1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 88, 89, 92-6, 1997 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
23 /* Must precede rtl.h for FFS. */
28 #include "hard-reg-set.h"
31 #include "insn-config.h"
36 /* The basic idea of common subexpression elimination is to go
37 through the code, keeping a record of expressions that would
38 have the same value at the current scan point, and replacing
39 expressions encountered with the cheapest equivalent expression.
41 It is too complicated to keep track of the different possibilities
42 when control paths merge; so, at each label, we forget all that is
43 known and start fresh. This can be described as processing each
44 basic block separately. Note, however, that these are not quite
45 the same as the basic blocks found by a later pass and used for
46 data flow analysis and register packing. We do not need to start fresh
47 after a conditional jump instruction if there is no label there.
49 We use two data structures to record the equivalent expressions:
50 a hash table for most expressions, and several vectors together
51 with "quantity numbers" to record equivalent (pseudo) registers.
53 The use of the special data structure for registers is desirable
54 because it is faster. It is possible because registers references
55 contain a fairly small number, the register number, taken from
56 a contiguously allocated series, and two register references are
57 identical if they have the same number. General expressions
58 do not have any such thing, so the only way to retrieve the
59 information recorded on an expression other than a register
60 is to keep it in a hash table.
62 Registers and "quantity numbers":
64 At the start of each basic block, all of the (hardware and pseudo)
65 registers used in the function are given distinct quantity
66 numbers to indicate their contents. During scan, when the code
67 copies one register into another, we copy the quantity number.
68 When a register is loaded in any other way, we allocate a new
69 quantity number to describe the value generated by this operation.
70 `reg_qty' records what quantity a register is currently thought
73 All real quantity numbers are greater than or equal to `max_reg'.
74 If register N has not been assigned a quantity, reg_qty[N] will equal N.
76 Quantity numbers below `max_reg' do not exist and none of the `qty_...'
77 variables should be referenced with an index below `max_reg'.
79 We also maintain a bidirectional chain of registers for each
80 quantity number. `qty_first_reg', `qty_last_reg',
81 `reg_next_eqv' and `reg_prev_eqv' hold these chains.
83 The first register in a chain is the one whose lifespan is least local.
84 Among equals, it is the one that was seen first.
85 We replace any equivalent register with that one.
87 If two registers have the same quantity number, it must be true that
88 REG expressions with `qty_mode' must be in the hash table for both
89 registers and must be in the same class.
91 The converse is not true. Since hard registers may be referenced in
92 any mode, two REG expressions might be equivalent in the hash table
93 but not have the same quantity number if the quantity number of one
94 of the registers is not the same mode as those expressions.
96 Constants and quantity numbers
98 When a quantity has a known constant value, that value is stored
99 in the appropriate element of qty_const. This is in addition to
100 putting the constant in the hash table as is usual for non-regs.
102 Whether a reg or a constant is preferred is determined by the configuration
103 macro CONST_COSTS and will often depend on the constant value. In any
104 event, expressions containing constants can be simplified, by fold_rtx.
106 When a quantity has a known nearly constant value (such as an address
107 of a stack slot), that value is stored in the appropriate element
110 Integer constants don't have a machine mode. However, cse
111 determines the intended machine mode from the destination
112 of the instruction that moves the constant. The machine mode
113 is recorded in the hash table along with the actual RTL
114 constant expression so that different modes are kept separate.
118 To record known equivalences among expressions in general
119 we use a hash table called `table'. It has a fixed number of buckets
120 that contain chains of `struct table_elt' elements for expressions.
121 These chains connect the elements whose expressions have the same
124 Other chains through the same elements connect the elements which
125 currently have equivalent values.
127 Register references in an expression are canonicalized before hashing
128 the expression. This is done using `reg_qty' and `qty_first_reg'.
129 The hash code of a register reference is computed using the quantity
130 number, not the register number.
132 When the value of an expression changes, it is necessary to remove from the
133 hash table not just that expression but all expressions whose values
134 could be different as a result.
136 1. If the value changing is in memory, except in special cases
137 ANYTHING referring to memory could be changed. That is because
138 nobody knows where a pointer does not point.
139 The function `invalidate_memory' removes what is necessary.
141 The special cases are when the address is constant or is
142 a constant plus a fixed register such as the frame pointer
143 or a static chain pointer. When such addresses are stored in,
144 we can tell exactly which other such addresses must be invalidated
145 due to overlap. `invalidate' does this.
146 All expressions that refer to non-constant
147 memory addresses are also invalidated. `invalidate_memory' does this.
149 2. If the value changing is a register, all expressions
150 containing references to that register, and only those,
153 Because searching the entire hash table for expressions that contain
154 a register is very slow, we try to figure out when it isn't necessary.
155 Precisely, this is necessary only when expressions have been
156 entered in the hash table using this register, and then the value has
157 changed, and then another expression wants to be added to refer to
158 the register's new value. This sequence of circumstances is rare
159 within any one basic block.
161 The vectors `reg_tick' and `reg_in_table' are used to detect this case.
162 reg_tick[i] is incremented whenever a value is stored in register i.
163 reg_in_table[i] holds -1 if no references to register i have been
164 entered in the table; otherwise, it contains the value reg_tick[i] had
165 when the references were entered. If we want to enter a reference
166 and reg_in_table[i] != reg_tick[i], we must scan and remove old references.
167 Until we want to enter a new entry, the mere fact that the two vectors
168 don't match makes the entries be ignored if anyone tries to match them.
170 Registers themselves are entered in the hash table as well as in
171 the equivalent-register chains. However, the vectors `reg_tick'
172 and `reg_in_table' do not apply to expressions which are simple
173 register references. These expressions are removed from the table
174 immediately when they become invalid, and this can be done even if
175 we do not immediately search for all the expressions that refer to
178 A CLOBBER rtx in an instruction invalidates its operand for further
179 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
180 invalidates everything that resides in memory.
184 Constant expressions that differ only by an additive integer
185 are called related. When a constant expression is put in
186 the table, the related expression with no constant term
187 is also entered. These are made to point at each other
188 so that it is possible to find out if there exists any
189 register equivalent to an expression related to a given expression. */
191 /* One plus largest register number used in this function. */
195 /* Length of vectors indexed by quantity number.
196 We know in advance we will not need a quantity number this big. */
200 /* Next quantity number to be allocated.
201 This is 1 + the largest number needed so far. */
205 /* Indexed by quantity number, gives the first (or last) (pseudo) register
206 in the chain of registers that currently contain this quantity. */
208 static int *qty_first_reg
;
209 static int *qty_last_reg
;
211 /* Index by quantity number, gives the mode of the quantity. */
213 static enum machine_mode
*qty_mode
;
215 /* Indexed by quantity number, gives the rtx of the constant value of the
216 quantity, or zero if it does not have a known value.
217 A sum of the frame pointer (or arg pointer) plus a constant
218 can also be entered here. */
220 static rtx
*qty_const
;
222 /* Indexed by qty number, gives the insn that stored the constant value
223 recorded in `qty_const'. */
225 static rtx
*qty_const_insn
;
227 /* The next three variables are used to track when a comparison between a
228 quantity and some constant or register has been passed. In that case, we
229 know the results of the comparison in case we see it again. These variables
230 record a comparison that is known to be true. */
232 /* Indexed by qty number, gives the rtx code of a comparison with a known
233 result involving this quantity. If none, it is UNKNOWN. */
234 static enum rtx_code
*qty_comparison_code
;
236 /* Indexed by qty number, gives the constant being compared against in a
237 comparison of known result. If no such comparison, it is undefined.
238 If the comparison is not with a constant, it is zero. */
240 static rtx
*qty_comparison_const
;
242 /* Indexed by qty number, gives the quantity being compared against in a
243 comparison of known result. If no such comparison, if it undefined.
244 If the comparison is not with a register, it is -1. */
246 static int *qty_comparison_qty
;
249 /* For machines that have a CC0, we do not record its value in the hash
250 table since its use is guaranteed to be the insn immediately following
251 its definition and any other insn is presumed to invalidate it.
253 Instead, we store below the value last assigned to CC0. If it should
254 happen to be a constant, it is stored in preference to the actual
255 assigned value. In case it is a constant, we store the mode in which
256 the constant should be interpreted. */
258 static rtx prev_insn_cc0
;
259 static enum machine_mode prev_insn_cc0_mode
;
262 /* Previous actual insn. 0 if at first insn of basic block. */
264 static rtx prev_insn
;
266 /* Insn being scanned. */
268 static rtx this_insn
;
270 /* Index by (pseudo) register number, gives the quantity number
271 of the register's current contents. */
275 /* Index by (pseudo) register number, gives the number of the next (or
276 previous) (pseudo) register in the chain of registers sharing the same
279 Or -1 if this register is at the end of the chain.
281 If reg_qty[N] == N, reg_next_eqv[N] is undefined. */
283 static int *reg_next_eqv
;
284 static int *reg_prev_eqv
;
286 /* Index by (pseudo) register number, gives the number of times
287 that register has been altered in the current basic block. */
289 static int *reg_tick
;
291 /* Index by (pseudo) register number, gives the reg_tick value at which
292 rtx's containing this register are valid in the hash table.
293 If this does not equal the current reg_tick value, such expressions
294 existing in the hash table are invalid.
295 If this is -1, no expressions containing this register have been
296 entered in the table. */
298 static int *reg_in_table
;
300 /* A HARD_REG_SET containing all the hard registers for which there is
301 currently a REG expression in the hash table. Note the difference
302 from the above variables, which indicate if the REG is mentioned in some
303 expression in the table. */
305 static HARD_REG_SET hard_regs_in_table
;
307 /* A HARD_REG_SET containing all the hard registers that are invalidated
310 static HARD_REG_SET regs_invalidated_by_call
;
312 /* Two vectors of ints:
313 one containing max_reg -1's; the other max_reg + 500 (an approximation
314 for max_qty) elements where element i contains i.
315 These are used to initialize various other vectors fast. */
317 static int *all_minus_one
;
318 static int *consec_ints
;
320 /* CUID of insn that starts the basic block currently being cse-processed. */
322 static int cse_basic_block_start
;
324 /* CUID of insn that ends the basic block currently being cse-processed. */
326 static int cse_basic_block_end
;
328 /* Vector mapping INSN_UIDs to cuids.
329 The cuids are like uids but increase monotonically always.
330 We use them to see whether a reg is used outside a given basic block. */
332 static int *uid_cuid
;
334 /* Highest UID in UID_CUID. */
337 /* Get the cuid of an insn. */
339 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
341 /* Nonzero if cse has altered conditional jump insns
342 in such a way that jump optimization should be redone. */
344 static int cse_jumps_altered
;
346 /* Nonzero if we put a LABEL_REF into the hash table. Since we may have put
347 it into an INSN without a REG_LABEL, we have to rerun jump after CSE
348 to put in the note. */
349 static int recorded_label_ref
;
351 /* canon_hash stores 1 in do_not_record
352 if it notices a reference to CC0, PC, or some other volatile
355 static int do_not_record
;
357 #ifdef LOAD_EXTEND_OP
359 /* Scratch rtl used when looking for load-extended copy of a MEM. */
360 static rtx memory_extend_rtx
;
363 /* canon_hash stores 1 in hash_arg_in_memory
364 if it notices a reference to memory within the expression being hashed. */
366 static int hash_arg_in_memory
;
368 /* canon_hash stores 1 in hash_arg_in_struct
369 if it notices a reference to memory that's part of a structure. */
371 static int hash_arg_in_struct
;
373 /* The hash table contains buckets which are chains of `struct table_elt's,
374 each recording one expression's information.
375 That expression is in the `exp' field.
377 Those elements with the same hash code are chained in both directions
378 through the `next_same_hash' and `prev_same_hash' fields.
380 Each set of expressions with equivalent values
381 are on a two-way chain through the `next_same_value'
382 and `prev_same_value' fields, and all point with
383 the `first_same_value' field at the first element in
384 that chain. The chain is in order of increasing cost.
385 Each element's cost value is in its `cost' field.
387 The `in_memory' field is nonzero for elements that
388 involve any reference to memory. These elements are removed
389 whenever a write is done to an unidentified location in memory.
390 To be safe, we assume that a memory address is unidentified unless
391 the address is either a symbol constant or a constant plus
392 the frame pointer or argument pointer.
394 The `in_struct' field is nonzero for elements that
395 involve any reference to memory inside a structure or array.
397 The `related_value' field is used to connect related expressions
398 (that differ by adding an integer).
399 The related expressions are chained in a circular fashion.
400 `related_value' is zero for expressions for which this
403 The `cost' field stores the cost of this element's expression.
405 The `is_const' flag is set if the element is a constant (including
408 The `flag' field is used as a temporary during some search routines.
410 The `mode' field is usually the same as GET_MODE (`exp'), but
411 if `exp' is a CONST_INT and has no machine mode then the `mode'
412 field is the mode it was being used as. Each constant is
413 recorded separately for each mode it is used with. */
419 struct table_elt
*next_same_hash
;
420 struct table_elt
*prev_same_hash
;
421 struct table_elt
*next_same_value
;
422 struct table_elt
*prev_same_value
;
423 struct table_elt
*first_same_value
;
424 struct table_elt
*related_value
;
426 enum machine_mode mode
;
433 /* We don't want a lot of buckets, because we rarely have very many
434 things stored in the hash table, and a lot of buckets slows
435 down a lot of loops that happen frequently. */
438 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
439 register (hard registers may require `do_not_record' to be set). */
442 (GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER \
443 ? (((unsigned) REG << 7) + (unsigned) reg_qty[REGNO (X)]) % NBUCKETS \
444 : canon_hash (X, M) % NBUCKETS)
446 /* Determine whether register number N is considered a fixed register for CSE.
447 It is desirable to replace other regs with fixed regs, to reduce need for
449 A reg wins if it is either the frame pointer or designated as fixed,
450 but not if it is an overlapping register. */
451 #ifdef OVERLAPPING_REGNO_P
452 #define FIXED_REGNO_P(N) \
453 (((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
454 || fixed_regs[N] || global_regs[N]) \
455 && ! OVERLAPPING_REGNO_P ((N)))
457 #define FIXED_REGNO_P(N) \
458 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
459 || fixed_regs[N] || global_regs[N])
462 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
463 hard registers and pointers into the frame are the cheapest with a cost
464 of 0. Next come pseudos with a cost of one and other hard registers with
465 a cost of 2. Aside from these special cases, call `rtx_cost'. */
467 #define CHEAP_REGNO(N) \
468 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
469 || (N) == STACK_POINTER_REGNUM || (N) == ARG_POINTER_REGNUM \
470 || ((N) >= FIRST_VIRTUAL_REGISTER && (N) <= LAST_VIRTUAL_REGISTER) \
471 || ((N) < FIRST_PSEUDO_REGISTER \
472 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
474 /* A register is cheap if it is a user variable assigned to the register
475 or if its register number always corresponds to a cheap register. */
477 #define CHEAP_REG(N) \
478 ((REG_USERVAR_P (N) && REGNO (N) < FIRST_PSEUDO_REGISTER) \
479 || CHEAP_REGNO (REGNO (N)))
482 (GET_CODE (X) == REG \
483 ? (CHEAP_REG (X) ? 0 \
484 : REGNO (X) >= FIRST_PSEUDO_REGISTER ? 1 \
486 : ((GET_CODE (X) == SUBREG \
487 && GET_CODE (SUBREG_REG (X)) == REG \
488 && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
489 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (X))) == MODE_INT \
490 && (GET_MODE_SIZE (GET_MODE (X)) \
491 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (X)))) \
492 && subreg_lowpart_p (X) \
493 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (X)), \
494 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (X))))) \
495 ? (CHEAP_REG (SUBREG_REG (X)) ? 0 \
496 : REGNO (SUBREG_REG (X)) >= FIRST_PSEUDO_REGISTER ? 1 \
498 : rtx_cost (X, SET) * 2))
500 /* Determine if the quantity number for register X represents a valid index
501 into the `qty_...' variables. */
503 #define REGNO_QTY_VALID_P(N) (reg_qty[N] != (N))
505 static struct table_elt
*table
[NBUCKETS
];
507 /* Chain of `struct table_elt's made so far for this function
508 but currently removed from the table. */
510 static struct table_elt
*free_element_chain
;
512 /* Number of `struct table_elt' structures made so far for this function. */
514 static int n_elements_made
;
516 /* Maximum value `n_elements_made' has had so far in this compilation
517 for functions previously processed. */
519 static int max_elements_made
;
521 /* Surviving equivalence class when two equivalence classes are merged
522 by recording the effects of a jump in the last insn. Zero if the
523 last insn was not a conditional jump. */
525 static struct table_elt
*last_jump_equiv_class
;
527 /* Set to the cost of a constant pool reference if one was found for a
528 symbolic constant. If this was found, it means we should try to
529 convert constants into constant pool entries if they don't fit in
532 static int constant_pool_entries_cost
;
534 /* Bits describing what kind of values in memory must be invalidated
535 for a particular instruction. If all three bits are zero,
536 no memory refs need to be invalidated. Each bit is more powerful
537 than the preceding ones, and if a bit is set then the preceding
540 Here is how the bits are set:
541 Pushing onto the stack invalidates only the stack pointer,
542 writing at a fixed address invalidates only variable addresses,
543 writing in a structure element at variable address
544 invalidates all but scalar variables,
545 and writing in anything else at variable address invalidates everything. */
549 int sp
: 1; /* Invalidate stack pointer. */
550 int var
: 1; /* Invalidate variable addresses. */
551 int nonscalar
: 1; /* Invalidate all but scalar variables. */
552 int all
: 1; /* Invalidate all memory refs. */
555 /* Define maximum length of a branch path. */
557 #define PATHLENGTH 10
559 /* This data describes a block that will be processed by cse_basic_block. */
561 struct cse_basic_block_data
{
562 /* Lowest CUID value of insns in block. */
564 /* Highest CUID value of insns in block. */
566 /* Total number of SETs in block. */
568 /* Last insn in the block. */
570 /* Size of current branch path, if any. */
572 /* Current branch path, indicating which branches will be taken. */
574 /* The branch insn. */
576 /* Whether it should be taken or not. AROUND is the same as taken
577 except that it is used when the destination label is not preceded
579 enum taken
{TAKEN
, NOT_TAKEN
, AROUND
} status
;
583 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
584 virtual regs here because the simplify_*_operation routines are called
585 by integrate.c, which is called before virtual register instantiation. */
587 #define FIXED_BASE_PLUS_P(X) \
588 ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx \
589 || (X) == arg_pointer_rtx \
590 || (X) == virtual_stack_vars_rtx \
591 || (X) == virtual_incoming_args_rtx \
592 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
593 && (XEXP (X, 0) == frame_pointer_rtx \
594 || XEXP (X, 0) == hard_frame_pointer_rtx \
595 || XEXP (X, 0) == arg_pointer_rtx \
596 || XEXP (X, 0) == virtual_stack_vars_rtx \
597 || XEXP (X, 0) == virtual_incoming_args_rtx)))
599 /* Similar, but also allows reference to the stack pointer.
601 This used to include FIXED_BASE_PLUS_P, however, we can't assume that
602 arg_pointer_rtx by itself is nonzero, because on at least one machine,
603 the i960, the arg pointer is zero when it is unused. */
605 #define NONZERO_BASE_PLUS_P(X) \
606 ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx \
607 || (X) == virtual_stack_vars_rtx \
608 || (X) == virtual_incoming_args_rtx \
609 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
610 && (XEXP (X, 0) == frame_pointer_rtx \
611 || XEXP (X, 0) == hard_frame_pointer_rtx \
612 || XEXP (X, 0) == arg_pointer_rtx \
613 || XEXP (X, 0) == virtual_stack_vars_rtx \
614 || XEXP (X, 0) == virtual_incoming_args_rtx)) \
615 || (X) == stack_pointer_rtx \
616 || (X) == virtual_stack_dynamic_rtx \
617 || (X) == virtual_outgoing_args_rtx \
618 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
619 && (XEXP (X, 0) == stack_pointer_rtx \
620 || XEXP (X, 0) == virtual_stack_dynamic_rtx \
621 || XEXP (X, 0) == virtual_outgoing_args_rtx)))
623 static void new_basic_block
PROTO((void));
624 static void make_new_qty
PROTO((int));
625 static void make_regs_eqv
PROTO((int, int));
626 static void delete_reg_equiv
PROTO((int));
627 static int mention_regs
PROTO((rtx
));
628 static int insert_regs
PROTO((rtx
, struct table_elt
*, int));
629 static void free_element
PROTO((struct table_elt
*));
630 static void remove_from_table
PROTO((struct table_elt
*, unsigned));
631 static struct table_elt
*get_element
PROTO((void));
632 static struct table_elt
*lookup
PROTO((rtx
, unsigned, enum machine_mode
)),
633 *lookup_for_remove
PROTO((rtx
, unsigned, enum machine_mode
));
634 static rtx lookup_as_function
PROTO((rtx
, enum rtx_code
));
635 static struct table_elt
*insert
PROTO((rtx
, struct table_elt
*, unsigned,
637 static void merge_equiv_classes
PROTO((struct table_elt
*,
638 struct table_elt
*));
639 static void invalidate
PROTO((rtx
, enum machine_mode
));
640 static void remove_invalid_refs
PROTO((int));
641 static void rehash_using_reg
PROTO((rtx
));
642 static void invalidate_memory
PROTO((struct write_data
*));
643 static void invalidate_for_call
PROTO((void));
644 static rtx use_related_value
PROTO((rtx
, struct table_elt
*));
645 static unsigned canon_hash
PROTO((rtx
, enum machine_mode
));
646 static unsigned safe_hash
PROTO((rtx
, enum machine_mode
));
647 static int exp_equiv_p
PROTO((rtx
, rtx
, int, int));
648 static void set_nonvarying_address_components
PROTO((rtx
, int, rtx
*,
651 static int refers_to_p
PROTO((rtx
, rtx
));
652 static int refers_to_mem_p
PROTO((rtx
, rtx
, HOST_WIDE_INT
,
654 static int cse_rtx_addr_varies_p
PROTO((rtx
));
655 static rtx canon_reg
PROTO((rtx
, rtx
));
656 static void find_best_addr
PROTO((rtx
, rtx
*));
657 static enum rtx_code find_comparison_args
PROTO((enum rtx_code
, rtx
*, rtx
*,
659 enum machine_mode
*));
660 static rtx cse_gen_binary
PROTO((enum rtx_code
, enum machine_mode
,
662 static rtx simplify_plus_minus
PROTO((enum rtx_code
, enum machine_mode
,
664 static rtx fold_rtx
PROTO((rtx
, rtx
));
665 static rtx equiv_constant
PROTO((rtx
));
666 static void record_jump_equiv
PROTO((rtx
, int));
667 static void record_jump_cond
PROTO((enum rtx_code
, enum machine_mode
,
669 static void cse_insn
PROTO((rtx
, int));
670 static void note_mem_written
PROTO((rtx
, struct write_data
*));
671 static void invalidate_from_clobbers
PROTO((struct write_data
*, rtx
));
672 static rtx cse_process_notes
PROTO((rtx
, rtx
));
673 static void cse_around_loop
PROTO((rtx
));
674 static void invalidate_skipped_set
PROTO((rtx
, rtx
));
675 static void invalidate_skipped_block
PROTO((rtx
));
676 static void cse_check_loop_start
PROTO((rtx
, rtx
));
677 static void cse_set_around_loop
PROTO((rtx
, rtx
, rtx
));
678 static rtx cse_basic_block
PROTO((rtx
, rtx
, struct branch_path
*, int));
679 static void count_reg_usage
PROTO((rtx
, int *, rtx
, int));
681 extern int rtx_equal_function_value_matters
;
683 /* Return an estimate of the cost of computing rtx X.
684 One use is in cse, to decide which expression to keep in the hash table.
685 Another is in rtl generation, to pick the cheapest way to multiply.
686 Other uses like the latter are expected in the future. */
688 /* Return the right cost to give to an operation
689 to make the cost of the corresponding register-to-register instruction
690 N times that of a fast register-to-register instruction. */
692 #define COSTS_N_INSNS(N) ((N) * 4 - 2)
695 rtx_cost (x
, outer_code
)
697 enum rtx_code outer_code
;
700 register enum rtx_code code
;
707 /* Compute the default costs of certain things.
708 Note that RTX_COSTS can override the defaults. */
714 /* Count multiplication by 2**n as a shift,
715 because if we are considering it, we would output it as a shift. */
716 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
717 && exact_log2 (INTVAL (XEXP (x
, 1))) >= 0)
720 total
= COSTS_N_INSNS (5);
726 total
= COSTS_N_INSNS (7);
729 /* Used in loop.c and combine.c as a marker. */
733 /* We don't want these to be used in substitutions because
734 we have no way of validating the resulting insn. So assign
735 anything containing an ASM_OPERANDS a very high cost. */
745 return ! CHEAP_REG (x
);
748 /* If we can't tie these modes, make this expensive. The larger
749 the mode, the more expensive it is. */
750 if (! MODES_TIEABLE_P (GET_MODE (x
), GET_MODE (SUBREG_REG (x
))))
751 return COSTS_N_INSNS (2
752 + GET_MODE_SIZE (GET_MODE (x
)) / UNITS_PER_WORD
);
755 RTX_COSTS (x
, code
, outer_code
);
757 CONST_COSTS (x
, code
, outer_code
);
760 /* Sum the costs of the sub-rtx's, plus cost of this operation,
761 which is already in total. */
763 fmt
= GET_RTX_FORMAT (code
);
764 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
766 total
+= rtx_cost (XEXP (x
, i
), code
);
767 else if (fmt
[i
] == 'E')
768 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
769 total
+= rtx_cost (XVECEXP (x
, i
, j
), code
);
774 /* Clear the hash table and initialize each register with its own quantity,
775 for a new basic block. */
784 bzero ((char *) reg_tick
, max_reg
* sizeof (int));
786 bcopy ((char *) all_minus_one
, (char *) reg_in_table
,
787 max_reg
* sizeof (int));
788 bcopy ((char *) consec_ints
, (char *) reg_qty
, max_reg
* sizeof (int));
789 CLEAR_HARD_REG_SET (hard_regs_in_table
);
791 /* The per-quantity values used to be initialized here, but it is
792 much faster to initialize each as it is made in `make_new_qty'. */
794 for (i
= 0; i
< NBUCKETS
; i
++)
796 register struct table_elt
*this, *next
;
797 for (this = table
[i
]; this; this = next
)
799 next
= this->next_same_hash
;
804 bzero ((char *) table
, sizeof table
);
813 /* Say that register REG contains a quantity not in any register before
814 and initialize that quantity. */
822 if (next_qty
>= max_qty
)
825 q
= reg_qty
[reg
] = next_qty
++;
826 qty_first_reg
[q
] = reg
;
827 qty_last_reg
[q
] = reg
;
828 qty_const
[q
] = qty_const_insn
[q
] = 0;
829 qty_comparison_code
[q
] = UNKNOWN
;
831 reg_next_eqv
[reg
] = reg_prev_eqv
[reg
] = -1;
834 /* Make reg NEW equivalent to reg OLD.
835 OLD is not changing; NEW is. */
838 make_regs_eqv (new, old
)
839 register int new, old
;
841 register int lastr
, firstr
;
842 register int q
= reg_qty
[old
];
844 /* Nothing should become eqv until it has a "non-invalid" qty number. */
845 if (! REGNO_QTY_VALID_P (old
))
849 firstr
= qty_first_reg
[q
];
850 lastr
= qty_last_reg
[q
];
852 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
853 hard regs. Among pseudos, if NEW will live longer than any other reg
854 of the same qty, and that is beyond the current basic block,
855 make it the new canonical replacement for this qty. */
856 if (! (firstr
< FIRST_PSEUDO_REGISTER
&& FIXED_REGNO_P (firstr
))
857 /* Certain fixed registers might be of the class NO_REGS. This means
858 that not only can they not be allocated by the compiler, but
859 they cannot be used in substitutions or canonicalizations
861 && (new >= FIRST_PSEUDO_REGISTER
|| REGNO_REG_CLASS (new) != NO_REGS
)
862 && ((new < FIRST_PSEUDO_REGISTER
&& FIXED_REGNO_P (new))
863 || (new >= FIRST_PSEUDO_REGISTER
864 && (firstr
< FIRST_PSEUDO_REGISTER
865 || ((uid_cuid
[regno_last_uid
[new]] > cse_basic_block_end
866 || (uid_cuid
[regno_first_uid
[new]]
867 < cse_basic_block_start
))
868 && (uid_cuid
[regno_last_uid
[new]]
869 > uid_cuid
[regno_last_uid
[firstr
]]))))))
871 reg_prev_eqv
[firstr
] = new;
872 reg_next_eqv
[new] = firstr
;
873 reg_prev_eqv
[new] = -1;
874 qty_first_reg
[q
] = new;
878 /* If NEW is a hard reg (known to be non-fixed), insert at end.
879 Otherwise, insert before any non-fixed hard regs that are at the
880 end. Registers of class NO_REGS cannot be used as an
881 equivalent for anything. */
882 while (lastr
< FIRST_PSEUDO_REGISTER
&& reg_prev_eqv
[lastr
] >= 0
883 && (REGNO_REG_CLASS (lastr
) == NO_REGS
|| ! FIXED_REGNO_P (lastr
))
884 && new >= FIRST_PSEUDO_REGISTER
)
885 lastr
= reg_prev_eqv
[lastr
];
886 reg_next_eqv
[new] = reg_next_eqv
[lastr
];
887 if (reg_next_eqv
[lastr
] >= 0)
888 reg_prev_eqv
[reg_next_eqv
[lastr
]] = new;
890 qty_last_reg
[q
] = new;
891 reg_next_eqv
[lastr
] = new;
892 reg_prev_eqv
[new] = lastr
;
896 /* Remove REG from its equivalence class. */
899 delete_reg_equiv (reg
)
902 register int q
= reg_qty
[reg
];
905 /* If invalid, do nothing. */
909 p
= reg_prev_eqv
[reg
];
910 n
= reg_next_eqv
[reg
];
919 qty_first_reg
[q
] = n
;
924 /* Remove any invalid expressions from the hash table
925 that refer to any of the registers contained in expression X.
927 Make sure that newly inserted references to those registers
928 as subexpressions will be considered valid.
930 mention_regs is not called when a register itself
931 is being stored in the table.
933 Return 1 if we have done something that may have changed the hash code
940 register enum rtx_code code
;
943 register int changed
= 0;
951 register int regno
= REGNO (x
);
952 register int endregno
953 = regno
+ (regno
>= FIRST_PSEUDO_REGISTER
? 1
954 : HARD_REGNO_NREGS (regno
, GET_MODE (x
)));
957 for (i
= regno
; i
< endregno
; i
++)
959 if (reg_in_table
[i
] >= 0 && reg_in_table
[i
] != reg_tick
[i
])
960 remove_invalid_refs (i
);
962 reg_in_table
[i
] = reg_tick
[i
];
968 /* If X is a comparison or a COMPARE and either operand is a register
969 that does not have a quantity, give it one. This is so that a later
970 call to record_jump_equiv won't cause X to be assigned a different
971 hash code and not found in the table after that call.
973 It is not necessary to do this here, since rehash_using_reg can
974 fix up the table later, but doing this here eliminates the need to
975 call that expensive function in the most common case where the only
976 use of the register is in the comparison. */
978 if (code
== COMPARE
|| GET_RTX_CLASS (code
) == '<')
980 if (GET_CODE (XEXP (x
, 0)) == REG
981 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x
, 0))))
982 if (insert_regs (XEXP (x
, 0), NULL_PTR
, 0))
984 rehash_using_reg (XEXP (x
, 0));
988 if (GET_CODE (XEXP (x
, 1)) == REG
989 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x
, 1))))
990 if (insert_regs (XEXP (x
, 1), NULL_PTR
, 0))
992 rehash_using_reg (XEXP (x
, 1));
997 fmt
= GET_RTX_FORMAT (code
);
998 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1000 changed
|= mention_regs (XEXP (x
, i
));
1001 else if (fmt
[i
] == 'E')
1002 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1003 changed
|= mention_regs (XVECEXP (x
, i
, j
));
1008 /* Update the register quantities for inserting X into the hash table
1009 with a value equivalent to CLASSP.
1010 (If the class does not contain a REG, it is irrelevant.)
1011 If MODIFIED is nonzero, X is a destination; it is being modified.
1012 Note that delete_reg_equiv should be called on a register
1013 before insert_regs is done on that register with MODIFIED != 0.
1015 Nonzero value means that elements of reg_qty have changed
1016 so X's hash code may be different. */
1019 insert_regs (x
, classp
, modified
)
1021 struct table_elt
*classp
;
1024 if (GET_CODE (x
) == REG
)
1026 register int regno
= REGNO (x
);
1028 /* If REGNO is in the equivalence table already but is of the
1029 wrong mode for that equivalence, don't do anything here. */
1031 if (REGNO_QTY_VALID_P (regno
)
1032 && qty_mode
[reg_qty
[regno
]] != GET_MODE (x
))
1035 if (modified
|| ! REGNO_QTY_VALID_P (regno
))
1038 for (classp
= classp
->first_same_value
;
1040 classp
= classp
->next_same_value
)
1041 if (GET_CODE (classp
->exp
) == REG
1042 && GET_MODE (classp
->exp
) == GET_MODE (x
))
1044 make_regs_eqv (regno
, REGNO (classp
->exp
));
1048 make_new_qty (regno
);
1049 qty_mode
[reg_qty
[regno
]] = GET_MODE (x
);
1056 /* If X is a SUBREG, we will likely be inserting the inner register in the
1057 table. If that register doesn't have an assigned quantity number at
1058 this point but does later, the insertion that we will be doing now will
1059 not be accessible because its hash code will have changed. So assign
1060 a quantity number now. */
1062 else if (GET_CODE (x
) == SUBREG
&& GET_CODE (SUBREG_REG (x
)) == REG
1063 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x
))))
1065 insert_regs (SUBREG_REG (x
), NULL_PTR
, 0);
1066 mention_regs (SUBREG_REG (x
));
1070 return mention_regs (x
);
1073 /* Look in or update the hash table. */
1075 /* Put the element ELT on the list of free elements. */
1079 struct table_elt
*elt
;
1081 elt
->next_same_hash
= free_element_chain
;
1082 free_element_chain
= elt
;
1085 /* Return an element that is free for use. */
1087 static struct table_elt
*
1090 struct table_elt
*elt
= free_element_chain
;
1093 free_element_chain
= elt
->next_same_hash
;
1097 return (struct table_elt
*) oballoc (sizeof (struct table_elt
));
1100 /* Remove table element ELT from use in the table.
1101 HASH is its hash code, made using the HASH macro.
1102 It's an argument because often that is known in advance
1103 and we save much time not recomputing it. */
1106 remove_from_table (elt
, hash
)
1107 register struct table_elt
*elt
;
1113 /* Mark this element as removed. See cse_insn. */
1114 elt
->first_same_value
= 0;
1116 /* Remove the table element from its equivalence class. */
1119 register struct table_elt
*prev
= elt
->prev_same_value
;
1120 register struct table_elt
*next
= elt
->next_same_value
;
1122 if (next
) next
->prev_same_value
= prev
;
1125 prev
->next_same_value
= next
;
1128 register struct table_elt
*newfirst
= next
;
1131 next
->first_same_value
= newfirst
;
1132 next
= next
->next_same_value
;
1137 /* Remove the table element from its hash bucket. */
1140 register struct table_elt
*prev
= elt
->prev_same_hash
;
1141 register struct table_elt
*next
= elt
->next_same_hash
;
1143 if (next
) next
->prev_same_hash
= prev
;
1146 prev
->next_same_hash
= next
;
1147 else if (table
[hash
] == elt
)
1151 /* This entry is not in the proper hash bucket. This can happen
1152 when two classes were merged by `merge_equiv_classes'. Search
1153 for the hash bucket that it heads. This happens only very
1154 rarely, so the cost is acceptable. */
1155 for (hash
= 0; hash
< NBUCKETS
; hash
++)
1156 if (table
[hash
] == elt
)
1161 /* Remove the table element from its related-value circular chain. */
1163 if (elt
->related_value
!= 0 && elt
->related_value
!= elt
)
1165 register struct table_elt
*p
= elt
->related_value
;
1166 while (p
->related_value
!= elt
)
1167 p
= p
->related_value
;
1168 p
->related_value
= elt
->related_value
;
1169 if (p
->related_value
== p
)
1170 p
->related_value
= 0;
1176 /* Look up X in the hash table and return its table element,
1177 or 0 if X is not in the table.
1179 MODE is the machine-mode of X, or if X is an integer constant
1180 with VOIDmode then MODE is the mode with which X will be used.
1182 Here we are satisfied to find an expression whose tree structure
1185 static struct table_elt
*
1186 lookup (x
, hash
, mode
)
1189 enum machine_mode mode
;
1191 register struct table_elt
*p
;
1193 for (p
= table
[hash
]; p
; p
= p
->next_same_hash
)
1194 if (mode
== p
->mode
&& ((x
== p
->exp
&& GET_CODE (x
) == REG
)
1195 || exp_equiv_p (x
, p
->exp
, GET_CODE (x
) != REG
, 0)))
1201 /* Like `lookup' but don't care whether the table element uses invalid regs.
1202 Also ignore discrepancies in the machine mode of a register. */
1204 static struct table_elt
*
1205 lookup_for_remove (x
, hash
, mode
)
1208 enum machine_mode mode
;
1210 register struct table_elt
*p
;
1212 if (GET_CODE (x
) == REG
)
1214 int regno
= REGNO (x
);
1215 /* Don't check the machine mode when comparing registers;
1216 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1217 for (p
= table
[hash
]; p
; p
= p
->next_same_hash
)
1218 if (GET_CODE (p
->exp
) == REG
1219 && REGNO (p
->exp
) == regno
)
1224 for (p
= table
[hash
]; p
; p
= p
->next_same_hash
)
1225 if (mode
== p
->mode
&& (x
== p
->exp
|| exp_equiv_p (x
, p
->exp
, 0, 0)))
1232 /* Look for an expression equivalent to X and with code CODE.
1233 If one is found, return that expression. */
1236 lookup_as_function (x
, code
)
1240 register struct table_elt
*p
= lookup (x
, safe_hash (x
, VOIDmode
) % NBUCKETS
,
1245 for (p
= p
->first_same_value
; p
; p
= p
->next_same_value
)
1247 if (GET_CODE (p
->exp
) == code
1248 /* Make sure this is a valid entry in the table. */
1249 && exp_equiv_p (p
->exp
, p
->exp
, 1, 0))
1256 /* Insert X in the hash table, assuming HASH is its hash code
1257 and CLASSP is an element of the class it should go in
1258 (or 0 if a new class should be made).
1259 It is inserted at the proper position to keep the class in
1260 the order cheapest first.
1262 MODE is the machine-mode of X, or if X is an integer constant
1263 with VOIDmode then MODE is the mode with which X will be used.
1265 For elements of equal cheapness, the most recent one
1266 goes in front, except that the first element in the list
1267 remains first unless a cheaper element is added. The order of
1268 pseudo-registers does not matter, as canon_reg will be called to
1269 find the cheapest when a register is retrieved from the table.
1271 The in_memory field in the hash table element is set to 0.
1272 The caller must set it nonzero if appropriate.
1274 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1275 and if insert_regs returns a nonzero value
1276 you must then recompute its hash code before calling here.
1278 If necessary, update table showing constant values of quantities. */
1280 #define CHEAPER(X,Y) ((X)->cost < (Y)->cost)
1282 static struct table_elt
*
1283 insert (x
, classp
, hash
, mode
)
1285 register struct table_elt
*classp
;
1287 enum machine_mode mode
;
1289 register struct table_elt
*elt
;
1291 /* If X is a register and we haven't made a quantity for it,
1292 something is wrong. */
1293 if (GET_CODE (x
) == REG
&& ! REGNO_QTY_VALID_P (REGNO (x
)))
1296 /* If X is a hard register, show it is being put in the table. */
1297 if (GET_CODE (x
) == REG
&& REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1299 int regno
= REGNO (x
);
1300 int endregno
= regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (x
));
1303 for (i
= regno
; i
< endregno
; i
++)
1304 SET_HARD_REG_BIT (hard_regs_in_table
, i
);
1307 /* If X is a label, show we recorded it. */
1308 if (GET_CODE (x
) == LABEL_REF
1309 || (GET_CODE (x
) == CONST
&& GET_CODE (XEXP (x
, 0)) == PLUS
1310 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == LABEL_REF
))
1311 recorded_label_ref
= 1;
1313 /* Put an element for X into the right hash bucket. */
1315 elt
= get_element ();
1317 elt
->cost
= COST (x
);
1318 elt
->next_same_value
= 0;
1319 elt
->prev_same_value
= 0;
1320 elt
->next_same_hash
= table
[hash
];
1321 elt
->prev_same_hash
= 0;
1322 elt
->related_value
= 0;
1325 elt
->is_const
= (CONSTANT_P (x
)
1326 /* GNU C++ takes advantage of this for `this'
1327 (and other const values). */
1328 || (RTX_UNCHANGING_P (x
)
1329 && GET_CODE (x
) == REG
1330 && REGNO (x
) >= FIRST_PSEUDO_REGISTER
)
1331 || FIXED_BASE_PLUS_P (x
));
1334 table
[hash
]->prev_same_hash
= elt
;
1337 /* Put it into the proper value-class. */
1340 classp
= classp
->first_same_value
;
1341 if (CHEAPER (elt
, classp
))
1342 /* Insert at the head of the class */
1344 register struct table_elt
*p
;
1345 elt
->next_same_value
= classp
;
1346 classp
->prev_same_value
= elt
;
1347 elt
->first_same_value
= elt
;
1349 for (p
= classp
; p
; p
= p
->next_same_value
)
1350 p
->first_same_value
= elt
;
1354 /* Insert not at head of the class. */
1355 /* Put it after the last element cheaper than X. */
1356 register struct table_elt
*p
, *next
;
1357 for (p
= classp
; (next
= p
->next_same_value
) && CHEAPER (next
, elt
);
1359 /* Put it after P and before NEXT. */
1360 elt
->next_same_value
= next
;
1362 next
->prev_same_value
= elt
;
1363 elt
->prev_same_value
= p
;
1364 p
->next_same_value
= elt
;
1365 elt
->first_same_value
= classp
;
1369 elt
->first_same_value
= elt
;
1371 /* If this is a constant being set equivalent to a register or a register
1372 being set equivalent to a constant, note the constant equivalence.
1374 If this is a constant, it cannot be equivalent to a different constant,
1375 and a constant is the only thing that can be cheaper than a register. So
1376 we know the register is the head of the class (before the constant was
1379 If this is a register that is not already known equivalent to a
1380 constant, we must check the entire class.
1382 If this is a register that is already known equivalent to an insn,
1383 update `qty_const_insn' to show that `this_insn' is the latest
1384 insn making that quantity equivalent to the constant. */
1386 if (elt
->is_const
&& classp
&& GET_CODE (classp
->exp
) == REG
1387 && GET_CODE (x
) != REG
)
1389 qty_const
[reg_qty
[REGNO (classp
->exp
)]]
1390 = gen_lowpart_if_possible (qty_mode
[reg_qty
[REGNO (classp
->exp
)]], x
);
1391 qty_const_insn
[reg_qty
[REGNO (classp
->exp
)]] = this_insn
;
1394 else if (GET_CODE (x
) == REG
&& classp
&& ! qty_const
[reg_qty
[REGNO (x
)]]
1397 register struct table_elt
*p
;
1399 for (p
= classp
; p
!= 0; p
= p
->next_same_value
)
1401 if (p
->is_const
&& GET_CODE (p
->exp
) != REG
)
1403 qty_const
[reg_qty
[REGNO (x
)]]
1404 = gen_lowpart_if_possible (GET_MODE (x
), p
->exp
);
1405 qty_const_insn
[reg_qty
[REGNO (x
)]] = this_insn
;
1411 else if (GET_CODE (x
) == REG
&& qty_const
[reg_qty
[REGNO (x
)]]
1412 && GET_MODE (x
) == qty_mode
[reg_qty
[REGNO (x
)]])
1413 qty_const_insn
[reg_qty
[REGNO (x
)]] = this_insn
;
1415 /* If this is a constant with symbolic value,
1416 and it has a term with an explicit integer value,
1417 link it up with related expressions. */
1418 if (GET_CODE (x
) == CONST
)
1420 rtx subexp
= get_related_value (x
);
1422 struct table_elt
*subelt
, *subelt_prev
;
1426 /* Get the integer-free subexpression in the hash table. */
1427 subhash
= safe_hash (subexp
, mode
) % NBUCKETS
;
1428 subelt
= lookup (subexp
, subhash
, mode
);
1430 subelt
= insert (subexp
, NULL_PTR
, subhash
, mode
);
1431 /* Initialize SUBELT's circular chain if it has none. */
1432 if (subelt
->related_value
== 0)
1433 subelt
->related_value
= subelt
;
1434 /* Find the element in the circular chain that precedes SUBELT. */
1435 subelt_prev
= subelt
;
1436 while (subelt_prev
->related_value
!= subelt
)
1437 subelt_prev
= subelt_prev
->related_value
;
1438 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1439 This way the element that follows SUBELT is the oldest one. */
1440 elt
->related_value
= subelt_prev
->related_value
;
1441 subelt_prev
->related_value
= elt
;
1448 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1449 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1450 the two classes equivalent.
1452 CLASS1 will be the surviving class; CLASS2 should not be used after this
1455 Any invalid entries in CLASS2 will not be copied. */
1458 merge_equiv_classes (class1
, class2
)
1459 struct table_elt
*class1
, *class2
;
1461 struct table_elt
*elt
, *next
, *new;
1463 /* Ensure we start with the head of the classes. */
1464 class1
= class1
->first_same_value
;
1465 class2
= class2
->first_same_value
;
1467 /* If they were already equal, forget it. */
1468 if (class1
== class2
)
1471 for (elt
= class2
; elt
; elt
= next
)
1475 enum machine_mode mode
= elt
->mode
;
1477 next
= elt
->next_same_value
;
1479 /* Remove old entry, make a new one in CLASS1's class.
1480 Don't do this for invalid entries as we cannot find their
1481 hash code (it also isn't necessary). */
1482 if (GET_CODE (exp
) == REG
|| exp_equiv_p (exp
, exp
, 1, 0))
1484 hash_arg_in_memory
= 0;
1485 hash_arg_in_struct
= 0;
1486 hash
= HASH (exp
, mode
);
1488 if (GET_CODE (exp
) == REG
)
1489 delete_reg_equiv (REGNO (exp
));
1491 remove_from_table (elt
, hash
);
1493 if (insert_regs (exp
, class1
, 0))
1495 rehash_using_reg (exp
);
1496 hash
= HASH (exp
, mode
);
1498 new = insert (exp
, class1
, hash
, mode
);
1499 new->in_memory
= hash_arg_in_memory
;
1500 new->in_struct
= hash_arg_in_struct
;
1505 /* Remove from the hash table, or mark as invalid,
1506 all expressions whose values could be altered by storing in X.
1507 X is a register, a subreg, or a memory reference with nonvarying address
1508 (because, when a memory reference with a varying address is stored in,
1509 all memory references are removed by invalidate_memory
1510 so specific invalidation is superfluous).
1511 FULL_MODE, if not VOIDmode, indicates that this much should be invalidated
1512 instead of just the amount indicated by the mode of X. This is only used
1513 for bitfield stores into memory.
1515 A nonvarying address may be just a register or just
1516 a symbol reference, or it may be either of those plus
1517 a numeric offset. */
1520 invalidate (x
, full_mode
)
1522 enum machine_mode full_mode
;
1525 register struct table_elt
*p
;
1527 HOST_WIDE_INT start
, end
;
1529 /* If X is a register, dependencies on its contents
1530 are recorded through the qty number mechanism.
1531 Just change the qty number of the register,
1532 mark it as invalid for expressions that refer to it,
1533 and remove it itself. */
1535 if (GET_CODE (x
) == REG
)
1537 register int regno
= REGNO (x
);
1538 register unsigned hash
= HASH (x
, GET_MODE (x
));
1540 /* Remove REGNO from any quantity list it might be on and indicate
1541 that it's value might have changed. If it is a pseudo, remove its
1542 entry from the hash table.
1544 For a hard register, we do the first two actions above for any
1545 additional hard registers corresponding to X. Then, if any of these
1546 registers are in the table, we must remove any REG entries that
1547 overlap these registers. */
1549 delete_reg_equiv (regno
);
1552 if (regno
>= FIRST_PSEUDO_REGISTER
)
1554 /* Because a register can be referenced in more than one mode,
1555 we might have to remove more than one table entry. */
1557 struct table_elt
*elt
;
1559 while (elt
= lookup_for_remove (x
, hash
, GET_MODE (x
)))
1560 remove_from_table (elt
, hash
);
1564 HOST_WIDE_INT in_table
1565 = TEST_HARD_REG_BIT (hard_regs_in_table
, regno
);
1566 int endregno
= regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (x
));
1567 int tregno
, tendregno
;
1568 register struct table_elt
*p
, *next
;
1570 CLEAR_HARD_REG_BIT (hard_regs_in_table
, regno
);
1572 for (i
= regno
+ 1; i
< endregno
; i
++)
1574 in_table
|= TEST_HARD_REG_BIT (hard_regs_in_table
, i
);
1575 CLEAR_HARD_REG_BIT (hard_regs_in_table
, i
);
1576 delete_reg_equiv (i
);
1581 for (hash
= 0; hash
< NBUCKETS
; hash
++)
1582 for (p
= table
[hash
]; p
; p
= next
)
1584 next
= p
->next_same_hash
;
1586 if (GET_CODE (p
->exp
) != REG
1587 || REGNO (p
->exp
) >= FIRST_PSEUDO_REGISTER
)
1590 tregno
= REGNO (p
->exp
);
1592 = tregno
+ HARD_REGNO_NREGS (tregno
, GET_MODE (p
->exp
));
1593 if (tendregno
> regno
&& tregno
< endregno
)
1594 remove_from_table (p
, hash
);
1601 if (GET_CODE (x
) == SUBREG
)
1603 if (GET_CODE (SUBREG_REG (x
)) != REG
)
1605 invalidate (SUBREG_REG (x
), VOIDmode
);
1609 /* X is not a register; it must be a memory reference with
1610 a nonvarying address. Remove all hash table elements
1611 that refer to overlapping pieces of memory. */
1613 if (GET_CODE (x
) != MEM
)
1616 if (full_mode
== VOIDmode
)
1617 full_mode
= GET_MODE (x
);
1619 set_nonvarying_address_components (XEXP (x
, 0), GET_MODE_SIZE (full_mode
),
1620 &base
, &start
, &end
);
1622 for (i
= 0; i
< NBUCKETS
; i
++)
1624 register struct table_elt
*next
;
1625 for (p
= table
[i
]; p
; p
= next
)
1627 next
= p
->next_same_hash
;
1628 if (refers_to_mem_p (p
->exp
, base
, start
, end
))
1629 remove_from_table (p
, i
);
1634 /* Remove all expressions that refer to register REGNO,
1635 since they are already invalid, and we are about to
1636 mark that register valid again and don't want the old
1637 expressions to reappear as valid. */
1640 remove_invalid_refs (regno
)
1644 register struct table_elt
*p
, *next
;
1646 for (i
= 0; i
< NBUCKETS
; i
++)
1647 for (p
= table
[i
]; p
; p
= next
)
1649 next
= p
->next_same_hash
;
1650 if (GET_CODE (p
->exp
) != REG
1651 && refers_to_regno_p (regno
, regno
+ 1, p
->exp
, NULL_PTR
))
1652 remove_from_table (p
, i
);
1656 /* Recompute the hash codes of any valid entries in the hash table that
1657 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
1659 This is called when we make a jump equivalence. */
1662 rehash_using_reg (x
)
1666 struct table_elt
*p
, *next
;
1669 if (GET_CODE (x
) == SUBREG
)
1672 /* If X is not a register or if the register is known not to be in any
1673 valid entries in the table, we have no work to do. */
1675 if (GET_CODE (x
) != REG
1676 || reg_in_table
[REGNO (x
)] < 0
1677 || reg_in_table
[REGNO (x
)] != reg_tick
[REGNO (x
)])
1680 /* Scan all hash chains looking for valid entries that mention X.
1681 If we find one and it is in the wrong hash chain, move it. We can skip
1682 objects that are registers, since they are handled specially. */
1684 for (i
= 0; i
< NBUCKETS
; i
++)
1685 for (p
= table
[i
]; p
; p
= next
)
1687 next
= p
->next_same_hash
;
1688 if (GET_CODE (p
->exp
) != REG
&& reg_mentioned_p (x
, p
->exp
)
1689 && exp_equiv_p (p
->exp
, p
->exp
, 1, 0)
1690 && i
!= (hash
= safe_hash (p
->exp
, p
->mode
) % NBUCKETS
))
1692 if (p
->next_same_hash
)
1693 p
->next_same_hash
->prev_same_hash
= p
->prev_same_hash
;
1695 if (p
->prev_same_hash
)
1696 p
->prev_same_hash
->next_same_hash
= p
->next_same_hash
;
1698 table
[i
] = p
->next_same_hash
;
1700 p
->next_same_hash
= table
[hash
];
1701 p
->prev_same_hash
= 0;
1703 table
[hash
]->prev_same_hash
= p
;
1709 /* Remove from the hash table all expressions that reference memory,
1710 or some of them as specified by *WRITES. */
1713 invalidate_memory (writes
)
1714 struct write_data
*writes
;
1717 register struct table_elt
*p
, *next
;
1718 int all
= writes
->all
;
1719 int nonscalar
= writes
->nonscalar
;
1721 for (i
= 0; i
< NBUCKETS
; i
++)
1722 for (p
= table
[i
]; p
; p
= next
)
1724 next
= p
->next_same_hash
;
1727 || (nonscalar
&& p
->in_struct
)
1728 || cse_rtx_addr_varies_p (p
->exp
)))
1729 remove_from_table (p
, i
);
1733 /* Remove from the hash table any expression that is a call-clobbered
1734 register. Also update their TICK values. */
1737 invalidate_for_call ()
1739 int regno
, endregno
;
1742 struct table_elt
*p
, *next
;
1745 /* Go through all the hard registers. For each that is clobbered in
1746 a CALL_INSN, remove the register from quantity chains and update
1747 reg_tick if defined. Also see if any of these registers is currently
1750 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
1751 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
1753 delete_reg_equiv (regno
);
1754 if (reg_tick
[regno
] >= 0)
1757 in_table
|= (TEST_HARD_REG_BIT (hard_regs_in_table
, regno
) != 0);
1760 /* In the case where we have no call-clobbered hard registers in the
1761 table, we are done. Otherwise, scan the table and remove any
1762 entry that overlaps a call-clobbered register. */
1765 for (hash
= 0; hash
< NBUCKETS
; hash
++)
1766 for (p
= table
[hash
]; p
; p
= next
)
1768 next
= p
->next_same_hash
;
1770 if (GET_CODE (p
->exp
) != REG
1771 || REGNO (p
->exp
) >= FIRST_PSEUDO_REGISTER
)
1774 regno
= REGNO (p
->exp
);
1775 endregno
= regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (p
->exp
));
1777 for (i
= regno
; i
< endregno
; i
++)
1778 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, i
))
1780 remove_from_table (p
, hash
);
1786 /* Given an expression X of type CONST,
1787 and ELT which is its table entry (or 0 if it
1788 is not in the hash table),
1789 return an alternate expression for X as a register plus integer.
1790 If none can be found, return 0. */
1793 use_related_value (x
, elt
)
1795 struct table_elt
*elt
;
1797 register struct table_elt
*relt
= 0;
1798 register struct table_elt
*p
, *q
;
1799 HOST_WIDE_INT offset
;
1801 /* First, is there anything related known?
1802 If we have a table element, we can tell from that.
1803 Otherwise, must look it up. */
1805 if (elt
!= 0 && elt
->related_value
!= 0)
1807 else if (elt
== 0 && GET_CODE (x
) == CONST
)
1809 rtx subexp
= get_related_value (x
);
1811 relt
= lookup (subexp
,
1812 safe_hash (subexp
, GET_MODE (subexp
)) % NBUCKETS
,
1819 /* Search all related table entries for one that has an
1820 equivalent register. */
1825 /* This loop is strange in that it is executed in two different cases.
1826 The first is when X is already in the table. Then it is searching
1827 the RELATED_VALUE list of X's class (RELT). The second case is when
1828 X is not in the table. Then RELT points to a class for the related
1831 Ensure that, whatever case we are in, that we ignore classes that have
1832 the same value as X. */
1834 if (rtx_equal_p (x
, p
->exp
))
1837 for (q
= p
->first_same_value
; q
; q
= q
->next_same_value
)
1838 if (GET_CODE (q
->exp
) == REG
)
1844 p
= p
->related_value
;
1846 /* We went all the way around, so there is nothing to be found.
1847 Alternatively, perhaps RELT was in the table for some other reason
1848 and it has no related values recorded. */
1849 if (p
== relt
|| p
== 0)
1856 offset
= (get_integer_term (x
) - get_integer_term (p
->exp
));
1857 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
1858 return plus_constant (q
->exp
, offset
);
1861 /* Hash an rtx. We are careful to make sure the value is never negative.
1862 Equivalent registers hash identically.
1863 MODE is used in hashing for CONST_INTs only;
1864 otherwise the mode of X is used.
1866 Store 1 in do_not_record if any subexpression is volatile.
1868 Store 1 in hash_arg_in_memory if X contains a MEM rtx
1869 which does not have the RTX_UNCHANGING_P bit set.
1870 In this case, also store 1 in hash_arg_in_struct
1871 if there is a MEM rtx which has the MEM_IN_STRUCT_P bit set.
1873 Note that cse_insn knows that the hash code of a MEM expression
1874 is just (int) MEM plus the hash code of the address. */
1877 canon_hash (x
, mode
)
1879 enum machine_mode mode
;
1882 register unsigned hash
= 0;
1883 register enum rtx_code code
;
1886 /* repeat is used to turn tail-recursion into iteration. */
1891 code
= GET_CODE (x
);
1896 register int regno
= REGNO (x
);
1898 /* On some machines, we can't record any non-fixed hard register,
1899 because extending its life will cause reload problems. We
1900 consider ap, fp, and sp to be fixed for this purpose.
1901 On all machines, we can't record any global registers. */
1903 if (regno
< FIRST_PSEUDO_REGISTER
1904 && (global_regs
[regno
]
1905 #ifdef SMALL_REGISTER_CLASSES
1906 || (SMALL_REGISTER_CLASSES
1907 && ! fixed_regs
[regno
]
1908 && regno
!= FRAME_POINTER_REGNUM
1909 && regno
!= HARD_FRAME_POINTER_REGNUM
1910 && regno
!= ARG_POINTER_REGNUM
1911 && regno
!= STACK_POINTER_REGNUM
)
1918 hash
+= ((unsigned) REG
<< 7) + (unsigned) reg_qty
[regno
];
1924 unsigned HOST_WIDE_INT tem
= INTVAL (x
);
1925 hash
+= ((unsigned) CONST_INT
<< 7) + (unsigned) mode
+ tem
;
1930 /* This is like the general case, except that it only counts
1931 the integers representing the constant. */
1932 hash
+= (unsigned) code
+ (unsigned) GET_MODE (x
);
1933 if (GET_MODE (x
) != VOIDmode
)
1934 for (i
= 2; i
< GET_RTX_LENGTH (CONST_DOUBLE
); i
++)
1936 unsigned tem
= XINT (x
, i
);
1940 hash
+= ((unsigned) CONST_DOUBLE_LOW (x
)
1941 + (unsigned) CONST_DOUBLE_HIGH (x
));
1944 /* Assume there is only one rtx object for any given label. */
1947 += ((unsigned) LABEL_REF
<< 7) + (unsigned HOST_WIDE_INT
) XEXP (x
, 0);
1952 += ((unsigned) SYMBOL_REF
<< 7) + (unsigned HOST_WIDE_INT
) XSTR (x
, 0);
1956 if (MEM_VOLATILE_P (x
))
1961 if (! RTX_UNCHANGING_P (x
) || FIXED_BASE_PLUS_P (XEXP (x
, 0)))
1963 hash_arg_in_memory
= 1;
1964 if (MEM_IN_STRUCT_P (x
)) hash_arg_in_struct
= 1;
1966 /* Now that we have already found this special case,
1967 might as well speed it up as much as possible. */
1968 hash
+= (unsigned) MEM
;
1979 case UNSPEC_VOLATILE
:
1984 if (MEM_VOLATILE_P (x
))
1991 i
= GET_RTX_LENGTH (code
) - 1;
1992 hash
+= (unsigned) code
+ (unsigned) GET_MODE (x
);
1993 fmt
= GET_RTX_FORMAT (code
);
1998 rtx tem
= XEXP (x
, i
);
2000 /* If we are about to do the last recursive call
2001 needed at this level, change it into iteration.
2002 This function is called enough to be worth it. */
2008 hash
+= canon_hash (tem
, 0);
2010 else if (fmt
[i
] == 'E')
2011 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2012 hash
+= canon_hash (XVECEXP (x
, i
, j
), 0);
2013 else if (fmt
[i
] == 's')
2015 register unsigned char *p
= (unsigned char *) XSTR (x
, i
);
2020 else if (fmt
[i
] == 'i')
2022 register unsigned tem
= XINT (x
, i
);
2031 /* Like canon_hash but with no side effects. */
2036 enum machine_mode mode
;
2038 int save_do_not_record
= do_not_record
;
2039 int save_hash_arg_in_memory
= hash_arg_in_memory
;
2040 int save_hash_arg_in_struct
= hash_arg_in_struct
;
2041 unsigned hash
= canon_hash (x
, mode
);
2042 hash_arg_in_memory
= save_hash_arg_in_memory
;
2043 hash_arg_in_struct
= save_hash_arg_in_struct
;
2044 do_not_record
= save_do_not_record
;
2048 /* Return 1 iff X and Y would canonicalize into the same thing,
2049 without actually constructing the canonicalization of either one.
2050 If VALIDATE is nonzero,
2051 we assume X is an expression being processed from the rtl
2052 and Y was found in the hash table. We check register refs
2053 in Y for being marked as valid.
2055 If EQUAL_VALUES is nonzero, we allow a register to match a constant value
2056 that is known to be in the register. Ordinarily, we don't allow them
2057 to match, because letting them match would cause unpredictable results
2058 in all the places that search a hash table chain for an equivalent
2059 for a given value. A possible equivalent that has different structure
2060 has its hash code computed from different data. Whether the hash code
2061 is the same as that of the the given value is pure luck. */
2064 exp_equiv_p (x
, y
, validate
, equal_values
)
2070 register enum rtx_code code
;
2073 /* Note: it is incorrect to assume an expression is equivalent to itself
2074 if VALIDATE is nonzero. */
2075 if (x
== y
&& !validate
)
2077 if (x
== 0 || y
== 0)
2080 code
= GET_CODE (x
);
2081 if (code
!= GET_CODE (y
))
2086 /* If X is a constant and Y is a register or vice versa, they may be
2087 equivalent. We only have to validate if Y is a register. */
2088 if (CONSTANT_P (x
) && GET_CODE (y
) == REG
2089 && REGNO_QTY_VALID_P (REGNO (y
))
2090 && GET_MODE (y
) == qty_mode
[reg_qty
[REGNO (y
)]]
2091 && rtx_equal_p (x
, qty_const
[reg_qty
[REGNO (y
)]])
2092 && (! validate
|| reg_in_table
[REGNO (y
)] == reg_tick
[REGNO (y
)]))
2095 if (CONSTANT_P (y
) && code
== REG
2096 && REGNO_QTY_VALID_P (REGNO (x
))
2097 && GET_MODE (x
) == qty_mode
[reg_qty
[REGNO (x
)]]
2098 && rtx_equal_p (y
, qty_const
[reg_qty
[REGNO (x
)]]))
2104 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2105 if (GET_MODE (x
) != GET_MODE (y
))
2115 return INTVAL (x
) == INTVAL (y
);
2118 return XEXP (x
, 0) == XEXP (y
, 0);
2121 return XSTR (x
, 0) == XSTR (y
, 0);
2125 int regno
= REGNO (y
);
2127 = regno
+ (regno
>= FIRST_PSEUDO_REGISTER
? 1
2128 : HARD_REGNO_NREGS (regno
, GET_MODE (y
)));
2131 /* If the quantities are not the same, the expressions are not
2132 equivalent. If there are and we are not to validate, they
2133 are equivalent. Otherwise, ensure all regs are up-to-date. */
2135 if (reg_qty
[REGNO (x
)] != reg_qty
[regno
])
2141 for (i
= regno
; i
< endregno
; i
++)
2142 if (reg_in_table
[i
] != reg_tick
[i
])
2148 /* For commutative operations, check both orders. */
2156 return ((exp_equiv_p (XEXP (x
, 0), XEXP (y
, 0), validate
, equal_values
)
2157 && exp_equiv_p (XEXP (x
, 1), XEXP (y
, 1),
2158 validate
, equal_values
))
2159 || (exp_equiv_p (XEXP (x
, 0), XEXP (y
, 1),
2160 validate
, equal_values
)
2161 && exp_equiv_p (XEXP (x
, 1), XEXP (y
, 0),
2162 validate
, equal_values
)));
2165 /* Compare the elements. If any pair of corresponding elements
2166 fail to match, return 0 for the whole things. */
2168 fmt
= GET_RTX_FORMAT (code
);
2169 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2174 if (! exp_equiv_p (XEXP (x
, i
), XEXP (y
, i
), validate
, equal_values
))
2179 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
2181 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2182 if (! exp_equiv_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
),
2183 validate
, equal_values
))
2188 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
2193 if (XINT (x
, i
) != XINT (y
, i
))
2198 if (XWINT (x
, i
) != XWINT (y
, i
))
2213 /* Return 1 iff any subexpression of X matches Y.
2214 Here we do not require that X or Y be valid (for registers referred to)
2215 for being in the hash table. */
2222 register enum rtx_code code
;
2228 if (x
== 0 || y
== 0)
2231 code
= GET_CODE (x
);
2232 /* If X as a whole has the same code as Y, they may match.
2234 if (code
== GET_CODE (y
))
2236 if (exp_equiv_p (x
, y
, 0, 1))
2240 /* X does not match, so try its subexpressions. */
2242 fmt
= GET_RTX_FORMAT (code
);
2243 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2252 if (refers_to_p (XEXP (x
, i
), y
))
2255 else if (fmt
[i
] == 'E')
2258 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2259 if (refers_to_p (XVECEXP (x
, i
, j
), y
))
2266 /* Given ADDR and SIZE (a memory address, and the size of the memory reference),
2267 set PBASE, PSTART, and PEND which correspond to the base of the address,
2268 the starting offset, and ending offset respectively.
2270 ADDR is known to be a nonvarying address. */
2272 /* ??? Despite what the comments say, this function is in fact frequently
2273 passed varying addresses. This does not appear to cause any problems. */
2276 set_nonvarying_address_components (addr
, size
, pbase
, pstart
, pend
)
2280 HOST_WIDE_INT
*pstart
, *pend
;
2283 HOST_WIDE_INT start
, end
;
2289 /* Registers with nonvarying addresses usually have constant equivalents;
2290 but the frame pointer register is also possible. */
2291 if (GET_CODE (base
) == REG
2293 && REGNO_QTY_VALID_P (REGNO (base
))
2294 && qty_mode
[reg_qty
[REGNO (base
)]] == GET_MODE (base
)
2295 && qty_const
[reg_qty
[REGNO (base
)]] != 0)
2296 base
= qty_const
[reg_qty
[REGNO (base
)]];
2297 else if (GET_CODE (base
) == PLUS
2298 && GET_CODE (XEXP (base
, 1)) == CONST_INT
2299 && GET_CODE (XEXP (base
, 0)) == REG
2301 && REGNO_QTY_VALID_P (REGNO (XEXP (base
, 0)))
2302 && (qty_mode
[reg_qty
[REGNO (XEXP (base
, 0))]]
2303 == GET_MODE (XEXP (base
, 0)))
2304 && qty_const
[reg_qty
[REGNO (XEXP (base
, 0))]])
2306 start
= INTVAL (XEXP (base
, 1));
2307 base
= qty_const
[reg_qty
[REGNO (XEXP (base
, 0))]];
2309 /* This can happen as the result of virtual register instantiation,
2310 if the initial offset is too large to be a valid address. */
2311 else if (GET_CODE (base
) == PLUS
2312 && GET_CODE (XEXP (base
, 0)) == REG
2313 && GET_CODE (XEXP (base
, 1)) == REG
2315 && REGNO_QTY_VALID_P (REGNO (XEXP (base
, 0)))
2316 && (qty_mode
[reg_qty
[REGNO (XEXP (base
, 0))]]
2317 == GET_MODE (XEXP (base
, 0)))
2318 && qty_const
[reg_qty
[REGNO (XEXP (base
, 0))]]
2319 && REGNO_QTY_VALID_P (REGNO (XEXP (base
, 1)))
2320 && (qty_mode
[reg_qty
[REGNO (XEXP (base
, 1))]]
2321 == GET_MODE (XEXP (base
, 1)))
2322 && qty_const
[reg_qty
[REGNO (XEXP (base
, 1))]])
2324 rtx tem
= qty_const
[reg_qty
[REGNO (XEXP (base
, 1))]];
2325 base
= qty_const
[reg_qty
[REGNO (XEXP (base
, 0))]];
2327 /* One of the two values must be a constant. */
2328 if (GET_CODE (base
) != CONST_INT
)
2330 if (GET_CODE (tem
) != CONST_INT
)
2332 start
= INTVAL (tem
);
2336 start
= INTVAL (base
);
2341 /* Handle everything that we can find inside an address that has been
2342 viewed as constant. */
2346 /* If no part of this switch does a "continue", the code outside
2347 will exit this loop. */
2349 switch (GET_CODE (base
))
2352 /* By definition, operand1 of a LO_SUM is the associated constant
2353 address. Use the associated constant address as the base
2355 base
= XEXP (base
, 1);
2359 /* Strip off CONST. */
2360 base
= XEXP (base
, 0);
2364 if (GET_CODE (XEXP (base
, 1)) == CONST_INT
)
2366 start
+= INTVAL (XEXP (base
, 1));
2367 base
= XEXP (base
, 0);
2373 /* Handle the case of an AND which is the negative of a power of
2374 two. This is used to represent unaligned memory operations. */
2375 if (GET_CODE (XEXP (base
, 1)) == CONST_INT
2376 && exact_log2 (- INTVAL (XEXP (base
, 1))) > 0)
2378 set_nonvarying_address_components (XEXP (base
, 0), size
,
2379 pbase
, pstart
, pend
);
2381 /* Assume the worst misalignment. START is affected, but not
2382 END, so compensate but adjusting SIZE. Don't lose any
2383 constant we already had. */
2385 size
= *pend
- *pstart
- INTVAL (XEXP (base
, 1)) - 1;
2386 start
+= *pstart
+ INTVAL (XEXP (base
, 1)) + 1;
2396 if (GET_CODE (base
) == CONST_INT
)
2398 start
+= INTVAL (base
);
2404 /* Set the return values. */
2410 /* Return 1 iff any subexpression of X refers to memory
2411 at an address of BASE plus some offset
2412 such that any of the bytes' offsets fall between START (inclusive)
2413 and END (exclusive).
2415 The value is undefined if X is a varying address (as determined by
2416 cse_rtx_addr_varies_p). This function is not used in such cases.
2418 When used in the cse pass, `qty_const' is nonzero, and it is used
2419 to treat an address that is a register with a known constant value
2420 as if it were that constant value.
2421 In the loop pass, `qty_const' is zero, so this is not done. */
2424 refers_to_mem_p (x
, base
, start
, end
)
2426 HOST_WIDE_INT start
, end
;
2428 register HOST_WIDE_INT i
;
2429 register enum rtx_code code
;
2436 code
= GET_CODE (x
);
2439 register rtx addr
= XEXP (x
, 0); /* Get the address. */
2441 HOST_WIDE_INT mystart
, myend
;
2443 set_nonvarying_address_components (addr
, GET_MODE_SIZE (GET_MODE (x
)),
2444 &mybase
, &mystart
, &myend
);
2447 /* refers_to_mem_p is never called with varying addresses.
2448 If the base addresses are not equal, there is no chance
2449 of the memory addresses conflicting. */
2450 if (! rtx_equal_p (mybase
, base
))
2453 return myend
> start
&& mystart
< end
;
2456 /* X does not match, so try its subexpressions. */
2458 fmt
= GET_RTX_FORMAT (code
);
2459 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2468 if (refers_to_mem_p (XEXP (x
, i
), base
, start
, end
))
2471 else if (fmt
[i
] == 'E')
2474 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2475 if (refers_to_mem_p (XVECEXP (x
, i
, j
), base
, start
, end
))
2482 /* Nonzero if X refers to memory at a varying address;
2483 except that a register which has at the moment a known constant value
2484 isn't considered variable. */
2487 cse_rtx_addr_varies_p (x
)
2490 /* We need not check for X and the equivalence class being of the same
2491 mode because if X is equivalent to a constant in some mode, it
2492 doesn't vary in any mode. */
2494 if (GET_CODE (x
) == MEM
2495 && GET_CODE (XEXP (x
, 0)) == REG
2496 && REGNO_QTY_VALID_P (REGNO (XEXP (x
, 0)))
2497 && GET_MODE (XEXP (x
, 0)) == qty_mode
[reg_qty
[REGNO (XEXP (x
, 0))]]
2498 && qty_const
[reg_qty
[REGNO (XEXP (x
, 0))]] != 0)
2501 if (GET_CODE (x
) == MEM
2502 && GET_CODE (XEXP (x
, 0)) == PLUS
2503 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
2504 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == REG
2505 && REGNO_QTY_VALID_P (REGNO (XEXP (XEXP (x
, 0), 0)))
2506 && (GET_MODE (XEXP (XEXP (x
, 0), 0))
2507 == qty_mode
[reg_qty
[REGNO (XEXP (XEXP (x
, 0), 0))]])
2508 && qty_const
[reg_qty
[REGNO (XEXP (XEXP (x
, 0), 0))]])
2511 /* This can happen as the result of virtual register instantiation, if
2512 the initial constant is too large to be a valid address. This gives
2513 us a three instruction sequence, load large offset into a register,
2514 load fp minus a constant into a register, then a MEM which is the
2515 sum of the two `constant' registers. */
2516 if (GET_CODE (x
) == MEM
2517 && GET_CODE (XEXP (x
, 0)) == PLUS
2518 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == REG
2519 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == REG
2520 && REGNO_QTY_VALID_P (REGNO (XEXP (XEXP (x
, 0), 0)))
2521 && (GET_MODE (XEXP (XEXP (x
, 0), 0))
2522 == qty_mode
[reg_qty
[REGNO (XEXP (XEXP (x
, 0), 0))]])
2523 && qty_const
[reg_qty
[REGNO (XEXP (XEXP (x
, 0), 0))]]
2524 && REGNO_QTY_VALID_P (REGNO (XEXP (XEXP (x
, 0), 1)))
2525 && (GET_MODE (XEXP (XEXP (x
, 0), 1))
2526 == qty_mode
[reg_qty
[REGNO (XEXP (XEXP (x
, 0), 1))]])
2527 && qty_const
[reg_qty
[REGNO (XEXP (XEXP (x
, 0), 1))]])
2530 return rtx_addr_varies_p (x
);
2533 /* Canonicalize an expression:
2534 replace each register reference inside it
2535 with the "oldest" equivalent register.
2537 If INSN is non-zero and we are replacing a pseudo with a hard register
2538 or vice versa, validate_change is used to ensure that INSN remains valid
2539 after we make our substitution. The calls are made with IN_GROUP non-zero
2540 so apply_change_group must be called upon the outermost return from this
2541 function (unless INSN is zero). The result of apply_change_group can
2542 generally be discarded since the changes we are making are optional. */
2550 register enum rtx_code code
;
2556 code
= GET_CODE (x
);
2574 /* Never replace a hard reg, because hard regs can appear
2575 in more than one machine mode, and we must preserve the mode
2576 of each occurrence. Also, some hard regs appear in
2577 MEMs that are shared and mustn't be altered. Don't try to
2578 replace any reg that maps to a reg of class NO_REGS. */
2579 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
2580 || ! REGNO_QTY_VALID_P (REGNO (x
)))
2583 first
= qty_first_reg
[reg_qty
[REGNO (x
)]];
2584 return (first
>= FIRST_PSEUDO_REGISTER
? regno_reg_rtx
[first
]
2585 : REGNO_REG_CLASS (first
) == NO_REGS
? x
2586 : gen_rtx (REG
, qty_mode
[reg_qty
[REGNO (x
)]], first
));
2590 fmt
= GET_RTX_FORMAT (code
);
2591 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2597 rtx
new = canon_reg (XEXP (x
, i
), insn
);
2599 /* If replacing pseudo with hard reg or vice versa, ensure the
2600 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2601 if (insn
!= 0 && new != 0
2602 && GET_CODE (new) == REG
&& GET_CODE (XEXP (x
, i
)) == REG
2603 && (((REGNO (new) < FIRST_PSEUDO_REGISTER
)
2604 != (REGNO (XEXP (x
, i
)) < FIRST_PSEUDO_REGISTER
))
2605 || insn_n_dups
[recog_memoized (insn
)] > 0))
2606 validate_change (insn
, &XEXP (x
, i
), new, 1);
2610 else if (fmt
[i
] == 'E')
2611 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2612 XVECEXP (x
, i
, j
) = canon_reg (XVECEXP (x
, i
, j
), insn
);
2618 /* LOC is a location within INSN that is an operand address (the contents of
2619 a MEM). Find the best equivalent address to use that is valid for this
2622 On most CISC machines, complicated address modes are costly, and rtx_cost
2623 is a good approximation for that cost. However, most RISC machines have
2624 only a few (usually only one) memory reference formats. If an address is
2625 valid at all, it is often just as cheap as any other address. Hence, for
2626 RISC machines, we use the configuration macro `ADDRESS_COST' to compare the
2627 costs of various addresses. For two addresses of equal cost, choose the one
2628 with the highest `rtx_cost' value as that has the potential of eliminating
2629 the most insns. For equal costs, we choose the first in the equivalence
2630 class. Note that we ignore the fact that pseudo registers are cheaper
2631 than hard registers here because we would also prefer the pseudo registers.
2635 find_best_addr (insn
, loc
)
2639 struct table_elt
*elt
, *p
;
2642 int found_better
= 1;
2643 int save_do_not_record
= do_not_record
;
2644 int save_hash_arg_in_memory
= hash_arg_in_memory
;
2645 int save_hash_arg_in_struct
= hash_arg_in_struct
;
2650 /* Do not try to replace constant addresses or addresses of local and
2651 argument slots. These MEM expressions are made only once and inserted
2652 in many instructions, as well as being used to control symbol table
2653 output. It is not safe to clobber them.
2655 There are some uncommon cases where the address is already in a register
2656 for some reason, but we cannot take advantage of that because we have
2657 no easy way to unshare the MEM. In addition, looking up all stack
2658 addresses is costly. */
2659 if ((GET_CODE (addr
) == PLUS
2660 && GET_CODE (XEXP (addr
, 0)) == REG
2661 && GET_CODE (XEXP (addr
, 1)) == CONST_INT
2662 && (regno
= REGNO (XEXP (addr
, 0)),
2663 regno
== FRAME_POINTER_REGNUM
|| regno
== HARD_FRAME_POINTER_REGNUM
2664 || regno
== ARG_POINTER_REGNUM
))
2665 || (GET_CODE (addr
) == REG
2666 && (regno
= REGNO (addr
), regno
== FRAME_POINTER_REGNUM
2667 || regno
== HARD_FRAME_POINTER_REGNUM
2668 || regno
== ARG_POINTER_REGNUM
))
2669 || CONSTANT_ADDRESS_P (addr
))
2672 /* If this address is not simply a register, try to fold it. This will
2673 sometimes simplify the expression. Many simplifications
2674 will not be valid, but some, usually applying the associative rule, will
2675 be valid and produce better code. */
2676 if (GET_CODE (addr
) != REG
)
2678 rtx folded
= fold_rtx (copy_rtx (addr
), NULL_RTX
);
2682 && (ADDRESS_COST (folded
) < ADDRESS_COST (addr
)
2683 || (ADDRESS_COST (folded
) == ADDRESS_COST (addr
)
2684 && rtx_cost (folded
) > rtx_cost (addr
)))
2686 && rtx_cost (folded
) < rtx_cost (addr
)
2688 && validate_change (insn
, loc
, folded
, 0))
2692 /* If this address is not in the hash table, we can't look for equivalences
2693 of the whole address. Also, ignore if volatile. */
2696 hash
= HASH (addr
, Pmode
);
2697 addr_volatile
= do_not_record
;
2698 do_not_record
= save_do_not_record
;
2699 hash_arg_in_memory
= save_hash_arg_in_memory
;
2700 hash_arg_in_struct
= save_hash_arg_in_struct
;
2705 elt
= lookup (addr
, hash
, Pmode
);
2707 #ifndef ADDRESS_COST
2710 our_cost
= elt
->cost
;
2712 /* Find the lowest cost below ours that works. */
2713 for (elt
= elt
->first_same_value
; elt
; elt
= elt
->next_same_value
)
2714 if (elt
->cost
< our_cost
2715 && (GET_CODE (elt
->exp
) == REG
2716 || exp_equiv_p (elt
->exp
, elt
->exp
, 1, 0))
2717 && validate_change (insn
, loc
,
2718 canon_reg (copy_rtx (elt
->exp
), NULL_RTX
), 0))
2725 /* We need to find the best (under the criteria documented above) entry
2726 in the class that is valid. We use the `flag' field to indicate
2727 choices that were invalid and iterate until we can't find a better
2728 one that hasn't already been tried. */
2730 for (p
= elt
->first_same_value
; p
; p
= p
->next_same_value
)
2733 while (found_better
)
2735 int best_addr_cost
= ADDRESS_COST (*loc
);
2736 int best_rtx_cost
= (elt
->cost
+ 1) >> 1;
2737 struct table_elt
*best_elt
= elt
;
2740 for (p
= elt
->first_same_value
; p
; p
= p
->next_same_value
)
2742 && (GET_CODE (p
->exp
) == REG
2743 || exp_equiv_p (p
->exp
, p
->exp
, 1, 0))
2744 && (ADDRESS_COST (p
->exp
) < best_addr_cost
2745 || (ADDRESS_COST (p
->exp
) == best_addr_cost
2746 && (p
->cost
+ 1) >> 1 > best_rtx_cost
)))
2749 best_addr_cost
= ADDRESS_COST (p
->exp
);
2750 best_rtx_cost
= (p
->cost
+ 1) >> 1;
2756 if (validate_change (insn
, loc
,
2757 canon_reg (copy_rtx (best_elt
->exp
),
2766 /* If the address is a binary operation with the first operand a register
2767 and the second a constant, do the same as above, but looking for
2768 equivalences of the register. Then try to simplify before checking for
2769 the best address to use. This catches a few cases: First is when we
2770 have REG+const and the register is another REG+const. We can often merge
2771 the constants and eliminate one insn and one register. It may also be
2772 that a machine has a cheap REG+REG+const. Finally, this improves the
2773 code on the Alpha for unaligned byte stores. */
2775 if (flag_expensive_optimizations
2776 && (GET_RTX_CLASS (GET_CODE (*loc
)) == '2'
2777 || GET_RTX_CLASS (GET_CODE (*loc
)) == 'c')
2778 && GET_CODE (XEXP (*loc
, 0)) == REG
2779 && GET_CODE (XEXP (*loc
, 1)) == CONST_INT
)
2781 rtx c
= XEXP (*loc
, 1);
2784 hash
= HASH (XEXP (*loc
, 0), Pmode
);
2785 do_not_record
= save_do_not_record
;
2786 hash_arg_in_memory
= save_hash_arg_in_memory
;
2787 hash_arg_in_struct
= save_hash_arg_in_struct
;
2789 elt
= lookup (XEXP (*loc
, 0), hash
, Pmode
);
2793 /* We need to find the best (under the criteria documented above) entry
2794 in the class that is valid. We use the `flag' field to indicate
2795 choices that were invalid and iterate until we can't find a better
2796 one that hasn't already been tried. */
2798 for (p
= elt
->first_same_value
; p
; p
= p
->next_same_value
)
2801 while (found_better
)
2803 int best_addr_cost
= ADDRESS_COST (*loc
);
2804 int best_rtx_cost
= (COST (*loc
) + 1) >> 1;
2805 struct table_elt
*best_elt
= elt
;
2806 rtx best_rtx
= *loc
;
2809 /* This is at worst case an O(n^2) algorithm, so limit our search
2810 to the first 32 elements on the list. This avoids trouble
2811 compiling code with very long basic blocks that can easily
2812 call cse_gen_binary so many times that we run out of memory. */
2815 for (p
= elt
->first_same_value
, count
= 0;
2817 p
= p
->next_same_value
, count
++)
2819 && (GET_CODE (p
->exp
) == REG
2820 || exp_equiv_p (p
->exp
, p
->exp
, 1, 0)))
2822 rtx
new = cse_gen_binary (GET_CODE (*loc
), Pmode
, p
->exp
, c
);
2824 if ((ADDRESS_COST (new) < best_addr_cost
2825 || (ADDRESS_COST (new) == best_addr_cost
2826 && (COST (new) + 1) >> 1 > best_rtx_cost
)))
2829 best_addr_cost
= ADDRESS_COST (new);
2830 best_rtx_cost
= (COST (new) + 1) >> 1;
2838 if (validate_change (insn
, loc
,
2839 canon_reg (copy_rtx (best_rtx
),
2850 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2851 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2852 what values are being compared.
2854 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2855 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2856 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2857 compared to produce cc0.
2859 The return value is the comparison operator and is either the code of
2860 A or the code corresponding to the inverse of the comparison. */
2862 static enum rtx_code
2863 find_comparison_args (code
, parg1
, parg2
, pmode1
, pmode2
)
2866 enum machine_mode
*pmode1
, *pmode2
;
2870 arg1
= *parg1
, arg2
= *parg2
;
2872 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2874 while (arg2
== CONST0_RTX (GET_MODE (arg1
)))
2876 /* Set non-zero when we find something of interest. */
2878 int reverse_code
= 0;
2879 struct table_elt
*p
= 0;
2881 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2882 On machines with CC0, this is the only case that can occur, since
2883 fold_rtx will return the COMPARE or item being compared with zero
2886 if (GET_CODE (arg1
) == COMPARE
&& arg2
== const0_rtx
)
2889 /* If ARG1 is a comparison operator and CODE is testing for
2890 STORE_FLAG_VALUE, get the inner arguments. */
2892 else if (GET_RTX_CLASS (GET_CODE (arg1
)) == '<')
2895 || (GET_MODE_CLASS (GET_MODE (arg1
)) == MODE_INT
2896 && code
== LT
&& STORE_FLAG_VALUE
== -1)
2897 #ifdef FLOAT_STORE_FLAG_VALUE
2898 || (GET_MODE_CLASS (GET_MODE (arg1
)) == MODE_FLOAT
2899 && FLOAT_STORE_FLAG_VALUE
< 0)
2904 || (GET_MODE_CLASS (GET_MODE (arg1
)) == MODE_INT
2905 && code
== GE
&& STORE_FLAG_VALUE
== -1)
2906 #ifdef FLOAT_STORE_FLAG_VALUE
2907 || (GET_MODE_CLASS (GET_MODE (arg1
)) == MODE_FLOAT
2908 && FLOAT_STORE_FLAG_VALUE
< 0)
2911 x
= arg1
, reverse_code
= 1;
2914 /* ??? We could also check for
2916 (ne (and (eq (...) (const_int 1))) (const_int 0))
2918 and related forms, but let's wait until we see them occurring. */
2921 /* Look up ARG1 in the hash table and see if it has an equivalence
2922 that lets us see what is being compared. */
2923 p
= lookup (arg1
, safe_hash (arg1
, GET_MODE (arg1
)) % NBUCKETS
,
2925 if (p
) p
= p
->first_same_value
;
2927 for (; p
; p
= p
->next_same_value
)
2929 enum machine_mode inner_mode
= GET_MODE (p
->exp
);
2931 /* If the entry isn't valid, skip it. */
2932 if (! exp_equiv_p (p
->exp
, p
->exp
, 1, 0))
2935 if (GET_CODE (p
->exp
) == COMPARE
2936 /* Another possibility is that this machine has a compare insn
2937 that includes the comparison code. In that case, ARG1 would
2938 be equivalent to a comparison operation that would set ARG1 to
2939 either STORE_FLAG_VALUE or zero. If this is an NE operation,
2940 ORIG_CODE is the actual comparison being done; if it is an EQ,
2941 we must reverse ORIG_CODE. On machine with a negative value
2942 for STORE_FLAG_VALUE, also look at LT and GE operations. */
2945 && GET_MODE_CLASS (inner_mode
) == MODE_INT
2946 && (GET_MODE_BITSIZE (inner_mode
)
2947 <= HOST_BITS_PER_WIDE_INT
)
2948 && (STORE_FLAG_VALUE
2949 & ((HOST_WIDE_INT
) 1
2950 << (GET_MODE_BITSIZE (inner_mode
) - 1))))
2951 #ifdef FLOAT_STORE_FLAG_VALUE
2953 && GET_MODE_CLASS (inner_mode
) == MODE_FLOAT
2954 && FLOAT_STORE_FLAG_VALUE
< 0)
2957 && GET_RTX_CLASS (GET_CODE (p
->exp
)) == '<'))
2962 else if ((code
== EQ
2964 && GET_MODE_CLASS (inner_mode
) == MODE_INT
2965 && (GET_MODE_BITSIZE (inner_mode
)
2966 <= HOST_BITS_PER_WIDE_INT
)
2967 && (STORE_FLAG_VALUE
2968 & ((HOST_WIDE_INT
) 1
2969 << (GET_MODE_BITSIZE (inner_mode
) - 1))))
2970 #ifdef FLOAT_STORE_FLAG_VALUE
2972 && GET_MODE_CLASS (inner_mode
) == MODE_FLOAT
2973 && FLOAT_STORE_FLAG_VALUE
< 0)
2976 && GET_RTX_CLASS (GET_CODE (p
->exp
)) == '<')
2983 /* If this is fp + constant, the equivalent is a better operand since
2984 it may let us predict the value of the comparison. */
2985 else if (NONZERO_BASE_PLUS_P (p
->exp
))
2992 /* If we didn't find a useful equivalence for ARG1, we are done.
2993 Otherwise, set up for the next iteration. */
2997 arg1
= XEXP (x
, 0), arg2
= XEXP (x
, 1);
2998 if (GET_RTX_CLASS (GET_CODE (x
)) == '<')
2999 code
= GET_CODE (x
);
3002 code
= reverse_condition (code
);
3005 /* Return our results. Return the modes from before fold_rtx
3006 because fold_rtx might produce const_int, and then it's too late. */
3007 *pmode1
= GET_MODE (arg1
), *pmode2
= GET_MODE (arg2
);
3008 *parg1
= fold_rtx (arg1
, 0), *parg2
= fold_rtx (arg2
, 0);
3013 /* Try to simplify a unary operation CODE whose output mode is to be
3014 MODE with input operand OP whose mode was originally OP_MODE.
3015 Return zero if no simplification can be made. */
3018 simplify_unary_operation (code
, mode
, op
, op_mode
)
3020 enum machine_mode mode
;
3022 enum machine_mode op_mode
;
3024 register int width
= GET_MODE_BITSIZE (mode
);
3026 /* The order of these tests is critical so that, for example, we don't
3027 check the wrong mode (input vs. output) for a conversion operation,
3028 such as FIX. At some point, this should be simplified. */
3030 #if !defined(REAL_IS_NOT_DOUBLE) || defined(REAL_ARITHMETIC)
3032 if (code
== FLOAT
&& GET_MODE (op
) == VOIDmode
3033 && (GET_CODE (op
) == CONST_DOUBLE
|| GET_CODE (op
) == CONST_INT
))
3035 HOST_WIDE_INT hv
, lv
;
3038 if (GET_CODE (op
) == CONST_INT
)
3039 lv
= INTVAL (op
), hv
= INTVAL (op
) < 0 ? -1 : 0;
3041 lv
= CONST_DOUBLE_LOW (op
), hv
= CONST_DOUBLE_HIGH (op
);
3043 #ifdef REAL_ARITHMETIC
3044 REAL_VALUE_FROM_INT (d
, lv
, hv
, mode
);
3048 d
= (double) (~ hv
);
3049 d
*= ((double) ((HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
/ 2))
3050 * (double) ((HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
/ 2)));
3051 d
+= (double) (unsigned HOST_WIDE_INT
) (~ lv
);
3057 d
*= ((double) ((HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
/ 2))
3058 * (double) ((HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
/ 2)));
3059 d
+= (double) (unsigned HOST_WIDE_INT
) lv
;
3061 #endif /* REAL_ARITHMETIC */
3062 d
= real_value_truncate (mode
, d
);
3063 return CONST_DOUBLE_FROM_REAL_VALUE (d
, mode
);
3065 else if (code
== UNSIGNED_FLOAT
&& GET_MODE (op
) == VOIDmode
3066 && (GET_CODE (op
) == CONST_DOUBLE
|| GET_CODE (op
) == CONST_INT
))
3068 HOST_WIDE_INT hv
, lv
;
3071 if (GET_CODE (op
) == CONST_INT
)
3072 lv
= INTVAL (op
), hv
= INTVAL (op
) < 0 ? -1 : 0;
3074 lv
= CONST_DOUBLE_LOW (op
), hv
= CONST_DOUBLE_HIGH (op
);
3076 if (op_mode
== VOIDmode
)
3078 /* We don't know how to interpret negative-looking numbers in
3079 this case, so don't try to fold those. */
3083 else if (GET_MODE_BITSIZE (op_mode
) >= HOST_BITS_PER_WIDE_INT
* 2)
3086 hv
= 0, lv
&= GET_MODE_MASK (op_mode
);
3088 #ifdef REAL_ARITHMETIC
3089 REAL_VALUE_FROM_UNSIGNED_INT (d
, lv
, hv
, mode
);
3092 d
= (double) (unsigned HOST_WIDE_INT
) hv
;
3093 d
*= ((double) ((HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
/ 2))
3094 * (double) ((HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
/ 2)));
3095 d
+= (double) (unsigned HOST_WIDE_INT
) lv
;
3096 #endif /* REAL_ARITHMETIC */
3097 d
= real_value_truncate (mode
, d
);
3098 return CONST_DOUBLE_FROM_REAL_VALUE (d
, mode
);
3102 if (GET_CODE (op
) == CONST_INT
3103 && width
<= HOST_BITS_PER_WIDE_INT
&& width
> 0)
3105 register HOST_WIDE_INT arg0
= INTVAL (op
);
3106 register HOST_WIDE_INT val
;
3119 val
= (arg0
>= 0 ? arg0
: - arg0
);
3123 /* Don't use ffs here. Instead, get low order bit and then its
3124 number. If arg0 is zero, this will return 0, as desired. */
3125 arg0
&= GET_MODE_MASK (mode
);
3126 val
= exact_log2 (arg0
& (- arg0
)) + 1;
3134 if (op_mode
== VOIDmode
)
3136 if (GET_MODE_BITSIZE (op_mode
) == HOST_BITS_PER_WIDE_INT
)
3138 /* If we were really extending the mode,
3139 we would have to distinguish between zero-extension
3140 and sign-extension. */
3141 if (width
!= GET_MODE_BITSIZE (op_mode
))
3145 else if (GET_MODE_BITSIZE (op_mode
) < HOST_BITS_PER_WIDE_INT
)
3146 val
= arg0
& ~((HOST_WIDE_INT
) (-1) << GET_MODE_BITSIZE (op_mode
));
3152 if (op_mode
== VOIDmode
)
3154 if (GET_MODE_BITSIZE (op_mode
) == HOST_BITS_PER_WIDE_INT
)
3156 /* If we were really extending the mode,
3157 we would have to distinguish between zero-extension
3158 and sign-extension. */
3159 if (width
!= GET_MODE_BITSIZE (op_mode
))
3163 else if (GET_MODE_BITSIZE (op_mode
) < HOST_BITS_PER_WIDE_INT
)
3166 = arg0
& ~((HOST_WIDE_INT
) (-1) << GET_MODE_BITSIZE (op_mode
));
3168 & ((HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (op_mode
) - 1)))
3169 val
-= (HOST_WIDE_INT
) 1 << GET_MODE_BITSIZE (op_mode
);
3182 /* Clear the bits that don't belong in our mode,
3183 unless they and our sign bit are all one.
3184 So we get either a reasonable negative value or a reasonable
3185 unsigned value for this mode. */
3186 if (width
< HOST_BITS_PER_WIDE_INT
3187 && ((val
& ((HOST_WIDE_INT
) (-1) << (width
- 1)))
3188 != ((HOST_WIDE_INT
) (-1) << (width
- 1))))
3189 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
3191 return GEN_INT (val
);
3194 /* We can do some operations on integer CONST_DOUBLEs. Also allow
3195 for a DImode operation on a CONST_INT. */
3196 else if (GET_MODE (op
) == VOIDmode
&& width
<= HOST_BITS_PER_INT
* 2
3197 && (GET_CODE (op
) == CONST_DOUBLE
|| GET_CODE (op
) == CONST_INT
))
3199 HOST_WIDE_INT l1
, h1
, lv
, hv
;
3201 if (GET_CODE (op
) == CONST_DOUBLE
)
3202 l1
= CONST_DOUBLE_LOW (op
), h1
= CONST_DOUBLE_HIGH (op
);
3204 l1
= INTVAL (op
), h1
= l1
< 0 ? -1 : 0;
3214 neg_double (l1
, h1
, &lv
, &hv
);
3219 neg_double (l1
, h1
, &lv
, &hv
);
3227 lv
= HOST_BITS_PER_WIDE_INT
+ exact_log2 (h1
& (-h1
)) + 1;
3229 lv
= exact_log2 (l1
& (-l1
)) + 1;
3233 /* This is just a change-of-mode, so do nothing. */
3238 if (op_mode
== VOIDmode
3239 || GET_MODE_BITSIZE (op_mode
) > HOST_BITS_PER_WIDE_INT
)
3243 lv
= l1
& GET_MODE_MASK (op_mode
);
3247 if (op_mode
== VOIDmode
3248 || GET_MODE_BITSIZE (op_mode
) > HOST_BITS_PER_WIDE_INT
)
3252 lv
= l1
& GET_MODE_MASK (op_mode
);
3253 if (GET_MODE_BITSIZE (op_mode
) < HOST_BITS_PER_WIDE_INT
3254 && (lv
& ((HOST_WIDE_INT
) 1
3255 << (GET_MODE_BITSIZE (op_mode
) - 1))) != 0)
3256 lv
-= (HOST_WIDE_INT
) 1 << GET_MODE_BITSIZE (op_mode
);
3258 hv
= (lv
< 0) ? ~ (HOST_WIDE_INT
) 0 : 0;
3269 return immed_double_const (lv
, hv
, mode
);
3272 #if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
3273 else if (GET_CODE (op
) == CONST_DOUBLE
3274 && GET_MODE_CLASS (mode
) == MODE_FLOAT
)
3280 if (setjmp (handler
))
3281 /* There used to be a warning here, but that is inadvisable.
3282 People may want to cause traps, and the natural way
3283 to do it should not get a warning. */
3286 set_float_handler (handler
);
3288 REAL_VALUE_FROM_CONST_DOUBLE (d
, op
);
3293 d
= REAL_VALUE_NEGATE (d
);
3297 if (REAL_VALUE_NEGATIVE (d
))
3298 d
= REAL_VALUE_NEGATE (d
);
3301 case FLOAT_TRUNCATE
:
3302 d
= real_value_truncate (mode
, d
);
3306 /* All this does is change the mode. */
3310 d
= REAL_VALUE_RNDZINT (d
);
3314 d
= REAL_VALUE_UNSIGNED_RNDZINT (d
);
3324 x
= CONST_DOUBLE_FROM_REAL_VALUE (d
, mode
);
3325 set_float_handler (NULL_PTR
);
3329 else if (GET_CODE (op
) == CONST_DOUBLE
3330 && GET_MODE_CLASS (GET_MODE (op
)) == MODE_FLOAT
3331 && GET_MODE_CLASS (mode
) == MODE_INT
3332 && width
<= HOST_BITS_PER_WIDE_INT
&& width
> 0)
3338 if (setjmp (handler
))
3341 set_float_handler (handler
);
3343 REAL_VALUE_FROM_CONST_DOUBLE (d
, op
);
3348 val
= REAL_VALUE_FIX (d
);
3352 val
= REAL_VALUE_UNSIGNED_FIX (d
);
3359 set_float_handler (NULL_PTR
);
3361 /* Clear the bits that don't belong in our mode,
3362 unless they and our sign bit are all one.
3363 So we get either a reasonable negative value or a reasonable
3364 unsigned value for this mode. */
3365 if (width
< HOST_BITS_PER_WIDE_INT
3366 && ((val
& ((HOST_WIDE_INT
) (-1) << (width
- 1)))
3367 != ((HOST_WIDE_INT
) (-1) << (width
- 1))))
3368 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
3370 /* If this would be an entire word for the target, but is not for
3371 the host, then sign-extend on the host so that the number will look
3372 the same way on the host that it would on the target.
3374 For example, when building a 64 bit alpha hosted 32 bit sparc
3375 targeted compiler, then we want the 32 bit unsigned value -1 to be
3376 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
3377 The later confuses the sparc backend. */
3379 if (BITS_PER_WORD
< HOST_BITS_PER_WIDE_INT
&& BITS_PER_WORD
== width
3380 && (val
& ((HOST_WIDE_INT
) 1 << (width
- 1))))
3381 val
|= ((HOST_WIDE_INT
) (-1) << width
);
3383 return GEN_INT (val
);
3386 /* This was formerly used only for non-IEEE float.
3387 eggert@twinsun.com says it is safe for IEEE also. */
3390 /* There are some simplifications we can do even if the operands
3396 /* (not (not X)) == X, similarly for NEG. */
3397 if (GET_CODE (op
) == code
)
3398 return XEXP (op
, 0);
3402 /* (sign_extend (truncate (minus (label_ref L1) (label_ref L2))))
3403 becomes just the MINUS if its mode is MODE. This allows
3404 folding switch statements on machines using casesi (such as
3406 if (GET_CODE (op
) == TRUNCATE
3407 && GET_MODE (XEXP (op
, 0)) == mode
3408 && GET_CODE (XEXP (op
, 0)) == MINUS
3409 && GET_CODE (XEXP (XEXP (op
, 0), 0)) == LABEL_REF
3410 && GET_CODE (XEXP (XEXP (op
, 0), 1)) == LABEL_REF
)
3411 return XEXP (op
, 0);
3413 #ifdef POINTERS_EXTEND_UNSIGNED
3414 if (! POINTERS_EXTEND_UNSIGNED
3415 && mode
== Pmode
&& GET_MODE (op
) == ptr_mode
3417 return convert_memory_address (Pmode
, op
);
3421 #ifdef POINTERS_EXTEND_UNSIGNED
3423 if (POINTERS_EXTEND_UNSIGNED
3424 && mode
== Pmode
&& GET_MODE (op
) == ptr_mode
3426 return convert_memory_address (Pmode
, op
);
3435 /* Simplify a binary operation CODE with result mode MODE, operating on OP0
3436 and OP1. Return 0 if no simplification is possible.
3438 Don't use this for relational operations such as EQ or LT.
3439 Use simplify_relational_operation instead. */
3442 simplify_binary_operation (code
, mode
, op0
, op1
)
3444 enum machine_mode mode
;
3447 register HOST_WIDE_INT arg0
, arg1
, arg0s
, arg1s
;
3449 int width
= GET_MODE_BITSIZE (mode
);
3452 /* Relational operations don't work here. We must know the mode
3453 of the operands in order to do the comparison correctly.
3454 Assuming a full word can give incorrect results.
3455 Consider comparing 128 with -128 in QImode. */
3457 if (GET_RTX_CLASS (code
) == '<')
3460 #if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
3461 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
3462 && GET_CODE (op0
) == CONST_DOUBLE
&& GET_CODE (op1
) == CONST_DOUBLE
3463 && mode
== GET_MODE (op0
) && mode
== GET_MODE (op1
))
3465 REAL_VALUE_TYPE f0
, f1
, value
;
3468 if (setjmp (handler
))
3471 set_float_handler (handler
);
3473 REAL_VALUE_FROM_CONST_DOUBLE (f0
, op0
);
3474 REAL_VALUE_FROM_CONST_DOUBLE (f1
, op1
);
3475 f0
= real_value_truncate (mode
, f0
);
3476 f1
= real_value_truncate (mode
, f1
);
3478 #ifdef REAL_ARITHMETIC
3479 REAL_ARITHMETIC (value
, rtx_to_tree_code (code
), f0
, f1
);
3493 #ifndef REAL_INFINITY
3500 value
= MIN (f0
, f1
);
3503 value
= MAX (f0
, f1
);
3510 value
= real_value_truncate (mode
, value
);
3511 set_float_handler (NULL_PTR
);
3512 return CONST_DOUBLE_FROM_REAL_VALUE (value
, mode
);
3514 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
3516 /* We can fold some multi-word operations. */
3517 if (GET_MODE_CLASS (mode
) == MODE_INT
3518 && width
== HOST_BITS_PER_WIDE_INT
* 2
3519 && (GET_CODE (op0
) == CONST_DOUBLE
|| GET_CODE (op0
) == CONST_INT
)
3520 && (GET_CODE (op1
) == CONST_DOUBLE
|| GET_CODE (op1
) == CONST_INT
))
3522 HOST_WIDE_INT l1
, l2
, h1
, h2
, lv
, hv
;
3524 if (GET_CODE (op0
) == CONST_DOUBLE
)
3525 l1
= CONST_DOUBLE_LOW (op0
), h1
= CONST_DOUBLE_HIGH (op0
);
3527 l1
= INTVAL (op0
), h1
= l1
< 0 ? -1 : 0;
3529 if (GET_CODE (op1
) == CONST_DOUBLE
)
3530 l2
= CONST_DOUBLE_LOW (op1
), h2
= CONST_DOUBLE_HIGH (op1
);
3532 l2
= INTVAL (op1
), h2
= l2
< 0 ? -1 : 0;
3537 /* A - B == A + (-B). */
3538 neg_double (l2
, h2
, &lv
, &hv
);
3541 /* .. fall through ... */
3544 add_double (l1
, h1
, l2
, h2
, &lv
, &hv
);
3548 mul_double (l1
, h1
, l2
, h2
, &lv
, &hv
);
3551 case DIV
: case MOD
: case UDIV
: case UMOD
:
3552 /* We'd need to include tree.h to do this and it doesn't seem worth
3557 lv
= l1
& l2
, hv
= h1
& h2
;
3561 lv
= l1
| l2
, hv
= h1
| h2
;
3565 lv
= l1
^ l2
, hv
= h1
^ h2
;
3571 && ((unsigned HOST_WIDE_INT
) l1
3572 < (unsigned HOST_WIDE_INT
) l2
)))
3581 && ((unsigned HOST_WIDE_INT
) l1
3582 > (unsigned HOST_WIDE_INT
) l2
)))
3589 if ((unsigned HOST_WIDE_INT
) h1
< (unsigned HOST_WIDE_INT
) h2
3591 && ((unsigned HOST_WIDE_INT
) l1
3592 < (unsigned HOST_WIDE_INT
) l2
)))
3599 if ((unsigned HOST_WIDE_INT
) h1
> (unsigned HOST_WIDE_INT
) h2
3601 && ((unsigned HOST_WIDE_INT
) l1
3602 > (unsigned HOST_WIDE_INT
) l2
)))
3608 case LSHIFTRT
: case ASHIFTRT
:
3610 case ROTATE
: case ROTATERT
:
3611 #ifdef SHIFT_COUNT_TRUNCATED
3612 if (SHIFT_COUNT_TRUNCATED
)
3613 l2
&= (GET_MODE_BITSIZE (mode
) - 1), h2
= 0;
3616 if (h2
!= 0 || l2
< 0 || l2
>= GET_MODE_BITSIZE (mode
))
3619 if (code
== LSHIFTRT
|| code
== ASHIFTRT
)
3620 rshift_double (l1
, h1
, l2
, GET_MODE_BITSIZE (mode
), &lv
, &hv
,
3622 else if (code
== ASHIFT
)
3623 lshift_double (l1
, h1
, l2
, GET_MODE_BITSIZE (mode
), &lv
, &hv
, 1);
3624 else if (code
== ROTATE
)
3625 lrotate_double (l1
, h1
, l2
, GET_MODE_BITSIZE (mode
), &lv
, &hv
);
3626 else /* code == ROTATERT */
3627 rrotate_double (l1
, h1
, l2
, GET_MODE_BITSIZE (mode
), &lv
, &hv
);
3634 return immed_double_const (lv
, hv
, mode
);
3637 if (GET_CODE (op0
) != CONST_INT
|| GET_CODE (op1
) != CONST_INT
3638 || width
> HOST_BITS_PER_WIDE_INT
|| width
== 0)
3640 /* Even if we can't compute a constant result,
3641 there are some cases worth simplifying. */
3646 /* In IEEE floating point, x+0 is not the same as x. Similarly
3647 for the other optimizations below. */
3648 if (TARGET_FLOAT_FORMAT
== IEEE_FLOAT_FORMAT
3649 && FLOAT_MODE_P (mode
) && ! flag_fast_math
)
3652 if (op1
== CONST0_RTX (mode
))
3655 /* ((-a) + b) -> (b - a) and similarly for (a + (-b)) */
3656 if (GET_CODE (op0
) == NEG
)
3657 return cse_gen_binary (MINUS
, mode
, op1
, XEXP (op0
, 0));
3658 else if (GET_CODE (op1
) == NEG
)
3659 return cse_gen_binary (MINUS
, mode
, op0
, XEXP (op1
, 0));
3661 /* Handle both-operands-constant cases. We can only add
3662 CONST_INTs to constants since the sum of relocatable symbols
3663 can't be handled by most assemblers. Don't add CONST_INT
3664 to CONST_INT since overflow won't be computed properly if wider
3665 than HOST_BITS_PER_WIDE_INT. */
3667 if (CONSTANT_P (op0
) && GET_MODE (op0
) != VOIDmode
3668 && GET_CODE (op1
) == CONST_INT
)
3669 return plus_constant (op0
, INTVAL (op1
));
3670 else if (CONSTANT_P (op1
) && GET_MODE (op1
) != VOIDmode
3671 && GET_CODE (op0
) == CONST_INT
)
3672 return plus_constant (op1
, INTVAL (op0
));
3674 /* See if this is something like X * C - X or vice versa or
3675 if the multiplication is written as a shift. If so, we can
3676 distribute and make a new multiply, shift, or maybe just
3677 have X (if C is 2 in the example above). But don't make
3678 real multiply if we didn't have one before. */
3680 if (! FLOAT_MODE_P (mode
))
3682 HOST_WIDE_INT coeff0
= 1, coeff1
= 1;
3683 rtx lhs
= op0
, rhs
= op1
;
3686 if (GET_CODE (lhs
) == NEG
)
3687 coeff0
= -1, lhs
= XEXP (lhs
, 0);
3688 else if (GET_CODE (lhs
) == MULT
3689 && GET_CODE (XEXP (lhs
, 1)) == CONST_INT
)
3691 coeff0
= INTVAL (XEXP (lhs
, 1)), lhs
= XEXP (lhs
, 0);
3694 else if (GET_CODE (lhs
) == ASHIFT
3695 && GET_CODE (XEXP (lhs
, 1)) == CONST_INT
3696 && INTVAL (XEXP (lhs
, 1)) >= 0
3697 && INTVAL (XEXP (lhs
, 1)) < HOST_BITS_PER_WIDE_INT
)
3699 coeff0
= ((HOST_WIDE_INT
) 1) << INTVAL (XEXP (lhs
, 1));
3700 lhs
= XEXP (lhs
, 0);
3703 if (GET_CODE (rhs
) == NEG
)
3704 coeff1
= -1, rhs
= XEXP (rhs
, 0);
3705 else if (GET_CODE (rhs
) == MULT
3706 && GET_CODE (XEXP (rhs
, 1)) == CONST_INT
)
3708 coeff1
= INTVAL (XEXP (rhs
, 1)), rhs
= XEXP (rhs
, 0);
3711 else if (GET_CODE (rhs
) == ASHIFT
3712 && GET_CODE (XEXP (rhs
, 1)) == CONST_INT
3713 && INTVAL (XEXP (rhs
, 1)) >= 0
3714 && INTVAL (XEXP (rhs
, 1)) < HOST_BITS_PER_WIDE_INT
)
3716 coeff1
= ((HOST_WIDE_INT
) 1) << INTVAL (XEXP (rhs
, 1));
3717 rhs
= XEXP (rhs
, 0);
3720 if (rtx_equal_p (lhs
, rhs
))
3722 tem
= cse_gen_binary (MULT
, mode
, lhs
,
3723 GEN_INT (coeff0
+ coeff1
));
3724 return (GET_CODE (tem
) == MULT
&& ! had_mult
) ? 0 : tem
;
3728 /* If one of the operands is a PLUS or a MINUS, see if we can
3729 simplify this by the associative law.
3730 Don't use the associative law for floating point.
3731 The inaccuracy makes it nonassociative,
3732 and subtle programs can break if operations are associated. */
3734 if (INTEGRAL_MODE_P (mode
)
3735 && (GET_CODE (op0
) == PLUS
|| GET_CODE (op0
) == MINUS
3736 || GET_CODE (op1
) == PLUS
|| GET_CODE (op1
) == MINUS
)
3737 && (tem
= simplify_plus_minus (code
, mode
, op0
, op1
)) != 0)
3743 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
3744 using cc0, in which case we want to leave it as a COMPARE
3745 so we can distinguish it from a register-register-copy.
3747 In IEEE floating point, x-0 is not the same as x. */
3749 if ((TARGET_FLOAT_FORMAT
!= IEEE_FLOAT_FORMAT
3750 || ! FLOAT_MODE_P (mode
) || flag_fast_math
)
3751 && op1
== CONST0_RTX (mode
))
3754 /* Do nothing here. */
3759 /* None of these optimizations can be done for IEEE
3761 if (TARGET_FLOAT_FORMAT
== IEEE_FLOAT_FORMAT
3762 && FLOAT_MODE_P (mode
) && ! flag_fast_math
)
3765 /* We can't assume x-x is 0 even with non-IEEE floating point,
3766 but since it is zero except in very strange circumstances, we
3767 will treat it as zero with -ffast-math. */
3768 if (rtx_equal_p (op0
, op1
)
3769 && ! side_effects_p (op0
)
3770 && (! FLOAT_MODE_P (mode
) || flag_fast_math
))
3771 return CONST0_RTX (mode
);
3773 /* Change subtraction from zero into negation. */
3774 if (op0
== CONST0_RTX (mode
))
3775 return gen_rtx (NEG
, mode
, op1
);
3777 /* (-1 - a) is ~a. */
3778 if (op0
== constm1_rtx
)
3779 return gen_rtx (NOT
, mode
, op1
);
3781 /* Subtracting 0 has no effect. */
3782 if (op1
== CONST0_RTX (mode
))
3785 /* See if this is something like X * C - X or vice versa or
3786 if the multiplication is written as a shift. If so, we can
3787 distribute and make a new multiply, shift, or maybe just
3788 have X (if C is 2 in the example above). But don't make
3789 real multiply if we didn't have one before. */
3791 if (! FLOAT_MODE_P (mode
))
3793 HOST_WIDE_INT coeff0
= 1, coeff1
= 1;
3794 rtx lhs
= op0
, rhs
= op1
;
3797 if (GET_CODE (lhs
) == NEG
)
3798 coeff0
= -1, lhs
= XEXP (lhs
, 0);
3799 else if (GET_CODE (lhs
) == MULT
3800 && GET_CODE (XEXP (lhs
, 1)) == CONST_INT
)
3802 coeff0
= INTVAL (XEXP (lhs
, 1)), lhs
= XEXP (lhs
, 0);
3805 else if (GET_CODE (lhs
) == ASHIFT
3806 && GET_CODE (XEXP (lhs
, 1)) == CONST_INT
3807 && INTVAL (XEXP (lhs
, 1)) >= 0
3808 && INTVAL (XEXP (lhs
, 1)) < HOST_BITS_PER_WIDE_INT
)
3810 coeff0
= ((HOST_WIDE_INT
) 1) << INTVAL (XEXP (lhs
, 1));
3811 lhs
= XEXP (lhs
, 0);
3814 if (GET_CODE (rhs
) == NEG
)
3815 coeff1
= - 1, rhs
= XEXP (rhs
, 0);
3816 else if (GET_CODE (rhs
) == MULT
3817 && GET_CODE (XEXP (rhs
, 1)) == CONST_INT
)
3819 coeff1
= INTVAL (XEXP (rhs
, 1)), rhs
= XEXP (rhs
, 0);
3822 else if (GET_CODE (rhs
) == ASHIFT
3823 && GET_CODE (XEXP (rhs
, 1)) == CONST_INT
3824 && INTVAL (XEXP (rhs
, 1)) >= 0
3825 && INTVAL (XEXP (rhs
, 1)) < HOST_BITS_PER_WIDE_INT
)
3827 coeff1
= ((HOST_WIDE_INT
) 1) << INTVAL (XEXP (rhs
, 1));
3828 rhs
= XEXP (rhs
, 0);
3831 if (rtx_equal_p (lhs
, rhs
))
3833 tem
= cse_gen_binary (MULT
, mode
, lhs
,
3834 GEN_INT (coeff0
- coeff1
));
3835 return (GET_CODE (tem
) == MULT
&& ! had_mult
) ? 0 : tem
;
3839 /* (a - (-b)) -> (a + b). */
3840 if (GET_CODE (op1
) == NEG
)
3841 return cse_gen_binary (PLUS
, mode
, op0
, XEXP (op1
, 0));
3843 /* If one of the operands is a PLUS or a MINUS, see if we can
3844 simplify this by the associative law.
3845 Don't use the associative law for floating point.
3846 The inaccuracy makes it nonassociative,
3847 and subtle programs can break if operations are associated. */
3849 if (INTEGRAL_MODE_P (mode
)
3850 && (GET_CODE (op0
) == PLUS
|| GET_CODE (op0
) == MINUS
3851 || GET_CODE (op1
) == PLUS
|| GET_CODE (op1
) == MINUS
)
3852 && (tem
= simplify_plus_minus (code
, mode
, op0
, op1
)) != 0)
3855 /* Don't let a relocatable value get a negative coeff. */
3856 if (GET_CODE (op1
) == CONST_INT
&& GET_MODE (op0
) != VOIDmode
)
3857 return plus_constant (op0
, - INTVAL (op1
));
3859 /* (x - (x & y)) -> (x & ~y) */
3860 if (GET_CODE (op1
) == AND
)
3862 if (rtx_equal_p (op0
, XEXP (op1
, 0)))
3863 return cse_gen_binary (AND
, mode
, op0
, gen_rtx (NOT
, mode
, XEXP (op1
, 1)));
3864 if (rtx_equal_p (op0
, XEXP (op1
, 1)))
3865 return cse_gen_binary (AND
, mode
, op0
, gen_rtx (NOT
, mode
, XEXP (op1
, 0)));
3870 if (op1
== constm1_rtx
)
3872 tem
= simplify_unary_operation (NEG
, mode
, op0
, mode
);
3874 return tem
? tem
: gen_rtx (NEG
, mode
, op0
);
3877 /* In IEEE floating point, x*0 is not always 0. */
3878 if ((TARGET_FLOAT_FORMAT
!= IEEE_FLOAT_FORMAT
3879 || ! FLOAT_MODE_P (mode
) || flag_fast_math
)
3880 && op1
== CONST0_RTX (mode
)
3881 && ! side_effects_p (op0
))
3884 /* In IEEE floating point, x*1 is not equivalent to x for nans.
3885 However, ANSI says we can drop signals,
3886 so we can do this anyway. */
3887 if (op1
== CONST1_RTX (mode
))
3890 /* Convert multiply by constant power of two into shift unless
3891 we are still generating RTL. This test is a kludge. */
3892 if (GET_CODE (op1
) == CONST_INT
3893 && (val
= exact_log2 (INTVAL (op1
))) >= 0
3894 /* If the mode is larger than the host word size, and the
3895 uppermost bit is set, then this isn't a power of two due
3896 to implicit sign extension. */
3897 && (width
<= HOST_BITS_PER_WIDE_INT
3898 || val
!= HOST_BITS_PER_WIDE_INT
- 1)
3899 && ! rtx_equal_function_value_matters
)
3900 return gen_rtx (ASHIFT
, mode
, op0
, GEN_INT (val
));
3902 if (GET_CODE (op1
) == CONST_DOUBLE
3903 && GET_MODE_CLASS (GET_MODE (op1
)) == MODE_FLOAT
)
3907 int op1is2
, op1ism1
;
3909 if (setjmp (handler
))
3912 set_float_handler (handler
);
3913 REAL_VALUE_FROM_CONST_DOUBLE (d
, op1
);
3914 op1is2
= REAL_VALUES_EQUAL (d
, dconst2
);
3915 op1ism1
= REAL_VALUES_EQUAL (d
, dconstm1
);
3916 set_float_handler (NULL_PTR
);
3918 /* x*2 is x+x and x*(-1) is -x */
3919 if (op1is2
&& GET_MODE (op0
) == mode
)
3920 return gen_rtx (PLUS
, mode
, op0
, copy_rtx (op0
));
3922 else if (op1ism1
&& GET_MODE (op0
) == mode
)
3923 return gen_rtx (NEG
, mode
, op0
);
3928 if (op1
== const0_rtx
)
3930 if (GET_CODE (op1
) == CONST_INT
3931 && (INTVAL (op1
) & GET_MODE_MASK (mode
)) == GET_MODE_MASK (mode
))
3933 if (rtx_equal_p (op0
, op1
) && ! side_effects_p (op0
))
3935 /* A | (~A) -> -1 */
3936 if (((GET_CODE (op0
) == NOT
&& rtx_equal_p (XEXP (op0
, 0), op1
))
3937 || (GET_CODE (op1
) == NOT
&& rtx_equal_p (XEXP (op1
, 0), op0
)))
3938 && ! side_effects_p (op0
)
3939 && GET_MODE_CLASS (mode
) != MODE_CC
)
3944 if (op1
== const0_rtx
)
3946 if (GET_CODE (op1
) == CONST_INT
3947 && (INTVAL (op1
) & GET_MODE_MASK (mode
)) == GET_MODE_MASK (mode
))
3948 return gen_rtx (NOT
, mode
, op0
);
3949 if (op0
== op1
&& ! side_effects_p (op0
)
3950 && GET_MODE_CLASS (mode
) != MODE_CC
)
3955 if (op1
== const0_rtx
&& ! side_effects_p (op0
))
3957 if (GET_CODE (op1
) == CONST_INT
3958 && (INTVAL (op1
) & GET_MODE_MASK (mode
)) == GET_MODE_MASK (mode
))
3960 if (op0
== op1
&& ! side_effects_p (op0
)
3961 && GET_MODE_CLASS (mode
) != MODE_CC
)
3964 if (((GET_CODE (op0
) == NOT
&& rtx_equal_p (XEXP (op0
, 0), op1
))
3965 || (GET_CODE (op1
) == NOT
&& rtx_equal_p (XEXP (op1
, 0), op0
)))
3966 && ! side_effects_p (op0
)
3967 && GET_MODE_CLASS (mode
) != MODE_CC
)
3972 /* Convert divide by power of two into shift (divide by 1 handled
3974 if (GET_CODE (op1
) == CONST_INT
3975 && (arg1
= exact_log2 (INTVAL (op1
))) > 0)
3976 return gen_rtx (LSHIFTRT
, mode
, op0
, GEN_INT (arg1
));
3978 /* ... fall through ... */
3981 if (op1
== CONST1_RTX (mode
))
3984 /* In IEEE floating point, 0/x is not always 0. */
3985 if ((TARGET_FLOAT_FORMAT
!= IEEE_FLOAT_FORMAT
3986 || ! FLOAT_MODE_P (mode
) || flag_fast_math
)
3987 && op0
== CONST0_RTX (mode
)
3988 && ! side_effects_p (op1
))
3991 #if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
3992 /* Change division by a constant into multiplication. Only do
3993 this with -ffast-math until an expert says it is safe in
3995 else if (GET_CODE (op1
) == CONST_DOUBLE
3996 && GET_MODE_CLASS (GET_MODE (op1
)) == MODE_FLOAT
3997 && op1
!= CONST0_RTX (mode
)
4001 REAL_VALUE_FROM_CONST_DOUBLE (d
, op1
);
4003 if (! REAL_VALUES_EQUAL (d
, dconst0
))
4005 #if defined (REAL_ARITHMETIC)
4006 REAL_ARITHMETIC (d
, rtx_to_tree_code (DIV
), dconst1
, d
);
4007 return gen_rtx (MULT
, mode
, op0
,
4008 CONST_DOUBLE_FROM_REAL_VALUE (d
, mode
));
4010 return gen_rtx (MULT
, mode
, op0
,
4011 CONST_DOUBLE_FROM_REAL_VALUE (1./d
, mode
));
4019 /* Handle modulus by power of two (mod with 1 handled below). */
4020 if (GET_CODE (op1
) == CONST_INT
4021 && exact_log2 (INTVAL (op1
)) > 0)
4022 return gen_rtx (AND
, mode
, op0
, GEN_INT (INTVAL (op1
) - 1));
4024 /* ... fall through ... */
4027 if ((op0
== const0_rtx
|| op1
== const1_rtx
)
4028 && ! side_effects_p (op0
) && ! side_effects_p (op1
))
4034 /* Rotating ~0 always results in ~0. */
4035 if (GET_CODE (op0
) == CONST_INT
&& width
<= HOST_BITS_PER_WIDE_INT
4036 && INTVAL (op0
) == GET_MODE_MASK (mode
)
4037 && ! side_effects_p (op1
))
4040 /* ... fall through ... */
4045 if (op1
== const0_rtx
)
4047 if (op0
== const0_rtx
&& ! side_effects_p (op1
))
4052 if (width
<= HOST_BITS_PER_WIDE_INT
&& GET_CODE (op1
) == CONST_INT
4053 && INTVAL (op1
) == (HOST_WIDE_INT
) 1 << (width
-1)
4054 && ! side_effects_p (op0
))
4056 else if (rtx_equal_p (op0
, op1
) && ! side_effects_p (op0
))
4061 if (width
<= HOST_BITS_PER_WIDE_INT
&& GET_CODE (op1
) == CONST_INT
4063 == (unsigned HOST_WIDE_INT
) GET_MODE_MASK (mode
) >> 1)
4064 && ! side_effects_p (op0
))
4066 else if (rtx_equal_p (op0
, op1
) && ! side_effects_p (op0
))
4071 if (op1
== const0_rtx
&& ! side_effects_p (op0
))
4073 else if (rtx_equal_p (op0
, op1
) && ! side_effects_p (op0
))
4078 if (op1
== constm1_rtx
&& ! side_effects_p (op0
))
4080 else if (rtx_equal_p (op0
, op1
) && ! side_effects_p (op0
))
4091 /* Get the integer argument values in two forms:
4092 zero-extended in ARG0, ARG1 and sign-extended in ARG0S, ARG1S. */
4094 arg0
= INTVAL (op0
);
4095 arg1
= INTVAL (op1
);
4097 if (width
< HOST_BITS_PER_WIDE_INT
)
4099 arg0
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
4100 arg1
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
4103 if (arg0s
& ((HOST_WIDE_INT
) 1 << (width
- 1)))
4104 arg0s
|= ((HOST_WIDE_INT
) (-1) << width
);
4107 if (arg1s
& ((HOST_WIDE_INT
) 1 << (width
- 1)))
4108 arg1s
|= ((HOST_WIDE_INT
) (-1) << width
);
4116 /* Compute the value of the arithmetic. */
4121 val
= arg0s
+ arg1s
;
4125 val
= arg0s
- arg1s
;
4129 val
= arg0s
* arg1s
;
4135 val
= arg0s
/ arg1s
;
4141 val
= arg0s
% arg1s
;
4147 val
= (unsigned HOST_WIDE_INT
) arg0
/ arg1
;
4153 val
= (unsigned HOST_WIDE_INT
) arg0
% arg1
;
4169 /* If shift count is undefined, don't fold it; let the machine do
4170 what it wants. But truncate it if the machine will do that. */
4174 #ifdef SHIFT_COUNT_TRUNCATED
4175 if (SHIFT_COUNT_TRUNCATED
)
4179 val
= ((unsigned HOST_WIDE_INT
) arg0
) >> arg1
;
4186 #ifdef SHIFT_COUNT_TRUNCATED
4187 if (SHIFT_COUNT_TRUNCATED
)
4191 val
= ((unsigned HOST_WIDE_INT
) arg0
) << arg1
;
4198 #ifdef SHIFT_COUNT_TRUNCATED
4199 if (SHIFT_COUNT_TRUNCATED
)
4203 val
= arg0s
>> arg1
;
4205 /* Bootstrap compiler may not have sign extended the right shift.
4206 Manually extend the sign to insure bootstrap cc matches gcc. */
4207 if (arg0s
< 0 && arg1
> 0)
4208 val
|= ((HOST_WIDE_INT
) -1) << (HOST_BITS_PER_WIDE_INT
- arg1
);
4217 val
= ((((unsigned HOST_WIDE_INT
) arg0
) << (width
- arg1
))
4218 | (((unsigned HOST_WIDE_INT
) arg0
) >> arg1
));
4226 val
= ((((unsigned HOST_WIDE_INT
) arg0
) << arg1
)
4227 | (((unsigned HOST_WIDE_INT
) arg0
) >> (width
- arg1
)));
4231 /* Do nothing here. */
4235 val
= arg0s
<= arg1s
? arg0s
: arg1s
;
4239 val
= ((unsigned HOST_WIDE_INT
) arg0
4240 <= (unsigned HOST_WIDE_INT
) arg1
? arg0
: arg1
);
4244 val
= arg0s
> arg1s
? arg0s
: arg1s
;
4248 val
= ((unsigned HOST_WIDE_INT
) arg0
4249 > (unsigned HOST_WIDE_INT
) arg1
? arg0
: arg1
);
4256 /* Clear the bits that don't belong in our mode, unless they and our sign
4257 bit are all one. So we get either a reasonable negative value or a
4258 reasonable unsigned value for this mode. */
4259 if (width
< HOST_BITS_PER_WIDE_INT
4260 && ((val
& ((HOST_WIDE_INT
) (-1) << (width
- 1)))
4261 != ((HOST_WIDE_INT
) (-1) << (width
- 1))))
4262 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
4264 /* If this would be an entire word for the target, but is not for
4265 the host, then sign-extend on the host so that the number will look
4266 the same way on the host that it would on the target.
4268 For example, when building a 64 bit alpha hosted 32 bit sparc
4269 targeted compiler, then we want the 32 bit unsigned value -1 to be
4270 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
4271 The later confuses the sparc backend. */
4273 if (BITS_PER_WORD
< HOST_BITS_PER_WIDE_INT
&& BITS_PER_WORD
== width
4274 && (val
& ((HOST_WIDE_INT
) 1 << (width
- 1))))
4275 val
|= ((HOST_WIDE_INT
) (-1) << width
);
4277 return GEN_INT (val
);
4280 /* Simplify a PLUS or MINUS, at least one of whose operands may be another
4283 Rather than test for specific case, we do this by a brute-force method
4284 and do all possible simplifications until no more changes occur. Then
4285 we rebuild the operation. */
4288 simplify_plus_minus (code
, mode
, op0
, op1
)
4290 enum machine_mode mode
;
4296 int n_ops
= 2, input_ops
= 2, input_consts
= 0, n_consts
= 0;
4297 int first
= 1, negate
= 0, changed
;
4300 bzero ((char *) ops
, sizeof ops
);
4302 /* Set up the two operands and then expand them until nothing has been
4303 changed. If we run out of room in our array, give up; this should
4304 almost never happen. */
4306 ops
[0] = op0
, ops
[1] = op1
, negs
[0] = 0, negs
[1] = (code
== MINUS
);
4313 for (i
= 0; i
< n_ops
; i
++)
4314 switch (GET_CODE (ops
[i
]))
4321 ops
[n_ops
] = XEXP (ops
[i
], 1);
4322 negs
[n_ops
++] = GET_CODE (ops
[i
]) == MINUS
? !negs
[i
] : negs
[i
];
4323 ops
[i
] = XEXP (ops
[i
], 0);
4329 ops
[i
] = XEXP (ops
[i
], 0);
4330 negs
[i
] = ! negs
[i
];
4335 ops
[i
] = XEXP (ops
[i
], 0);
4341 /* ~a -> (-a - 1) */
4344 ops
[n_ops
] = constm1_rtx
;
4345 negs
[n_ops
++] = negs
[i
];
4346 ops
[i
] = XEXP (ops
[i
], 0);
4347 negs
[i
] = ! negs
[i
];
4354 ops
[i
] = GEN_INT (- INTVAL (ops
[i
])), negs
[i
] = 0, changed
= 1;
4359 /* If we only have two operands, we can't do anything. */
4363 /* Now simplify each pair of operands until nothing changes. The first
4364 time through just simplify constants against each other. */
4371 for (i
= 0; i
< n_ops
- 1; i
++)
4372 for (j
= i
+ 1; j
< n_ops
; j
++)
4373 if (ops
[i
] != 0 && ops
[j
] != 0
4374 && (! first
|| (CONSTANT_P (ops
[i
]) && CONSTANT_P (ops
[j
]))))
4376 rtx lhs
= ops
[i
], rhs
= ops
[j
];
4377 enum rtx_code ncode
= PLUS
;
4379 if (negs
[i
] && ! negs
[j
])
4380 lhs
= ops
[j
], rhs
= ops
[i
], ncode
= MINUS
;
4381 else if (! negs
[i
] && negs
[j
])
4384 tem
= simplify_binary_operation (ncode
, mode
, lhs
, rhs
);
4387 ops
[i
] = tem
, ops
[j
] = 0;
4388 negs
[i
] = negs
[i
] && negs
[j
];
4389 if (GET_CODE (tem
) == NEG
)
4390 ops
[i
] = XEXP (tem
, 0), negs
[i
] = ! negs
[i
];
4392 if (GET_CODE (ops
[i
]) == CONST_INT
&& negs
[i
])
4393 ops
[i
] = GEN_INT (- INTVAL (ops
[i
])), negs
[i
] = 0;
4401 /* Pack all the operands to the lower-numbered entries and give up if
4402 we didn't reduce the number of operands we had. Make sure we
4403 count a CONST as two operands. If we have the same number of
4404 operands, but have made more CONSTs than we had, this is also
4405 an improvement, so accept it. */
4407 for (i
= 0, j
= 0; j
< n_ops
; j
++)
4410 ops
[i
] = ops
[j
], negs
[i
++] = negs
[j
];
4411 if (GET_CODE (ops
[j
]) == CONST
)
4415 if (i
+ n_consts
> input_ops
4416 || (i
+ n_consts
== input_ops
&& n_consts
<= input_consts
))
4421 /* If we have a CONST_INT, put it last. */
4422 for (i
= 0; i
< n_ops
- 1; i
++)
4423 if (GET_CODE (ops
[i
]) == CONST_INT
)
4425 tem
= ops
[n_ops
- 1], ops
[n_ops
- 1] = ops
[i
] , ops
[i
] = tem
;
4426 j
= negs
[n_ops
- 1], negs
[n_ops
- 1] = negs
[i
], negs
[i
] = j
;
4429 /* Put a non-negated operand first. If there aren't any, make all
4430 operands positive and negate the whole thing later. */
4431 for (i
= 0; i
< n_ops
&& negs
[i
]; i
++)
4436 for (i
= 0; i
< n_ops
; i
++)
4442 tem
= ops
[0], ops
[0] = ops
[i
], ops
[i
] = tem
;
4443 j
= negs
[0], negs
[0] = negs
[i
], negs
[i
] = j
;
4446 /* Now make the result by performing the requested operations. */
4448 for (i
= 1; i
< n_ops
; i
++)
4449 result
= cse_gen_binary (negs
[i
] ? MINUS
: PLUS
, mode
, result
, ops
[i
]);
4451 return negate
? gen_rtx (NEG
, mode
, result
) : result
;
4454 /* Make a binary operation by properly ordering the operands and
4455 seeing if the expression folds. */
4458 cse_gen_binary (code
, mode
, op0
, op1
)
4460 enum machine_mode mode
;
4465 /* Put complex operands first and constants second if commutative. */
4466 if (GET_RTX_CLASS (code
) == 'c'
4467 && ((CONSTANT_P (op0
) && GET_CODE (op1
) != CONST_INT
)
4468 || (GET_RTX_CLASS (GET_CODE (op0
)) == 'o'
4469 && GET_RTX_CLASS (GET_CODE (op1
)) != 'o')
4470 || (GET_CODE (op0
) == SUBREG
4471 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (op0
))) == 'o'
4472 && GET_RTX_CLASS (GET_CODE (op1
)) != 'o')))
4473 tem
= op0
, op0
= op1
, op1
= tem
;
4475 /* If this simplifies, do it. */
4476 tem
= simplify_binary_operation (code
, mode
, op0
, op1
);
4481 /* Handle addition and subtraction of CONST_INT specially. Otherwise,
4482 just form the operation. */
4484 if (code
== PLUS
&& GET_CODE (op1
) == CONST_INT
4485 && GET_MODE (op0
) != VOIDmode
)
4486 return plus_constant (op0
, INTVAL (op1
));
4487 else if (code
== MINUS
&& GET_CODE (op1
) == CONST_INT
4488 && GET_MODE (op0
) != VOIDmode
)
4489 return plus_constant (op0
, - INTVAL (op1
));
4491 return gen_rtx (code
, mode
, op0
, op1
);
4494 /* Like simplify_binary_operation except used for relational operators.
4495 MODE is the mode of the operands, not that of the result. If MODE
4496 is VOIDmode, both operands must also be VOIDmode and we compare the
4497 operands in "infinite precision".
4499 If no simplification is possible, this function returns zero. Otherwise,
4500 it returns either const_true_rtx or const0_rtx. */
4503 simplify_relational_operation (code
, mode
, op0
, op1
)
4505 enum machine_mode mode
;
4508 int equal
, op0lt
, op0ltu
, op1lt
, op1ltu
;
4511 /* If op0 is a compare, extract the comparison arguments from it. */
4512 if (GET_CODE (op0
) == COMPARE
&& op1
== const0_rtx
)
4513 op1
= XEXP (op0
, 1), op0
= XEXP (op0
, 0);
4515 /* We can't simplify MODE_CC values since we don't know what the
4516 actual comparison is. */
4517 if (GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
4524 /* For integer comparisons of A and B maybe we can simplify A - B and can
4525 then simplify a comparison of that with zero. If A and B are both either
4526 a register or a CONST_INT, this can't help; testing for these cases will
4527 prevent infinite recursion here and speed things up.
4529 If CODE is an unsigned comparison, then we can never do this optimization,
4530 because it gives an incorrect result if the subtraction wraps around zero.
4531 ANSI C defines unsigned operations such that they never overflow, and
4532 thus such cases can not be ignored. */
4534 if (INTEGRAL_MODE_P (mode
) && op1
!= const0_rtx
4535 && ! ((GET_CODE (op0
) == REG
|| GET_CODE (op0
) == CONST_INT
)
4536 && (GET_CODE (op1
) == REG
|| GET_CODE (op1
) == CONST_INT
))
4537 && 0 != (tem
= simplify_binary_operation (MINUS
, mode
, op0
, op1
))
4538 && code
!= GTU
&& code
!= GEU
&& code
!= LTU
&& code
!= LEU
)
4539 return simplify_relational_operation (signed_condition (code
),
4540 mode
, tem
, const0_rtx
);
4542 /* For non-IEEE floating-point, if the two operands are equal, we know the
4544 if (rtx_equal_p (op0
, op1
)
4545 && (TARGET_FLOAT_FORMAT
!= IEEE_FLOAT_FORMAT
4546 || ! FLOAT_MODE_P (GET_MODE (op0
)) || flag_fast_math
))
4547 equal
= 1, op0lt
= 0, op0ltu
= 0, op1lt
= 0, op1ltu
= 0;
4549 /* If the operands are floating-point constants, see if we can fold
4551 #if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
4552 else if (GET_CODE (op0
) == CONST_DOUBLE
&& GET_CODE (op1
) == CONST_DOUBLE
4553 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_FLOAT
)
4555 REAL_VALUE_TYPE d0
, d1
;
4558 if (setjmp (handler
))
4561 set_float_handler (handler
);
4562 REAL_VALUE_FROM_CONST_DOUBLE (d0
, op0
);
4563 REAL_VALUE_FROM_CONST_DOUBLE (d1
, op1
);
4564 equal
= REAL_VALUES_EQUAL (d0
, d1
);
4565 op0lt
= op0ltu
= REAL_VALUES_LESS (d0
, d1
);
4566 op1lt
= op1ltu
= REAL_VALUES_LESS (d1
, d0
);
4567 set_float_handler (NULL_PTR
);
4569 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
4571 /* Otherwise, see if the operands are both integers. */
4572 else if ((GET_MODE_CLASS (mode
) == MODE_INT
|| mode
== VOIDmode
)
4573 && (GET_CODE (op0
) == CONST_DOUBLE
|| GET_CODE (op0
) == CONST_INT
)
4574 && (GET_CODE (op1
) == CONST_DOUBLE
|| GET_CODE (op1
) == CONST_INT
))
4576 int width
= GET_MODE_BITSIZE (mode
);
4577 HOST_WIDE_INT l0s
, h0s
, l1s
, h1s
;
4578 unsigned HOST_WIDE_INT l0u
, h0u
, l1u
, h1u
;
4580 /* Get the two words comprising each integer constant. */
4581 if (GET_CODE (op0
) == CONST_DOUBLE
)
4583 l0u
= l0s
= CONST_DOUBLE_LOW (op0
);
4584 h0u
= h0s
= CONST_DOUBLE_HIGH (op0
);
4588 l0u
= l0s
= INTVAL (op0
);
4589 h0u
= 0, h0s
= l0s
< 0 ? -1 : 0;
4592 if (GET_CODE (op1
) == CONST_DOUBLE
)
4594 l1u
= l1s
= CONST_DOUBLE_LOW (op1
);
4595 h1u
= h1s
= CONST_DOUBLE_HIGH (op1
);
4599 l1u
= l1s
= INTVAL (op1
);
4600 h1u
= 0, h1s
= l1s
< 0 ? -1 : 0;
4603 /* If WIDTH is nonzero and smaller than HOST_BITS_PER_WIDE_INT,
4604 we have to sign or zero-extend the values. */
4605 if (width
!= 0 && width
<= HOST_BITS_PER_WIDE_INT
)
4606 h0u
= h1u
= 0, h0s
= l0s
< 0 ? -1 : 0, h1s
= l1s
< 0 ? -1 : 0;
4608 if (width
!= 0 && width
< HOST_BITS_PER_WIDE_INT
)
4610 l0u
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
4611 l1u
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
4613 if (l0s
& ((HOST_WIDE_INT
) 1 << (width
- 1)))
4614 l0s
|= ((HOST_WIDE_INT
) (-1) << width
);
4616 if (l1s
& ((HOST_WIDE_INT
) 1 << (width
- 1)))
4617 l1s
|= ((HOST_WIDE_INT
) (-1) << width
);
4620 equal
= (h0u
== h1u
&& l0u
== l1u
);
4621 op0lt
= (h0s
< h1s
|| (h0s
== h1s
&& l0s
< l1s
));
4622 op1lt
= (h1s
< h0s
|| (h1s
== h0s
&& l1s
< l0s
));
4623 op0ltu
= (h0u
< h1u
|| (h0u
== h1u
&& l0u
< l1u
));
4624 op1ltu
= (h1u
< h0u
|| (h1u
== h0u
&& l1u
< l0u
));
4627 /* Otherwise, there are some code-specific tests we can make. */
4633 /* References to the frame plus a constant or labels cannot
4634 be zero, but a SYMBOL_REF can due to #pragma weak. */
4635 if (((NONZERO_BASE_PLUS_P (op0
) && op1
== const0_rtx
)
4636 || GET_CODE (op0
) == LABEL_REF
)
4637 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4638 /* On some machines, the ap reg can be 0 sometimes. */
4639 && op0
!= arg_pointer_rtx
4646 if (((NONZERO_BASE_PLUS_P (op0
) && op1
== const0_rtx
)
4647 || GET_CODE (op0
) == LABEL_REF
)
4648 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4649 && op0
!= arg_pointer_rtx
4652 return const_true_rtx
;
4656 /* Unsigned values are never negative. */
4657 if (op1
== const0_rtx
)
4658 return const_true_rtx
;
4662 if (op1
== const0_rtx
)
4667 /* Unsigned values are never greater than the largest
4669 if (GET_CODE (op1
) == CONST_INT
4670 && INTVAL (op1
) == GET_MODE_MASK (mode
)
4671 && INTEGRAL_MODE_P (mode
))
4672 return const_true_rtx
;
4676 if (GET_CODE (op1
) == CONST_INT
4677 && INTVAL (op1
) == GET_MODE_MASK (mode
)
4678 && INTEGRAL_MODE_P (mode
))
4686 /* If we reach here, EQUAL, OP0LT, OP0LTU, OP1LT, and OP1LTU are set
4691 return equal
? const_true_rtx
: const0_rtx
;
4693 return ! equal
? const_true_rtx
: const0_rtx
;
4695 return op0lt
? const_true_rtx
: const0_rtx
;
4697 return op1lt
? const_true_rtx
: const0_rtx
;
4699 return op0ltu
? const_true_rtx
: const0_rtx
;
4701 return op1ltu
? const_true_rtx
: const0_rtx
;
4703 return equal
|| op0lt
? const_true_rtx
: const0_rtx
;
4705 return equal
|| op1lt
? const_true_rtx
: const0_rtx
;
4707 return equal
|| op0ltu
? const_true_rtx
: const0_rtx
;
4709 return equal
|| op1ltu
? const_true_rtx
: const0_rtx
;
4715 /* Simplify CODE, an operation with result mode MODE and three operands,
4716 OP0, OP1, and OP2. OP0_MODE was the mode of OP0 before it became
4717 a constant. Return 0 if no simplifications is possible. */
4720 simplify_ternary_operation (code
, mode
, op0_mode
, op0
, op1
, op2
)
4722 enum machine_mode mode
, op0_mode
;
4725 int width
= GET_MODE_BITSIZE (mode
);
4727 /* VOIDmode means "infinite" precision. */
4729 width
= HOST_BITS_PER_WIDE_INT
;
4735 if (GET_CODE (op0
) == CONST_INT
4736 && GET_CODE (op1
) == CONST_INT
4737 && GET_CODE (op2
) == CONST_INT
4738 && INTVAL (op1
) + INTVAL (op2
) <= GET_MODE_BITSIZE (op0_mode
)
4739 && width
<= HOST_BITS_PER_WIDE_INT
)
4741 /* Extracting a bit-field from a constant */
4742 HOST_WIDE_INT val
= INTVAL (op0
);
4744 if (BITS_BIG_ENDIAN
)
4745 val
>>= (GET_MODE_BITSIZE (op0_mode
)
4746 - INTVAL (op2
) - INTVAL (op1
));
4748 val
>>= INTVAL (op2
);
4750 if (HOST_BITS_PER_WIDE_INT
!= INTVAL (op1
))
4752 /* First zero-extend. */
4753 val
&= ((HOST_WIDE_INT
) 1 << INTVAL (op1
)) - 1;
4754 /* If desired, propagate sign bit. */
4755 if (code
== SIGN_EXTRACT
4756 && (val
& ((HOST_WIDE_INT
) 1 << (INTVAL (op1
) - 1))))
4757 val
|= ~ (((HOST_WIDE_INT
) 1 << INTVAL (op1
)) - 1);
4760 /* Clear the bits that don't belong in our mode,
4761 unless they and our sign bit are all one.
4762 So we get either a reasonable negative value or a reasonable
4763 unsigned value for this mode. */
4764 if (width
< HOST_BITS_PER_WIDE_INT
4765 && ((val
& ((HOST_WIDE_INT
) (-1) << (width
- 1)))
4766 != ((HOST_WIDE_INT
) (-1) << (width
- 1))))
4767 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
4769 return GEN_INT (val
);
4774 if (GET_CODE (op0
) == CONST_INT
)
4775 return op0
!= const0_rtx
? op1
: op2
;
4785 /* If X is a nontrivial arithmetic operation on an argument
4786 for which a constant value can be determined, return
4787 the result of operating on that value, as a constant.
4788 Otherwise, return X, possibly with one or more operands
4789 modified by recursive calls to this function.
4791 If X is a register whose contents are known, we do NOT
4792 return those contents here. equiv_constant is called to
4795 INSN is the insn that we may be modifying. If it is 0, make a copy
4796 of X before modifying it. */
4803 register enum rtx_code code
;
4804 register enum machine_mode mode
;
4811 /* Folded equivalents of first two operands of X. */
4815 /* Constant equivalents of first three operands of X;
4816 0 when no such equivalent is known. */
4821 /* The mode of the first operand of X. We need this for sign and zero
4823 enum machine_mode mode_arg0
;
4828 mode
= GET_MODE (x
);
4829 code
= GET_CODE (x
);
4838 /* No use simplifying an EXPR_LIST
4839 since they are used only for lists of args
4840 in a function call's REG_EQUAL note. */
4846 return prev_insn_cc0
;
4850 /* If the next insn is a CODE_LABEL followed by a jump table,
4851 PC's value is a LABEL_REF pointing to that label. That
4852 lets us fold switch statements on the Vax. */
4853 if (insn
&& GET_CODE (insn
) == JUMP_INSN
)
4855 rtx next
= next_nonnote_insn (insn
);
4857 if (next
&& GET_CODE (next
) == CODE_LABEL
4858 && NEXT_INSN (next
) != 0
4859 && GET_CODE (NEXT_INSN (next
)) == JUMP_INSN
4860 && (GET_CODE (PATTERN (NEXT_INSN (next
))) == ADDR_VEC
4861 || GET_CODE (PATTERN (NEXT_INSN (next
))) == ADDR_DIFF_VEC
))
4862 return gen_rtx (LABEL_REF
, Pmode
, next
);
4867 /* See if we previously assigned a constant value to this SUBREG. */
4868 if ((new = lookup_as_function (x
, CONST_INT
)) != 0
4869 || (new = lookup_as_function (x
, CONST_DOUBLE
)) != 0)
4872 /* If this is a paradoxical SUBREG, we have no idea what value the
4873 extra bits would have. However, if the operand is equivalent
4874 to a SUBREG whose operand is the same as our mode, and all the
4875 modes are within a word, we can just use the inner operand
4876 because these SUBREGs just say how to treat the register.
4878 Similarly if we find an integer constant. */
4880 if (GET_MODE_SIZE (mode
) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
4882 enum machine_mode imode
= GET_MODE (SUBREG_REG (x
));
4883 struct table_elt
*elt
;
4885 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
4886 && GET_MODE_SIZE (imode
) <= UNITS_PER_WORD
4887 && (elt
= lookup (SUBREG_REG (x
), HASH (SUBREG_REG (x
), imode
),
4889 for (elt
= elt
->first_same_value
;
4890 elt
; elt
= elt
->next_same_value
)
4892 if (CONSTANT_P (elt
->exp
)
4893 && GET_MODE (elt
->exp
) == VOIDmode
)
4896 if (GET_CODE (elt
->exp
) == SUBREG
4897 && GET_MODE (SUBREG_REG (elt
->exp
)) == mode
4898 && exp_equiv_p (elt
->exp
, elt
->exp
, 1, 0))
4899 return copy_rtx (SUBREG_REG (elt
->exp
));
4905 /* Fold SUBREG_REG. If it changed, see if we can simplify the SUBREG.
4906 We might be able to if the SUBREG is extracting a single word in an
4907 integral mode or extracting the low part. */
4909 folded_arg0
= fold_rtx (SUBREG_REG (x
), insn
);
4910 const_arg0
= equiv_constant (folded_arg0
);
4912 folded_arg0
= const_arg0
;
4914 if (folded_arg0
!= SUBREG_REG (x
))
4918 if (GET_MODE_CLASS (mode
) == MODE_INT
4919 && GET_MODE_SIZE (mode
) == UNITS_PER_WORD
4920 && GET_MODE (SUBREG_REG (x
)) != VOIDmode
)
4921 new = operand_subword (folded_arg0
, SUBREG_WORD (x
), 0,
4922 GET_MODE (SUBREG_REG (x
)));
4923 if (new == 0 && subreg_lowpart_p (x
))
4924 new = gen_lowpart_if_possible (mode
, folded_arg0
);
4929 /* If this is a narrowing SUBREG and our operand is a REG, see if
4930 we can find an equivalence for REG that is an arithmetic operation
4931 in a wider mode where both operands are paradoxical SUBREGs
4932 from objects of our result mode. In that case, we couldn't report
4933 an equivalent value for that operation, since we don't know what the
4934 extra bits will be. But we can find an equivalence for this SUBREG
4935 by folding that operation is the narrow mode. This allows us to
4936 fold arithmetic in narrow modes when the machine only supports
4937 word-sized arithmetic.
4939 Also look for a case where we have a SUBREG whose operand is the
4940 same as our result. If both modes are smaller than a word, we
4941 are simply interpreting a register in different modes and we
4942 can use the inner value. */
4944 if (GET_CODE (folded_arg0
) == REG
4945 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (folded_arg0
))
4946 && subreg_lowpart_p (x
))
4948 struct table_elt
*elt
;
4950 /* We can use HASH here since we know that canon_hash won't be
4952 elt
= lookup (folded_arg0
,
4953 HASH (folded_arg0
, GET_MODE (folded_arg0
)),
4954 GET_MODE (folded_arg0
));
4957 elt
= elt
->first_same_value
;
4959 for (; elt
; elt
= elt
->next_same_value
)
4961 enum rtx_code eltcode
= GET_CODE (elt
->exp
);
4963 /* Just check for unary and binary operations. */
4964 if (GET_RTX_CLASS (GET_CODE (elt
->exp
)) == '1'
4965 && GET_CODE (elt
->exp
) != SIGN_EXTEND
4966 && GET_CODE (elt
->exp
) != ZERO_EXTEND
4967 && GET_CODE (XEXP (elt
->exp
, 0)) == SUBREG
4968 && GET_MODE (SUBREG_REG (XEXP (elt
->exp
, 0))) == mode
)
4970 rtx op0
= SUBREG_REG (XEXP (elt
->exp
, 0));
4972 if (GET_CODE (op0
) != REG
&& ! CONSTANT_P (op0
))
4973 op0
= fold_rtx (op0
, NULL_RTX
);
4975 op0
= equiv_constant (op0
);
4977 new = simplify_unary_operation (GET_CODE (elt
->exp
), mode
,
4980 else if ((GET_RTX_CLASS (GET_CODE (elt
->exp
)) == '2'
4981 || GET_RTX_CLASS (GET_CODE (elt
->exp
)) == 'c')
4982 && eltcode
!= DIV
&& eltcode
!= MOD
4983 && eltcode
!= UDIV
&& eltcode
!= UMOD
4984 && eltcode
!= ASHIFTRT
&& eltcode
!= LSHIFTRT
4985 && eltcode
!= ROTATE
&& eltcode
!= ROTATERT
4986 && ((GET_CODE (XEXP (elt
->exp
, 0)) == SUBREG
4987 && (GET_MODE (SUBREG_REG (XEXP (elt
->exp
, 0)))
4989 || CONSTANT_P (XEXP (elt
->exp
, 0)))
4990 && ((GET_CODE (XEXP (elt
->exp
, 1)) == SUBREG
4991 && (GET_MODE (SUBREG_REG (XEXP (elt
->exp
, 1)))
4993 || CONSTANT_P (XEXP (elt
->exp
, 1))))
4995 rtx op0
= gen_lowpart_common (mode
, XEXP (elt
->exp
, 0));
4996 rtx op1
= gen_lowpart_common (mode
, XEXP (elt
->exp
, 1));
4998 if (op0
&& GET_CODE (op0
) != REG
&& ! CONSTANT_P (op0
))
4999 op0
= fold_rtx (op0
, NULL_RTX
);
5002 op0
= equiv_constant (op0
);
5004 if (op1
&& GET_CODE (op1
) != REG
&& ! CONSTANT_P (op1
))
5005 op1
= fold_rtx (op1
, NULL_RTX
);
5008 op1
= equiv_constant (op1
);
5010 /* If we are looking for the low SImode part of
5011 (ashift:DI c (const_int 32)), it doesn't work
5012 to compute that in SImode, because a 32-bit shift
5013 in SImode is unpredictable. We know the value is 0. */
5015 && GET_CODE (elt
->exp
) == ASHIFT
5016 && GET_CODE (op1
) == CONST_INT
5017 && INTVAL (op1
) >= GET_MODE_BITSIZE (mode
))
5019 if (INTVAL (op1
) < GET_MODE_BITSIZE (GET_MODE (elt
->exp
)))
5021 /* If the count fits in the inner mode's width,
5022 but exceeds the outer mode's width,
5023 the value will get truncated to 0
5027 /* If the count exceeds even the inner mode's width,
5028 don't fold this expression. */
5031 else if (op0
&& op1
)
5032 new = simplify_binary_operation (GET_CODE (elt
->exp
), mode
,
5036 else if (GET_CODE (elt
->exp
) == SUBREG
5037 && GET_MODE (SUBREG_REG (elt
->exp
)) == mode
5038 && (GET_MODE_SIZE (GET_MODE (folded_arg0
))
5040 && exp_equiv_p (elt
->exp
, elt
->exp
, 1, 0))
5041 new = copy_rtx (SUBREG_REG (elt
->exp
));
5052 /* If we have (NOT Y), see if Y is known to be (NOT Z).
5053 If so, (NOT Y) simplifies to Z. Similarly for NEG. */
5054 new = lookup_as_function (XEXP (x
, 0), code
);
5056 return fold_rtx (copy_rtx (XEXP (new, 0)), insn
);
5060 /* If we are not actually processing an insn, don't try to find the
5061 best address. Not only don't we care, but we could modify the
5062 MEM in an invalid way since we have no insn to validate against. */
5064 find_best_addr (insn
, &XEXP (x
, 0));
5067 /* Even if we don't fold in the insn itself,
5068 we can safely do so here, in hopes of getting a constant. */
5069 rtx addr
= fold_rtx (XEXP (x
, 0), NULL_RTX
);
5071 HOST_WIDE_INT offset
= 0;
5073 if (GET_CODE (addr
) == REG
5074 && REGNO_QTY_VALID_P (REGNO (addr
))
5075 && GET_MODE (addr
) == qty_mode
[reg_qty
[REGNO (addr
)]]
5076 && qty_const
[reg_qty
[REGNO (addr
)]] != 0)
5077 addr
= qty_const
[reg_qty
[REGNO (addr
)]];
5079 /* If address is constant, split it into a base and integer offset. */
5080 if (GET_CODE (addr
) == SYMBOL_REF
|| GET_CODE (addr
) == LABEL_REF
)
5082 else if (GET_CODE (addr
) == CONST
&& GET_CODE (XEXP (addr
, 0)) == PLUS
5083 && GET_CODE (XEXP (XEXP (addr
, 0), 1)) == CONST_INT
)
5085 base
= XEXP (XEXP (addr
, 0), 0);
5086 offset
= INTVAL (XEXP (XEXP (addr
, 0), 1));
5088 else if (GET_CODE (addr
) == LO_SUM
5089 && GET_CODE (XEXP (addr
, 1)) == SYMBOL_REF
)
5090 base
= XEXP (addr
, 1);
5092 /* If this is a constant pool reference, we can fold it into its
5093 constant to allow better value tracking. */
5094 if (base
&& GET_CODE (base
) == SYMBOL_REF
5095 && CONSTANT_POOL_ADDRESS_P (base
))
5097 rtx constant
= get_pool_constant (base
);
5098 enum machine_mode const_mode
= get_pool_mode (base
);
5101 if (CONSTANT_P (constant
) && GET_CODE (constant
) != CONST_INT
)
5102 constant_pool_entries_cost
= COST (constant
);
5104 /* If we are loading the full constant, we have an equivalence. */
5105 if (offset
== 0 && mode
== const_mode
)
5108 /* If this actually isn't a constant (weird!), we can't do
5109 anything. Otherwise, handle the two most common cases:
5110 extracting a word from a multi-word constant, and extracting
5111 the low-order bits. Other cases don't seem common enough to
5113 if (! CONSTANT_P (constant
))
5116 if (GET_MODE_CLASS (mode
) == MODE_INT
5117 && GET_MODE_SIZE (mode
) == UNITS_PER_WORD
5118 && offset
% UNITS_PER_WORD
== 0
5119 && (new = operand_subword (constant
,
5120 offset
/ UNITS_PER_WORD
,
5121 0, const_mode
)) != 0)
5124 if (((BYTES_BIG_ENDIAN
5125 && offset
== GET_MODE_SIZE (GET_MODE (constant
)) - 1)
5126 || (! BYTES_BIG_ENDIAN
&& offset
== 0))
5127 && (new = gen_lowpart_if_possible (mode
, constant
)) != 0)
5131 /* If this is a reference to a label at a known position in a jump
5132 table, we also know its value. */
5133 if (base
&& GET_CODE (base
) == LABEL_REF
)
5135 rtx label
= XEXP (base
, 0);
5136 rtx table_insn
= NEXT_INSN (label
);
5138 if (table_insn
&& GET_CODE (table_insn
) == JUMP_INSN
5139 && GET_CODE (PATTERN (table_insn
)) == ADDR_VEC
)
5141 rtx table
= PATTERN (table_insn
);
5144 && (offset
/ GET_MODE_SIZE (GET_MODE (table
))
5145 < XVECLEN (table
, 0)))
5146 return XVECEXP (table
, 0,
5147 offset
/ GET_MODE_SIZE (GET_MODE (table
)));
5149 if (table_insn
&& GET_CODE (table_insn
) == JUMP_INSN
5150 && GET_CODE (PATTERN (table_insn
)) == ADDR_DIFF_VEC
)
5152 rtx table
= PATTERN (table_insn
);
5155 && (offset
/ GET_MODE_SIZE (GET_MODE (table
))
5156 < XVECLEN (table
, 1)))
5158 offset
/= GET_MODE_SIZE (GET_MODE (table
));
5159 new = gen_rtx (MINUS
, Pmode
, XVECEXP (table
, 1, offset
),
5162 if (GET_MODE (table
) != Pmode
)
5163 new = gen_rtx (TRUNCATE
, GET_MODE (table
), new);
5165 /* Indicate this is a constant. This isn't a
5166 valid form of CONST, but it will only be used
5167 to fold the next insns and then discarded, so
5168 it should be safe. */
5169 return gen_rtx (CONST
, GET_MODE (new), new);
5178 for (i
= XVECLEN (x
, 3) - 1; i
>= 0; i
--)
5179 validate_change (insn
, &XVECEXP (x
, 3, i
),
5180 fold_rtx (XVECEXP (x
, 3, i
), insn
), 0);
5187 mode_arg0
= VOIDmode
;
5189 /* Try folding our operands.
5190 Then see which ones have constant values known. */
5192 fmt
= GET_RTX_FORMAT (code
);
5193 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
5196 rtx arg
= XEXP (x
, i
);
5197 rtx folded_arg
= arg
, const_arg
= 0;
5198 enum machine_mode mode_arg
= GET_MODE (arg
);
5199 rtx cheap_arg
, expensive_arg
;
5200 rtx replacements
[2];
5203 /* Most arguments are cheap, so handle them specially. */
5204 switch (GET_CODE (arg
))
5207 /* This is the same as calling equiv_constant; it is duplicated
5209 if (REGNO_QTY_VALID_P (REGNO (arg
))
5210 && qty_const
[reg_qty
[REGNO (arg
)]] != 0
5211 && GET_CODE (qty_const
[reg_qty
[REGNO (arg
)]]) != REG
5212 && GET_CODE (qty_const
[reg_qty
[REGNO (arg
)]]) != PLUS
)
5214 = gen_lowpart_if_possible (GET_MODE (arg
),
5215 qty_const
[reg_qty
[REGNO (arg
)]]);
5228 folded_arg
= prev_insn_cc0
;
5229 mode_arg
= prev_insn_cc0_mode
;
5230 const_arg
= equiv_constant (folded_arg
);
5235 folded_arg
= fold_rtx (arg
, insn
);
5236 const_arg
= equiv_constant (folded_arg
);
5239 /* For the first three operands, see if the operand
5240 is constant or equivalent to a constant. */
5244 folded_arg0
= folded_arg
;
5245 const_arg0
= const_arg
;
5246 mode_arg0
= mode_arg
;
5249 folded_arg1
= folded_arg
;
5250 const_arg1
= const_arg
;
5253 const_arg2
= const_arg
;
5257 /* Pick the least expensive of the folded argument and an
5258 equivalent constant argument. */
5259 if (const_arg
== 0 || const_arg
== folded_arg
5260 || COST (const_arg
) > COST (folded_arg
))
5261 cheap_arg
= folded_arg
, expensive_arg
= const_arg
;
5263 cheap_arg
= const_arg
, expensive_arg
= folded_arg
;
5265 /* Try to replace the operand with the cheapest of the two
5266 possibilities. If it doesn't work and this is either of the first
5267 two operands of a commutative operation, try swapping them.
5268 If THAT fails, try the more expensive, provided it is cheaper
5269 than what is already there. */
5271 if (cheap_arg
== XEXP (x
, i
))
5274 if (insn
== 0 && ! copied
)
5280 replacements
[0] = cheap_arg
, replacements
[1] = expensive_arg
;
5282 j
< 2 && replacements
[j
]
5283 && COST (replacements
[j
]) < COST (XEXP (x
, i
));
5286 if (validate_change (insn
, &XEXP (x
, i
), replacements
[j
], 0))
5289 if (code
== NE
|| code
== EQ
|| GET_RTX_CLASS (code
) == 'c')
5291 validate_change (insn
, &XEXP (x
, i
), XEXP (x
, 1 - i
), 1);
5292 validate_change (insn
, &XEXP (x
, 1 - i
), replacements
[j
], 1);
5294 if (apply_change_group ())
5296 /* Swap them back to be invalid so that this loop can
5297 continue and flag them to be swapped back later. */
5300 tem
= XEXP (x
, 0); XEXP (x
, 0) = XEXP (x
, 1);
5309 else if (fmt
[i
] == 'E')
5310 /* Don't try to fold inside of a vector of expressions.
5311 Doing nothing is harmless. */
5314 /* If a commutative operation, place a constant integer as the second
5315 operand unless the first operand is also a constant integer. Otherwise,
5316 place any constant second unless the first operand is also a constant. */
5318 if (code
== EQ
|| code
== NE
|| GET_RTX_CLASS (code
) == 'c')
5320 if (must_swap
|| (const_arg0
5322 || (GET_CODE (const_arg0
) == CONST_INT
5323 && GET_CODE (const_arg1
) != CONST_INT
))))
5325 register rtx tem
= XEXP (x
, 0);
5327 if (insn
== 0 && ! copied
)
5333 validate_change (insn
, &XEXP (x
, 0), XEXP (x
, 1), 1);
5334 validate_change (insn
, &XEXP (x
, 1), tem
, 1);
5335 if (apply_change_group ())
5337 tem
= const_arg0
, const_arg0
= const_arg1
, const_arg1
= tem
;
5338 tem
= folded_arg0
, folded_arg0
= folded_arg1
, folded_arg1
= tem
;
5343 /* If X is an arithmetic operation, see if we can simplify it. */
5345 switch (GET_RTX_CLASS (code
))
5351 /* We can't simplify extension ops unless we know the
5353 if ((code
== ZERO_EXTEND
|| code
== SIGN_EXTEND
)
5354 && mode_arg0
== VOIDmode
)
5357 /* If we had a CONST, strip it off and put it back later if we
5359 if (const_arg0
!= 0 && GET_CODE (const_arg0
) == CONST
)
5360 is_const
= 1, const_arg0
= XEXP (const_arg0
, 0);
5362 new = simplify_unary_operation (code
, mode
,
5363 const_arg0
? const_arg0
: folded_arg0
,
5365 if (new != 0 && is_const
)
5366 new = gen_rtx (CONST
, mode
, new);
5371 /* See what items are actually being compared and set FOLDED_ARG[01]
5372 to those values and CODE to the actual comparison code. If any are
5373 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
5374 do anything if both operands are already known to be constant. */
5376 if (const_arg0
== 0 || const_arg1
== 0)
5378 struct table_elt
*p0
, *p1
;
5379 rtx
true = const_true_rtx
, false = const0_rtx
;
5380 enum machine_mode mode_arg1
;
5382 #ifdef FLOAT_STORE_FLAG_VALUE
5383 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5385 true = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE
,
5387 false = CONST0_RTX (mode
);
5391 code
= find_comparison_args (code
, &folded_arg0
, &folded_arg1
,
5392 &mode_arg0
, &mode_arg1
);
5393 const_arg0
= equiv_constant (folded_arg0
);
5394 const_arg1
= equiv_constant (folded_arg1
);
5396 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
5397 what kinds of things are being compared, so we can't do
5398 anything with this comparison. */
5400 if (mode_arg0
== VOIDmode
|| GET_MODE_CLASS (mode_arg0
) == MODE_CC
)
5403 /* If we do not now have two constants being compared, see
5404 if we can nevertheless deduce some things about the
5406 if (const_arg0
== 0 || const_arg1
== 0)
5408 /* Is FOLDED_ARG0 frame-pointer plus a constant? Or
5409 non-explicit constant? These aren't zero, but we
5410 don't know their sign. */
5411 if (const_arg1
== const0_rtx
5412 && (NONZERO_BASE_PLUS_P (folded_arg0
)
5413 #if 0 /* Sad to say, on sysvr4, #pragma weak can make a symbol address
5415 || GET_CODE (folded_arg0
) == SYMBOL_REF
5417 || GET_CODE (folded_arg0
) == LABEL_REF
5418 || GET_CODE (folded_arg0
) == CONST
))
5422 else if (code
== NE
)
5426 /* See if the two operands are the same. We don't do this
5427 for IEEE floating-point since we can't assume x == x
5428 since x might be a NaN. */
5430 if ((TARGET_FLOAT_FORMAT
!= IEEE_FLOAT_FORMAT
5431 || ! FLOAT_MODE_P (mode_arg0
) || flag_fast_math
)
5432 && (folded_arg0
== folded_arg1
5433 || (GET_CODE (folded_arg0
) == REG
5434 && GET_CODE (folded_arg1
) == REG
5435 && (reg_qty
[REGNO (folded_arg0
)]
5436 == reg_qty
[REGNO (folded_arg1
)]))
5437 || ((p0
= lookup (folded_arg0
,
5438 (safe_hash (folded_arg0
, mode_arg0
)
5439 % NBUCKETS
), mode_arg0
))
5440 && (p1
= lookup (folded_arg1
,
5441 (safe_hash (folded_arg1
, mode_arg0
)
5442 % NBUCKETS
), mode_arg0
))
5443 && p0
->first_same_value
== p1
->first_same_value
)))
5444 return ((code
== EQ
|| code
== LE
|| code
== GE
5445 || code
== LEU
|| code
== GEU
)
5448 /* If FOLDED_ARG0 is a register, see if the comparison we are
5449 doing now is either the same as we did before or the reverse
5450 (we only check the reverse if not floating-point). */
5451 else if (GET_CODE (folded_arg0
) == REG
)
5453 int qty
= reg_qty
[REGNO (folded_arg0
)];
5455 if (REGNO_QTY_VALID_P (REGNO (folded_arg0
))
5456 && (comparison_dominates_p (qty_comparison_code
[qty
], code
)
5457 || (comparison_dominates_p (qty_comparison_code
[qty
],
5458 reverse_condition (code
))
5459 && ! FLOAT_MODE_P (mode_arg0
)))
5460 && (rtx_equal_p (qty_comparison_const
[qty
], folded_arg1
)
5462 && rtx_equal_p (qty_comparison_const
[qty
],
5464 || (GET_CODE (folded_arg1
) == REG
5465 && (reg_qty
[REGNO (folded_arg1
)]
5466 == qty_comparison_qty
[qty
]))))
5467 return (comparison_dominates_p (qty_comparison_code
[qty
],
5474 /* If we are comparing against zero, see if the first operand is
5475 equivalent to an IOR with a constant. If so, we may be able to
5476 determine the result of this comparison. */
5478 if (const_arg1
== const0_rtx
)
5480 rtx y
= lookup_as_function (folded_arg0
, IOR
);
5484 && (inner_const
= equiv_constant (XEXP (y
, 1))) != 0
5485 && GET_CODE (inner_const
) == CONST_INT
5486 && INTVAL (inner_const
) != 0)
5488 int sign_bitnum
= GET_MODE_BITSIZE (mode_arg0
) - 1;
5489 int has_sign
= (HOST_BITS_PER_WIDE_INT
>= sign_bitnum
5490 && (INTVAL (inner_const
)
5491 & ((HOST_WIDE_INT
) 1 << sign_bitnum
)));
5492 rtx
true = const_true_rtx
, false = const0_rtx
;
5494 #ifdef FLOAT_STORE_FLAG_VALUE
5495 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5497 true = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE
,
5499 false = CONST0_RTX (mode
);
5521 new = simplify_relational_operation (code
, mode_arg0
,
5522 const_arg0
? const_arg0
: folded_arg0
,
5523 const_arg1
? const_arg1
: folded_arg1
);
5524 #ifdef FLOAT_STORE_FLAG_VALUE
5525 if (new != 0 && GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5526 new = ((new == const0_rtx
) ? CONST0_RTX (mode
)
5527 : CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE
, mode
));
5536 /* If the second operand is a LABEL_REF, see if the first is a MINUS
5537 with that LABEL_REF as its second operand. If so, the result is
5538 the first operand of that MINUS. This handles switches with an
5539 ADDR_DIFF_VEC table. */
5540 if (const_arg1
&& GET_CODE (const_arg1
) == LABEL_REF
)
5543 = GET_CODE (folded_arg0
) == MINUS
? folded_arg0
5544 : lookup_as_function (folded_arg0
, MINUS
);
5546 if (y
!= 0 && GET_CODE (XEXP (y
, 1)) == LABEL_REF
5547 && XEXP (XEXP (y
, 1), 0) == XEXP (const_arg1
, 0))
5550 /* Now try for a CONST of a MINUS like the above. */
5551 if ((y
= (GET_CODE (folded_arg0
) == CONST
? folded_arg0
5552 : lookup_as_function (folded_arg0
, CONST
))) != 0
5553 && GET_CODE (XEXP (y
, 0)) == MINUS
5554 && GET_CODE (XEXP (XEXP (y
, 0), 1)) == LABEL_REF
5555 && XEXP (XEXP (XEXP (y
, 0),1), 0) == XEXP (const_arg1
, 0))
5556 return XEXP (XEXP (y
, 0), 0);
5559 /* Likewise if the operands are in the other order. */
5560 if (const_arg0
&& GET_CODE (const_arg0
) == LABEL_REF
)
5563 = GET_CODE (folded_arg1
) == MINUS
? folded_arg1
5564 : lookup_as_function (folded_arg1
, MINUS
);
5566 if (y
!= 0 && GET_CODE (XEXP (y
, 1)) == LABEL_REF
5567 && XEXP (XEXP (y
, 1), 0) == XEXP (const_arg0
, 0))
5570 /* Now try for a CONST of a MINUS like the above. */
5571 if ((y
= (GET_CODE (folded_arg1
) == CONST
? folded_arg1
5572 : lookup_as_function (folded_arg1
, CONST
))) != 0
5573 && GET_CODE (XEXP (y
, 0)) == MINUS
5574 && GET_CODE (XEXP (XEXP (y
, 0), 1)) == LABEL_REF
5575 && XEXP (XEXP (XEXP (y
, 0),1), 0) == XEXP (const_arg0
, 0))
5576 return XEXP (XEXP (y
, 0), 0);
5579 /* If second operand is a register equivalent to a negative
5580 CONST_INT, see if we can find a register equivalent to the
5581 positive constant. Make a MINUS if so. Don't do this for
5582 a negative constant since we might then alternate between
5583 chosing positive and negative constants. Having the positive
5584 constant previously-used is the more common case. */
5585 if (const_arg1
&& GET_CODE (const_arg1
) == CONST_INT
5586 && INTVAL (const_arg1
) < 0 && GET_CODE (folded_arg1
) == REG
)
5588 rtx new_const
= GEN_INT (- INTVAL (const_arg1
));
5590 = lookup (new_const
, safe_hash (new_const
, mode
) % NBUCKETS
,
5594 for (p
= p
->first_same_value
; p
; p
= p
->next_same_value
)
5595 if (GET_CODE (p
->exp
) == REG
)
5596 return cse_gen_binary (MINUS
, mode
, folded_arg0
,
5597 canon_reg (p
->exp
, NULL_RTX
));
5602 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
5603 If so, produce (PLUS Z C2-C). */
5604 if (const_arg1
!= 0 && GET_CODE (const_arg1
) == CONST_INT
)
5606 rtx y
= lookup_as_function (XEXP (x
, 0), PLUS
);
5607 if (y
&& GET_CODE (XEXP (y
, 1)) == CONST_INT
)
5608 return fold_rtx (plus_constant (copy_rtx (y
),
5609 -INTVAL (const_arg1
)),
5613 /* ... fall through ... */
5616 case SMIN
: case SMAX
: case UMIN
: case UMAX
:
5617 case IOR
: case AND
: case XOR
:
5618 case MULT
: case DIV
: case UDIV
:
5619 case ASHIFT
: case LSHIFTRT
: case ASHIFTRT
:
5620 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
5621 is known to be of similar form, we may be able to replace the
5622 operation with a combined operation. This may eliminate the
5623 intermediate operation if every use is simplified in this way.
5624 Note that the similar optimization done by combine.c only works
5625 if the intermediate operation's result has only one reference. */
5627 if (GET_CODE (folded_arg0
) == REG
5628 && const_arg1
&& GET_CODE (const_arg1
) == CONST_INT
)
5631 = (code
== ASHIFT
|| code
== ASHIFTRT
|| code
== LSHIFTRT
);
5632 rtx y
= lookup_as_function (folded_arg0
, code
);
5634 enum rtx_code associate_code
;
5638 || 0 == (inner_const
5639 = equiv_constant (fold_rtx (XEXP (y
, 1), 0)))
5640 || GET_CODE (inner_const
) != CONST_INT
5641 /* If we have compiled a statement like
5642 "if (x == (x & mask1))", and now are looking at
5643 "x & mask2", we will have a case where the first operand
5644 of Y is the same as our first operand. Unless we detect
5645 this case, an infinite loop will result. */
5646 || XEXP (y
, 0) == folded_arg0
)
5649 /* Don't associate these operations if they are a PLUS with the
5650 same constant and it is a power of two. These might be doable
5651 with a pre- or post-increment. Similarly for two subtracts of
5652 identical powers of two with post decrement. */
5654 if (code
== PLUS
&& INTVAL (const_arg1
) == INTVAL (inner_const
)
5656 #if defined(HAVE_PRE_INCREMENT) || defined(HAVE_POST_INCREMENT)
5657 || exact_log2 (INTVAL (const_arg1
)) >= 0
5659 #if defined(HAVE_PRE_DECREMENT) || defined(HAVE_POST_DECREMENT)
5660 || exact_log2 (- INTVAL (const_arg1
)) >= 0
5665 /* Compute the code used to compose the constants. For example,
5666 A/C1/C2 is A/(C1 * C2), so if CODE == DIV, we want MULT. */
5669 = (code
== MULT
|| code
== DIV
|| code
== UDIV
? MULT
5670 : is_shift
|| code
== PLUS
|| code
== MINUS
? PLUS
: code
);
5672 new_const
= simplify_binary_operation (associate_code
, mode
,
5673 const_arg1
, inner_const
);
5678 /* If we are associating shift operations, don't let this
5679 produce a shift of the size of the object or larger.
5680 This could occur when we follow a sign-extend by a right
5681 shift on a machine that does a sign-extend as a pair
5684 if (is_shift
&& GET_CODE (new_const
) == CONST_INT
5685 && INTVAL (new_const
) >= GET_MODE_BITSIZE (mode
))
5687 /* As an exception, we can turn an ASHIFTRT of this
5688 form into a shift of the number of bits - 1. */
5689 if (code
== ASHIFTRT
)
5690 new_const
= GEN_INT (GET_MODE_BITSIZE (mode
) - 1);
5695 y
= copy_rtx (XEXP (y
, 0));
5697 /* If Y contains our first operand (the most common way this
5698 can happen is if Y is a MEM), we would do into an infinite
5699 loop if we tried to fold it. So don't in that case. */
5701 if (! reg_mentioned_p (folded_arg0
, y
))
5702 y
= fold_rtx (y
, insn
);
5704 return cse_gen_binary (code
, mode
, y
, new_const
);
5708 new = simplify_binary_operation (code
, mode
,
5709 const_arg0
? const_arg0
: folded_arg0
,
5710 const_arg1
? const_arg1
: folded_arg1
);
5714 /* (lo_sum (high X) X) is simply X. */
5715 if (code
== LO_SUM
&& const_arg0
!= 0
5716 && GET_CODE (const_arg0
) == HIGH
5717 && rtx_equal_p (XEXP (const_arg0
, 0), const_arg1
))
5723 new = simplify_ternary_operation (code
, mode
, mode_arg0
,
5724 const_arg0
? const_arg0
: folded_arg0
,
5725 const_arg1
? const_arg1
: folded_arg1
,
5726 const_arg2
? const_arg2
: XEXP (x
, 2));
5730 return new ? new : x
;
5733 /* Return a constant value currently equivalent to X.
5734 Return 0 if we don't know one. */
5740 if (GET_CODE (x
) == REG
5741 && REGNO_QTY_VALID_P (REGNO (x
))
5742 && qty_const
[reg_qty
[REGNO (x
)]])
5743 x
= gen_lowpart_if_possible (GET_MODE (x
), qty_const
[reg_qty
[REGNO (x
)]]);
5745 if (x
!= 0 && CONSTANT_P (x
))
5748 /* If X is a MEM, try to fold it outside the context of any insn to see if
5749 it might be equivalent to a constant. That handles the case where it
5750 is a constant-pool reference. Then try to look it up in the hash table
5751 in case it is something whose value we have seen before. */
5753 if (GET_CODE (x
) == MEM
)
5755 struct table_elt
*elt
;
5757 x
= fold_rtx (x
, NULL_RTX
);
5761 elt
= lookup (x
, safe_hash (x
, GET_MODE (x
)) % NBUCKETS
, GET_MODE (x
));
5765 for (elt
= elt
->first_same_value
; elt
; elt
= elt
->next_same_value
)
5766 if (elt
->is_const
&& CONSTANT_P (elt
->exp
))
5773 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a fixed-point
5774 number, return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
5775 least-significant part of X.
5776 MODE specifies how big a part of X to return.
5778 If the requested operation cannot be done, 0 is returned.
5780 This is similar to gen_lowpart in emit-rtl.c. */
5783 gen_lowpart_if_possible (mode
, x
)
5784 enum machine_mode mode
;
5787 rtx result
= gen_lowpart_common (mode
, x
);
5791 else if (GET_CODE (x
) == MEM
)
5793 /* This is the only other case we handle. */
5794 register int offset
= 0;
5797 if (WORDS_BIG_ENDIAN
)
5798 offset
= (MAX (GET_MODE_SIZE (GET_MODE (x
)), UNITS_PER_WORD
)
5799 - MAX (GET_MODE_SIZE (mode
), UNITS_PER_WORD
));
5800 if (BYTES_BIG_ENDIAN
)
5801 /* Adjust the address so that the address-after-the-data is
5803 offset
-= (MIN (UNITS_PER_WORD
, GET_MODE_SIZE (mode
))
5804 - MIN (UNITS_PER_WORD
, GET_MODE_SIZE (GET_MODE (x
))));
5805 new = gen_rtx (MEM
, mode
, plus_constant (XEXP (x
, 0), offset
));
5806 if (! memory_address_p (mode
, XEXP (new, 0)))
5808 MEM_VOLATILE_P (new) = MEM_VOLATILE_P (x
);
5809 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x
);
5810 MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (x
);
5817 /* Given INSN, a jump insn, TAKEN indicates if we are following the "taken"
5818 branch. It will be zero if not.
5820 In certain cases, this can cause us to add an equivalence. For example,
5821 if we are following the taken case of
5823 we can add the fact that `i' and '2' are now equivalent.
5825 In any case, we can record that this comparison was passed. If the same
5826 comparison is seen later, we will know its value. */
5829 record_jump_equiv (insn
, taken
)
5833 int cond_known_true
;
5835 enum machine_mode mode
, mode0
, mode1
;
5836 int reversed_nonequality
= 0;
5839 /* Ensure this is the right kind of insn. */
5840 if (! condjump_p (insn
) || simplejump_p (insn
))
5843 /* See if this jump condition is known true or false. */
5845 cond_known_true
= (XEXP (SET_SRC (PATTERN (insn
)), 2) == pc_rtx
);
5847 cond_known_true
= (XEXP (SET_SRC (PATTERN (insn
)), 1) == pc_rtx
);
5849 /* Get the type of comparison being done and the operands being compared.
5850 If we had to reverse a non-equality condition, record that fact so we
5851 know that it isn't valid for floating-point. */
5852 code
= GET_CODE (XEXP (SET_SRC (PATTERN (insn
)), 0));
5853 op0
= fold_rtx (XEXP (XEXP (SET_SRC (PATTERN (insn
)), 0), 0), insn
);
5854 op1
= fold_rtx (XEXP (XEXP (SET_SRC (PATTERN (insn
)), 0), 1), insn
);
5856 code
= find_comparison_args (code
, &op0
, &op1
, &mode0
, &mode1
);
5857 if (! cond_known_true
)
5859 reversed_nonequality
= (code
!= EQ
&& code
!= NE
);
5860 code
= reverse_condition (code
);
5863 /* The mode is the mode of the non-constant. */
5865 if (mode1
!= VOIDmode
)
5868 record_jump_cond (code
, mode
, op0
, op1
, reversed_nonequality
);
5871 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
5872 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
5873 Make any useful entries we can with that information. Called from
5874 above function and called recursively. */
5877 record_jump_cond (code
, mode
, op0
, op1
, reversed_nonequality
)
5879 enum machine_mode mode
;
5881 int reversed_nonequality
;
5883 unsigned op0_hash
, op1_hash
;
5884 int op0_in_memory
, op0_in_struct
, op1_in_memory
, op1_in_struct
;
5885 struct table_elt
*op0_elt
, *op1_elt
;
5887 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
5888 we know that they are also equal in the smaller mode (this is also
5889 true for all smaller modes whether or not there is a SUBREG, but
5890 is not worth testing for with no SUBREG. */
5892 /* Note that GET_MODE (op0) may not equal MODE. */
5893 if (code
== EQ
&& GET_CODE (op0
) == SUBREG
5894 && (GET_MODE_SIZE (GET_MODE (op0
))
5895 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0
)))))
5897 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (op0
));
5898 rtx tem
= gen_lowpart_if_possible (inner_mode
, op1
);
5900 record_jump_cond (code
, mode
, SUBREG_REG (op0
),
5901 tem
? tem
: gen_rtx (SUBREG
, inner_mode
, op1
, 0),
5902 reversed_nonequality
);
5905 if (code
== EQ
&& GET_CODE (op1
) == SUBREG
5906 && (GET_MODE_SIZE (GET_MODE (op1
))
5907 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1
)))))
5909 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (op1
));
5910 rtx tem
= gen_lowpart_if_possible (inner_mode
, op0
);
5912 record_jump_cond (code
, mode
, SUBREG_REG (op1
),
5913 tem
? tem
: gen_rtx (SUBREG
, inner_mode
, op0
, 0),
5914 reversed_nonequality
);
5917 /* Similarly, if this is an NE comparison, and either is a SUBREG
5918 making a smaller mode, we know the whole thing is also NE. */
5920 /* Note that GET_MODE (op0) may not equal MODE;
5921 if we test MODE instead, we can get an infinite recursion
5922 alternating between two modes each wider than MODE. */
5924 if (code
== NE
&& GET_CODE (op0
) == SUBREG
5925 && subreg_lowpart_p (op0
)
5926 && (GET_MODE_SIZE (GET_MODE (op0
))
5927 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0
)))))
5929 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (op0
));
5930 rtx tem
= gen_lowpart_if_possible (inner_mode
, op1
);
5932 record_jump_cond (code
, mode
, SUBREG_REG (op0
),
5933 tem
? tem
: gen_rtx (SUBREG
, inner_mode
, op1
, 0),
5934 reversed_nonequality
);
5937 if (code
== NE
&& GET_CODE (op1
) == SUBREG
5938 && subreg_lowpart_p (op1
)
5939 && (GET_MODE_SIZE (GET_MODE (op1
))
5940 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1
)))))
5942 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (op1
));
5943 rtx tem
= gen_lowpart_if_possible (inner_mode
, op0
);
5945 record_jump_cond (code
, mode
, SUBREG_REG (op1
),
5946 tem
? tem
: gen_rtx (SUBREG
, inner_mode
, op0
, 0),
5947 reversed_nonequality
);
5950 /* Hash both operands. */
5953 hash_arg_in_memory
= 0;
5954 hash_arg_in_struct
= 0;
5955 op0_hash
= HASH (op0
, mode
);
5956 op0_in_memory
= hash_arg_in_memory
;
5957 op0_in_struct
= hash_arg_in_struct
;
5963 hash_arg_in_memory
= 0;
5964 hash_arg_in_struct
= 0;
5965 op1_hash
= HASH (op1
, mode
);
5966 op1_in_memory
= hash_arg_in_memory
;
5967 op1_in_struct
= hash_arg_in_struct
;
5972 /* Look up both operands. */
5973 op0_elt
= lookup (op0
, op0_hash
, mode
);
5974 op1_elt
= lookup (op1
, op1_hash
, mode
);
5976 /* If both operands are already equivalent or if they are not in the
5977 table but are identical, do nothing. */
5978 if ((op0_elt
!= 0 && op1_elt
!= 0
5979 && op0_elt
->first_same_value
== op1_elt
->first_same_value
)
5980 || op0
== op1
|| rtx_equal_p (op0
, op1
))
5983 /* If we aren't setting two things equal all we can do is save this
5984 comparison. Similarly if this is floating-point. In the latter
5985 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
5986 If we record the equality, we might inadvertently delete code
5987 whose intent was to change -0 to +0. */
5989 if (code
!= EQ
|| FLOAT_MODE_P (GET_MODE (op0
)))
5991 /* If we reversed a floating-point comparison, if OP0 is not a
5992 register, or if OP1 is neither a register or constant, we can't
5995 if (GET_CODE (op1
) != REG
)
5996 op1
= equiv_constant (op1
);
5998 if ((reversed_nonequality
&& FLOAT_MODE_P (mode
))
5999 || GET_CODE (op0
) != REG
|| op1
== 0)
6002 /* Put OP0 in the hash table if it isn't already. This gives it a
6003 new quantity number. */
6006 if (insert_regs (op0
, NULL_PTR
, 0))
6008 rehash_using_reg (op0
);
6009 op0_hash
= HASH (op0
, mode
);
6011 /* If OP0 is contained in OP1, this changes its hash code
6012 as well. Faster to rehash than to check, except
6013 for the simple case of a constant. */
6014 if (! CONSTANT_P (op1
))
6015 op1_hash
= HASH (op1
,mode
);
6018 op0_elt
= insert (op0
, NULL_PTR
, op0_hash
, mode
);
6019 op0_elt
->in_memory
= op0_in_memory
;
6020 op0_elt
->in_struct
= op0_in_struct
;
6023 qty_comparison_code
[reg_qty
[REGNO (op0
)]] = code
;
6024 if (GET_CODE (op1
) == REG
)
6026 /* Look it up again--in case op0 and op1 are the same. */
6027 op1_elt
= lookup (op1
, op1_hash
, mode
);
6029 /* Put OP1 in the hash table so it gets a new quantity number. */
6032 if (insert_regs (op1
, NULL_PTR
, 0))
6034 rehash_using_reg (op1
);
6035 op1_hash
= HASH (op1
, mode
);
6038 op1_elt
= insert (op1
, NULL_PTR
, op1_hash
, mode
);
6039 op1_elt
->in_memory
= op1_in_memory
;
6040 op1_elt
->in_struct
= op1_in_struct
;
6043 qty_comparison_qty
[reg_qty
[REGNO (op0
)]] = reg_qty
[REGNO (op1
)];
6044 qty_comparison_const
[reg_qty
[REGNO (op0
)]] = 0;
6048 qty_comparison_qty
[reg_qty
[REGNO (op0
)]] = -1;
6049 qty_comparison_const
[reg_qty
[REGNO (op0
)]] = op1
;
6055 /* If either side is still missing an equivalence, make it now,
6056 then merge the equivalences. */
6060 if (insert_regs (op0
, NULL_PTR
, 0))
6062 rehash_using_reg (op0
);
6063 op0_hash
= HASH (op0
, mode
);
6066 op0_elt
= insert (op0
, NULL_PTR
, op0_hash
, mode
);
6067 op0_elt
->in_memory
= op0_in_memory
;
6068 op0_elt
->in_struct
= op0_in_struct
;
6073 if (insert_regs (op1
, NULL_PTR
, 0))
6075 rehash_using_reg (op1
);
6076 op1_hash
= HASH (op1
, mode
);
6079 op1_elt
= insert (op1
, NULL_PTR
, op1_hash
, mode
);
6080 op1_elt
->in_memory
= op1_in_memory
;
6081 op1_elt
->in_struct
= op1_in_struct
;
6084 merge_equiv_classes (op0_elt
, op1_elt
);
6085 last_jump_equiv_class
= op0_elt
;
6088 /* CSE processing for one instruction.
6089 First simplify sources and addresses of all assignments
6090 in the instruction, using previously-computed equivalents values.
6091 Then install the new sources and destinations in the table
6092 of available values.
6094 If IN_LIBCALL_BLOCK is nonzero, don't record any equivalence made in
6097 /* Data on one SET contained in the instruction. */
6101 /* The SET rtx itself. */
6103 /* The SET_SRC of the rtx (the original value, if it is changing). */
6105 /* The hash-table element for the SET_SRC of the SET. */
6106 struct table_elt
*src_elt
;
6107 /* Hash value for the SET_SRC. */
6109 /* Hash value for the SET_DEST. */
6111 /* The SET_DEST, with SUBREG, etc., stripped. */
6113 /* Place where the pointer to the INNER_DEST was found. */
6114 rtx
*inner_dest_loc
;
6115 /* Nonzero if the SET_SRC is in memory. */
6117 /* Nonzero if the SET_SRC is in a structure. */
6119 /* Nonzero if the SET_SRC contains something
6120 whose value cannot be predicted and understood. */
6122 /* Original machine mode, in case it becomes a CONST_INT. */
6123 enum machine_mode mode
;
6124 /* A constant equivalent for SET_SRC, if any. */
6126 /* Hash value of constant equivalent for SET_SRC. */
6127 unsigned src_const_hash
;
6128 /* Table entry for constant equivalent for SET_SRC, if any. */
6129 struct table_elt
*src_const_elt
;
6133 cse_insn (insn
, in_libcall_block
)
6135 int in_libcall_block
;
6137 register rtx x
= PATTERN (insn
);
6140 register int n_sets
= 0;
6142 /* Records what this insn does to set CC0. */
6143 rtx this_insn_cc0
= 0;
6144 enum machine_mode this_insn_cc0_mode
;
6145 struct write_data writes_memory
;
6146 static struct write_data init
= {0, 0, 0, 0};
6149 struct table_elt
*src_eqv_elt
= 0;
6150 int src_eqv_volatile
;
6151 int src_eqv_in_memory
;
6152 int src_eqv_in_struct
;
6153 unsigned src_eqv_hash
;
6158 writes_memory
= init
;
6160 /* Find all the SETs and CLOBBERs in this instruction.
6161 Record all the SETs in the array `set' and count them.
6162 Also determine whether there is a CLOBBER that invalidates
6163 all memory references, or all references at varying addresses. */
6165 if (GET_CODE (insn
) == CALL_INSN
)
6167 for (tem
= CALL_INSN_FUNCTION_USAGE (insn
); tem
; tem
= XEXP (tem
, 1))
6168 if (GET_CODE (XEXP (tem
, 0)) == CLOBBER
)
6169 invalidate (SET_DEST (XEXP (tem
, 0)), VOIDmode
);
6172 if (GET_CODE (x
) == SET
)
6174 sets
= (struct set
*) alloca (sizeof (struct set
));
6177 /* Ignore SETs that are unconditional jumps.
6178 They never need cse processing, so this does not hurt.
6179 The reason is not efficiency but rather
6180 so that we can test at the end for instructions
6181 that have been simplified to unconditional jumps
6182 and not be misled by unchanged instructions
6183 that were unconditional jumps to begin with. */
6184 if (SET_DEST (x
) == pc_rtx
6185 && GET_CODE (SET_SRC (x
)) == LABEL_REF
)
6188 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
6189 The hard function value register is used only once, to copy to
6190 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
6191 Ensure we invalidate the destination register. On the 80386 no
6192 other code would invalidate it since it is a fixed_reg.
6193 We need not check the return of apply_change_group; see canon_reg. */
6195 else if (GET_CODE (SET_SRC (x
)) == CALL
)
6197 canon_reg (SET_SRC (x
), insn
);
6198 apply_change_group ();
6199 fold_rtx (SET_SRC (x
), insn
);
6200 invalidate (SET_DEST (x
), VOIDmode
);
6205 else if (GET_CODE (x
) == PARALLEL
)
6207 register int lim
= XVECLEN (x
, 0);
6209 sets
= (struct set
*) alloca (lim
* sizeof (struct set
));
6211 /* Find all regs explicitly clobbered in this insn,
6212 and ensure they are not replaced with any other regs
6213 elsewhere in this insn.
6214 When a reg that is clobbered is also used for input,
6215 we should presume that that is for a reason,
6216 and we should not substitute some other register
6217 which is not supposed to be clobbered.
6218 Therefore, this loop cannot be merged into the one below
6219 because a CALL may precede a CLOBBER and refer to the
6220 value clobbered. We must not let a canonicalization do
6221 anything in that case. */
6222 for (i
= 0; i
< lim
; i
++)
6224 register rtx y
= XVECEXP (x
, 0, i
);
6225 if (GET_CODE (y
) == CLOBBER
)
6227 rtx clobbered
= XEXP (y
, 0);
6229 if (GET_CODE (clobbered
) == REG
6230 || GET_CODE (clobbered
) == SUBREG
)
6231 invalidate (clobbered
, VOIDmode
);
6232 else if (GET_CODE (clobbered
) == STRICT_LOW_PART
6233 || GET_CODE (clobbered
) == ZERO_EXTRACT
)
6234 invalidate (XEXP (clobbered
, 0), GET_MODE (clobbered
));
6238 for (i
= 0; i
< lim
; i
++)
6240 register rtx y
= XVECEXP (x
, 0, i
);
6241 if (GET_CODE (y
) == SET
)
6243 /* As above, we ignore unconditional jumps and call-insns and
6244 ignore the result of apply_change_group. */
6245 if (GET_CODE (SET_SRC (y
)) == CALL
)
6247 canon_reg (SET_SRC (y
), insn
);
6248 apply_change_group ();
6249 fold_rtx (SET_SRC (y
), insn
);
6250 invalidate (SET_DEST (y
), VOIDmode
);
6252 else if (SET_DEST (y
) == pc_rtx
6253 && GET_CODE (SET_SRC (y
)) == LABEL_REF
)
6256 sets
[n_sets
++].rtl
= y
;
6258 else if (GET_CODE (y
) == CLOBBER
)
6260 /* If we clobber memory, take note of that,
6261 and canon the address.
6262 This does nothing when a register is clobbered
6263 because we have already invalidated the reg. */
6264 if (GET_CODE (XEXP (y
, 0)) == MEM
)
6266 canon_reg (XEXP (y
, 0), NULL_RTX
);
6267 note_mem_written (XEXP (y
, 0), &writes_memory
);
6270 else if (GET_CODE (y
) == USE
6271 && ! (GET_CODE (XEXP (y
, 0)) == REG
6272 && REGNO (XEXP (y
, 0)) < FIRST_PSEUDO_REGISTER
))
6273 canon_reg (y
, NULL_RTX
);
6274 else if (GET_CODE (y
) == CALL
)
6276 /* The result of apply_change_group can be ignored; see
6278 canon_reg (y
, insn
);
6279 apply_change_group ();
6284 else if (GET_CODE (x
) == CLOBBER
)
6286 if (GET_CODE (XEXP (x
, 0)) == MEM
)
6288 canon_reg (XEXP (x
, 0), NULL_RTX
);
6289 note_mem_written (XEXP (x
, 0), &writes_memory
);
6293 /* Canonicalize a USE of a pseudo register or memory location. */
6294 else if (GET_CODE (x
) == USE
6295 && ! (GET_CODE (XEXP (x
, 0)) == REG
6296 && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
))
6297 canon_reg (XEXP (x
, 0), NULL_RTX
);
6298 else if (GET_CODE (x
) == CALL
)
6300 /* The result of apply_change_group can be ignored; see canon_reg. */
6301 canon_reg (x
, insn
);
6302 apply_change_group ();
6306 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
6307 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
6308 is handled specially for this case, and if it isn't set, then there will
6309 be no equivalence for the destination. */
6310 if (n_sets
== 1 && REG_NOTES (insn
) != 0
6311 && (tem
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
)) != 0
6312 && (! rtx_equal_p (XEXP (tem
, 0), SET_SRC (sets
[0].rtl
))
6313 || GET_CODE (SET_DEST (sets
[0].rtl
)) == STRICT_LOW_PART
))
6314 src_eqv
= canon_reg (XEXP (tem
, 0), NULL_RTX
);
6316 /* Canonicalize sources and addresses of destinations.
6317 We do this in a separate pass to avoid problems when a MATCH_DUP is
6318 present in the insn pattern. In that case, we want to ensure that
6319 we don't break the duplicate nature of the pattern. So we will replace
6320 both operands at the same time. Otherwise, we would fail to find an
6321 equivalent substitution in the loop calling validate_change below.
6323 We used to suppress canonicalization of DEST if it appears in SRC,
6324 but we don't do this any more. */
6326 for (i
= 0; i
< n_sets
; i
++)
6328 rtx dest
= SET_DEST (sets
[i
].rtl
);
6329 rtx src
= SET_SRC (sets
[i
].rtl
);
6330 rtx
new = canon_reg (src
, insn
);
6332 if ((GET_CODE (new) == REG
&& GET_CODE (src
) == REG
6333 && ((REGNO (new) < FIRST_PSEUDO_REGISTER
)
6334 != (REGNO (src
) < FIRST_PSEUDO_REGISTER
)))
6335 || insn_n_dups
[recog_memoized (insn
)] > 0)
6336 validate_change (insn
, &SET_SRC (sets
[i
].rtl
), new, 1);
6338 SET_SRC (sets
[i
].rtl
) = new;
6340 if (GET_CODE (dest
) == ZERO_EXTRACT
|| GET_CODE (dest
) == SIGN_EXTRACT
)
6342 validate_change (insn
, &XEXP (dest
, 1),
6343 canon_reg (XEXP (dest
, 1), insn
), 1);
6344 validate_change (insn
, &XEXP (dest
, 2),
6345 canon_reg (XEXP (dest
, 2), insn
), 1);
6348 while (GET_CODE (dest
) == SUBREG
|| GET_CODE (dest
) == STRICT_LOW_PART
6349 || GET_CODE (dest
) == ZERO_EXTRACT
6350 || GET_CODE (dest
) == SIGN_EXTRACT
)
6351 dest
= XEXP (dest
, 0);
6353 if (GET_CODE (dest
) == MEM
)
6354 canon_reg (dest
, insn
);
6357 /* Now that we have done all the replacements, we can apply the change
6358 group and see if they all work. Note that this will cause some
6359 canonicalizations that would have worked individually not to be applied
6360 because some other canonicalization didn't work, but this should not
6363 The result of apply_change_group can be ignored; see canon_reg. */
6365 apply_change_group ();
6367 /* Set sets[i].src_elt to the class each source belongs to.
6368 Detect assignments from or to volatile things
6369 and set set[i] to zero so they will be ignored
6370 in the rest of this function.
6372 Nothing in this loop changes the hash table or the register chains. */
6374 for (i
= 0; i
< n_sets
; i
++)
6376 register rtx src
, dest
;
6377 register rtx src_folded
;
6378 register struct table_elt
*elt
= 0, *p
;
6379 enum machine_mode mode
;
6382 rtx src_related
= 0;
6383 struct table_elt
*src_const_elt
= 0;
6384 int src_cost
= 10000, src_eqv_cost
= 10000, src_folded_cost
= 10000;
6385 int src_related_cost
= 10000, src_elt_cost
= 10000;
6386 /* Set non-zero if we need to call force_const_mem on with the
6387 contents of src_folded before using it. */
6388 int src_folded_force_flag
= 0;
6390 dest
= SET_DEST (sets
[i
].rtl
);
6391 src
= SET_SRC (sets
[i
].rtl
);
6393 /* If SRC is a constant that has no machine mode,
6394 hash it with the destination's machine mode.
6395 This way we can keep different modes separate. */
6397 mode
= GET_MODE (src
) == VOIDmode
? GET_MODE (dest
) : GET_MODE (src
);
6398 sets
[i
].mode
= mode
;
6402 enum machine_mode eqvmode
= mode
;
6403 if (GET_CODE (dest
) == STRICT_LOW_PART
)
6404 eqvmode
= GET_MODE (SUBREG_REG (XEXP (dest
, 0)));
6406 hash_arg_in_memory
= 0;
6407 hash_arg_in_struct
= 0;
6408 src_eqv
= fold_rtx (src_eqv
, insn
);
6409 src_eqv_hash
= HASH (src_eqv
, eqvmode
);
6411 /* Find the equivalence class for the equivalent expression. */
6414 src_eqv_elt
= lookup (src_eqv
, src_eqv_hash
, eqvmode
);
6416 src_eqv_volatile
= do_not_record
;
6417 src_eqv_in_memory
= hash_arg_in_memory
;
6418 src_eqv_in_struct
= hash_arg_in_struct
;
6421 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
6422 value of the INNER register, not the destination. So it is not
6423 a valid substitution for the source. But save it for later. */
6424 if (GET_CODE (dest
) == STRICT_LOW_PART
)
6427 src_eqv_here
= src_eqv
;
6429 /* Simplify and foldable subexpressions in SRC. Then get the fully-
6430 simplified result, which may not necessarily be valid. */
6431 src_folded
= fold_rtx (src
, insn
);
6434 /* ??? This caused bad code to be generated for the m68k port with -O2.
6435 Suppose src is (CONST_INT -1), and that after truncation src_folded
6436 is (CONST_INT 3). Suppose src_folded is then used for src_const.
6437 At the end we will add src and src_const to the same equivalence
6438 class. We now have 3 and -1 on the same equivalence class. This
6439 causes later instructions to be mis-optimized. */
6440 /* If storing a constant in a bitfield, pre-truncate the constant
6441 so we will be able to record it later. */
6442 if (GET_CODE (SET_DEST (sets
[i
].rtl
)) == ZERO_EXTRACT
6443 || GET_CODE (SET_DEST (sets
[i
].rtl
)) == SIGN_EXTRACT
)
6445 rtx width
= XEXP (SET_DEST (sets
[i
].rtl
), 1);
6447 if (GET_CODE (src
) == CONST_INT
6448 && GET_CODE (width
) == CONST_INT
6449 && INTVAL (width
) < HOST_BITS_PER_WIDE_INT
6450 && (INTVAL (src
) & ((HOST_WIDE_INT
) (-1) << INTVAL (width
))))
6452 = GEN_INT (INTVAL (src
) & (((HOST_WIDE_INT
) 1
6453 << INTVAL (width
)) - 1));
6457 /* Compute SRC's hash code, and also notice if it
6458 should not be recorded at all. In that case,
6459 prevent any further processing of this assignment. */
6461 hash_arg_in_memory
= 0;
6462 hash_arg_in_struct
= 0;
6465 sets
[i
].src_hash
= HASH (src
, mode
);
6466 sets
[i
].src_volatile
= do_not_record
;
6467 sets
[i
].src_in_memory
= hash_arg_in_memory
;
6468 sets
[i
].src_in_struct
= hash_arg_in_struct
;
6471 /* It is no longer clear why we used to do this, but it doesn't
6472 appear to still be needed. So let's try without it since this
6473 code hurts cse'ing widened ops. */
6474 /* If source is a perverse subreg (such as QI treated as an SI),
6475 treat it as volatile. It may do the work of an SI in one context
6476 where the extra bits are not being used, but cannot replace an SI
6478 if (GET_CODE (src
) == SUBREG
6479 && (GET_MODE_SIZE (GET_MODE (src
))
6480 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
)))))
6481 sets
[i
].src_volatile
= 1;
6484 /* Locate all possible equivalent forms for SRC. Try to replace
6485 SRC in the insn with each cheaper equivalent.
6487 We have the following types of equivalents: SRC itself, a folded
6488 version, a value given in a REG_EQUAL note, or a value related
6491 Each of these equivalents may be part of an additional class
6492 of equivalents (if more than one is in the table, they must be in
6493 the same class; we check for this).
6495 If the source is volatile, we don't do any table lookups.
6497 We note any constant equivalent for possible later use in a
6500 if (!sets
[i
].src_volatile
)
6501 elt
= lookup (src
, sets
[i
].src_hash
, mode
);
6503 sets
[i
].src_elt
= elt
;
6505 if (elt
&& src_eqv_here
&& src_eqv_elt
)
6507 if (elt
->first_same_value
!= src_eqv_elt
->first_same_value
)
6509 /* The REG_EQUAL is indicating that two formerly distinct
6510 classes are now equivalent. So merge them. */
6511 merge_equiv_classes (elt
, src_eqv_elt
);
6512 src_eqv_hash
= HASH (src_eqv
, elt
->mode
);
6513 src_eqv_elt
= lookup (src_eqv
, src_eqv_hash
, elt
->mode
);
6519 else if (src_eqv_elt
)
6522 /* Try to find a constant somewhere and record it in `src_const'.
6523 Record its table element, if any, in `src_const_elt'. Look in
6524 any known equivalences first. (If the constant is not in the
6525 table, also set `sets[i].src_const_hash'). */
6527 for (p
= elt
->first_same_value
; p
; p
= p
->next_same_value
)
6531 src_const_elt
= elt
;
6536 && (CONSTANT_P (src_folded
)
6537 /* Consider (minus (label_ref L1) (label_ref L2)) as
6538 "constant" here so we will record it. This allows us
6539 to fold switch statements when an ADDR_DIFF_VEC is used. */
6540 || (GET_CODE (src_folded
) == MINUS
6541 && GET_CODE (XEXP (src_folded
, 0)) == LABEL_REF
6542 && GET_CODE (XEXP (src_folded
, 1)) == LABEL_REF
)))
6543 src_const
= src_folded
, src_const_elt
= elt
;
6544 else if (src_const
== 0 && src_eqv_here
&& CONSTANT_P (src_eqv_here
))
6545 src_const
= src_eqv_here
, src_const_elt
= src_eqv_elt
;
6547 /* If we don't know if the constant is in the table, get its
6548 hash code and look it up. */
6549 if (src_const
&& src_const_elt
== 0)
6551 sets
[i
].src_const_hash
= HASH (src_const
, mode
);
6552 src_const_elt
= lookup (src_const
, sets
[i
].src_const_hash
, mode
);
6555 sets
[i
].src_const
= src_const
;
6556 sets
[i
].src_const_elt
= src_const_elt
;
6558 /* If the constant and our source are both in the table, mark them as
6559 equivalent. Otherwise, if a constant is in the table but the source
6560 isn't, set ELT to it. */
6561 if (src_const_elt
&& elt
6562 && src_const_elt
->first_same_value
!= elt
->first_same_value
)
6563 merge_equiv_classes (elt
, src_const_elt
);
6564 else if (src_const_elt
&& elt
== 0)
6565 elt
= src_const_elt
;
6567 /* See if there is a register linearly related to a constant
6568 equivalent of SRC. */
6570 && (GET_CODE (src_const
) == CONST
6571 || (src_const_elt
&& src_const_elt
->related_value
!= 0)))
6573 src_related
= use_related_value (src_const
, src_const_elt
);
6576 struct table_elt
*src_related_elt
6577 = lookup (src_related
, HASH (src_related
, mode
), mode
);
6578 if (src_related_elt
&& elt
)
6580 if (elt
->first_same_value
6581 != src_related_elt
->first_same_value
)
6582 /* This can occur when we previously saw a CONST
6583 involving a SYMBOL_REF and then see the SYMBOL_REF
6584 twice. Merge the involved classes. */
6585 merge_equiv_classes (elt
, src_related_elt
);
6588 src_related_elt
= 0;
6590 else if (src_related_elt
&& elt
== 0)
6591 elt
= src_related_elt
;
6595 /* See if we have a CONST_INT that is already in a register in a
6598 if (src_const
&& src_related
== 0 && GET_CODE (src_const
) == CONST_INT
6599 && GET_MODE_CLASS (mode
) == MODE_INT
6600 && GET_MODE_BITSIZE (mode
) < BITS_PER_WORD
)
6602 enum machine_mode wider_mode
;
6604 for (wider_mode
= GET_MODE_WIDER_MODE (mode
);
6605 GET_MODE_BITSIZE (wider_mode
) <= BITS_PER_WORD
6606 && src_related
== 0;
6607 wider_mode
= GET_MODE_WIDER_MODE (wider_mode
))
6609 struct table_elt
*const_elt
6610 = lookup (src_const
, HASH (src_const
, wider_mode
), wider_mode
);
6615 for (const_elt
= const_elt
->first_same_value
;
6616 const_elt
; const_elt
= const_elt
->next_same_value
)
6617 if (GET_CODE (const_elt
->exp
) == REG
)
6619 src_related
= gen_lowpart_if_possible (mode
,
6626 /* Another possibility is that we have an AND with a constant in
6627 a mode narrower than a word. If so, it might have been generated
6628 as part of an "if" which would narrow the AND. If we already
6629 have done the AND in a wider mode, we can use a SUBREG of that
6632 if (flag_expensive_optimizations
&& ! src_related
6633 && GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 1)) == CONST_INT
6634 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
6636 enum machine_mode tmode
;
6637 rtx new_and
= gen_rtx (AND
, VOIDmode
, NULL_RTX
, XEXP (src
, 1));
6639 for (tmode
= GET_MODE_WIDER_MODE (mode
);
6640 GET_MODE_SIZE (tmode
) <= UNITS_PER_WORD
;
6641 tmode
= GET_MODE_WIDER_MODE (tmode
))
6643 rtx inner
= gen_lowpart_if_possible (tmode
, XEXP (src
, 0));
6644 struct table_elt
*larger_elt
;
6648 PUT_MODE (new_and
, tmode
);
6649 XEXP (new_and
, 0) = inner
;
6650 larger_elt
= lookup (new_and
, HASH (new_and
, tmode
), tmode
);
6651 if (larger_elt
== 0)
6654 for (larger_elt
= larger_elt
->first_same_value
;
6655 larger_elt
; larger_elt
= larger_elt
->next_same_value
)
6656 if (GET_CODE (larger_elt
->exp
) == REG
)
6659 = gen_lowpart_if_possible (mode
, larger_elt
->exp
);
6669 #ifdef LOAD_EXTEND_OP
6670 /* See if a MEM has already been loaded with a widening operation;
6671 if it has, we can use a subreg of that. Many CISC machines
6672 also have such operations, but this is only likely to be
6673 beneficial these machines. */
6675 if (flag_expensive_optimizations
&& src_related
== 0
6676 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
6677 && GET_MODE_CLASS (mode
) == MODE_INT
6678 && GET_CODE (src
) == MEM
&& ! do_not_record
6679 && LOAD_EXTEND_OP (mode
) != NIL
)
6681 enum machine_mode tmode
;
6683 /* Set what we are trying to extend and the operation it might
6684 have been extended with. */
6685 PUT_CODE (memory_extend_rtx
, LOAD_EXTEND_OP (mode
));
6686 XEXP (memory_extend_rtx
, 0) = src
;
6688 for (tmode
= GET_MODE_WIDER_MODE (mode
);
6689 GET_MODE_SIZE (tmode
) <= UNITS_PER_WORD
;
6690 tmode
= GET_MODE_WIDER_MODE (tmode
))
6692 struct table_elt
*larger_elt
;
6694 PUT_MODE (memory_extend_rtx
, tmode
);
6695 larger_elt
= lookup (memory_extend_rtx
,
6696 HASH (memory_extend_rtx
, tmode
), tmode
);
6697 if (larger_elt
== 0)
6700 for (larger_elt
= larger_elt
->first_same_value
;
6701 larger_elt
; larger_elt
= larger_elt
->next_same_value
)
6702 if (GET_CODE (larger_elt
->exp
) == REG
)
6704 src_related
= gen_lowpart_if_possible (mode
,
6713 #endif /* LOAD_EXTEND_OP */
6715 if (src
== src_folded
)
6718 /* At this point, ELT, if non-zero, points to a class of expressions
6719 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
6720 and SRC_RELATED, if non-zero, each contain additional equivalent
6721 expressions. Prune these latter expressions by deleting expressions
6722 already in the equivalence class.
6724 Check for an equivalent identical to the destination. If found,
6725 this is the preferred equivalent since it will likely lead to
6726 elimination of the insn. Indicate this by placing it in
6729 if (elt
) elt
= elt
->first_same_value
;
6730 for (p
= elt
; p
; p
= p
->next_same_value
)
6732 enum rtx_code code
= GET_CODE (p
->exp
);
6734 /* If the expression is not valid, ignore it. Then we do not
6735 have to check for validity below. In most cases, we can use
6736 `rtx_equal_p', since canonicalization has already been done. */
6737 if (code
!= REG
&& ! exp_equiv_p (p
->exp
, p
->exp
, 1, 0))
6740 if (src
&& GET_CODE (src
) == code
&& rtx_equal_p (src
, p
->exp
))
6742 else if (src_folded
&& GET_CODE (src_folded
) == code
6743 && rtx_equal_p (src_folded
, p
->exp
))
6745 else if (src_eqv_here
&& GET_CODE (src_eqv_here
) == code
6746 && rtx_equal_p (src_eqv_here
, p
->exp
))
6748 else if (src_related
&& GET_CODE (src_related
) == code
6749 && rtx_equal_p (src_related
, p
->exp
))
6752 /* This is the same as the destination of the insns, we want
6753 to prefer it. Copy it to src_related. The code below will
6754 then give it a negative cost. */
6755 if (GET_CODE (dest
) == code
&& rtx_equal_p (p
->exp
, dest
))
6760 /* Find the cheapest valid equivalent, trying all the available
6761 possibilities. Prefer items not in the hash table to ones
6762 that are when they are equal cost. Note that we can never
6763 worsen an insn as the current contents will also succeed.
6764 If we find an equivalent identical to the destination, use it as best,
6765 since this insn will probably be eliminated in that case. */
6768 if (rtx_equal_p (src
, dest
))
6771 src_cost
= COST (src
);
6776 if (rtx_equal_p (src_eqv_here
, dest
))
6779 src_eqv_cost
= COST (src_eqv_here
);
6784 if (rtx_equal_p (src_folded
, dest
))
6785 src_folded_cost
= -1;
6787 src_folded_cost
= COST (src_folded
);
6792 if (rtx_equal_p (src_related
, dest
))
6793 src_related_cost
= -1;
6795 src_related_cost
= COST (src_related
);
6798 /* If this was an indirect jump insn, a known label will really be
6799 cheaper even though it looks more expensive. */
6800 if (dest
== pc_rtx
&& src_const
&& GET_CODE (src_const
) == LABEL_REF
)
6801 src_folded
= src_const
, src_folded_cost
= -1;
6803 /* Terminate loop when replacement made. This must terminate since
6804 the current contents will be tested and will always be valid. */
6809 /* Skip invalid entries. */
6810 while (elt
&& GET_CODE (elt
->exp
) != REG
6811 && ! exp_equiv_p (elt
->exp
, elt
->exp
, 1, 0))
6812 elt
= elt
->next_same_value
;
6814 if (elt
) src_elt_cost
= elt
->cost
;
6816 /* Find cheapest and skip it for the next time. For items
6817 of equal cost, use this order:
6818 src_folded, src, src_eqv, src_related and hash table entry. */
6819 if (src_folded_cost
<= src_cost
6820 && src_folded_cost
<= src_eqv_cost
6821 && src_folded_cost
<= src_related_cost
6822 && src_folded_cost
<= src_elt_cost
)
6824 trial
= src_folded
, src_folded_cost
= 10000;
6825 if (src_folded_force_flag
)
6826 trial
= force_const_mem (mode
, trial
);
6828 else if (src_cost
<= src_eqv_cost
6829 && src_cost
<= src_related_cost
6830 && src_cost
<= src_elt_cost
)
6831 trial
= src
, src_cost
= 10000;
6832 else if (src_eqv_cost
<= src_related_cost
6833 && src_eqv_cost
<= src_elt_cost
)
6834 trial
= copy_rtx (src_eqv_here
), src_eqv_cost
= 10000;
6835 else if (src_related_cost
<= src_elt_cost
)
6836 trial
= copy_rtx (src_related
), src_related_cost
= 10000;
6839 trial
= copy_rtx (elt
->exp
);
6840 elt
= elt
->next_same_value
;
6841 src_elt_cost
= 10000;
6844 /* We don't normally have an insn matching (set (pc) (pc)), so
6845 check for this separately here. We will delete such an
6848 Tablejump insns contain a USE of the table, so simply replacing
6849 the operand with the constant won't match. This is simply an
6850 unconditional branch, however, and is therefore valid. Just
6851 insert the substitution here and we will delete and re-emit
6854 if (n_sets
== 1 && dest
== pc_rtx
6856 || (GET_CODE (trial
) == LABEL_REF
6857 && ! condjump_p (insn
))))
6859 /* If TRIAL is a label in front of a jump table, we are
6860 really falling through the switch (this is how casesi
6861 insns work), so we must branch around the table. */
6862 if (GET_CODE (trial
) == CODE_LABEL
6863 && NEXT_INSN (trial
) != 0
6864 && GET_CODE (NEXT_INSN (trial
)) == JUMP_INSN
6865 && (GET_CODE (PATTERN (NEXT_INSN (trial
))) == ADDR_DIFF_VEC
6866 || GET_CODE (PATTERN (NEXT_INSN (trial
))) == ADDR_VEC
))
6868 trial
= gen_rtx (LABEL_REF
, Pmode
, get_label_after (trial
));
6870 SET_SRC (sets
[i
].rtl
) = trial
;
6871 cse_jumps_altered
= 1;
6875 /* Look for a substitution that makes a valid insn. */
6876 else if (validate_change (insn
, &SET_SRC (sets
[i
].rtl
), trial
, 0))
6878 /* The result of apply_change_group can be ignored; see
6881 validate_change (insn
, &SET_SRC (sets
[i
].rtl
),
6882 canon_reg (SET_SRC (sets
[i
].rtl
), insn
),
6884 apply_change_group ();
6888 /* If we previously found constant pool entries for
6889 constants and this is a constant, try making a
6890 pool entry. Put it in src_folded unless we already have done
6891 this since that is where it likely came from. */
6893 else if (constant_pool_entries_cost
6894 && CONSTANT_P (trial
)
6895 && ! (GET_CODE (trial
) == CONST
6896 && GET_CODE (XEXP (trial
, 0)) == TRUNCATE
)
6898 || (GET_CODE (src_folded
) != MEM
6899 && ! src_folded_force_flag
))
6900 && GET_MODE_CLASS (mode
) != MODE_CC
)
6902 src_folded_force_flag
= 1;
6904 src_folded_cost
= constant_pool_entries_cost
;
6908 src
= SET_SRC (sets
[i
].rtl
);
6910 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
6911 However, there is an important exception: If both are registers
6912 that are not the head of their equivalence class, replace SET_SRC
6913 with the head of the class. If we do not do this, we will have
6914 both registers live over a portion of the basic block. This way,
6915 their lifetimes will likely abut instead of overlapping. */
6916 if (GET_CODE (dest
) == REG
6917 && REGNO_QTY_VALID_P (REGNO (dest
))
6918 && qty_mode
[reg_qty
[REGNO (dest
)]] == GET_MODE (dest
)
6919 && qty_first_reg
[reg_qty
[REGNO (dest
)]] != REGNO (dest
)
6920 && GET_CODE (src
) == REG
&& REGNO (src
) == REGNO (dest
)
6921 /* Don't do this if the original insn had a hard reg as
6923 && (GET_CODE (sets
[i
].src
) != REG
6924 || REGNO (sets
[i
].src
) >= FIRST_PSEUDO_REGISTER
))
6925 /* We can't call canon_reg here because it won't do anything if
6926 SRC is a hard register. */
6928 int first
= qty_first_reg
[reg_qty
[REGNO (src
)]];
6930 src
= SET_SRC (sets
[i
].rtl
)
6931 = first
>= FIRST_PSEUDO_REGISTER
? regno_reg_rtx
[first
]
6932 : gen_rtx (REG
, GET_MODE (src
), first
);
6934 /* If we had a constant that is cheaper than what we are now
6935 setting SRC to, use that constant. We ignored it when we
6936 thought we could make this into a no-op. */
6937 if (src_const
&& COST (src_const
) < COST (src
)
6938 && validate_change (insn
, &SET_SRC (sets
[i
].rtl
), src_const
, 0))
6942 /* If we made a change, recompute SRC values. */
6943 if (src
!= sets
[i
].src
)
6946 hash_arg_in_memory
= 0;
6947 hash_arg_in_struct
= 0;
6949 sets
[i
].src_hash
= HASH (src
, mode
);
6950 sets
[i
].src_volatile
= do_not_record
;
6951 sets
[i
].src_in_memory
= hash_arg_in_memory
;
6952 sets
[i
].src_in_struct
= hash_arg_in_struct
;
6953 sets
[i
].src_elt
= lookup (src
, sets
[i
].src_hash
, mode
);
6956 /* If this is a single SET, we are setting a register, and we have an
6957 equivalent constant, we want to add a REG_NOTE. We don't want
6958 to write a REG_EQUAL note for a constant pseudo since verifying that
6959 that pseudo hasn't been eliminated is a pain. Such a note also
6960 won't help anything. */
6961 if (n_sets
== 1 && src_const
&& GET_CODE (dest
) == REG
6962 && GET_CODE (src_const
) != REG
)
6964 tem
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
);
6966 /* Record the actual constant value in a REG_EQUAL note, making
6967 a new one if one does not already exist. */
6969 XEXP (tem
, 0) = src_const
;
6971 REG_NOTES (insn
) = gen_rtx (EXPR_LIST
, REG_EQUAL
,
6972 src_const
, REG_NOTES (insn
));
6974 /* If storing a constant value in a register that
6975 previously held the constant value 0,
6976 record this fact with a REG_WAS_0 note on this insn.
6978 Note that the *register* is required to have previously held 0,
6979 not just any register in the quantity and we must point to the
6980 insn that set that register to zero.
6982 Rather than track each register individually, we just see if
6983 the last set for this quantity was for this register. */
6985 if (REGNO_QTY_VALID_P (REGNO (dest
))
6986 && qty_const
[reg_qty
[REGNO (dest
)]] == const0_rtx
)
6988 /* See if we previously had a REG_WAS_0 note. */
6989 rtx note
= find_reg_note (insn
, REG_WAS_0
, NULL_RTX
);
6990 rtx const_insn
= qty_const_insn
[reg_qty
[REGNO (dest
)]];
6992 if ((tem
= single_set (const_insn
)) != 0
6993 && rtx_equal_p (SET_DEST (tem
), dest
))
6996 XEXP (note
, 0) = const_insn
;
6998 REG_NOTES (insn
) = gen_rtx (INSN_LIST
, REG_WAS_0
,
6999 const_insn
, REG_NOTES (insn
));
7004 /* Now deal with the destination. */
7006 sets
[i
].inner_dest_loc
= &SET_DEST (sets
[0].rtl
);
7008 /* Look within any SIGN_EXTRACT or ZERO_EXTRACT
7009 to the MEM or REG within it. */
7010 while (GET_CODE (dest
) == SIGN_EXTRACT
7011 || GET_CODE (dest
) == ZERO_EXTRACT
7012 || GET_CODE (dest
) == SUBREG
7013 || GET_CODE (dest
) == STRICT_LOW_PART
)
7015 sets
[i
].inner_dest_loc
= &XEXP (dest
, 0);
7016 dest
= XEXP (dest
, 0);
7019 sets
[i
].inner_dest
= dest
;
7021 if (GET_CODE (dest
) == MEM
)
7023 dest
= fold_rtx (dest
, insn
);
7025 /* Decide whether we invalidate everything in memory,
7026 or just things at non-fixed places.
7027 Writing a large aggregate must invalidate everything
7028 because we don't know how long it is. */
7029 note_mem_written (dest
, &writes_memory
);
7032 /* Compute the hash code of the destination now,
7033 before the effects of this instruction are recorded,
7034 since the register values used in the address computation
7035 are those before this instruction. */
7036 sets
[i
].dest_hash
= HASH (dest
, mode
);
7038 /* Don't enter a bit-field in the hash table
7039 because the value in it after the store
7040 may not equal what was stored, due to truncation. */
7042 if (GET_CODE (SET_DEST (sets
[i
].rtl
)) == ZERO_EXTRACT
7043 || GET_CODE (SET_DEST (sets
[i
].rtl
)) == SIGN_EXTRACT
)
7045 rtx width
= XEXP (SET_DEST (sets
[i
].rtl
), 1);
7047 if (src_const
!= 0 && GET_CODE (src_const
) == CONST_INT
7048 && GET_CODE (width
) == CONST_INT
7049 && INTVAL (width
) < HOST_BITS_PER_WIDE_INT
7050 && ! (INTVAL (src_const
)
7051 & ((HOST_WIDE_INT
) (-1) << INTVAL (width
))))
7052 /* Exception: if the value is constant,
7053 and it won't be truncated, record it. */
7057 /* This is chosen so that the destination will be invalidated
7058 but no new value will be recorded.
7059 We must invalidate because sometimes constant
7060 values can be recorded for bitfields. */
7061 sets
[i
].src_elt
= 0;
7062 sets
[i
].src_volatile
= 1;
7068 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
7070 else if (n_sets
== 1 && dest
== pc_rtx
&& src
== pc_rtx
)
7072 PUT_CODE (insn
, NOTE
);
7073 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
7074 NOTE_SOURCE_FILE (insn
) = 0;
7075 cse_jumps_altered
= 1;
7076 /* One less use of the label this insn used to jump to. */
7077 --LABEL_NUSES (JUMP_LABEL (insn
));
7078 /* No more processing for this set. */
7082 /* If this SET is now setting PC to a label, we know it used to
7083 be a conditional or computed branch. So we see if we can follow
7084 it. If it was a computed branch, delete it and re-emit. */
7085 else if (dest
== pc_rtx
&& GET_CODE (src
) == LABEL_REF
)
7089 /* If this is not in the format for a simple branch and
7090 we are the only SET in it, re-emit it. */
7091 if (! simplejump_p (insn
) && n_sets
== 1)
7093 rtx
new = emit_jump_insn_before (gen_jump (XEXP (src
, 0)), insn
);
7094 JUMP_LABEL (new) = XEXP (src
, 0);
7095 LABEL_NUSES (XEXP (src
, 0))++;
7100 /* Otherwise, force rerecognition, since it probably had
7101 a different pattern before.
7102 This shouldn't really be necessary, since whatever
7103 changed the source value above should have done this.
7104 Until the right place is found, might as well do this here. */
7105 INSN_CODE (insn
) = -1;
7107 /* Now that we've converted this jump to an unconditional jump,
7108 there is dead code after it. Delete the dead code until we
7109 reach a BARRIER, the end of the function, or a label. Do
7110 not delete NOTEs except for NOTE_INSN_DELETED since later
7111 phases assume these notes are retained. */
7115 while (NEXT_INSN (p
) != 0
7116 && GET_CODE (NEXT_INSN (p
)) != BARRIER
7117 && GET_CODE (NEXT_INSN (p
)) != CODE_LABEL
)
7119 if (GET_CODE (NEXT_INSN (p
)) != NOTE
7120 || NOTE_LINE_NUMBER (NEXT_INSN (p
)) == NOTE_INSN_DELETED
)
7121 delete_insn (NEXT_INSN (p
));
7126 /* If we don't have a BARRIER immediately after INSN, put one there.
7127 Much code assumes that there are no NOTEs between a JUMP_INSN and
7130 if (NEXT_INSN (insn
) == 0
7131 || GET_CODE (NEXT_INSN (insn
)) != BARRIER
)
7132 emit_barrier_before (NEXT_INSN (insn
));
7134 /* We might have two BARRIERs separated by notes. Delete the second
7137 if (p
!= insn
&& NEXT_INSN (p
) != 0
7138 && GET_CODE (NEXT_INSN (p
)) == BARRIER
)
7139 delete_insn (NEXT_INSN (p
));
7141 cse_jumps_altered
= 1;
7145 /* If destination is volatile, invalidate it and then do no further
7146 processing for this assignment. */
7148 else if (do_not_record
)
7150 if (GET_CODE (dest
) == REG
|| GET_CODE (dest
) == SUBREG
7151 || GET_CODE (dest
) == MEM
)
7152 invalidate (dest
, VOIDmode
);
7153 else if (GET_CODE (dest
) == STRICT_LOW_PART
7154 || GET_CODE (dest
) == ZERO_EXTRACT
)
7155 invalidate (XEXP (dest
, 0), GET_MODE (dest
));
7159 if (sets
[i
].rtl
!= 0 && dest
!= SET_DEST (sets
[i
].rtl
))
7160 sets
[i
].dest_hash
= HASH (SET_DEST (sets
[i
].rtl
), mode
);
7163 /* If setting CC0, record what it was set to, or a constant, if it
7164 is equivalent to a constant. If it is being set to a floating-point
7165 value, make a COMPARE with the appropriate constant of 0. If we
7166 don't do this, later code can interpret this as a test against
7167 const0_rtx, which can cause problems if we try to put it into an
7168 insn as a floating-point operand. */
7169 if (dest
== cc0_rtx
)
7171 this_insn_cc0
= src_const
&& mode
!= VOIDmode
? src_const
: src
;
7172 this_insn_cc0_mode
= mode
;
7173 if (FLOAT_MODE_P (mode
))
7174 this_insn_cc0
= gen_rtx (COMPARE
, VOIDmode
, this_insn_cc0
,
7180 /* Now enter all non-volatile source expressions in the hash table
7181 if they are not already present.
7182 Record their equivalence classes in src_elt.
7183 This way we can insert the corresponding destinations into
7184 the same classes even if the actual sources are no longer in them
7185 (having been invalidated). */
7187 if (src_eqv
&& src_eqv_elt
== 0 && sets
[0].rtl
!= 0 && ! src_eqv_volatile
7188 && ! rtx_equal_p (src_eqv
, SET_DEST (sets
[0].rtl
)))
7190 register struct table_elt
*elt
;
7191 register struct table_elt
*classp
= sets
[0].src_elt
;
7192 rtx dest
= SET_DEST (sets
[0].rtl
);
7193 enum machine_mode eqvmode
= GET_MODE (dest
);
7195 if (GET_CODE (dest
) == STRICT_LOW_PART
)
7197 eqvmode
= GET_MODE (SUBREG_REG (XEXP (dest
, 0)));
7200 if (insert_regs (src_eqv
, classp
, 0))
7202 rehash_using_reg (src_eqv
);
7203 src_eqv_hash
= HASH (src_eqv
, eqvmode
);
7205 elt
= insert (src_eqv
, classp
, src_eqv_hash
, eqvmode
);
7206 elt
->in_memory
= src_eqv_in_memory
;
7207 elt
->in_struct
= src_eqv_in_struct
;
7210 /* Check to see if src_eqv_elt is the same as a set source which
7211 does not yet have an elt, and if so set the elt of the set source
7213 for (i
= 0; i
< n_sets
; i
++)
7214 if (sets
[i
].rtl
&& sets
[i
].src_elt
== 0
7215 && rtx_equal_p (SET_SRC (sets
[i
].rtl
), src_eqv
))
7216 sets
[i
].src_elt
= src_eqv_elt
;
7219 for (i
= 0; i
< n_sets
; i
++)
7220 if (sets
[i
].rtl
&& ! sets
[i
].src_volatile
7221 && ! rtx_equal_p (SET_SRC (sets
[i
].rtl
), SET_DEST (sets
[i
].rtl
)))
7223 if (GET_CODE (SET_DEST (sets
[i
].rtl
)) == STRICT_LOW_PART
)
7225 /* REG_EQUAL in setting a STRICT_LOW_PART
7226 gives an equivalent for the entire destination register,
7227 not just for the subreg being stored in now.
7228 This is a more interesting equivalence, so we arrange later
7229 to treat the entire reg as the destination. */
7230 sets
[i
].src_elt
= src_eqv_elt
;
7231 sets
[i
].src_hash
= src_eqv_hash
;
7235 /* Insert source and constant equivalent into hash table, if not
7237 register struct table_elt
*classp
= src_eqv_elt
;
7238 register rtx src
= sets
[i
].src
;
7239 register rtx dest
= SET_DEST (sets
[i
].rtl
);
7240 enum machine_mode mode
7241 = GET_MODE (src
) == VOIDmode
? GET_MODE (dest
) : GET_MODE (src
);
7243 if (sets
[i
].src_elt
== 0)
7245 register struct table_elt
*elt
;
7247 /* Note that these insert_regs calls cannot remove
7248 any of the src_elt's, because they would have failed to
7249 match if not still valid. */
7250 if (insert_regs (src
, classp
, 0))
7252 rehash_using_reg (src
);
7253 sets
[i
].src_hash
= HASH (src
, mode
);
7255 elt
= insert (src
, classp
, sets
[i
].src_hash
, mode
);
7256 elt
->in_memory
= sets
[i
].src_in_memory
;
7257 elt
->in_struct
= sets
[i
].src_in_struct
;
7258 sets
[i
].src_elt
= classp
= elt
;
7261 if (sets
[i
].src_const
&& sets
[i
].src_const_elt
== 0
7262 && src
!= sets
[i
].src_const
7263 && ! rtx_equal_p (sets
[i
].src_const
, src
))
7264 sets
[i
].src_elt
= insert (sets
[i
].src_const
, classp
,
7265 sets
[i
].src_const_hash
, mode
);
7268 else if (sets
[i
].src_elt
== 0)
7269 /* If we did not insert the source into the hash table (e.g., it was
7270 volatile), note the equivalence class for the REG_EQUAL value, if any,
7271 so that the destination goes into that class. */
7272 sets
[i
].src_elt
= src_eqv_elt
;
7274 invalidate_from_clobbers (&writes_memory
, x
);
7276 /* Some registers are invalidated by subroutine calls. Memory is
7277 invalidated by non-constant calls. */
7279 if (GET_CODE (insn
) == CALL_INSN
)
7281 static struct write_data everything
= {0, 1, 1, 1};
7283 if (! CONST_CALL_P (insn
))
7284 invalidate_memory (&everything
);
7285 invalidate_for_call ();
7288 /* Now invalidate everything set by this instruction.
7289 If a SUBREG or other funny destination is being set,
7290 sets[i].rtl is still nonzero, so here we invalidate the reg
7291 a part of which is being set. */
7293 for (i
= 0; i
< n_sets
; i
++)
7296 /* We can't use the inner dest, because the mode associated with
7297 a ZERO_EXTRACT is significant. */
7298 register rtx dest
= SET_DEST (sets
[i
].rtl
);
7300 /* Needed for registers to remove the register from its
7301 previous quantity's chain.
7302 Needed for memory if this is a nonvarying address, unless
7303 we have just done an invalidate_memory that covers even those. */
7304 if (GET_CODE (dest
) == REG
|| GET_CODE (dest
) == SUBREG
7305 || (GET_CODE (dest
) == MEM
&& ! writes_memory
.all
7306 && ! cse_rtx_addr_varies_p (dest
)))
7307 invalidate (dest
, VOIDmode
);
7308 else if (GET_CODE (dest
) == STRICT_LOW_PART
7309 || GET_CODE (dest
) == ZERO_EXTRACT
)
7310 invalidate (XEXP (dest
, 0), GET_MODE (dest
));
7313 /* Make sure registers mentioned in destinations
7314 are safe for use in an expression to be inserted.
7315 This removes from the hash table
7316 any invalid entry that refers to one of these registers.
7318 We don't care about the return value from mention_regs because
7319 we are going to hash the SET_DEST values unconditionally. */
7321 for (i
= 0; i
< n_sets
; i
++)
7322 if (sets
[i
].rtl
&& GET_CODE (SET_DEST (sets
[i
].rtl
)) != REG
)
7323 mention_regs (SET_DEST (sets
[i
].rtl
));
7325 /* We may have just removed some of the src_elt's from the hash table.
7326 So replace each one with the current head of the same class. */
7328 for (i
= 0; i
< n_sets
; i
++)
7331 if (sets
[i
].src_elt
&& sets
[i
].src_elt
->first_same_value
== 0)
7332 /* If elt was removed, find current head of same class,
7333 or 0 if nothing remains of that class. */
7335 register struct table_elt
*elt
= sets
[i
].src_elt
;
7337 while (elt
&& elt
->prev_same_value
)
7338 elt
= elt
->prev_same_value
;
7340 while (elt
&& elt
->first_same_value
== 0)
7341 elt
= elt
->next_same_value
;
7342 sets
[i
].src_elt
= elt
? elt
->first_same_value
: 0;
7346 /* Now insert the destinations into their equivalence classes. */
7348 for (i
= 0; i
< n_sets
; i
++)
7351 register rtx dest
= SET_DEST (sets
[i
].rtl
);
7352 register struct table_elt
*elt
;
7354 /* Don't record value if we are not supposed to risk allocating
7355 floating-point values in registers that might be wider than
7357 if ((flag_float_store
7358 && GET_CODE (dest
) == MEM
7359 && FLOAT_MODE_P (GET_MODE (dest
)))
7360 /* Don't record values of destinations set inside a libcall block
7361 since we might delete the libcall. Things should have been set
7362 up so we won't want to reuse such a value, but we play it safe
7365 /* If we didn't put a REG_EQUAL value or a source into the hash
7366 table, there is no point is recording DEST. */
7367 || sets
[i
].src_elt
== 0
7368 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
7369 or SIGN_EXTEND, don't record DEST since it can cause
7370 some tracking to be wrong.
7372 ??? Think about this more later. */
7373 || (GET_CODE (dest
) == SUBREG
7374 && (GET_MODE_SIZE (GET_MODE (dest
))
7375 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
))))
7376 && (GET_CODE (sets
[i
].src
) == SIGN_EXTEND
7377 || GET_CODE (sets
[i
].src
) == ZERO_EXTEND
)))
7380 /* STRICT_LOW_PART isn't part of the value BEING set,
7381 and neither is the SUBREG inside it.
7382 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
7383 if (GET_CODE (dest
) == STRICT_LOW_PART
)
7384 dest
= SUBREG_REG (XEXP (dest
, 0));
7386 if (GET_CODE (dest
) == REG
|| GET_CODE (dest
) == SUBREG
)
7387 /* Registers must also be inserted into chains for quantities. */
7388 if (insert_regs (dest
, sets
[i
].src_elt
, 1))
7390 /* If `insert_regs' changes something, the hash code must be
7392 rehash_using_reg (dest
);
7393 sets
[i
].dest_hash
= HASH (dest
, GET_MODE (dest
));
7396 elt
= insert (dest
, sets
[i
].src_elt
,
7397 sets
[i
].dest_hash
, GET_MODE (dest
));
7398 elt
->in_memory
= (GET_CODE (sets
[i
].inner_dest
) == MEM
7399 && (! RTX_UNCHANGING_P (sets
[i
].inner_dest
)
7400 || FIXED_BASE_PLUS_P (XEXP (sets
[i
].inner_dest
,
7405 /* This implicitly assumes a whole struct
7406 need not have MEM_IN_STRUCT_P.
7407 But a whole struct is *supposed* to have MEM_IN_STRUCT_P. */
7408 elt
->in_struct
= (MEM_IN_STRUCT_P (sets
[i
].inner_dest
)
7409 || sets
[i
].inner_dest
!= SET_DEST (sets
[i
].rtl
));
7412 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
7413 narrower than M2, and both M1 and M2 are the same number of words,
7414 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
7415 make that equivalence as well.
7417 However, BAR may have equivalences for which gen_lowpart_if_possible
7418 will produce a simpler value than gen_lowpart_if_possible applied to
7419 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
7420 BAR's equivalences. If we don't get a simplified form, make
7421 the SUBREG. It will not be used in an equivalence, but will
7422 cause two similar assignments to be detected.
7424 Note the loop below will find SUBREG_REG (DEST) since we have
7425 already entered SRC and DEST of the SET in the table. */
7427 if (GET_CODE (dest
) == SUBREG
7428 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
))) - 1)
7430 == (GET_MODE_SIZE (GET_MODE (dest
)) - 1)/ UNITS_PER_WORD
)
7431 && (GET_MODE_SIZE (GET_MODE (dest
))
7432 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
))))
7433 && sets
[i
].src_elt
!= 0)
7435 enum machine_mode new_mode
= GET_MODE (SUBREG_REG (dest
));
7436 struct table_elt
*elt
, *classp
= 0;
7438 for (elt
= sets
[i
].src_elt
->first_same_value
; elt
;
7439 elt
= elt
->next_same_value
)
7443 struct table_elt
*src_elt
;
7445 /* Ignore invalid entries. */
7446 if (GET_CODE (elt
->exp
) != REG
7447 && ! exp_equiv_p (elt
->exp
, elt
->exp
, 1, 0))
7450 new_src
= gen_lowpart_if_possible (new_mode
, elt
->exp
);
7452 new_src
= gen_rtx (SUBREG
, new_mode
, elt
->exp
, 0);
7454 src_hash
= HASH (new_src
, new_mode
);
7455 src_elt
= lookup (new_src
, src_hash
, new_mode
);
7457 /* Put the new source in the hash table is if isn't
7461 if (insert_regs (new_src
, classp
, 0))
7463 rehash_using_reg (new_src
);
7464 src_hash
= HASH (new_src
, new_mode
);
7466 src_elt
= insert (new_src
, classp
, src_hash
, new_mode
);
7467 src_elt
->in_memory
= elt
->in_memory
;
7468 src_elt
->in_struct
= elt
->in_struct
;
7470 else if (classp
&& classp
!= src_elt
->first_same_value
)
7471 /* Show that two things that we've seen before are
7472 actually the same. */
7473 merge_equiv_classes (src_elt
, classp
);
7475 classp
= src_elt
->first_same_value
;
7480 /* Special handling for (set REG0 REG1)
7481 where REG0 is the "cheapest", cheaper than REG1.
7482 After cse, REG1 will probably not be used in the sequel,
7483 so (if easily done) change this insn to (set REG1 REG0) and
7484 replace REG1 with REG0 in the previous insn that computed their value.
7485 Then REG1 will become a dead store and won't cloud the situation
7486 for later optimizations.
7488 Do not make this change if REG1 is a hard register, because it will
7489 then be used in the sequel and we may be changing a two-operand insn
7490 into a three-operand insn.
7492 Also do not do this if we are operating on a copy of INSN. */
7494 if (n_sets
== 1 && sets
[0].rtl
&& GET_CODE (SET_DEST (sets
[0].rtl
)) == REG
7495 && NEXT_INSN (PREV_INSN (insn
)) == insn
7496 && GET_CODE (SET_SRC (sets
[0].rtl
)) == REG
7497 && REGNO (SET_SRC (sets
[0].rtl
)) >= FIRST_PSEUDO_REGISTER
7498 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets
[0].rtl
)))
7499 && (qty_first_reg
[reg_qty
[REGNO (SET_SRC (sets
[0].rtl
))]]
7500 == REGNO (SET_DEST (sets
[0].rtl
))))
7502 rtx prev
= PREV_INSN (insn
);
7503 while (prev
&& GET_CODE (prev
) == NOTE
)
7504 prev
= PREV_INSN (prev
);
7506 if (prev
&& GET_CODE (prev
) == INSN
&& GET_CODE (PATTERN (prev
)) == SET
7507 && SET_DEST (PATTERN (prev
)) == SET_SRC (sets
[0].rtl
))
7509 rtx dest
= SET_DEST (sets
[0].rtl
);
7510 rtx note
= find_reg_note (prev
, REG_EQUIV
, NULL_RTX
);
7512 validate_change (prev
, & SET_DEST (PATTERN (prev
)), dest
, 1);
7513 validate_change (insn
, & SET_DEST (sets
[0].rtl
),
7514 SET_SRC (sets
[0].rtl
), 1);
7515 validate_change (insn
, & SET_SRC (sets
[0].rtl
), dest
, 1);
7516 apply_change_group ();
7518 /* If REG1 was equivalent to a constant, REG0 is not. */
7520 PUT_REG_NOTE_KIND (note
, REG_EQUAL
);
7522 /* If there was a REG_WAS_0 note on PREV, remove it. Move
7523 any REG_WAS_0 note on INSN to PREV. */
7524 note
= find_reg_note (prev
, REG_WAS_0
, NULL_RTX
);
7526 remove_note (prev
, note
);
7528 note
= find_reg_note (insn
, REG_WAS_0
, NULL_RTX
);
7531 remove_note (insn
, note
);
7532 XEXP (note
, 1) = REG_NOTES (prev
);
7533 REG_NOTES (prev
) = note
;
7536 /* If INSN has a REG_EQUAL note, and this note mentions REG0,
7537 then we must delete it, because the value in REG0 has changed. */
7538 note
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
);
7539 if (note
&& reg_mentioned_p (dest
, XEXP (note
, 0)))
7540 remove_note (insn
, note
);
7544 /* If this is a conditional jump insn, record any known equivalences due to
7545 the condition being tested. */
7547 last_jump_equiv_class
= 0;
7548 if (GET_CODE (insn
) == JUMP_INSN
7549 && n_sets
== 1 && GET_CODE (x
) == SET
7550 && GET_CODE (SET_SRC (x
)) == IF_THEN_ELSE
)
7551 record_jump_equiv (insn
, 0);
7554 /* If the previous insn set CC0 and this insn no longer references CC0,
7555 delete the previous insn. Here we use the fact that nothing expects CC0
7556 to be valid over an insn, which is true until the final pass. */
7557 if (prev_insn
&& GET_CODE (prev_insn
) == INSN
7558 && (tem
= single_set (prev_insn
)) != 0
7559 && SET_DEST (tem
) == cc0_rtx
7560 && ! reg_mentioned_p (cc0_rtx
, x
))
7562 PUT_CODE (prev_insn
, NOTE
);
7563 NOTE_LINE_NUMBER (prev_insn
) = NOTE_INSN_DELETED
;
7564 NOTE_SOURCE_FILE (prev_insn
) = 0;
7567 prev_insn_cc0
= this_insn_cc0
;
7568 prev_insn_cc0_mode
= this_insn_cc0_mode
;
7574 /* Store 1 in *WRITES_PTR for those categories of memory ref
7575 that must be invalidated when the expression WRITTEN is stored in.
7576 If WRITTEN is null, say everything must be invalidated. */
7579 note_mem_written (written
, writes_ptr
)
7581 struct write_data
*writes_ptr
;
7583 static struct write_data everything
= {0, 1, 1, 1};
7586 *writes_ptr
= everything
;
7587 else if (GET_CODE (written
) == MEM
)
7589 /* Pushing or popping the stack invalidates just the stack pointer. */
7590 rtx addr
= XEXP (written
, 0);
7591 if ((GET_CODE (addr
) == PRE_DEC
|| GET_CODE (addr
) == PRE_INC
7592 || GET_CODE (addr
) == POST_DEC
|| GET_CODE (addr
) == POST_INC
)
7593 && GET_CODE (XEXP (addr
, 0)) == REG
7594 && REGNO (XEXP (addr
, 0)) == STACK_POINTER_REGNUM
)
7599 else if (GET_MODE (written
) == BLKmode
)
7600 *writes_ptr
= everything
;
7601 else if (cse_rtx_addr_varies_p (written
))
7603 /* A varying address that is a sum indicates an array element,
7604 and that's just as good as a structure element
7605 in implying that we need not invalidate scalar variables.
7606 However, we must allow QImode aliasing of scalars, because the
7607 ANSI C standard allows character pointers to alias anything.
7608 We must also allow AND addresses, because they may generate
7609 accesses outside the object being referenced. This is used to
7610 generate aligned addresses from unaligned addresses, for instance,
7611 the alpha storeqi_unaligned pattern. */
7612 if (! ((MEM_IN_STRUCT_P (written
)
7613 || GET_CODE (XEXP (written
, 0)) == PLUS
)
7614 && GET_MODE (written
) != QImode
7615 && GET_CODE (XEXP (written
, 0)) != AND
))
7616 writes_ptr
->all
= 1;
7617 writes_ptr
->nonscalar
= 1;
7619 writes_ptr
->var
= 1;
7623 /* Perform invalidation on the basis of everything about an insn
7624 except for invalidating the actual places that are SET in it.
7625 This includes the places CLOBBERed, and anything that might
7626 alias with something that is SET or CLOBBERed.
7628 W points to the writes_memory for this insn, a struct write_data
7629 saying which kinds of memory references must be invalidated.
7630 X is the pattern of the insn. */
7633 invalidate_from_clobbers (w
, x
)
7634 struct write_data
*w
;
7637 /* If W->var is not set, W specifies no action.
7638 If W->all is set, this step gets all memory refs
7639 so they can be ignored in the rest of this function. */
7641 invalidate_memory (w
);
7645 if (reg_tick
[STACK_POINTER_REGNUM
] >= 0)
7646 reg_tick
[STACK_POINTER_REGNUM
]++;
7648 /* This should be *very* rare. */
7649 if (TEST_HARD_REG_BIT (hard_regs_in_table
, STACK_POINTER_REGNUM
))
7650 invalidate (stack_pointer_rtx
, VOIDmode
);
7653 if (GET_CODE (x
) == CLOBBER
)
7655 rtx ref
= XEXP (x
, 0);
7658 if (GET_CODE (ref
) == REG
|| GET_CODE (ref
) == SUBREG
7659 || (GET_CODE (ref
) == MEM
&& ! w
->all
))
7660 invalidate (ref
, VOIDmode
);
7661 else if (GET_CODE (ref
) == STRICT_LOW_PART
7662 || GET_CODE (ref
) == ZERO_EXTRACT
)
7663 invalidate (XEXP (ref
, 0), GET_MODE (ref
));
7666 else if (GET_CODE (x
) == PARALLEL
)
7669 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
7671 register rtx y
= XVECEXP (x
, 0, i
);
7672 if (GET_CODE (y
) == CLOBBER
)
7674 rtx ref
= XEXP (y
, 0);
7677 if (GET_CODE (ref
) == REG
|| GET_CODE (ref
) == SUBREG
7678 || (GET_CODE (ref
) == MEM
&& !w
->all
))
7679 invalidate (ref
, VOIDmode
);
7680 else if (GET_CODE (ref
) == STRICT_LOW_PART
7681 || GET_CODE (ref
) == ZERO_EXTRACT
)
7682 invalidate (XEXP (ref
, 0), GET_MODE (ref
));
7689 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
7690 and replace any registers in them with either an equivalent constant
7691 or the canonical form of the register. If we are inside an address,
7692 only do this if the address remains valid.
7694 OBJECT is 0 except when within a MEM in which case it is the MEM.
7696 Return the replacement for X. */
7699 cse_process_notes (x
, object
)
7703 enum rtx_code code
= GET_CODE (x
);
7704 char *fmt
= GET_RTX_FORMAT (code
);
7720 XEXP (x
, 0) = cse_process_notes (XEXP (x
, 0), x
);
7725 if (REG_NOTE_KIND (x
) == REG_EQUAL
)
7726 XEXP (x
, 0) = cse_process_notes (XEXP (x
, 0), NULL_RTX
);
7728 XEXP (x
, 1) = cse_process_notes (XEXP (x
, 1), NULL_RTX
);
7735 rtx
new = cse_process_notes (XEXP (x
, 0), object
);
7736 /* We don't substitute VOIDmode constants into these rtx,
7737 since they would impede folding. */
7738 if (GET_MODE (new) != VOIDmode
)
7739 validate_change (object
, &XEXP (x
, 0), new, 0);
7744 i
= reg_qty
[REGNO (x
)];
7746 /* Return a constant or a constant register. */
7747 if (REGNO_QTY_VALID_P (REGNO (x
))
7748 && qty_const
[i
] != 0
7749 && (CONSTANT_P (qty_const
[i
])
7750 || GET_CODE (qty_const
[i
]) == REG
))
7752 rtx
new = gen_lowpart_if_possible (GET_MODE (x
), qty_const
[i
]);
7757 /* Otherwise, canonicalize this register. */
7758 return canon_reg (x
, NULL_RTX
);
7761 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
7763 validate_change (object
, &XEXP (x
, i
),
7764 cse_process_notes (XEXP (x
, i
), object
), 0);
7769 /* Find common subexpressions between the end test of a loop and the beginning
7770 of the loop. LOOP_START is the CODE_LABEL at the start of a loop.
7772 Often we have a loop where an expression in the exit test is used
7773 in the body of the loop. For example "while (*p) *q++ = *p++;".
7774 Because of the way we duplicate the loop exit test in front of the loop,
7775 however, we don't detect that common subexpression. This will be caught
7776 when global cse is implemented, but this is a quite common case.
7778 This function handles the most common cases of these common expressions.
7779 It is called after we have processed the basic block ending with the
7780 NOTE_INSN_LOOP_END note that ends a loop and the previous JUMP_INSN
7781 jumps to a label used only once. */
7784 cse_around_loop (loop_start
)
7789 struct table_elt
*p
;
7791 /* If the jump at the end of the loop doesn't go to the start, we don't
7793 for (insn
= PREV_INSN (loop_start
);
7794 insn
&& (GET_CODE (insn
) == NOTE
&& NOTE_LINE_NUMBER (insn
) >= 0);
7795 insn
= PREV_INSN (insn
))
7799 || GET_CODE (insn
) != NOTE
7800 || NOTE_LINE_NUMBER (insn
) != NOTE_INSN_LOOP_BEG
)
7803 /* If the last insn of the loop (the end test) was an NE comparison,
7804 we will interpret it as an EQ comparison, since we fell through
7805 the loop. Any equivalences resulting from that comparison are
7806 therefore not valid and must be invalidated. */
7807 if (last_jump_equiv_class
)
7808 for (p
= last_jump_equiv_class
->first_same_value
; p
;
7809 p
= p
->next_same_value
)
7810 if (GET_CODE (p
->exp
) == MEM
|| GET_CODE (p
->exp
) == REG
7811 || (GET_CODE (p
->exp
) == SUBREG
7812 && GET_CODE (SUBREG_REG (p
->exp
)) == REG
))
7813 invalidate (p
->exp
, VOIDmode
);
7814 else if (GET_CODE (p
->exp
) == STRICT_LOW_PART
7815 || GET_CODE (p
->exp
) == ZERO_EXTRACT
)
7816 invalidate (XEXP (p
->exp
, 0), GET_MODE (p
->exp
));
7818 /* Process insns starting after LOOP_START until we hit a CALL_INSN or
7819 a CODE_LABEL (we could handle a CALL_INSN, but it isn't worth it).
7821 The only thing we do with SET_DEST is invalidate entries, so we
7822 can safely process each SET in order. It is slightly less efficient
7823 to do so, but we only want to handle the most common cases. */
7825 for (insn
= NEXT_INSN (loop_start
);
7826 GET_CODE (insn
) != CALL_INSN
&& GET_CODE (insn
) != CODE_LABEL
7827 && ! (GET_CODE (insn
) == NOTE
7828 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_END
);
7829 insn
= NEXT_INSN (insn
))
7831 if (GET_RTX_CLASS (GET_CODE (insn
)) == 'i'
7832 && (GET_CODE (PATTERN (insn
)) == SET
7833 || GET_CODE (PATTERN (insn
)) == CLOBBER
))
7834 cse_set_around_loop (PATTERN (insn
), insn
, loop_start
);
7835 else if (GET_RTX_CLASS (GET_CODE (insn
)) == 'i'
7836 && GET_CODE (PATTERN (insn
)) == PARALLEL
)
7837 for (i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
7838 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == SET
7839 || GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == CLOBBER
)
7840 cse_set_around_loop (XVECEXP (PATTERN (insn
), 0, i
), insn
,
7845 /* Variable used for communications between the next two routines. */
7847 static struct write_data skipped_writes_memory
;
7849 /* Process one SET of an insn that was skipped. We ignore CLOBBERs
7850 since they are done elsewhere. This function is called via note_stores. */
7853 invalidate_skipped_set (dest
, set
)
7857 if (GET_CODE (dest
) == MEM
)
7858 note_mem_written (dest
, &skipped_writes_memory
);
7860 /* There are times when an address can appear varying and be a PLUS
7861 during this scan when it would be a fixed address were we to know
7862 the proper equivalences. So promote "nonscalar" to be "all". */
7863 if (skipped_writes_memory
.nonscalar
)
7864 skipped_writes_memory
.all
= 1;
7866 if (GET_CODE (set
) == CLOBBER
7873 if (GET_CODE (dest
) == REG
|| GET_CODE (dest
) == SUBREG
7874 || (! skipped_writes_memory
.all
&& ! cse_rtx_addr_varies_p (dest
)))
7875 invalidate (dest
, VOIDmode
);
7876 else if (GET_CODE (dest
) == STRICT_LOW_PART
7877 || GET_CODE (dest
) == ZERO_EXTRACT
)
7878 invalidate (XEXP (dest
, 0), GET_MODE (dest
));
7881 /* Invalidate all insns from START up to the end of the function or the
7882 next label. This called when we wish to CSE around a block that is
7883 conditionally executed. */
7886 invalidate_skipped_block (start
)
7890 static struct write_data init
= {0, 0, 0, 0};
7891 static struct write_data everything
= {0, 1, 1, 1};
7893 for (insn
= start
; insn
&& GET_CODE (insn
) != CODE_LABEL
;
7894 insn
= NEXT_INSN (insn
))
7896 if (GET_RTX_CLASS (GET_CODE (insn
)) != 'i')
7899 skipped_writes_memory
= init
;
7901 if (GET_CODE (insn
) == CALL_INSN
)
7903 invalidate_for_call ();
7904 skipped_writes_memory
= everything
;
7907 note_stores (PATTERN (insn
), invalidate_skipped_set
);
7908 invalidate_from_clobbers (&skipped_writes_memory
, PATTERN (insn
));
7912 /* Used for communication between the following two routines; contains a
7913 value to be checked for modification. */
7915 static rtx cse_check_loop_start_value
;
7917 /* If modifying X will modify the value in CSE_CHECK_LOOP_START_VALUE,
7918 indicate that fact by setting CSE_CHECK_LOOP_START_VALUE to 0. */
7921 cse_check_loop_start (x
, set
)
7925 if (cse_check_loop_start_value
== 0
7926 || GET_CODE (x
) == CC0
|| GET_CODE (x
) == PC
)
7929 if ((GET_CODE (x
) == MEM
&& GET_CODE (cse_check_loop_start_value
) == MEM
)
7930 || reg_overlap_mentioned_p (x
, cse_check_loop_start_value
))
7931 cse_check_loop_start_value
= 0;
7934 /* X is a SET or CLOBBER contained in INSN that was found near the start of
7935 a loop that starts with the label at LOOP_START.
7937 If X is a SET, we see if its SET_SRC is currently in our hash table.
7938 If so, we see if it has a value equal to some register used only in the
7939 loop exit code (as marked by jump.c).
7941 If those two conditions are true, we search backwards from the start of
7942 the loop to see if that same value was loaded into a register that still
7943 retains its value at the start of the loop.
7945 If so, we insert an insn after the load to copy the destination of that
7946 load into the equivalent register and (try to) replace our SET_SRC with that
7949 In any event, we invalidate whatever this SET or CLOBBER modifies. */
7952 cse_set_around_loop (x
, insn
, loop_start
)
7957 struct table_elt
*src_elt
;
7958 static struct write_data init
= {0, 0, 0, 0};
7959 struct write_data writes_memory
;
7961 writes_memory
= init
;
7963 /* If this is a SET, see if we can replace SET_SRC, but ignore SETs that
7964 are setting PC or CC0 or whose SET_SRC is already a register. */
7965 if (GET_CODE (x
) == SET
7966 && GET_CODE (SET_DEST (x
)) != PC
&& GET_CODE (SET_DEST (x
)) != CC0
7967 && GET_CODE (SET_SRC (x
)) != REG
)
7969 src_elt
= lookup (SET_SRC (x
),
7970 HASH (SET_SRC (x
), GET_MODE (SET_DEST (x
))),
7971 GET_MODE (SET_DEST (x
)));
7974 for (src_elt
= src_elt
->first_same_value
; src_elt
;
7975 src_elt
= src_elt
->next_same_value
)
7976 if (GET_CODE (src_elt
->exp
) == REG
&& REG_LOOP_TEST_P (src_elt
->exp
)
7977 && COST (src_elt
->exp
) < COST (SET_SRC (x
)))
7981 /* Look for an insn in front of LOOP_START that sets
7982 something in the desired mode to SET_SRC (x) before we hit
7983 a label or CALL_INSN. */
7985 for (p
= prev_nonnote_insn (loop_start
);
7986 p
&& GET_CODE (p
) != CALL_INSN
7987 && GET_CODE (p
) != CODE_LABEL
;
7988 p
= prev_nonnote_insn (p
))
7989 if ((set
= single_set (p
)) != 0
7990 && GET_CODE (SET_DEST (set
)) == REG
7991 && GET_MODE (SET_DEST (set
)) == src_elt
->mode
7992 && rtx_equal_p (SET_SRC (set
), SET_SRC (x
)))
7994 /* We now have to ensure that nothing between P
7995 and LOOP_START modified anything referenced in
7996 SET_SRC (x). We know that nothing within the loop
7997 can modify it, or we would have invalidated it in
8001 cse_check_loop_start_value
= SET_SRC (x
);
8002 for (q
= p
; q
!= loop_start
; q
= NEXT_INSN (q
))
8003 if (GET_RTX_CLASS (GET_CODE (q
)) == 'i')
8004 note_stores (PATTERN (q
), cse_check_loop_start
);
8006 /* If nothing was changed and we can replace our
8007 SET_SRC, add an insn after P to copy its destination
8008 to what we will be replacing SET_SRC with. */
8009 if (cse_check_loop_start_value
8010 && validate_change (insn
, &SET_SRC (x
),
8012 emit_insn_after (gen_move_insn (src_elt
->exp
,
8020 /* Now invalidate anything modified by X. */
8021 note_mem_written (SET_DEST (x
), &writes_memory
);
8023 if (writes_memory
.var
)
8024 invalidate_memory (&writes_memory
);
8026 /* See comment on similar code in cse_insn for explanation of these
8028 if (GET_CODE (SET_DEST (x
)) == REG
|| GET_CODE (SET_DEST (x
)) == SUBREG
8029 || (GET_CODE (SET_DEST (x
)) == MEM
&& ! writes_memory
.all
8030 && ! cse_rtx_addr_varies_p (SET_DEST (x
))))
8031 invalidate (SET_DEST (x
), VOIDmode
);
8032 else if (GET_CODE (SET_DEST (x
)) == STRICT_LOW_PART
8033 || GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
)
8034 invalidate (XEXP (SET_DEST (x
), 0), GET_MODE (SET_DEST (x
)));
8037 /* Find the end of INSN's basic block and return its range,
8038 the total number of SETs in all the insns of the block, the last insn of the
8039 block, and the branch path.
8041 The branch path indicates which branches should be followed. If a non-zero
8042 path size is specified, the block should be rescanned and a different set
8043 of branches will be taken. The branch path is only used if
8044 FLAG_CSE_FOLLOW_JUMPS or FLAG_CSE_SKIP_BLOCKS is non-zero.
8046 DATA is a pointer to a struct cse_basic_block_data, defined below, that is
8047 used to describe the block. It is filled in with the information about
8048 the current block. The incoming structure's branch path, if any, is used
8049 to construct the output branch path. */
8052 cse_end_of_basic_block (insn
, data
, follow_jumps
, after_loop
, skip_blocks
)
8054 struct cse_basic_block_data
*data
;
8061 int low_cuid
= INSN_CUID (insn
), high_cuid
= INSN_CUID (insn
);
8062 rtx next
= GET_RTX_CLASS (GET_CODE (insn
)) == 'i' ? insn
: next_real_insn (insn
);
8063 int path_size
= data
->path_size
;
8067 /* Update the previous branch path, if any. If the last branch was
8068 previously TAKEN, mark it NOT_TAKEN. If it was previously NOT_TAKEN,
8069 shorten the path by one and look at the previous branch. We know that
8070 at least one branch must have been taken if PATH_SIZE is non-zero. */
8071 while (path_size
> 0)
8073 if (data
->path
[path_size
- 1].status
!= NOT_TAKEN
)
8075 data
->path
[path_size
- 1].status
= NOT_TAKEN
;
8082 /* Scan to end of this basic block. */
8083 while (p
&& GET_CODE (p
) != CODE_LABEL
)
8085 /* Don't cse out the end of a loop. This makes a difference
8086 only for the unusual loops that always execute at least once;
8087 all other loops have labels there so we will stop in any case.
8088 Cse'ing out the end of the loop is dangerous because it
8089 might cause an invariant expression inside the loop
8090 to be reused after the end of the loop. This would make it
8091 hard to move the expression out of the loop in loop.c,
8092 especially if it is one of several equivalent expressions
8093 and loop.c would like to eliminate it.
8095 If we are running after loop.c has finished, we can ignore
8096 the NOTE_INSN_LOOP_END. */
8098 if (! after_loop
&& GET_CODE (p
) == NOTE
8099 && NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_END
)
8102 /* Don't cse over a call to setjmp; on some machines (eg vax)
8103 the regs restored by the longjmp come from
8104 a later time than the setjmp. */
8105 if (GET_CODE (p
) == NOTE
8106 && NOTE_LINE_NUMBER (p
) == NOTE_INSN_SETJMP
)
8109 /* A PARALLEL can have lots of SETs in it,
8110 especially if it is really an ASM_OPERANDS. */
8111 if (GET_RTX_CLASS (GET_CODE (p
)) == 'i'
8112 && GET_CODE (PATTERN (p
)) == PARALLEL
)
8113 nsets
+= XVECLEN (PATTERN (p
), 0);
8114 else if (GET_CODE (p
) != NOTE
)
8117 /* Ignore insns made by CSE; they cannot affect the boundaries of
8120 if (INSN_UID (p
) <= max_uid
&& INSN_CUID (p
) > high_cuid
)
8121 high_cuid
= INSN_CUID (p
);
8122 if (INSN_UID (p
) <= max_uid
&& INSN_CUID (p
) < low_cuid
)
8123 low_cuid
= INSN_CUID (p
);
8125 /* See if this insn is in our branch path. If it is and we are to
8127 if (path_entry
< path_size
&& data
->path
[path_entry
].branch
== p
)
8129 if (data
->path
[path_entry
].status
!= NOT_TAKEN
)
8132 /* Point to next entry in path, if any. */
8136 /* If this is a conditional jump, we can follow it if -fcse-follow-jumps
8137 was specified, we haven't reached our maximum path length, there are
8138 insns following the target of the jump, this is the only use of the
8139 jump label, and the target label is preceded by a BARRIER.
8141 Alternatively, we can follow the jump if it branches around a
8142 block of code and there are no other branches into the block.
8143 In this case invalidate_skipped_block will be called to invalidate any
8144 registers set in the block when following the jump. */
8146 else if ((follow_jumps
|| skip_blocks
) && path_size
< PATHLENGTH
- 1
8147 && GET_CODE (p
) == JUMP_INSN
8148 && GET_CODE (PATTERN (p
)) == SET
8149 && GET_CODE (SET_SRC (PATTERN (p
))) == IF_THEN_ELSE
8150 && LABEL_NUSES (JUMP_LABEL (p
)) == 1
8151 && NEXT_INSN (JUMP_LABEL (p
)) != 0)
8153 for (q
= PREV_INSN (JUMP_LABEL (p
)); q
; q
= PREV_INSN (q
))
8154 if ((GET_CODE (q
) != NOTE
8155 || NOTE_LINE_NUMBER (q
) == NOTE_INSN_LOOP_END
8156 || NOTE_LINE_NUMBER (q
) == NOTE_INSN_SETJMP
)
8157 && (GET_CODE (q
) != CODE_LABEL
|| LABEL_NUSES (q
) != 0))
8160 /* If we ran into a BARRIER, this code is an extension of the
8161 basic block when the branch is taken. */
8162 if (follow_jumps
&& q
!= 0 && GET_CODE (q
) == BARRIER
)
8164 /* Don't allow ourself to keep walking around an
8165 always-executed loop. */
8166 if (next_real_insn (q
) == next
)
8172 /* Similarly, don't put a branch in our path more than once. */
8173 for (i
= 0; i
< path_entry
; i
++)
8174 if (data
->path
[i
].branch
== p
)
8177 if (i
!= path_entry
)
8180 data
->path
[path_entry
].branch
= p
;
8181 data
->path
[path_entry
++].status
= TAKEN
;
8183 /* This branch now ends our path. It was possible that we
8184 didn't see this branch the last time around (when the
8185 insn in front of the target was a JUMP_INSN that was
8186 turned into a no-op). */
8187 path_size
= path_entry
;
8190 /* Mark block so we won't scan it again later. */
8191 PUT_MODE (NEXT_INSN (p
), QImode
);
8193 /* Detect a branch around a block of code. */
8194 else if (skip_blocks
&& q
!= 0 && GET_CODE (q
) != CODE_LABEL
)
8198 if (next_real_insn (q
) == next
)
8204 for (i
= 0; i
< path_entry
; i
++)
8205 if (data
->path
[i
].branch
== p
)
8208 if (i
!= path_entry
)
8211 /* This is no_labels_between_p (p, q) with an added check for
8212 reaching the end of a function (in case Q precedes P). */
8213 for (tmp
= NEXT_INSN (p
); tmp
&& tmp
!= q
; tmp
= NEXT_INSN (tmp
))
8214 if (GET_CODE (tmp
) == CODE_LABEL
)
8219 data
->path
[path_entry
].branch
= p
;
8220 data
->path
[path_entry
++].status
= AROUND
;
8222 path_size
= path_entry
;
8225 /* Mark block so we won't scan it again later. */
8226 PUT_MODE (NEXT_INSN (p
), QImode
);
8233 data
->low_cuid
= low_cuid
;
8234 data
->high_cuid
= high_cuid
;
8235 data
->nsets
= nsets
;
8238 /* If all jumps in the path are not taken, set our path length to zero
8239 so a rescan won't be done. */
8240 for (i
= path_size
- 1; i
>= 0; i
--)
8241 if (data
->path
[i
].status
!= NOT_TAKEN
)
8245 data
->path_size
= 0;
8247 data
->path_size
= path_size
;
8249 /* End the current branch path. */
8250 data
->path
[path_size
].branch
= 0;
8253 /* Perform cse on the instructions of a function.
8254 F is the first instruction.
8255 NREGS is one plus the highest pseudo-reg number used in the instruction.
8257 AFTER_LOOP is 1 if this is the cse call done after loop optimization
8258 (only if -frerun-cse-after-loop).
8260 Returns 1 if jump_optimize should be redone due to simplifications
8261 in conditional jump instructions. */
8264 cse_main (f
, nregs
, after_loop
, file
)
8270 struct cse_basic_block_data val
;
8271 register rtx insn
= f
;
8274 cse_jumps_altered
= 0;
8275 recorded_label_ref
= 0;
8276 constant_pool_entries_cost
= 0;
8283 all_minus_one
= (int *) alloca (nregs
* sizeof (int));
8284 consec_ints
= (int *) alloca (nregs
* sizeof (int));
8286 for (i
= 0; i
< nregs
; i
++)
8288 all_minus_one
[i
] = -1;
8292 reg_next_eqv
= (int *) alloca (nregs
* sizeof (int));
8293 reg_prev_eqv
= (int *) alloca (nregs
* sizeof (int));
8294 reg_qty
= (int *) alloca (nregs
* sizeof (int));
8295 reg_in_table
= (int *) alloca (nregs
* sizeof (int));
8296 reg_tick
= (int *) alloca (nregs
* sizeof (int));
8298 #ifdef LOAD_EXTEND_OP
8300 /* Allocate scratch rtl here. cse_insn will fill in the memory reference
8301 and change the code and mode as appropriate. */
8302 memory_extend_rtx
= gen_rtx (ZERO_EXTEND
, VOIDmode
, 0);
8305 /* Discard all the free elements of the previous function
8306 since they are allocated in the temporarily obstack. */
8307 bzero ((char *) table
, sizeof table
);
8308 free_element_chain
= 0;
8309 n_elements_made
= 0;
8311 /* Find the largest uid. */
8313 max_uid
= get_max_uid ();
8314 uid_cuid
= (int *) alloca ((max_uid
+ 1) * sizeof (int));
8315 bzero ((char *) uid_cuid
, (max_uid
+ 1) * sizeof (int));
8317 /* Compute the mapping from uids to cuids.
8318 CUIDs are numbers assigned to insns, like uids,
8319 except that cuids increase monotonically through the code.
8320 Don't assign cuids to line-number NOTEs, so that the distance in cuids
8321 between two insns is not affected by -g. */
8323 for (insn
= f
, i
= 0; insn
; insn
= NEXT_INSN (insn
))
8325 if (GET_CODE (insn
) != NOTE
8326 || NOTE_LINE_NUMBER (insn
) < 0)
8327 INSN_CUID (insn
) = ++i
;
8329 /* Give a line number note the same cuid as preceding insn. */
8330 INSN_CUID (insn
) = i
;
8333 /* Initialize which registers are clobbered by calls. */
8335 CLEAR_HARD_REG_SET (regs_invalidated_by_call
);
8337 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
8338 if ((call_used_regs
[i
]
8339 /* Used to check !fixed_regs[i] here, but that isn't safe;
8340 fixed regs are still call-clobbered, and sched can get
8341 confused if they can "live across calls".
8343 The frame pointer is always preserved across calls. The arg
8344 pointer is if it is fixed. The stack pointer usually is, unless
8345 RETURN_POPS_ARGS, in which case an explicit CLOBBER
8346 will be present. If we are generating PIC code, the PIC offset
8347 table register is preserved across calls. */
8349 && i
!= STACK_POINTER_REGNUM
8350 && i
!= FRAME_POINTER_REGNUM
8351 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
8352 && i
!= HARD_FRAME_POINTER_REGNUM
8354 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
8355 && ! (i
== ARG_POINTER_REGNUM
&& fixed_regs
[i
])
8357 #if defined (PIC_OFFSET_TABLE_REGNUM) && !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED)
8358 && ! (i
== PIC_OFFSET_TABLE_REGNUM
&& flag_pic
)
8362 SET_HARD_REG_BIT (regs_invalidated_by_call
, i
);
8364 /* Loop over basic blocks.
8365 Compute the maximum number of qty's needed for each basic block
8366 (which is 2 for each SET). */
8370 cse_end_of_basic_block (insn
, &val
, flag_cse_follow_jumps
, after_loop
,
8371 flag_cse_skip_blocks
);
8373 /* If this basic block was already processed or has no sets, skip it. */
8374 if (val
.nsets
== 0 || GET_MODE (insn
) == QImode
)
8376 PUT_MODE (insn
, VOIDmode
);
8377 insn
= (val
.last
? NEXT_INSN (val
.last
) : 0);
8382 cse_basic_block_start
= val
.low_cuid
;
8383 cse_basic_block_end
= val
.high_cuid
;
8384 max_qty
= val
.nsets
* 2;
8387 fprintf (file
, ";; Processing block from %d to %d, %d sets.\n",
8388 INSN_UID (insn
), val
.last
? INSN_UID (val
.last
) : 0,
8391 /* Make MAX_QTY bigger to give us room to optimize
8392 past the end of this basic block, if that should prove useful. */
8398 /* If this basic block is being extended by following certain jumps,
8399 (see `cse_end_of_basic_block'), we reprocess the code from the start.
8400 Otherwise, we start after this basic block. */
8401 if (val
.path_size
> 0)
8402 cse_basic_block (insn
, val
.last
, val
.path
, 0);
8405 int old_cse_jumps_altered
= cse_jumps_altered
;
8408 /* When cse changes a conditional jump to an unconditional
8409 jump, we want to reprocess the block, since it will give
8410 us a new branch path to investigate. */
8411 cse_jumps_altered
= 0;
8412 temp
= cse_basic_block (insn
, val
.last
, val
.path
, ! after_loop
);
8413 if (cse_jumps_altered
== 0
8414 || (flag_cse_follow_jumps
== 0 && flag_cse_skip_blocks
== 0))
8417 cse_jumps_altered
|= old_cse_jumps_altered
;
8425 /* Tell refers_to_mem_p that qty_const info is not available. */
8428 if (max_elements_made
< n_elements_made
)
8429 max_elements_made
= n_elements_made
;
8431 return cse_jumps_altered
|| recorded_label_ref
;
8434 /* Process a single basic block. FROM and TO and the limits of the basic
8435 block. NEXT_BRANCH points to the branch path when following jumps or
8436 a null path when not following jumps.
8438 AROUND_LOOP is non-zero if we are to try to cse around to the start of a
8439 loop. This is true when we are being called for the last time on a
8440 block and this CSE pass is before loop.c. */
8443 cse_basic_block (from
, to
, next_branch
, around_loop
)
8444 register rtx from
, to
;
8445 struct branch_path
*next_branch
;
8450 int in_libcall_block
= 0;
8452 /* Each of these arrays is undefined before max_reg, so only allocate
8453 the space actually needed and adjust the start below. */
8455 qty_first_reg
= (int *) alloca ((max_qty
- max_reg
) * sizeof (int));
8456 qty_last_reg
= (int *) alloca ((max_qty
- max_reg
) * sizeof (int));
8457 qty_mode
= (enum machine_mode
*) alloca ((max_qty
- max_reg
) * sizeof (enum machine_mode
));
8458 qty_const
= (rtx
*) alloca ((max_qty
- max_reg
) * sizeof (rtx
));
8459 qty_const_insn
= (rtx
*) alloca ((max_qty
- max_reg
) * sizeof (rtx
));
8461 = (enum rtx_code
*) alloca ((max_qty
- max_reg
) * sizeof (enum rtx_code
));
8462 qty_comparison_qty
= (int *) alloca ((max_qty
- max_reg
) * sizeof (int));
8463 qty_comparison_const
= (rtx
*) alloca ((max_qty
- max_reg
) * sizeof (rtx
));
8465 qty_first_reg
-= max_reg
;
8466 qty_last_reg
-= max_reg
;
8467 qty_mode
-= max_reg
;
8468 qty_const
-= max_reg
;
8469 qty_const_insn
-= max_reg
;
8470 qty_comparison_code
-= max_reg
;
8471 qty_comparison_qty
-= max_reg
;
8472 qty_comparison_const
-= max_reg
;
8476 /* TO might be a label. If so, protect it from being deleted. */
8477 if (to
!= 0 && GET_CODE (to
) == CODE_LABEL
)
8480 for (insn
= from
; insn
!= to
; insn
= NEXT_INSN (insn
))
8482 register enum rtx_code code
;
8484 /* See if this is a branch that is part of the path. If so, and it is
8485 to be taken, do so. */
8486 if (next_branch
->branch
== insn
)
8488 enum taken status
= next_branch
++->status
;
8489 if (status
!= NOT_TAKEN
)
8491 if (status
== TAKEN
)
8492 record_jump_equiv (insn
, 1);
8494 invalidate_skipped_block (NEXT_INSN (insn
));
8496 /* Set the last insn as the jump insn; it doesn't affect cc0.
8497 Then follow this branch. */
8502 insn
= JUMP_LABEL (insn
);
8507 code
= GET_CODE (insn
);
8508 if (GET_MODE (insn
) == QImode
)
8509 PUT_MODE (insn
, VOIDmode
);
8511 if (GET_RTX_CLASS (code
) == 'i')
8513 /* Process notes first so we have all notes in canonical forms when
8514 looking for duplicate operations. */
8516 if (REG_NOTES (insn
))
8517 REG_NOTES (insn
) = cse_process_notes (REG_NOTES (insn
), NULL_RTX
);
8519 /* Track when we are inside in LIBCALL block. Inside such a block,
8520 we do not want to record destinations. The last insn of a
8521 LIBCALL block is not considered to be part of the block, since
8522 its destination is the result of the block and hence should be
8525 if (find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
))
8526 in_libcall_block
= 1;
8527 else if (find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
8528 in_libcall_block
= 0;
8530 cse_insn (insn
, in_libcall_block
);
8533 /* If INSN is now an unconditional jump, skip to the end of our
8534 basic block by pretending that we just did the last insn in the
8535 basic block. If we are jumping to the end of our block, show
8536 that we can have one usage of TO. */
8538 if (simplejump_p (insn
))
8543 if (JUMP_LABEL (insn
) == to
)
8546 /* Maybe TO was deleted because the jump is unconditional.
8547 If so, there is nothing left in this basic block. */
8548 /* ??? Perhaps it would be smarter to set TO
8549 to whatever follows this insn,
8550 and pretend the basic block had always ended here. */
8551 if (INSN_DELETED_P (to
))
8554 insn
= PREV_INSN (to
);
8557 /* See if it is ok to keep on going past the label
8558 which used to end our basic block. Remember that we incremented
8559 the count of that label, so we decrement it here. If we made
8560 a jump unconditional, TO_USAGE will be one; in that case, we don't
8561 want to count the use in that jump. */
8563 if (to
!= 0 && NEXT_INSN (insn
) == to
8564 && GET_CODE (to
) == CODE_LABEL
&& --LABEL_NUSES (to
) == to_usage
)
8566 struct cse_basic_block_data val
;
8569 insn
= NEXT_INSN (to
);
8571 if (LABEL_NUSES (to
) == 0)
8572 insn
= delete_insn (to
);
8574 /* If TO was the last insn in the function, we are done. */
8578 /* If TO was preceded by a BARRIER we are done with this block
8579 because it has no continuation. */
8580 prev
= prev_nonnote_insn (to
);
8581 if (prev
&& GET_CODE (prev
) == BARRIER
)
8584 /* Find the end of the following block. Note that we won't be
8585 following branches in this case. */
8588 cse_end_of_basic_block (insn
, &val
, 0, 0, 0);
8590 /* If the tables we allocated have enough space left
8591 to handle all the SETs in the next basic block,
8592 continue through it. Otherwise, return,
8593 and that block will be scanned individually. */
8594 if (val
.nsets
* 2 + next_qty
> max_qty
)
8597 cse_basic_block_start
= val
.low_cuid
;
8598 cse_basic_block_end
= val
.high_cuid
;
8601 /* Prevent TO from being deleted if it is a label. */
8602 if (to
!= 0 && GET_CODE (to
) == CODE_LABEL
)
8605 /* Back up so we process the first insn in the extension. */
8606 insn
= PREV_INSN (insn
);
8610 if (next_qty
> max_qty
)
8613 /* If we are running before loop.c, we stopped on a NOTE_INSN_LOOP_END, and
8614 the previous insn is the only insn that branches to the head of a loop,
8615 we can cse into the loop. Don't do this if we changed the jump
8616 structure of a loop unless we aren't going to be following jumps. */
8618 if ((cse_jumps_altered
== 0
8619 || (flag_cse_follow_jumps
== 0 && flag_cse_skip_blocks
== 0))
8620 && around_loop
&& to
!= 0
8621 && GET_CODE (to
) == NOTE
&& NOTE_LINE_NUMBER (to
) == NOTE_INSN_LOOP_END
8622 && GET_CODE (PREV_INSN (to
)) == JUMP_INSN
8623 && JUMP_LABEL (PREV_INSN (to
)) != 0
8624 && LABEL_NUSES (JUMP_LABEL (PREV_INSN (to
))) == 1)
8625 cse_around_loop (JUMP_LABEL (PREV_INSN (to
)));
8627 return to
? NEXT_INSN (to
) : 0;
8630 /* Count the number of times registers are used (not set) in X.
8631 COUNTS is an array in which we accumulate the count, INCR is how much
8632 we count each register usage.
8634 Don't count a usage of DEST, which is the SET_DEST of a SET which
8635 contains X in its SET_SRC. This is because such a SET does not
8636 modify the liveness of DEST. */
8639 count_reg_usage (x
, counts
, dest
, incr
)
8652 switch (code
= GET_CODE (x
))
8656 counts
[REGNO (x
)] += incr
;
8670 /* Unless we are setting a REG, count everything in SET_DEST. */
8671 if (GET_CODE (SET_DEST (x
)) != REG
)
8672 count_reg_usage (SET_DEST (x
), counts
, NULL_RTX
, incr
);
8674 /* If SRC has side-effects, then we can't delete this insn, so the
8675 usage of SET_DEST inside SRC counts.
8677 ??? Strictly-speaking, we might be preserving this insn
8678 because some other SET has side-effects, but that's hard
8679 to do and can't happen now. */
8680 count_reg_usage (SET_SRC (x
), counts
,
8681 side_effects_p (SET_SRC (x
)) ? NULL_RTX
: SET_DEST (x
),
8686 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x
), counts
, NULL_RTX
, incr
);
8688 /* ... falls through ... */
8691 count_reg_usage (PATTERN (x
), counts
, NULL_RTX
, incr
);
8693 /* Things used in a REG_EQUAL note aren't dead since loop may try to
8696 count_reg_usage (REG_NOTES (x
), counts
, NULL_RTX
, incr
);
8701 if (REG_NOTE_KIND (x
) == REG_EQUAL
8702 || GET_CODE (XEXP (x
,0)) == USE
)
8703 count_reg_usage (XEXP (x
, 0), counts
, NULL_RTX
, incr
);
8704 count_reg_usage (XEXP (x
, 1), counts
, NULL_RTX
, incr
);
8708 fmt
= GET_RTX_FORMAT (code
);
8709 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
8712 count_reg_usage (XEXP (x
, i
), counts
, dest
, incr
);
8713 else if (fmt
[i
] == 'E')
8714 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
8715 count_reg_usage (XVECEXP (x
, i
, j
), counts
, dest
, incr
);
8719 /* Scan all the insns and delete any that are dead; i.e., they store a register
8720 that is never used or they copy a register to itself.
8722 This is used to remove insns made obviously dead by cse. It improves the
8723 heuristics in loop since it won't try to move dead invariants out of loops
8724 or make givs for dead quantities. The remaining passes of the compilation
8725 are also sped up. */
8728 delete_dead_from_cse (insns
, nreg
)
8732 int *counts
= (int *) alloca (nreg
* sizeof (int));
8738 /* First count the number of times each register is used. */
8739 bzero ((char *) counts
, sizeof (int) * nreg
);
8740 for (insn
= next_real_insn (insns
); insn
; insn
= next_real_insn (insn
))
8741 count_reg_usage (insn
, counts
, NULL_RTX
, 1);
8743 /* Go from the last insn to the first and delete insns that only set unused
8744 registers or copy a register to itself. As we delete an insn, remove
8745 usage counts for registers it uses. */
8746 for (insn
= prev_real_insn (get_last_insn ()); insn
; insn
= prev
)
8750 prev
= prev_real_insn (insn
);
8752 /* Don't delete any insns that are part of a libcall block.
8753 Flow or loop might get confused if we did that. Remember
8754 that we are scanning backwards. */
8755 if (find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
8760 else if (GET_CODE (PATTERN (insn
)) == SET
)
8762 if (GET_CODE (SET_DEST (PATTERN (insn
))) == REG
8763 && SET_DEST (PATTERN (insn
)) == SET_SRC (PATTERN (insn
)))
8767 else if (GET_CODE (SET_DEST (PATTERN (insn
))) == CC0
8768 && ! side_effects_p (SET_SRC (PATTERN (insn
)))
8769 && ((tem
= next_nonnote_insn (insn
)) == 0
8770 || GET_RTX_CLASS (GET_CODE (tem
)) != 'i'
8771 || ! reg_referenced_p (cc0_rtx
, PATTERN (tem
))))
8774 else if (GET_CODE (SET_DEST (PATTERN (insn
))) != REG
8775 || REGNO (SET_DEST (PATTERN (insn
))) < FIRST_PSEUDO_REGISTER
8776 || counts
[REGNO (SET_DEST (PATTERN (insn
)))] != 0
8777 || side_effects_p (SET_SRC (PATTERN (insn
))))
8780 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
8781 for (i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
8783 rtx elt
= XVECEXP (PATTERN (insn
), 0, i
);
8785 if (GET_CODE (elt
) == SET
)
8787 if (GET_CODE (SET_DEST (elt
)) == REG
8788 && SET_DEST (elt
) == SET_SRC (elt
))
8792 else if (GET_CODE (SET_DEST (elt
)) == CC0
8793 && ! side_effects_p (SET_SRC (elt
))
8794 && ((tem
= next_nonnote_insn (insn
)) == 0
8795 || GET_RTX_CLASS (GET_CODE (tem
)) != 'i'
8796 || ! reg_referenced_p (cc0_rtx
, PATTERN (tem
))))
8799 else if (GET_CODE (SET_DEST (elt
)) != REG
8800 || REGNO (SET_DEST (elt
)) < FIRST_PSEUDO_REGISTER
8801 || counts
[REGNO (SET_DEST (elt
))] != 0
8802 || side_effects_p (SET_SRC (elt
)))
8805 else if (GET_CODE (elt
) != CLOBBER
&& GET_CODE (elt
) != USE
)
8811 /* If this is a dead insn, delete it and show registers in it aren't
8816 count_reg_usage (insn
, counts
, NULL_RTX
, -1);
8820 if (find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
))