]> gcc.gnu.org Git - gcc.git/blob - gcc/cp/semantics.c
92efe443a6d514fbff97674397f68f368ab45bee
[gcc.git] / gcc / cp / semantics.c
1 /* Perform the semantic phase of parsing, i.e., the process of
2 building tree structure, checking semantic consistency, and
3 building RTL. These routines are used both during actual parsing
4 and during the instantiation of template functions.
5
6 Copyright (C) 1998, 1999, 2000, 2001, 2002,
7 2003, 2004 Free Software Foundation, Inc.
8 Written by Mark Mitchell (mmitchell@usa.net) based on code found
9 formerly in parse.y and pt.c.
10
11 This file is part of GCC.
12
13 GCC is free software; you can redistribute it and/or modify it
14 under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2, or (at your option)
16 any later version.
17
18 GCC is distributed in the hope that it will be useful, but
19 WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GCC; see the file COPYING. If not, write to the Free
25 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
26 02111-1307, USA. */
27
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "tree.h"
33 #include "cp-tree.h"
34 #include "tree-inline.h"
35 #include "tree-mudflap.h"
36 #include "except.h"
37 #include "lex.h"
38 #include "toplev.h"
39 #include "flags.h"
40 #include "rtl.h"
41 #include "expr.h"
42 #include "output.h"
43 #include "timevar.h"
44 #include "debug.h"
45 #include "diagnostic.h"
46 #include "cgraph.h"
47 #include "tree-iterator.h"
48
49 /* There routines provide a modular interface to perform many parsing
50 operations. They may therefore be used during actual parsing, or
51 during template instantiation, which may be regarded as a
52 degenerate form of parsing. Since the current g++ parser is
53 lacking in several respects, and will be reimplemented, we are
54 attempting to move most code that is not directly related to
55 parsing into this file; that will make implementing the new parser
56 much easier since it will be able to make use of these routines. */
57
58 static tree maybe_convert_cond (tree);
59 static tree simplify_aggr_init_exprs_r (tree *, int *, void *);
60 static void emit_associated_thunks (tree);
61 static tree finalize_nrv_r (tree *, int *, void *);
62
63
64 /* Deferred Access Checking Overview
65 ---------------------------------
66
67 Most C++ expressions and declarations require access checking
68 to be performed during parsing. However, in several cases,
69 this has to be treated differently.
70
71 For member declarations, access checking has to be deferred
72 until more information about the declaration is known. For
73 example:
74
75 class A {
76 typedef int X;
77 public:
78 X f();
79 };
80
81 A::X A::f();
82 A::X g();
83
84 When we are parsing the function return type `A::X', we don't
85 really know if this is allowed until we parse the function name.
86
87 Furthermore, some contexts require that access checking is
88 never performed at all. These include class heads, and template
89 instantiations.
90
91 Typical use of access checking functions is described here:
92
93 1. When we enter a context that requires certain access checking
94 mode, the function `push_deferring_access_checks' is called with
95 DEFERRING argument specifying the desired mode. Access checking
96 may be performed immediately (dk_no_deferred), deferred
97 (dk_deferred), or not performed (dk_no_check).
98
99 2. When a declaration such as a type, or a variable, is encountered,
100 the function `perform_or_defer_access_check' is called. It
101 maintains a TREE_LIST of all deferred checks.
102
103 3. The global `current_class_type' or `current_function_decl' is then
104 setup by the parser. `enforce_access' relies on these information
105 to check access.
106
107 4. Upon exiting the context mentioned in step 1,
108 `perform_deferred_access_checks' is called to check all declaration
109 stored in the TREE_LIST. `pop_deferring_access_checks' is then
110 called to restore the previous access checking mode.
111
112 In case of parsing error, we simply call `pop_deferring_access_checks'
113 without `perform_deferred_access_checks'. */
114
115 /* Data for deferred access checking. */
116 static GTY(()) deferred_access *deferred_access_stack;
117 static GTY(()) deferred_access *deferred_access_free_list;
118
119 /* Save the current deferred access states and start deferred
120 access checking iff DEFER_P is true. */
121
122 void
123 push_deferring_access_checks (deferring_kind deferring)
124 {
125 deferred_access *d;
126
127 /* For context like template instantiation, access checking
128 disabling applies to all nested context. */
129 if (deferred_access_stack
130 && deferred_access_stack->deferring_access_checks_kind == dk_no_check)
131 deferring = dk_no_check;
132
133 /* Recycle previously used free store if available. */
134 if (deferred_access_free_list)
135 {
136 d = deferred_access_free_list;
137 deferred_access_free_list = d->next;
138 }
139 else
140 d = ggc_alloc (sizeof (deferred_access));
141
142 d->next = deferred_access_stack;
143 d->deferred_access_checks = NULL_TREE;
144 d->deferring_access_checks_kind = deferring;
145 deferred_access_stack = d;
146 }
147
148 /* Resume deferring access checks again after we stopped doing
149 this previously. */
150
151 void
152 resume_deferring_access_checks (void)
153 {
154 if (deferred_access_stack->deferring_access_checks_kind == dk_no_deferred)
155 deferred_access_stack->deferring_access_checks_kind = dk_deferred;
156 }
157
158 /* Stop deferring access checks. */
159
160 void
161 stop_deferring_access_checks (void)
162 {
163 if (deferred_access_stack->deferring_access_checks_kind == dk_deferred)
164 deferred_access_stack->deferring_access_checks_kind = dk_no_deferred;
165 }
166
167 /* Discard the current deferred access checks and restore the
168 previous states. */
169
170 void
171 pop_deferring_access_checks (void)
172 {
173 deferred_access *d = deferred_access_stack;
174 deferred_access_stack = d->next;
175
176 /* Remove references to access checks TREE_LIST. */
177 d->deferred_access_checks = NULL_TREE;
178
179 /* Store in free list for later use. */
180 d->next = deferred_access_free_list;
181 deferred_access_free_list = d;
182 }
183
184 /* Returns a TREE_LIST representing the deferred checks.
185 The TREE_PURPOSE of each node is the type through which the
186 access occurred; the TREE_VALUE is the declaration named.
187 */
188
189 tree
190 get_deferred_access_checks (void)
191 {
192 return deferred_access_stack->deferred_access_checks;
193 }
194
195 /* Take current deferred checks and combine with the
196 previous states if we also defer checks previously.
197 Otherwise perform checks now. */
198
199 void
200 pop_to_parent_deferring_access_checks (void)
201 {
202 tree deferred_check = get_deferred_access_checks ();
203 deferred_access *d1 = deferred_access_stack;
204 deferred_access *d2 = deferred_access_stack->next;
205 deferred_access *d3 = deferred_access_stack->next->next;
206
207 /* Temporary swap the order of the top two states, just to make
208 sure the garbage collector will not reclaim the memory during
209 processing below. */
210 deferred_access_stack = d2;
211 d2->next = d1;
212 d1->next = d3;
213
214 for ( ; deferred_check; deferred_check = TREE_CHAIN (deferred_check))
215 /* Perform deferred check if required. */
216 perform_or_defer_access_check (TREE_PURPOSE (deferred_check),
217 TREE_VALUE (deferred_check));
218
219 deferred_access_stack = d1;
220 d1->next = d2;
221 d2->next = d3;
222 pop_deferring_access_checks ();
223 }
224
225 /* Perform the deferred access checks.
226
227 After performing the checks, we still have to keep the list
228 `deferred_access_stack->deferred_access_checks' since we may want
229 to check access for them again later in a different context.
230 For example:
231
232 class A {
233 typedef int X;
234 static X a;
235 };
236 A::X A::a, x; // No error for `A::a', error for `x'
237
238 We have to perform deferred access of `A::X', first with `A::a',
239 next with `x'. */
240
241 void
242 perform_deferred_access_checks (void)
243 {
244 tree deferred_check;
245 for (deferred_check = deferred_access_stack->deferred_access_checks;
246 deferred_check;
247 deferred_check = TREE_CHAIN (deferred_check))
248 /* Check access. */
249 enforce_access (TREE_PURPOSE (deferred_check),
250 TREE_VALUE (deferred_check));
251 }
252
253 /* Defer checking the accessibility of DECL, when looked up in
254 BINFO. */
255
256 void
257 perform_or_defer_access_check (tree binfo, tree decl)
258 {
259 tree check;
260
261 my_friendly_assert (TREE_CODE (binfo) == TREE_VEC, 20030623);
262
263 /* If we are not supposed to defer access checks, just check now. */
264 if (deferred_access_stack->deferring_access_checks_kind == dk_no_deferred)
265 {
266 enforce_access (binfo, decl);
267 return;
268 }
269 /* Exit if we are in a context that no access checking is performed. */
270 else if (deferred_access_stack->deferring_access_checks_kind == dk_no_check)
271 return;
272
273 /* See if we are already going to perform this check. */
274 for (check = deferred_access_stack->deferred_access_checks;
275 check;
276 check = TREE_CHAIN (check))
277 if (TREE_VALUE (check) == decl && TREE_PURPOSE (check) == binfo)
278 return;
279 /* If not, record the check. */
280 deferred_access_stack->deferred_access_checks
281 = tree_cons (binfo, decl,
282 deferred_access_stack->deferred_access_checks);
283 }
284
285 /* Returns nonzero if the current statement is a full expression,
286 i.e. temporaries created during that statement should be destroyed
287 at the end of the statement. */
288
289 int
290 stmts_are_full_exprs_p (void)
291 {
292 return current_stmt_tree ()->stmts_are_full_exprs_p;
293 }
294
295 /* Returns the stmt_tree (if any) to which statements are currently
296 being added. If there is no active statement-tree, NULL is
297 returned. */
298
299 stmt_tree
300 current_stmt_tree (void)
301 {
302 return (cfun
303 ? &cfun->language->base.x_stmt_tree
304 : &scope_chain->x_stmt_tree);
305 }
306
307 /* If statements are full expressions, wrap STMT in a CLEANUP_POINT_EXPR. */
308
309 static tree
310 maybe_cleanup_point_expr (tree expr)
311 {
312 if (!processing_template_decl && stmts_are_full_exprs_p ())
313 expr = fold (build1 (CLEANUP_POINT_EXPR, TREE_TYPE (expr), expr));
314 return expr;
315 }
316
317 /* Create a declaration statement for the declaration given by the DECL. */
318
319 void
320 add_decl_stmt (tree decl)
321 {
322 tree r = build_stmt (DECL_STMT, decl);
323 if (DECL_INITIAL (decl))
324 r = maybe_cleanup_point_expr (r);
325 add_stmt (r);
326 }
327
328 /* Nonzero if TYPE is an anonymous union or struct type. We have to use a
329 flag for this because "A union for which objects or pointers are
330 declared is not an anonymous union" [class.union]. */
331
332 int
333 anon_aggr_type_p (tree node)
334 {
335 return ANON_AGGR_TYPE_P (node);
336 }
337
338 /* Finish a scope. */
339
340 static tree
341 do_poplevel (tree stmt_list)
342 {
343 tree block = NULL;
344
345 if (stmts_are_full_exprs_p ())
346 block = poplevel (kept_level_p (), 1, 0);
347
348 stmt_list = pop_stmt_list (stmt_list);
349
350 if (!processing_template_decl)
351 {
352 stmt_list = c_build_bind_expr (block, stmt_list);
353 /* ??? See c_end_compound_stmt re statement expressions. */
354 }
355
356 return stmt_list;
357 }
358
359 /* Begin a new scope. */
360
361 static tree
362 do_pushlevel (scope_kind sk)
363 {
364 tree ret = push_stmt_list ();
365 if (stmts_are_full_exprs_p ())
366 begin_scope (sk, NULL);
367 return ret;
368 }
369
370 /* Queue a cleanup. CLEANUP is an expression/statement to be executed
371 when the current scope is exited. EH_ONLY is true when this is not
372 meant to apply to normal control flow transfer. */
373
374 void
375 push_cleanup (tree decl, tree cleanup, bool eh_only)
376 {
377 tree stmt = build_stmt (CLEANUP_STMT, NULL, cleanup, decl);
378 CLEANUP_EH_ONLY (stmt) = eh_only;
379 add_stmt (stmt);
380 CLEANUP_BODY (stmt) = push_stmt_list ();
381 }
382
383 /* Begin a conditional that might contain a declaration. When generating
384 normal code, we want the declaration to appear before the statement
385 containing the conditional. When generating template code, we want the
386 conditional to be rendered as the raw DECL_STMT. */
387
388 static void
389 begin_cond (tree *cond_p)
390 {
391 if (processing_template_decl)
392 *cond_p = push_stmt_list ();
393 }
394
395 /* Finish such a conditional. */
396
397 static void
398 finish_cond (tree *cond_p, tree expr)
399 {
400 if (processing_template_decl)
401 {
402 tree cond = pop_stmt_list (*cond_p);
403 if (TREE_CODE (cond) == DECL_STMT)
404 expr = cond;
405 }
406 *cond_p = expr;
407 }
408
409 /* If *COND_P specifies a conditional with a declaration, transform the
410 loop such that
411 while (A x = 42) { }
412 for (; A x = 42;) { }
413 becomes
414 while (true) { A x = 42; if (!x) break; }
415 for (;;) { A x = 42; if (!x) break; }
416 The statement list for BODY will be empty if the conditional did
417 not declare anything. */
418
419 static void
420 simplify_loop_decl_cond (tree *cond_p, tree body)
421 {
422 tree cond, if_stmt;
423
424 if (!TREE_SIDE_EFFECTS (body))
425 return;
426
427 cond = *cond_p;
428 *cond_p = boolean_true_node;
429
430 if_stmt = begin_if_stmt ();
431 cond = build_unary_op (TRUTH_NOT_EXPR, cond, 0);
432 finish_if_stmt_cond (cond, if_stmt);
433 finish_break_stmt ();
434 finish_then_clause (if_stmt);
435 finish_if_stmt (if_stmt);
436 }
437
438 /* Finish a goto-statement. */
439
440 tree
441 finish_goto_stmt (tree destination)
442 {
443 if (TREE_CODE (destination) == IDENTIFIER_NODE)
444 destination = lookup_label (destination);
445
446 /* We warn about unused labels with -Wunused. That means we have to
447 mark the used labels as used. */
448 if (TREE_CODE (destination) == LABEL_DECL)
449 TREE_USED (destination) = 1;
450 else
451 {
452 /* The DESTINATION is being used as an rvalue. */
453 if (!processing_template_decl)
454 destination = decay_conversion (destination);
455 /* We don't inline calls to functions with computed gotos.
456 Those functions are typically up to some funny business,
457 and may be depending on the labels being at particular
458 addresses, or some such. */
459 DECL_UNINLINABLE (current_function_decl) = 1;
460 }
461
462 check_goto (destination);
463
464 return add_stmt (build_stmt (GOTO_EXPR, destination));
465 }
466
467 /* COND is the condition-expression for an if, while, etc.,
468 statement. Convert it to a boolean value, if appropriate. */
469
470 static tree
471 maybe_convert_cond (tree cond)
472 {
473 /* Empty conditions remain empty. */
474 if (!cond)
475 return NULL_TREE;
476
477 /* Wait until we instantiate templates before doing conversion. */
478 if (processing_template_decl)
479 return cond;
480
481 /* Do the conversion. */
482 cond = convert_from_reference (cond);
483 return condition_conversion (cond);
484 }
485
486 /* Finish an expression-statement, whose EXPRESSION is as indicated. */
487
488 tree
489 finish_expr_stmt (tree expr)
490 {
491 tree r = NULL_TREE;
492
493 if (expr != NULL_TREE)
494 {
495 if (!processing_template_decl)
496 expr = convert_to_void (expr, "statement");
497 else if (!type_dependent_expression_p (expr))
498 convert_to_void (build_non_dependent_expr (expr), "statement");
499
500 /* Simplification of inner statement expressions, compound exprs,
501 etc can result in the us already having an EXPR_STMT. */
502 if (TREE_CODE (expr) != CLEANUP_POINT_EXPR)
503 {
504 if (TREE_CODE (expr) != EXPR_STMT)
505 expr = build_stmt (EXPR_STMT, expr);
506 expr = maybe_cleanup_point_expr (expr);
507 }
508
509 r = add_stmt (expr);
510 }
511
512 finish_stmt ();
513
514 return r;
515 }
516
517
518 /* Begin an if-statement. Returns a newly created IF_STMT if
519 appropriate. */
520
521 tree
522 begin_if_stmt (void)
523 {
524 tree r, scope;
525 scope = do_pushlevel (sk_block);
526 r = build_stmt (IF_STMT, NULL_TREE, NULL_TREE, NULL_TREE);
527 TREE_CHAIN (r) = scope;
528 begin_cond (&IF_COND (r));
529 return r;
530 }
531
532 /* Process the COND of an if-statement, which may be given by
533 IF_STMT. */
534
535 void
536 finish_if_stmt_cond (tree cond, tree if_stmt)
537 {
538 finish_cond (&IF_COND (if_stmt), maybe_convert_cond (cond));
539 add_stmt (if_stmt);
540 THEN_CLAUSE (if_stmt) = push_stmt_list ();
541 }
542
543 /* Finish the then-clause of an if-statement, which may be given by
544 IF_STMT. */
545
546 tree
547 finish_then_clause (tree if_stmt)
548 {
549 THEN_CLAUSE (if_stmt) = pop_stmt_list (THEN_CLAUSE (if_stmt));
550 return if_stmt;
551 }
552
553 /* Begin the else-clause of an if-statement. */
554
555 void
556 begin_else_clause (tree if_stmt)
557 {
558 ELSE_CLAUSE (if_stmt) = push_stmt_list ();
559 }
560
561 /* Finish the else-clause of an if-statement, which may be given by
562 IF_STMT. */
563
564 void
565 finish_else_clause (tree if_stmt)
566 {
567 ELSE_CLAUSE (if_stmt) = pop_stmt_list (ELSE_CLAUSE (if_stmt));
568 }
569
570 /* Finish an if-statement. */
571
572 void
573 finish_if_stmt (tree if_stmt)
574 {
575 tree scope = TREE_CHAIN (if_stmt);
576 TREE_CHAIN (if_stmt) = NULL;
577 add_stmt (do_poplevel (scope));
578 finish_stmt ();
579 }
580
581 /* Begin a while-statement. Returns a newly created WHILE_STMT if
582 appropriate. */
583
584 tree
585 begin_while_stmt (void)
586 {
587 tree r;
588 r = build_stmt (WHILE_STMT, NULL_TREE, NULL_TREE);
589 add_stmt (r);
590 WHILE_BODY (r) = do_pushlevel (sk_block);
591 begin_cond (&WHILE_COND (r));
592 return r;
593 }
594
595 /* Process the COND of a while-statement, which may be given by
596 WHILE_STMT. */
597
598 void
599 finish_while_stmt_cond (tree cond, tree while_stmt)
600 {
601 finish_cond (&WHILE_COND (while_stmt), maybe_convert_cond (cond));
602 simplify_loop_decl_cond (&WHILE_COND (while_stmt), WHILE_BODY (while_stmt));
603 }
604
605 /* Finish a while-statement, which may be given by WHILE_STMT. */
606
607 void
608 finish_while_stmt (tree while_stmt)
609 {
610 WHILE_BODY (while_stmt) = do_poplevel (WHILE_BODY (while_stmt));
611 finish_stmt ();
612 }
613
614 /* Begin a do-statement. Returns a newly created DO_STMT if
615 appropriate. */
616
617 tree
618 begin_do_stmt (void)
619 {
620 tree r = build_stmt (DO_STMT, NULL_TREE, NULL_TREE);
621 add_stmt (r);
622 DO_BODY (r) = push_stmt_list ();
623 return r;
624 }
625
626 /* Finish the body of a do-statement, which may be given by DO_STMT. */
627
628 void
629 finish_do_body (tree do_stmt)
630 {
631 DO_BODY (do_stmt) = pop_stmt_list (DO_BODY (do_stmt));
632 }
633
634 /* Finish a do-statement, which may be given by DO_STMT, and whose
635 COND is as indicated. */
636
637 void
638 finish_do_stmt (tree cond, tree do_stmt)
639 {
640 cond = maybe_convert_cond (cond);
641 DO_COND (do_stmt) = cond;
642 finish_stmt ();
643 }
644
645 /* Finish a return-statement. The EXPRESSION returned, if any, is as
646 indicated. */
647
648 tree
649 finish_return_stmt (tree expr)
650 {
651 tree r;
652
653 expr = check_return_expr (expr);
654 if (!processing_template_decl)
655 {
656 if (DECL_DESTRUCTOR_P (current_function_decl))
657 {
658 /* Similarly, all destructors must run destructors for
659 base-classes before returning. So, all returns in a
660 destructor get sent to the DTOR_LABEL; finish_function emits
661 code to return a value there. */
662 return finish_goto_stmt (dtor_label);
663 }
664 }
665
666 r = build_stmt (RETURN_STMT, expr);
667 r = maybe_cleanup_point_expr (r);
668 r = add_stmt (r);
669 finish_stmt ();
670
671 return r;
672 }
673
674 /* Begin a for-statement. Returns a new FOR_STMT if appropriate. */
675
676 tree
677 begin_for_stmt (void)
678 {
679 tree r;
680
681 r = build_stmt (FOR_STMT, NULL_TREE, NULL_TREE,
682 NULL_TREE, NULL_TREE);
683
684 if (flag_new_for_scope > 0)
685 TREE_CHAIN (r) = do_pushlevel (sk_for);
686
687 if (processing_template_decl)
688 FOR_INIT_STMT (r) = push_stmt_list ();
689
690 return r;
691 }
692
693 /* Finish the for-init-statement of a for-statement, which may be
694 given by FOR_STMT. */
695
696 void
697 finish_for_init_stmt (tree for_stmt)
698 {
699 if (processing_template_decl)
700 FOR_INIT_STMT (for_stmt) = pop_stmt_list (FOR_INIT_STMT (for_stmt));
701 add_stmt (for_stmt);
702 FOR_BODY (for_stmt) = do_pushlevel (sk_block);
703 begin_cond (&FOR_COND (for_stmt));
704 }
705
706 /* Finish the COND of a for-statement, which may be given by
707 FOR_STMT. */
708
709 void
710 finish_for_cond (tree cond, tree for_stmt)
711 {
712 finish_cond (&FOR_COND (for_stmt), maybe_convert_cond (cond));
713 simplify_loop_decl_cond (&FOR_COND (for_stmt), FOR_BODY (for_stmt));
714 }
715
716 /* Finish the increment-EXPRESSION in a for-statement, which may be
717 given by FOR_STMT. */
718
719 void
720 finish_for_expr (tree expr, tree for_stmt)
721 {
722 if (!expr)
723 return;
724 /* If EXPR is an overloaded function, issue an error; there is no
725 context available to use to perform overload resolution. */
726 if (type_unknown_p (expr))
727 {
728 cxx_incomplete_type_error (expr, TREE_TYPE (expr));
729 expr = error_mark_node;
730 }
731 expr = maybe_cleanup_point_expr (expr);
732 FOR_EXPR (for_stmt) = expr;
733 }
734
735 /* Finish the body of a for-statement, which may be given by
736 FOR_STMT. The increment-EXPR for the loop must be
737 provided. */
738
739 void
740 finish_for_stmt (tree for_stmt)
741 {
742 FOR_BODY (for_stmt) = do_poplevel (FOR_BODY (for_stmt));
743
744 /* Pop the scope for the body of the loop. */
745 if (flag_new_for_scope > 0)
746 {
747 tree scope = TREE_CHAIN (for_stmt);
748 TREE_CHAIN (for_stmt) = NULL;
749 add_stmt (do_poplevel (scope));
750 }
751
752 finish_stmt ();
753 }
754
755 /* Finish a break-statement. */
756
757 tree
758 finish_break_stmt (void)
759 {
760 return add_stmt (build_break_stmt ());
761 }
762
763 /* Finish a continue-statement. */
764
765 tree
766 finish_continue_stmt (void)
767 {
768 return add_stmt (build_continue_stmt ());
769 }
770
771 /* Begin a switch-statement. Returns a new SWITCH_STMT if
772 appropriate. */
773
774 tree
775 begin_switch_stmt (void)
776 {
777 tree r, scope;
778
779 r = build_stmt (SWITCH_STMT, NULL_TREE, NULL_TREE, NULL_TREE);
780
781 scope = do_pushlevel (sk_block);
782 TREE_CHAIN (r) = scope;
783 begin_cond (&SWITCH_COND (r));
784
785 return r;
786 }
787
788 /* Finish the cond of a switch-statement. */
789
790 void
791 finish_switch_cond (tree cond, tree switch_stmt)
792 {
793 tree orig_type = NULL;
794 if (!processing_template_decl)
795 {
796 tree index;
797
798 /* Convert the condition to an integer or enumeration type. */
799 cond = build_expr_type_conversion (WANT_INT | WANT_ENUM, cond, true);
800 if (cond == NULL_TREE)
801 {
802 error ("switch quantity not an integer");
803 cond = error_mark_node;
804 }
805 orig_type = TREE_TYPE (cond);
806 if (cond != error_mark_node)
807 {
808 /* [stmt.switch]
809
810 Integral promotions are performed. */
811 cond = perform_integral_promotions (cond);
812 cond = maybe_cleanup_point_expr (cond);
813 }
814
815 if (cond != error_mark_node)
816 {
817 index = get_unwidened (cond, NULL_TREE);
818 /* We can't strip a conversion from a signed type to an unsigned,
819 because if we did, int_fits_type_p would do the wrong thing
820 when checking case values for being in range,
821 and it's too hard to do the right thing. */
822 if (TYPE_UNSIGNED (TREE_TYPE (cond))
823 == TYPE_UNSIGNED (TREE_TYPE (index)))
824 cond = index;
825 }
826 }
827 finish_cond (&SWITCH_COND (switch_stmt), cond);
828 SWITCH_TYPE (switch_stmt) = orig_type;
829 add_stmt (switch_stmt);
830 push_switch (switch_stmt);
831 SWITCH_BODY (switch_stmt) = push_stmt_list ();
832 }
833
834 /* Finish the body of a switch-statement, which may be given by
835 SWITCH_STMT. The COND to switch on is indicated. */
836
837 void
838 finish_switch_stmt (tree switch_stmt)
839 {
840 tree scope;
841
842 SWITCH_BODY (switch_stmt) = pop_stmt_list (SWITCH_BODY (switch_stmt));
843 pop_switch ();
844 finish_stmt ();
845
846 scope = TREE_CHAIN (switch_stmt);
847 TREE_CHAIN (switch_stmt) = NULL;
848 add_stmt (do_poplevel (scope));
849 }
850
851 /* Begin a try-block. Returns a newly-created TRY_BLOCK if
852 appropriate. */
853
854 tree
855 begin_try_block (void)
856 {
857 tree r = build_stmt (TRY_BLOCK, NULL_TREE, NULL_TREE);
858 add_stmt (r);
859 TRY_STMTS (r) = push_stmt_list ();
860 return r;
861 }
862
863 /* Likewise, for a function-try-block. */
864
865 tree
866 begin_function_try_block (void)
867 {
868 tree r = begin_try_block ();
869 FN_TRY_BLOCK_P (r) = 1;
870 return r;
871 }
872
873 /* Finish a try-block, which may be given by TRY_BLOCK. */
874
875 void
876 finish_try_block (tree try_block)
877 {
878 TRY_STMTS (try_block) = pop_stmt_list (TRY_STMTS (try_block));
879 TRY_HANDLERS (try_block) = push_stmt_list ();
880 }
881
882 /* Finish the body of a cleanup try-block, which may be given by
883 TRY_BLOCK. */
884
885 void
886 finish_cleanup_try_block (tree try_block)
887 {
888 TRY_STMTS (try_block) = pop_stmt_list (TRY_STMTS (try_block));
889 }
890
891 /* Finish an implicitly generated try-block, with a cleanup is given
892 by CLEANUP. */
893
894 void
895 finish_cleanup (tree cleanup, tree try_block)
896 {
897 TRY_HANDLERS (try_block) = cleanup;
898 CLEANUP_P (try_block) = 1;
899 }
900
901 /* Likewise, for a function-try-block. */
902
903 void
904 finish_function_try_block (tree try_block)
905 {
906 finish_try_block (try_block);
907 /* FIXME : something queer about CTOR_INITIALIZER somehow following
908 the try block, but moving it inside. */
909 in_function_try_handler = 1;
910 }
911
912 /* Finish a handler-sequence for a try-block, which may be given by
913 TRY_BLOCK. */
914
915 void
916 finish_handler_sequence (tree try_block)
917 {
918 TRY_HANDLERS (try_block) = pop_stmt_list (TRY_HANDLERS (try_block));
919 check_handlers (TRY_HANDLERS (try_block));
920 }
921
922 /* Likewise, for a function-try-block. */
923
924 void
925 finish_function_handler_sequence (tree try_block)
926 {
927 in_function_try_handler = 0;
928 finish_handler_sequence (try_block);
929 }
930
931 /* Begin a handler. Returns a HANDLER if appropriate. */
932
933 tree
934 begin_handler (void)
935 {
936 tree r;
937
938 r = build_stmt (HANDLER, NULL_TREE, NULL_TREE);
939 add_stmt (r);
940
941 /* Create a binding level for the eh_info and the exception object
942 cleanup. */
943 HANDLER_BODY (r) = do_pushlevel (sk_catch);
944
945 return r;
946 }
947
948 /* Finish the handler-parameters for a handler, which may be given by
949 HANDLER. DECL is the declaration for the catch parameter, or NULL
950 if this is a `catch (...)' clause. */
951
952 void
953 finish_handler_parms (tree decl, tree handler)
954 {
955 tree type = NULL_TREE;
956 if (processing_template_decl)
957 {
958 if (decl)
959 {
960 decl = pushdecl (decl);
961 decl = push_template_decl (decl);
962 HANDLER_PARMS (handler) = decl;
963 type = TREE_TYPE (decl);
964 }
965 }
966 else
967 type = expand_start_catch_block (decl);
968
969 HANDLER_TYPE (handler) = type;
970 if (!processing_template_decl && type)
971 mark_used (eh_type_info (type));
972 }
973
974 /* Finish a handler, which may be given by HANDLER. The BLOCKs are
975 the return value from the matching call to finish_handler_parms. */
976
977 void
978 finish_handler (tree handler)
979 {
980 if (!processing_template_decl)
981 expand_end_catch_block ();
982 HANDLER_BODY (handler) = do_poplevel (HANDLER_BODY (handler));
983 }
984
985 /* Begin a compound statement. FLAGS contains some bits that control the
986 behaviour and context. If BCS_NO_SCOPE is set, the compound statement
987 does not define a scope. If BCS_FN_BODY is set, this is the outermost
988 block of a function. If BCS_TRY_BLOCK is set, this is the block
989 created on behalf of a TRY statement. Returns a token to be passed to
990 finish_compound_stmt. */
991
992 tree
993 begin_compound_stmt (unsigned int flags)
994 {
995 tree r;
996
997 if (flags & BCS_NO_SCOPE)
998 {
999 r = push_stmt_list ();
1000 STATEMENT_LIST_NO_SCOPE (r) = 1;
1001
1002 /* Normally, we try hard to keep the BLOCK for a statement-expression.
1003 But, if it's a statement-expression with a scopeless block, there's
1004 nothing to keep, and we don't want to accidentally keep a block
1005 *inside* the scopeless block. */
1006 keep_next_level (false);
1007 }
1008 else
1009 r = do_pushlevel (flags & BCS_TRY_BLOCK ? sk_try : sk_block);
1010
1011 /* When processing a template, we need to remember where the braces were,
1012 so that we can set up identical scopes when instantiating the template
1013 later. BIND_EXPR is a handy candidate for this.
1014 Note that do_poplevel won't create a BIND_EXPR itself here (and thus
1015 result in nested BIND_EXPRs), since we don't build BLOCK nodes when
1016 processing templates. */
1017 if (processing_template_decl)
1018 {
1019 r = build (BIND_EXPR, NULL, NULL, r, NULL);
1020 BIND_EXPR_TRY_BLOCK (r) = (flags & BCS_TRY_BLOCK) != 0;
1021 BIND_EXPR_BODY_BLOCK (r) = (flags & BCS_FN_BODY) != 0;
1022 TREE_SIDE_EFFECTS (r) = 1;
1023 }
1024
1025 return r;
1026 }
1027
1028 /* Finish a compound-statement, which is given by STMT. */
1029
1030 void
1031 finish_compound_stmt (tree stmt)
1032 {
1033 if (TREE_CODE (stmt) == BIND_EXPR)
1034 BIND_EXPR_BODY (stmt) = do_poplevel (BIND_EXPR_BODY (stmt));
1035 else if (STATEMENT_LIST_NO_SCOPE (stmt))
1036 stmt = pop_stmt_list (stmt);
1037 else
1038 stmt = do_poplevel (stmt);
1039
1040 /* ??? See c_end_compound_stmt wrt statement expressions. */
1041 add_stmt (stmt);
1042 finish_stmt ();
1043 }
1044
1045 /* Finish an asm-statement, whose components are a STRING, some
1046 OUTPUT_OPERANDS, some INPUT_OPERANDS, and some CLOBBERS. Also note
1047 whether the asm-statement should be considered volatile. */
1048
1049 tree
1050 finish_asm_stmt (int volatile_p, tree string, tree output_operands,
1051 tree input_operands, tree clobbers)
1052 {
1053 tree r;
1054 tree t;
1055
1056 if (!processing_template_decl)
1057 {
1058 int i;
1059 int ninputs;
1060 int noutputs;
1061
1062 for (t = input_operands; t; t = TREE_CHAIN (t))
1063 {
1064 tree converted_operand
1065 = decay_conversion (TREE_VALUE (t));
1066
1067 /* If the type of the operand hasn't been determined (e.g.,
1068 because it involves an overloaded function), then issue
1069 an error message. There's no context available to
1070 resolve the overloading. */
1071 if (TREE_TYPE (converted_operand) == unknown_type_node)
1072 {
1073 error ("type of asm operand `%E' could not be determined",
1074 TREE_VALUE (t));
1075 converted_operand = error_mark_node;
1076 }
1077 TREE_VALUE (t) = converted_operand;
1078 }
1079
1080 ninputs = list_length (input_operands);
1081 noutputs = list_length (output_operands);
1082
1083 for (i = 0, t = output_operands; t; t = TREE_CHAIN (t), ++i)
1084 {
1085 bool allows_mem;
1086 bool allows_reg;
1087 bool is_inout;
1088 const char *constraint;
1089 tree operand;
1090
1091 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
1092 operand = TREE_VALUE (t);
1093
1094 if (!parse_output_constraint (&constraint,
1095 i, ninputs, noutputs,
1096 &allows_mem,
1097 &allows_reg,
1098 &is_inout))
1099 {
1100 /* By marking this operand as erroneous, we will not try
1101 to process this operand again in expand_asm_operands. */
1102 TREE_VALUE (t) = error_mark_node;
1103 continue;
1104 }
1105
1106 /* If the operand is a DECL that is going to end up in
1107 memory, assume it is addressable. This is a bit more
1108 conservative than it would ideally be; the exact test is
1109 buried deep in expand_asm_operands and depends on the
1110 DECL_RTL for the OPERAND -- which we don't have at this
1111 point. */
1112 if (!allows_reg && DECL_P (operand))
1113 cxx_mark_addressable (operand);
1114 }
1115 }
1116
1117 r = build_stmt (ASM_EXPR, string,
1118 output_operands, input_operands,
1119 clobbers);
1120 ASM_VOLATILE_P (r) = volatile_p;
1121 return add_stmt (r);
1122 }
1123
1124 /* Finish a label with the indicated NAME. */
1125
1126 tree
1127 finish_label_stmt (tree name)
1128 {
1129 tree decl = define_label (input_location, name);
1130 return add_stmt (build_stmt (LABEL_EXPR, decl));
1131 }
1132
1133 /* Finish a series of declarations for local labels. G++ allows users
1134 to declare "local" labels, i.e., labels with scope. This extension
1135 is useful when writing code involving statement-expressions. */
1136
1137 void
1138 finish_label_decl (tree name)
1139 {
1140 tree decl = declare_local_label (name);
1141 add_decl_stmt (decl);
1142 }
1143
1144 /* When DECL goes out of scope, make sure that CLEANUP is executed. */
1145
1146 void
1147 finish_decl_cleanup (tree decl, tree cleanup)
1148 {
1149 push_cleanup (decl, cleanup, false);
1150 }
1151
1152 /* If the current scope exits with an exception, run CLEANUP. */
1153
1154 void
1155 finish_eh_cleanup (tree cleanup)
1156 {
1157 push_cleanup (NULL, cleanup, true);
1158 }
1159
1160 /* The MEM_INITS is a list of mem-initializers, in reverse of the
1161 order they were written by the user. Each node is as for
1162 emit_mem_initializers. */
1163
1164 void
1165 finish_mem_initializers (tree mem_inits)
1166 {
1167 /* Reorder the MEM_INITS so that they are in the order they appeared
1168 in the source program. */
1169 mem_inits = nreverse (mem_inits);
1170
1171 if (processing_template_decl)
1172 add_stmt (build_min_nt (CTOR_INITIALIZER, mem_inits));
1173 else
1174 emit_mem_initializers (mem_inits);
1175 }
1176
1177 /* Finish a parenthesized expression EXPR. */
1178
1179 tree
1180 finish_parenthesized_expr (tree expr)
1181 {
1182 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (TREE_CODE (expr))))
1183 /* This inhibits warnings in c_common_truthvalue_conversion. */
1184 C_SET_EXP_ORIGINAL_CODE (expr, ERROR_MARK);
1185
1186 if (TREE_CODE (expr) == OFFSET_REF)
1187 /* [expr.unary.op]/3 The qualified id of a pointer-to-member must not be
1188 enclosed in parentheses. */
1189 PTRMEM_OK_P (expr) = 0;
1190 return expr;
1191 }
1192
1193 /* Finish a reference to a non-static data member (DECL) that is not
1194 preceded by `.' or `->'. */
1195
1196 tree
1197 finish_non_static_data_member (tree decl, tree object, tree qualifying_scope)
1198 {
1199 my_friendly_assert (TREE_CODE (decl) == FIELD_DECL, 20020909);
1200
1201 if (!object)
1202 {
1203 if (current_function_decl
1204 && DECL_STATIC_FUNCTION_P (current_function_decl))
1205 cp_error_at ("invalid use of member `%D' in static member function",
1206 decl);
1207 else
1208 cp_error_at ("invalid use of non-static data member `%D'", decl);
1209 error ("from this location");
1210
1211 return error_mark_node;
1212 }
1213 TREE_USED (current_class_ptr) = 1;
1214 if (processing_template_decl && !qualifying_scope)
1215 {
1216 tree type = TREE_TYPE (decl);
1217
1218 if (TREE_CODE (type) == REFERENCE_TYPE)
1219 type = TREE_TYPE (type);
1220 else
1221 {
1222 /* Set the cv qualifiers. */
1223 int quals = cp_type_quals (TREE_TYPE (current_class_ref));
1224
1225 if (DECL_MUTABLE_P (decl))
1226 quals &= ~TYPE_QUAL_CONST;
1227
1228 quals |= cp_type_quals (TREE_TYPE (decl));
1229 type = cp_build_qualified_type (type, quals);
1230 }
1231
1232 return build_min (COMPONENT_REF, type, object, decl);
1233 }
1234 else
1235 {
1236 tree access_type = TREE_TYPE (object);
1237 tree lookup_context = context_for_name_lookup (decl);
1238
1239 while (!DERIVED_FROM_P (lookup_context, access_type))
1240 {
1241 access_type = TYPE_CONTEXT (access_type);
1242 while (access_type && DECL_P (access_type))
1243 access_type = DECL_CONTEXT (access_type);
1244
1245 if (!access_type)
1246 {
1247 cp_error_at ("object missing in reference to `%D'", decl);
1248 error ("from this location");
1249 return error_mark_node;
1250 }
1251 }
1252
1253 /* If PROCESSING_TEMPLATE_DECL is nonzero here, then
1254 QUALIFYING_SCOPE is also non-null. Wrap this in a SCOPE_REF
1255 for now. */
1256 if (processing_template_decl)
1257 return build_min (SCOPE_REF, TREE_TYPE (decl),
1258 qualifying_scope, DECL_NAME (decl));
1259
1260 perform_or_defer_access_check (TYPE_BINFO (access_type), decl);
1261
1262 /* If the data member was named `C::M', convert `*this' to `C'
1263 first. */
1264 if (qualifying_scope)
1265 {
1266 tree binfo = NULL_TREE;
1267 object = build_scoped_ref (object, qualifying_scope,
1268 &binfo);
1269 }
1270
1271 return build_class_member_access_expr (object, decl,
1272 /*access_path=*/NULL_TREE,
1273 /*preserve_reference=*/false);
1274 }
1275 }
1276
1277 /* DECL was the declaration to which a qualified-id resolved. Issue
1278 an error message if it is not accessible. If OBJECT_TYPE is
1279 non-NULL, we have just seen `x->' or `x.' and OBJECT_TYPE is the
1280 type of `*x', or `x', respectively. If the DECL was named as
1281 `A::B' then NESTED_NAME_SPECIFIER is `A'. */
1282
1283 void
1284 check_accessibility_of_qualified_id (tree decl,
1285 tree object_type,
1286 tree nested_name_specifier)
1287 {
1288 tree scope;
1289 tree qualifying_type = NULL_TREE;
1290
1291 /* Determine the SCOPE of DECL. */
1292 scope = context_for_name_lookup (decl);
1293 /* If the SCOPE is not a type, then DECL is not a member. */
1294 if (!TYPE_P (scope))
1295 return;
1296 /* Compute the scope through which DECL is being accessed. */
1297 if (object_type
1298 /* OBJECT_TYPE might not be a class type; consider:
1299
1300 class A { typedef int I; };
1301 I *p;
1302 p->A::I::~I();
1303
1304 In this case, we will have "A::I" as the DECL, but "I" as the
1305 OBJECT_TYPE. */
1306 && CLASS_TYPE_P (object_type)
1307 && DERIVED_FROM_P (scope, object_type))
1308 /* If we are processing a `->' or `.' expression, use the type of the
1309 left-hand side. */
1310 qualifying_type = object_type;
1311 else if (nested_name_specifier)
1312 {
1313 /* If the reference is to a non-static member of the
1314 current class, treat it as if it were referenced through
1315 `this'. */
1316 if (DECL_NONSTATIC_MEMBER_P (decl)
1317 && current_class_ptr
1318 && DERIVED_FROM_P (scope, current_class_type))
1319 qualifying_type = current_class_type;
1320 /* Otherwise, use the type indicated by the
1321 nested-name-specifier. */
1322 else
1323 qualifying_type = nested_name_specifier;
1324 }
1325 else
1326 /* Otherwise, the name must be from the current class or one of
1327 its bases. */
1328 qualifying_type = currently_open_derived_class (scope);
1329
1330 if (qualifying_type)
1331 perform_or_defer_access_check (TYPE_BINFO (qualifying_type), decl);
1332 }
1333
1334 /* EXPR is the result of a qualified-id. The QUALIFYING_CLASS was the
1335 class named to the left of the "::" operator. DONE is true if this
1336 expression is a complete postfix-expression; it is false if this
1337 expression is followed by '->', '[', '(', etc. ADDRESS_P is true
1338 iff this expression is the operand of '&'. */
1339
1340 tree
1341 finish_qualified_id_expr (tree qualifying_class, tree expr, bool done,
1342 bool address_p)
1343 {
1344 if (error_operand_p (expr))
1345 return error_mark_node;
1346
1347 /* If EXPR occurs as the operand of '&', use special handling that
1348 permits a pointer-to-member. */
1349 if (address_p && done)
1350 {
1351 if (TREE_CODE (expr) == SCOPE_REF)
1352 expr = TREE_OPERAND (expr, 1);
1353 expr = build_offset_ref (qualifying_class, expr,
1354 /*address_p=*/true);
1355 return expr;
1356 }
1357
1358 if (TREE_CODE (expr) == FIELD_DECL)
1359 expr = finish_non_static_data_member (expr, current_class_ref,
1360 qualifying_class);
1361 else if (BASELINK_P (expr) && !processing_template_decl)
1362 {
1363 tree fn;
1364 tree fns;
1365
1366 /* See if any of the functions are non-static members. */
1367 fns = BASELINK_FUNCTIONS (expr);
1368 if (TREE_CODE (fns) == TEMPLATE_ID_EXPR)
1369 fns = TREE_OPERAND (fns, 0);
1370 for (fn = fns; fn; fn = OVL_NEXT (fn))
1371 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
1372 break;
1373 /* If so, the expression may be relative to the current
1374 class. */
1375 if (fn && current_class_type
1376 && DERIVED_FROM_P (qualifying_class, current_class_type))
1377 expr = (build_class_member_access_expr
1378 (maybe_dummy_object (qualifying_class, NULL),
1379 expr,
1380 BASELINK_ACCESS_BINFO (expr),
1381 /*preserve_reference=*/false));
1382 else if (done)
1383 /* The expression is a qualified name whose address is not
1384 being taken. */
1385 expr = build_offset_ref (qualifying_class, expr, /*address_p=*/false);
1386 }
1387
1388 return expr;
1389 }
1390
1391 /* Begin a statement-expression. The value returned must be passed to
1392 finish_stmt_expr. */
1393
1394 tree
1395 begin_stmt_expr (void)
1396 {
1397 return push_stmt_list ();
1398 }
1399
1400 /* Process the final expression of a statement expression. EXPR can be
1401 NULL, if the final expression is empty. Build up a TARGET_EXPR so
1402 that the result value can be safely returned to the enclosing
1403 expression. */
1404
1405 tree
1406 finish_stmt_expr_expr (tree expr, tree stmt_expr)
1407 {
1408 tree result = NULL_TREE;
1409
1410 if (expr)
1411 {
1412 if (!processing_template_decl && !VOID_TYPE_P (TREE_TYPE (expr)))
1413 {
1414 tree type = TREE_TYPE (expr);
1415
1416 if (TREE_CODE (type) == ARRAY_TYPE
1417 || TREE_CODE (type) == FUNCTION_TYPE)
1418 expr = decay_conversion (expr);
1419
1420 expr = convert_from_reference (expr);
1421 expr = require_complete_type (expr);
1422
1423 type = TREE_TYPE (expr);
1424
1425 /* Build a TARGET_EXPR for this aggregate. finish_stmt_expr
1426 will then pull it apart so the lifetime of the target is
1427 within the scope of the expression containing this statement
1428 expression. */
1429 if (TREE_CODE (expr) == TARGET_EXPR)
1430 ;
1431 else if (!IS_AGGR_TYPE (type) || TYPE_HAS_TRIVIAL_INIT_REF (type))
1432 expr = build_target_expr_with_type (expr, type);
1433 else
1434 {
1435 /* Copy construct. */
1436 expr = build_special_member_call
1437 (NULL_TREE, complete_ctor_identifier,
1438 build_tree_list (NULL_TREE, expr),
1439 TYPE_BINFO (type), LOOKUP_NORMAL);
1440 expr = build_cplus_new (type, expr);
1441 my_friendly_assert (TREE_CODE (expr) == TARGET_EXPR, 20030729);
1442 }
1443 }
1444
1445 if (expr != error_mark_node)
1446 {
1447 result = build_stmt (EXPR_STMT, expr);
1448 EXPR_STMT_STMT_EXPR_RESULT (result) = 1;
1449 add_stmt (result);
1450 }
1451 }
1452
1453 finish_stmt ();
1454
1455 /* Remember the last expression so that finish_stmt_expr
1456 can pull it apart. */
1457 TREE_TYPE (stmt_expr) = result;
1458
1459 return result;
1460 }
1461
1462 /* Finish a statement-expression. EXPR should be the value returned
1463 by the previous begin_stmt_expr. Returns an expression
1464 representing the statement-expression. */
1465
1466 tree
1467 finish_stmt_expr (tree stmt_expr, bool has_no_scope)
1468 {
1469 tree result, result_stmt, type;
1470 tree *result_stmt_p = NULL;
1471
1472 result_stmt = TREE_TYPE (stmt_expr);
1473 TREE_TYPE (stmt_expr) = void_type_node;
1474 result = pop_stmt_list (stmt_expr);
1475
1476 if (!result_stmt || VOID_TYPE_P (result_stmt))
1477 type = void_type_node;
1478 else
1479 {
1480 /* We need to search the statement expression for the result_stmt,
1481 since we'll need to replace it entirely. */
1482 tree t;
1483 result_stmt_p = &result;
1484 while (1)
1485 {
1486 t = *result_stmt_p;
1487 if (t == result_stmt)
1488 break;
1489
1490 switch (TREE_CODE (t))
1491 {
1492 case STATEMENT_LIST:
1493 {
1494 tree_stmt_iterator i = tsi_last (t);
1495 result_stmt_p = tsi_stmt_ptr (i);
1496 break;
1497 }
1498 case BIND_EXPR:
1499 result_stmt_p = &BIND_EXPR_BODY (t);
1500 break;
1501 case TRY_FINALLY_EXPR:
1502 case TRY_CATCH_EXPR:
1503 case CLEANUP_STMT:
1504 result_stmt_p = &TREE_OPERAND (t, 0);
1505 break;
1506 default:
1507 abort ();
1508 }
1509 }
1510 type = TREE_TYPE (EXPR_STMT_EXPR (result_stmt));
1511 }
1512
1513 if (processing_template_decl)
1514 {
1515 result = build_min (STMT_EXPR, type, result);
1516 TREE_SIDE_EFFECTS (result) = 1;
1517 STMT_EXPR_NO_SCOPE (result) = has_no_scope;
1518 }
1519 else if (!VOID_TYPE_P (type))
1520 {
1521 /* Pull out the TARGET_EXPR that is the final expression. Put
1522 the target's init_expr as the final expression and then put
1523 the statement expression itself as the target's init
1524 expr. Finally, return the target expression. */
1525 tree init, target_expr = EXPR_STMT_EXPR (result_stmt);
1526 my_friendly_assert (TREE_CODE (target_expr) == TARGET_EXPR, 20030729);
1527
1528 /* The initializer will be void if the initialization is done by
1529 AGGR_INIT_EXPR; propagate that out to the statement-expression as
1530 a whole. */
1531 init = TREE_OPERAND (target_expr, 1);
1532 type = TREE_TYPE (init);
1533
1534 init = maybe_cleanup_point_expr (init);
1535 *result_stmt_p = init;
1536
1537 if (VOID_TYPE_P (type))
1538 /* No frobbing needed. */;
1539 else if (TREE_CODE (result) == BIND_EXPR)
1540 {
1541 /* The BIND_EXPR created in finish_compound_stmt is void; if we're
1542 returning a value directly, give it the appropriate type. */
1543 if (VOID_TYPE_P (TREE_TYPE (result)))
1544 TREE_TYPE (result) = type;
1545 else if (same_type_p (TREE_TYPE (result), type))
1546 ;
1547 else
1548 abort ();
1549 }
1550 else if (TREE_CODE (result) == STATEMENT_LIST)
1551 /* We need to wrap a STATEMENT_LIST in a BIND_EXPR so it can have a
1552 type other than void. FIXME why can't we just return a value
1553 from STATEMENT_LIST? */
1554 result = build3 (BIND_EXPR, type, NULL, result, NULL);
1555
1556 TREE_OPERAND (target_expr, 1) = result;
1557 result = target_expr;
1558 }
1559
1560 return result;
1561 }
1562
1563 /* Perform Koenig lookup. FN is the postfix-expression representing
1564 the function (or functions) to call; ARGS are the arguments to the
1565 call. Returns the functions to be considered by overload
1566 resolution. */
1567
1568 tree
1569 perform_koenig_lookup (tree fn, tree args)
1570 {
1571 tree identifier = NULL_TREE;
1572 tree functions = NULL_TREE;
1573
1574 /* Find the name of the overloaded function. */
1575 if (TREE_CODE (fn) == IDENTIFIER_NODE)
1576 identifier = fn;
1577 else if (is_overloaded_fn (fn))
1578 {
1579 functions = fn;
1580 identifier = DECL_NAME (get_first_fn (functions));
1581 }
1582 else if (DECL_P (fn))
1583 {
1584 functions = fn;
1585 identifier = DECL_NAME (fn);
1586 }
1587
1588 /* A call to a namespace-scope function using an unqualified name.
1589
1590 Do Koenig lookup -- unless any of the arguments are
1591 type-dependent. */
1592 if (!any_type_dependent_arguments_p (args))
1593 {
1594 fn = lookup_arg_dependent (identifier, functions, args);
1595 if (!fn)
1596 /* The unqualified name could not be resolved. */
1597 fn = unqualified_fn_lookup_error (identifier);
1598 }
1599 else
1600 fn = identifier;
1601
1602 return fn;
1603 }
1604
1605 /* Generate an expression for `FN (ARGS)'.
1606
1607 If DISALLOW_VIRTUAL is true, the call to FN will be not generated
1608 as a virtual call, even if FN is virtual. (This flag is set when
1609 encountering an expression where the function name is explicitly
1610 qualified. For example a call to `X::f' never generates a virtual
1611 call.)
1612
1613 Returns code for the call. */
1614
1615 tree
1616 finish_call_expr (tree fn, tree args, bool disallow_virtual, bool koenig_p)
1617 {
1618 tree result;
1619 tree orig_fn;
1620 tree orig_args;
1621
1622 if (fn == error_mark_node || args == error_mark_node)
1623 return error_mark_node;
1624
1625 /* ARGS should be a list of arguments. */
1626 my_friendly_assert (!args || TREE_CODE (args) == TREE_LIST,
1627 20020712);
1628
1629 orig_fn = fn;
1630 orig_args = args;
1631
1632 if (processing_template_decl)
1633 {
1634 if (type_dependent_expression_p (fn)
1635 || any_type_dependent_arguments_p (args))
1636 {
1637 result = build_nt (CALL_EXPR, fn, args, NULL_TREE);
1638 KOENIG_LOOKUP_P (result) = koenig_p;
1639 return result;
1640 }
1641 if (!BASELINK_P (fn)
1642 && TREE_CODE (fn) != PSEUDO_DTOR_EXPR
1643 && TREE_TYPE (fn) != unknown_type_node)
1644 fn = build_non_dependent_expr (fn);
1645 args = build_non_dependent_args (orig_args);
1646 }
1647
1648 /* A reference to a member function will appear as an overloaded
1649 function (rather than a BASELINK) if an unqualified name was used
1650 to refer to it. */
1651 if (!BASELINK_P (fn) && is_overloaded_fn (fn))
1652 {
1653 tree f = fn;
1654
1655 if (TREE_CODE (f) == TEMPLATE_ID_EXPR)
1656 f = TREE_OPERAND (f, 0);
1657 f = get_first_fn (f);
1658 if (DECL_FUNCTION_MEMBER_P (f))
1659 {
1660 tree type = currently_open_derived_class (DECL_CONTEXT (f));
1661 if (!type)
1662 type = DECL_CONTEXT (f);
1663 fn = build_baselink (TYPE_BINFO (type),
1664 TYPE_BINFO (type),
1665 fn, /*optype=*/NULL_TREE);
1666 }
1667 }
1668
1669 result = NULL_TREE;
1670 if (BASELINK_P (fn))
1671 {
1672 tree object;
1673
1674 /* A call to a member function. From [over.call.func]:
1675
1676 If the keyword this is in scope and refers to the class of
1677 that member function, or a derived class thereof, then the
1678 function call is transformed into a qualified function call
1679 using (*this) as the postfix-expression to the left of the
1680 . operator.... [Otherwise] a contrived object of type T
1681 becomes the implied object argument.
1682
1683 This paragraph is unclear about this situation:
1684
1685 struct A { void f(); };
1686 struct B : public A {};
1687 struct C : public A { void g() { B::f(); }};
1688
1689 In particular, for `B::f', this paragraph does not make clear
1690 whether "the class of that member function" refers to `A' or
1691 to `B'. We believe it refers to `B'. */
1692 if (current_class_type
1693 && DERIVED_FROM_P (BINFO_TYPE (BASELINK_ACCESS_BINFO (fn)),
1694 current_class_type)
1695 && current_class_ref)
1696 object = maybe_dummy_object (BINFO_TYPE (BASELINK_ACCESS_BINFO (fn)),
1697 NULL);
1698 else
1699 {
1700 tree representative_fn;
1701
1702 representative_fn = BASELINK_FUNCTIONS (fn);
1703 if (TREE_CODE (representative_fn) == TEMPLATE_ID_EXPR)
1704 representative_fn = TREE_OPERAND (representative_fn, 0);
1705 representative_fn = get_first_fn (representative_fn);
1706 object = build_dummy_object (DECL_CONTEXT (representative_fn));
1707 }
1708
1709 if (processing_template_decl)
1710 {
1711 if (type_dependent_expression_p (object))
1712 return build_nt (CALL_EXPR, orig_fn, orig_args, NULL_TREE);
1713 object = build_non_dependent_expr (object);
1714 }
1715
1716 result = build_new_method_call (object, fn, args, NULL_TREE,
1717 (disallow_virtual
1718 ? LOOKUP_NONVIRTUAL : 0));
1719 }
1720 else if (is_overloaded_fn (fn))
1721 /* A call to a namespace-scope function. */
1722 result = build_new_function_call (fn, args);
1723 else if (TREE_CODE (fn) == PSEUDO_DTOR_EXPR)
1724 {
1725 if (args)
1726 error ("arguments to destructor are not allowed");
1727 /* Mark the pseudo-destructor call as having side-effects so
1728 that we do not issue warnings about its use. */
1729 result = build1 (NOP_EXPR,
1730 void_type_node,
1731 TREE_OPERAND (fn, 0));
1732 TREE_SIDE_EFFECTS (result) = 1;
1733 }
1734 else if (CLASS_TYPE_P (TREE_TYPE (fn)))
1735 /* If the "function" is really an object of class type, it might
1736 have an overloaded `operator ()'. */
1737 result = build_new_op (CALL_EXPR, LOOKUP_NORMAL, fn, args, NULL_TREE,
1738 /*overloaded_p=*/NULL);
1739 if (!result)
1740 /* A call where the function is unknown. */
1741 result = build_function_call (fn, args);
1742
1743 if (processing_template_decl)
1744 {
1745 result = build (CALL_EXPR, TREE_TYPE (result), orig_fn,
1746 orig_args, NULL_TREE);
1747 KOENIG_LOOKUP_P (result) = koenig_p;
1748 }
1749 return result;
1750 }
1751
1752 /* Finish a call to a postfix increment or decrement or EXPR. (Which
1753 is indicated by CODE, which should be POSTINCREMENT_EXPR or
1754 POSTDECREMENT_EXPR.) */
1755
1756 tree
1757 finish_increment_expr (tree expr, enum tree_code code)
1758 {
1759 return build_x_unary_op (code, expr);
1760 }
1761
1762 /* Finish a use of `this'. Returns an expression for `this'. */
1763
1764 tree
1765 finish_this_expr (void)
1766 {
1767 tree result;
1768
1769 if (current_class_ptr)
1770 {
1771 result = current_class_ptr;
1772 }
1773 else if (current_function_decl
1774 && DECL_STATIC_FUNCTION_P (current_function_decl))
1775 {
1776 error ("`this' is unavailable for static member functions");
1777 result = error_mark_node;
1778 }
1779 else
1780 {
1781 if (current_function_decl)
1782 error ("invalid use of `this' in non-member function");
1783 else
1784 error ("invalid use of `this' at top level");
1785 result = error_mark_node;
1786 }
1787
1788 return result;
1789 }
1790
1791 /* Finish a pseudo-destructor expression. If SCOPE is NULL, the
1792 expression was of the form `OBJECT.~DESTRUCTOR' where DESTRUCTOR is
1793 the TYPE for the type given. If SCOPE is non-NULL, the expression
1794 was of the form `OBJECT.SCOPE::~DESTRUCTOR'. */
1795
1796 tree
1797 finish_pseudo_destructor_expr (tree object, tree scope, tree destructor)
1798 {
1799 if (destructor == error_mark_node)
1800 return error_mark_node;
1801
1802 my_friendly_assert (TYPE_P (destructor), 20010905);
1803
1804 if (!processing_template_decl)
1805 {
1806 if (scope == error_mark_node)
1807 {
1808 error ("invalid qualifying scope in pseudo-destructor name");
1809 return error_mark_node;
1810 }
1811
1812 /* [expr.pseudo] says both:
1813
1814 The type designated by the pseudo-destructor-name shall be
1815 the same as the object type.
1816
1817 and:
1818
1819 The cv-unqualified versions of the object type and of the
1820 type designated by the pseudo-destructor-name shall be the
1821 same type.
1822
1823 We implement the more generous second sentence, since that is
1824 what most other compilers do. */
1825 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (object),
1826 destructor))
1827 {
1828 error ("`%E' is not of type `%T'", object, destructor);
1829 return error_mark_node;
1830 }
1831 }
1832
1833 return build (PSEUDO_DTOR_EXPR, void_type_node, object, scope, destructor);
1834 }
1835
1836 /* Finish an expression of the form CODE EXPR. */
1837
1838 tree
1839 finish_unary_op_expr (enum tree_code code, tree expr)
1840 {
1841 tree result = build_x_unary_op (code, expr);
1842 /* Inside a template, build_x_unary_op does not fold the
1843 expression. So check whether the result is folded before
1844 setting TREE_NEGATED_INT. */
1845 if (code == NEGATE_EXPR && TREE_CODE (expr) == INTEGER_CST
1846 && TREE_CODE (result) == INTEGER_CST
1847 && !TYPE_UNSIGNED (TREE_TYPE (result))
1848 && INT_CST_LT (result, integer_zero_node))
1849 TREE_NEGATED_INT (result) = 1;
1850 overflow_warning (result);
1851 return result;
1852 }
1853
1854 /* Finish a compound-literal expression. TYPE is the type to which
1855 the INITIALIZER_LIST is being cast. */
1856
1857 tree
1858 finish_compound_literal (tree type, tree initializer_list)
1859 {
1860 tree compound_literal;
1861
1862 /* Build a CONSTRUCTOR for the INITIALIZER_LIST. */
1863 compound_literal = build_constructor (NULL_TREE, initializer_list);
1864 /* Mark it as a compound-literal. */
1865 TREE_HAS_CONSTRUCTOR (compound_literal) = 1;
1866 if (processing_template_decl)
1867 TREE_TYPE (compound_literal) = type;
1868 else
1869 {
1870 /* Check the initialization. */
1871 compound_literal = digest_init (type, compound_literal, NULL);
1872 /* If the TYPE was an array type with an unknown bound, then we can
1873 figure out the dimension now. For example, something like:
1874
1875 `(int []) { 2, 3 }'
1876
1877 implies that the array has two elements. */
1878 if (TREE_CODE (type) == ARRAY_TYPE && !COMPLETE_TYPE_P (type))
1879 complete_array_type (type, compound_literal, 1);
1880 }
1881
1882 return compound_literal;
1883 }
1884
1885 /* Return the declaration for the function-name variable indicated by
1886 ID. */
1887
1888 tree
1889 finish_fname (tree id)
1890 {
1891 tree decl;
1892
1893 decl = fname_decl (C_RID_CODE (id), id);
1894 if (processing_template_decl)
1895 decl = DECL_NAME (decl);
1896 return decl;
1897 }
1898
1899 /* Begin a function definition declared with DECL_SPECS, ATTRIBUTES,
1900 and DECLARATOR. Returns nonzero if the function-declaration is
1901 valid. */
1902
1903 int
1904 begin_function_definition (tree decl_specs, tree attributes, tree declarator)
1905 {
1906 if (!start_function (decl_specs, declarator, attributes, SF_DEFAULT))
1907 return 0;
1908
1909 /* The things we're about to see are not directly qualified by any
1910 template headers we've seen thus far. */
1911 reset_specialization ();
1912
1913 return 1;
1914 }
1915
1916 /* Finish a translation unit. */
1917
1918 void
1919 finish_translation_unit (void)
1920 {
1921 /* In case there were missing closebraces,
1922 get us back to the global binding level. */
1923 pop_everything ();
1924 while (current_namespace != global_namespace)
1925 pop_namespace ();
1926
1927 /* Do file scope __FUNCTION__ et al. */
1928 finish_fname_decls ();
1929 }
1930
1931 /* Finish a template type parameter, specified as AGGR IDENTIFIER.
1932 Returns the parameter. */
1933
1934 tree
1935 finish_template_type_parm (tree aggr, tree identifier)
1936 {
1937 if (aggr != class_type_node)
1938 {
1939 pedwarn ("template type parameters must use the keyword `class' or `typename'");
1940 aggr = class_type_node;
1941 }
1942
1943 return build_tree_list (aggr, identifier);
1944 }
1945
1946 /* Finish a template template parameter, specified as AGGR IDENTIFIER.
1947 Returns the parameter. */
1948
1949 tree
1950 finish_template_template_parm (tree aggr, tree identifier)
1951 {
1952 tree decl = build_decl (TYPE_DECL, identifier, NULL_TREE);
1953 tree tmpl = build_lang_decl (TEMPLATE_DECL, identifier, NULL_TREE);
1954 DECL_TEMPLATE_PARMS (tmpl) = current_template_parms;
1955 DECL_TEMPLATE_RESULT (tmpl) = decl;
1956 DECL_ARTIFICIAL (decl) = 1;
1957 end_template_decl ();
1958
1959 my_friendly_assert (DECL_TEMPLATE_PARMS (tmpl), 20010110);
1960
1961 return finish_template_type_parm (aggr, tmpl);
1962 }
1963
1964 /* ARGUMENT is the default-argument value for a template template
1965 parameter. If ARGUMENT is invalid, issue error messages and return
1966 the ERROR_MARK_NODE. Otherwise, ARGUMENT itself is returned. */
1967
1968 tree
1969 check_template_template_default_arg (tree argument)
1970 {
1971 if (TREE_CODE (argument) != TEMPLATE_DECL
1972 && TREE_CODE (argument) != TEMPLATE_TEMPLATE_PARM
1973 && TREE_CODE (argument) != UNBOUND_CLASS_TEMPLATE)
1974 {
1975 if (TREE_CODE (argument) == TYPE_DECL)
1976 {
1977 tree t = TREE_TYPE (argument);
1978
1979 /* Try to emit a slightly smarter error message if we detect
1980 that the user is using a template instantiation. */
1981 if (CLASSTYPE_TEMPLATE_INFO (t)
1982 && CLASSTYPE_TEMPLATE_INSTANTIATION (t))
1983 error ("invalid use of type `%T' as a default value for a "
1984 "template template-parameter", t);
1985 else
1986 error ("invalid use of `%D' as a default value for a template "
1987 "template-parameter", argument);
1988 }
1989 else
1990 error ("invalid default argument for a template template parameter");
1991 return error_mark_node;
1992 }
1993
1994 return argument;
1995 }
1996
1997 /* Finish a parameter list, indicated by PARMS. If ELLIPSIS is
1998 nonzero, the parameter list was terminated by a `...'. */
1999
2000 tree
2001 finish_parmlist (tree parms, int ellipsis)
2002 {
2003 if (parms)
2004 {
2005 /* We mark the PARMS as a parmlist so that declarator processing can
2006 disambiguate certain constructs. */
2007 TREE_PARMLIST (parms) = 1;
2008 /* We do not append void_list_node here, but leave it to grokparms
2009 to do that. */
2010 PARMLIST_ELLIPSIS_P (parms) = ellipsis;
2011 }
2012 return parms;
2013 }
2014
2015 /* Begin a class definition, as indicated by T. */
2016
2017 tree
2018 begin_class_definition (tree t)
2019 {
2020 if (t == error_mark_node)
2021 return error_mark_node;
2022
2023 if (processing_template_parmlist)
2024 {
2025 error ("definition of `%#T' inside template parameter list", t);
2026 return error_mark_node;
2027 }
2028 /* A non-implicit typename comes from code like:
2029
2030 template <typename T> struct A {
2031 template <typename U> struct A<T>::B ...
2032
2033 This is erroneous. */
2034 else if (TREE_CODE (t) == TYPENAME_TYPE)
2035 {
2036 error ("invalid definition of qualified type `%T'", t);
2037 t = error_mark_node;
2038 }
2039
2040 if (t == error_mark_node || ! IS_AGGR_TYPE (t))
2041 {
2042 t = make_aggr_type (RECORD_TYPE);
2043 pushtag (make_anon_name (), t, 0);
2044 }
2045
2046 /* If this type was already complete, and we see another definition,
2047 that's an error. */
2048 if (COMPLETE_TYPE_P (t))
2049 {
2050 error ("redefinition of `%#T'", t);
2051 cp_error_at ("previous definition of `%#T'", t);
2052 return error_mark_node;
2053 }
2054
2055 /* Update the location of the decl. */
2056 DECL_SOURCE_LOCATION (TYPE_NAME (t)) = input_location;
2057
2058 if (TYPE_BEING_DEFINED (t))
2059 {
2060 t = make_aggr_type (TREE_CODE (t));
2061 pushtag (TYPE_IDENTIFIER (t), t, 0);
2062 }
2063 maybe_process_partial_specialization (t);
2064 pushclass (t);
2065 TYPE_BEING_DEFINED (t) = 1;
2066 if (flag_pack_struct)
2067 {
2068 tree v;
2069 TYPE_PACKED (t) = 1;
2070 /* Even though the type is being defined for the first time
2071 here, there might have been a forward declaration, so there
2072 might be cv-qualified variants of T. */
2073 for (v = TYPE_NEXT_VARIANT (t); v; v = TYPE_NEXT_VARIANT (v))
2074 TYPE_PACKED (v) = 1;
2075 }
2076 /* Reset the interface data, at the earliest possible
2077 moment, as it might have been set via a class foo;
2078 before. */
2079 if (! TYPE_ANONYMOUS_P (t))
2080 {
2081 CLASSTYPE_INTERFACE_ONLY (t) = interface_only;
2082 SET_CLASSTYPE_INTERFACE_UNKNOWN_X
2083 (t, interface_unknown);
2084 }
2085 reset_specialization();
2086
2087 /* Make a declaration for this class in its own scope. */
2088 build_self_reference ();
2089
2090 return t;
2091 }
2092
2093 /* Finish the member declaration given by DECL. */
2094
2095 void
2096 finish_member_declaration (tree decl)
2097 {
2098 if (decl == error_mark_node || decl == NULL_TREE)
2099 return;
2100
2101 if (decl == void_type_node)
2102 /* The COMPONENT was a friend, not a member, and so there's
2103 nothing for us to do. */
2104 return;
2105
2106 /* We should see only one DECL at a time. */
2107 my_friendly_assert (TREE_CHAIN (decl) == NULL_TREE, 0);
2108
2109 /* Set up access control for DECL. */
2110 TREE_PRIVATE (decl)
2111 = (current_access_specifier == access_private_node);
2112 TREE_PROTECTED (decl)
2113 = (current_access_specifier == access_protected_node);
2114 if (TREE_CODE (decl) == TEMPLATE_DECL)
2115 {
2116 TREE_PRIVATE (DECL_TEMPLATE_RESULT (decl)) = TREE_PRIVATE (decl);
2117 TREE_PROTECTED (DECL_TEMPLATE_RESULT (decl)) = TREE_PROTECTED (decl);
2118 }
2119
2120 /* Mark the DECL as a member of the current class. */
2121 DECL_CONTEXT (decl) = current_class_type;
2122
2123 /* [dcl.link]
2124
2125 A C language linkage is ignored for the names of class members
2126 and the member function type of class member functions. */
2127 if (DECL_LANG_SPECIFIC (decl) && DECL_LANGUAGE (decl) == lang_c)
2128 SET_DECL_LANGUAGE (decl, lang_cplusplus);
2129
2130 /* Put functions on the TYPE_METHODS list and everything else on the
2131 TYPE_FIELDS list. Note that these are built up in reverse order.
2132 We reverse them (to obtain declaration order) in finish_struct. */
2133 if (TREE_CODE (decl) == FUNCTION_DECL
2134 || DECL_FUNCTION_TEMPLATE_P (decl))
2135 {
2136 /* We also need to add this function to the
2137 CLASSTYPE_METHOD_VEC. */
2138 add_method (current_class_type, decl, /*error_p=*/0);
2139
2140 TREE_CHAIN (decl) = TYPE_METHODS (current_class_type);
2141 TYPE_METHODS (current_class_type) = decl;
2142
2143 maybe_add_class_template_decl_list (current_class_type, decl,
2144 /*friend_p=*/0);
2145 }
2146 /* Enter the DECL into the scope of the class. */
2147 else if ((TREE_CODE (decl) == USING_DECL && TREE_TYPE (decl))
2148 || pushdecl_class_level (decl))
2149 {
2150 /* All TYPE_DECLs go at the end of TYPE_FIELDS. Ordinary fields
2151 go at the beginning. The reason is that lookup_field_1
2152 searches the list in order, and we want a field name to
2153 override a type name so that the "struct stat hack" will
2154 work. In particular:
2155
2156 struct S { enum E { }; int E } s;
2157 s.E = 3;
2158
2159 is valid. In addition, the FIELD_DECLs must be maintained in
2160 declaration order so that class layout works as expected.
2161 However, we don't need that order until class layout, so we
2162 save a little time by putting FIELD_DECLs on in reverse order
2163 here, and then reversing them in finish_struct_1. (We could
2164 also keep a pointer to the correct insertion points in the
2165 list.) */
2166
2167 if (TREE_CODE (decl) == TYPE_DECL)
2168 TYPE_FIELDS (current_class_type)
2169 = chainon (TYPE_FIELDS (current_class_type), decl);
2170 else
2171 {
2172 TREE_CHAIN (decl) = TYPE_FIELDS (current_class_type);
2173 TYPE_FIELDS (current_class_type) = decl;
2174 }
2175
2176 maybe_add_class_template_decl_list (current_class_type, decl,
2177 /*friend_p=*/0);
2178 }
2179 }
2180
2181 /* Finish processing the declaration of a member class template
2182 TYPES whose template parameters are given by PARMS. */
2183
2184 tree
2185 finish_member_class_template (tree types)
2186 {
2187 tree t;
2188
2189 /* If there are declared, but undefined, partial specializations
2190 mixed in with the typespecs they will not yet have passed through
2191 maybe_process_partial_specialization, so we do that here. */
2192 for (t = types; t != NULL_TREE; t = TREE_CHAIN (t))
2193 if (IS_AGGR_TYPE_CODE (TREE_CODE (TREE_VALUE (t))))
2194 maybe_process_partial_specialization (TREE_VALUE (t));
2195
2196 grok_x_components (types);
2197 if (TYPE_CONTEXT (TREE_VALUE (types)) != current_class_type)
2198 /* The component was in fact a friend declaration. We avoid
2199 finish_member_template_decl performing certain checks by
2200 unsetting TYPES. */
2201 types = NULL_TREE;
2202
2203 finish_member_template_decl (types);
2204
2205 /* As with other component type declarations, we do
2206 not store the new DECL on the list of
2207 component_decls. */
2208 return NULL_TREE;
2209 }
2210
2211 /* Finish processing a complete template declaration. The PARMS are
2212 the template parameters. */
2213
2214 void
2215 finish_template_decl (tree parms)
2216 {
2217 if (parms)
2218 end_template_decl ();
2219 else
2220 end_specialization ();
2221 }
2222
2223 /* Finish processing a template-id (which names a type) of the form
2224 NAME < ARGS >. Return the TYPE_DECL for the type named by the
2225 template-id. If ENTERING_SCOPE is nonzero we are about to enter
2226 the scope of template-id indicated. */
2227
2228 tree
2229 finish_template_type (tree name, tree args, int entering_scope)
2230 {
2231 tree decl;
2232
2233 decl = lookup_template_class (name, args,
2234 NULL_TREE, NULL_TREE, entering_scope,
2235 tf_error | tf_warning | tf_user);
2236 if (decl != error_mark_node)
2237 decl = TYPE_STUB_DECL (decl);
2238
2239 return decl;
2240 }
2241
2242 /* Finish processing a BASE_CLASS with the indicated ACCESS_SPECIFIER.
2243 Return a TREE_LIST containing the ACCESS_SPECIFIER and the
2244 BASE_CLASS, or NULL_TREE if an error occurred. The
2245 ACCESS_SPECIFIER is one of
2246 access_{default,public,protected_private}[_virtual]_node.*/
2247
2248 tree
2249 finish_base_specifier (tree base, tree access, bool virtual_p)
2250 {
2251 tree result;
2252
2253 if (base == error_mark_node)
2254 {
2255 error ("invalid base-class specification");
2256 result = NULL_TREE;
2257 }
2258 else if (! is_aggr_type (base, 1))
2259 result = NULL_TREE;
2260 else
2261 {
2262 if (cp_type_quals (base) != 0)
2263 {
2264 error ("base class `%T' has cv qualifiers", base);
2265 base = TYPE_MAIN_VARIANT (base);
2266 }
2267 result = build_tree_list (access, base);
2268 TREE_VIA_VIRTUAL (result) = virtual_p;
2269 }
2270
2271 return result;
2272 }
2273
2274 /* Called when multiple declarators are processed. If that is not
2275 permitted in this context, an error is issued. */
2276
2277 void
2278 check_multiple_declarators (void)
2279 {
2280 /* [temp]
2281
2282 In a template-declaration, explicit specialization, or explicit
2283 instantiation the init-declarator-list in the declaration shall
2284 contain at most one declarator.
2285
2286 We don't just use PROCESSING_TEMPLATE_DECL for the first
2287 condition since that would disallow the perfectly valid code,
2288 like `template <class T> struct S { int i, j; };'. */
2289 if (at_function_scope_p ())
2290 /* It's OK to write `template <class T> void f() { int i, j;}'. */
2291 return;
2292
2293 if (PROCESSING_REAL_TEMPLATE_DECL_P ()
2294 || processing_explicit_instantiation
2295 || processing_specialization)
2296 error ("multiple declarators in template declaration");
2297 }
2298
2299 /* Issue a diagnostic that NAME cannot be found in SCOPE. */
2300
2301 void
2302 qualified_name_lookup_error (tree scope, tree name)
2303 {
2304 if (TYPE_P (scope))
2305 {
2306 if (!COMPLETE_TYPE_P (scope))
2307 error ("incomplete type `%T' used in nested name specifier", scope);
2308 else
2309 error ("`%D' is not a member of `%T'", name, scope);
2310 }
2311 else if (scope != global_namespace)
2312 error ("`%D' is not a member of `%D'", name, scope);
2313 else
2314 error ("`::%D' has not been declared", name);
2315 }
2316
2317 /* ID_EXPRESSION is a representation of parsed, but unprocessed,
2318 id-expression. (See cp_parser_id_expression for details.) SCOPE,
2319 if non-NULL, is the type or namespace used to explicitly qualify
2320 ID_EXPRESSION. DECL is the entity to which that name has been
2321 resolved.
2322
2323 *CONSTANT_EXPRESSION_P is true if we are presently parsing a
2324 constant-expression. In that case, *NON_CONSTANT_EXPRESSION_P will
2325 be set to true if this expression isn't permitted in a
2326 constant-expression, but it is otherwise not set by this function.
2327 *ALLOW_NON_CONSTANT_EXPRESSION_P is true if we are parsing a
2328 constant-expression, but a non-constant expression is also
2329 permissible.
2330
2331 If an error occurs, and it is the kind of error that might cause
2332 the parser to abort a tentative parse, *ERROR_MSG is filled in. It
2333 is the caller's responsibility to issue the message. *ERROR_MSG
2334 will be a string with static storage duration, so the caller need
2335 not "free" it.
2336
2337 Return an expression for the entity, after issuing appropriate
2338 diagnostics. This function is also responsible for transforming a
2339 reference to a non-static member into a COMPONENT_REF that makes
2340 the use of "this" explicit.
2341
2342 Upon return, *IDK will be filled in appropriately. */
2343
2344 tree
2345 finish_id_expression (tree id_expression,
2346 tree decl,
2347 tree scope,
2348 cp_id_kind *idk,
2349 tree *qualifying_class,
2350 bool integral_constant_expression_p,
2351 bool allow_non_integral_constant_expression_p,
2352 bool *non_integral_constant_expression_p,
2353 const char **error_msg)
2354 {
2355 /* Initialize the output parameters. */
2356 *idk = CP_ID_KIND_NONE;
2357 *error_msg = NULL;
2358
2359 if (id_expression == error_mark_node)
2360 return error_mark_node;
2361 /* If we have a template-id, then no further lookup is
2362 required. If the template-id was for a template-class, we
2363 will sometimes have a TYPE_DECL at this point. */
2364 else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
2365 || TREE_CODE (decl) == TYPE_DECL)
2366 ;
2367 /* Look up the name. */
2368 else
2369 {
2370 if (decl == error_mark_node)
2371 {
2372 /* Name lookup failed. */
2373 if (scope
2374 && (!TYPE_P (scope)
2375 || (!dependent_type_p (scope)
2376 && !(TREE_CODE (id_expression) == IDENTIFIER_NODE
2377 && IDENTIFIER_TYPENAME_P (id_expression)
2378 && dependent_type_p (TREE_TYPE (id_expression))))))
2379 {
2380 /* If the qualifying type is non-dependent (and the name
2381 does not name a conversion operator to a dependent
2382 type), issue an error. */
2383 qualified_name_lookup_error (scope, id_expression);
2384 return error_mark_node;
2385 }
2386 else if (!scope)
2387 {
2388 /* It may be resolved via Koenig lookup. */
2389 *idk = CP_ID_KIND_UNQUALIFIED;
2390 return id_expression;
2391 }
2392 else
2393 decl = id_expression;
2394 }
2395 /* If DECL is a variable that would be out of scope under
2396 ANSI/ISO rules, but in scope in the ARM, name lookup
2397 will succeed. Issue a diagnostic here. */
2398 else
2399 decl = check_for_out_of_scope_variable (decl);
2400
2401 /* Remember that the name was used in the definition of
2402 the current class so that we can check later to see if
2403 the meaning would have been different after the class
2404 was entirely defined. */
2405 if (!scope && decl != error_mark_node)
2406 maybe_note_name_used_in_class (id_expression, decl);
2407 }
2408
2409 /* If we didn't find anything, or what we found was a type,
2410 then this wasn't really an id-expression. */
2411 if (TREE_CODE (decl) == TEMPLATE_DECL
2412 && !DECL_FUNCTION_TEMPLATE_P (decl))
2413 {
2414 *error_msg = "missing template arguments";
2415 return error_mark_node;
2416 }
2417 else if (TREE_CODE (decl) == TYPE_DECL
2418 || TREE_CODE (decl) == NAMESPACE_DECL)
2419 {
2420 *error_msg = "expected primary-expression";
2421 return error_mark_node;
2422 }
2423
2424 /* If the name resolved to a template parameter, there is no
2425 need to look it up again later. */
2426 if ((TREE_CODE (decl) == CONST_DECL && DECL_TEMPLATE_PARM_P (decl))
2427 || TREE_CODE (decl) == TEMPLATE_PARM_INDEX)
2428 {
2429 *idk = CP_ID_KIND_NONE;
2430 if (TREE_CODE (decl) == TEMPLATE_PARM_INDEX)
2431 decl = TEMPLATE_PARM_DECL (decl);
2432 if (integral_constant_expression_p
2433 && !dependent_type_p (TREE_TYPE (decl))
2434 && !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (decl)))
2435 {
2436 if (!allow_non_integral_constant_expression_p)
2437 error ("template parameter `%D' of type `%T' is not allowed in "
2438 "an integral constant expression because it is not of "
2439 "integral or enumeration type", decl, TREE_TYPE (decl));
2440 *non_integral_constant_expression_p = true;
2441 }
2442 return DECL_INITIAL (decl);
2443 }
2444 /* Similarly, we resolve enumeration constants to their
2445 underlying values. */
2446 else if (TREE_CODE (decl) == CONST_DECL)
2447 {
2448 *idk = CP_ID_KIND_NONE;
2449 if (!processing_template_decl)
2450 return DECL_INITIAL (decl);
2451 return decl;
2452 }
2453 else
2454 {
2455 bool dependent_p;
2456
2457 /* If the declaration was explicitly qualified indicate
2458 that. The semantics of `A::f(3)' are different than
2459 `f(3)' if `f' is virtual. */
2460 *idk = (scope
2461 ? CP_ID_KIND_QUALIFIED
2462 : (TREE_CODE (decl) == TEMPLATE_ID_EXPR
2463 ? CP_ID_KIND_TEMPLATE_ID
2464 : CP_ID_KIND_UNQUALIFIED));
2465
2466
2467 /* [temp.dep.expr]
2468
2469 An id-expression is type-dependent if it contains an
2470 identifier that was declared with a dependent type.
2471
2472 The standard is not very specific about an id-expression that
2473 names a set of overloaded functions. What if some of them
2474 have dependent types and some of them do not? Presumably,
2475 such a name should be treated as a dependent name. */
2476 /* Assume the name is not dependent. */
2477 dependent_p = false;
2478 if (!processing_template_decl)
2479 /* No names are dependent outside a template. */
2480 ;
2481 /* A template-id where the name of the template was not resolved
2482 is definitely dependent. */
2483 else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
2484 && (TREE_CODE (TREE_OPERAND (decl, 0))
2485 == IDENTIFIER_NODE))
2486 dependent_p = true;
2487 /* For anything except an overloaded function, just check its
2488 type. */
2489 else if (!is_overloaded_fn (decl))
2490 dependent_p
2491 = dependent_type_p (TREE_TYPE (decl));
2492 /* For a set of overloaded functions, check each of the
2493 functions. */
2494 else
2495 {
2496 tree fns = decl;
2497
2498 if (BASELINK_P (fns))
2499 fns = BASELINK_FUNCTIONS (fns);
2500
2501 /* For a template-id, check to see if the template
2502 arguments are dependent. */
2503 if (TREE_CODE (fns) == TEMPLATE_ID_EXPR)
2504 {
2505 tree args = TREE_OPERAND (fns, 1);
2506 dependent_p = any_dependent_template_arguments_p (args);
2507 /* The functions are those referred to by the
2508 template-id. */
2509 fns = TREE_OPERAND (fns, 0);
2510 }
2511
2512 /* If there are no dependent template arguments, go through
2513 the overloaded functions. */
2514 while (fns && !dependent_p)
2515 {
2516 tree fn = OVL_CURRENT (fns);
2517
2518 /* Member functions of dependent classes are
2519 dependent. */
2520 if (TREE_CODE (fn) == FUNCTION_DECL
2521 && type_dependent_expression_p (fn))
2522 dependent_p = true;
2523 else if (TREE_CODE (fn) == TEMPLATE_DECL
2524 && dependent_template_p (fn))
2525 dependent_p = true;
2526
2527 fns = OVL_NEXT (fns);
2528 }
2529 }
2530
2531 /* If the name was dependent on a template parameter, we will
2532 resolve the name at instantiation time. */
2533 if (dependent_p)
2534 {
2535 /* Create a SCOPE_REF for qualified names, if the scope is
2536 dependent. */
2537 if (scope)
2538 {
2539 if (TYPE_P (scope))
2540 *qualifying_class = scope;
2541 /* Since this name was dependent, the expression isn't
2542 constant -- yet. No error is issued because it might
2543 be constant when things are instantiated. */
2544 if (integral_constant_expression_p)
2545 *non_integral_constant_expression_p = true;
2546 if (TYPE_P (scope) && dependent_type_p (scope))
2547 return build_nt (SCOPE_REF, scope, id_expression);
2548 else if (TYPE_P (scope) && DECL_P (decl))
2549 return build (SCOPE_REF, TREE_TYPE (decl), scope,
2550 id_expression);
2551 else
2552 return decl;
2553 }
2554 /* A TEMPLATE_ID already contains all the information we
2555 need. */
2556 if (TREE_CODE (id_expression) == TEMPLATE_ID_EXPR)
2557 return id_expression;
2558 /* Since this name was dependent, the expression isn't
2559 constant -- yet. No error is issued because it might be
2560 constant when things are instantiated. */
2561 if (integral_constant_expression_p)
2562 *non_integral_constant_expression_p = true;
2563 *idk = CP_ID_KIND_UNQUALIFIED_DEPENDENT;
2564 /* If we found a variable, then name lookup during the
2565 instantiation will always resolve to the same VAR_DECL
2566 (or an instantiation thereof). */
2567 if (TREE_CODE (decl) == VAR_DECL
2568 || TREE_CODE (decl) == PARM_DECL)
2569 return decl;
2570 return id_expression;
2571 }
2572
2573 /* Only certain kinds of names are allowed in constant
2574 expression. Enumerators and template parameters
2575 have already been handled above. */
2576 if (integral_constant_expression_p)
2577 {
2578 /* Const variables or static data members of integral or
2579 enumeration types initialized with constant expressions
2580 are OK. */
2581 if (TREE_CODE (decl) == VAR_DECL
2582 && CP_TYPE_CONST_P (TREE_TYPE (decl))
2583 && INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (decl))
2584 && DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2585 ;
2586 else
2587 {
2588 if (!allow_non_integral_constant_expression_p)
2589 {
2590 error ("`%D' cannot appear in a constant-expression", decl);
2591 return error_mark_node;
2592 }
2593 *non_integral_constant_expression_p = true;
2594 }
2595 }
2596
2597 if (TREE_CODE (decl) == NAMESPACE_DECL)
2598 {
2599 error ("use of namespace `%D' as expression", decl);
2600 return error_mark_node;
2601 }
2602 else if (DECL_CLASS_TEMPLATE_P (decl))
2603 {
2604 error ("use of class template `%T' as expression", decl);
2605 return error_mark_node;
2606 }
2607 else if (TREE_CODE (decl) == TREE_LIST)
2608 {
2609 /* Ambiguous reference to base members. */
2610 error ("request for member `%D' is ambiguous in "
2611 "multiple inheritance lattice", id_expression);
2612 print_candidates (decl);
2613 return error_mark_node;
2614 }
2615
2616 /* Mark variable-like entities as used. Functions are similarly
2617 marked either below or after overload resolution. */
2618 if (TREE_CODE (decl) == VAR_DECL
2619 || TREE_CODE (decl) == PARM_DECL
2620 || TREE_CODE (decl) == RESULT_DECL)
2621 mark_used (decl);
2622
2623 if (scope)
2624 {
2625 decl = (adjust_result_of_qualified_name_lookup
2626 (decl, scope, current_class_type));
2627
2628 if (TREE_CODE (decl) == FUNCTION_DECL)
2629 mark_used (decl);
2630
2631 if (TREE_CODE (decl) == FIELD_DECL || BASELINK_P (decl))
2632 *qualifying_class = scope;
2633 else if (!processing_template_decl)
2634 decl = convert_from_reference (decl);
2635 else if (TYPE_P (scope))
2636 decl = build (SCOPE_REF, TREE_TYPE (decl), scope, decl);
2637 }
2638 else if (TREE_CODE (decl) == FIELD_DECL)
2639 decl = finish_non_static_data_member (decl, current_class_ref,
2640 /*qualifying_scope=*/NULL_TREE);
2641 else if (is_overloaded_fn (decl))
2642 {
2643 tree first_fn = OVL_CURRENT (decl);
2644
2645 if (TREE_CODE (first_fn) == TEMPLATE_DECL)
2646 first_fn = DECL_TEMPLATE_RESULT (first_fn);
2647
2648 if (!really_overloaded_fn (decl))
2649 mark_used (first_fn);
2650
2651 if (TREE_CODE (first_fn) == FUNCTION_DECL
2652 && DECL_FUNCTION_MEMBER_P (first_fn))
2653 {
2654 /* A set of member functions. */
2655 decl = maybe_dummy_object (DECL_CONTEXT (first_fn), 0);
2656 return finish_class_member_access_expr (decl, id_expression);
2657 }
2658 }
2659 else
2660 {
2661 if (TREE_CODE (decl) == VAR_DECL
2662 || TREE_CODE (decl) == PARM_DECL
2663 || TREE_CODE (decl) == RESULT_DECL)
2664 {
2665 tree context = decl_function_context (decl);
2666
2667 if (context != NULL_TREE && context != current_function_decl
2668 && ! TREE_STATIC (decl))
2669 {
2670 error ("use of %s from containing function",
2671 (TREE_CODE (decl) == VAR_DECL
2672 ? "`auto' variable" : "parameter"));
2673 cp_error_at (" `%#D' declared here", decl);
2674 return error_mark_node;
2675 }
2676 }
2677
2678 if (DECL_P (decl) && DECL_NONLOCAL (decl)
2679 && DECL_CLASS_SCOPE_P (decl)
2680 && DECL_CONTEXT (decl) != current_class_type)
2681 {
2682 tree path;
2683
2684 path = currently_open_derived_class (DECL_CONTEXT (decl));
2685 perform_or_defer_access_check (TYPE_BINFO (path), decl);
2686 }
2687
2688 if (! processing_template_decl)
2689 decl = convert_from_reference (decl);
2690 }
2691
2692 /* Resolve references to variables of anonymous unions
2693 into COMPONENT_REFs. */
2694 if (TREE_CODE (decl) == ALIAS_DECL)
2695 decl = unshare_expr (DECL_INITIAL (decl));
2696 }
2697
2698 if (TREE_DEPRECATED (decl))
2699 warn_deprecated_use (decl);
2700
2701 return decl;
2702 }
2703
2704 /* Implement the __typeof keyword: Return the type of EXPR, suitable for
2705 use as a type-specifier. */
2706
2707 tree
2708 finish_typeof (tree expr)
2709 {
2710 tree type;
2711
2712 if (type_dependent_expression_p (expr))
2713 {
2714 type = make_aggr_type (TYPEOF_TYPE);
2715 TYPEOF_TYPE_EXPR (type) = expr;
2716
2717 return type;
2718 }
2719
2720 type = TREE_TYPE (expr);
2721
2722 if (!type || type == unknown_type_node)
2723 {
2724 error ("type of `%E' is unknown", expr);
2725 return error_mark_node;
2726 }
2727
2728 return type;
2729 }
2730
2731 /* Called from expand_body via walk_tree. Replace all AGGR_INIT_EXPRs
2732 with equivalent CALL_EXPRs. */
2733
2734 static tree
2735 simplify_aggr_init_exprs_r (tree* tp,
2736 int* walk_subtrees,
2737 void* data ATTRIBUTE_UNUSED)
2738 {
2739 /* We don't need to walk into types; there's nothing in a type that
2740 needs simplification. (And, furthermore, there are places we
2741 actively don't want to go. For example, we don't want to wander
2742 into the default arguments for a FUNCTION_DECL that appears in a
2743 CALL_EXPR.) */
2744 if (TYPE_P (*tp))
2745 {
2746 *walk_subtrees = 0;
2747 return NULL_TREE;
2748 }
2749 /* Only AGGR_INIT_EXPRs are interesting. */
2750 else if (TREE_CODE (*tp) != AGGR_INIT_EXPR)
2751 return NULL_TREE;
2752
2753 simplify_aggr_init_expr (tp);
2754
2755 /* Keep iterating. */
2756 return NULL_TREE;
2757 }
2758
2759 /* Replace the AGGR_INIT_EXPR at *TP with an equivalent CALL_EXPR. This
2760 function is broken out from the above for the benefit of the tree-ssa
2761 project. */
2762
2763 void
2764 simplify_aggr_init_expr (tree *tp)
2765 {
2766 tree aggr_init_expr = *tp;
2767
2768 /* Form an appropriate CALL_EXPR. */
2769 tree fn = TREE_OPERAND (aggr_init_expr, 0);
2770 tree args = TREE_OPERAND (aggr_init_expr, 1);
2771 tree slot = TREE_OPERAND (aggr_init_expr, 2);
2772 tree type = TREE_TYPE (slot);
2773
2774 tree call_expr;
2775 enum style_t { ctor, arg, pcc } style;
2776
2777 if (AGGR_INIT_VIA_CTOR_P (aggr_init_expr))
2778 style = ctor;
2779 #ifdef PCC_STATIC_STRUCT_RETURN
2780 else if (1)
2781 style = pcc;
2782 #endif
2783 else if (TREE_ADDRESSABLE (type))
2784 style = arg;
2785 else
2786 /* We shouldn't build an AGGR_INIT_EXPR if we don't need any special
2787 handling. See build_cplus_new. */
2788 abort ();
2789
2790 if (style == ctor || style == arg)
2791 {
2792 /* Pass the address of the slot. If this is a constructor, we
2793 replace the first argument; otherwise, we tack on a new one. */
2794 tree addr;
2795
2796 if (style == ctor)
2797 args = TREE_CHAIN (args);
2798
2799 cxx_mark_addressable (slot);
2800 addr = build1 (ADDR_EXPR, build_pointer_type (type), slot);
2801 if (style == arg)
2802 {
2803 /* The return type might have different cv-quals from the slot. */
2804 tree fntype = TREE_TYPE (TREE_TYPE (fn));
2805 #ifdef ENABLE_CHECKING
2806 if (TREE_CODE (fntype) != FUNCTION_TYPE
2807 && TREE_CODE (fntype) != METHOD_TYPE)
2808 abort ();
2809 #endif
2810 addr = convert (build_pointer_type (TREE_TYPE (fntype)), addr);
2811 }
2812
2813 args = tree_cons (NULL_TREE, addr, args);
2814 }
2815
2816 call_expr = build (CALL_EXPR,
2817 TREE_TYPE (TREE_TYPE (TREE_TYPE (fn))),
2818 fn, args, NULL_TREE);
2819
2820 if (style == arg)
2821 /* Tell the backend that we've added our return slot to the argument
2822 list. */
2823 CALL_EXPR_HAS_RETURN_SLOT_ADDR (call_expr) = 1;
2824 else if (style == pcc)
2825 {
2826 /* If we're using the non-reentrant PCC calling convention, then we
2827 need to copy the returned value out of the static buffer into the
2828 SLOT. */
2829 push_deferring_access_checks (dk_no_check);
2830 call_expr = build_aggr_init (slot, call_expr,
2831 DIRECT_BIND | LOOKUP_ONLYCONVERTING);
2832 pop_deferring_access_checks ();
2833 }
2834
2835 *tp = call_expr;
2836 }
2837
2838 /* Emit all thunks to FN that should be emitted when FN is emitted. */
2839
2840 static void
2841 emit_associated_thunks (tree fn)
2842 {
2843 /* When we use vcall offsets, we emit thunks with the virtual
2844 functions to which they thunk. The whole point of vcall offsets
2845 is so that you can know statically the entire set of thunks that
2846 will ever be needed for a given virtual function, thereby
2847 enabling you to output all the thunks with the function itself. */
2848 if (DECL_VIRTUAL_P (fn))
2849 {
2850 tree thunk;
2851
2852 for (thunk = DECL_THUNKS (fn); thunk; thunk = TREE_CHAIN (thunk))
2853 {
2854 if (!THUNK_ALIAS (thunk))
2855 {
2856 use_thunk (thunk, /*emit_p=*/1);
2857 if (DECL_RESULT_THUNK_P (thunk))
2858 {
2859 tree probe;
2860
2861 for (probe = DECL_THUNKS (thunk);
2862 probe; probe = TREE_CHAIN (probe))
2863 use_thunk (probe, /*emit_p=*/1);
2864 }
2865 }
2866 else
2867 my_friendly_assert (!DECL_THUNKS (thunk), 20031023);
2868 }
2869 }
2870 }
2871
2872 /* Generate RTL for FN. */
2873
2874 void
2875 expand_body (tree fn)
2876 {
2877 tree saved_function;
2878
2879 /* Compute the appropriate object-file linkage for inline
2880 functions. */
2881 if (DECL_DECLARED_INLINE_P (fn))
2882 import_export_decl (fn);
2883
2884 /* If FN is external, then there's no point in generating RTL for
2885 it. This situation can arise with an inline function under
2886 `-fexternal-templates'; we instantiate the function, even though
2887 we're not planning on emitting it, in case we get a chance to
2888 inline it. */
2889 if (DECL_EXTERNAL (fn))
2890 return;
2891
2892 /* ??? When is this needed? */
2893 saved_function = current_function_decl;
2894
2895 /* Emit any thunks that should be emitted at the same time as FN. */
2896 emit_associated_thunks (fn);
2897
2898 tree_rest_of_compilation (fn, function_depth > 1);
2899
2900 current_function_decl = saved_function;
2901
2902 extract_interface_info ();
2903
2904 /* If this function is marked with the constructor attribute, add it
2905 to the list of functions to be called along with constructors
2906 from static duration objects. */
2907 if (DECL_STATIC_CONSTRUCTOR (fn))
2908 static_ctors = tree_cons (NULL_TREE, fn, static_ctors);
2909
2910 /* If this function is marked with the destructor attribute, add it
2911 to the list of functions to be called along with destructors from
2912 static duration objects. */
2913 if (DECL_STATIC_DESTRUCTOR (fn))
2914 static_dtors = tree_cons (NULL_TREE, fn, static_dtors);
2915
2916 if (DECL_CLONED_FUNCTION_P (fn))
2917 {
2918 /* If this is a clone, go through the other clones now and mark
2919 their parameters used. We have to do that here, as we don't
2920 know whether any particular clone will be expanded, and
2921 therefore cannot pick one arbitrarily. */
2922 tree probe;
2923
2924 for (probe = TREE_CHAIN (DECL_CLONED_FUNCTION (fn));
2925 probe && DECL_CLONED_FUNCTION_P (probe);
2926 probe = TREE_CHAIN (probe))
2927 {
2928 tree parms;
2929
2930 for (parms = DECL_ARGUMENTS (probe);
2931 parms; parms = TREE_CHAIN (parms))
2932 TREE_USED (parms) = 1;
2933 }
2934 }
2935 }
2936
2937 /* Generate RTL for FN. */
2938
2939 void
2940 expand_or_defer_fn (tree fn)
2941 {
2942 /* When the parser calls us after finishing the body of a template
2943 function, we don't really want to expand the body. */
2944 if (processing_template_decl)
2945 {
2946 /* Normally, collection only occurs in rest_of_compilation. So,
2947 if we don't collect here, we never collect junk generated
2948 during the processing of templates until we hit a
2949 non-template function. */
2950 ggc_collect ();
2951 return;
2952 }
2953
2954 /* Replace AGGR_INIT_EXPRs with appropriate CALL_EXPRs. */
2955 walk_tree_without_duplicates (&DECL_SAVED_TREE (fn),
2956 simplify_aggr_init_exprs_r,
2957 NULL);
2958
2959 /* If this is a constructor or destructor body, we have to clone
2960 it. */
2961 if (maybe_clone_body (fn))
2962 {
2963 /* We don't want to process FN again, so pretend we've written
2964 it out, even though we haven't. */
2965 TREE_ASM_WRITTEN (fn) = 1;
2966 return;
2967 }
2968
2969 /* There's no reason to do any of the work here if we're only doing
2970 semantic analysis; this code just generates RTL. */
2971 if (flag_syntax_only)
2972 return;
2973
2974 /* Compute the appropriate object-file linkage for inline functions. */
2975 if (DECL_DECLARED_INLINE_P (fn))
2976 import_export_decl (fn);
2977
2978 function_depth++;
2979
2980 /* Expand or defer, at the whim of the compilation unit manager. */
2981 cgraph_finalize_function (fn, function_depth > 1);
2982
2983 function_depth--;
2984 }
2985
2986 struct nrv_data
2987 {
2988 tree var;
2989 tree result;
2990 htab_t visited;
2991 };
2992
2993 /* Helper function for walk_tree, used by finalize_nrv below. */
2994
2995 static tree
2996 finalize_nrv_r (tree* tp, int* walk_subtrees, void* data)
2997 {
2998 struct nrv_data *dp = (struct nrv_data *)data;
2999 void **slot;
3000
3001 /* No need to walk into types. There wouldn't be any need to walk into
3002 non-statements, except that we have to consider STMT_EXPRs. */
3003 if (TYPE_P (*tp))
3004 *walk_subtrees = 0;
3005 /* Change all returns to just refer to the RESULT_DECL; this is a nop,
3006 but differs from using NULL_TREE in that it indicates that we care
3007 about the value of the RESULT_DECL. */
3008 else if (TREE_CODE (*tp) == RETURN_STMT)
3009 RETURN_STMT_EXPR (*tp) = dp->result;
3010 /* Change all cleanups for the NRV to only run when an exception is
3011 thrown. */
3012 else if (TREE_CODE (*tp) == CLEANUP_STMT
3013 && CLEANUP_DECL (*tp) == dp->var)
3014 CLEANUP_EH_ONLY (*tp) = 1;
3015 /* Replace the DECL_STMT for the NRV with an initialization of the
3016 RESULT_DECL, if needed. */
3017 else if (TREE_CODE (*tp) == DECL_STMT
3018 && DECL_STMT_DECL (*tp) == dp->var)
3019 {
3020 tree init;
3021 if (DECL_INITIAL (dp->var)
3022 && DECL_INITIAL (dp->var) != error_mark_node)
3023 {
3024 init = build (INIT_EXPR, void_type_node, dp->result,
3025 DECL_INITIAL (dp->var));
3026 DECL_INITIAL (dp->var) = error_mark_node;
3027 }
3028 else
3029 init = build_empty_stmt ();
3030 SET_EXPR_LOCUS (init, EXPR_LOCUS (*tp));
3031 *tp = init;
3032 }
3033 /* And replace all uses of the NRV with the RESULT_DECL. */
3034 else if (*tp == dp->var)
3035 *tp = dp->result;
3036
3037 /* Avoid walking into the same tree more than once. Unfortunately, we
3038 can't just use walk_tree_without duplicates because it would only call
3039 us for the first occurrence of dp->var in the function body. */
3040 slot = htab_find_slot (dp->visited, *tp, INSERT);
3041 if (*slot)
3042 *walk_subtrees = 0;
3043 else
3044 *slot = *tp;
3045
3046 /* Keep iterating. */
3047 return NULL_TREE;
3048 }
3049
3050 /* Called from finish_function to implement the named return value
3051 optimization by overriding all the RETURN_STMTs and pertinent
3052 CLEANUP_STMTs and replacing all occurrences of VAR with RESULT, the
3053 RESULT_DECL for the function. */
3054
3055 void
3056 finalize_nrv (tree *tp, tree var, tree result)
3057 {
3058 struct nrv_data data;
3059
3060 /* Copy debugging information from VAR to RESULT. */
3061 DECL_NAME (result) = DECL_NAME (var);
3062 DECL_SOURCE_LOCATION (result) = DECL_SOURCE_LOCATION (var);
3063 DECL_ABSTRACT_ORIGIN (result) = DECL_ABSTRACT_ORIGIN (var);
3064 /* Don't forget that we take its address. */
3065 TREE_ADDRESSABLE (result) = TREE_ADDRESSABLE (var);
3066
3067 data.var = var;
3068 data.result = result;
3069 data.visited = htab_create (37, htab_hash_pointer, htab_eq_pointer, NULL);
3070 walk_tree (tp, finalize_nrv_r, &data, 0);
3071 htab_delete (data.visited);
3072 }
3073
3074 /* Perform initialization related to this module. */
3075
3076 void
3077 init_cp_semantics (void)
3078 {
3079 }
3080
3081 #include "gt-cp-semantics.h"
This page took 0.167557 seconds and 4 git commands to generate.