]> gcc.gnu.org Git - gcc.git/blob - gcc/cp/init.c
re PR c++/28450 (ICE with new and complex/vector types)
[gcc.git] / gcc / cp / init.c
1 /* Handle initialization things in C++.
2 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 /* High-level class interface. */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "tree.h"
30 #include "rtl.h"
31 #include "expr.h"
32 #include "cp-tree.h"
33 #include "flags.h"
34 #include "output.h"
35 #include "except.h"
36 #include "toplev.h"
37 #include "target.h"
38
39 static bool begin_init_stmts (tree *, tree *);
40 static tree finish_init_stmts (bool, tree, tree);
41 static void construct_virtual_base (tree, tree);
42 static void expand_aggr_init_1 (tree, tree, tree, tree, int);
43 static void expand_default_init (tree, tree, tree, tree, int);
44 static tree build_vec_delete_1 (tree, tree, tree, special_function_kind, int);
45 static void perform_member_init (tree, tree);
46 static tree build_builtin_delete_call (tree);
47 static int member_init_ok_or_else (tree, tree, tree);
48 static void expand_virtual_init (tree, tree);
49 static tree sort_mem_initializers (tree, tree);
50 static tree initializing_context (tree);
51 static void expand_cleanup_for_base (tree, tree);
52 static tree get_temp_regvar (tree, tree);
53 static tree dfs_initialize_vtbl_ptrs (tree, void *);
54 static tree build_default_init (tree, tree);
55 static tree build_dtor_call (tree, special_function_kind, int);
56 static tree build_field_list (tree, tree, int *);
57 static tree build_vtbl_address (tree);
58
59 /* We are about to generate some complex initialization code.
60 Conceptually, it is all a single expression. However, we may want
61 to include conditionals, loops, and other such statement-level
62 constructs. Therefore, we build the initialization code inside a
63 statement-expression. This function starts such an expression.
64 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
65 pass them back to finish_init_stmts when the expression is
66 complete. */
67
68 static bool
69 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
70 {
71 bool is_global = !building_stmt_tree ();
72
73 *stmt_expr_p = begin_stmt_expr ();
74 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
75
76 return is_global;
77 }
78
79 /* Finish out the statement-expression begun by the previous call to
80 begin_init_stmts. Returns the statement-expression itself. */
81
82 static tree
83 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
84 {
85 finish_compound_stmt (compound_stmt);
86
87 stmt_expr = finish_stmt_expr (stmt_expr, true);
88
89 gcc_assert (!building_stmt_tree () == is_global);
90
91 return stmt_expr;
92 }
93
94 /* Constructors */
95
96 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
97 which we want to initialize the vtable pointer for, DATA is
98 TREE_LIST whose TREE_VALUE is the this ptr expression. */
99
100 static tree
101 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
102 {
103 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
104 return dfs_skip_bases;
105
106 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
107 {
108 tree base_ptr = TREE_VALUE ((tree) data);
109
110 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
111
112 expand_virtual_init (binfo, base_ptr);
113 }
114
115 return NULL_TREE;
116 }
117
118 /* Initialize all the vtable pointers in the object pointed to by
119 ADDR. */
120
121 void
122 initialize_vtbl_ptrs (tree addr)
123 {
124 tree list;
125 tree type;
126
127 type = TREE_TYPE (TREE_TYPE (addr));
128 list = build_tree_list (type, addr);
129
130 /* Walk through the hierarchy, initializing the vptr in each base
131 class. We do these in pre-order because we can't find the virtual
132 bases for a class until we've initialized the vtbl for that
133 class. */
134 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
135 }
136
137 /* Return an expression for the zero-initialization of an object with
138 type T. This expression will either be a constant (in the case
139 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
140 aggregate). In either case, the value can be used as DECL_INITIAL
141 for a decl of the indicated TYPE; it is a valid static initializer.
142 If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS is the
143 number of elements in the array. If STATIC_STORAGE_P is TRUE,
144 initializers are only generated for entities for which
145 zero-initialization does not simply mean filling the storage with
146 zero bytes. */
147
148 tree
149 build_zero_init (tree type, tree nelts, bool static_storage_p)
150 {
151 tree init = NULL_TREE;
152
153 /* [dcl.init]
154
155 To zero-initialization storage for an object of type T means:
156
157 -- if T is a scalar type, the storage is set to the value of zero
158 converted to T.
159
160 -- if T is a non-union class type, the storage for each nonstatic
161 data member and each base-class subobject is zero-initialized.
162
163 -- if T is a union type, the storage for its first data member is
164 zero-initialized.
165
166 -- if T is an array type, the storage for each element is
167 zero-initialized.
168
169 -- if T is a reference type, no initialization is performed. */
170
171 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
172
173 if (type == error_mark_node)
174 ;
175 else if (static_storage_p && zero_init_p (type))
176 /* In order to save space, we do not explicitly build initializers
177 for items that do not need them. GCC's semantics are that
178 items with static storage duration that are not otherwise
179 initialized are initialized to zero. */
180 ;
181 else if (SCALAR_TYPE_P (type)
182 || TREE_CODE (type) == COMPLEX_TYPE)
183 init = convert (type, integer_zero_node);
184 else if (CLASS_TYPE_P (type))
185 {
186 tree field;
187 VEC(constructor_elt,gc) *v = NULL;
188
189 /* Iterate over the fields, building initializations. */
190 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
191 {
192 if (TREE_CODE (field) != FIELD_DECL)
193 continue;
194
195 /* Note that for class types there will be FIELD_DECLs
196 corresponding to base classes as well. Thus, iterating
197 over TYPE_FIELDs will result in correct initialization of
198 all of the subobjects. */
199 if (static_storage_p && !zero_init_p (TREE_TYPE (field)))
200 {
201 tree value = build_zero_init (TREE_TYPE (field),
202 /*nelts=*/NULL_TREE,
203 static_storage_p);
204 CONSTRUCTOR_APPEND_ELT(v, field, value);
205 }
206
207 /* For unions, only the first field is initialized. */
208 if (TREE_CODE (type) == UNION_TYPE)
209 break;
210 }
211
212 /* Build a constructor to contain the initializations. */
213 init = build_constructor (type, v);
214 }
215 else if (TREE_CODE (type) == ARRAY_TYPE)
216 {
217 tree max_index;
218 VEC(constructor_elt,gc) *v = NULL;
219
220 /* Iterate over the array elements, building initializations. */
221 if (nelts)
222 max_index = fold_build2 (MINUS_EXPR, TREE_TYPE (nelts),
223 nelts, integer_one_node);
224 else
225 max_index = array_type_nelts (type);
226 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
227
228 /* A zero-sized array, which is accepted as an extension, will
229 have an upper bound of -1. */
230 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
231 {
232 constructor_elt *ce;
233
234 v = VEC_alloc (constructor_elt, gc, 1);
235 ce = VEC_quick_push (constructor_elt, v, NULL);
236
237 /* If this is a one element array, we just use a regular init. */
238 if (tree_int_cst_equal (size_zero_node, max_index))
239 ce->index = size_zero_node;
240 else
241 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
242 max_index);
243
244 ce->value = build_zero_init (TREE_TYPE (type),
245 /*nelts=*/NULL_TREE,
246 static_storage_p);
247 }
248
249 /* Build a constructor to contain the initializations. */
250 init = build_constructor (type, v);
251 }
252 else if (TREE_CODE (type) == VECTOR_TYPE)
253 init = fold_convert (type, integer_zero_node);
254 else
255 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
256
257 /* In all cases, the initializer is a constant. */
258 if (init)
259 {
260 TREE_CONSTANT (init) = 1;
261 TREE_INVARIANT (init) = 1;
262 }
263
264 return init;
265 }
266
267 /* Build an expression for the default-initialization of an object of
268 the indicated TYPE. If NELTS is non-NULL, and TYPE is an
269 ARRAY_TYPE, NELTS is the number of elements in the array. If
270 initialization of TYPE requires calling constructors, this function
271 returns NULL_TREE; the caller is responsible for arranging for the
272 constructors to be called. */
273
274 static tree
275 build_default_init (tree type, tree nelts)
276 {
277 /* [dcl.init]:
278
279 To default-initialize an object of type T means:
280
281 --if T is a non-POD class type (clause _class_), the default construc-
282 tor for T is called (and the initialization is ill-formed if T has
283 no accessible default constructor);
284
285 --if T is an array type, each element is default-initialized;
286
287 --otherwise, the storage for the object is zero-initialized.
288
289 A program that calls for default-initialization of an entity of refer-
290 ence type is ill-formed. */
291
292 /* If TYPE_NEEDS_CONSTRUCTING is true, the caller is responsible for
293 performing the initialization. This is confusing in that some
294 non-PODs do not have TYPE_NEEDS_CONSTRUCTING set. (For example,
295 a class with a pointer-to-data member as a non-static data member
296 does not have TYPE_NEEDS_CONSTRUCTING set.) Therefore, we end up
297 passing non-PODs to build_zero_init below, which is contrary to
298 the semantics quoted above from [dcl.init].
299
300 It happens, however, that the behavior of the constructor the
301 standard says we should have generated would be precisely the
302 same as that obtained by calling build_zero_init below, so things
303 work out OK. */
304 if (TYPE_NEEDS_CONSTRUCTING (type)
305 || (nelts && TREE_CODE (nelts) != INTEGER_CST))
306 return NULL_TREE;
307
308 /* At this point, TYPE is either a POD class type, an array of POD
309 classes, or something even more innocuous. */
310 return build_zero_init (type, nelts, /*static_storage_p=*/false);
311 }
312
313 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
314 arguments. If TREE_LIST is void_type_node, an empty initializer
315 list was given; if NULL_TREE no initializer was given. */
316
317 static void
318 perform_member_init (tree member, tree init)
319 {
320 tree decl;
321 tree type = TREE_TYPE (member);
322 bool explicit;
323
324 explicit = (init != NULL_TREE);
325
326 /* Effective C++ rule 12 requires that all data members be
327 initialized. */
328 if (warn_ecpp && !explicit && TREE_CODE (type) != ARRAY_TYPE)
329 warning (OPT_Weffc__, "%J%qD should be initialized in the member initialization "
330 "list", current_function_decl, member);
331
332 if (init == void_type_node)
333 init = NULL_TREE;
334
335 /* Get an lvalue for the data member. */
336 decl = build_class_member_access_expr (current_class_ref, member,
337 /*access_path=*/NULL_TREE,
338 /*preserve_reference=*/true);
339 if (decl == error_mark_node)
340 return;
341
342 /* Deal with this here, as we will get confused if we try to call the
343 assignment op for an anonymous union. This can happen in a
344 synthesized copy constructor. */
345 if (ANON_AGGR_TYPE_P (type))
346 {
347 if (init)
348 {
349 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
350 finish_expr_stmt (init);
351 }
352 }
353 else if (TYPE_NEEDS_CONSTRUCTING (type))
354 {
355 if (explicit
356 && TREE_CODE (type) == ARRAY_TYPE
357 && init != NULL_TREE
358 && TREE_CHAIN (init) == NULL_TREE
359 && TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
360 {
361 /* Initialization of one array from another. */
362 finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
363 /*explicit_default_init_p=*/false,
364 /* from_array=*/1));
365 }
366 else
367 finish_expr_stmt (build_aggr_init (decl, init, 0));
368 }
369 else
370 {
371 if (init == NULL_TREE)
372 {
373 if (explicit)
374 {
375 init = build_default_init (type, /*nelts=*/NULL_TREE);
376 if (TREE_CODE (type) == REFERENCE_TYPE)
377 warning (0, "%Jdefault-initialization of %q#D, "
378 "which has reference type",
379 current_function_decl, member);
380 }
381 /* member traversal: note it leaves init NULL */
382 else if (TREE_CODE (type) == REFERENCE_TYPE)
383 pedwarn ("%Juninitialized reference member %qD",
384 current_function_decl, member);
385 else if (CP_TYPE_CONST_P (type))
386 pedwarn ("%Juninitialized member %qD with %<const%> type %qT",
387 current_function_decl, member, type);
388 }
389 else if (TREE_CODE (init) == TREE_LIST)
390 /* There was an explicit member initialization. Do some work
391 in that case. */
392 init = build_x_compound_expr_from_list (init, "member initializer");
393
394 if (init)
395 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
396 }
397
398 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
399 {
400 tree expr;
401
402 expr = build_class_member_access_expr (current_class_ref, member,
403 /*access_path=*/NULL_TREE,
404 /*preserve_reference=*/false);
405 expr = build_delete (type, expr, sfk_complete_destructor,
406 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
407
408 if (expr != error_mark_node)
409 finish_eh_cleanup (expr);
410 }
411 }
412
413 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
414 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
415
416 static tree
417 build_field_list (tree t, tree list, int *uses_unions_p)
418 {
419 tree fields;
420
421 *uses_unions_p = 0;
422
423 /* Note whether or not T is a union. */
424 if (TREE_CODE (t) == UNION_TYPE)
425 *uses_unions_p = 1;
426
427 for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
428 {
429 /* Skip CONST_DECLs for enumeration constants and so forth. */
430 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
431 continue;
432
433 /* Keep track of whether or not any fields are unions. */
434 if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
435 *uses_unions_p = 1;
436
437 /* For an anonymous struct or union, we must recursively
438 consider the fields of the anonymous type. They can be
439 directly initialized from the constructor. */
440 if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
441 {
442 /* Add this field itself. Synthesized copy constructors
443 initialize the entire aggregate. */
444 list = tree_cons (fields, NULL_TREE, list);
445 /* And now add the fields in the anonymous aggregate. */
446 list = build_field_list (TREE_TYPE (fields), list,
447 uses_unions_p);
448 }
449 /* Add this field. */
450 else if (DECL_NAME (fields))
451 list = tree_cons (fields, NULL_TREE, list);
452 }
453
454 return list;
455 }
456
457 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
458 a FIELD_DECL or BINFO in T that needs initialization. The
459 TREE_VALUE gives the initializer, or list of initializer arguments.
460
461 Return a TREE_LIST containing all of the initializations required
462 for T, in the order in which they should be performed. The output
463 list has the same format as the input. */
464
465 static tree
466 sort_mem_initializers (tree t, tree mem_inits)
467 {
468 tree init;
469 tree base, binfo, base_binfo;
470 tree sorted_inits;
471 tree next_subobject;
472 VEC(tree,gc) *vbases;
473 int i;
474 int uses_unions_p;
475
476 /* Build up a list of initializations. The TREE_PURPOSE of entry
477 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
478 TREE_VALUE will be the constructor arguments, or NULL if no
479 explicit initialization was provided. */
480 sorted_inits = NULL_TREE;
481
482 /* Process the virtual bases. */
483 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
484 VEC_iterate (tree, vbases, i, base); i++)
485 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
486
487 /* Process the direct bases. */
488 for (binfo = TYPE_BINFO (t), i = 0;
489 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
490 if (!BINFO_VIRTUAL_P (base_binfo))
491 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
492
493 /* Process the non-static data members. */
494 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
495 /* Reverse the entire list of initializations, so that they are in
496 the order that they will actually be performed. */
497 sorted_inits = nreverse (sorted_inits);
498
499 /* If the user presented the initializers in an order different from
500 that in which they will actually occur, we issue a warning. Keep
501 track of the next subobject which can be explicitly initialized
502 without issuing a warning. */
503 next_subobject = sorted_inits;
504
505 /* Go through the explicit initializers, filling in TREE_PURPOSE in
506 the SORTED_INITS. */
507 for (init = mem_inits; init; init = TREE_CHAIN (init))
508 {
509 tree subobject;
510 tree subobject_init;
511
512 subobject = TREE_PURPOSE (init);
513
514 /* If the explicit initializers are in sorted order, then
515 SUBOBJECT will be NEXT_SUBOBJECT, or something following
516 it. */
517 for (subobject_init = next_subobject;
518 subobject_init;
519 subobject_init = TREE_CHAIN (subobject_init))
520 if (TREE_PURPOSE (subobject_init) == subobject)
521 break;
522
523 /* Issue a warning if the explicit initializer order does not
524 match that which will actually occur.
525 ??? Are all these on the correct lines? */
526 if (warn_reorder && !subobject_init)
527 {
528 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
529 warning (OPT_Wreorder, "%q+D will be initialized after",
530 TREE_PURPOSE (next_subobject));
531 else
532 warning (OPT_Wreorder, "base %qT will be initialized after",
533 TREE_PURPOSE (next_subobject));
534 if (TREE_CODE (subobject) == FIELD_DECL)
535 warning (OPT_Wreorder, " %q+#D", subobject);
536 else
537 warning (OPT_Wreorder, " base %qT", subobject);
538 warning (OPT_Wreorder, "%J when initialized here", current_function_decl);
539 }
540
541 /* Look again, from the beginning of the list. */
542 if (!subobject_init)
543 {
544 subobject_init = sorted_inits;
545 while (TREE_PURPOSE (subobject_init) != subobject)
546 subobject_init = TREE_CHAIN (subobject_init);
547 }
548
549 /* It is invalid to initialize the same subobject more than
550 once. */
551 if (TREE_VALUE (subobject_init))
552 {
553 if (TREE_CODE (subobject) == FIELD_DECL)
554 error ("%Jmultiple initializations given for %qD",
555 current_function_decl, subobject);
556 else
557 error ("%Jmultiple initializations given for base %qT",
558 current_function_decl, subobject);
559 }
560
561 /* Record the initialization. */
562 TREE_VALUE (subobject_init) = TREE_VALUE (init);
563 next_subobject = subobject_init;
564 }
565
566 /* [class.base.init]
567
568 If a ctor-initializer specifies more than one mem-initializer for
569 multiple members of the same union (including members of
570 anonymous unions), the ctor-initializer is ill-formed. */
571 if (uses_unions_p)
572 {
573 tree last_field = NULL_TREE;
574 for (init = sorted_inits; init; init = TREE_CHAIN (init))
575 {
576 tree field;
577 tree field_type;
578 int done;
579
580 /* Skip uninitialized members and base classes. */
581 if (!TREE_VALUE (init)
582 || TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
583 continue;
584 /* See if this field is a member of a union, or a member of a
585 structure contained in a union, etc. */
586 field = TREE_PURPOSE (init);
587 for (field_type = DECL_CONTEXT (field);
588 !same_type_p (field_type, t);
589 field_type = TYPE_CONTEXT (field_type))
590 if (TREE_CODE (field_type) == UNION_TYPE)
591 break;
592 /* If this field is not a member of a union, skip it. */
593 if (TREE_CODE (field_type) != UNION_TYPE)
594 continue;
595
596 /* It's only an error if we have two initializers for the same
597 union type. */
598 if (!last_field)
599 {
600 last_field = field;
601 continue;
602 }
603
604 /* See if LAST_FIELD and the field initialized by INIT are
605 members of the same union. If so, there's a problem,
606 unless they're actually members of the same structure
607 which is itself a member of a union. For example, given:
608
609 union { struct { int i; int j; }; };
610
611 initializing both `i' and `j' makes sense. */
612 field_type = DECL_CONTEXT (field);
613 done = 0;
614 do
615 {
616 tree last_field_type;
617
618 last_field_type = DECL_CONTEXT (last_field);
619 while (1)
620 {
621 if (same_type_p (last_field_type, field_type))
622 {
623 if (TREE_CODE (field_type) == UNION_TYPE)
624 error ("%Jinitializations for multiple members of %qT",
625 current_function_decl, last_field_type);
626 done = 1;
627 break;
628 }
629
630 if (same_type_p (last_field_type, t))
631 break;
632
633 last_field_type = TYPE_CONTEXT (last_field_type);
634 }
635
636 /* If we've reached the outermost class, then we're
637 done. */
638 if (same_type_p (field_type, t))
639 break;
640
641 field_type = TYPE_CONTEXT (field_type);
642 }
643 while (!done);
644
645 last_field = field;
646 }
647 }
648
649 return sorted_inits;
650 }
651
652 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
653 is a TREE_LIST giving the explicit mem-initializer-list for the
654 constructor. The TREE_PURPOSE of each entry is a subobject (a
655 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
656 is a TREE_LIST giving the arguments to the constructor or
657 void_type_node for an empty list of arguments. */
658
659 void
660 emit_mem_initializers (tree mem_inits)
661 {
662 /* We will already have issued an error message about the fact that
663 the type is incomplete. */
664 if (!COMPLETE_TYPE_P (current_class_type))
665 return;
666
667 /* Sort the mem-initializers into the order in which the
668 initializations should be performed. */
669 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
670
671 in_base_initializer = 1;
672
673 /* Initialize base classes. */
674 while (mem_inits
675 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
676 {
677 tree subobject = TREE_PURPOSE (mem_inits);
678 tree arguments = TREE_VALUE (mem_inits);
679
680 /* If these initializations are taking place in a copy
681 constructor, the base class should probably be explicitly
682 initialized. */
683 if (extra_warnings && !arguments
684 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
685 && TYPE_NEEDS_CONSTRUCTING (BINFO_TYPE (subobject)))
686 warning (OPT_Wextra, "%Jbase class %q#T should be explicitly initialized in the "
687 "copy constructor",
688 current_function_decl, BINFO_TYPE (subobject));
689
690 /* If an explicit -- but empty -- initializer list was present,
691 treat it just like default initialization at this point. */
692 if (arguments == void_type_node)
693 arguments = NULL_TREE;
694
695 /* Initialize the base. */
696 if (BINFO_VIRTUAL_P (subobject))
697 construct_virtual_base (subobject, arguments);
698 else
699 {
700 tree base_addr;
701
702 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
703 subobject, 1);
704 expand_aggr_init_1 (subobject, NULL_TREE,
705 build_indirect_ref (base_addr, NULL),
706 arguments,
707 LOOKUP_NORMAL);
708 expand_cleanup_for_base (subobject, NULL_TREE);
709 }
710
711 mem_inits = TREE_CHAIN (mem_inits);
712 }
713 in_base_initializer = 0;
714
715 /* Initialize the vptrs. */
716 initialize_vtbl_ptrs (current_class_ptr);
717
718 /* Initialize the data members. */
719 while (mem_inits)
720 {
721 perform_member_init (TREE_PURPOSE (mem_inits),
722 TREE_VALUE (mem_inits));
723 mem_inits = TREE_CHAIN (mem_inits);
724 }
725 }
726
727 /* Returns the address of the vtable (i.e., the value that should be
728 assigned to the vptr) for BINFO. */
729
730 static tree
731 build_vtbl_address (tree binfo)
732 {
733 tree binfo_for = binfo;
734 tree vtbl;
735
736 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
737 /* If this is a virtual primary base, then the vtable we want to store
738 is that for the base this is being used as the primary base of. We
739 can't simply skip the initialization, because we may be expanding the
740 inits of a subobject constructor where the virtual base layout
741 can be different. */
742 while (BINFO_PRIMARY_P (binfo_for))
743 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
744
745 /* Figure out what vtable BINFO's vtable is based on, and mark it as
746 used. */
747 vtbl = get_vtbl_decl_for_binfo (binfo_for);
748 assemble_external (vtbl);
749 TREE_USED (vtbl) = 1;
750
751 /* Now compute the address to use when initializing the vptr. */
752 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
753 if (TREE_CODE (vtbl) == VAR_DECL)
754 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
755
756 return vtbl;
757 }
758
759 /* This code sets up the virtual function tables appropriate for
760 the pointer DECL. It is a one-ply initialization.
761
762 BINFO is the exact type that DECL is supposed to be. In
763 multiple inheritance, this might mean "C's A" if C : A, B. */
764
765 static void
766 expand_virtual_init (tree binfo, tree decl)
767 {
768 tree vtbl, vtbl_ptr;
769 tree vtt_index;
770
771 /* Compute the initializer for vptr. */
772 vtbl = build_vtbl_address (binfo);
773
774 /* We may get this vptr from a VTT, if this is a subobject
775 constructor or subobject destructor. */
776 vtt_index = BINFO_VPTR_INDEX (binfo);
777 if (vtt_index)
778 {
779 tree vtbl2;
780 tree vtt_parm;
781
782 /* Compute the value to use, when there's a VTT. */
783 vtt_parm = current_vtt_parm;
784 vtbl2 = build2 (PLUS_EXPR,
785 TREE_TYPE (vtt_parm),
786 vtt_parm,
787 vtt_index);
788 vtbl2 = build_indirect_ref (vtbl2, NULL);
789 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
790
791 /* The actual initializer is the VTT value only in the subobject
792 constructor. In maybe_clone_body we'll substitute NULL for
793 the vtt_parm in the case of the non-subobject constructor. */
794 vtbl = build3 (COND_EXPR,
795 TREE_TYPE (vtbl),
796 build2 (EQ_EXPR, boolean_type_node,
797 current_in_charge_parm, integer_zero_node),
798 vtbl2,
799 vtbl);
800 }
801
802 /* Compute the location of the vtpr. */
803 vtbl_ptr = build_vfield_ref (build_indirect_ref (decl, NULL),
804 TREE_TYPE (binfo));
805 gcc_assert (vtbl_ptr != error_mark_node);
806
807 /* Assign the vtable to the vptr. */
808 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
809 finish_expr_stmt (build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl));
810 }
811
812 /* If an exception is thrown in a constructor, those base classes already
813 constructed must be destroyed. This function creates the cleanup
814 for BINFO, which has just been constructed. If FLAG is non-NULL,
815 it is a DECL which is nonzero when this base needs to be
816 destroyed. */
817
818 static void
819 expand_cleanup_for_base (tree binfo, tree flag)
820 {
821 tree expr;
822
823 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
824 return;
825
826 /* Call the destructor. */
827 expr = build_special_member_call (current_class_ref,
828 base_dtor_identifier,
829 NULL_TREE,
830 binfo,
831 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
832 if (flag)
833 expr = fold_build3 (COND_EXPR, void_type_node,
834 c_common_truthvalue_conversion (flag),
835 expr, integer_zero_node);
836
837 finish_eh_cleanup (expr);
838 }
839
840 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
841 constructor. */
842
843 static void
844 construct_virtual_base (tree vbase, tree arguments)
845 {
846 tree inner_if_stmt;
847 tree exp;
848 tree flag;
849
850 /* If there are virtual base classes with destructors, we need to
851 emit cleanups to destroy them if an exception is thrown during
852 the construction process. These exception regions (i.e., the
853 period during which the cleanups must occur) begin from the time
854 the construction is complete to the end of the function. If we
855 create a conditional block in which to initialize the
856 base-classes, then the cleanup region for the virtual base begins
857 inside a block, and ends outside of that block. This situation
858 confuses the sjlj exception-handling code. Therefore, we do not
859 create a single conditional block, but one for each
860 initialization. (That way the cleanup regions always begin
861 in the outer block.) We trust the back-end to figure out
862 that the FLAG will not change across initializations, and
863 avoid doing multiple tests. */
864 flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
865 inner_if_stmt = begin_if_stmt ();
866 finish_if_stmt_cond (flag, inner_if_stmt);
867
868 /* Compute the location of the virtual base. If we're
869 constructing virtual bases, then we must be the most derived
870 class. Therefore, we don't have to look up the virtual base;
871 we already know where it is. */
872 exp = convert_to_base_statically (current_class_ref, vbase);
873
874 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
875 LOOKUP_COMPLAIN);
876 finish_then_clause (inner_if_stmt);
877 finish_if_stmt (inner_if_stmt);
878
879 expand_cleanup_for_base (vbase, flag);
880 }
881
882 /* Find the context in which this FIELD can be initialized. */
883
884 static tree
885 initializing_context (tree field)
886 {
887 tree t = DECL_CONTEXT (field);
888
889 /* Anonymous union members can be initialized in the first enclosing
890 non-anonymous union context. */
891 while (t && ANON_AGGR_TYPE_P (t))
892 t = TYPE_CONTEXT (t);
893 return t;
894 }
895
896 /* Function to give error message if member initialization specification
897 is erroneous. FIELD is the member we decided to initialize.
898 TYPE is the type for which the initialization is being performed.
899 FIELD must be a member of TYPE.
900
901 MEMBER_NAME is the name of the member. */
902
903 static int
904 member_init_ok_or_else (tree field, tree type, tree member_name)
905 {
906 if (field == error_mark_node)
907 return 0;
908 if (!field)
909 {
910 error ("class %qT does not have any field named %qD", type,
911 member_name);
912 return 0;
913 }
914 if (TREE_CODE (field) == VAR_DECL)
915 {
916 error ("%q#D is a static data member; it can only be "
917 "initialized at its definition",
918 field);
919 return 0;
920 }
921 if (TREE_CODE (field) != FIELD_DECL)
922 {
923 error ("%q#D is not a non-static data member of %qT",
924 field, type);
925 return 0;
926 }
927 if (initializing_context (field) != type)
928 {
929 error ("class %qT does not have any field named %qD", type,
930 member_name);
931 return 0;
932 }
933
934 return 1;
935 }
936
937 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
938 is a _TYPE node or TYPE_DECL which names a base for that type.
939 Check the validity of NAME, and return either the base _TYPE, base
940 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
941 NULL_TREE and issue a diagnostic.
942
943 An old style unnamed direct single base construction is permitted,
944 where NAME is NULL. */
945
946 tree
947 expand_member_init (tree name)
948 {
949 tree basetype;
950 tree field;
951
952 if (!current_class_ref)
953 return NULL_TREE;
954
955 if (!name)
956 {
957 /* This is an obsolete unnamed base class initializer. The
958 parser will already have warned about its use. */
959 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
960 {
961 case 0:
962 error ("unnamed initializer for %qT, which has no base classes",
963 current_class_type);
964 return NULL_TREE;
965 case 1:
966 basetype = BINFO_TYPE
967 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
968 break;
969 default:
970 error ("unnamed initializer for %qT, which uses multiple inheritance",
971 current_class_type);
972 return NULL_TREE;
973 }
974 }
975 else if (TYPE_P (name))
976 {
977 basetype = TYPE_MAIN_VARIANT (name);
978 name = TYPE_NAME (name);
979 }
980 else if (TREE_CODE (name) == TYPE_DECL)
981 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
982 else
983 basetype = NULL_TREE;
984
985 if (basetype)
986 {
987 tree class_binfo;
988 tree direct_binfo;
989 tree virtual_binfo;
990 int i;
991
992 if (current_template_parms)
993 return basetype;
994
995 class_binfo = TYPE_BINFO (current_class_type);
996 direct_binfo = NULL_TREE;
997 virtual_binfo = NULL_TREE;
998
999 /* Look for a direct base. */
1000 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1001 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1002 break;
1003
1004 /* Look for a virtual base -- unless the direct base is itself
1005 virtual. */
1006 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1007 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1008
1009 /* [class.base.init]
1010
1011 If a mem-initializer-id is ambiguous because it designates
1012 both a direct non-virtual base class and an inherited virtual
1013 base class, the mem-initializer is ill-formed. */
1014 if (direct_binfo && virtual_binfo)
1015 {
1016 error ("%qD is both a direct base and an indirect virtual base",
1017 basetype);
1018 return NULL_TREE;
1019 }
1020
1021 if (!direct_binfo && !virtual_binfo)
1022 {
1023 if (CLASSTYPE_VBASECLASSES (current_class_type))
1024 error ("type %qT is not a direct or virtual base of %qT",
1025 basetype, current_class_type);
1026 else
1027 error ("type %qT is not a direct base of %qT",
1028 basetype, current_class_type);
1029 return NULL_TREE;
1030 }
1031
1032 return direct_binfo ? direct_binfo : virtual_binfo;
1033 }
1034 else
1035 {
1036 if (TREE_CODE (name) == IDENTIFIER_NODE)
1037 field = lookup_field (current_class_type, name, 1, false);
1038 else
1039 field = name;
1040
1041 if (member_init_ok_or_else (field, current_class_type, name))
1042 return field;
1043 }
1044
1045 return NULL_TREE;
1046 }
1047
1048 /* This is like `expand_member_init', only it stores one aggregate
1049 value into another.
1050
1051 INIT comes in two flavors: it is either a value which
1052 is to be stored in EXP, or it is a parameter list
1053 to go to a constructor, which will operate on EXP.
1054 If INIT is not a parameter list for a constructor, then set
1055 LOOKUP_ONLYCONVERTING.
1056 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1057 the initializer, if FLAGS is 0, then it is the (init) form.
1058 If `init' is a CONSTRUCTOR, then we emit a warning message,
1059 explaining that such initializations are invalid.
1060
1061 If INIT resolves to a CALL_EXPR which happens to return
1062 something of the type we are looking for, then we know
1063 that we can safely use that call to perform the
1064 initialization.
1065
1066 The virtual function table pointer cannot be set up here, because
1067 we do not really know its type.
1068
1069 This never calls operator=().
1070
1071 When initializing, nothing is CONST.
1072
1073 A default copy constructor may have to be used to perform the
1074 initialization.
1075
1076 A constructor or a conversion operator may have to be used to
1077 perform the initialization, but not both, as it would be ambiguous. */
1078
1079 tree
1080 build_aggr_init (tree exp, tree init, int flags)
1081 {
1082 tree stmt_expr;
1083 tree compound_stmt;
1084 int destroy_temps;
1085 tree type = TREE_TYPE (exp);
1086 int was_const = TREE_READONLY (exp);
1087 int was_volatile = TREE_THIS_VOLATILE (exp);
1088 int is_global;
1089
1090 if (init == error_mark_node)
1091 return error_mark_node;
1092
1093 TREE_READONLY (exp) = 0;
1094 TREE_THIS_VOLATILE (exp) = 0;
1095
1096 if (init && TREE_CODE (init) != TREE_LIST)
1097 flags |= LOOKUP_ONLYCONVERTING;
1098
1099 if (TREE_CODE (type) == ARRAY_TYPE)
1100 {
1101 tree itype;
1102
1103 /* An array may not be initialized use the parenthesized
1104 initialization form -- unless the initializer is "()". */
1105 if (init && TREE_CODE (init) == TREE_LIST)
1106 {
1107 error ("bad array initializer");
1108 return error_mark_node;
1109 }
1110 /* Must arrange to initialize each element of EXP
1111 from elements of INIT. */
1112 itype = init ? TREE_TYPE (init) : NULL_TREE;
1113 if (cp_type_quals (type) != TYPE_UNQUALIFIED)
1114 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1115 if (itype && cp_type_quals (itype) != TYPE_UNQUALIFIED)
1116 itype = TREE_TYPE (init) = TYPE_MAIN_VARIANT (itype);
1117 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1118 /*explicit_default_init_p=*/false,
1119 itype && same_type_p (itype,
1120 TREE_TYPE (exp)));
1121 TREE_READONLY (exp) = was_const;
1122 TREE_THIS_VOLATILE (exp) = was_volatile;
1123 TREE_TYPE (exp) = type;
1124 if (init)
1125 TREE_TYPE (init) = itype;
1126 return stmt_expr;
1127 }
1128
1129 if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1130 /* Just know that we've seen something for this node. */
1131 TREE_USED (exp) = 1;
1132
1133 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1134 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1135 destroy_temps = stmts_are_full_exprs_p ();
1136 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1137 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1138 init, LOOKUP_NORMAL|flags);
1139 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1140 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1141 TREE_TYPE (exp) = type;
1142 TREE_READONLY (exp) = was_const;
1143 TREE_THIS_VOLATILE (exp) = was_volatile;
1144
1145 return stmt_expr;
1146 }
1147
1148 static void
1149 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags)
1150 {
1151 tree type = TREE_TYPE (exp);
1152 tree ctor_name;
1153
1154 /* It fails because there may not be a constructor which takes
1155 its own type as the first (or only parameter), but which does
1156 take other types via a conversion. So, if the thing initializing
1157 the expression is a unit element of type X, first try X(X&),
1158 followed by initialization by X. If neither of these work
1159 out, then look hard. */
1160 tree rval;
1161 tree parms;
1162
1163 if (init && TREE_CODE (init) != TREE_LIST
1164 && (flags & LOOKUP_ONLYCONVERTING))
1165 {
1166 /* Base subobjects should only get direct-initialization. */
1167 gcc_assert (true_exp == exp);
1168
1169 if (flags & DIRECT_BIND)
1170 /* Do nothing. We hit this in two cases: Reference initialization,
1171 where we aren't initializing a real variable, so we don't want
1172 to run a new constructor; and catching an exception, where we
1173 have already built up the constructor call so we could wrap it
1174 in an exception region. */;
1175 else if (BRACE_ENCLOSED_INITIALIZER_P (init))
1176 {
1177 /* A brace-enclosed initializer for an aggregate. */
1178 gcc_assert (CP_AGGREGATE_TYPE_P (type));
1179 init = digest_init (type, init);
1180 }
1181 else
1182 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
1183
1184 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1185 /* We need to protect the initialization of a catch parm with a
1186 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1187 around the TARGET_EXPR for the copy constructor. See
1188 initialize_handler_parm. */
1189 {
1190 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1191 TREE_OPERAND (init, 0));
1192 TREE_TYPE (init) = void_type_node;
1193 }
1194 else
1195 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1196 TREE_SIDE_EFFECTS (init) = 1;
1197 finish_expr_stmt (init);
1198 return;
1199 }
1200
1201 if (init == NULL_TREE
1202 || (TREE_CODE (init) == TREE_LIST && ! TREE_TYPE (init)))
1203 {
1204 parms = init;
1205 if (parms)
1206 init = TREE_VALUE (parms);
1207 }
1208 else
1209 parms = build_tree_list (NULL_TREE, init);
1210
1211 if (true_exp == exp)
1212 ctor_name = complete_ctor_identifier;
1213 else
1214 ctor_name = base_ctor_identifier;
1215
1216 rval = build_special_member_call (exp, ctor_name, parms, binfo, flags);
1217 if (TREE_SIDE_EFFECTS (rval))
1218 finish_expr_stmt (convert_to_void (rval, NULL));
1219 }
1220
1221 /* This function is responsible for initializing EXP with INIT
1222 (if any).
1223
1224 BINFO is the binfo of the type for who we are performing the
1225 initialization. For example, if W is a virtual base class of A and B,
1226 and C : A, B.
1227 If we are initializing B, then W must contain B's W vtable, whereas
1228 were we initializing C, W must contain C's W vtable.
1229
1230 TRUE_EXP is nonzero if it is the true expression being initialized.
1231 In this case, it may be EXP, or may just contain EXP. The reason we
1232 need this is because if EXP is a base element of TRUE_EXP, we
1233 don't necessarily know by looking at EXP where its virtual
1234 baseclass fields should really be pointing. But we do know
1235 from TRUE_EXP. In constructors, we don't know anything about
1236 the value being initialized.
1237
1238 FLAGS is just passed to `build_new_method_call'. See that function
1239 for its description. */
1240
1241 static void
1242 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags)
1243 {
1244 tree type = TREE_TYPE (exp);
1245
1246 gcc_assert (init != error_mark_node && type != error_mark_node);
1247 gcc_assert (building_stmt_tree ());
1248
1249 /* Use a function returning the desired type to initialize EXP for us.
1250 If the function is a constructor, and its first argument is
1251 NULL_TREE, know that it was meant for us--just slide exp on
1252 in and expand the constructor. Constructors now come
1253 as TARGET_EXPRs. */
1254
1255 if (init && TREE_CODE (exp) == VAR_DECL
1256 && COMPOUND_LITERAL_P (init))
1257 {
1258 /* If store_init_value returns NULL_TREE, the INIT has been
1259 recorded as the DECL_INITIAL for EXP. That means there's
1260 nothing more we have to do. */
1261 init = store_init_value (exp, init);
1262 if (init)
1263 finish_expr_stmt (init);
1264 return;
1265 }
1266
1267 /* We know that expand_default_init can handle everything we want
1268 at this point. */
1269 expand_default_init (binfo, true_exp, exp, init, flags);
1270 }
1271
1272 /* Report an error if TYPE is not a user-defined, aggregate type. If
1273 OR_ELSE is nonzero, give an error message. */
1274
1275 int
1276 is_aggr_type (tree type, int or_else)
1277 {
1278 if (type == error_mark_node)
1279 return 0;
1280
1281 if (! IS_AGGR_TYPE (type)
1282 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1283 && TREE_CODE (type) != BOUND_TEMPLATE_TEMPLATE_PARM)
1284 {
1285 if (or_else)
1286 error ("%qT is not an aggregate type", type);
1287 return 0;
1288 }
1289 return 1;
1290 }
1291
1292 tree
1293 get_type_value (tree name)
1294 {
1295 if (name == error_mark_node)
1296 return NULL_TREE;
1297
1298 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1299 return IDENTIFIER_TYPE_VALUE (name);
1300 else
1301 return NULL_TREE;
1302 }
1303
1304 /* Build a reference to a member of an aggregate. This is not a C++
1305 `&', but really something which can have its address taken, and
1306 then act as a pointer to member, for example TYPE :: FIELD can have
1307 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1308 this expression is the operand of "&".
1309
1310 @@ Prints out lousy diagnostics for operator <typename>
1311 @@ fields.
1312
1313 @@ This function should be rewritten and placed in search.c. */
1314
1315 tree
1316 build_offset_ref (tree type, tree member, bool address_p)
1317 {
1318 tree decl;
1319 tree basebinfo = NULL_TREE;
1320
1321 /* class templates can come in as TEMPLATE_DECLs here. */
1322 if (TREE_CODE (member) == TEMPLATE_DECL)
1323 return member;
1324
1325 if (dependent_type_p (type) || type_dependent_expression_p (member))
1326 return build_qualified_name (NULL_TREE, type, member,
1327 /*template_p=*/false);
1328
1329 gcc_assert (TYPE_P (type));
1330 if (! is_aggr_type (type, 1))
1331 return error_mark_node;
1332
1333 gcc_assert (DECL_P (member) || BASELINK_P (member));
1334 /* Callers should call mark_used before this point. */
1335 gcc_assert (!DECL_P (member) || TREE_USED (member));
1336
1337 if (!COMPLETE_TYPE_P (complete_type (type))
1338 && !TYPE_BEING_DEFINED (type))
1339 {
1340 error ("incomplete type %qT does not have member %qD", type, member);
1341 return error_mark_node;
1342 }
1343
1344 /* Entities other than non-static members need no further
1345 processing. */
1346 if (TREE_CODE (member) == TYPE_DECL)
1347 return member;
1348 if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
1349 return convert_from_reference (member);
1350
1351 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1352 {
1353 error ("invalid pointer to bit-field %qD", member);
1354 return error_mark_node;
1355 }
1356
1357 /* Set up BASEBINFO for member lookup. */
1358 decl = maybe_dummy_object (type, &basebinfo);
1359
1360 /* A lot of this logic is now handled in lookup_member. */
1361 if (BASELINK_P (member))
1362 {
1363 /* Go from the TREE_BASELINK to the member function info. */
1364 tree t = BASELINK_FUNCTIONS (member);
1365
1366 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1367 {
1368 /* Get rid of a potential OVERLOAD around it. */
1369 t = OVL_CURRENT (t);
1370
1371 /* Unique functions are handled easily. */
1372
1373 /* For non-static member of base class, we need a special rule
1374 for access checking [class.protected]:
1375
1376 If the access is to form a pointer to member, the
1377 nested-name-specifier shall name the derived class
1378 (or any class derived from that class). */
1379 if (address_p && DECL_P (t)
1380 && DECL_NONSTATIC_MEMBER_P (t))
1381 perform_or_defer_access_check (TYPE_BINFO (type), t);
1382 else
1383 perform_or_defer_access_check (basebinfo, t);
1384
1385 if (DECL_STATIC_FUNCTION_P (t))
1386 return t;
1387 member = t;
1388 }
1389 else
1390 TREE_TYPE (member) = unknown_type_node;
1391 }
1392 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1393 /* We need additional test besides the one in
1394 check_accessibility_of_qualified_id in case it is
1395 a pointer to non-static member. */
1396 perform_or_defer_access_check (TYPE_BINFO (type), member);
1397
1398 if (!address_p)
1399 {
1400 /* If MEMBER is non-static, then the program has fallen afoul of
1401 [expr.prim]:
1402
1403 An id-expression that denotes a nonstatic data member or
1404 nonstatic member function of a class can only be used:
1405
1406 -- as part of a class member access (_expr.ref_) in which the
1407 object-expression refers to the member's class or a class
1408 derived from that class, or
1409
1410 -- to form a pointer to member (_expr.unary.op_), or
1411
1412 -- in the body of a nonstatic member function of that class or
1413 of a class derived from that class (_class.mfct.nonstatic_), or
1414
1415 -- in a mem-initializer for a constructor for that class or for
1416 a class derived from that class (_class.base.init_). */
1417 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1418 {
1419 /* Build a representation of a the qualified name suitable
1420 for use as the operand to "&" -- even though the "&" is
1421 not actually present. */
1422 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1423 /* In Microsoft mode, treat a non-static member function as if
1424 it were a pointer-to-member. */
1425 if (flag_ms_extensions)
1426 {
1427 PTRMEM_OK_P (member) = 1;
1428 return build_unary_op (ADDR_EXPR, member, 0);
1429 }
1430 error ("invalid use of non-static member function %qD",
1431 TREE_OPERAND (member, 1));
1432 return error_mark_node;
1433 }
1434 else if (TREE_CODE (member) == FIELD_DECL)
1435 {
1436 error ("invalid use of non-static data member %qD", member);
1437 return error_mark_node;
1438 }
1439 return member;
1440 }
1441
1442 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1443 PTRMEM_OK_P (member) = 1;
1444 return member;
1445 }
1446
1447 /* If DECL is a scalar enumeration constant or variable with a
1448 constant initializer, return the initializer (or, its initializers,
1449 recursively); otherwise, return DECL. If INTEGRAL_P, the
1450 initializer is only returned if DECL is an integral
1451 constant-expression. */
1452
1453 static tree
1454 constant_value_1 (tree decl, bool integral_p)
1455 {
1456 while (TREE_CODE (decl) == CONST_DECL
1457 || (integral_p
1458 ? DECL_INTEGRAL_CONSTANT_VAR_P (decl)
1459 : (TREE_CODE (decl) == VAR_DECL
1460 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
1461 {
1462 tree init;
1463 /* Static data members in template classes may have
1464 non-dependent initializers. References to such non-static
1465 data members are not value-dependent, so we must retrieve the
1466 initializer here. The DECL_INITIAL will have the right type,
1467 but will not have been folded because that would prevent us
1468 from performing all appropriate semantic checks at
1469 instantiation time. */
1470 if (DECL_CLASS_SCOPE_P (decl)
1471 && CLASSTYPE_TEMPLATE_INFO (DECL_CONTEXT (decl))
1472 && uses_template_parms (CLASSTYPE_TI_ARGS
1473 (DECL_CONTEXT (decl))))
1474 {
1475 ++processing_template_decl;
1476 init = fold_non_dependent_expr (DECL_INITIAL (decl));
1477 --processing_template_decl;
1478 }
1479 else
1480 {
1481 /* If DECL is a static data member in a template
1482 specialization, we must instantiate it here. The
1483 initializer for the static data member is not processed
1484 until needed; we need it now. */
1485 mark_used (decl);
1486 init = DECL_INITIAL (decl);
1487 }
1488 if (init == error_mark_node)
1489 return decl;
1490 if (!init
1491 || !TREE_TYPE (init)
1492 || (integral_p
1493 ? !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (init))
1494 : (!TREE_CONSTANT (init)
1495 /* Do not return an aggregate constant (of which
1496 string literals are a special case), as we do not
1497 want to make inadvertent copies of such entities,
1498 and we must be sure that their addresses are the
1499 same everywhere. */
1500 || TREE_CODE (init) == CONSTRUCTOR
1501 || TREE_CODE (init) == STRING_CST)))
1502 break;
1503 decl = unshare_expr (init);
1504 }
1505 return decl;
1506 }
1507
1508 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by
1509 constant of integral or enumeration type, then return that value.
1510 These are those variables permitted in constant expressions by
1511 [5.19/1]. */
1512
1513 tree
1514 integral_constant_value (tree decl)
1515 {
1516 return constant_value_1 (decl, /*integral_p=*/true);
1517 }
1518
1519 /* A more relaxed version of integral_constant_value, used by the
1520 common C/C++ code and by the C++ front-end for optimization
1521 purposes. */
1522
1523 tree
1524 decl_constant_value (tree decl)
1525 {
1526 return constant_value_1 (decl,
1527 /*integral_p=*/processing_template_decl);
1528 }
1529 \f
1530 /* Common subroutines of build_new and build_vec_delete. */
1531
1532 /* Call the global __builtin_delete to delete ADDR. */
1533
1534 static tree
1535 build_builtin_delete_call (tree addr)
1536 {
1537 mark_used (global_delete_fndecl);
1538 return build_call (global_delete_fndecl, build_tree_list (NULL_TREE, addr));
1539 }
1540 \f
1541 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
1542 the type of the object being allocated; otherwise, it's just TYPE.
1543 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
1544 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
1545 the TREE_LIST of arguments to be provided as arguments to a
1546 placement new operator. This routine performs no semantic checks;
1547 it just creates and returns a NEW_EXPR. */
1548
1549 static tree
1550 build_raw_new_expr (tree placement, tree type, tree nelts, tree init,
1551 int use_global_new)
1552 {
1553 tree new_expr;
1554
1555 new_expr = build4 (NEW_EXPR, build_pointer_type (type), placement, type,
1556 nelts, init);
1557 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
1558 TREE_SIDE_EFFECTS (new_expr) = 1;
1559
1560 return new_expr;
1561 }
1562
1563 /* Generate code for a new-expression, including calling the "operator
1564 new" function, initializing the object, and, if an exception occurs
1565 during construction, cleaning up. The arguments are as for
1566 build_raw_new_expr. */
1567
1568 static tree
1569 build_new_1 (tree placement, tree type, tree nelts, tree init,
1570 bool globally_qualified_p)
1571 {
1572 tree size, rval;
1573 /* True iff this is a call to "operator new[]" instead of just
1574 "operator new". */
1575 bool array_p = false;
1576 /* True iff ARRAY_P is true and the bound of the array type is
1577 not necessarily a compile time constant. For example, VLA_P is
1578 true for "new int[f()]". */
1579 bool vla_p = false;
1580 /* The type being allocated. If ARRAY_P is true, this will be an
1581 ARRAY_TYPE. */
1582 tree full_type;
1583 /* If ARRAY_P is true, the element type of the array. This is an
1584 never ARRAY_TYPE; for something like "new int[3][4]", the
1585 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
1586 FULL_TYPE. */
1587 tree elt_type;
1588 /* The type of the new-expression. (This type is always a pointer
1589 type.) */
1590 tree pointer_type;
1591 /* A pointer type pointing to the FULL_TYPE. */
1592 tree full_pointer_type;
1593 tree outer_nelts = NULL_TREE;
1594 tree alloc_call, alloc_expr;
1595 /* The address returned by the call to "operator new". This node is
1596 a VAR_DECL and is therefore reusable. */
1597 tree alloc_node;
1598 tree alloc_fn;
1599 tree cookie_expr, init_expr;
1600 int nothrow, check_new;
1601 int use_java_new = 0;
1602 /* If non-NULL, the number of extra bytes to allocate at the
1603 beginning of the storage allocated for an array-new expression in
1604 order to store the number of elements. */
1605 tree cookie_size = NULL_TREE;
1606 /* True if the function we are calling is a placement allocation
1607 function. */
1608 bool placement_allocation_fn_p;
1609 tree args = NULL_TREE;
1610 /* True if the storage must be initialized, either by a constructor
1611 or due to an explicit new-initializer. */
1612 bool is_initialized;
1613 /* The address of the thing allocated, not including any cookie. In
1614 particular, if an array cookie is in use, DATA_ADDR is the
1615 address of the first array element. This node is a VAR_DECL, and
1616 is therefore reusable. */
1617 tree data_addr;
1618 tree init_preeval_expr = NULL_TREE;
1619
1620 if (nelts)
1621 {
1622 tree index;
1623
1624 outer_nelts = nelts;
1625 array_p = true;
1626
1627 /* ??? The middle-end will error on us for building a VLA outside a
1628 function context. Methinks that's not it's purvey. So we'll do
1629 our own VLA layout later. */
1630 vla_p = true;
1631 full_type = build_cplus_array_type (type, NULL_TREE);
1632 index = convert (sizetype, nelts);
1633 index = size_binop (MINUS_EXPR, index, size_one_node);
1634 TYPE_DOMAIN (full_type) = build_index_type (index);
1635 }
1636 else
1637 {
1638 full_type = type;
1639 if (TREE_CODE (type) == ARRAY_TYPE)
1640 {
1641 array_p = true;
1642 nelts = array_type_nelts_top (type);
1643 outer_nelts = nelts;
1644 type = TREE_TYPE (type);
1645 }
1646 }
1647
1648 if (!complete_type_or_else (type, NULL_TREE))
1649 return error_mark_node;
1650
1651 /* If our base type is an array, then make sure we know how many elements
1652 it has. */
1653 for (elt_type = type;
1654 TREE_CODE (elt_type) == ARRAY_TYPE;
1655 elt_type = TREE_TYPE (elt_type))
1656 nelts = cp_build_binary_op (MULT_EXPR, nelts,
1657 array_type_nelts_top (elt_type));
1658
1659 if (TREE_CODE (elt_type) == VOID_TYPE)
1660 {
1661 error ("invalid type %<void%> for new");
1662 return error_mark_node;
1663 }
1664
1665 if (abstract_virtuals_error (NULL_TREE, elt_type))
1666 return error_mark_node;
1667
1668 is_initialized = (TYPE_NEEDS_CONSTRUCTING (elt_type) || init);
1669 if (CP_TYPE_CONST_P (elt_type) && !is_initialized)
1670 {
1671 error ("uninitialized const in %<new%> of %q#T", elt_type);
1672 return error_mark_node;
1673 }
1674
1675 size = size_in_bytes (elt_type);
1676 if (array_p)
1677 {
1678 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
1679 if (vla_p)
1680 {
1681 tree n, bitsize;
1682
1683 /* Do our own VLA layout. Setting TYPE_SIZE/_UNIT is
1684 necessary in order for the <INIT_EXPR <*foo> <CONSTRUCTOR
1685 ...>> to be valid. */
1686 TYPE_SIZE_UNIT (full_type) = size;
1687 n = convert (bitsizetype, nelts);
1688 bitsize = size_binop (MULT_EXPR, TYPE_SIZE (elt_type), n);
1689 TYPE_SIZE (full_type) = bitsize;
1690 }
1691 }
1692
1693 alloc_fn = NULL_TREE;
1694
1695 /* Allocate the object. */
1696 if (! placement && TYPE_FOR_JAVA (elt_type))
1697 {
1698 tree class_addr;
1699 tree class_decl = build_java_class_ref (elt_type);
1700 static const char alloc_name[] = "_Jv_AllocObject";
1701
1702 if (class_decl == error_mark_node)
1703 return error_mark_node;
1704
1705 use_java_new = 1;
1706 if (!get_global_value_if_present (get_identifier (alloc_name),
1707 &alloc_fn))
1708 {
1709 error ("call to Java constructor with %qs undefined", alloc_name);
1710 return error_mark_node;
1711 }
1712 else if (really_overloaded_fn (alloc_fn))
1713 {
1714 error ("%qD should never be overloaded", alloc_fn);
1715 return error_mark_node;
1716 }
1717 alloc_fn = OVL_CURRENT (alloc_fn);
1718 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
1719 alloc_call = (build_function_call
1720 (alloc_fn,
1721 build_tree_list (NULL_TREE, class_addr)));
1722 }
1723 else
1724 {
1725 tree fnname;
1726 tree fns;
1727
1728 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
1729
1730 if (!globally_qualified_p
1731 && CLASS_TYPE_P (elt_type)
1732 && (array_p
1733 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
1734 : TYPE_HAS_NEW_OPERATOR (elt_type)))
1735 {
1736 /* Use a class-specific operator new. */
1737 /* If a cookie is required, add some extra space. */
1738 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
1739 {
1740 cookie_size = targetm.cxx.get_cookie_size (elt_type);
1741 size = size_binop (PLUS_EXPR, size, cookie_size);
1742 }
1743 /* Create the argument list. */
1744 args = tree_cons (NULL_TREE, size, placement);
1745 /* Do name-lookup to find the appropriate operator. */
1746 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
1747 if (fns == NULL_TREE)
1748 {
1749 error ("no suitable %qD found in class %qT", fnname, elt_type);
1750 return error_mark_node;
1751 }
1752 if (TREE_CODE (fns) == TREE_LIST)
1753 {
1754 error ("request for member %qD is ambiguous", fnname);
1755 print_candidates (fns);
1756 return error_mark_node;
1757 }
1758 alloc_call = build_new_method_call (build_dummy_object (elt_type),
1759 fns, args,
1760 /*conversion_path=*/NULL_TREE,
1761 LOOKUP_NORMAL,
1762 &alloc_fn);
1763 }
1764 else
1765 {
1766 /* Use a global operator new. */
1767 /* See if a cookie might be required. */
1768 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
1769 cookie_size = targetm.cxx.get_cookie_size (elt_type);
1770 else
1771 cookie_size = NULL_TREE;
1772
1773 alloc_call = build_operator_new_call (fnname, placement,
1774 &size, &cookie_size,
1775 &alloc_fn);
1776 }
1777 }
1778
1779 if (alloc_call == error_mark_node)
1780 return error_mark_node;
1781
1782 gcc_assert (alloc_fn != NULL_TREE);
1783
1784 /* In the simple case, we can stop now. */
1785 pointer_type = build_pointer_type (type);
1786 if (!cookie_size && !is_initialized)
1787 return build_nop (pointer_type, alloc_call);
1788
1789 /* While we're working, use a pointer to the type we've actually
1790 allocated. Store the result of the call in a variable so that we
1791 can use it more than once. */
1792 full_pointer_type = build_pointer_type (full_type);
1793 alloc_expr = get_target_expr (build_nop (full_pointer_type, alloc_call));
1794 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
1795
1796 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
1797 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
1798 alloc_call = TREE_OPERAND (alloc_call, 1);
1799
1800 /* Now, check to see if this function is actually a placement
1801 allocation function. This can happen even when PLACEMENT is NULL
1802 because we might have something like:
1803
1804 struct S { void* operator new (size_t, int i = 0); };
1805
1806 A call to `new S' will get this allocation function, even though
1807 there is no explicit placement argument. If there is more than
1808 one argument, or there are variable arguments, then this is a
1809 placement allocation function. */
1810 placement_allocation_fn_p
1811 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
1812 || varargs_function_p (alloc_fn));
1813
1814 /* Preevaluate the placement args so that we don't reevaluate them for a
1815 placement delete. */
1816 if (placement_allocation_fn_p)
1817 {
1818 tree inits;
1819 stabilize_call (alloc_call, &inits);
1820 if (inits)
1821 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
1822 alloc_expr);
1823 }
1824
1825 /* unless an allocation function is declared with an empty excep-
1826 tion-specification (_except.spec_), throw(), it indicates failure to
1827 allocate storage by throwing a bad_alloc exception (clause _except_,
1828 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
1829 cation function is declared with an empty exception-specification,
1830 throw(), it returns null to indicate failure to allocate storage and a
1831 non-null pointer otherwise.
1832
1833 So check for a null exception spec on the op new we just called. */
1834
1835 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
1836 check_new = (flag_check_new || nothrow) && ! use_java_new;
1837
1838 if (cookie_size)
1839 {
1840 tree cookie;
1841 tree cookie_ptr;
1842
1843 /* Adjust so we're pointing to the start of the object. */
1844 data_addr = get_target_expr (build2 (PLUS_EXPR, full_pointer_type,
1845 alloc_node, cookie_size));
1846
1847 /* Store the number of bytes allocated so that we can know how
1848 many elements to destroy later. We use the last sizeof
1849 (size_t) bytes to store the number of elements. */
1850 cookie_ptr = build2 (MINUS_EXPR, build_pointer_type (sizetype),
1851 data_addr, size_in_bytes (sizetype));
1852 cookie = build_indirect_ref (cookie_ptr, NULL);
1853
1854 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
1855
1856 if (targetm.cxx.cookie_has_size ())
1857 {
1858 /* Also store the element size. */
1859 cookie_ptr = build2 (MINUS_EXPR, build_pointer_type (sizetype),
1860 cookie_ptr, size_in_bytes (sizetype));
1861 cookie = build_indirect_ref (cookie_ptr, NULL);
1862 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
1863 size_in_bytes(elt_type));
1864 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
1865 cookie, cookie_expr);
1866 }
1867 data_addr = TARGET_EXPR_SLOT (data_addr);
1868 }
1869 else
1870 {
1871 cookie_expr = NULL_TREE;
1872 data_addr = alloc_node;
1873 }
1874
1875 /* Now initialize the allocated object. Note that we preevaluate the
1876 initialization expression, apart from the actual constructor call or
1877 assignment--we do this because we want to delay the allocation as long
1878 as possible in order to minimize the size of the exception region for
1879 placement delete. */
1880 if (is_initialized)
1881 {
1882 bool stable;
1883
1884 init_expr = build_indirect_ref (data_addr, NULL);
1885
1886 if (array_p)
1887 {
1888 bool explicit_default_init_p = false;
1889
1890 if (init == void_zero_node)
1891 {
1892 init = NULL_TREE;
1893 explicit_default_init_p = true;
1894 }
1895 else if (init)
1896 pedwarn ("ISO C++ forbids initialization in array new");
1897
1898 init_expr
1899 = build_vec_init (init_expr,
1900 cp_build_binary_op (MINUS_EXPR, outer_nelts,
1901 integer_one_node),
1902 init,
1903 explicit_default_init_p,
1904 /*from_array=*/0);
1905
1906 /* An array initialization is stable because the initialization
1907 of each element is a full-expression, so the temporaries don't
1908 leak out. */
1909 stable = true;
1910 }
1911 else
1912 {
1913 if (init == void_zero_node)
1914 init = build_default_init (full_type, nelts);
1915
1916 if (TYPE_NEEDS_CONSTRUCTING (type))
1917 {
1918 init_expr = build_special_member_call (init_expr,
1919 complete_ctor_identifier,
1920 init, elt_type,
1921 LOOKUP_NORMAL);
1922 stable = stabilize_init (init_expr, &init_preeval_expr);
1923 }
1924 else
1925 {
1926 /* We are processing something like `new int (10)', which
1927 means allocate an int, and initialize it with 10. */
1928
1929 if (TREE_CODE (init) == TREE_LIST)
1930 init = build_x_compound_expr_from_list (init,
1931 "new initializer");
1932 else
1933 gcc_assert (TREE_CODE (init) != CONSTRUCTOR
1934 || TREE_TYPE (init) != NULL_TREE);
1935
1936 init_expr = build_modify_expr (init_expr, INIT_EXPR, init);
1937 stable = stabilize_init (init_expr, &init_preeval_expr);
1938 }
1939 }
1940
1941 if (init_expr == error_mark_node)
1942 return error_mark_node;
1943
1944 /* If any part of the object initialization terminates by throwing an
1945 exception and a suitable deallocation function can be found, the
1946 deallocation function is called to free the memory in which the
1947 object was being constructed, after which the exception continues
1948 to propagate in the context of the new-expression. If no
1949 unambiguous matching deallocation function can be found,
1950 propagating the exception does not cause the object's memory to be
1951 freed. */
1952 if (flag_exceptions && ! use_java_new)
1953 {
1954 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
1955 tree cleanup;
1956
1957 /* The Standard is unclear here, but the right thing to do
1958 is to use the same method for finding deallocation
1959 functions that we use for finding allocation functions. */
1960 cleanup = build_op_delete_call (dcode, alloc_node, size,
1961 globally_qualified_p,
1962 (placement_allocation_fn_p
1963 ? alloc_call : NULL_TREE),
1964 (placement_allocation_fn_p
1965 ? alloc_fn : NULL_TREE));
1966
1967 if (!cleanup)
1968 /* We're done. */;
1969 else if (stable)
1970 /* This is much simpler if we were able to preevaluate all of
1971 the arguments to the constructor call. */
1972 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
1973 init_expr, cleanup);
1974 else
1975 /* Ack! First we allocate the memory. Then we set our sentry
1976 variable to true, and expand a cleanup that deletes the
1977 memory if sentry is true. Then we run the constructor, and
1978 finally clear the sentry.
1979
1980 We need to do this because we allocate the space first, so
1981 if there are any temporaries with cleanups in the
1982 constructor args and we weren't able to preevaluate them, we
1983 need this EH region to extend until end of full-expression
1984 to preserve nesting. */
1985 {
1986 tree end, sentry, begin;
1987
1988 begin = get_target_expr (boolean_true_node);
1989 CLEANUP_EH_ONLY (begin) = 1;
1990
1991 sentry = TARGET_EXPR_SLOT (begin);
1992
1993 TARGET_EXPR_CLEANUP (begin)
1994 = build3 (COND_EXPR, void_type_node, sentry,
1995 cleanup, void_zero_node);
1996
1997 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
1998 sentry, boolean_false_node);
1999
2000 init_expr
2001 = build2 (COMPOUND_EXPR, void_type_node, begin,
2002 build2 (COMPOUND_EXPR, void_type_node, init_expr,
2003 end));
2004 }
2005
2006 }
2007 }
2008 else
2009 init_expr = NULL_TREE;
2010
2011 /* Now build up the return value in reverse order. */
2012
2013 rval = data_addr;
2014
2015 if (init_expr)
2016 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2017 if (cookie_expr)
2018 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2019
2020 if (rval == alloc_node)
2021 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2022 and return the call (which doesn't need to be adjusted). */
2023 rval = TARGET_EXPR_INITIAL (alloc_expr);
2024 else
2025 {
2026 if (check_new)
2027 {
2028 tree ifexp = cp_build_binary_op (NE_EXPR, alloc_node,
2029 integer_zero_node);
2030 rval = build_conditional_expr (ifexp, rval, alloc_node);
2031 }
2032
2033 /* Perform the allocation before anything else, so that ALLOC_NODE
2034 has been initialized before we start using it. */
2035 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2036 }
2037
2038 if (init_preeval_expr)
2039 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2040
2041 /* Convert to the final type. */
2042 rval = build_nop (pointer_type, rval);
2043
2044 /* A new-expression is never an lvalue. */
2045 gcc_assert (!lvalue_p (rval));
2046
2047 return rval;
2048 }
2049
2050 /* Generate a representation for a C++ "new" expression. PLACEMENT is
2051 a TREE_LIST of placement-new arguments (or NULL_TREE if none). If
2052 NELTS is NULL, TYPE is the type of the storage to be allocated. If
2053 NELTS is not NULL, then this is an array-new allocation; TYPE is
2054 the type of the elements in the array and NELTS is the number of
2055 elements in the array. INIT, if non-NULL, is the initializer for
2056 the new object, or void_zero_node to indicate an initializer of
2057 "()". If USE_GLOBAL_NEW is true, then the user explicitly wrote
2058 "::new" rather than just "new". */
2059
2060 tree
2061 build_new (tree placement, tree type, tree nelts, tree init,
2062 int use_global_new)
2063 {
2064 tree rval;
2065 tree orig_placement;
2066 tree orig_nelts;
2067 tree orig_init;
2068
2069 if (placement == error_mark_node || type == error_mark_node)
2070 return error_mark_node;
2071
2072 orig_placement = placement;
2073 orig_nelts = nelts;
2074 orig_init = init;
2075
2076 if (processing_template_decl)
2077 {
2078 if (dependent_type_p (type)
2079 || any_type_dependent_arguments_p (placement)
2080 || (nelts && type_dependent_expression_p (nelts))
2081 || (init != void_zero_node
2082 && any_type_dependent_arguments_p (init)))
2083 return build_raw_new_expr (placement, type, nelts, init,
2084 use_global_new);
2085 placement = build_non_dependent_args (placement);
2086 if (nelts)
2087 nelts = build_non_dependent_expr (nelts);
2088 if (init != void_zero_node)
2089 init = build_non_dependent_args (init);
2090 }
2091
2092 if (nelts)
2093 {
2094 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
2095 pedwarn ("size in array new must have integral type");
2096 nelts = cp_save_expr (cp_convert (sizetype, nelts));
2097 /* It is valid to allocate a zero-element array:
2098
2099 [expr.new]
2100
2101 When the value of the expression in a direct-new-declarator
2102 is zero, the allocation function is called to allocate an
2103 array with no elements. The pointer returned by the
2104 new-expression is non-null. [Note: If the library allocation
2105 function is called, the pointer returned is distinct from the
2106 pointer to any other object.]
2107
2108 However, that is not generally useful, so we issue a
2109 warning. */
2110 if (integer_zerop (nelts))
2111 warning (0, "allocating zero-element array");
2112 }
2113
2114 /* ``A reference cannot be created by the new operator. A reference
2115 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
2116 returned by new.'' ARM 5.3.3 */
2117 if (TREE_CODE (type) == REFERENCE_TYPE)
2118 {
2119 error ("new cannot be applied to a reference type");
2120 type = TREE_TYPE (type);
2121 }
2122
2123 if (TREE_CODE (type) == FUNCTION_TYPE)
2124 {
2125 error ("new cannot be applied to a function type");
2126 return error_mark_node;
2127 }
2128
2129 rval = build_new_1 (placement, type, nelts, init, use_global_new);
2130 if (rval == error_mark_node)
2131 return error_mark_node;
2132
2133 if (processing_template_decl)
2134 return build_raw_new_expr (orig_placement, type, orig_nelts, orig_init,
2135 use_global_new);
2136
2137 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
2138 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
2139 TREE_NO_WARNING (rval) = 1;
2140
2141 return rval;
2142 }
2143
2144 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
2145
2146 tree
2147 build_java_class_ref (tree type)
2148 {
2149 tree name = NULL_TREE, class_decl;
2150 static tree CL_suffix = NULL_TREE;
2151 if (CL_suffix == NULL_TREE)
2152 CL_suffix = get_identifier("class$");
2153 if (jclass_node == NULL_TREE)
2154 {
2155 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
2156 if (jclass_node == NULL_TREE)
2157 {
2158 error ("call to Java constructor, while %<jclass%> undefined");
2159 return error_mark_node;
2160 }
2161 jclass_node = TREE_TYPE (jclass_node);
2162 }
2163
2164 /* Mangle the class$ field. */
2165 {
2166 tree field;
2167 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2168 if (DECL_NAME (field) == CL_suffix)
2169 {
2170 mangle_decl (field);
2171 name = DECL_ASSEMBLER_NAME (field);
2172 break;
2173 }
2174 if (!field)
2175 {
2176 error ("can't find %<class$%> in %qT", type);
2177 return error_mark_node;
2178 }
2179 }
2180
2181 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
2182 if (class_decl == NULL_TREE)
2183 {
2184 class_decl = build_decl (VAR_DECL, name, TREE_TYPE (jclass_node));
2185 TREE_STATIC (class_decl) = 1;
2186 DECL_EXTERNAL (class_decl) = 1;
2187 TREE_PUBLIC (class_decl) = 1;
2188 DECL_ARTIFICIAL (class_decl) = 1;
2189 DECL_IGNORED_P (class_decl) = 1;
2190 pushdecl_top_level (class_decl);
2191 make_decl_rtl (class_decl);
2192 }
2193 return class_decl;
2194 }
2195 \f
2196 static tree
2197 build_vec_delete_1 (tree base, tree maxindex, tree type,
2198 special_function_kind auto_delete_vec, int use_global_delete)
2199 {
2200 tree virtual_size;
2201 tree ptype = build_pointer_type (type = complete_type (type));
2202 tree size_exp = size_in_bytes (type);
2203
2204 /* Temporary variables used by the loop. */
2205 tree tbase, tbase_init;
2206
2207 /* This is the body of the loop that implements the deletion of a
2208 single element, and moves temp variables to next elements. */
2209 tree body;
2210
2211 /* This is the LOOP_EXPR that governs the deletion of the elements. */
2212 tree loop = 0;
2213
2214 /* This is the thing that governs what to do after the loop has run. */
2215 tree deallocate_expr = 0;
2216
2217 /* This is the BIND_EXPR which holds the outermost iterator of the
2218 loop. It is convenient to set this variable up and test it before
2219 executing any other code in the loop.
2220 This is also the containing expression returned by this function. */
2221 tree controller = NULL_TREE;
2222
2223 /* We should only have 1-D arrays here. */
2224 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
2225
2226 if (! IS_AGGR_TYPE (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2227 goto no_destructor;
2228
2229 /* The below is short by the cookie size. */
2230 virtual_size = size_binop (MULT_EXPR, size_exp,
2231 convert (sizetype, maxindex));
2232
2233 tbase = create_temporary_var (ptype);
2234 tbase_init = build_modify_expr (tbase, NOP_EXPR,
2235 fold_build2 (PLUS_EXPR, ptype,
2236 base,
2237 virtual_size));
2238 DECL_REGISTER (tbase) = 1;
2239 controller = build3 (BIND_EXPR, void_type_node, tbase,
2240 NULL_TREE, NULL_TREE);
2241 TREE_SIDE_EFFECTS (controller) = 1;
2242
2243 body = build1 (EXIT_EXPR, void_type_node,
2244 build2 (EQ_EXPR, boolean_type_node, tbase,
2245 fold_convert (ptype, base)));
2246 body = build_compound_expr
2247 (body, build_modify_expr (tbase, NOP_EXPR,
2248 build2 (MINUS_EXPR, ptype, tbase, size_exp)));
2249 body = build_compound_expr
2250 (body, build_delete (ptype, tbase, sfk_complete_destructor,
2251 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1));
2252
2253 loop = build1 (LOOP_EXPR, void_type_node, body);
2254 loop = build_compound_expr (tbase_init, loop);
2255
2256 no_destructor:
2257 /* If the delete flag is one, or anything else with the low bit set,
2258 delete the storage. */
2259 if (auto_delete_vec != sfk_base_destructor)
2260 {
2261 tree base_tbd;
2262
2263 /* The below is short by the cookie size. */
2264 virtual_size = size_binop (MULT_EXPR, size_exp,
2265 convert (sizetype, maxindex));
2266
2267 if (! TYPE_VEC_NEW_USES_COOKIE (type))
2268 /* no header */
2269 base_tbd = base;
2270 else
2271 {
2272 tree cookie_size;
2273
2274 cookie_size = targetm.cxx.get_cookie_size (type);
2275 base_tbd
2276 = cp_convert (ptype,
2277 cp_build_binary_op (MINUS_EXPR,
2278 cp_convert (string_type_node,
2279 base),
2280 cookie_size));
2281 /* True size with header. */
2282 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
2283 }
2284
2285 if (auto_delete_vec == sfk_deleting_destructor)
2286 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
2287 base_tbd, virtual_size,
2288 use_global_delete & 1,
2289 /*placement=*/NULL_TREE,
2290 /*alloc_fn=*/NULL_TREE);
2291 }
2292
2293 body = loop;
2294 if (!deallocate_expr)
2295 ;
2296 else if (!body)
2297 body = deallocate_expr;
2298 else
2299 body = build_compound_expr (body, deallocate_expr);
2300
2301 if (!body)
2302 body = integer_zero_node;
2303
2304 /* Outermost wrapper: If pointer is null, punt. */
2305 body = fold_build3 (COND_EXPR, void_type_node,
2306 fold_build2 (NE_EXPR, boolean_type_node, base,
2307 convert (TREE_TYPE (base),
2308 integer_zero_node)),
2309 body, integer_zero_node);
2310 body = build1 (NOP_EXPR, void_type_node, body);
2311
2312 if (controller)
2313 {
2314 TREE_OPERAND (controller, 1) = body;
2315 body = controller;
2316 }
2317
2318 if (TREE_CODE (base) == SAVE_EXPR)
2319 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
2320 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
2321
2322 return convert_to_void (body, /*implicit=*/NULL);
2323 }
2324
2325 /* Create an unnamed variable of the indicated TYPE. */
2326
2327 tree
2328 create_temporary_var (tree type)
2329 {
2330 tree decl;
2331
2332 decl = build_decl (VAR_DECL, NULL_TREE, type);
2333 TREE_USED (decl) = 1;
2334 DECL_ARTIFICIAL (decl) = 1;
2335 DECL_IGNORED_P (decl) = 1;
2336 DECL_SOURCE_LOCATION (decl) = input_location;
2337 DECL_CONTEXT (decl) = current_function_decl;
2338
2339 return decl;
2340 }
2341
2342 /* Create a new temporary variable of the indicated TYPE, initialized
2343 to INIT.
2344
2345 It is not entered into current_binding_level, because that breaks
2346 things when it comes time to do final cleanups (which take place
2347 "outside" the binding contour of the function). */
2348
2349 static tree
2350 get_temp_regvar (tree type, tree init)
2351 {
2352 tree decl;
2353
2354 decl = create_temporary_var (type);
2355 add_decl_expr (decl);
2356
2357 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
2358
2359 return decl;
2360 }
2361
2362 /* `build_vec_init' returns tree structure that performs
2363 initialization of a vector of aggregate types.
2364
2365 BASE is a reference to the vector, of ARRAY_TYPE.
2366 MAXINDEX is the maximum index of the array (one less than the
2367 number of elements). It is only used if
2368 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
2369
2370 INIT is the (possibly NULL) initializer.
2371
2372 If EXPLICIT_DEFAULT_INIT_P is true, then INIT must be NULL. All
2373 elements in the array are default-initialized.
2374
2375 FROM_ARRAY is 0 if we should init everything with INIT
2376 (i.e., every element initialized from INIT).
2377 FROM_ARRAY is 1 if we should index into INIT in parallel
2378 with initialization of DECL.
2379 FROM_ARRAY is 2 if we should index into INIT in parallel,
2380 but use assignment instead of initialization. */
2381
2382 tree
2383 build_vec_init (tree base, tree maxindex, tree init,
2384 bool explicit_default_init_p,
2385 int from_array)
2386 {
2387 tree rval;
2388 tree base2 = NULL_TREE;
2389 tree size;
2390 tree itype = NULL_TREE;
2391 tree iterator;
2392 /* The type of the array. */
2393 tree atype = TREE_TYPE (base);
2394 /* The type of an element in the array. */
2395 tree type = TREE_TYPE (atype);
2396 /* The element type reached after removing all outer array
2397 types. */
2398 tree inner_elt_type;
2399 /* The type of a pointer to an element in the array. */
2400 tree ptype;
2401 tree stmt_expr;
2402 tree compound_stmt;
2403 int destroy_temps;
2404 tree try_block = NULL_TREE;
2405 int num_initialized_elts = 0;
2406 bool is_global;
2407
2408 if (TYPE_DOMAIN (atype))
2409 maxindex = array_type_nelts (atype);
2410
2411 if (maxindex == NULL_TREE || maxindex == error_mark_node)
2412 return error_mark_node;
2413
2414 if (explicit_default_init_p)
2415 gcc_assert (!init);
2416
2417 inner_elt_type = strip_array_types (atype);
2418 if (init
2419 && (from_array == 2
2420 ? (!CLASS_TYPE_P (inner_elt_type)
2421 || !TYPE_HAS_COMPLEX_ASSIGN_REF (inner_elt_type))
2422 : !TYPE_NEEDS_CONSTRUCTING (type))
2423 && ((TREE_CODE (init) == CONSTRUCTOR
2424 /* Don't do this if the CONSTRUCTOR might contain something
2425 that might throw and require us to clean up. */
2426 && (VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (init))
2427 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
2428 || from_array))
2429 {
2430 /* Do non-default initialization of POD arrays resulting from
2431 brace-enclosed initializers. In this case, digest_init and
2432 store_constructor will handle the semantics for us. */
2433
2434 stmt_expr = build2 (INIT_EXPR, atype, base, init);
2435 return stmt_expr;
2436 }
2437
2438 maxindex = cp_convert (ptrdiff_type_node, maxindex);
2439 ptype = build_pointer_type (type);
2440 size = size_in_bytes (type);
2441 if (TREE_CODE (TREE_TYPE (base)) == ARRAY_TYPE)
2442 base = cp_convert (ptype, decay_conversion (base));
2443
2444 /* The code we are generating looks like:
2445 ({
2446 T* t1 = (T*) base;
2447 T* rval = t1;
2448 ptrdiff_t iterator = maxindex;
2449 try {
2450 for (; iterator != -1; --iterator) {
2451 ... initialize *t1 ...
2452 ++t1;
2453 }
2454 } catch (...) {
2455 ... destroy elements that were constructed ...
2456 }
2457 rval;
2458 })
2459
2460 We can omit the try and catch blocks if we know that the
2461 initialization will never throw an exception, or if the array
2462 elements do not have destructors. We can omit the loop completely if
2463 the elements of the array do not have constructors.
2464
2465 We actually wrap the entire body of the above in a STMT_EXPR, for
2466 tidiness.
2467
2468 When copying from array to another, when the array elements have
2469 only trivial copy constructors, we should use __builtin_memcpy
2470 rather than generating a loop. That way, we could take advantage
2471 of whatever cleverness the back-end has for dealing with copies
2472 of blocks of memory. */
2473
2474 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
2475 destroy_temps = stmts_are_full_exprs_p ();
2476 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2477 rval = get_temp_regvar (ptype, base);
2478 base = get_temp_regvar (ptype, rval);
2479 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
2480
2481 /* Protect the entire array initialization so that we can destroy
2482 the partially constructed array if an exception is thrown.
2483 But don't do this if we're assigning. */
2484 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2485 && from_array != 2)
2486 {
2487 try_block = begin_try_block ();
2488 }
2489
2490 if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
2491 {
2492 /* Do non-default initialization of non-POD arrays resulting from
2493 brace-enclosed initializers. */
2494 unsigned HOST_WIDE_INT idx;
2495 tree elt;
2496 from_array = 0;
2497
2498 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
2499 {
2500 tree baseref = build1 (INDIRECT_REF, type, base);
2501
2502 num_initialized_elts++;
2503
2504 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2505 if (IS_AGGR_TYPE (type) || TREE_CODE (type) == ARRAY_TYPE)
2506 finish_expr_stmt (build_aggr_init (baseref, elt, 0));
2507 else
2508 finish_expr_stmt (build_modify_expr (baseref, NOP_EXPR,
2509 elt));
2510 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2511
2512 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2513 finish_expr_stmt (build_unary_op (PREDECREMENT_EXPR, iterator, 0));
2514 }
2515
2516 /* Clear out INIT so that we don't get confused below. */
2517 init = NULL_TREE;
2518 }
2519 else if (from_array)
2520 {
2521 /* If initializing one array from another, initialize element by
2522 element. We rely upon the below calls the do argument
2523 checking. */
2524 if (init)
2525 {
2526 base2 = decay_conversion (init);
2527 itype = TREE_TYPE (base2);
2528 base2 = get_temp_regvar (itype, base2);
2529 itype = TREE_TYPE (itype);
2530 }
2531 else if (TYPE_LANG_SPECIFIC (type)
2532 && TYPE_NEEDS_CONSTRUCTING (type)
2533 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2534 {
2535 error ("initializer ends prematurely");
2536 return error_mark_node;
2537 }
2538 }
2539
2540 /* Now, default-initialize any remaining elements. We don't need to
2541 do that if a) the type does not need constructing, or b) we've
2542 already initialized all the elements.
2543
2544 We do need to keep going if we're copying an array. */
2545
2546 if (from_array
2547 || ((TYPE_NEEDS_CONSTRUCTING (type) || explicit_default_init_p)
2548 && ! (host_integerp (maxindex, 0)
2549 && (num_initialized_elts
2550 == tree_low_cst (maxindex, 0) + 1))))
2551 {
2552 /* If the ITERATOR is equal to -1, then we don't have to loop;
2553 we've already initialized all the elements. */
2554 tree for_stmt;
2555 tree elt_init;
2556 tree to;
2557
2558 for_stmt = begin_for_stmt ();
2559 finish_for_init_stmt (for_stmt);
2560 finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
2561 build_int_cst (TREE_TYPE (iterator), -1)),
2562 for_stmt);
2563 finish_for_expr (build_unary_op (PREDECREMENT_EXPR, iterator, 0),
2564 for_stmt);
2565
2566 to = build1 (INDIRECT_REF, type, base);
2567
2568 if (from_array)
2569 {
2570 tree from;
2571
2572 if (base2)
2573 from = build1 (INDIRECT_REF, itype, base2);
2574 else
2575 from = NULL_TREE;
2576
2577 if (from_array == 2)
2578 elt_init = build_modify_expr (to, NOP_EXPR, from);
2579 else if (TYPE_NEEDS_CONSTRUCTING (type))
2580 elt_init = build_aggr_init (to, from, 0);
2581 else if (from)
2582 elt_init = build_modify_expr (to, NOP_EXPR, from);
2583 else
2584 gcc_unreachable ();
2585 }
2586 else if (TREE_CODE (type) == ARRAY_TYPE)
2587 {
2588 if (init != 0)
2589 sorry
2590 ("cannot initialize multi-dimensional array with initializer");
2591 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
2592 0, 0,
2593 /*explicit_default_init_p=*/false,
2594 0);
2595 }
2596 else if (!TYPE_NEEDS_CONSTRUCTING (type))
2597 elt_init = (build_modify_expr
2598 (to, INIT_EXPR,
2599 build_zero_init (type, size_one_node,
2600 /*static_storage_p=*/false)));
2601 else
2602 elt_init = build_aggr_init (to, init, 0);
2603
2604 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2605 finish_expr_stmt (elt_init);
2606 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2607
2608 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2609 if (base2)
2610 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base2, 0));
2611
2612 finish_for_stmt (for_stmt);
2613 }
2614
2615 /* Make sure to cleanup any partially constructed elements. */
2616 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2617 && from_array != 2)
2618 {
2619 tree e;
2620 tree m = cp_build_binary_op (MINUS_EXPR, maxindex, iterator);
2621
2622 /* Flatten multi-dimensional array since build_vec_delete only
2623 expects one-dimensional array. */
2624 if (TREE_CODE (type) == ARRAY_TYPE)
2625 m = cp_build_binary_op (MULT_EXPR, m,
2626 array_type_nelts_total (type));
2627
2628 finish_cleanup_try_block (try_block);
2629 e = build_vec_delete_1 (rval, m,
2630 inner_elt_type, sfk_base_destructor,
2631 /*use_global_delete=*/0);
2632 finish_cleanup (e, try_block);
2633 }
2634
2635 /* The value of the array initialization is the array itself, RVAL
2636 is a pointer to the first element. */
2637 finish_stmt_expr_expr (rval, stmt_expr);
2638
2639 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
2640
2641 /* Now convert make the result have the correct type. */
2642 atype = build_pointer_type (atype);
2643 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
2644 stmt_expr = build_indirect_ref (stmt_expr, NULL);
2645
2646 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
2647 return stmt_expr;
2648 }
2649
2650 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
2651 build_delete. */
2652
2653 static tree
2654 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags)
2655 {
2656 tree name;
2657 tree fn;
2658 switch (dtor_kind)
2659 {
2660 case sfk_complete_destructor:
2661 name = complete_dtor_identifier;
2662 break;
2663
2664 case sfk_base_destructor:
2665 name = base_dtor_identifier;
2666 break;
2667
2668 case sfk_deleting_destructor:
2669 name = deleting_dtor_identifier;
2670 break;
2671
2672 default:
2673 gcc_unreachable ();
2674 }
2675 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
2676 return build_new_method_call (exp, fn,
2677 /*args=*/NULL_TREE,
2678 /*conversion_path=*/NULL_TREE,
2679 flags,
2680 /*fn_p=*/NULL);
2681 }
2682
2683 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
2684 ADDR is an expression which yields the store to be destroyed.
2685 AUTO_DELETE is the name of the destructor to call, i.e., either
2686 sfk_complete_destructor, sfk_base_destructor, or
2687 sfk_deleting_destructor.
2688
2689 FLAGS is the logical disjunction of zero or more LOOKUP_
2690 flags. See cp-tree.h for more info. */
2691
2692 tree
2693 build_delete (tree type, tree addr, special_function_kind auto_delete,
2694 int flags, int use_global_delete)
2695 {
2696 tree expr;
2697
2698 if (addr == error_mark_node)
2699 return error_mark_node;
2700
2701 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
2702 set to `error_mark_node' before it gets properly cleaned up. */
2703 if (type == error_mark_node)
2704 return error_mark_node;
2705
2706 type = TYPE_MAIN_VARIANT (type);
2707
2708 if (TREE_CODE (type) == POINTER_TYPE)
2709 {
2710 bool complete_p = true;
2711
2712 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
2713 if (TREE_CODE (type) == ARRAY_TYPE)
2714 goto handle_array;
2715
2716 /* We don't want to warn about delete of void*, only other
2717 incomplete types. Deleting other incomplete types
2718 invokes undefined behavior, but it is not ill-formed, so
2719 compile to something that would even do The Right Thing
2720 (TM) should the type have a trivial dtor and no delete
2721 operator. */
2722 if (!VOID_TYPE_P (type))
2723 {
2724 complete_type (type);
2725 if (!COMPLETE_TYPE_P (type))
2726 {
2727 warning (0, "possible problem detected in invocation of "
2728 "delete operator:");
2729 cxx_incomplete_type_diagnostic (addr, type, 1);
2730 inform ("neither the destructor nor the class-specific "
2731 "operator delete will be called, even if they are "
2732 "declared when the class is defined.");
2733 complete_p = false;
2734 }
2735 }
2736 if (VOID_TYPE_P (type) || !complete_p || !IS_AGGR_TYPE (type))
2737 /* Call the builtin operator delete. */
2738 return build_builtin_delete_call (addr);
2739 if (TREE_SIDE_EFFECTS (addr))
2740 addr = save_expr (addr);
2741
2742 /* Throw away const and volatile on target type of addr. */
2743 addr = convert_force (build_pointer_type (type), addr, 0);
2744 }
2745 else if (TREE_CODE (type) == ARRAY_TYPE)
2746 {
2747 handle_array:
2748
2749 if (TYPE_DOMAIN (type) == NULL_TREE)
2750 {
2751 error ("unknown array size in delete");
2752 return error_mark_node;
2753 }
2754 return build_vec_delete (addr, array_type_nelts (type),
2755 auto_delete, use_global_delete);
2756 }
2757 else
2758 {
2759 /* Don't check PROTECT here; leave that decision to the
2760 destructor. If the destructor is accessible, call it,
2761 else report error. */
2762 addr = build_unary_op (ADDR_EXPR, addr, 0);
2763 if (TREE_SIDE_EFFECTS (addr))
2764 addr = save_expr (addr);
2765
2766 addr = convert_force (build_pointer_type (type), addr, 0);
2767 }
2768
2769 gcc_assert (IS_AGGR_TYPE (type));
2770
2771 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2772 {
2773 if (auto_delete != sfk_deleting_destructor)
2774 return void_zero_node;
2775
2776 return build_op_delete_call (DELETE_EXPR, addr,
2777 cxx_sizeof_nowarn (type),
2778 use_global_delete,
2779 /*placement=*/NULL_TREE,
2780 /*alloc_fn=*/NULL_TREE);
2781 }
2782 else
2783 {
2784 tree do_delete = NULL_TREE;
2785 tree ifexp;
2786
2787 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
2788 lazily_declare_fn (sfk_destructor, type);
2789
2790 /* For `::delete x', we must not use the deleting destructor
2791 since then we would not be sure to get the global `operator
2792 delete'. */
2793 if (use_global_delete && auto_delete == sfk_deleting_destructor)
2794 {
2795 /* We will use ADDR multiple times so we must save it. */
2796 addr = save_expr (addr);
2797 /* Delete the object. */
2798 do_delete = build_builtin_delete_call (addr);
2799 /* Otherwise, treat this like a complete object destructor
2800 call. */
2801 auto_delete = sfk_complete_destructor;
2802 }
2803 /* If the destructor is non-virtual, there is no deleting
2804 variant. Instead, we must explicitly call the appropriate
2805 `operator delete' here. */
2806 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
2807 && auto_delete == sfk_deleting_destructor)
2808 {
2809 /* We will use ADDR multiple times so we must save it. */
2810 addr = save_expr (addr);
2811 /* Build the call. */
2812 do_delete = build_op_delete_call (DELETE_EXPR,
2813 addr,
2814 cxx_sizeof_nowarn (type),
2815 /*global_p=*/false,
2816 /*placement=*/NULL_TREE,
2817 /*alloc_fn=*/NULL_TREE);
2818 /* Call the complete object destructor. */
2819 auto_delete = sfk_complete_destructor;
2820 }
2821 else if (auto_delete == sfk_deleting_destructor
2822 && TYPE_GETS_REG_DELETE (type))
2823 {
2824 /* Make sure we have access to the member op delete, even though
2825 we'll actually be calling it from the destructor. */
2826 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
2827 /*global_p=*/false,
2828 /*placement=*/NULL_TREE,
2829 /*alloc_fn=*/NULL_TREE);
2830 }
2831
2832 expr = build_dtor_call (build_indirect_ref (addr, NULL),
2833 auto_delete, flags);
2834 if (do_delete)
2835 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
2836
2837 if (flags & LOOKUP_DESTRUCTOR)
2838 /* Explicit destructor call; don't check for null pointer. */
2839 ifexp = integer_one_node;
2840 else
2841 /* Handle deleting a null pointer. */
2842 ifexp = fold (cp_build_binary_op (NE_EXPR, addr, integer_zero_node));
2843
2844 if (ifexp != integer_one_node)
2845 expr = build3 (COND_EXPR, void_type_node,
2846 ifexp, expr, void_zero_node);
2847
2848 return expr;
2849 }
2850 }
2851
2852 /* At the beginning of a destructor, push cleanups that will call the
2853 destructors for our base classes and members.
2854
2855 Called from begin_destructor_body. */
2856
2857 void
2858 push_base_cleanups (void)
2859 {
2860 tree binfo, base_binfo;
2861 int i;
2862 tree member;
2863 tree expr;
2864 VEC(tree,gc) *vbases;
2865
2866 /* Run destructors for all virtual baseclasses. */
2867 if (CLASSTYPE_VBASECLASSES (current_class_type))
2868 {
2869 tree cond = (condition_conversion
2870 (build2 (BIT_AND_EXPR, integer_type_node,
2871 current_in_charge_parm,
2872 integer_two_node)));
2873
2874 /* The CLASSTYPE_VBASECLASSES vector is in initialization
2875 order, which is also the right order for pushing cleanups. */
2876 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
2877 VEC_iterate (tree, vbases, i, base_binfo); i++)
2878 {
2879 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
2880 {
2881 expr = build_special_member_call (current_class_ref,
2882 base_dtor_identifier,
2883 NULL_TREE,
2884 base_binfo,
2885 (LOOKUP_NORMAL
2886 | LOOKUP_NONVIRTUAL));
2887 expr = build3 (COND_EXPR, void_type_node, cond,
2888 expr, void_zero_node);
2889 finish_decl_cleanup (NULL_TREE, expr);
2890 }
2891 }
2892 }
2893
2894 /* Take care of the remaining baseclasses. */
2895 for (binfo = TYPE_BINFO (current_class_type), i = 0;
2896 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
2897 {
2898 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
2899 || BINFO_VIRTUAL_P (base_binfo))
2900 continue;
2901
2902 expr = build_special_member_call (current_class_ref,
2903 base_dtor_identifier,
2904 NULL_TREE, base_binfo,
2905 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
2906 finish_decl_cleanup (NULL_TREE, expr);
2907 }
2908
2909 for (member = TYPE_FIELDS (current_class_type); member;
2910 member = TREE_CHAIN (member))
2911 {
2912 if (TREE_TYPE (member) == error_mark_node
2913 || TREE_CODE (member) != FIELD_DECL
2914 || DECL_ARTIFICIAL (member))
2915 continue;
2916 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
2917 {
2918 tree this_member = (build_class_member_access_expr
2919 (current_class_ref, member,
2920 /*access_path=*/NULL_TREE,
2921 /*preserve_reference=*/false));
2922 tree this_type = TREE_TYPE (member);
2923 expr = build_delete (this_type, this_member,
2924 sfk_complete_destructor,
2925 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
2926 0);
2927 finish_decl_cleanup (NULL_TREE, expr);
2928 }
2929 }
2930 }
2931
2932 /* Build a C++ vector delete expression.
2933 MAXINDEX is the number of elements to be deleted.
2934 ELT_SIZE is the nominal size of each element in the vector.
2935 BASE is the expression that should yield the store to be deleted.
2936 This function expands (or synthesizes) these calls itself.
2937 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
2938
2939 This also calls delete for virtual baseclasses of elements of the vector.
2940
2941 Update: MAXINDEX is no longer needed. The size can be extracted from the
2942 start of the vector for pointers, and from the type for arrays. We still
2943 use MAXINDEX for arrays because it happens to already have one of the
2944 values we'd have to extract. (We could use MAXINDEX with pointers to
2945 confirm the size, and trap if the numbers differ; not clear that it'd
2946 be worth bothering.) */
2947
2948 tree
2949 build_vec_delete (tree base, tree maxindex,
2950 special_function_kind auto_delete_vec, int use_global_delete)
2951 {
2952 tree type;
2953 tree rval;
2954 tree base_init = NULL_TREE;
2955
2956 type = TREE_TYPE (base);
2957
2958 if (TREE_CODE (type) == POINTER_TYPE)
2959 {
2960 /* Step back one from start of vector, and read dimension. */
2961 tree cookie_addr;
2962
2963 if (TREE_SIDE_EFFECTS (base))
2964 {
2965 base_init = get_target_expr (base);
2966 base = TARGET_EXPR_SLOT (base_init);
2967 }
2968 type = strip_array_types (TREE_TYPE (type));
2969 cookie_addr = build2 (MINUS_EXPR,
2970 build_pointer_type (sizetype),
2971 base,
2972 TYPE_SIZE_UNIT (sizetype));
2973 maxindex = build_indirect_ref (cookie_addr, NULL);
2974 }
2975 else if (TREE_CODE (type) == ARRAY_TYPE)
2976 {
2977 /* Get the total number of things in the array, maxindex is a
2978 bad name. */
2979 maxindex = array_type_nelts_total (type);
2980 type = strip_array_types (type);
2981 base = build_unary_op (ADDR_EXPR, base, 1);
2982 if (TREE_SIDE_EFFECTS (base))
2983 {
2984 base_init = get_target_expr (base);
2985 base = TARGET_EXPR_SLOT (base_init);
2986 }
2987 }
2988 else
2989 {
2990 if (base != error_mark_node)
2991 error ("type to vector delete is neither pointer or array type");
2992 return error_mark_node;
2993 }
2994
2995 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
2996 use_global_delete);
2997 if (base_init)
2998 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
2999
3000 return rval;
3001 }
This page took 0.17295 seconds and 6 git commands to generate.