1 /* Breadth-first and depth-first routines for
2 searching multiple-inheritance lattice for GNU C++.
3 Copyright (C) 1987, 89, 92-97, 1998, 1999 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com)
6 This file is part of GNU CC.
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
23 /* High-level class interface. */
36 #define obstack_chunk_alloc xmalloc
37 #define obstack_chunk_free free
39 extern struct obstack
*current_obstack
;
43 /* Obstack used for remembering decision points of breadth-first. */
45 static struct obstack search_obstack
;
47 /* Methods for pushing and popping objects to and from obstacks. */
50 push_stack_level (obstack
, tp
, size
)
51 struct obstack
*obstack
;
52 char *tp
; /* Sony NewsOS 5.0 compiler doesn't like void * here. */
55 struct stack_level
*stack
;
56 obstack_grow (obstack
, tp
, size
);
57 stack
= (struct stack_level
*) ((char*)obstack_next_free (obstack
) - size
);
58 obstack_finish (obstack
);
59 stack
->obstack
= obstack
;
60 stack
->first
= (tree
*) obstack_base (obstack
);
61 stack
->limit
= obstack_room (obstack
) / sizeof (tree
*);
66 pop_stack_level (stack
)
67 struct stack_level
*stack
;
69 struct stack_level
*tem
= stack
;
70 struct obstack
*obstack
= tem
->obstack
;
72 obstack_free (obstack
, tem
);
76 #define search_level stack_level
77 static struct search_level
*search_stack
;
79 static tree get_abstract_virtuals_1
PROTO((tree
, int, tree
));
80 static tree next_baselink
PROTO((tree
));
81 static tree get_vbase_1
PROTO((tree
, tree
, unsigned int *));
82 static tree convert_pointer_to_vbase
PROTO((tree
, tree
));
83 static tree lookup_field_1
PROTO((tree
, tree
));
84 static tree convert_pointer_to_single_level
PROTO((tree
, tree
));
85 static int lookup_fnfields_here
PROTO((tree
, tree
));
86 static int is_subobject_of_p
PROTO((tree
, tree
));
87 static int hides
PROTO((tree
, tree
));
88 static tree virtual_context
PROTO((tree
, tree
, tree
));
89 static tree dfs_check_overlap
PROTO((tree
, void *));
90 static tree dfs_no_overlap_yet
PROTO((tree
, void *));
91 static int get_base_distance_recursive
92 PROTO((tree
, int, int, int, int *, tree
*, tree
,
93 int, int *, int, int));
94 static void expand_upcast_fixups
95 PROTO((tree
, tree
, tree
, tree
, tree
, tree
, tree
*));
96 static void fixup_virtual_upcast_offsets
97 PROTO((tree
, tree
, int, int, tree
, tree
, tree
, tree
,
99 static tree unmarkedp
PROTO((tree
, void *));
100 static tree marked_vtable_pathp
PROTO((tree
, void *));
101 static tree unmarked_vtable_pathp
PROTO((tree
, void *));
102 static tree marked_new_vtablep
PROTO((tree
, void *));
103 static tree unmarked_new_vtablep
PROTO((tree
, void *));
104 static tree marked_pushdecls_p
PROTO((tree
, void *));
105 static tree unmarked_pushdecls_p
PROTO((tree
, void *));
106 static tree dfs_debug_unmarkedp
PROTO((tree
, void *));
107 static tree dfs_debug_mark
PROTO((tree
, void *));
108 static tree dfs_find_vbases
PROTO((tree
, void *));
109 static tree dfs_clear_vbase_slots
PROTO((tree
, void *));
110 static tree dfs_init_vbase_pointers
PROTO((tree
, void *));
111 static tree dfs_get_vbase_types
PROTO((tree
, void *));
112 static tree dfs_push_type_decls
PROTO((tree
, void *));
113 static tree dfs_push_decls
PROTO((tree
, void *));
114 static tree dfs_unuse_fields
PROTO((tree
, void *));
115 static tree add_conversions
PROTO((tree
, void *));
116 static tree get_virtuals_named_this
PROTO((tree
, tree
));
117 static tree get_virtual_destructor
PROTO((tree
, void *));
118 static tree tree_has_any_destructor_p
PROTO((tree
, void *));
119 static int covariant_return_p
PROTO((tree
, tree
));
120 static int check_final_overrider
PROTO((tree
, tree
));
121 static struct search_level
*push_search_level
122 PROTO((struct stack_level
*, struct obstack
*));
123 static struct search_level
*pop_search_level
124 PROTO((struct stack_level
*));
126 PROTO((tree
, tree (*) (tree
, void *), tree (*) (tree
, void *),
128 static tree lookup_field_queue_p
PROTO((tree
, void *));
129 static tree lookup_field_r
PROTO((tree
, void *));
130 static tree dfs_walk_real
PROTO ((tree
,
131 tree (*) (tree
, void *),
132 tree (*) (tree
, void *),
133 tree (*) (tree
, void *),
135 static tree dfs_bfv_queue_p
PROTO ((tree
, void *));
136 static tree dfs_bfv_helper
PROTO ((tree
, void *));
137 static tree get_virtuals_named_this_r
PROTO ((tree
, void *));
138 static tree context_for_name_lookup
PROTO ((tree
));
139 static tree canonical_binfo
PROTO ((tree
));
140 static tree shared_marked_p
PROTO ((tree
, void *));
141 static tree shared_unmarked_p
PROTO ((tree
, void *));
142 static int dependent_base_p
PROTO ((tree
));
143 static tree dfs_accessible_queue_p
PROTO ((tree
, void *));
144 static tree dfs_accessible_p
PROTO ((tree
, void *));
145 static tree dfs_access_in_type
PROTO ((tree
, void *));
146 static tree access_in_type
PROTO ((tree
, tree
));
147 static tree dfs_canonical_queue
PROTO ((tree
, void *));
148 static tree dfs_assert_unmarked_p
PROTO ((tree
, void *));
149 static void assert_canonical_unmarked
PROTO ((tree
));
150 static int protected_accessible_p
PROTO ((tree
, tree
, tree
, tree
));
151 static int friend_accessible_p
PROTO ((tree
, tree
, tree
, tree
));
152 static void setup_class_bindings
PROTO ((tree
, int));
153 static int template_self_reference_p
PROTO ((tree
, tree
));
155 /* Allocate a level of searching. */
157 static struct search_level
*
158 push_search_level (stack
, obstack
)
159 struct stack_level
*stack
;
160 struct obstack
*obstack
;
162 struct search_level tem
;
165 return push_stack_level (obstack
, (char *)&tem
, sizeof (tem
));
168 /* Discard a level of search allocation. */
170 static struct search_level
*
171 pop_search_level (obstack
)
172 struct stack_level
*obstack
;
174 register struct search_level
*stack
= pop_stack_level (obstack
);
179 static tree _vptr_name
;
181 /* Variables for gathering statistics. */
182 #ifdef GATHER_STATISTICS
183 static int n_fields_searched
;
184 static int n_calls_lookup_field
, n_calls_lookup_field_1
;
185 static int n_calls_lookup_fnfields
, n_calls_lookup_fnfields_1
;
186 static int n_calls_get_base_type
;
187 static int n_outer_fields_searched
;
188 static int n_contexts_saved
;
189 #endif /* GATHER_STATISTICS */
192 /* Get a virtual binfo that is found inside BINFO's hierarchy that is
193 the same type as the type given in PARENT. To be optimal, we want
194 the first one that is found by going through the least number of
197 This uses a clever algorithm that updates *depth when we find the vbase,
198 and cuts off other paths of search when they reach that depth. */
201 get_vbase_1 (parent
, binfo
, depth
)
207 tree rval
= NULL_TREE
;
209 if (BINFO_TYPE (binfo
) == parent
&& TREE_VIA_VIRTUAL (binfo
))
217 binfos
= BINFO_BASETYPES (binfo
);
218 n_baselinks
= binfos
? TREE_VEC_LENGTH (binfos
) : 0;
220 /* Process base types. */
221 for (i
= 0; i
< n_baselinks
; i
++)
223 tree base_binfo
= TREE_VEC_ELT (binfos
, i
);
229 nrval
= get_vbase_1 (parent
, base_binfo
, depth
);
237 /* Return the shortest path to vbase PARENT within BINFO, ignoring
238 access and ambiguity. */
241 get_vbase (parent
, binfo
)
245 unsigned int d
= (unsigned int)-1;
246 return get_vbase_1 (parent
, binfo
, &d
);
249 /* Convert EXPR to a virtual base class of type TYPE. We know that
250 EXPR is a non-null POINTER_TYPE to RECORD_TYPE. We also know that
251 the type of what expr points to has a virtual base of type TYPE. */
254 convert_pointer_to_vbase (type
, expr
)
258 tree vb
= get_vbase (type
, TYPE_BINFO (TREE_TYPE (TREE_TYPE (expr
))));
259 return convert_pointer_to_real (vb
, expr
);
262 /* Check whether the type given in BINFO is derived from PARENT. If
263 it isn't, return 0. If it is, but the derivation is MI-ambiguous
264 AND protect != 0, emit an error message and return error_mark_node.
266 Otherwise, if TYPE is derived from PARENT, return the actual base
267 information, unless a one of the protection violations below
268 occurs, in which case emit an error message and return error_mark_node.
270 If PROTECT is 1, then check if access to a public field of PARENT
271 would be private. Also check for ambiguity. */
274 get_binfo (parent
, binfo
, protect
)
275 register tree parent
, binfo
;
278 tree type
= NULL_TREE
;
280 tree rval
= NULL_TREE
;
282 if (TREE_CODE (parent
) == TREE_VEC
)
283 parent
= BINFO_TYPE (parent
);
284 else if (! IS_AGGR_TYPE_CODE (TREE_CODE (parent
)))
285 my_friendly_abort (89);
287 if (TREE_CODE (binfo
) == TREE_VEC
)
288 type
= BINFO_TYPE (binfo
);
289 else if (IS_AGGR_TYPE_CODE (TREE_CODE (binfo
)))
292 my_friendly_abort (90);
294 dist
= get_base_distance (parent
, binfo
, protect
, &rval
);
298 cp_error ("fields of `%T' are inaccessible in `%T' due to private inheritance",
300 return error_mark_node
;
302 else if (dist
== -2 && protect
)
304 cp_error ("type `%T' is ambiguous base class for type `%T'", parent
,
306 return error_mark_node
;
312 /* This is the newer depth first get_base_distance routine. */
315 get_base_distance_recursive (binfo
, depth
, is_private
, rval
,
316 rval_private_ptr
, new_binfo_ptr
, parent
,
317 protect
, via_virtual_ptr
, via_virtual
,
318 current_scope_in_chain
)
320 int depth
, is_private
, rval
;
321 int *rval_private_ptr
;
322 tree
*new_binfo_ptr
, parent
;
323 int protect
, *via_virtual_ptr
, via_virtual
;
324 int current_scope_in_chain
;
330 && !current_scope_in_chain
331 && is_friend (BINFO_TYPE (binfo
), current_scope ()))
332 current_scope_in_chain
= 1;
334 if (BINFO_TYPE (binfo
) == parent
|| binfo
== parent
)
339 /* This is the first time we've found parent. */
341 else if (tree_int_cst_equal (BINFO_OFFSET (*new_binfo_ptr
),
342 BINFO_OFFSET (binfo
))
343 && *via_virtual_ptr
&& via_virtual
)
345 /* A new path to the same vbase. If this one has better
346 access or is shorter, take it. */
349 better
= *rval_private_ptr
- is_private
;
351 better
= rval
- depth
;
355 /* Ambiguous base class. */
358 /* If we get an ambiguity between virtual and non-virtual base
359 class, return the non-virtual in case we are ignoring
361 better
= *via_virtual_ptr
- via_virtual
;
367 *rval_private_ptr
= is_private
;
368 *new_binfo_ptr
= binfo
;
369 *via_virtual_ptr
= via_virtual
;
375 binfos
= BINFO_BASETYPES (binfo
);
376 n_baselinks
= binfos
? TREE_VEC_LENGTH (binfos
) : 0;
379 /* Process base types. */
380 for (i
= 0; i
< n_baselinks
; i
++)
382 tree base_binfo
= TREE_VEC_ELT (binfos
, i
);
387 || (!TREE_VIA_PUBLIC (base_binfo
)
388 && !(TREE_VIA_PROTECTED (base_binfo
)
389 && current_scope_in_chain
)
390 && !is_friend (BINFO_TYPE (binfo
), current_scope ()))));
391 int this_virtual
= via_virtual
|| TREE_VIA_VIRTUAL (base_binfo
);
393 rval
= get_base_distance_recursive (base_binfo
, depth
, via_private
,
394 rval
, rval_private_ptr
,
395 new_binfo_ptr
, parent
,
396 protect
, via_virtual_ptr
,
398 current_scope_in_chain
);
400 /* If we've found a non-virtual, ambiguous base class, we don't need
401 to keep searching. */
402 if (rval
== -2 && *via_virtual_ptr
== 0)
409 /* Return the number of levels between type PARENT and the type given
410 in BINFO, following the leftmost path to PARENT not found along a
411 virtual path, if there are no real PARENTs (all come from virtual
412 base classes), then follow the shortest public path to PARENT.
414 Return -1 if TYPE is not derived from PARENT.
415 Return -2 if PARENT is an ambiguous base class of TYPE, and PROTECT is
417 Return -3 if PARENT is private to TYPE, and PROTECT is non-zero.
419 If PATH_PTR is non-NULL, then also build the list of types
420 from PARENT to TYPE, with TREE_VIA_VIRTUAL and TREE_VIA_PUBLIC
423 PARENT can also be a binfo, in which case that exact parent is found
424 and no other. convert_pointer_to_real uses this functionality.
426 If BINFO is a binfo, its BINFO_INHERITANCE_CHAIN will be left alone. */
429 get_base_distance (parent
, binfo
, protect
, path_ptr
)
430 register tree parent
, binfo
;
435 int rval_private
= 0;
436 tree type
= NULL_TREE
;
437 tree new_binfo
= NULL_TREE
;
439 int watch_access
= protect
;
441 /* Should we be completing types here? */
442 if (TREE_CODE (parent
) != TREE_VEC
)
443 parent
= complete_type (TYPE_MAIN_VARIANT (parent
));
445 complete_type (TREE_TYPE (parent
));
447 if (TREE_CODE (binfo
) == TREE_VEC
)
448 type
= BINFO_TYPE (binfo
);
449 else if (IS_AGGR_TYPE_CODE (TREE_CODE (binfo
)))
451 type
= complete_type (binfo
);
452 binfo
= TYPE_BINFO (type
);
455 my_friendly_assert (BINFO_INHERITANCE_CHAIN (binfo
) == NULL_TREE
,
459 my_friendly_abort (92);
461 if (parent
== type
|| parent
== binfo
)
463 /* If the distance is 0, then we don't really need
464 a path pointer, but we shouldn't let garbage go back. */
473 rval
= get_base_distance_recursive (binfo
, 0, 0, -1,
474 &rval_private
, &new_binfo
, parent
,
475 watch_access
, &via_virtual
, 0,
478 /* Access restrictions don't count if we found an ambiguous basetype. */
479 if (rval
== -2 && protect
>= 0)
482 if (rval
&& protect
&& rval_private
)
485 /* If they gave us the real vbase binfo, which isn't in the main binfo
486 tree, deal with it. This happens when we are called from
487 expand_upcast_fixups. */
488 if (rval
== -1 && TREE_CODE (parent
) == TREE_VEC
489 && parent
== binfo_member (BINFO_TYPE (parent
),
490 CLASSTYPE_VBASECLASSES (type
)))
492 my_friendly_assert (BINFO_INHERITANCE_CHAIN (parent
) == binfo
, 980827);
498 *path_ptr
= new_binfo
;
502 /* Search for a member with name NAME in a multiple inheritance lattice
503 specified by TYPE. If it does not exist, return NULL_TREE.
504 If the member is ambiguously referenced, return `error_mark_node'.
505 Otherwise, return the FIELD_DECL. */
507 /* Do a 1-level search for NAME as a member of TYPE. The caller must
508 figure out whether it can access this field. (Since it is only one
509 level, this is reasonable.) */
512 lookup_field_1 (type
, name
)
517 if (TREE_CODE (type
) == TEMPLATE_TYPE_PARM
518 || TREE_CODE (type
) == TEMPLATE_TEMPLATE_PARM
)
519 /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM are not fields at all;
520 instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX. (Miraculously,
521 the code often worked even when we treated the index as a list
526 && DECL_LANG_SPECIFIC (TYPE_NAME (type
))
527 && DECL_SORTED_FIELDS (TYPE_NAME (type
)))
529 tree
*fields
= &TREE_VEC_ELT (DECL_SORTED_FIELDS (TYPE_NAME (type
)), 0);
530 int lo
= 0, hi
= TREE_VEC_LENGTH (DECL_SORTED_FIELDS (TYPE_NAME (type
)));
537 #ifdef GATHER_STATISTICS
539 #endif /* GATHER_STATISTICS */
541 if (DECL_NAME (fields
[i
]) > name
)
543 else if (DECL_NAME (fields
[i
]) < name
)
551 field
= TYPE_FIELDS (type
);
553 #ifdef GATHER_STATISTICS
554 n_calls_lookup_field_1
++;
555 #endif /* GATHER_STATISTICS */
558 #ifdef GATHER_STATISTICS
560 #endif /* GATHER_STATISTICS */
561 my_friendly_assert (TREE_CODE_CLASS (TREE_CODE (field
)) == 'd', 0);
562 if (DECL_NAME (field
) == NULL_TREE
563 && ANON_AGGR_TYPE_P (TREE_TYPE (field
)))
565 tree temp
= lookup_field_1 (TREE_TYPE (field
), name
);
569 if (TREE_CODE (field
) == USING_DECL
)
570 /* For now, we're just treating member using declarations as
571 old ARM-style access declarations. Thus, there's no reason
572 to return a USING_DECL, and the rest of the compiler can't
573 handle it. Once the class is defined, these are purged
574 from TYPE_FIELDS anyhow; see handle_using_decl. */
576 else if (DECL_NAME (field
) == name
)
578 if ((TREE_CODE(field
) == VAR_DECL
|| TREE_CODE(field
) == CONST_DECL
)
579 && DECL_ASSEMBLER_NAME (field
) != NULL
)
580 GNU_xref_ref(current_function_decl
,
581 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (field
)));
584 field
= TREE_CHAIN (field
);
587 if (name
== _vptr_name
)
589 /* Give the user what s/he thinks s/he wants. */
590 if (TYPE_VIRTUAL_P (type
))
591 return CLASSTYPE_VFIELD (type
);
596 /* There are a number of cases we need to be aware of here:
597 current_class_type current_function_decl
604 Those last two make life interesting. If we're in a function which is
605 itself inside a class, we need decls to go into the fn's decls (our
606 second case below). But if we're in a class and the class itself is
607 inside a function, we need decls to go into the decls for the class. To
608 achieve this last goal, we must see if, when both current_class_ptr and
609 current_function_decl are set, the class was declared inside that
610 function. If so, we know to put the decls into the class's scope. */
615 if (current_function_decl
== NULL_TREE
)
616 return current_class_type
;
617 if (current_class_type
== NULL_TREE
)
618 return current_function_decl
;
619 if (DECL_CLASS_CONTEXT (current_function_decl
) == current_class_type
)
620 return current_function_decl
;
622 return current_class_type
;
625 /* Returns non-zero if we are currently in a function scope. Note
626 that this function returns zero if we are within a local class, but
627 not within a member function body of the local class. */
630 at_function_scope_p ()
632 tree cs
= current_scope ();
633 return cs
&& TREE_CODE (cs
) == FUNCTION_DECL
;
636 /* Return the scope of DECL, as appropriate when doing name-lookup. */
639 context_for_name_lookup (decl
)
644 For the purposes of name lookup, after the anonymous union
645 definition, the members of the anonymous union are considered to
646 have been defined in the scope in which teh anonymous union is
648 tree context
= DECL_REAL_CONTEXT (decl
);
650 while (TYPE_P (context
) && ANON_AGGR_TYPE_P (context
))
651 context
= TYPE_CONTEXT (context
);
653 context
= global_namespace
;
658 /* Return a canonical BINFO if BINFO is a virtual base, or just BINFO
662 canonical_binfo (binfo
)
665 return (TREE_VIA_VIRTUAL (binfo
)
666 ? TYPE_BINFO (BINFO_TYPE (binfo
)) : binfo
);
669 /* A queue function that simply ensures that we walk into the
670 canonical versions of virtual bases. */
673 dfs_canonical_queue (binfo
, data
)
675 void *data ATTRIBUTE_UNUSED
;
677 return canonical_binfo (binfo
);
680 /* Called via dfs_walk from assert_canonical_unmarked. */
683 dfs_assert_unmarked_p (binfo
, data
)
685 void *data ATTRIBUTE_UNUSED
;
687 my_friendly_assert (!BINFO_MARKED (binfo
), 0);
691 /* Asserts that all the nodes below BINFO (using the canonical
692 versions of virtual bases) are unmarked. */
695 assert_canonical_unmarked (binfo
)
698 dfs_walk (binfo
, dfs_assert_unmarked_p
, dfs_canonical_queue
, 0);
701 /* If BINFO is marked, return a canonical version of BINFO.
702 Otherwise, return NULL_TREE. */
705 shared_marked_p (binfo
, data
)
709 binfo
= canonical_binfo (binfo
);
710 return markedp (binfo
, data
) ? binfo
: NULL_TREE
;
713 /* If BINFO is not marked, return a canonical version of BINFO.
714 Otherwise, return NULL_TREE. */
717 shared_unmarked_p (binfo
, data
)
721 binfo
= canonical_binfo (binfo
);
722 return unmarkedp (binfo
, data
) ? binfo
: NULL_TREE
;
725 /* Called from access_in_type via dfs_walk. Calculate the access to
726 DATA (which is really a DECL) in BINFO. */
729 dfs_access_in_type (binfo
, data
)
733 tree decl
= (tree
) data
;
734 tree type
= BINFO_TYPE (binfo
);
735 tree access
= NULL_TREE
;
737 if (context_for_name_lookup (decl
) == type
)
739 /* If we have desceneded to the scope of DECL, just note the
740 appropriate access. */
741 if (TREE_PRIVATE (decl
))
742 access
= access_private_node
;
743 else if (TREE_PROTECTED (decl
))
744 access
= access_protected_node
;
746 access
= access_public_node
;
750 /* First, check for an access-declaration that gives us more
751 access to the DECL. The CONST_DECL for an enumeration
752 constant will not have DECL_LANG_SPECIFIC, and thus no
754 if (DECL_LANG_SPECIFIC (decl
))
756 access
= purpose_member (type
, DECL_ACCESS (decl
));
758 access
= TREE_VALUE (access
);
767 /* Otherwise, scan our baseclasses, and pick the most favorable
769 binfos
= BINFO_BASETYPES (binfo
);
770 n_baselinks
= binfos
? TREE_VEC_LENGTH (binfos
) : 0;
771 for (i
= 0; i
< n_baselinks
; ++i
)
773 tree base_binfo
= TREE_VEC_ELT (binfos
, i
);
774 tree base_access
= TREE_CHAIN (canonical_binfo (base_binfo
));
776 if (!base_access
|| base_access
== access_private_node
)
777 /* If it was not accessible in the base, or only
778 accessible as a private member, we can't access it
780 base_access
= NULL_TREE
;
781 else if (TREE_VIA_PROTECTED (base_binfo
))
782 /* Public and protected members in the base are
784 base_access
= access_protected_node
;
785 else if (!TREE_VIA_PUBLIC (base_binfo
))
786 /* Public and protected members in the base are
788 base_access
= access_private_node
;
790 /* See if the new access, via this base, gives more
791 access than our previous best access. */
793 (base_access
== access_public_node
794 || (base_access
== access_protected_node
795 && access
!= access_public_node
)
796 || (base_access
== access_private_node
799 access
= base_access
;
801 /* If the new access is public, we can't do better. */
802 if (access
== access_public_node
)
809 /* Note the access to DECL in TYPE. */
810 TREE_CHAIN (binfo
) = access
;
812 /* Mark TYPE as visited so that if we reach it again we do not
813 duplicate our efforts here. */
814 SET_BINFO_MARKED (binfo
);
819 /* Return the access to DECL in TYPE. */
822 access_in_type (type
, decl
)
826 tree binfo
= TYPE_BINFO (type
);
828 /* We must take into account
832 If a name can be reached by several paths through a multiple
833 inheritance graph, the access is that of the path that gives
836 The algorithm we use is to make a post-order depth-first traversal
837 of the base-class hierarchy. As we come up the tree, we annotate
838 each node with the most lenient access. */
839 dfs_walk_real (binfo
, 0, dfs_access_in_type
, shared_unmarked_p
, decl
);
840 dfs_walk (binfo
, dfs_unmark
, shared_marked_p
, 0);
841 assert_canonical_unmarked (binfo
);
843 return TREE_CHAIN (binfo
);
846 /* Called from dfs_accessible_p via dfs_walk. */
849 dfs_accessible_queue_p (binfo
, data
)
851 void *data ATTRIBUTE_UNUSED
;
853 if (BINFO_MARKED (binfo
))
856 /* If this class is inherited via private or protected inheritance,
857 then we can't see it, unless we are a friend of the subclass. */
858 if (!TREE_VIA_PUBLIC (binfo
)
859 && !is_friend (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo
)),
863 return canonical_binfo (binfo
);
866 /* Called from dfs_accessible_p via dfs_walk. */
869 dfs_accessible_p (binfo
, data
)
873 int protected_ok
= data
!= 0;
876 /* We marked the binfos while computing the access in each type.
877 So, we unmark as we go now. */
878 SET_BINFO_MARKED (binfo
);
880 access
= TREE_CHAIN (binfo
);
881 if (access
== access_public_node
882 || (access
== access_protected_node
&& protected_ok
))
884 else if (access
&& is_friend (BINFO_TYPE (binfo
), current_scope ()))
890 /* Returns non-zero if it is OK to access DECL when named in TYPE
891 through an object indiated by BINFO in the context of DERIVED. */
894 protected_accessible_p (type
, decl
, derived
, binfo
)
902 /* We're checking this clause from [class.access.base]
904 m as a member of N is protected, and the reference occurs in a
905 member or friend of class N, or in a member or friend of a
906 class P derived from N, where m as a member of P is private or
909 If DERIVED isn't derived from TYPE, then it certainly does not
911 if (!DERIVED_FROM_P (type
, derived
))
914 access
= access_in_type (derived
, decl
);
915 if (same_type_p (derived
, type
))
917 if (access
!= access_private_node
)
920 else if (access
!= access_private_node
921 && access
!= access_protected_node
)
926 When a friend or a member function of a derived class references
927 a protected nonstatic member of a base class, an access check
928 applies in addition to those described earlier in clause
929 _class.access_.4) Except when forming a pointer to member
930 (_expr.unary.op_), the access must be through a pointer to,
931 reference to, or object of the derived class itself (or any class
932 derived from that class) (_expr.ref_). If the access is to form
933 a pointer to member, the nested-name-specifier shall name the
934 derived class (or any class derived from that class). */
935 if (DECL_NONSTATIC_MEMBER_P (decl
))
937 /* We can tell through what the reference is occurring by
938 chasing BINFO up to the root. */
940 while (BINFO_INHERITANCE_CHAIN (t
))
941 t
= BINFO_INHERITANCE_CHAIN (t
);
943 if (!DERIVED_FROM_P (derived
, BINFO_TYPE (t
)))
950 /* Returns non-zero if SCOPE is a friend of a type which would be able
951 to acces DECL, named in TYPE, through the object indicated by
955 friend_accessible_p (scope
, type
, decl
, binfo
)
961 tree befriending_classes
;
967 if (TREE_CODE (scope
) == FUNCTION_DECL
968 || DECL_FUNCTION_TEMPLATE_P (scope
))
969 befriending_classes
= DECL_BEFRIENDING_CLASSES (scope
);
970 else if (TYPE_P (scope
))
971 befriending_classes
= CLASSTYPE_BEFRIENDING_CLASSES (scope
);
975 for (t
= befriending_classes
; t
; t
= TREE_CHAIN (t
))
976 if (protected_accessible_p (type
, decl
, TREE_VALUE (t
), binfo
))
979 if (TREE_CODE (scope
) == FUNCTION_DECL
980 || DECL_FUNCTION_TEMPLATE_P (scope
))
982 /* Perhaps this SCOPE is a member of a class which is a
984 if (friend_accessible_p (DECL_CLASS_CONTEXT (scope
), type
,
988 /* Or an instantiation of something which is a friend. */
989 if (DECL_TEMPLATE_INFO (scope
))
990 return friend_accessible_p (DECL_TI_TEMPLATE (scope
),
993 else if (CLASSTYPE_TEMPLATE_INFO (scope
))
994 return friend_accessible_p (CLASSTYPE_TI_TEMPLATE (scope
),
1000 /* DECL is a declaration from a base class of TYPE, which was the
1001 classs used to name DECL. Return non-zero if, in the current
1002 context, DECL is accessible. If TYPE is actually a BINFO node,
1003 then we can tell in what context the access is occurring by looking
1004 at the most derived class along the path indicated by BINFO. */
1007 accessible_p (type
, decl
)
1015 /* Non-zero if it's OK to access DECL if it has protected
1016 accessibility in TYPE. */
1017 int protected_ok
= 0;
1019 /* If we're not checking access, everything is accessible. */
1020 if (!flag_access_control
)
1023 /* If this declaration is in a block or namespace scope, there's no
1025 if (!TYPE_P (context_for_name_lookup (decl
)))
1028 /* We don't do access control for types yet. */
1029 if (TREE_CODE (decl
) == TYPE_DECL
)
1035 type
= BINFO_TYPE (type
);
1038 binfo
= TYPE_BINFO (type
);
1040 /* [class.access.base]
1042 A member m is accessible when named in class N if
1044 --m as a member of N is public, or
1046 --m as a member of N is private, and the reference occurs in a
1047 member or friend of class N, or
1049 --m as a member of N is protected, and the reference occurs in a
1050 member or friend of class N, or in a member or friend of a
1051 class P derived from N, where m as a member of P is private or
1054 --there exists a base class B of N that is accessible at the point
1055 of reference, and m is accessible when named in class B.
1057 We walk the base class hierarchy, checking these conditions. */
1059 /* Figure out where the reference is occurring. Check to see if
1060 DECL is private or protected in this scope, since that will
1061 determine whether protected access in TYPE allowed. */
1062 if (current_class_type
)
1064 = protected_accessible_p (type
, decl
, current_class_type
,
1067 /* Now, loop through the classes of which we are a friend. */
1069 protected_ok
= friend_accessible_p (current_scope (),
1072 /* Standardize on the same that will access_in_type will use. We
1073 don't need to know what path was chosen from this point onwards. */
1074 binfo
= TYPE_BINFO (type
);
1076 /* Compute the accessibility of DECL in the class hierarchy
1077 dominated by type. */
1078 access_in_type (type
, decl
);
1079 /* Walk the hierarchy again, looking for a base class that allows
1081 t
= dfs_walk (binfo
, dfs_accessible_p
,
1082 dfs_accessible_queue_p
,
1083 protected_ok
? &protected_ok
: 0);
1084 /* Clear any mark bits. Note that we have to walk the whole tree
1085 here, since we have aborted the previous walk from some point
1086 deep in the tree. */
1087 dfs_walk (binfo
, dfs_unmark
, dfs_canonical_queue
, 0);
1088 assert_canonical_unmarked (binfo
);
1090 return t
!= NULL_TREE
;
1093 /* Routine to see if the sub-object denoted by the binfo PARENT can be
1094 found as a base class and sub-object of the object denoted by
1095 BINFO. This routine relies upon binfos not being shared, except
1096 for binfos for virtual bases. */
1099 is_subobject_of_p (parent
, binfo
)
1105 /* We want to canonicalize for comparison purposes. But, when we
1106 iterate through basetypes later, we want the binfos from the
1107 original hierarchy. That's why we have to calculate BINFOS
1108 first, and then canonicalize. */
1109 binfos
= BINFO_BASETYPES (binfo
);
1110 parent
= canonical_binfo (parent
);
1111 binfo
= canonical_binfo (binfo
);
1113 if (parent
== binfo
)
1116 n_baselinks
= binfos
? TREE_VEC_LENGTH (binfos
) : 0;
1118 /* Process and/or queue base types. */
1119 for (i
= 0; i
< n_baselinks
; i
++)
1121 tree base_binfo
= TREE_VEC_ELT (binfos
, i
);
1122 if (!CLASS_TYPE_P (TREE_TYPE (base_binfo
)))
1123 /* If we see a TEMPLATE_TYPE_PARM, or some such, as a base
1124 class there's no way to descend into it. */
1127 if (is_subobject_of_p (parent
, base_binfo
))
1133 /* See if a one FIELD_DECL hides another. This routine is meant to
1134 correspond to ANSI working paper Sept 17, 1992 10p4. The two
1135 binfos given are the binfos corresponding to the particular places
1136 the FIELD_DECLs are found. This routine relies upon binfos not
1137 being shared, except for virtual bases. */
1140 hides (hider_binfo
, hidee_binfo
)
1141 tree hider_binfo
, hidee_binfo
;
1143 /* hider hides hidee, if hider has hidee as a base class and
1144 the instance of hidee is a sub-object of hider. The first
1145 part is always true is the second part is true.
1147 When hider and hidee are the same (two ways to get to the exact
1148 same member) we consider either one as hiding the other. */
1149 return is_subobject_of_p (hidee_binfo
, hider_binfo
);
1152 /* Very similar to lookup_fnfields_1 but it ensures that at least one
1153 function was declared inside the class given by TYPE. It really should
1154 only return functions that match the given TYPE. */
1157 lookup_fnfields_here (type
, name
)
1160 int idx
= lookup_fnfields_1 (type
, name
);
1163 /* ctors and dtors are always only in the right class. */
1166 fndecls
= TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type
), idx
);
1169 if (TYPE_MAIN_VARIANT (DECL_CLASS_CONTEXT (OVL_CURRENT (fndecls
)))
1170 == TYPE_MAIN_VARIANT (type
))
1172 fndecls
= OVL_CHAIN (fndecls
);
1177 struct lookup_field_info
{
1178 /* The type in which we're looking. */
1180 /* The name of the field for which we're looking. */
1182 /* If non-NULL, the current result of the lookup. */
1184 /* The path to RVAL. */
1186 /* If non-NULL, the lookup was ambiguous, and this is a list of the
1189 /* If non-zero, we are looking for types, not data members. */
1191 /* If non-zero, RVAL was found by looking through a dependent base. */
1192 int from_dep_base_p
;
1193 /* If something went wrong, a message indicating what. */
1197 /* Returns non-zero if BINFO is not hidden by the value found by the
1198 lookup so far. If BINFO is hidden, then there's no need to look in
1199 it. DATA is really a struct lookup_field_info. Called from
1200 lookup_field via breadth_first_search. */
1203 lookup_field_queue_p (binfo
, data
)
1207 struct lookup_field_info
*lfi
= (struct lookup_field_info
*) data
;
1209 /* Don't look for constructors or destructors in base classes. */
1210 if (lfi
->name
== ctor_identifier
|| lfi
->name
== dtor_identifier
)
1213 /* If this base class is hidden by the best-known value so far, we
1214 don't need to look. */
1215 if (!lfi
->from_dep_base_p
&& lfi
->rval_binfo
1216 && hides (lfi
->rval_binfo
, binfo
))
1219 if (TREE_VIA_VIRTUAL (binfo
))
1220 return binfo_member (BINFO_TYPE (binfo
),
1221 CLASSTYPE_VBASECLASSES (lfi
->type
));
1226 /* Within the scope of a template class, you can refer to the to the
1227 current specialization with the name of the template itself. For
1230 template <typename T> struct S { S* sp; }
1232 Returns non-zero if DECL is such a declaration in a class TYPE. */
1235 template_self_reference_p (type
, decl
)
1239 return (CLASSTYPE_USE_TEMPLATE (type
)
1240 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (type
))
1241 && TREE_CODE (decl
) == TYPE_DECL
1242 && DECL_ARTIFICIAL (decl
)
1243 && DECL_NAME (decl
) == constructor_name (type
));
1246 /* DATA is really a struct lookup_field_info. Look for a field with
1247 the name indicated there in BINFO. If this function returns a
1248 non-NULL value it is the result of the lookup. Called from
1249 lookup_field via breadth_first_search. */
1252 lookup_field_r (binfo
, data
)
1256 struct lookup_field_info
*lfi
= (struct lookup_field_info
*) data
;
1257 tree type
= BINFO_TYPE (binfo
);
1258 tree nval
= NULL_TREE
;
1259 int from_dep_base_p
;
1261 /* First, look for a function. There can't be a function and a data
1262 member with the same name, and if there's a function and a type
1263 with the same name, the type is hidden by the function. */
1264 if (!lfi
->want_type
)
1266 int idx
= lookup_fnfields_here (type
, lfi
->name
);
1268 nval
= TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type
), idx
);
1272 /* Look for a data member or type. */
1273 nval
= lookup_field_1 (type
, lfi
->name
);
1275 /* If there is no declaration with the indicated name in this type,
1276 then there's nothing to do. */
1280 /* If we're looking up a type (as with an elaborated type specifier)
1281 we ignore all non-types we find. */
1282 if (lfi
->want_type
&& TREE_CODE (nval
) != TYPE_DECL
)
1284 nval
= purpose_member (lfi
->name
, CLASSTYPE_TAGS (type
));
1286 nval
= TYPE_MAIN_DECL (TREE_VALUE (nval
));
1291 /* You must name a template base class with a template-id. */
1292 if (!same_type_p (type
, lfi
->type
)
1293 && template_self_reference_p (type
, nval
))
1296 from_dep_base_p
= dependent_base_p (binfo
);
1297 if (lfi
->from_dep_base_p
&& !from_dep_base_p
)
1299 /* If the new declaration is not found via a dependent base, and
1300 the old one was, then we must prefer the new one. We weren't
1301 really supposed to be able to find the old one, so we don't
1302 want to be affected by a specialization. Consider:
1304 struct B { typedef int I; };
1305 template <typename T> struct D1 : virtual public B {};
1306 template <typename T> struct D :
1307 public D1, virtual pubic B { I i; };
1309 The `I' in `D<T>' is unambigousuly `B::I', regardless of how
1310 D1 is specialized. */
1311 lfi
->from_dep_base_p
= 0;
1312 lfi
->rval
= NULL_TREE
;
1313 lfi
->rval_binfo
= NULL_TREE
;
1314 lfi
->ambiguous
= NULL_TREE
;
1317 else if (lfi
->rval_binfo
&& !lfi
->from_dep_base_p
&& from_dep_base_p
)
1318 /* Similarly, if the old declaration was not found via a dependent
1319 base, and the new one is, ignore the new one. */
1322 /* If the lookup already found a match, and the new value doesn't
1323 hide the old one, we might have an ambiguity. */
1324 if (lfi
->rval_binfo
&& !hides (binfo
, lfi
->rval_binfo
))
1326 if (nval
== lfi
->rval
&& SHARED_MEMBER_P (nval
))
1327 /* The two things are really the same. */
1329 else if (hides (lfi
->rval_binfo
, binfo
))
1330 /* The previous value hides the new one. */
1334 /* We have a real ambiguity. We keep a chain of all the
1336 if (!lfi
->ambiguous
&& lfi
->rval
)
1338 /* This is the first time we noticed an ambiguity. Add
1339 what we previously thought was a reasonable candidate
1341 lfi
->ambiguous
= scratch_tree_cons (NULL_TREE
, lfi
->rval
,
1343 TREE_TYPE (lfi
->ambiguous
) = error_mark_node
;
1346 /* Add the new value. */
1347 lfi
->ambiguous
= scratch_tree_cons (NULL_TREE
, nval
,
1349 TREE_TYPE (lfi
->ambiguous
) = error_mark_node
;
1350 lfi
->errstr
= "request for member `%D' is ambiguous";
1355 /* If the thing we're looking for is a virtual base class, then
1356 we know we've got what we want at this point; there's no way
1357 to get an ambiguity. */
1358 if (VBASE_NAME_P (lfi
->name
))
1364 if (from_dep_base_p
&& TREE_CODE (nval
) != TYPE_DECL
1365 /* We need to return a member template class so we can
1366 define partial specializations. Is there a better
1368 && !DECL_CLASS_TEMPLATE_P (nval
))
1369 /* The thing we're looking for isn't a type, so the implicit
1370 typename extension doesn't apply, so we just pretend we
1371 didn't find anything. */
1375 lfi
->from_dep_base_p
= from_dep_base_p
;
1376 lfi
->rval_binfo
= binfo
;
1382 /* Look for a memer named NAME in an inheritance lattice dominated by
1383 XBASETYPE. PROTECT is 0 or two, we do not check access. If it is
1384 1, we enforce accessibility. If PROTECT is zero, then, for an
1385 ambiguous lookup, we return NULL. If PROTECT is 1, we issue an
1386 error message. If PROTECT is 2, we return a TREE_LIST whose
1387 TREEE_TYPE is error_mark_node and whose TREE_VALUEs are the list of
1388 ambiguous candidates.
1390 WANT_TYPE is 1 when we should only return TYPE_DECLs, if no
1391 TYPE_DECL can be found return NULL_TREE. */
1394 lookup_member (xbasetype
, name
, protect
, want_type
)
1395 register tree xbasetype
, name
;
1396 int protect
, want_type
;
1398 tree rval
, rval_binfo
= NULL_TREE
;
1399 tree type
= NULL_TREE
, basetype_path
= NULL_TREE
;
1400 struct lookup_field_info lfi
;
1402 /* rval_binfo is the binfo associated with the found member, note,
1403 this can be set with useful information, even when rval is not
1404 set, because it must deal with ALL members, not just non-function
1405 members. It is used for ambiguity checking and the hidden
1406 checks. Whereas rval is only set if a proper (not hidden)
1407 non-function member is found. */
1409 const char *errstr
= 0;
1411 if (xbasetype
== current_class_type
&& TYPE_BEING_DEFINED (xbasetype
)
1412 && IDENTIFIER_CLASS_VALUE (name
))
1414 tree field
= IDENTIFIER_CLASS_VALUE (name
);
1415 if (TREE_CODE (field
) != FUNCTION_DECL
1416 && ! (want_type
&& TREE_CODE (field
) != TYPE_DECL
))
1417 /* We're in the scope of this class, and the value has already
1418 been looked up. Just return the cached value. */
1422 if (TREE_CODE (xbasetype
) == TREE_VEC
)
1424 type
= BINFO_TYPE (xbasetype
);
1425 basetype_path
= xbasetype
;
1427 else if (IS_AGGR_TYPE_CODE (TREE_CODE (xbasetype
)))
1430 basetype_path
= TYPE_BINFO (type
);
1431 my_friendly_assert (BINFO_INHERITANCE_CHAIN (basetype_path
) == NULL_TREE
,
1435 my_friendly_abort (97);
1437 complete_type (type
);
1439 #ifdef GATHER_STATISTICS
1440 n_calls_lookup_field
++;
1441 #endif /* GATHER_STATISTICS */
1443 bzero ((PTR
) &lfi
, sizeof (lfi
));
1446 lfi
.want_type
= want_type
;
1447 bfs_walk (basetype_path
, &lookup_field_r
, &lookup_field_queue_p
, &lfi
);
1449 rval_binfo
= lfi
.rval_binfo
;
1451 type
= BINFO_TYPE (rval_binfo
);
1452 errstr
= lfi
.errstr
;
1454 /* If we are not interested in ambiguities, don't report them;
1455 just return NULL_TREE. */
1456 if (!protect
&& lfi
.ambiguous
)
1462 return lfi
.ambiguous
;
1469 In the case of overloaded function names, access control is
1470 applied to the function selected by overloaded resolution. */
1471 if (rval
&& protect
&& !is_overloaded_fn (rval
)
1472 && !enforce_access (xbasetype
, rval
))
1473 return error_mark_node
;
1475 if (errstr
&& protect
)
1477 cp_error (errstr
, name
, type
);
1479 print_candidates (lfi
.ambiguous
);
1480 rval
= error_mark_node
;
1483 /* If the thing we found was found via the implicit typename
1484 extension, build the typename type. */
1485 if (rval
&& lfi
.from_dep_base_p
&& !DECL_CLASS_TEMPLATE_P (rval
))
1486 rval
= TYPE_STUB_DECL (build_typename_type (BINFO_TYPE (basetype_path
),
1490 if (rval
&& is_overloaded_fn (rval
))
1492 rval
= scratch_tree_cons (basetype_path
, rval
, NULL_TREE
);
1493 SET_BASELINK_P (rval
);
1499 /* Like lookup_member, except that if we find a function member we
1500 return NULL_TREE. */
1503 lookup_field (xbasetype
, name
, protect
, want_type
)
1504 register tree xbasetype
, name
;
1505 int protect
, want_type
;
1507 tree rval
= lookup_member (xbasetype
, name
, protect
, want_type
);
1509 /* Ignore functions. */
1510 if (rval
&& TREE_CODE (rval
) == TREE_LIST
)
1516 /* Like lookup_member, except that if we find a non-function member we
1517 return NULL_TREE. */
1520 lookup_fnfields (xbasetype
, name
, protect
)
1521 register tree xbasetype
, name
;
1524 tree rval
= lookup_member (xbasetype
, name
, protect
, /*want_type=*/0);
1526 /* Ignore non-functions. */
1527 if (rval
&& TREE_CODE (rval
) != TREE_LIST
)
1533 /* TYPE is a class type. Return the index of the fields within
1534 the method vector with name NAME, or -1 is no such field exists. */
1537 lookup_fnfields_1 (type
, name
)
1541 = CLASS_TYPE_P (type
) ? CLASSTYPE_METHOD_VEC (type
) : NULL_TREE
;
1543 if (method_vec
!= 0)
1546 register tree
*methods
= &TREE_VEC_ELT (method_vec
, 0);
1547 int len
= TREE_VEC_LENGTH (method_vec
);
1550 #ifdef GATHER_STATISTICS
1551 n_calls_lookup_fnfields_1
++;
1552 #endif /* GATHER_STATISTICS */
1554 /* Constructors are first... */
1555 if (name
== ctor_identifier
)
1556 return methods
[0] ? 0 : -1;
1558 /* and destructors are second. */
1559 if (name
== dtor_identifier
)
1560 return methods
[1] ? 1 : -1;
1562 for (i
= 2; i
< len
&& methods
[i
]; ++i
)
1564 #ifdef GATHER_STATISTICS
1565 n_outer_fields_searched
++;
1566 #endif /* GATHER_STATISTICS */
1568 tmp
= OVL_CURRENT (methods
[i
]);
1569 if (DECL_NAME (tmp
) == name
)
1572 /* If the type is complete and we're past the conversion ops,
1573 switch to binary search. */
1574 if (! DECL_CONV_FN_P (tmp
)
1575 && TYPE_SIZE (type
))
1577 int lo
= i
+ 1, hi
= len
;
1583 #ifdef GATHER_STATISTICS
1584 n_outer_fields_searched
++;
1585 #endif /* GATHER_STATISTICS */
1587 tmp
= DECL_NAME (OVL_CURRENT (methods
[i
]));
1591 else if (tmp
< name
)
1600 /* If we didn't find it, it might have been a template
1601 conversion operator. (Note that we don't look for this case
1602 above so that we will always find specializations first.) */
1603 if (IDENTIFIER_TYPENAME_P (name
))
1605 for (i
= 2; i
< len
&& methods
[i
]; ++i
)
1607 tmp
= OVL_CURRENT (methods
[i
]);
1608 if (! DECL_CONV_FN_P (tmp
))
1610 /* Since all conversion operators come first, we know
1611 there is no such operator. */
1614 else if (TREE_CODE (tmp
) == TEMPLATE_DECL
)
1623 /* Walk the class hierarchy dominated by TYPE. FN is called for each
1624 type in the hierarchy, in a breadth-first preorder traversal. .
1625 If it ever returns a non-NULL value, that value is immediately
1626 returned and the walk is terminated. At each node FN, is passed a
1627 BINFO indicating the path from the curently visited base-class to
1628 TYPE. The TREE_CHAINs of the BINFOs may be used for scratch space;
1629 they are otherwise unused. Before each base-class is walked QFN is
1630 called. If the value returned is non-zero, the base-class is
1631 walked; otherwise it is not. If QFN is NULL, it is treated as a
1632 function which always returns 1. Both FN and QFN are passed the
1633 DATA whenever they are called. */
1636 bfs_walk (binfo
, fn
, qfn
, data
)
1638 tree (*fn
) PROTO((tree
, void *));
1639 tree (*qfn
) PROTO((tree
, void *));
1644 tree rval
= NULL_TREE
;
1645 /* An array of the base classes of BINFO. These will be built up in
1646 breadth-first order, except where QFN prunes the search. */
1647 varray_type bfs_bases
;
1649 /* Start with enough room for ten base classes. That will be enough
1650 for most hierarchies. */
1651 VARRAY_TREE_INIT (bfs_bases
, 10, "search_stack");
1653 /* Put the first type into the stack. */
1654 VARRAY_TREE (bfs_bases
, 0) = binfo
;
1657 for (head
= 0; head
< tail
; ++head
)
1663 /* Pull the next type out of the queue. */
1664 binfo
= VARRAY_TREE (bfs_bases
, head
);
1666 /* If this is the one we're looking for, we're done. */
1667 rval
= (*fn
) (binfo
, data
);
1671 /* Queue up the base types. */
1672 binfos
= BINFO_BASETYPES (binfo
);
1673 n_baselinks
= binfos
? TREE_VEC_LENGTH (binfos
): 0;
1674 for (i
= 0; i
< n_baselinks
; i
++)
1676 tree base_binfo
= TREE_VEC_ELT (binfos
, i
);
1679 base_binfo
= (*qfn
) (base_binfo
, data
);
1683 if (tail
== VARRAY_SIZE (bfs_bases
))
1684 VARRAY_GROW (bfs_bases
, 2 * VARRAY_SIZE (bfs_bases
));
1685 VARRAY_TREE (bfs_bases
, tail
) = base_binfo
;
1692 VARRAY_FREE (bfs_bases
);
1697 /* Exactly like bfs_walk, except that a depth-first traversal is
1698 performed, and PREFN is called in preorder, while POSTFN is called
1702 dfs_walk_real (binfo
, prefn
, postfn
, qfn
, data
)
1704 tree (*prefn
) PROTO((tree
, void *));
1705 tree (*postfn
) PROTO((tree
, void *));
1706 tree (*qfn
) PROTO((tree
, void *));
1712 tree rval
= NULL_TREE
;
1714 /* Call the pre-order walking function. */
1717 rval
= (*prefn
) (binfo
, data
);
1722 /* Process the basetypes. */
1723 binfos
= BINFO_BASETYPES (binfo
);
1724 n_baselinks
= binfos
? TREE_VEC_LENGTH (binfos
): 0;
1725 for (i
= 0; i
< n_baselinks
; i
++)
1727 tree base_binfo
= TREE_VEC_ELT (binfos
, i
);
1730 base_binfo
= (*qfn
) (base_binfo
, data
);
1734 rval
= dfs_walk_real (base_binfo
, prefn
, postfn
, qfn
, data
);
1740 /* Call the post-order walking function. */
1742 rval
= (*postfn
) (binfo
, data
);
1747 /* Exactly like bfs_walk, except that a depth-first post-order traversal is
1751 dfs_walk (binfo
, fn
, qfn
, data
)
1753 tree (*fn
) PROTO((tree
, void *));
1754 tree (*qfn
) PROTO((tree
, void *));
1757 return dfs_walk_real (binfo
, 0, fn
, qfn
, data
);
1762 /* The name of the function we are looking for. */
1764 /* The overloaded functions we have found. */
1768 /* Called from get_virtuals_named_this via bfs_walk. */
1771 get_virtuals_named_this_r (binfo
, data
)
1775 struct gvnt_info
*gvnti
= (struct gvnt_info
*) data
;
1776 tree type
= BINFO_TYPE (binfo
);
1779 idx
= lookup_fnfields_here (BINFO_TYPE (binfo
), gvnti
->name
);
1782 = scratch_tree_cons (binfo
,
1783 TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type
),
1790 /* Return the virtual functions with the indicated NAME in the type
1791 indicated by BINFO. The result is a TREE_LIST whose TREE_PURPOSE
1792 indicates the base class from which the TREE_VALUE (an OVERLOAD or
1793 just a FUNCTION_DECL) originated. */
1796 get_virtuals_named_this (binfo
, name
)
1800 struct gvnt_info gvnti
;
1804 gvnti
.fields
= NULL_TREE
;
1806 bfs_walk (binfo
, get_virtuals_named_this_r
, 0, &gvnti
);
1808 /* Get to the function decls, and return the first virtual function
1809 with this name, if there is one. */
1810 for (fields
= gvnti
.fields
; fields
; fields
= next_baselink (fields
))
1814 for (fndecl
= TREE_VALUE (fields
); fndecl
; fndecl
= OVL_NEXT (fndecl
))
1815 if (DECL_VINDEX (OVL_CURRENT (fndecl
)))
1822 get_virtual_destructor (binfo
, data
)
1824 void *data ATTRIBUTE_UNUSED
;
1826 tree type
= BINFO_TYPE (binfo
);
1827 if (TYPE_HAS_DESTRUCTOR (type
)
1828 && DECL_VINDEX (TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type
), 1)))
1829 return TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type
), 1);
1834 tree_has_any_destructor_p (binfo
, data
)
1836 void *data ATTRIBUTE_UNUSED
;
1838 tree type
= BINFO_TYPE (binfo
);
1839 return TYPE_NEEDS_DESTRUCTOR (type
) ? binfo
: NULL_TREE
;
1842 /* Returns > 0 if a function with type DRETTYPE overriding a function
1843 with type BRETTYPE is covariant, as defined in [class.virtual].
1845 Returns 1 if trivial covariance, 2 if non-trivial (requiring runtime
1846 adjustment), or -1 if pedantically invalid covariance. */
1849 covariant_return_p (brettype
, drettype
)
1850 tree brettype
, drettype
;
1854 if (TREE_CODE (brettype
) == FUNCTION_DECL
1855 || TREE_CODE (brettype
) == THUNK_DECL
)
1857 brettype
= TREE_TYPE (TREE_TYPE (brettype
));
1858 drettype
= TREE_TYPE (TREE_TYPE (drettype
));
1860 else if (TREE_CODE (brettype
) == METHOD_TYPE
)
1862 brettype
= TREE_TYPE (brettype
);
1863 drettype
= TREE_TYPE (drettype
);
1866 if (same_type_p (brettype
, drettype
))
1869 if (! (TREE_CODE (brettype
) == TREE_CODE (drettype
)
1870 && (TREE_CODE (brettype
) == POINTER_TYPE
1871 || TREE_CODE (brettype
) == REFERENCE_TYPE
)
1872 && TYPE_QUALS (brettype
) == TYPE_QUALS (drettype
)))
1875 if (! can_convert (brettype
, drettype
))
1878 brettype
= TREE_TYPE (brettype
);
1879 drettype
= TREE_TYPE (drettype
);
1881 /* If not pedantic, allow any standard pointer conversion. */
1882 if (! IS_AGGR_TYPE (drettype
) || ! IS_AGGR_TYPE (brettype
))
1885 binfo
= get_binfo (brettype
, drettype
, 1);
1887 /* If we get an error_mark_node from get_binfo, it already complained,
1888 so let's just succeed. */
1889 if (binfo
== error_mark_node
)
1892 if (! BINFO_OFFSET_ZEROP (binfo
) || TREE_VIA_VIRTUAL (binfo
))
1897 /* Check that virtual overrider OVERRIDER is acceptable for base function
1898 BASEFN. Issue diagnostic, and return zero, if unacceptable. */
1901 check_final_overrider (overrider
, basefn
)
1902 tree overrider
, basefn
;
1904 tree over_type
= TREE_TYPE (overrider
);
1905 tree base_type
= TREE_TYPE (basefn
);
1906 tree over_return
= TREE_TYPE (over_type
);
1907 tree base_return
= TREE_TYPE (base_type
);
1908 tree over_throw
= TYPE_RAISES_EXCEPTIONS (over_type
);
1909 tree base_throw
= TYPE_RAISES_EXCEPTIONS (base_type
);
1912 if (same_type_p (base_return
, over_return
))
1914 else if ((i
= covariant_return_p (base_return
, over_return
)))
1917 sorry ("adjusting pointers for covariant returns");
1919 if (pedantic
&& i
== -1)
1921 cp_pedwarn_at ("invalid covariant return type for `virtual %#D'", overrider
);
1922 cp_pedwarn_at (" overriding `virtual %#D' (must be pointer or reference to class)", basefn
);
1925 else if (IS_AGGR_TYPE_2 (base_return
, over_return
)
1926 && same_or_base_type_p (base_return
, over_return
))
1928 cp_error_at ("invalid covariant return type for `virtual %#D'", overrider
);
1929 cp_error_at (" overriding `virtual %#D' (must use pointer or reference)", basefn
);
1932 else if (IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (overrider
)) == NULL_TREE
)
1934 cp_error_at ("conflicting return type specified for `virtual %#D'", overrider
);
1935 cp_error_at (" overriding `virtual %#D'", basefn
);
1936 SET_IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (overrider
),
1937 DECL_CLASS_CONTEXT (overrider
));
1941 /* Check throw specifier is subset. */
1942 /* XXX At the moment, punt on an overriding artificial function. We
1943 don't generate its exception specifier, so can't check it properly. */
1944 if (! DECL_ARTIFICIAL (overrider
)
1945 && !comp_except_specs (base_throw
, over_throw
, 0))
1947 cp_error_at ("looser throw specifier for `virtual %#F'", overrider
);
1948 cp_error_at (" overriding `virtual %#F'", basefn
);
1954 /* Given a class type TYPE, and a function decl FNDECL, look for a
1955 virtual function in TYPE's hierarchy which FNDECL could match as a
1956 virtual function. It doesn't matter which one we find.
1958 DTORP is nonzero if we are looking for a destructor. Destructors
1959 need special treatment because they do not match by name. */
1962 get_matching_virtual (binfo
, fndecl
, dtorp
)
1966 tree tmp
= NULL_TREE
;
1968 if (TREE_CODE (fndecl
) == TEMPLATE_DECL
)
1969 /* In [temp.mem] we have:
1971 A specialization of a member function template does not
1972 override a virtual function from a base class. */
1975 /* Breadth first search routines start searching basetypes
1976 of TYPE, so we must perform first ply of search here. */
1978 return bfs_walk (binfo
, get_virtual_destructor
,
1979 tree_has_any_destructor_p
, 0);
1982 tree drettype
, dtypes
, btypes
, instptr_type
;
1983 tree baselink
, best
= NULL_TREE
;
1984 tree declarator
= DECL_NAME (fndecl
);
1985 if (IDENTIFIER_VIRTUAL_P (declarator
) == 0)
1988 baselink
= get_virtuals_named_this (binfo
, declarator
);
1989 if (baselink
== NULL_TREE
)
1992 drettype
= TREE_TYPE (TREE_TYPE (fndecl
));
1993 dtypes
= TYPE_ARG_TYPES (TREE_TYPE (fndecl
));
1994 if (DECL_STATIC_FUNCTION_P (fndecl
))
1995 instptr_type
= NULL_TREE
;
1997 instptr_type
= TREE_TYPE (TREE_VALUE (dtypes
));
1999 for (; baselink
; baselink
= next_baselink (baselink
))
2002 for (tmps
= TREE_VALUE (baselink
); tmps
; tmps
= OVL_NEXT (tmps
))
2004 tmp
= OVL_CURRENT (tmps
);
2005 if (! DECL_VINDEX (tmp
))
2008 btypes
= TYPE_ARG_TYPES (TREE_TYPE (tmp
));
2009 if (instptr_type
== NULL_TREE
)
2011 if (compparms (TREE_CHAIN (btypes
), dtypes
))
2012 /* Caller knows to give error in this case. */
2017 if (/* The first parameter is the `this' parameter,
2018 which has POINTER_TYPE, and we can therefore
2019 safely use TYPE_QUALS, rather than
2021 (TYPE_QUALS (TREE_TYPE (TREE_VALUE (btypes
)))
2022 == TYPE_QUALS (instptr_type
))
2023 && compparms (TREE_CHAIN (btypes
), TREE_CHAIN (dtypes
)))
2025 check_final_overrider (fndecl
, tmp
);
2027 /* FNDECL overrides this function. We continue to
2028 check all the other functions in order to catch
2029 errors; it might be that in some other baseclass
2030 a virtual function was declared with the same
2031 parameter types, but a different return type. */
2041 /* Return the list of virtual functions which are abstract in type
2042 TYPE that come from non virtual base classes. See
2043 expand_direct_vtbls_init for the style of search we do. */
2046 get_abstract_virtuals_1 (binfo
, do_self
, abstract_virtuals
)
2049 tree abstract_virtuals
;
2051 tree binfos
= BINFO_BASETYPES (binfo
);
2052 int i
, n_baselinks
= binfos
? TREE_VEC_LENGTH (binfos
) : 0;
2054 for (i
= 0; i
< n_baselinks
; i
++)
2056 tree base_binfo
= TREE_VEC_ELT (binfos
, i
);
2057 int is_not_base_vtable
2058 = i
!= CLASSTYPE_VFIELD_PARENT (BINFO_TYPE (binfo
));
2059 if (! TREE_VIA_VIRTUAL (base_binfo
))
2061 = get_abstract_virtuals_1 (base_binfo
, is_not_base_vtable
,
2064 /* Should we use something besides CLASSTYPE_VFIELDS? */
2065 if (do_self
&& CLASSTYPE_VFIELDS (BINFO_TYPE (binfo
)))
2067 tree virtuals
= BINFO_VIRTUALS (binfo
);
2069 skip_rtti_stuff (&virtuals
, BINFO_TYPE (binfo
));
2073 tree base_fndecl
= TREE_VALUE (virtuals
);
2074 if (DECL_ABSTRACT_VIRTUAL_P (base_fndecl
))
2075 abstract_virtuals
= tree_cons (NULL_TREE
, base_fndecl
,
2077 virtuals
= TREE_CHAIN (virtuals
);
2080 return abstract_virtuals
;
2083 /* Return the list of virtual functions which are abstract in type TYPE.
2084 This information is cached, and so must be built on a
2085 non-temporary obstack. */
2088 get_abstract_virtuals (type
)
2092 tree abstract_virtuals
= NULL
;
2094 /* First get all from non-virtual bases. */
2096 = get_abstract_virtuals_1 (TYPE_BINFO (type
), 1, abstract_virtuals
);
2098 for (vbases
= CLASSTYPE_VBASECLASSES (type
); vbases
; vbases
= TREE_CHAIN (vbases
))
2100 tree virtuals
= BINFO_VIRTUALS (vbases
);
2102 skip_rtti_stuff (&virtuals
, BINFO_TYPE (vbases
));
2106 tree base_fndecl
= TREE_VALUE (virtuals
);
2107 if (DECL_NEEDS_FINAL_OVERRIDER_P (base_fndecl
))
2108 cp_error ("`%#D' needs a final overrider", base_fndecl
);
2109 else if (DECL_ABSTRACT_VIRTUAL_P (base_fndecl
))
2110 abstract_virtuals
= tree_cons (NULL_TREE
, base_fndecl
,
2112 virtuals
= TREE_CHAIN (virtuals
);
2115 return nreverse (abstract_virtuals
);
2119 next_baselink (baselink
)
2122 tree tmp
= TREE_TYPE (baselink
);
2123 baselink
= TREE_CHAIN (baselink
);
2126 /* @@ does not yet add previous base types. */
2127 baselink
= tree_cons (TREE_PURPOSE (tmp
), TREE_VALUE (tmp
),
2129 TREE_TYPE (baselink
) = TREE_TYPE (tmp
);
2130 tmp
= TREE_CHAIN (tmp
);
2135 /* DEPTH-FIRST SEARCH ROUTINES. */
2137 /* This routine converts a pointer to be a pointer of an immediate
2138 base class. The normal convert_pointer_to routine would diagnose
2139 the conversion as ambiguous, under MI code that has the base class
2140 as an ambiguous base class. */
2143 convert_pointer_to_single_level (to_type
, expr
)
2147 tree binfo_of_derived
;
2150 derived
= TREE_TYPE (TREE_TYPE (expr
));
2151 binfo_of_derived
= TYPE_BINFO (derived
);
2152 my_friendly_assert (BINFO_INHERITANCE_CHAIN (binfo_of_derived
) == NULL_TREE
,
2154 for (i
= CLASSTYPE_N_BASECLASSES (derived
) - 1; i
>= 0; --i
)
2156 tree binfo
= BINFO_BASETYPE (binfo_of_derived
, i
);
2157 my_friendly_assert (BINFO_INHERITANCE_CHAIN (binfo
) == binfo_of_derived
,
2159 if (same_type_p (BINFO_TYPE (binfo
), to_type
))
2160 return build_vbase_path (PLUS_EXPR
,
2161 build_pointer_type (to_type
),
2165 my_friendly_abort (19990607);
2171 tree
markedp (binfo
, data
)
2173 void *data ATTRIBUTE_UNUSED
;
2175 return BINFO_MARKED (binfo
) ? binfo
: NULL_TREE
;
2179 unmarkedp (binfo
, data
)
2181 void *data ATTRIBUTE_UNUSED
;
2183 return !BINFO_MARKED (binfo
) ? binfo
: NULL_TREE
;
2187 marked_vtable_pathp (binfo
, data
)
2189 void *data ATTRIBUTE_UNUSED
;
2191 return BINFO_VTABLE_PATH_MARKED (binfo
) ? binfo
: NULL_TREE
;
2195 unmarked_vtable_pathp (binfo
, data
)
2197 void *data ATTRIBUTE_UNUSED
;
2199 return !BINFO_VTABLE_PATH_MARKED (binfo
) ? binfo
: NULL_TREE
;
2203 marked_new_vtablep (binfo
, data
)
2205 void *data ATTRIBUTE_UNUSED
;
2207 return BINFO_NEW_VTABLE_MARKED (binfo
) ? binfo
: NULL_TREE
;
2211 unmarked_new_vtablep (binfo
, data
)
2213 void *data ATTRIBUTE_UNUSED
;
2215 return !BINFO_NEW_VTABLE_MARKED (binfo
) ? binfo
: NULL_TREE
;
2219 marked_pushdecls_p (binfo
, data
)
2221 void *data ATTRIBUTE_UNUSED
;
2223 return (CLASS_TYPE_P (BINFO_TYPE (binfo
))
2224 && BINFO_PUSHDECLS_MARKED (binfo
)) ? binfo
: NULL_TREE
;
2228 unmarked_pushdecls_p (binfo
, data
)
2230 void *data ATTRIBUTE_UNUSED
;
2232 return (CLASS_TYPE_P (BINFO_TYPE (binfo
))
2233 && !BINFO_PUSHDECLS_MARKED (binfo
)) ? binfo
: NULL_TREE
;
2237 static int dfs_search_slot_nonempty_p (binfo
) tree binfo
;
2238 { return CLASSTYPE_SEARCH_SLOT (BINFO_TYPE (binfo
)) != 0; }
2242 dfs_debug_unmarkedp (binfo
, data
)
2244 void *data ATTRIBUTE_UNUSED
;
2246 return (!CLASSTYPE_DEBUG_REQUESTED (BINFO_TYPE (binfo
))
2247 ? binfo
: NULL_TREE
);
2250 /* The worker functions for `dfs_walk'. These do not need to
2251 test anything (vis a vis marking) if they are paired with
2252 a predicate function (above). */
2256 dfs_mark (binfo
) tree binfo
;
2257 { SET_BINFO_MARKED (binfo
); }
2261 dfs_unmark (binfo
, data
)
2263 void *data ATTRIBUTE_UNUSED
;
2265 CLEAR_BINFO_MARKED (binfo
);
2271 dfs_mark_vtable_path (binfo
) tree binfo
;
2272 { SET_BINFO_VTABLE_PATH_MARKED (binfo
); }
2275 dfs_unmark_vtable_path (binfo
) tree binfo
;
2276 { CLEAR_BINFO_VTABLE_PATH_MARKED (binfo
); }
2279 dfs_mark_new_vtable (binfo
) tree binfo
;
2280 { SET_BINFO_NEW_VTABLE_MARKED (binfo
); }
2283 dfs_unmark_new_vtable (binfo
) tree binfo
;
2284 { CLEAR_BINFO_NEW_VTABLE_MARKED (binfo
); }
2287 dfs_clear_search_slot (binfo
) tree binfo
;
2288 { CLASSTYPE_SEARCH_SLOT (BINFO_TYPE (binfo
)) = 0; }
2292 dfs_debug_mark (binfo
, data
)
2294 void *data ATTRIBUTE_UNUSED
;
2296 tree t
= BINFO_TYPE (binfo
);
2298 /* Use heuristic that if there are virtual functions,
2299 ignore until we see a non-inline virtual function. */
2300 tree methods
= CLASSTYPE_METHOD_VEC (t
);
2302 CLASSTYPE_DEBUG_REQUESTED (t
) = 1;
2307 /* If interface info is known, either we've already emitted the debug
2308 info or we don't need to. */
2309 if (CLASSTYPE_INTERFACE_KNOWN (t
))
2312 /* If debug info is requested from this context for this type, supply it.
2313 If debug info is requested from another context for this type,
2314 see if some third context can supply it. */
2315 if (current_function_decl
== NULL_TREE
2316 || DECL_CLASS_CONTEXT (current_function_decl
) != t
)
2318 if (TREE_VEC_ELT (methods
, 1))
2319 methods
= TREE_VEC_ELT (methods
, 1);
2320 else if (TREE_VEC_ELT (methods
, 0))
2321 methods
= TREE_VEC_ELT (methods
, 0);
2323 methods
= TREE_VEC_ELT (methods
, 2);
2324 methods
= OVL_CURRENT (methods
);
2327 if (DECL_VINDEX (methods
)
2328 && DECL_THIS_INLINE (methods
) == 0
2329 && DECL_ABSTRACT_VIRTUAL_P (methods
) == 0)
2331 /* Somebody, somewhere is going to have to define this
2332 virtual function. When they do, they will provide
2333 the debugging info. */
2336 methods
= TREE_CHAIN (methods
);
2339 /* We cannot rely on some alien method to solve our problems,
2340 so we must write out the debug info ourselves. */
2341 TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (t
)) = 0;
2342 rest_of_type_compilation (t
, toplevel_bindings_p ());
2354 /* Attach to the type of the virtual base class, the pointer to the
2355 virtual base class. */
2358 dfs_find_vbases (binfo
, data
)
2362 struct vbase_info
*vi
= (struct vbase_info
*) data
;
2363 tree binfos
= BINFO_BASETYPES (binfo
);
2364 int i
, n_baselinks
= binfos
? TREE_VEC_LENGTH (binfos
) : 0;
2366 for (i
= n_baselinks
-1; i
>= 0; i
--)
2368 tree base_binfo
= TREE_VEC_ELT (binfos
, i
);
2370 if (TREE_VIA_VIRTUAL (base_binfo
)
2371 && CLASSTYPE_SEARCH_SLOT (BINFO_TYPE (base_binfo
)) == 0)
2373 tree vbase
= BINFO_TYPE (base_binfo
);
2374 tree binfo
= binfo_member (vbase
, vi
->vbase_types
);
2376 CLASSTYPE_SEARCH_SLOT (vbase
)
2377 = build (PLUS_EXPR
, build_pointer_type (vbase
),
2378 vi
->decl_ptr
, BINFO_OFFSET (binfo
));
2381 SET_BINFO_VTABLE_PATH_MARKED (binfo
);
2382 SET_BINFO_NEW_VTABLE_MARKED (binfo
);
2388 dfs_init_vbase_pointers (binfo
, data
)
2392 struct vbase_info
*vi
= (struct vbase_info
*) data
;
2393 tree type
= BINFO_TYPE (binfo
);
2394 tree fields
= TYPE_FIELDS (type
);
2395 tree this_vbase_ptr
;
2397 CLEAR_BINFO_VTABLE_PATH_MARKED (binfo
);
2400 /* See finish_struct_1 for when we can enable this. */
2401 /* If we have a vtable pointer first, skip it. */
2402 if (VFIELD_NAME_P (DECL_NAME (fields
)))
2403 fields
= TREE_CHAIN (fields
);
2406 if (BINFO_INHERITANCE_CHAIN (binfo
))
2408 this_vbase_ptr
= TREE_CHAIN (BINFO_INHERITANCE_CHAIN (binfo
));
2409 if (TREE_VIA_VIRTUAL (binfo
))
2410 this_vbase_ptr
= CLASSTYPE_SEARCH_SLOT (type
);
2412 this_vbase_ptr
= convert_pointer_to_single_level (type
,
2414 TREE_CHAIN (binfo
) = this_vbase_ptr
;
2417 this_vbase_ptr
= TREE_CHAIN (binfo
);
2419 if (fields
== NULL_TREE
2420 || DECL_NAME (fields
) == NULL_TREE
2421 || ! VBASE_NAME_P (DECL_NAME (fields
)))
2424 if (build_pointer_type (type
)
2425 != TYPE_MAIN_VARIANT (TREE_TYPE (this_vbase_ptr
)))
2426 my_friendly_abort (125);
2428 while (fields
&& DECL_NAME (fields
) && VBASE_NAME_P (DECL_NAME (fields
)))
2430 tree ref
= build (COMPONENT_REF
, TREE_TYPE (fields
),
2431 build_indirect_ref (this_vbase_ptr
, NULL_PTR
), fields
);
2432 tree init
= CLASSTYPE_SEARCH_SLOT (TREE_TYPE (TREE_TYPE (fields
)));
2433 vi
->inits
= tree_cons (binfo_member (TREE_TYPE (TREE_TYPE (fields
)),
2435 build_modify_expr (ref
, NOP_EXPR
, init
),
2437 fields
= TREE_CHAIN (fields
);
2443 /* Sometimes this needs to clear both VTABLE_PATH and NEW_VTABLE. Other
2444 times, just NEW_VTABLE, but optimizer should make both with equal
2445 efficiency (though it does not currently). */
2448 dfs_clear_vbase_slots (binfo
, data
)
2450 void *data ATTRIBUTE_UNUSED
;
2452 tree type
= BINFO_TYPE (binfo
);
2453 CLASSTYPE_SEARCH_SLOT (type
) = 0;
2454 CLEAR_BINFO_VTABLE_PATH_MARKED (binfo
);
2455 CLEAR_BINFO_NEW_VTABLE_MARKED (binfo
);
2460 init_vbase_pointers (type
, decl_ptr
)
2464 if (TYPE_USES_VIRTUAL_BASECLASSES (type
))
2466 struct vbase_info vi
;
2467 int old_flag
= flag_this_is_variable
;
2468 tree binfo
= TYPE_BINFO (type
);
2469 flag_this_is_variable
= -2;
2471 /* Find all the virtual base classes, marking them for later
2473 vi
.decl_ptr
= decl_ptr
;
2474 vi
.vbase_types
= CLASSTYPE_VBASECLASSES (type
);
2475 vi
.inits
= NULL_TREE
;
2477 dfs_walk (binfo
, dfs_find_vbases
, unmarked_vtable_pathp
, &vi
);
2479 /* Build up a list of the initializers. */
2480 TREE_CHAIN (binfo
) = decl_ptr
;
2481 dfs_walk_real (binfo
,
2482 dfs_init_vbase_pointers
, 0,
2483 marked_vtable_pathp
,
2486 dfs_walk (binfo
, dfs_clear_vbase_slots
, marked_new_vtablep
, 0);
2487 flag_this_is_variable
= old_flag
;
2493 /* get the virtual context (the vbase that directly contains the
2494 DECL_CLASS_CONTEXT of the FNDECL) that the given FNDECL is declared in,
2495 or NULL_TREE if there is none.
2497 FNDECL must come from a virtual table from a virtual base to ensure that
2498 there is only one possible DECL_CLASS_CONTEXT.
2500 We know that if there is more than one place (binfo) the fndecl that the
2501 declared, they all refer to the same binfo. See get_class_offset_1 for
2502 the check that ensures this. */
2505 virtual_context (fndecl
, t
, vbase
)
2506 tree fndecl
, t
, vbase
;
2509 if (get_base_distance (DECL_CLASS_CONTEXT (fndecl
), t
, 0, &path
) < 0)
2511 /* DECL_CLASS_CONTEXT can be ambiguous in t. */
2512 if (get_base_distance (DECL_CLASS_CONTEXT (fndecl
), vbase
, 0, &path
) >= 0)
2516 /* Not sure if checking path == vbase is necessary here, but just in
2518 if (TREE_VIA_VIRTUAL (path
) || path
== vbase
)
2519 return binfo_member (BINFO_TYPE (path
), CLASSTYPE_VBASECLASSES (t
));
2520 path
= BINFO_INHERITANCE_CHAIN (path
);
2523 /* This shouldn't happen, I don't want errors! */
2524 warning ("recoverable compiler error, fixups for virtual function");
2529 if (TREE_VIA_VIRTUAL (path
))
2530 return binfo_member (BINFO_TYPE (path
), CLASSTYPE_VBASECLASSES (t
));
2531 path
= BINFO_INHERITANCE_CHAIN (path
);
2536 /* Fixups upcast offsets for one vtable.
2537 Entries may stay within the VBASE given, or
2538 they may upcast into a direct base, or
2539 they may upcast into a different vbase.
2541 We only need to do fixups in case 2 and 3. In case 2, we add in
2542 the virtual base offset to effect an upcast, in case 3, we add in
2543 the virtual base offset to effect an upcast, then subtract out the
2544 offset for the other virtual base, to effect a downcast into it.
2546 This routine mirrors fixup_vtable_deltas in functionality, though
2547 this one is runtime based, and the other is compile time based.
2548 Conceivably that routine could be removed entirely, and all fixups
2551 VBASE_OFFSETS is an association list of virtual bases that contains
2552 offset information for the virtual bases, so the offsets are only
2553 calculated once. The offsets are computed by where we think the
2554 vbase should be (as noted by the CLASSTYPE_SEARCH_SLOT) minus where
2555 the vbase really is. */
2558 expand_upcast_fixups (binfo
, addr
, orig_addr
, vbase
, vbase_addr
, t
,
2560 tree binfo
, addr
, orig_addr
, vbase
, vbase_addr
, t
, *vbase_offsets
;
2562 tree virtuals
= BINFO_VIRTUALS (binfo
);
2565 unsigned HOST_WIDE_INT n
;
2567 delta
= purpose_member (vbase
, *vbase_offsets
);
2570 delta
= CLASSTYPE_SEARCH_SLOT (BINFO_TYPE (vbase
));
2571 delta
= build (MINUS_EXPR
, ptrdiff_type_node
, delta
, vbase_addr
);
2572 delta
= save_expr (delta
);
2573 delta
= tree_cons (vbase
, delta
, *vbase_offsets
);
2574 *vbase_offsets
= delta
;
2577 n
= skip_rtti_stuff (&virtuals
, BINFO_TYPE (binfo
));
2581 tree current_fndecl
= TREE_VALUE (virtuals
);
2584 && current_fndecl
!= abort_fndecl
2585 && (vc
=virtual_context (current_fndecl
, t
, vbase
)) != vbase
)
2587 /* This may in fact need a runtime fixup. */
2588 tree idx
= build_int_2 (n
, 0);
2589 tree vtbl
= BINFO_VTABLE (binfo
);
2590 tree nvtbl
= lookup_name (DECL_NAME (vtbl
), 0);
2591 tree aref
, ref
, naref
;
2592 tree old_delta
, new_delta
;
2595 if (nvtbl
== NULL_TREE
2596 || nvtbl
== IDENTIFIER_GLOBAL_VALUE (DECL_NAME (vtbl
)))
2598 /* Dup it if it isn't in local scope yet. */
2600 (VAR_DECL
, DECL_NAME (vtbl
),
2601 TYPE_MAIN_VARIANT (TREE_TYPE (vtbl
)));
2602 DECL_ALIGN (nvtbl
) = MAX (TYPE_ALIGN (double_type_node
),
2603 DECL_ALIGN (nvtbl
));
2604 TREE_READONLY (nvtbl
) = 0;
2605 DECL_ARTIFICIAL (nvtbl
) = 1;
2606 nvtbl
= pushdecl (nvtbl
);
2608 cp_finish_decl (nvtbl
, init
, NULL_TREE
, 0,
2609 LOOKUP_ONLYCONVERTING
);
2611 /* We don't set DECL_VIRTUAL_P and DECL_CONTEXT on nvtbl
2612 because they wouldn't be useful; everything that wants to
2613 look at the vtable will look at the decl for the normal
2614 vtable. Setting DECL_CONTEXT also screws up
2615 decl_function_context. */
2617 init
= build (MODIFY_EXPR
, TREE_TYPE (nvtbl
),
2619 TREE_SIDE_EFFECTS (init
) = 1;
2620 expand_expr_stmt (init
);
2621 /* Update the vtable pointers as necessary. */
2622 ref
= build_vfield_ref
2623 (build_indirect_ref (addr
, NULL_PTR
),
2624 DECL_CONTEXT (CLASSTYPE_VFIELD (BINFO_TYPE (binfo
))));
2626 (build_modify_expr (ref
, NOP_EXPR
, nvtbl
));
2628 assemble_external (vtbl
);
2629 aref
= build_array_ref (vtbl
, idx
);
2630 naref
= build_array_ref (nvtbl
, idx
);
2631 old_delta
= build_component_ref (aref
, delta_identifier
,
2633 new_delta
= build_component_ref (naref
, delta_identifier
,
2636 /* This is a upcast, so we have to add the offset for the
2638 old_delta
= build_binary_op (PLUS_EXPR
, old_delta
,
2639 TREE_VALUE (delta
));
2642 /* If this is set, we need to subtract out the delta
2643 adjustments for the other virtual base that we
2645 tree vc_delta
= purpose_member (vc
, *vbase_offsets
);
2648 tree vc_addr
= convert_pointer_to_real (vc
, orig_addr
);
2649 vc_delta
= CLASSTYPE_SEARCH_SLOT (BINFO_TYPE (vc
));
2650 vc_delta
= build (MINUS_EXPR
, ptrdiff_type_node
,
2652 vc_delta
= save_expr (vc_delta
);
2653 *vbase_offsets
= tree_cons (vc
, vc_delta
, *vbase_offsets
);
2656 vc_delta
= TREE_VALUE (vc_delta
);
2658 /* This is a downcast, so we have to subtract the offset
2659 for the virtual base. */
2660 old_delta
= build_binary_op (MINUS_EXPR
, old_delta
, vc_delta
);
2663 TREE_READONLY (new_delta
) = 0;
2664 TREE_TYPE (new_delta
) =
2665 cp_build_qualified_type (TREE_TYPE (new_delta
),
2666 CP_TYPE_QUALS (TREE_TYPE (new_delta
))
2667 & ~TYPE_QUAL_CONST
);
2668 expand_expr_stmt (build_modify_expr (new_delta
, NOP_EXPR
,
2672 virtuals
= TREE_CHAIN (virtuals
);
2676 /* Fixup upcast offsets for all direct vtables. Patterned after
2677 expand_direct_vtbls_init. */
2680 fixup_virtual_upcast_offsets (real_binfo
, binfo
, init_self
, can_elide
, addr
, orig_addr
, type
, vbase
, vbase_offsets
)
2681 tree real_binfo
, binfo
;
2682 int init_self
, can_elide
;
2683 tree addr
, orig_addr
, type
, vbase
, *vbase_offsets
;
2685 tree real_binfos
= BINFO_BASETYPES (real_binfo
);
2686 tree binfos
= BINFO_BASETYPES (binfo
);
2687 int i
, n_baselinks
= real_binfos
? TREE_VEC_LENGTH (real_binfos
) : 0;
2689 for (i
= 0; i
< n_baselinks
; i
++)
2691 tree real_base_binfo
= TREE_VEC_ELT (real_binfos
, i
);
2692 tree base_binfo
= TREE_VEC_ELT (binfos
, i
);
2693 int is_not_base_vtable
2694 = i
!= CLASSTYPE_VFIELD_PARENT (BINFO_TYPE (real_binfo
));
2695 if (! TREE_VIA_VIRTUAL (real_base_binfo
))
2696 fixup_virtual_upcast_offsets (real_base_binfo
, base_binfo
,
2697 is_not_base_vtable
, can_elide
, addr
,
2698 orig_addr
, type
, vbase
, vbase_offsets
);
2701 /* Before turning this on, make sure it is correct. */
2702 if (can_elide
&& ! BINFO_MODIFIED (binfo
))
2705 /* Should we use something besides CLASSTYPE_VFIELDS? */
2706 if (init_self
&& CLASSTYPE_VFIELDS (BINFO_TYPE (real_binfo
)))
2708 tree new_addr
= convert_pointer_to_real (binfo
, addr
);
2709 expand_upcast_fixups (real_binfo
, new_addr
, orig_addr
, vbase
, addr
,
2710 type
, vbase_offsets
);
2714 /* Build a COMPOUND_EXPR which when expanded will generate the code
2715 needed to initialize all the virtual function table slots of all
2716 the virtual baseclasses. MAIN_BINFO is the binfo which determines
2717 the virtual baseclasses to use; TYPE is the type of the object to
2718 which the initialization applies. TRUE_EXP is the true object we
2719 are initializing, and DECL_PTR is the pointer to the sub-object we
2722 When USE_COMPUTED_OFFSETS is non-zero, we can assume that the
2723 object was laid out by a top-level constructor and the computed
2724 offsets are valid to store vtables. When zero, we must store new
2725 vtables through virtual baseclass pointers. */
2728 expand_indirect_vtbls_init (binfo
, true_exp
, decl_ptr
)
2730 tree true_exp
, decl_ptr
;
2732 tree type
= BINFO_TYPE (binfo
);
2734 /* This function executes during the finish_function() segment,
2735 AFTER the auto variables and temporary stack space has been marked
2736 unused...If space is needed for the virtual function tables,
2737 some of them might fit within what the compiler now thinks
2738 are available stack slots... These values are actually initialized at
2739 the beginnning of the function, so when the automatics use their space,
2740 they will overwrite the values that are placed here. Marking all
2741 temporary space as unavailable prevents this from happening. */
2743 mark_all_temps_used();
2745 if (TYPE_USES_VIRTUAL_BASECLASSES (type
))
2747 rtx fixup_insns
= NULL_RTX
;
2748 tree vbases
= CLASSTYPE_VBASECLASSES (type
);
2749 struct vbase_info vi
;
2750 vi
.decl_ptr
= (true_exp
? build_unary_op (ADDR_EXPR
, true_exp
, 0)
2752 vi
.vbase_types
= vbases
;
2754 dfs_walk (binfo
, dfs_find_vbases
, unmarked_new_vtablep
, &vi
);
2756 /* Initialized with vtables of type TYPE. */
2757 for (; vbases
; vbases
= TREE_CHAIN (vbases
))
2761 addr
= convert_pointer_to_vbase (TREE_TYPE (vbases
), vi
.decl_ptr
);
2763 /* Do all vtables from this virtual base. */
2764 /* This assumes that virtual bases can never serve as parent
2765 binfos. (in the CLASSTYPE_VFIELD_PARENT sense) */
2766 expand_direct_vtbls_init (vbases
, TYPE_BINFO (BINFO_TYPE (vbases
)),
2769 /* Now we adjust the offsets for virtual functions that
2770 cross virtual boundaries on an implicit upcast on vf call
2771 so that the layout of the most complete type is used,
2772 instead of assuming the layout of the virtual bases from
2773 our current type. */
2775 if (flag_vtable_thunks
)
2777 /* We don't have dynamic thunks yet!
2778 So for now, just fail silently. */
2782 tree vbase_offsets
= NULL_TREE
;
2783 push_to_sequence (fixup_insns
);
2784 fixup_virtual_upcast_offsets (vbases
,
2785 TYPE_BINFO (BINFO_TYPE (vbases
)),
2786 1, 0, addr
, vi
.decl_ptr
,
2787 type
, vbases
, &vbase_offsets
);
2788 fixup_insns
= get_insns ();
2795 extern tree in_charge_identifier
;
2796 tree in_charge_node
= lookup_name (in_charge_identifier
, 0);
2797 if (! in_charge_node
)
2799 warning ("recoverable internal compiler error, nobody's in charge!");
2800 in_charge_node
= integer_zero_node
;
2802 in_charge_node
= build_binary_op (EQ_EXPR
, in_charge_node
, integer_zero_node
);
2803 expand_start_cond (in_charge_node
, 0);
2804 emit_insns (fixup_insns
);
2808 dfs_walk (binfo
, dfs_clear_vbase_slots
, marked_new_vtablep
, 0);
2812 /* get virtual base class types.
2813 This adds type to the vbase_types list in reverse dfs order.
2814 Ordering is very important, so don't change it. */
2817 dfs_get_vbase_types (binfo
, data
)
2821 tree
*vbase_types
= (tree
*) data
;
2823 if (TREE_VIA_VIRTUAL (binfo
) && ! BINFO_VBASE_MARKED (binfo
))
2825 tree new_vbase
= make_binfo (integer_zero_node
, binfo
,
2826 BINFO_VTABLE (binfo
),
2827 BINFO_VIRTUALS (binfo
));
2828 TREE_CHAIN (new_vbase
) = *vbase_types
;
2829 TREE_VIA_VIRTUAL (new_vbase
) = 1;
2830 *vbase_types
= new_vbase
;
2831 SET_BINFO_VBASE_MARKED (binfo
);
2833 SET_BINFO_MARKED (binfo
);
2837 /* Return a list of binfos for the virtual base classes for TYPE, in
2838 depth-first search order. The list is freshly allocated, so
2839 no modification is made to the current binfo hierarchy. */
2842 get_vbase_types (type
)
2849 binfo
= TYPE_BINFO (type
);
2850 vbase_types
= NULL_TREE
;
2851 dfs_walk (binfo
, dfs_get_vbase_types
, unmarkedp
, &vbase_types
);
2852 dfs_walk (binfo
, dfs_unmark
, markedp
, 0);
2853 /* Rely upon the reverse dfs ordering from dfs_get_vbase_types, and now
2854 reverse it so that we get normal dfs ordering. */
2855 vbase_types
= nreverse (vbase_types
);
2857 /* unmark marked vbases */
2858 for (vbases
= vbase_types
; vbases
; vbases
= TREE_CHAIN (vbases
))
2859 CLEAR_BINFO_VBASE_MARKED (vbases
);
2864 /* If we want debug info for a type TYPE, make sure all its base types
2865 are also marked as being potentially interesting. This avoids
2866 the problem of not writing any debug info for intermediate basetypes
2867 that have abstract virtual functions. Also mark member types. */
2870 note_debug_info_needed (type
)
2875 if (current_template_parms
)
2878 if (TYPE_BEING_DEFINED (type
))
2879 /* We can't go looking for the base types and fields just yet. */
2882 /* We can't do the TYPE_DECL_SUPPRESS_DEBUG thing with DWARF, which
2883 does not support name references between translation units. Well, we
2884 could, but that would mean putting global labels in the debug output
2885 before each exported type and each of its functions and static data
2887 if (write_symbols
== DWARF_DEBUG
|| write_symbols
== DWARF2_DEBUG
2888 || write_symbols
== NO_DEBUG
)
2891 dfs_walk (TYPE_BINFO (type
), dfs_debug_mark
, dfs_debug_unmarkedp
, 0);
2892 for (field
= TYPE_FIELDS (type
); field
; field
= TREE_CHAIN (field
))
2895 if (TREE_CODE (field
) == FIELD_DECL
2896 && IS_AGGR_TYPE (ttype
= target_type (TREE_TYPE (field
)))
2897 && dfs_debug_unmarkedp (TYPE_BINFO (ttype
), 0))
2898 note_debug_info_needed (ttype
);
2902 /* Subroutines of push_class_decls (). */
2904 /* Returns 1 iff BINFO is a base we shouldn't really be able to see into,
2905 because it (or one of the intermediate bases) depends on template parms. */
2908 dependent_base_p (binfo
)
2911 for (; binfo
; binfo
= BINFO_INHERITANCE_CHAIN (binfo
))
2913 if (currently_open_class (TREE_TYPE (binfo
)))
2915 if (uses_template_parms (TREE_TYPE (binfo
)))
2922 setup_class_bindings (name
, type_binding_p
)
2926 tree type_binding
= NULL_TREE
;
2929 /* If we've already done the lookup for this declaration, we're
2931 if (IDENTIFIER_CLASS_VALUE (name
))
2934 /* First, deal with the type binding. */
2937 type_binding
= lookup_member (current_class_type
, name
,
2940 if (TREE_CODE (type_binding
) == TREE_LIST
2941 && TREE_TYPE (type_binding
) == error_mark_node
)
2942 /* NAME is ambiguous. */
2943 push_class_level_binding (name
, type_binding
);
2945 pushdecl_class_level (type_binding
);
2948 /* Now, do the value binding. */
2949 value_binding
= lookup_member (current_class_type
, name
,
2954 && (TREE_CODE (value_binding
) == TYPE_DECL
2955 || (TREE_CODE (value_binding
) == TREE_LIST
2956 && TREE_TYPE (value_binding
) == error_mark_node
2957 && (TREE_CODE (TREE_VALUE (value_binding
))
2959 /* We found a type-binding, even when looking for a non-type
2960 binding. This means that we already processed this binding
2962 my_friendly_assert (type_binding_p
, 19990401);
2963 else if (value_binding
)
2965 if (TREE_CODE (value_binding
) == TREE_LIST
2966 && TREE_TYPE (value_binding
) == error_mark_node
)
2967 /* NAME is ambiguous. */
2968 push_class_level_binding (name
, value_binding
);
2971 if (BASELINK_P (value_binding
))
2972 /* NAME is some overloaded functions. */
2973 value_binding
= TREE_VALUE (value_binding
);
2974 pushdecl_class_level (value_binding
);
2979 /* Push class-level declarations for any names appearing in BINFO that
2983 dfs_push_type_decls (binfo
, data
)
2985 void *data ATTRIBUTE_UNUSED
;
2990 type
= BINFO_TYPE (binfo
);
2991 for (fields
= TYPE_FIELDS (type
); fields
; fields
= TREE_CHAIN (fields
))
2992 if (DECL_NAME (fields
) && TREE_CODE (fields
) == TYPE_DECL
2993 && !(!same_type_p (type
, current_class_type
)
2994 && template_self_reference_p (type
, fields
)))
2995 setup_class_bindings (DECL_NAME (fields
), /*type_binding_p=*/1);
2997 /* We can't just use BINFO_MARKED because envelope_add_decl uses
2998 DERIVED_FROM_P, which calls get_base_distance. */
2999 SET_BINFO_PUSHDECLS_MARKED (binfo
);
3004 /* Push class-level declarations for any names appearing in BINFO that
3005 are not TYPE_DECLS. */
3008 dfs_push_decls (binfo
, data
)
3016 type
= BINFO_TYPE (binfo
);
3017 dep_base_p
= (processing_template_decl
&& type
!= current_class_type
3018 && dependent_base_p (binfo
));
3022 for (fields
= TYPE_FIELDS (type
); fields
; fields
= TREE_CHAIN (fields
))
3023 if (DECL_NAME (fields
)
3024 && TREE_CODE (fields
) != TYPE_DECL
3025 && TREE_CODE (fields
) != USING_DECL
)
3026 setup_class_bindings (DECL_NAME (fields
), /*type_binding_p=*/0);
3027 else if (TREE_CODE (fields
) == FIELD_DECL
3028 && ANON_AGGR_TYPE_P (TREE_TYPE (fields
)))
3029 dfs_push_decls (TYPE_BINFO (TREE_TYPE (fields
)), data
);
3031 method_vec
= (CLASS_TYPE_P (type
)
3032 ? CLASSTYPE_METHOD_VEC (type
) : NULL_TREE
);
3038 /* Farm out constructors and destructors. */
3039 end
= TREE_VEC_END (method_vec
);
3041 for (methods
= &TREE_VEC_ELT (method_vec
, 2);
3042 *methods
&& methods
!= end
;
3044 setup_class_bindings (DECL_NAME (OVL_CURRENT (*methods
)),
3045 /*type_binding_p=*/0);
3049 CLEAR_BINFO_PUSHDECLS_MARKED (binfo
);
3054 /* When entering the scope of a class, we cache all of the
3055 fields that that class provides within its inheritance
3056 lattice. Where ambiguities result, we mark them
3057 with `error_mark_node' so that if they are encountered
3058 without explicit qualification, we can emit an error
3062 push_class_decls (type
)
3065 struct obstack
*ambient_obstack
= current_obstack
;
3066 search_stack
= push_search_level (search_stack
, &search_obstack
);
3068 /* Build up all the relevant bindings and such on the cache
3069 obstack. That way no memory is wasted when we throw away the
3071 push_cache_obstack ();
3073 /* Enter type declarations and mark. */
3074 dfs_walk (TYPE_BINFO (type
), dfs_push_type_decls
, unmarked_pushdecls_p
, 0);
3076 /* Enter non-type declarations and unmark. */
3077 dfs_walk (TYPE_BINFO (type
), dfs_push_decls
, marked_pushdecls_p
, 0);
3079 /* Undo the call to push_cache_obstack above. */
3082 current_obstack
= ambient_obstack
;
3085 /* Here's a subroutine we need because C lacks lambdas. */
3088 dfs_unuse_fields (binfo
, data
)
3090 void *data ATTRIBUTE_UNUSED
;
3092 tree type
= TREE_TYPE (binfo
);
3095 for (fields
= TYPE_FIELDS (type
); fields
; fields
= TREE_CHAIN (fields
))
3097 if (TREE_CODE (fields
) != FIELD_DECL
)
3100 TREE_USED (fields
) = 0;
3101 if (DECL_NAME (fields
) == NULL_TREE
3102 && ANON_AGGR_TYPE_P (TREE_TYPE (fields
)))
3103 unuse_fields (TREE_TYPE (fields
));
3113 dfs_walk (TYPE_BINFO (type
), dfs_unuse_fields
, unmarkedp
, 0);
3119 /* We haven't pushed a search level when dealing with cached classes,
3120 so we'd better not try to pop it. */
3122 search_stack
= pop_search_level (search_stack
);
3126 print_search_statistics ()
3128 #ifdef GATHER_STATISTICS
3129 fprintf (stderr
, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
3130 n_fields_searched
, n_calls_lookup_field
, n_calls_lookup_field_1
);
3131 fprintf (stderr
, "%d fnfields searched in %d calls to lookup_fnfields\n",
3132 n_outer_fields_searched
, n_calls_lookup_fnfields
);
3133 fprintf (stderr
, "%d calls to get_base_type\n", n_calls_get_base_type
);
3134 #else /* GATHER_STATISTICS */
3135 fprintf (stderr
, "no search statistics\n");
3136 #endif /* GATHER_STATISTICS */
3140 init_search_processing ()
3142 gcc_obstack_init (&search_obstack
);
3143 _vptr_name
= get_identifier ("_vptr");
3147 reinit_search_statistics ()
3149 #ifdef GATHER_STATISTICS
3150 n_fields_searched
= 0;
3151 n_calls_lookup_field
= 0, n_calls_lookup_field_1
= 0;
3152 n_calls_lookup_fnfields
= 0, n_calls_lookup_fnfields_1
= 0;
3153 n_calls_get_base_type
= 0;
3154 n_outer_fields_searched
= 0;
3155 n_contexts_saved
= 0;
3156 #endif /* GATHER_STATISTICS */
3159 #define scratch_tree_cons expr_tree_cons
3162 add_conversions (binfo
, data
)
3167 tree method_vec
= CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo
));
3168 tree
*conversions
= (tree
*) data
;
3170 /* Some builtin types have no method vector, not even an empty one. */
3174 for (i
= 2; i
< TREE_VEC_LENGTH (method_vec
); ++i
)
3176 tree tmp
= TREE_VEC_ELT (method_vec
, i
);
3179 if (!tmp
|| ! DECL_CONV_FN_P (OVL_CURRENT (tmp
)))
3182 name
= DECL_NAME (OVL_CURRENT (tmp
));
3184 /* Make sure we don't already have this conversion. */
3185 if (! IDENTIFIER_MARKED (name
))
3187 *conversions
= scratch_tree_cons (binfo
, tmp
, *conversions
);
3188 IDENTIFIER_MARKED (name
) = 1;
3194 /* Return a TREE_LIST containing all the non-hidden user-defined
3195 conversion functions for TYPE (and its base-classes). The
3196 TREE_VALUE of each node is a FUNCTION_DECL or an OVERLOAD
3197 containing the conversion functions. The TREE_PURPOSE is the BINFO
3198 from which the conversion functions in this node were selected. */
3201 lookup_conversions (type
)
3205 tree conversions
= NULL_TREE
;
3207 if (TYPE_SIZE (type
))
3208 bfs_walk (TYPE_BINFO (type
), add_conversions
, 0, &conversions
);
3210 for (t
= conversions
; t
; t
= TREE_CHAIN (t
))
3211 IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (t
)))) = 0;
3222 /* Check whether the empty class indicated by EMPTY_BINFO is also present
3223 at offset 0 in COMPARE_TYPE, and set found_overlap if so. */
3226 dfs_check_overlap (empty_binfo
, data
)
3230 struct overlap_info
*oi
= (struct overlap_info
*) data
;
3232 for (binfo
= TYPE_BINFO (oi
->compare_type
);
3234 binfo
= BINFO_BASETYPE (binfo
, 0))
3236 if (BINFO_TYPE (binfo
) == BINFO_TYPE (empty_binfo
))
3238 oi
->found_overlap
= 1;
3241 else if (BINFO_BASETYPES (binfo
) == NULL_TREE
)
3248 /* Trivial function to stop base traversal when we find something. */
3251 dfs_no_overlap_yet (binfo
, data
)
3255 struct overlap_info
*oi
= (struct overlap_info
*) data
;
3256 return !oi
->found_overlap
? binfo
: NULL_TREE
;
3259 /* Returns nonzero if EMPTY_TYPE or any of its bases can also be found at
3260 offset 0 in NEXT_TYPE. Used in laying out empty base class subobjects. */
3263 types_overlap_p (empty_type
, next_type
)
3264 tree empty_type
, next_type
;
3266 struct overlap_info oi
;
3268 if (! IS_AGGR_TYPE (next_type
))
3270 oi
.compare_type
= next_type
;
3271 oi
.found_overlap
= 0;
3272 dfs_walk (TYPE_BINFO (empty_type
), dfs_check_overlap
,
3273 dfs_no_overlap_yet
, &oi
);
3274 return oi
.found_overlap
;
3283 dfs_bfv_queue_p (binfo
, data
)
3287 struct bfv_info
*bfvi
= (struct bfv_info
*) data
;
3289 /* Use the real virtual base class objects, not the placeholders in
3290 the usual hierarchy. */
3291 if (TREE_VIA_VIRTUAL (binfo
))
3292 return binfo_member (BINFO_TYPE (binfo
), bfvi
->vbases
);
3297 /* Passed to dfs_walk_real by binfo_for_vtable; determine if bvtable
3298 comes from BINFO. */
3301 dfs_bfv_helper (binfo
, data
)
3305 struct bfv_info
*bfvi
= (struct bfv_info
*) data
;
3307 if (BINFO_VTABLE (binfo
) == bfvi
->var
)
3312 /* Given a vtable VAR, determine which binfo it comes from. */
3315 binfo_for_vtable (var
)
3319 struct bfv_info bfvi
;
3321 type
= DECL_CONTEXT (var
);
3322 bfvi
.vbases
= CLASSTYPE_VBASECLASSES (type
);
3324 return dfs_walk_real (TYPE_BINFO (type
),
3325 0, dfs_bfv_helper
, dfs_bfv_queue_p
, &bfvi
);
3328 /* Returns 1 iff BINFO is from a direct or indirect virtual base. */
3331 binfo_from_vbase (binfo
)
3334 for (; binfo
; binfo
= BINFO_INHERITANCE_CHAIN (binfo
))
3336 if (TREE_VIA_VIRTUAL (binfo
))