is the first instruction.
6687 NREGS is one plus the highest pseudo-reg number used in the instruction.
6688
6689 Return 2 if jump optimizations should be redone due to simplifications
6690 in conditional jump instructions.
6691 Return 1 if the CFG should be cleaned up because it has been modified.
6692 Return 0 otherwise. */
6693
6694 static int
6695 cse_main (rtx_insn *f ATTRIBUTE_UNUSED, int nregs)
6696 {
6697 struct cse_basic_block_data ebb_data;
6698 basic_block bb;
6699 int *rc_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6700 int i, n_blocks;
6701
6702 /* CSE doesn't use dominane info but can invalidate it in different ways.
6703 For simplicity free dominance info here. */
6704 free_dominance_info (CDI_DOMINATORS);
6705
6706 df_set_flags (DF_LR_RUN_DCE);
6707 df_note_add_problem ();
6708 df_analyze ();
6709 df_set_flags (DF_DEFER_INSN_RESCAN);
6710
6711 reg_scan (get_insns (), max_reg_num ());
6712 init_cse_reg_info (nregs);
6713
6714 ebb_data.path = XNEWVEC (struct branch_path,
6715 param_max_cse_path_length);
6716
6717 cse_cfg_altered = false;
6718 cse_jumps_altered = false;
6719 recorded_label_ref = false;
6720 constant_pool_entries_cost = 0;
6721 constant_pool_entries_regcost = 0;
6722 ebb_data.path_size = 0;
6723 ebb_data.nsets = 0;
6724 rtl_hooks = cse_rtl_hooks;
6725
6726 init_recog ();
6727 init_alias_analysis ();
6728
6729 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6730
6731 /* Set up the table of already visited basic blocks. */
6732 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
6733 bitmap_clear (cse_visited_basic_blocks);
6734
6735 /* Loop over basic blocks in reverse completion order (RPO),
6736 excluding the ENTRY and EXIT blocks. */
6737 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6738 i = 0;
6739 while (i < n_blocks)
6740 {
6741 /* Find the first block in the RPO queue that we have not yet
6742 processed before. */
6743 do
6744 {
6745 bb = BASIC_BLOCK_FOR_FN (cfun, rc_order[i++]);
6746 }
6747 while (bitmap_bit_p (cse_visited_basic_blocks, bb->index)
6748 && i < n_blocks);
6749
6750 /* Find all paths starting with BB, and process them. */
6751 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6752 {
6753 /* Pre-scan the path. */
6754 cse_prescan_path (&ebb_data);
6755
6756 /* If this basic block has no sets, skip it. */
6757 if (ebb_data.nsets == 0)
6758 continue;
6759
6760 /* Get a reasonable estimate for the maximum number of qty's
6761 needed for this path. For this, we take the number of sets
6762 and multiply that by MAX_RECOG_OPERANDS. */
6763 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6764
6765 /* Dump the path we're about to process. */
6766 if (dump_file)
6767 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6768
6769 cse_extended_basic_block (&ebb_data);
6770 }
6771 }
6772
6773 /* Clean up. */
6774 end_alias_analysis ();
6775 free (reg_eqv_table);
6776 free (ebb_data.path);
6777 sbitmap_free (cse_visited_basic_blocks);
6778 free (rc_order);
6779 rtl_hooks = general_rtl_hooks;
6780
6781 if (cse_jumps_altered || recorded_label_ref)
6782 return 2;
6783 else if (cse_cfg_altered)
6784 return 1;
6785 else
6786 return 0;
6787 }
6788 \f
6789 /* Count the number of times registers are used (not set) in X.
6790 COUNTS is an array in which we accumulate the count, INCR is how much
6791 we count each register usage.
6792
6793 Don't count a usage of DEST, which is the SET_DEST of a SET which
6794 contains X in its SET_SRC. This is because such a SET does not
6795 modify the liveness of DEST.
6796 DEST is set to pc_rtx for a trapping insn, or for an insn with side effects.
6797 We must then count uses of a SET_DEST regardless, because the insn can't be
6798 deleted here. */
6799
6800 static void
6801 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6802 {
6803 enum rtx_code code;
6804 rtx note;
6805 const char *fmt;
6806 int i, j;
6807
6808 if (x == 0)
6809 return;
6810
6811 switch (code = GET_CODE (x))
6812 {
6813 case REG:
6814 if (x != dest)
6815 counts[REGNO (x)] += incr;
6816 return;
6817
6818 case PC:
6819 case CC0:
6820 case CONST:
6821 CASE_CONST_ANY:
6822 case SYMBOL_REF:
6823 case LABEL_REF:
6824 return;
6825
6826 case CLOBBER:
6827 /* If we are clobbering a MEM, mark any registers inside the address
6828 as being used. */
6829 if (MEM_P (XEXP (x, 0)))
6830 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6831 return;
6832
6833 case SET:
6834 /* Unless we are setting a REG, count everything in SET_DEST. */
6835 if (!REG_P (SET_DEST (x)))
6836 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6837 count_reg_usage (SET_SRC (x), counts,
6838 dest ? dest : SET_DEST (x),
6839 incr);
6840 return;
6841
6842 case DEBUG_INSN:
6843 return;
6844
6845 case CALL_INSN:
6846 case INSN:
6847 case JUMP_INSN:
6848 /* We expect dest to be NULL_RTX here. If the insn may throw,
6849 or if it cannot be deleted due to side-effects, mark this fact
6850 by setting DEST to pc_rtx. */
6851 if ((!cfun->can_delete_dead_exceptions && !insn_nothrow_p (x))
6852 || side_effects_p (PATTERN (x)))
6853 dest = pc_rtx;
6854 if (code == CALL_INSN)
6855 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6856 count_reg_usage (PATTERN (x), counts, dest, incr);
6857
6858 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6859 use them. */
6860
6861 note = find_reg_equal_equiv_note (x);
6862 if (note)
6863 {
6864 rtx eqv = XEXP (note, 0);
6865
6866 if (GET_CODE (eqv) == EXPR_LIST)
6867 /* This REG_EQUAL note describes the result of a function call.
6868 Process all the arguments. */
6869 do
6870 {
6871 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6872 eqv = XEXP (eqv, 1);
6873 }
6874 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6875 else
6876 count_reg_usage (eqv, counts, dest, incr);
6877 }
6878 return;
6879
6880 case EXPR_LIST:
6881 if (REG_NOTE_KIND (x) == REG_EQUAL
6882 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6883 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6884 involving registers in the address. */
6885 || GET_CODE (XEXP (x, 0)) == CLOBBER)
6886 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6887
6888 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6889 return;
6890
6891 case ASM_OPERANDS:
6892 /* Iterate over just the inputs, not the constraints as well. */
6893 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6894 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6895 return;
6896
6897 case INSN_LIST:
6898 case INT_LIST:
6899 gcc_unreachable ();
6900
6901 default:
6902 break;
6903 }
6904
6905 fmt = GET_RTX_FORMAT (code);
6906 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6907 {
6908 if (fmt[i] == 'e')
6909 count_reg_usage (XEXP (x, i), counts, dest, incr);
6910 else if (fmt[i] == 'E')
6911 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6912 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6913 }
6914 }
6915 \f
6916 /* Return true if X is a dead register. */
6917
6918 static inline int
6919 is_dead_reg (const_rtx x, int *counts)
6920 {
6921 return (REG_P (x)
6922 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6923 && counts[REGNO (x)] == 0);
6924 }
6925
6926 /* Return true if set is live. */
6927 static bool
6928 set_live_p (rtx set, rtx_insn *insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6929 int *counts)
6930 {
6931 rtx_insn *tem;
6932
6933 if (set_noop_p (set))
6934 ;
6935
6936 else if (GET_CODE (SET_DEST (set)) == CC0
6937 && !side_effects_p (SET_SRC (set))
6938 && ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX
6939 || !INSN_P (tem)
6940 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6941 return false;
6942 else if (!is_dead_reg (SET_DEST (set), counts)
6943 || side_effects_p (SET_SRC (set)))
6944 return true;
6945 return false;
6946 }
6947
6948 /* Return true if insn is live. */
6949
6950 static bool
6951 insn_live_p (rtx_insn *insn, int *counts)
6952 {
6953 int i;
6954 if (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
6955 return true;
6956 else if (GET_CODE (PATTERN (insn)) == SET)
6957 return set_live_p (PATTERN (insn), insn, counts);
6958 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6959 {
6960 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6961 {
6962 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6963
6964 if (GET_CODE (elt) == SET)
6965 {
6966 if (set_live_p (elt, insn, counts))
6967 return true;
6968 }
6969 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6970 return true;
6971 }
6972 return false;
6973 }
6974 else if (DEBUG_INSN_P (insn))
6975 {
6976 rtx_insn *next;
6977
6978 if (DEBUG_MARKER_INSN_P (insn))
6979 return true;
6980
6981 for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
6982 if (NOTE_P (next))
6983 continue;
6984 else if (!DEBUG_INSN_P (next))
6985 return true;
6986 /* If we find an inspection point, such as a debug begin stmt,
6987 we want to keep the earlier debug insn. */
6988 else if (DEBUG_MARKER_INSN_P (next))
6989 return true;
6990 else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
6991 return false;
6992
6993 return true;
6994 }
6995 else
6996 return true;
6997 }
6998
6999 /* Count the number of stores into pseudo. Callback for note_stores. */
7000
7001 static void
7002 count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
7003 {
7004 int *counts = (int *) data;
7005 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
7006 counts[REGNO (x)]++;
7007 }
7008
7009 /* Return if DEBUG_INSN pattern PAT needs to be reset because some dead
7010 pseudo doesn't have a replacement. COUNTS[X] is zero if register X
7011 is dead and REPLACEMENTS[X] is null if it has no replacemenet.
7012 Set *SEEN_REPL to true if we see a dead register that does have
7013 a replacement. */
7014
7015 static bool
7016 is_dead_debug_insn (const_rtx pat, int *counts, rtx *replacements,
7017 bool *seen_repl)
7018 {
7019 subrtx_iterator::array_type array;
7020 FOR_EACH_SUBRTX (iter, array, pat, NONCONST)
7021 {
7022 const_rtx x = *iter;
7023 if (is_dead_reg (x, counts))
7024 {
7025 if (replacements && replacements[REGNO (x)] != NULL_RTX)
7026 *seen_repl = true;
7027 else
7028 return true;
7029 }
7030 }
7031 return false;
7032 }
7033
7034 /* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR.
7035 Callback for simplify_replace_fn_rtx. */
7036
7037 static rtx
7038 replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
7039 {
7040 rtx *replacements = (rtx *) data;
7041
7042 if (REG_P (x)
7043 && REGNO (x) >= FIRST_PSEUDO_REGISTER
7044 && replacements[REGNO (x)] != NULL_RTX)
7045 {
7046 if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)]))
7047 return replacements[REGNO (x)];
7048 return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)],
7049 GET_MODE (replacements[REGNO (x)]));
7050 }
7051 return NULL_RTX;
7052 }
7053
7054 /* Scan all the insns and delete any that are dead; i.e., they store a register
7055 that is never used or they copy a register to itself.
7056
7057 This is used to remove insns made obviously dead by cse, loop or other
7058 optimizations. It improves the heuristics in loop since it won't try to
7059 move dead invariants out of loops or make givs for dead quantities. The
7060 remaining passes of the compilation are also sped up. */
7061
7062 int
7063 delete_trivially_dead_insns (rtx_insn *insns, int nreg)
7064 {
7065 int *counts;
7066 rtx_insn *insn, *prev;
7067 rtx *replacements = NULL;
7068 int ndead = 0;
7069
7070 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
7071 /* First count the number of times each register is used. */
7072 if (MAY_HAVE_DEBUG_BIND_INSNS)
7073 {
7074 counts = XCNEWVEC (int, nreg * 3);
7075 for (insn = insns; insn; insn = NEXT_INSN (insn))
7076 if (DEBUG_BIND_INSN_P (insn))
7077 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7078 NULL_RTX, 1);
7079 else if (INSN_P (insn))
7080 {
7081 count_reg_usage (insn, counts, NULL_RTX, 1);
7082 note_stores (insn, count_stores, counts + nreg * 2);
7083 }
7084 /* If there can be debug insns, COUNTS are 3 consecutive arrays.
7085 First one counts how many times each pseudo is used outside
7086 of debug insns, second counts how many times each pseudo is
7087 used in debug insns and third counts how many times a pseudo
7088 is stored. */
7089 }
7090 else
7091 {
7092 counts = XCNEWVEC (int, nreg);
7093 for (insn = insns; insn; insn = NEXT_INSN (insn))
7094 if (INSN_P (insn))
7095 count_reg_usage (insn, counts, NULL_RTX, 1);
7096 /* If no debug insns can be present, COUNTS is just an array
7097 which counts how many times each pseudo is used. */
7098 }
7099 /* Pseudo PIC register should be considered as used due to possible
7100 new usages generated. */
7101 if (!reload_completed
7102 && pic_offset_table_rtx
7103 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
7104 counts[REGNO (pic_offset_table_rtx)]++;
7105 /* Go from the last insn to the first and delete insns that only set unused
7106 registers or copy a register to itself. As we delete an insn, remove
7107 usage counts for registers it uses.
7108
7109 The first jump optimization pass may leave a real insn as the last
7110 insn in the function. We must not skip that insn or we may end
7111 up deleting code that is not really dead.
7112
7113 If some otherwise unused register is only used in DEBUG_INSNs,
7114 try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before
7115 the setter. Then go through DEBUG_INSNs and if a DEBUG_EXPR
7116 has been created for the unused register, replace it with
7117 the DEBUG_EXPR, otherwise reset the DEBUG_INSN. */
7118 for (insn = get_last_insn (); insn; insn = prev)
7119 {
7120 int live_insn = 0;
7121
7122 prev = PREV_INSN (insn);
7123 if (!INSN_P (insn))
7124 continue;
7125
7126 live_insn = insn_live_p (insn, counts);
7127
7128 /* If this is a dead insn, delete it and show registers in it aren't
7129 being used. */
7130
7131 if (! live_insn && dbg_cnt (delete_trivial_dead))
7132 {
7133 if (DEBUG_INSN_P (insn))
7134 {
7135 if (DEBUG_BIND_INSN_P (insn))
7136 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7137 NULL_RTX, -1);
7138 }
7139 else
7140 {
7141 rtx set;
7142 if (MAY_HAVE_DEBUG_BIND_INSNS
7143 && (set = single_set (insn)) != NULL_RTX
7144 && is_dead_reg (SET_DEST (set), counts)
7145 /* Used at least once in some DEBUG_INSN. */
7146 && counts[REGNO (SET_DEST (set)) + nreg] > 0
7147 /* And set exactly once. */
7148 && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1
7149 && !side_effects_p (SET_SRC (set))
7150 && asm_noperands (PATTERN (insn)) < 0)
7151 {
7152 rtx dval, bind_var_loc;
7153 rtx_insn *bind;
7154
7155 /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL). */
7156 dval = make_debug_expr_from_rtl (SET_DEST (set));
7157
7158 /* Emit a debug bind insn before the insn in which
7159 reg dies. */
7160 bind_var_loc =
7161 gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)),
7162 DEBUG_EXPR_TREE_DECL (dval),
7163 SET_SRC (set),
7164 VAR_INIT_STATUS_INITIALIZED);
7165 count_reg_usage (bind_var_loc, counts + nreg, NULL_RTX, 1);
7166
7167 bind = emit_debug_insn_before (bind_var_loc, insn);
7168 df_insn_rescan (bind);
7169
7170 if (replacements == NULL)
7171 replacements = XCNEWVEC (rtx, nreg);
7172 replacements[REGNO (SET_DEST (set))] = dval;
7173 }
7174
7175 count_reg_usage (insn, counts, NULL_RTX, -1);
7176 ndead++;
7177 }
7178 cse_cfg_altered |= delete_insn_and_edges (insn);
7179 }
7180 }
7181
7182 if (MAY_HAVE_DEBUG_BIND_INSNS)
7183 {
7184 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7185 if (DEBUG_BIND_INSN_P (insn))
7186 {
7187 /* If this debug insn references a dead register that wasn't replaced
7188 with an DEBUG_EXPR, reset the DEBUG_INSN. */
7189 bool seen_repl = false;
7190 if (is_dead_debug_insn (INSN_VAR_LOCATION_LOC (insn),
7191 counts, replacements, &seen_repl))
7192 {
7193 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
7194 df_insn_rescan (insn);
7195 }
7196 else if (seen_repl)
7197 {
7198 INSN_VAR_LOCATION_LOC (insn)
7199 = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
7200 NULL_RTX, replace_dead_reg,
7201 replacements);
7202 df_insn_rescan (insn);
7203 }
7204 }
7205 free (replacements);
7206 }
7207
7208 if (dump_file && ndead)
7209 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7210 ndead);
7211 /* Clean up. */
7212 free (counts);
7213 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7214 return ndead;
7215 }
7216
7217 /* If LOC contains references to NEWREG in a different mode, change them
7218 to use NEWREG instead. */
7219
7220 static void
7221 cse_change_cc_mode (subrtx_ptr_iterator::array_type &array,
7222 rtx *loc, rtx_insn *insn, rtx newreg)
7223 {
7224 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
7225 {
7226 rtx *loc = *iter;
7227 rtx x = *loc;
7228 if (x
7229 && REG_P (x)
7230 && REGNO (x) == REGNO (newreg)
7231 && GET_MODE (x) != GET_MODE (newreg))
7232 {
7233 validate_change (insn, loc, newreg, 1);
7234 iter.skip_subrtxes ();
7235 }
7236 }
7237 }
7238
7239 /* Change the mode of any reference to the register REGNO (NEWREG) to
7240 GET_MODE (NEWREG) in INSN. */
7241
7242 static void
7243 cse_change_cc_mode_insn (rtx_insn *insn, rtx newreg)
7244 {
7245 int success;
7246
7247 if (!INSN_P (insn))
7248 return;
7249
7250 subrtx_ptr_iterator::array_type array;
7251 cse_change_cc_mode (array, &PATTERN (insn), insn, newreg);
7252 cse_change_cc_mode (array, &REG_NOTES (insn), insn, newreg);
7253
7254 /* If the following assertion was triggered, there is most probably
7255 something wrong with the cc_modes_compatible back end function.
7256 CC modes only can be considered compatible if the insn - with the mode
7257 replaced by any of the compatible modes - can still be recognized. */
7258 success = apply_change_group ();
7259 gcc_assert (success);
7260 }
7261
7262 /* Change the mode of any reference to the register REGNO (NEWREG) to
7263 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
7264 any instruction which modifies NEWREG. */
7265
7266 static void
7267 cse_change_cc_mode_insns (rtx_insn *start, rtx_insn *end, rtx newreg)
7268 {
7269 rtx_insn *insn;
7270
7271 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7272 {
7273 if (! INSN_P (insn))
7274 continue;
7275
7276 if (reg_set_p (newreg, insn))
7277 return;
7278
7279 cse_change_cc_mode_insn (insn, newreg);
7280 }
7281 }
7282
7283 /* BB is a basic block which finishes with CC_REG as a condition code
7284 register which is set to CC_SRC. Look through the successors of BB
7285 to find blocks which have a single predecessor (i.e., this one),
7286 and look through those blocks for an assignment to CC_REG which is
7287 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7288 permitted to change the mode of CC_SRC to a compatible mode. This
7289 returns VOIDmode if no equivalent assignments were found.
7290 Otherwise it returns the mode which CC_SRC should wind up with.
7291 ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
7292 but is passed unmodified down to recursive calls in order to prevent
7293 endless recursion.
7294
7295 The main complexity in this function is handling the mode issues.
7296 We may have more than one duplicate which we can eliminate, and we
7297 try to find a mode which will work for multiple duplicates. */
7298
7299 static machine_mode
7300 cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
7301 bool can_change_mode)
7302 {
7303 bool found_equiv;
7304 machine_mode mode;
7305 unsigned int insn_count;
7306 edge e;
7307 rtx_insn *insns[2];
7308 machine_mode modes[2];
7309 rtx_insn *last_insns[2];
7310 unsigned int i;
7311 rtx newreg;
7312 edge_iterator ei;
7313
7314 /* We expect to have two successors. Look at both before picking
7315 the final mode for the comparison. If we have more successors
7316 (i.e., some sort of table jump, although that seems unlikely),
7317 then we require all beyond the first two to use the same
7318 mode. */
7319
7320 found_equiv = false;
7321 mode = GET_MODE (cc_src);
7322 insn_count = 0;
7323 FOR_EACH_EDGE (e, ei, bb->succs)
7324 {
7325 rtx_insn *insn;
7326 rtx_insn *end;
7327
7328 if (e->flags & EDGE_COMPLEX)
7329 continue;
7330
7331 if (EDGE_COUNT (e->dest->preds) != 1
7332 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
7333 /* Avoid endless recursion on unreachable blocks. */
7334 || e->dest == orig_bb)
7335 continue;
7336
7337 end = NEXT_INSN (BB_END (e->dest));
7338 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7339 {
7340 rtx set;
7341
7342 if (! INSN_P (insn))
7343 continue;
7344
7345 /* If CC_SRC is modified, we have to stop looking for
7346 something which uses it. */
7347 if (modified_in_p (cc_src, insn))
7348 break;
7349
7350 /* Check whether INSN sets CC_REG to CC_SRC. */
7351 set = single_set (insn);
7352 if (set
7353 && REG_P (SET_DEST (set))
7354 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7355 {
7356 bool found;
7357 machine_mode set_mode;
7358 machine_mode comp_mode;
7359
7360 found = false;
7361 set_mode = GET_MODE (SET_SRC (set));
7362 comp_mode = set_mode;
7363 if (rtx_equal_p (cc_src, SET_SRC (set)))
7364 found = true;
7365 else if (GET_CODE (cc_src) == COMPARE
7366 && GET_CODE (SET_SRC (set)) == COMPARE
7367 && mode != set_mode
7368 && rtx_equal_p (XEXP (cc_src, 0),
7369 XEXP (SET_SRC (set), 0))
7370 && rtx_equal_p (XEXP (cc_src, 1),
7371 XEXP (SET_SRC (set), 1)))
7372
7373 {
7374 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7375 if (comp_mode != VOIDmode
7376 && (can_change_mode || comp_mode == mode))
7377 found = true;
7378 }
7379
7380 if (found)
7381 {
7382 found_equiv = true;
7383 if (insn_count < ARRAY_SIZE (insns))
7384 {
7385 insns[insn_count] = insn;
7386 modes[insn_count] = set_mode;
7387 last_insns[insn_count] = end;
7388 ++insn_count;
7389
7390 if (mode != comp_mode)
7391 {
7392 gcc_assert (can_change_mode);
7393 mode = comp_mode;
7394
7395 /* The modified insn will be re-recognized later. */
7396 PUT_MODE (cc_src, mode);
7397 }
7398 }
7399 else
7400 {
7401 if (set_mode != mode)
7402 {
7403 /* We found a matching expression in the
7404 wrong mode, but we don't have room to
7405 store it in the array. Punt. This case
7406 should be rare. */
7407 break;
7408 }
7409 /* INSN sets CC_REG to a value equal to CC_SRC
7410 with the right mode. We can simply delete
7411 it. */
7412 delete_insn (insn);
7413 }
7414
7415 /* We found an instruction to delete. Keep looking,
7416 in the hopes of finding a three-way jump. */
7417 continue;
7418 }
7419
7420 /* We found an instruction which sets the condition
7421 code, so don't look any farther. */
7422 break;
7423 }
7424
7425 /* If INSN sets CC_REG in some other way, don't look any
7426 farther. */
7427 if (reg_set_p (cc_reg, insn))
7428 break;
7429 }
7430
7431 /* If we fell off the bottom of the block, we can keep looking
7432 through successors. We pass CAN_CHANGE_MODE as false because
7433 we aren't prepared to handle compatibility between the
7434 further blocks and this block. */
7435 if (insn == end)
7436 {
7437 machine_mode submode;
7438
7439 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
7440 if (submode != VOIDmode)
7441 {
7442 gcc_assert (submode == mode);
7443 found_equiv = true;
7444 can_change_mode = false;
7445 }
7446 }
7447 }
7448
7449 if (! found_equiv)
7450 return VOIDmode;
7451
7452 /* Now INSN_COUNT is the number of instructions we found which set
7453 CC_REG to a value equivalent to CC_SRC. The instructions are in
7454 INSNS. The modes used by those instructions are in MODES. */
7455
7456 newreg = NULL_RTX;
7457 for (i = 0; i < insn_count; ++i)
7458 {
7459 if (modes[i] != mode)
7460 {
7461 /* We need to change the mode of CC_REG in INSNS[i] and
7462 subsequent instructions. */
7463 if (! newreg)
7464 {
7465 if (GET_MODE (cc_reg) == mode)
7466 newreg = cc_reg;
7467 else
7468 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7469 }
7470 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7471 newreg);
7472 }
7473
7474 cse_cfg_altered |= delete_insn_and_edges (insns[i]);
7475 }
7476
7477 return mode;
7478 }
7479
7480 /* If we have a fixed condition code register (or two), walk through
7481 the instructions and try to eliminate duplicate assignments. */
7482
7483 static void
7484 cse_condition_code_reg (void)
7485 {
7486 unsigned int cc_regno_1;
7487 unsigned int cc_regno_2;
7488 rtx cc_reg_1;
7489 rtx cc_reg_2;
7490 basic_block bb;
7491
7492 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7493 return;
7494
7495 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7496 if (cc_regno_2 != INVALID_REGNUM)
7497 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7498 else
7499 cc_reg_2 = NULL_RTX;
7500
7501 FOR_EACH_BB_FN (bb, cfun)
7502 {
7503 rtx_insn *last_insn;
7504 rtx cc_reg;
7505 rtx_insn *insn;
7506 rtx_insn *cc_src_insn;
7507 rtx cc_src;
7508 machine_mode mode;
7509 machine_mode orig_mode;
7510
7511 /* Look for blocks which end with a conditional jump based on a
7512 condition code register. Then look for the instruction which
7513 sets the condition code register. Then look through the
7514 successor blocks for instructions which set the condition
7515 code register to the same value. There are other possible
7516 uses of the condition code register, but these are by far the
7517 most common and the ones which we are most likely to be able
7518 to optimize. */
7519
7520 last_insn = BB_END (bb);
7521 if (!JUMP_P (last_insn))
7522 continue;
7523
7524 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7525 cc_reg = cc_reg_1;
7526 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7527 cc_reg = cc_reg_2;
7528 else
7529 continue;
7530
7531 cc_src_insn = NULL;
7532 cc_src = NULL_RTX;
7533 for (insn = PREV_INSN (last_insn);
7534 insn && insn != PREV_INSN (BB_HEAD (bb));
7535 insn = PREV_INSN (insn))
7536 {
7537 rtx set;
7538
7539 if (! INSN_P (insn))
7540 continue;
7541 set = single_set (insn);
7542 if (set
7543 && REG_P (SET_DEST (set))
7544 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7545 {
7546 cc_src_insn = insn;
7547 cc_src = SET_SRC (set);
7548 break;
7549 }
7550 else if (reg_set_p (cc_reg, insn))
7551 break;
7552 }
7553
7554 if (! cc_src_insn)
7555 continue;
7556
7557 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7558 continue;
7559
7560 /* Now CC_REG is a condition code register used for a
7561 conditional jump at the end of the block, and CC_SRC, in
7562 CC_SRC_INSN, is the value to which that condition code
7563 register is set, and CC_SRC is still meaningful at the end of
7564 the basic block. */
7565
7566 orig_mode = GET_MODE (cc_src);
7567 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
7568 if (mode != VOIDmode)
7569 {
7570 gcc_assert (mode == GET_MODE (cc_src));
7571 if (mode != orig_mode)
7572 {
7573 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7574
7575 cse_change_cc_mode_insn (cc_src_insn, newreg);
7576
7577 /* Do the same in the following insns that use the
7578 current value of CC_REG within BB. */
7579 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7580 NEXT_INSN (last_insn),
7581 newreg);
7582 }
7583 }
7584 }
7585 }
7586 \f
7587
7588 /* Perform common subexpression elimination. Nonzero value from
7589 `cse_main' means that jumps were simplified and some code may now
7590 be unreachable, so do jump optimization again. */
7591 static unsigned int
7592 rest_of_handle_cse (void)
7593 {
7594 int tem;
7595
7596 if (dump_file)
7597 dump_flow_info (dump_file, dump_flags);
7598
7599 tem = cse_main (get_insns (), max_reg_num ());
7600
7601 /* If we are not running more CSE passes, then we are no longer
7602 expecting CSE to be run. But always rerun it in a cheap mode. */
7603 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7604
7605 if (tem == 2)
7606 {
7607 timevar_push (TV_JUMP);
7608 rebuild_jump_labels (get_insns ());
7609 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
7610 timevar_pop (TV_JUMP);
7611 }
7612 else if (tem == 1 || optimize > 1)
7613 cse_cfg_altered |= cleanup_cfg (0);
7614
7615 return 0;
7616 }
7617
7618 namespace {
7619
7620 const pass_data pass_data_cse =
7621 {
7622 RTL_PASS, /* type */
7623 "cse1", /* name */
7624 OPTGROUP_NONE, /* optinfo_flags */
7625 TV_CSE, /* tv_id */
7626 0, /* properties_required */
7627 0, /* properties_provided */
7628 0, /* properties_destroyed */
7629 0, /* todo_flags_start */
7630 TODO_df_finish, /* todo_flags_finish */
7631 };
7632
7633 class pass_cse : public rtl_opt_pass
7634 {
7635 public:
7636 pass_cse (gcc::context *ctxt)
7637 : rtl_opt_pass (pass_data_cse, ctxt)
7638 {}
7639
7640 /* opt_pass methods: */
7641 virtual bool gate (function *) { return optimize > 0; }
7642 virtual unsigned int execute (function *) { return rest_of_handle_cse (); }
7643
7644 }; // class pass_cse
7645
7646 } // anon namespace
7647
7648 rtl_opt_pass *
7649 make_pass_cse (gcc::context *ctxt)
7650 {
7651 return new pass_cse (ctxt);
7652 }
7653
7654
7655 /* Run second CSE pass after loop optimizations. */
7656 static unsigned int
7657 rest_of_handle_cse2 (void)
7658 {
7659 int tem;
7660
7661 if (dump_file)
7662 dump_flow_info (dump_file, dump_flags);
7663
7664 tem = cse_main (get_insns (), max_reg_num ());
7665
7666 /* Run a pass to eliminate duplicated assignments to condition code
7667 registers. We have to run this after bypass_jumps, because it
7668 makes it harder for that pass to determine whether a jump can be
7669 bypassed safely. */
7670 cse_condition_code_reg ();
7671
7672 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7673
7674 if (tem == 2)
7675 {
7676 timevar_push (TV_JUMP);
7677 rebuild_jump_labels (get_insns ());
7678 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
7679 timevar_pop (TV_JUMP);
7680 }
7681 else if (tem == 1 || cse_cfg_altered)
7682 cse_cfg_altered |= cleanup_cfg (0);
7683
7684 cse_not_expected = 1;
7685 return 0;
7686 }
7687
7688
7689 namespace {
7690
7691 const pass_data pass_data_cse2 =
7692 {
7693 RTL_PASS, /* type */
7694 "cse2", /* name */
7695 OPTGROUP_NONE, /* optinfo_flags */
7696 TV_CSE2, /* tv_id */
7697 0, /* properties_required */
7698 0, /* properties_provided */
7699 0, /* properties_destroyed */
7700 0, /* todo_flags_start */
7701 TODO_df_finish, /* todo_flags_finish */
7702 };
7703
7704 class pass_cse2 : public rtl_opt_pass
7705 {
7706 public:
7707 pass_cse2 (gcc::context *ctxt)
7708 : rtl_opt_pass (pass_data_cse2, ctxt)
7709 {}
7710
7711 /* opt_pass methods: */
7712 virtual bool gate (function *)
7713 {
7714 return optimize > 0 && flag_rerun_cse_after_loop;
7715 }
7716
7717 virtual unsigned int execute (function *) { return rest_of_handle_cse2 (); }
7718
7719 }; // class pass_cse2
7720
7721 } // anon namespace
7722
7723 rtl_opt_pass *
7724 make_pass_cse2 (gcc::context *ctxt)
7725 {
7726 return new pass_cse2 (ctxt);
7727 }
7728
7729 /* Run second CSE pass after loop optimizations. */
7730 static unsigned int
7731 rest_of_handle_cse_after_global_opts (void)
7732 {
7733 int save_cfj;
7734 int tem;
7735
7736 /* We only want to do local CSE, so don't follow jumps. */
7737 save_cfj = flag_cse_follow_jumps;
7738 flag_cse_follow_jumps = 0;
7739
7740 rebuild_jump_labels (get_insns ());
7741 tem = cse_main (get_insns (), max_reg_num ());
7742 cse_cfg_altered |= purge_all_dead_edges ();
7743 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7744
7745 cse_not_expected = !flag_rerun_cse_after_loop;
7746
7747 /* If cse altered any jumps, rerun jump opts to clean things up. */
7748 if (tem == 2)
7749 {
7750 timevar_push (TV_JUMP);
7751 rebuild_jump_labels (get_insns ());
7752 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
7753 timevar_pop (TV_JUMP);
7754 }
7755 else if (tem == 1 || cse_cfg_altered)
7756 cse_cfg_altered |= cleanup_cfg (0);
7757
7758 flag_cse_follow_jumps = save_cfj;
7759 return 0;
7760 }
7761
7762 namespace {
7763
7764 const pass_data pass_data_cse_after_global_opts =
7765 {
7766 RTL_PASS, /* type */
7767 "cse_local", /* name */
7768 OPTGROUP_NONE, /* optinfo_flags */
7769 TV_CSE, /* tv_id */
7770 0, /* properties_required */
7771 0, /* properties_provided */
7772 0, /* properties_destroyed */
7773 0, /* todo_flags_start */
7774 TODO_df_finish, /* todo_flags_finish */
7775 };
7776
7777 class pass_cse_after_global_opts : public rtl_opt_pass
7778 {
7779 public:
7780 pass_cse_after_global_opts (gcc::context *ctxt)
7781 : rtl_opt_pass (pass_data_cse_after_global_opts, ctxt)
7782 {}
7783
7784 /* opt_pass methods: */
7785 virtual bool gate (function *)
7786 {
7787 return optimize > 0 && flag_rerun_cse_after_global_opts;
7788 }
7789
7790 virtual unsigned int execute (function *)
7791 {
7792 return rest_of_handle_cse_after_global_opts ();
7793 }
7794
7795 }; // class pass_cse_after_global_opts
7796
7797 } // anon namespace
7798
7799 rtl_opt_pass *
7800 make_pass_cse_after_global_opts (gcc::context *ctxt)
7801 {
7802 return new pass_cse_after_global_opts (ctxt);
7803 }
This page took 0.406921 seconds and 5 git commands to generate.