]> gcc.gnu.org Git - gcc.git/blob - gcc/cp/init.c
re PR c++/33324 (ICE on new array of objects with virtual destructors.)
[gcc.git] / gcc / cp / init.c
1 /* Handle initialization things in C++.
2 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* High-level class interface. */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "tree.h"
30 #include "rtl.h"
31 #include "expr.h"
32 #include "cp-tree.h"
33 #include "flags.h"
34 #include "output.h"
35 #include "except.h"
36 #include "toplev.h"
37 #include "target.h"
38
39 static bool begin_init_stmts (tree *, tree *);
40 static tree finish_init_stmts (bool, tree, tree);
41 static void construct_virtual_base (tree, tree);
42 static void expand_aggr_init_1 (tree, tree, tree, tree, int);
43 static void expand_default_init (tree, tree, tree, tree, int);
44 static tree build_vec_delete_1 (tree, tree, tree, special_function_kind, int);
45 static void perform_member_init (tree, tree);
46 static tree build_builtin_delete_call (tree);
47 static int member_init_ok_or_else (tree, tree, tree);
48 static void expand_virtual_init (tree, tree);
49 static tree sort_mem_initializers (tree, tree);
50 static tree initializing_context (tree);
51 static void expand_cleanup_for_base (tree, tree);
52 static tree get_temp_regvar (tree, tree);
53 static tree dfs_initialize_vtbl_ptrs (tree, void *);
54 static tree build_dtor_call (tree, special_function_kind, int);
55 static tree build_field_list (tree, tree, int *);
56 static tree build_vtbl_address (tree);
57
58 /* We are about to generate some complex initialization code.
59 Conceptually, it is all a single expression. However, we may want
60 to include conditionals, loops, and other such statement-level
61 constructs. Therefore, we build the initialization code inside a
62 statement-expression. This function starts such an expression.
63 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
64 pass them back to finish_init_stmts when the expression is
65 complete. */
66
67 static bool
68 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
69 {
70 bool is_global = !building_stmt_tree ();
71
72 *stmt_expr_p = begin_stmt_expr ();
73 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
74
75 return is_global;
76 }
77
78 /* Finish out the statement-expression begun by the previous call to
79 begin_init_stmts. Returns the statement-expression itself. */
80
81 static tree
82 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
83 {
84 finish_compound_stmt (compound_stmt);
85
86 stmt_expr = finish_stmt_expr (stmt_expr, true);
87
88 gcc_assert (!building_stmt_tree () == is_global);
89
90 return stmt_expr;
91 }
92
93 /* Constructors */
94
95 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
96 which we want to initialize the vtable pointer for, DATA is
97 TREE_LIST whose TREE_VALUE is the this ptr expression. */
98
99 static tree
100 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
101 {
102 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
103 return dfs_skip_bases;
104
105 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
106 {
107 tree base_ptr = TREE_VALUE ((tree) data);
108
109 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
110
111 expand_virtual_init (binfo, base_ptr);
112 }
113
114 return NULL_TREE;
115 }
116
117 /* Initialize all the vtable pointers in the object pointed to by
118 ADDR. */
119
120 void
121 initialize_vtbl_ptrs (tree addr)
122 {
123 tree list;
124 tree type;
125
126 type = TREE_TYPE (TREE_TYPE (addr));
127 list = build_tree_list (type, addr);
128
129 /* Walk through the hierarchy, initializing the vptr in each base
130 class. We do these in pre-order because we can't find the virtual
131 bases for a class until we've initialized the vtbl for that
132 class. */
133 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
134 }
135
136 /* Return an expression for the zero-initialization of an object with
137 type T. This expression will either be a constant (in the case
138 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
139 aggregate). In either case, the value can be used as DECL_INITIAL
140 for a decl of the indicated TYPE; it is a valid static initializer.
141 If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS is the
142 number of elements in the array. If STATIC_STORAGE_P is TRUE,
143 initializers are only generated for entities for which
144 zero-initialization does not simply mean filling the storage with
145 zero bytes. */
146
147 tree
148 build_zero_init (tree type, tree nelts, bool static_storage_p)
149 {
150 tree init = NULL_TREE;
151
152 /* [dcl.init]
153
154 To zero-initialization storage for an object of type T means:
155
156 -- if T is a scalar type, the storage is set to the value of zero
157 converted to T.
158
159 -- if T is a non-union class type, the storage for each nonstatic
160 data member and each base-class subobject is zero-initialized.
161
162 -- if T is a union type, the storage for its first data member is
163 zero-initialized.
164
165 -- if T is an array type, the storage for each element is
166 zero-initialized.
167
168 -- if T is a reference type, no initialization is performed. */
169
170 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
171
172 if (type == error_mark_node)
173 ;
174 else if (static_storage_p && zero_init_p (type))
175 /* In order to save space, we do not explicitly build initializers
176 for items that do not need them. GCC's semantics are that
177 items with static storage duration that are not otherwise
178 initialized are initialized to zero. */
179 ;
180 else if (SCALAR_TYPE_P (type))
181 init = convert (type, integer_zero_node);
182 else if (CLASS_TYPE_P (type))
183 {
184 tree field;
185 VEC(constructor_elt,gc) *v = NULL;
186
187 /* Iterate over the fields, building initializations. */
188 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
189 {
190 if (TREE_CODE (field) != FIELD_DECL)
191 continue;
192
193 /* Note that for class types there will be FIELD_DECLs
194 corresponding to base classes as well. Thus, iterating
195 over TYPE_FIELDs will result in correct initialization of
196 all of the subobjects. */
197 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
198 {
199 tree value = build_zero_init (TREE_TYPE (field),
200 /*nelts=*/NULL_TREE,
201 static_storage_p);
202 CONSTRUCTOR_APPEND_ELT(v, field, value);
203 }
204
205 /* For unions, only the first field is initialized. */
206 if (TREE_CODE (type) == UNION_TYPE)
207 break;
208 }
209
210 /* Build a constructor to contain the initializations. */
211 init = build_constructor (type, v);
212 }
213 else if (TREE_CODE (type) == ARRAY_TYPE)
214 {
215 tree max_index;
216 VEC(constructor_elt,gc) *v = NULL;
217
218 /* Iterate over the array elements, building initializations. */
219 if (nelts)
220 max_index = fold_build2 (MINUS_EXPR, TREE_TYPE (nelts),
221 nelts, integer_one_node);
222 else
223 max_index = array_type_nelts (type);
224
225 /* If we have an error_mark here, we should just return error mark
226 as we don't know the size of the array yet. */
227 if (max_index == error_mark_node)
228 return error_mark_node;
229 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
230
231 /* A zero-sized array, which is accepted as an extension, will
232 have an upper bound of -1. */
233 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
234 {
235 constructor_elt *ce;
236
237 v = VEC_alloc (constructor_elt, gc, 1);
238 ce = VEC_quick_push (constructor_elt, v, NULL);
239
240 /* If this is a one element array, we just use a regular init. */
241 if (tree_int_cst_equal (size_zero_node, max_index))
242 ce->index = size_zero_node;
243 else
244 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
245 max_index);
246
247 ce->value = build_zero_init (TREE_TYPE (type),
248 /*nelts=*/NULL_TREE,
249 static_storage_p);
250 }
251
252 /* Build a constructor to contain the initializations. */
253 init = build_constructor (type, v);
254 }
255 else if (TREE_CODE (type) == VECTOR_TYPE)
256 init = fold_convert (type, integer_zero_node);
257 else
258 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
259
260 /* In all cases, the initializer is a constant. */
261 if (init)
262 {
263 TREE_CONSTANT (init) = 1;
264 TREE_INVARIANT (init) = 1;
265 }
266
267 return init;
268 }
269
270 /* Build an expression for the default-initialization of an object of
271 the indicated TYPE. If NELTS is non-NULL, and TYPE is an
272 ARRAY_TYPE, NELTS is the number of elements in the array. If
273 initialization of TYPE requires calling constructors, this function
274 returns NULL_TREE; the caller is responsible for arranging for the
275 constructors to be called. */
276
277 tree
278 build_default_init (tree type, tree nelts)
279 {
280 /* [dcl.init]:
281
282 To default-initialize an object of type T means:
283
284 --if T is a non-POD class type (clause _class_), the default construc-
285 tor for T is called (and the initialization is ill-formed if T has
286 no accessible default constructor);
287
288 --if T is an array type, each element is default-initialized;
289
290 --otherwise, the storage for the object is zero-initialized.
291
292 A program that calls for default-initialization of an entity of refer-
293 ence type is ill-formed. */
294
295 /* If TYPE_NEEDS_CONSTRUCTING is true, the caller is responsible for
296 performing the initialization. This is confusing in that some
297 non-PODs do not have TYPE_NEEDS_CONSTRUCTING set. (For example,
298 a class with a pointer-to-data member as a non-static data member
299 does not have TYPE_NEEDS_CONSTRUCTING set.) Therefore, we end up
300 passing non-PODs to build_zero_init below, which is contrary to
301 the semantics quoted above from [dcl.init].
302
303 It happens, however, that the behavior of the constructor the
304 standard says we should have generated would be precisely the
305 same as that obtained by calling build_zero_init below, so things
306 work out OK. */
307 if (TYPE_NEEDS_CONSTRUCTING (type)
308 || (nelts && TREE_CODE (nelts) != INTEGER_CST))
309 return NULL_TREE;
310
311 /* At this point, TYPE is either a POD class type, an array of POD
312 classes, or something even more innocuous. */
313 return build_zero_init (type, nelts, /*static_storage_p=*/false);
314 }
315
316 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
317 arguments. If TREE_LIST is void_type_node, an empty initializer
318 list was given; if NULL_TREE no initializer was given. */
319
320 static void
321 perform_member_init (tree member, tree init)
322 {
323 tree decl;
324 tree type = TREE_TYPE (member);
325 bool explicit;
326
327 explicit = (init != NULL_TREE);
328
329 /* Effective C++ rule 12 requires that all data members be
330 initialized. */
331 if (warn_ecpp && !explicit && TREE_CODE (type) != ARRAY_TYPE)
332 warning (OPT_Weffc__, "%J%qD should be initialized in the member initialization "
333 "list", current_function_decl, member);
334
335 if (init == void_type_node)
336 init = NULL_TREE;
337
338 /* Get an lvalue for the data member. */
339 decl = build_class_member_access_expr (current_class_ref, member,
340 /*access_path=*/NULL_TREE,
341 /*preserve_reference=*/true);
342 if (decl == error_mark_node)
343 return;
344
345 /* Deal with this here, as we will get confused if we try to call the
346 assignment op for an anonymous union. This can happen in a
347 synthesized copy constructor. */
348 if (ANON_AGGR_TYPE_P (type))
349 {
350 if (init)
351 {
352 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
353 finish_expr_stmt (init);
354 }
355 }
356 else if (TYPE_NEEDS_CONSTRUCTING (type))
357 {
358 if (explicit
359 && TREE_CODE (type) == ARRAY_TYPE
360 && init != NULL_TREE
361 && TREE_CHAIN (init) == NULL_TREE
362 && TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
363 {
364 /* Initialization of one array from another. */
365 finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
366 /*explicit_default_init_p=*/false,
367 /* from_array=*/1));
368 }
369 else
370 finish_expr_stmt (build_aggr_init (decl, init, 0));
371 }
372 else
373 {
374 if (init == NULL_TREE)
375 {
376 if (explicit)
377 {
378 init = build_default_init (type, /*nelts=*/NULL_TREE);
379 if (TREE_CODE (type) == REFERENCE_TYPE)
380 warning (0, "%Jdefault-initialization of %q#D, "
381 "which has reference type",
382 current_function_decl, member);
383 }
384 /* member traversal: note it leaves init NULL */
385 else if (TREE_CODE (type) == REFERENCE_TYPE)
386 pedwarn ("%Juninitialized reference member %qD",
387 current_function_decl, member);
388 else if (CP_TYPE_CONST_P (type))
389 pedwarn ("%Juninitialized member %qD with %<const%> type %qT",
390 current_function_decl, member, type);
391 }
392 else if (TREE_CODE (init) == TREE_LIST)
393 /* There was an explicit member initialization. Do some work
394 in that case. */
395 init = build_x_compound_expr_from_list (init, "member initializer");
396
397 if (init)
398 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
399 }
400
401 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
402 {
403 tree expr;
404
405 expr = build_class_member_access_expr (current_class_ref, member,
406 /*access_path=*/NULL_TREE,
407 /*preserve_reference=*/false);
408 expr = build_delete (type, expr, sfk_complete_destructor,
409 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
410
411 if (expr != error_mark_node)
412 finish_eh_cleanup (expr);
413 }
414 }
415
416 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
417 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
418
419 static tree
420 build_field_list (tree t, tree list, int *uses_unions_p)
421 {
422 tree fields;
423
424 *uses_unions_p = 0;
425
426 /* Note whether or not T is a union. */
427 if (TREE_CODE (t) == UNION_TYPE)
428 *uses_unions_p = 1;
429
430 for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
431 {
432 /* Skip CONST_DECLs for enumeration constants and so forth. */
433 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
434 continue;
435
436 /* Keep track of whether or not any fields are unions. */
437 if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
438 *uses_unions_p = 1;
439
440 /* For an anonymous struct or union, we must recursively
441 consider the fields of the anonymous type. They can be
442 directly initialized from the constructor. */
443 if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
444 {
445 /* Add this field itself. Synthesized copy constructors
446 initialize the entire aggregate. */
447 list = tree_cons (fields, NULL_TREE, list);
448 /* And now add the fields in the anonymous aggregate. */
449 list = build_field_list (TREE_TYPE (fields), list,
450 uses_unions_p);
451 }
452 /* Add this field. */
453 else if (DECL_NAME (fields))
454 list = tree_cons (fields, NULL_TREE, list);
455 }
456
457 return list;
458 }
459
460 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
461 a FIELD_DECL or BINFO in T that needs initialization. The
462 TREE_VALUE gives the initializer, or list of initializer arguments.
463
464 Return a TREE_LIST containing all of the initializations required
465 for T, in the order in which they should be performed. The output
466 list has the same format as the input. */
467
468 static tree
469 sort_mem_initializers (tree t, tree mem_inits)
470 {
471 tree init;
472 tree base, binfo, base_binfo;
473 tree sorted_inits;
474 tree next_subobject;
475 VEC(tree,gc) *vbases;
476 int i;
477 int uses_unions_p;
478
479 /* Build up a list of initializations. The TREE_PURPOSE of entry
480 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
481 TREE_VALUE will be the constructor arguments, or NULL if no
482 explicit initialization was provided. */
483 sorted_inits = NULL_TREE;
484
485 /* Process the virtual bases. */
486 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
487 VEC_iterate (tree, vbases, i, base); i++)
488 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
489
490 /* Process the direct bases. */
491 for (binfo = TYPE_BINFO (t), i = 0;
492 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
493 if (!BINFO_VIRTUAL_P (base_binfo))
494 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
495
496 /* Process the non-static data members. */
497 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
498 /* Reverse the entire list of initializations, so that they are in
499 the order that they will actually be performed. */
500 sorted_inits = nreverse (sorted_inits);
501
502 /* If the user presented the initializers in an order different from
503 that in which they will actually occur, we issue a warning. Keep
504 track of the next subobject which can be explicitly initialized
505 without issuing a warning. */
506 next_subobject = sorted_inits;
507
508 /* Go through the explicit initializers, filling in TREE_PURPOSE in
509 the SORTED_INITS. */
510 for (init = mem_inits; init; init = TREE_CHAIN (init))
511 {
512 tree subobject;
513 tree subobject_init;
514
515 subobject = TREE_PURPOSE (init);
516
517 /* If the explicit initializers are in sorted order, then
518 SUBOBJECT will be NEXT_SUBOBJECT, or something following
519 it. */
520 for (subobject_init = next_subobject;
521 subobject_init;
522 subobject_init = TREE_CHAIN (subobject_init))
523 if (TREE_PURPOSE (subobject_init) == subobject)
524 break;
525
526 /* Issue a warning if the explicit initializer order does not
527 match that which will actually occur.
528 ??? Are all these on the correct lines? */
529 if (warn_reorder && !subobject_init)
530 {
531 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
532 warning (OPT_Wreorder, "%q+D will be initialized after",
533 TREE_PURPOSE (next_subobject));
534 else
535 warning (OPT_Wreorder, "base %qT will be initialized after",
536 TREE_PURPOSE (next_subobject));
537 if (TREE_CODE (subobject) == FIELD_DECL)
538 warning (OPT_Wreorder, " %q+#D", subobject);
539 else
540 warning (OPT_Wreorder, " base %qT", subobject);
541 warning (OPT_Wreorder, "%J when initialized here", current_function_decl);
542 }
543
544 /* Look again, from the beginning of the list. */
545 if (!subobject_init)
546 {
547 subobject_init = sorted_inits;
548 while (TREE_PURPOSE (subobject_init) != subobject)
549 subobject_init = TREE_CHAIN (subobject_init);
550 }
551
552 /* It is invalid to initialize the same subobject more than
553 once. */
554 if (TREE_VALUE (subobject_init))
555 {
556 if (TREE_CODE (subobject) == FIELD_DECL)
557 error ("%Jmultiple initializations given for %qD",
558 current_function_decl, subobject);
559 else
560 error ("%Jmultiple initializations given for base %qT",
561 current_function_decl, subobject);
562 }
563
564 /* Record the initialization. */
565 TREE_VALUE (subobject_init) = TREE_VALUE (init);
566 next_subobject = subobject_init;
567 }
568
569 /* [class.base.init]
570
571 If a ctor-initializer specifies more than one mem-initializer for
572 multiple members of the same union (including members of
573 anonymous unions), the ctor-initializer is ill-formed. */
574 if (uses_unions_p)
575 {
576 tree last_field = NULL_TREE;
577 for (init = sorted_inits; init; init = TREE_CHAIN (init))
578 {
579 tree field;
580 tree field_type;
581 int done;
582
583 /* Skip uninitialized members and base classes. */
584 if (!TREE_VALUE (init)
585 || TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
586 continue;
587 /* See if this field is a member of a union, or a member of a
588 structure contained in a union, etc. */
589 field = TREE_PURPOSE (init);
590 for (field_type = DECL_CONTEXT (field);
591 !same_type_p (field_type, t);
592 field_type = TYPE_CONTEXT (field_type))
593 if (TREE_CODE (field_type) == UNION_TYPE)
594 break;
595 /* If this field is not a member of a union, skip it. */
596 if (TREE_CODE (field_type) != UNION_TYPE)
597 continue;
598
599 /* It's only an error if we have two initializers for the same
600 union type. */
601 if (!last_field)
602 {
603 last_field = field;
604 continue;
605 }
606
607 /* See if LAST_FIELD and the field initialized by INIT are
608 members of the same union. If so, there's a problem,
609 unless they're actually members of the same structure
610 which is itself a member of a union. For example, given:
611
612 union { struct { int i; int j; }; };
613
614 initializing both `i' and `j' makes sense. */
615 field_type = DECL_CONTEXT (field);
616 done = 0;
617 do
618 {
619 tree last_field_type;
620
621 last_field_type = DECL_CONTEXT (last_field);
622 while (1)
623 {
624 if (same_type_p (last_field_type, field_type))
625 {
626 if (TREE_CODE (field_type) == UNION_TYPE)
627 error ("%Jinitializations for multiple members of %qT",
628 current_function_decl, last_field_type);
629 done = 1;
630 break;
631 }
632
633 if (same_type_p (last_field_type, t))
634 break;
635
636 last_field_type = TYPE_CONTEXT (last_field_type);
637 }
638
639 /* If we've reached the outermost class, then we're
640 done. */
641 if (same_type_p (field_type, t))
642 break;
643
644 field_type = TYPE_CONTEXT (field_type);
645 }
646 while (!done);
647
648 last_field = field;
649 }
650 }
651
652 return sorted_inits;
653 }
654
655 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
656 is a TREE_LIST giving the explicit mem-initializer-list for the
657 constructor. The TREE_PURPOSE of each entry is a subobject (a
658 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
659 is a TREE_LIST giving the arguments to the constructor or
660 void_type_node for an empty list of arguments. */
661
662 void
663 emit_mem_initializers (tree mem_inits)
664 {
665 /* We will already have issued an error message about the fact that
666 the type is incomplete. */
667 if (!COMPLETE_TYPE_P (current_class_type))
668 return;
669
670 /* Sort the mem-initializers into the order in which the
671 initializations should be performed. */
672 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
673
674 in_base_initializer = 1;
675
676 /* Initialize base classes. */
677 while (mem_inits
678 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
679 {
680 tree subobject = TREE_PURPOSE (mem_inits);
681 tree arguments = TREE_VALUE (mem_inits);
682
683 /* If these initializations are taking place in a copy
684 constructor, the base class should probably be explicitly
685 initialized. */
686 if (extra_warnings && !arguments
687 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
688 && TYPE_NEEDS_CONSTRUCTING (BINFO_TYPE (subobject)))
689 warning (OPT_Wextra, "%Jbase class %q#T should be explicitly initialized in the "
690 "copy constructor",
691 current_function_decl, BINFO_TYPE (subobject));
692
693 /* If an explicit -- but empty -- initializer list was present,
694 treat it just like default initialization at this point. */
695 if (arguments == void_type_node)
696 arguments = NULL_TREE;
697
698 /* Initialize the base. */
699 if (BINFO_VIRTUAL_P (subobject))
700 construct_virtual_base (subobject, arguments);
701 else
702 {
703 tree base_addr;
704
705 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
706 subobject, 1);
707 expand_aggr_init_1 (subobject, NULL_TREE,
708 build_indirect_ref (base_addr, NULL),
709 arguments,
710 LOOKUP_NORMAL);
711 expand_cleanup_for_base (subobject, NULL_TREE);
712 }
713
714 mem_inits = TREE_CHAIN (mem_inits);
715 }
716 in_base_initializer = 0;
717
718 /* Initialize the vptrs. */
719 initialize_vtbl_ptrs (current_class_ptr);
720
721 /* Initialize the data members. */
722 while (mem_inits)
723 {
724 perform_member_init (TREE_PURPOSE (mem_inits),
725 TREE_VALUE (mem_inits));
726 mem_inits = TREE_CHAIN (mem_inits);
727 }
728 }
729
730 /* Returns the address of the vtable (i.e., the value that should be
731 assigned to the vptr) for BINFO. */
732
733 static tree
734 build_vtbl_address (tree binfo)
735 {
736 tree binfo_for = binfo;
737 tree vtbl;
738
739 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
740 /* If this is a virtual primary base, then the vtable we want to store
741 is that for the base this is being used as the primary base of. We
742 can't simply skip the initialization, because we may be expanding the
743 inits of a subobject constructor where the virtual base layout
744 can be different. */
745 while (BINFO_PRIMARY_P (binfo_for))
746 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
747
748 /* Figure out what vtable BINFO's vtable is based on, and mark it as
749 used. */
750 vtbl = get_vtbl_decl_for_binfo (binfo_for);
751 assemble_external (vtbl);
752 TREE_USED (vtbl) = 1;
753
754 /* Now compute the address to use when initializing the vptr. */
755 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
756 if (TREE_CODE (vtbl) == VAR_DECL)
757 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
758
759 return vtbl;
760 }
761
762 /* This code sets up the virtual function tables appropriate for
763 the pointer DECL. It is a one-ply initialization.
764
765 BINFO is the exact type that DECL is supposed to be. In
766 multiple inheritance, this might mean "C's A" if C : A, B. */
767
768 static void
769 expand_virtual_init (tree binfo, tree decl)
770 {
771 tree vtbl, vtbl_ptr;
772 tree vtt_index;
773
774 /* Compute the initializer for vptr. */
775 vtbl = build_vtbl_address (binfo);
776
777 /* We may get this vptr from a VTT, if this is a subobject
778 constructor or subobject destructor. */
779 vtt_index = BINFO_VPTR_INDEX (binfo);
780 if (vtt_index)
781 {
782 tree vtbl2;
783 tree vtt_parm;
784
785 /* Compute the value to use, when there's a VTT. */
786 vtt_parm = current_vtt_parm;
787 vtbl2 = build2 (POINTER_PLUS_EXPR,
788 TREE_TYPE (vtt_parm),
789 vtt_parm,
790 vtt_index);
791 vtbl2 = build_indirect_ref (vtbl2, NULL);
792 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
793
794 /* The actual initializer is the VTT value only in the subobject
795 constructor. In maybe_clone_body we'll substitute NULL for
796 the vtt_parm in the case of the non-subobject constructor. */
797 vtbl = build3 (COND_EXPR,
798 TREE_TYPE (vtbl),
799 build2 (EQ_EXPR, boolean_type_node,
800 current_in_charge_parm, integer_zero_node),
801 vtbl2,
802 vtbl);
803 }
804
805 /* Compute the location of the vtpr. */
806 vtbl_ptr = build_vfield_ref (build_indirect_ref (decl, NULL),
807 TREE_TYPE (binfo));
808 gcc_assert (vtbl_ptr != error_mark_node);
809
810 /* Assign the vtable to the vptr. */
811 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
812 finish_expr_stmt (build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl));
813 }
814
815 /* If an exception is thrown in a constructor, those base classes already
816 constructed must be destroyed. This function creates the cleanup
817 for BINFO, which has just been constructed. If FLAG is non-NULL,
818 it is a DECL which is nonzero when this base needs to be
819 destroyed. */
820
821 static void
822 expand_cleanup_for_base (tree binfo, tree flag)
823 {
824 tree expr;
825
826 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
827 return;
828
829 /* Call the destructor. */
830 expr = build_special_member_call (current_class_ref,
831 base_dtor_identifier,
832 NULL_TREE,
833 binfo,
834 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
835 if (flag)
836 expr = fold_build3 (COND_EXPR, void_type_node,
837 c_common_truthvalue_conversion (flag),
838 expr, integer_zero_node);
839
840 finish_eh_cleanup (expr);
841 }
842
843 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
844 constructor. */
845
846 static void
847 construct_virtual_base (tree vbase, tree arguments)
848 {
849 tree inner_if_stmt;
850 tree exp;
851 tree flag;
852
853 /* If there are virtual base classes with destructors, we need to
854 emit cleanups to destroy them if an exception is thrown during
855 the construction process. These exception regions (i.e., the
856 period during which the cleanups must occur) begin from the time
857 the construction is complete to the end of the function. If we
858 create a conditional block in which to initialize the
859 base-classes, then the cleanup region for the virtual base begins
860 inside a block, and ends outside of that block. This situation
861 confuses the sjlj exception-handling code. Therefore, we do not
862 create a single conditional block, but one for each
863 initialization. (That way the cleanup regions always begin
864 in the outer block.) We trust the back end to figure out
865 that the FLAG will not change across initializations, and
866 avoid doing multiple tests. */
867 flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
868 inner_if_stmt = begin_if_stmt ();
869 finish_if_stmt_cond (flag, inner_if_stmt);
870
871 /* Compute the location of the virtual base. If we're
872 constructing virtual bases, then we must be the most derived
873 class. Therefore, we don't have to look up the virtual base;
874 we already know where it is. */
875 exp = convert_to_base_statically (current_class_ref, vbase);
876
877 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
878 LOOKUP_COMPLAIN);
879 finish_then_clause (inner_if_stmt);
880 finish_if_stmt (inner_if_stmt);
881
882 expand_cleanup_for_base (vbase, flag);
883 }
884
885 /* Find the context in which this FIELD can be initialized. */
886
887 static tree
888 initializing_context (tree field)
889 {
890 tree t = DECL_CONTEXT (field);
891
892 /* Anonymous union members can be initialized in the first enclosing
893 non-anonymous union context. */
894 while (t && ANON_AGGR_TYPE_P (t))
895 t = TYPE_CONTEXT (t);
896 return t;
897 }
898
899 /* Function to give error message if member initialization specification
900 is erroneous. FIELD is the member we decided to initialize.
901 TYPE is the type for which the initialization is being performed.
902 FIELD must be a member of TYPE.
903
904 MEMBER_NAME is the name of the member. */
905
906 static int
907 member_init_ok_or_else (tree field, tree type, tree member_name)
908 {
909 if (field == error_mark_node)
910 return 0;
911 if (!field)
912 {
913 error ("class %qT does not have any field named %qD", type,
914 member_name);
915 return 0;
916 }
917 if (TREE_CODE (field) == VAR_DECL)
918 {
919 error ("%q#D is a static data member; it can only be "
920 "initialized at its definition",
921 field);
922 return 0;
923 }
924 if (TREE_CODE (field) != FIELD_DECL)
925 {
926 error ("%q#D is not a non-static data member of %qT",
927 field, type);
928 return 0;
929 }
930 if (initializing_context (field) != type)
931 {
932 error ("class %qT does not have any field named %qD", type,
933 member_name);
934 return 0;
935 }
936
937 return 1;
938 }
939
940 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
941 is a _TYPE node or TYPE_DECL which names a base for that type.
942 Check the validity of NAME, and return either the base _TYPE, base
943 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
944 NULL_TREE and issue a diagnostic.
945
946 An old style unnamed direct single base construction is permitted,
947 where NAME is NULL. */
948
949 tree
950 expand_member_init (tree name)
951 {
952 tree basetype;
953 tree field;
954
955 if (!current_class_ref)
956 return NULL_TREE;
957
958 if (!name)
959 {
960 /* This is an obsolete unnamed base class initializer. The
961 parser will already have warned about its use. */
962 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
963 {
964 case 0:
965 error ("unnamed initializer for %qT, which has no base classes",
966 current_class_type);
967 return NULL_TREE;
968 case 1:
969 basetype = BINFO_TYPE
970 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
971 break;
972 default:
973 error ("unnamed initializer for %qT, which uses multiple inheritance",
974 current_class_type);
975 return NULL_TREE;
976 }
977 }
978 else if (TYPE_P (name))
979 {
980 basetype = TYPE_MAIN_VARIANT (name);
981 name = TYPE_NAME (name);
982 }
983 else if (TREE_CODE (name) == TYPE_DECL)
984 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
985 else
986 basetype = NULL_TREE;
987
988 if (basetype)
989 {
990 tree class_binfo;
991 tree direct_binfo;
992 tree virtual_binfo;
993 int i;
994
995 if (current_template_parms)
996 return basetype;
997
998 class_binfo = TYPE_BINFO (current_class_type);
999 direct_binfo = NULL_TREE;
1000 virtual_binfo = NULL_TREE;
1001
1002 /* Look for a direct base. */
1003 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1004 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1005 break;
1006
1007 /* Look for a virtual base -- unless the direct base is itself
1008 virtual. */
1009 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1010 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1011
1012 /* [class.base.init]
1013
1014 If a mem-initializer-id is ambiguous because it designates
1015 both a direct non-virtual base class and an inherited virtual
1016 base class, the mem-initializer is ill-formed. */
1017 if (direct_binfo && virtual_binfo)
1018 {
1019 error ("%qD is both a direct base and an indirect virtual base",
1020 basetype);
1021 return NULL_TREE;
1022 }
1023
1024 if (!direct_binfo && !virtual_binfo)
1025 {
1026 if (CLASSTYPE_VBASECLASSES (current_class_type))
1027 error ("type %qT is not a direct or virtual base of %qT",
1028 basetype, current_class_type);
1029 else
1030 error ("type %qT is not a direct base of %qT",
1031 basetype, current_class_type);
1032 return NULL_TREE;
1033 }
1034
1035 return direct_binfo ? direct_binfo : virtual_binfo;
1036 }
1037 else
1038 {
1039 if (TREE_CODE (name) == IDENTIFIER_NODE)
1040 field = lookup_field (current_class_type, name, 1, false);
1041 else
1042 field = name;
1043
1044 if (member_init_ok_or_else (field, current_class_type, name))
1045 return field;
1046 }
1047
1048 return NULL_TREE;
1049 }
1050
1051 /* This is like `expand_member_init', only it stores one aggregate
1052 value into another.
1053
1054 INIT comes in two flavors: it is either a value which
1055 is to be stored in EXP, or it is a parameter list
1056 to go to a constructor, which will operate on EXP.
1057 If INIT is not a parameter list for a constructor, then set
1058 LOOKUP_ONLYCONVERTING.
1059 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1060 the initializer, if FLAGS is 0, then it is the (init) form.
1061 If `init' is a CONSTRUCTOR, then we emit a warning message,
1062 explaining that such initializations are invalid.
1063
1064 If INIT resolves to a CALL_EXPR which happens to return
1065 something of the type we are looking for, then we know
1066 that we can safely use that call to perform the
1067 initialization.
1068
1069 The virtual function table pointer cannot be set up here, because
1070 we do not really know its type.
1071
1072 This never calls operator=().
1073
1074 When initializing, nothing is CONST.
1075
1076 A default copy constructor may have to be used to perform the
1077 initialization.
1078
1079 A constructor or a conversion operator may have to be used to
1080 perform the initialization, but not both, as it would be ambiguous. */
1081
1082 tree
1083 build_aggr_init (tree exp, tree init, int flags)
1084 {
1085 tree stmt_expr;
1086 tree compound_stmt;
1087 int destroy_temps;
1088 tree type = TREE_TYPE (exp);
1089 int was_const = TREE_READONLY (exp);
1090 int was_volatile = TREE_THIS_VOLATILE (exp);
1091 int is_global;
1092
1093 if (init == error_mark_node)
1094 return error_mark_node;
1095
1096 TREE_READONLY (exp) = 0;
1097 TREE_THIS_VOLATILE (exp) = 0;
1098
1099 if (init && TREE_CODE (init) != TREE_LIST)
1100 flags |= LOOKUP_ONLYCONVERTING;
1101
1102 if (TREE_CODE (type) == ARRAY_TYPE)
1103 {
1104 tree itype;
1105
1106 /* An array may not be initialized use the parenthesized
1107 initialization form -- unless the initializer is "()". */
1108 if (init && TREE_CODE (init) == TREE_LIST)
1109 {
1110 error ("bad array initializer");
1111 return error_mark_node;
1112 }
1113 /* Must arrange to initialize each element of EXP
1114 from elements of INIT. */
1115 itype = init ? TREE_TYPE (init) : NULL_TREE;
1116 if (cp_type_quals (type) != TYPE_UNQUALIFIED)
1117 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1118 if (itype && cp_type_quals (itype) != TYPE_UNQUALIFIED)
1119 itype = TREE_TYPE (init) = TYPE_MAIN_VARIANT (itype);
1120 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1121 /*explicit_default_init_p=*/false,
1122 itype && same_type_p (itype,
1123 TREE_TYPE (exp)));
1124 TREE_READONLY (exp) = was_const;
1125 TREE_THIS_VOLATILE (exp) = was_volatile;
1126 TREE_TYPE (exp) = type;
1127 if (init)
1128 TREE_TYPE (init) = itype;
1129 return stmt_expr;
1130 }
1131
1132 if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1133 /* Just know that we've seen something for this node. */
1134 TREE_USED (exp) = 1;
1135
1136 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1137 destroy_temps = stmts_are_full_exprs_p ();
1138 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1139 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1140 init, LOOKUP_NORMAL|flags);
1141 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1142 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1143 TREE_READONLY (exp) = was_const;
1144 TREE_THIS_VOLATILE (exp) = was_volatile;
1145
1146 return stmt_expr;
1147 }
1148
1149 static void
1150 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags)
1151 {
1152 tree type = TREE_TYPE (exp);
1153 tree ctor_name;
1154
1155 /* It fails because there may not be a constructor which takes
1156 its own type as the first (or only parameter), but which does
1157 take other types via a conversion. So, if the thing initializing
1158 the expression is a unit element of type X, first try X(X&),
1159 followed by initialization by X. If neither of these work
1160 out, then look hard. */
1161 tree rval;
1162 tree parms;
1163
1164 if (init && TREE_CODE (init) != TREE_LIST
1165 && (flags & LOOKUP_ONLYCONVERTING))
1166 {
1167 /* Base subobjects should only get direct-initialization. */
1168 gcc_assert (true_exp == exp);
1169
1170 if (flags & DIRECT_BIND)
1171 /* Do nothing. We hit this in two cases: Reference initialization,
1172 where we aren't initializing a real variable, so we don't want
1173 to run a new constructor; and catching an exception, where we
1174 have already built up the constructor call so we could wrap it
1175 in an exception region. */;
1176 else if (BRACE_ENCLOSED_INITIALIZER_P (init))
1177 {
1178 /* A brace-enclosed initializer for an aggregate. */
1179 gcc_assert (CP_AGGREGATE_TYPE_P (type));
1180 init = digest_init (type, init);
1181 }
1182 else
1183 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
1184
1185 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1186 /* We need to protect the initialization of a catch parm with a
1187 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1188 around the TARGET_EXPR for the copy constructor. See
1189 initialize_handler_parm. */
1190 {
1191 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1192 TREE_OPERAND (init, 0));
1193 TREE_TYPE (init) = void_type_node;
1194 }
1195 else
1196 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1197 TREE_SIDE_EFFECTS (init) = 1;
1198 finish_expr_stmt (init);
1199 return;
1200 }
1201
1202 if (init == NULL_TREE
1203 || (TREE_CODE (init) == TREE_LIST && ! TREE_TYPE (init)))
1204 {
1205 parms = init;
1206 if (parms)
1207 init = TREE_VALUE (parms);
1208 }
1209 else
1210 parms = build_tree_list (NULL_TREE, init);
1211
1212 if (true_exp == exp)
1213 ctor_name = complete_ctor_identifier;
1214 else
1215 ctor_name = base_ctor_identifier;
1216
1217 rval = build_special_member_call (exp, ctor_name, parms, binfo, flags);
1218 if (TREE_SIDE_EFFECTS (rval))
1219 finish_expr_stmt (convert_to_void (rval, NULL));
1220 }
1221
1222 /* This function is responsible for initializing EXP with INIT
1223 (if any).
1224
1225 BINFO is the binfo of the type for who we are performing the
1226 initialization. For example, if W is a virtual base class of A and B,
1227 and C : A, B.
1228 If we are initializing B, then W must contain B's W vtable, whereas
1229 were we initializing C, W must contain C's W vtable.
1230
1231 TRUE_EXP is nonzero if it is the true expression being initialized.
1232 In this case, it may be EXP, or may just contain EXP. The reason we
1233 need this is because if EXP is a base element of TRUE_EXP, we
1234 don't necessarily know by looking at EXP where its virtual
1235 baseclass fields should really be pointing. But we do know
1236 from TRUE_EXP. In constructors, we don't know anything about
1237 the value being initialized.
1238
1239 FLAGS is just passed to `build_new_method_call'. See that function
1240 for its description. */
1241
1242 static void
1243 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags)
1244 {
1245 tree type = TREE_TYPE (exp);
1246
1247 gcc_assert (init != error_mark_node && type != error_mark_node);
1248 gcc_assert (building_stmt_tree ());
1249
1250 /* Use a function returning the desired type to initialize EXP for us.
1251 If the function is a constructor, and its first argument is
1252 NULL_TREE, know that it was meant for us--just slide exp on
1253 in and expand the constructor. Constructors now come
1254 as TARGET_EXPRs. */
1255
1256 if (init && TREE_CODE (exp) == VAR_DECL
1257 && COMPOUND_LITERAL_P (init))
1258 {
1259 /* If store_init_value returns NULL_TREE, the INIT has been
1260 recorded as the DECL_INITIAL for EXP. That means there's
1261 nothing more we have to do. */
1262 init = store_init_value (exp, init);
1263 if (init)
1264 finish_expr_stmt (init);
1265 return;
1266 }
1267
1268 /* We know that expand_default_init can handle everything we want
1269 at this point. */
1270 expand_default_init (binfo, true_exp, exp, init, flags);
1271 }
1272
1273 /* Report an error if TYPE is not a user-defined, aggregate type. If
1274 OR_ELSE is nonzero, give an error message. */
1275
1276 int
1277 is_aggr_type (tree type, int or_else)
1278 {
1279 if (type == error_mark_node)
1280 return 0;
1281
1282 if (! IS_AGGR_TYPE (type)
1283 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1284 && TREE_CODE (type) != BOUND_TEMPLATE_TEMPLATE_PARM)
1285 {
1286 if (or_else)
1287 error ("%qT is not an aggregate type", type);
1288 return 0;
1289 }
1290 return 1;
1291 }
1292
1293 tree
1294 get_type_value (tree name)
1295 {
1296 if (name == error_mark_node)
1297 return NULL_TREE;
1298
1299 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1300 return IDENTIFIER_TYPE_VALUE (name);
1301 else
1302 return NULL_TREE;
1303 }
1304
1305 /* Build a reference to a member of an aggregate. This is not a C++
1306 `&', but really something which can have its address taken, and
1307 then act as a pointer to member, for example TYPE :: FIELD can have
1308 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1309 this expression is the operand of "&".
1310
1311 @@ Prints out lousy diagnostics for operator <typename>
1312 @@ fields.
1313
1314 @@ This function should be rewritten and placed in search.c. */
1315
1316 tree
1317 build_offset_ref (tree type, tree member, bool address_p)
1318 {
1319 tree decl;
1320 tree basebinfo = NULL_TREE;
1321
1322 /* class templates can come in as TEMPLATE_DECLs here. */
1323 if (TREE_CODE (member) == TEMPLATE_DECL)
1324 return member;
1325
1326 if (dependent_type_p (type) || type_dependent_expression_p (member))
1327 return build_qualified_name (NULL_TREE, type, member,
1328 /*template_p=*/false);
1329
1330 gcc_assert (TYPE_P (type));
1331 if (! is_aggr_type (type, 1))
1332 return error_mark_node;
1333
1334 gcc_assert (DECL_P (member) || BASELINK_P (member));
1335 /* Callers should call mark_used before this point. */
1336 gcc_assert (!DECL_P (member) || TREE_USED (member));
1337
1338 if (!COMPLETE_TYPE_P (complete_type (type))
1339 && !TYPE_BEING_DEFINED (type))
1340 {
1341 error ("incomplete type %qT does not have member %qD", type, member);
1342 return error_mark_node;
1343 }
1344
1345 /* Entities other than non-static members need no further
1346 processing. */
1347 if (TREE_CODE (member) == TYPE_DECL)
1348 return member;
1349 if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
1350 return convert_from_reference (member);
1351
1352 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1353 {
1354 error ("invalid pointer to bit-field %qD", member);
1355 return error_mark_node;
1356 }
1357
1358 /* Set up BASEBINFO for member lookup. */
1359 decl = maybe_dummy_object (type, &basebinfo);
1360
1361 /* A lot of this logic is now handled in lookup_member. */
1362 if (BASELINK_P (member))
1363 {
1364 /* Go from the TREE_BASELINK to the member function info. */
1365 tree t = BASELINK_FUNCTIONS (member);
1366
1367 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1368 {
1369 /* Get rid of a potential OVERLOAD around it. */
1370 t = OVL_CURRENT (t);
1371
1372 /* Unique functions are handled easily. */
1373
1374 /* For non-static member of base class, we need a special rule
1375 for access checking [class.protected]:
1376
1377 If the access is to form a pointer to member, the
1378 nested-name-specifier shall name the derived class
1379 (or any class derived from that class). */
1380 if (address_p && DECL_P (t)
1381 && DECL_NONSTATIC_MEMBER_P (t))
1382 perform_or_defer_access_check (TYPE_BINFO (type), t, t);
1383 else
1384 perform_or_defer_access_check (basebinfo, t, t);
1385
1386 if (DECL_STATIC_FUNCTION_P (t))
1387 return t;
1388 member = t;
1389 }
1390 else
1391 TREE_TYPE (member) = unknown_type_node;
1392 }
1393 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1394 /* We need additional test besides the one in
1395 check_accessibility_of_qualified_id in case it is
1396 a pointer to non-static member. */
1397 perform_or_defer_access_check (TYPE_BINFO (type), member, member);
1398
1399 if (!address_p)
1400 {
1401 /* If MEMBER is non-static, then the program has fallen afoul of
1402 [expr.prim]:
1403
1404 An id-expression that denotes a nonstatic data member or
1405 nonstatic member function of a class can only be used:
1406
1407 -- as part of a class member access (_expr.ref_) in which the
1408 object-expression refers to the member's class or a class
1409 derived from that class, or
1410
1411 -- to form a pointer to member (_expr.unary.op_), or
1412
1413 -- in the body of a nonstatic member function of that class or
1414 of a class derived from that class (_class.mfct.nonstatic_), or
1415
1416 -- in a mem-initializer for a constructor for that class or for
1417 a class derived from that class (_class.base.init_). */
1418 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1419 {
1420 /* Build a representation of a the qualified name suitable
1421 for use as the operand to "&" -- even though the "&" is
1422 not actually present. */
1423 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1424 /* In Microsoft mode, treat a non-static member function as if
1425 it were a pointer-to-member. */
1426 if (flag_ms_extensions)
1427 {
1428 PTRMEM_OK_P (member) = 1;
1429 return build_unary_op (ADDR_EXPR, member, 0);
1430 }
1431 error ("invalid use of non-static member function %qD",
1432 TREE_OPERAND (member, 1));
1433 return error_mark_node;
1434 }
1435 else if (TREE_CODE (member) == FIELD_DECL)
1436 {
1437 error ("invalid use of non-static data member %qD", member);
1438 return error_mark_node;
1439 }
1440 return member;
1441 }
1442
1443 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1444 PTRMEM_OK_P (member) = 1;
1445 return member;
1446 }
1447
1448 /* If DECL is a scalar enumeration constant or variable with a
1449 constant initializer, return the initializer (or, its initializers,
1450 recursively); otherwise, return DECL. If INTEGRAL_P, the
1451 initializer is only returned if DECL is an integral
1452 constant-expression. */
1453
1454 static tree
1455 constant_value_1 (tree decl, bool integral_p)
1456 {
1457 while (TREE_CODE (decl) == CONST_DECL
1458 || (integral_p
1459 ? DECL_INTEGRAL_CONSTANT_VAR_P (decl)
1460 : (TREE_CODE (decl) == VAR_DECL
1461 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
1462 {
1463 tree init;
1464 /* Static data members in template classes may have
1465 non-dependent initializers. References to such non-static
1466 data members are not value-dependent, so we must retrieve the
1467 initializer here. The DECL_INITIAL will have the right type,
1468 but will not have been folded because that would prevent us
1469 from performing all appropriate semantic checks at
1470 instantiation time. */
1471 if (DECL_CLASS_SCOPE_P (decl)
1472 && CLASSTYPE_TEMPLATE_INFO (DECL_CONTEXT (decl))
1473 && uses_template_parms (CLASSTYPE_TI_ARGS
1474 (DECL_CONTEXT (decl))))
1475 {
1476 ++processing_template_decl;
1477 init = fold_non_dependent_expr (DECL_INITIAL (decl));
1478 --processing_template_decl;
1479 }
1480 else
1481 {
1482 /* If DECL is a static data member in a template
1483 specialization, we must instantiate it here. The
1484 initializer for the static data member is not processed
1485 until needed; we need it now. */
1486 mark_used (decl);
1487 init = DECL_INITIAL (decl);
1488 }
1489 if (init == error_mark_node)
1490 return decl;
1491 if (!init
1492 || !TREE_TYPE (init)
1493 || (integral_p
1494 ? !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (init))
1495 : (!TREE_CONSTANT (init)
1496 /* Do not return an aggregate constant (of which
1497 string literals are a special case), as we do not
1498 want to make inadvertent copies of such entities,
1499 and we must be sure that their addresses are the
1500 same everywhere. */
1501 || TREE_CODE (init) == CONSTRUCTOR
1502 || TREE_CODE (init) == STRING_CST)))
1503 break;
1504 decl = unshare_expr (init);
1505 }
1506 return decl;
1507 }
1508
1509 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by
1510 constant of integral or enumeration type, then return that value.
1511 These are those variables permitted in constant expressions by
1512 [5.19/1]. */
1513
1514 tree
1515 integral_constant_value (tree decl)
1516 {
1517 return constant_value_1 (decl, /*integral_p=*/true);
1518 }
1519
1520 /* A more relaxed version of integral_constant_value, used by the
1521 common C/C++ code and by the C++ front end for optimization
1522 purposes. */
1523
1524 tree
1525 decl_constant_value (tree decl)
1526 {
1527 return constant_value_1 (decl,
1528 /*integral_p=*/processing_template_decl);
1529 }
1530 \f
1531 /* Common subroutines of build_new and build_vec_delete. */
1532
1533 /* Call the global __builtin_delete to delete ADDR. */
1534
1535 static tree
1536 build_builtin_delete_call (tree addr)
1537 {
1538 mark_used (global_delete_fndecl);
1539 return build_call_n (global_delete_fndecl, 1, addr);
1540 }
1541 \f
1542 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
1543 the type of the object being allocated; otherwise, it's just TYPE.
1544 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
1545 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
1546 the TREE_LIST of arguments to be provided as arguments to a
1547 placement new operator. This routine performs no semantic checks;
1548 it just creates and returns a NEW_EXPR. */
1549
1550 static tree
1551 build_raw_new_expr (tree placement, tree type, tree nelts, tree init,
1552 int use_global_new)
1553 {
1554 tree new_expr;
1555
1556 new_expr = build4 (NEW_EXPR, build_pointer_type (type), placement, type,
1557 nelts, init);
1558 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
1559 TREE_SIDE_EFFECTS (new_expr) = 1;
1560
1561 return new_expr;
1562 }
1563
1564 /* Make sure that there are no aliasing issues with T, a placement new
1565 expression applied to PLACEMENT, by recording the change in dynamic
1566 type. If placement new is inlined, as it is with libstdc++, and if
1567 the type of the placement new differs from the type of the
1568 placement location itself, then alias analysis may think it is OK
1569 to interchange writes to the location from before the placement new
1570 and from after the placement new. We have to prevent type-based
1571 alias analysis from applying. PLACEMENT may be NULL, which means
1572 that we couldn't capture it in a temporary variable, in which case
1573 we use a memory clobber. */
1574
1575 static tree
1576 avoid_placement_new_aliasing (tree t, tree placement)
1577 {
1578 tree type_change;
1579
1580 if (processing_template_decl)
1581 return t;
1582
1583 /* If we are not using type based aliasing, we don't have to do
1584 anything. */
1585 if (!flag_strict_aliasing)
1586 return t;
1587
1588 /* If we have a pointer and a location, record the change in dynamic
1589 type. Otherwise we need a general memory clobber. */
1590 if (TREE_CODE (TREE_TYPE (t)) == POINTER_TYPE
1591 && placement != NULL_TREE
1592 && TREE_CODE (TREE_TYPE (placement)) == POINTER_TYPE)
1593 type_change = build_stmt (CHANGE_DYNAMIC_TYPE_EXPR,
1594 TREE_TYPE (t),
1595 placement);
1596 else
1597 {
1598 /* Build a memory clobber. */
1599 type_change = build_stmt (ASM_EXPR,
1600 build_string (0, ""),
1601 NULL_TREE,
1602 NULL_TREE,
1603 tree_cons (NULL_TREE,
1604 build_string (6, "memory"),
1605 NULL_TREE));
1606
1607 ASM_VOLATILE_P (type_change) = 1;
1608 }
1609
1610 return build2 (COMPOUND_EXPR, TREE_TYPE (t), type_change, t);
1611 }
1612
1613 /* Generate code for a new-expression, including calling the "operator
1614 new" function, initializing the object, and, if an exception occurs
1615 during construction, cleaning up. The arguments are as for
1616 build_raw_new_expr. */
1617
1618 static tree
1619 build_new_1 (tree placement, tree type, tree nelts, tree init,
1620 bool globally_qualified_p)
1621 {
1622 tree size, rval;
1623 /* True iff this is a call to "operator new[]" instead of just
1624 "operator new". */
1625 bool array_p = false;
1626 /* True iff ARRAY_P is true and the bound of the array type is
1627 not necessarily a compile time constant. For example, VLA_P is
1628 true for "new int[f()]". */
1629 bool vla_p = false;
1630 /* The type being allocated. If ARRAY_P is true, this will be an
1631 ARRAY_TYPE. */
1632 tree full_type;
1633 /* If ARRAY_P is true, the element type of the array. This is an
1634 never ARRAY_TYPE; for something like "new int[3][4]", the
1635 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
1636 FULL_TYPE. */
1637 tree elt_type;
1638 /* The type of the new-expression. (This type is always a pointer
1639 type.) */
1640 tree pointer_type;
1641 /* A pointer type pointing to the FULL_TYPE. */
1642 tree full_pointer_type;
1643 tree outer_nelts = NULL_TREE;
1644 tree alloc_call, alloc_expr;
1645 /* The address returned by the call to "operator new". This node is
1646 a VAR_DECL and is therefore reusable. */
1647 tree alloc_node;
1648 tree alloc_fn;
1649 tree cookie_expr, init_expr;
1650 int nothrow, check_new;
1651 int use_java_new = 0;
1652 /* If non-NULL, the number of extra bytes to allocate at the
1653 beginning of the storage allocated for an array-new expression in
1654 order to store the number of elements. */
1655 tree cookie_size = NULL_TREE;
1656 tree placement_expr;
1657 /* True if the function we are calling is a placement allocation
1658 function. */
1659 bool placement_allocation_fn_p;
1660 tree args = NULL_TREE;
1661 /* True if the storage must be initialized, either by a constructor
1662 or due to an explicit new-initializer. */
1663 bool is_initialized;
1664 /* The address of the thing allocated, not including any cookie. In
1665 particular, if an array cookie is in use, DATA_ADDR is the
1666 address of the first array element. This node is a VAR_DECL, and
1667 is therefore reusable. */
1668 tree data_addr;
1669 tree init_preeval_expr = NULL_TREE;
1670
1671 if (nelts)
1672 {
1673 tree index;
1674
1675 outer_nelts = nelts;
1676 array_p = true;
1677
1678 /* ??? The middle-end will error on us for building a VLA outside a
1679 function context. Methinks that's not it's purvey. So we'll do
1680 our own VLA layout later. */
1681 vla_p = true;
1682 index = convert (sizetype, nelts);
1683 index = size_binop (MINUS_EXPR, index, size_one_node);
1684 index = build_index_type (index);
1685 full_type = build_cplus_array_type (type, NULL_TREE);
1686 /* We need a copy of the type as build_array_type will return a shared copy
1687 of the incomplete array type. */
1688 full_type = build_distinct_type_copy (full_type);
1689 TYPE_DOMAIN (full_type) = index;
1690 SET_TYPE_STRUCTURAL_EQUALITY (full_type);
1691 }
1692 else
1693 {
1694 full_type = type;
1695 if (TREE_CODE (type) == ARRAY_TYPE)
1696 {
1697 array_p = true;
1698 nelts = array_type_nelts_top (type);
1699 outer_nelts = nelts;
1700 type = TREE_TYPE (type);
1701 }
1702 }
1703
1704 /* If our base type is an array, then make sure we know how many elements
1705 it has. */
1706 for (elt_type = type;
1707 TREE_CODE (elt_type) == ARRAY_TYPE;
1708 elt_type = TREE_TYPE (elt_type))
1709 nelts = cp_build_binary_op (MULT_EXPR, nelts,
1710 array_type_nelts_top (elt_type));
1711
1712 if (TREE_CODE (elt_type) == VOID_TYPE)
1713 {
1714 error ("invalid type %<void%> for new");
1715 return error_mark_node;
1716 }
1717
1718 if (abstract_virtuals_error (NULL_TREE, elt_type))
1719 return error_mark_node;
1720
1721 is_initialized = (TYPE_NEEDS_CONSTRUCTING (elt_type) || init);
1722 if (CP_TYPE_CONST_P (elt_type) && !is_initialized)
1723 {
1724 error ("uninitialized const in %<new%> of %q#T", elt_type);
1725 return error_mark_node;
1726 }
1727
1728 size = size_in_bytes (elt_type);
1729 if (array_p)
1730 {
1731 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
1732 if (vla_p)
1733 {
1734 tree n, bitsize;
1735
1736 /* Do our own VLA layout. Setting TYPE_SIZE/_UNIT is
1737 necessary in order for the <INIT_EXPR <*foo> <CONSTRUCTOR
1738 ...>> to be valid. */
1739 TYPE_SIZE_UNIT (full_type) = size;
1740 n = convert (bitsizetype, nelts);
1741 bitsize = size_binop (MULT_EXPR, TYPE_SIZE (elt_type), n);
1742 TYPE_SIZE (full_type) = bitsize;
1743 }
1744 }
1745
1746 alloc_fn = NULL_TREE;
1747
1748 /* If PLACEMENT is a simple pointer type, then copy it into
1749 PLACEMENT_EXPR. */
1750 if (processing_template_decl
1751 || placement == NULL_TREE
1752 || TREE_CHAIN (placement) != NULL_TREE
1753 || TREE_CODE (TREE_TYPE (TREE_VALUE (placement))) != POINTER_TYPE)
1754 placement_expr = NULL_TREE;
1755 else
1756 {
1757 placement_expr = get_target_expr (TREE_VALUE (placement));
1758 placement = tree_cons (NULL_TREE, placement_expr, NULL_TREE);
1759 }
1760
1761 /* Allocate the object. */
1762 if (! placement && TYPE_FOR_JAVA (elt_type))
1763 {
1764 tree class_addr;
1765 tree class_decl = build_java_class_ref (elt_type);
1766 static const char alloc_name[] = "_Jv_AllocObject";
1767
1768 if (class_decl == error_mark_node)
1769 return error_mark_node;
1770
1771 use_java_new = 1;
1772 if (!get_global_value_if_present (get_identifier (alloc_name),
1773 &alloc_fn))
1774 {
1775 error ("call to Java constructor with %qs undefined", alloc_name);
1776 return error_mark_node;
1777 }
1778 else if (really_overloaded_fn (alloc_fn))
1779 {
1780 error ("%qD should never be overloaded", alloc_fn);
1781 return error_mark_node;
1782 }
1783 alloc_fn = OVL_CURRENT (alloc_fn);
1784 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
1785 alloc_call = (build_function_call
1786 (alloc_fn,
1787 build_tree_list (NULL_TREE, class_addr)));
1788 }
1789 else
1790 {
1791 tree fnname;
1792 tree fns;
1793
1794 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
1795
1796 if (!globally_qualified_p
1797 && CLASS_TYPE_P (elt_type)
1798 && (array_p
1799 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
1800 : TYPE_HAS_NEW_OPERATOR (elt_type)))
1801 {
1802 /* Use a class-specific operator new. */
1803 /* If a cookie is required, add some extra space. */
1804 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
1805 {
1806 cookie_size = targetm.cxx.get_cookie_size (elt_type);
1807 size = size_binop (PLUS_EXPR, size, cookie_size);
1808 }
1809 /* Create the argument list. */
1810 args = tree_cons (NULL_TREE, size, placement);
1811 /* Do name-lookup to find the appropriate operator. */
1812 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
1813 if (fns == NULL_TREE)
1814 {
1815 error ("no suitable %qD found in class %qT", fnname, elt_type);
1816 return error_mark_node;
1817 }
1818 if (TREE_CODE (fns) == TREE_LIST)
1819 {
1820 error ("request for member %qD is ambiguous", fnname);
1821 print_candidates (fns);
1822 return error_mark_node;
1823 }
1824 alloc_call = build_new_method_call (build_dummy_object (elt_type),
1825 fns, args,
1826 /*conversion_path=*/NULL_TREE,
1827 LOOKUP_NORMAL,
1828 &alloc_fn);
1829 }
1830 else
1831 {
1832 /* Use a global operator new. */
1833 /* See if a cookie might be required. */
1834 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
1835 cookie_size = targetm.cxx.get_cookie_size (elt_type);
1836 else
1837 cookie_size = NULL_TREE;
1838
1839 alloc_call = build_operator_new_call (fnname, placement,
1840 &size, &cookie_size,
1841 &alloc_fn);
1842 }
1843 }
1844
1845 if (alloc_call == error_mark_node)
1846 return error_mark_node;
1847
1848 gcc_assert (alloc_fn != NULL_TREE);
1849
1850 /* In the simple case, we can stop now. */
1851 pointer_type = build_pointer_type (type);
1852 if (!cookie_size && !is_initialized)
1853 {
1854 rval = build_nop (pointer_type, alloc_call);
1855 if (placement != NULL)
1856 rval = avoid_placement_new_aliasing (rval, placement_expr);
1857 return rval;
1858 }
1859
1860 /* While we're working, use a pointer to the type we've actually
1861 allocated. Store the result of the call in a variable so that we
1862 can use it more than once. */
1863 full_pointer_type = build_pointer_type (full_type);
1864 alloc_expr = get_target_expr (build_nop (full_pointer_type, alloc_call));
1865 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
1866
1867 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
1868 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
1869 alloc_call = TREE_OPERAND (alloc_call, 1);
1870
1871 /* Now, check to see if this function is actually a placement
1872 allocation function. This can happen even when PLACEMENT is NULL
1873 because we might have something like:
1874
1875 struct S { void* operator new (size_t, int i = 0); };
1876
1877 A call to `new S' will get this allocation function, even though
1878 there is no explicit placement argument. If there is more than
1879 one argument, or there are variable arguments, then this is a
1880 placement allocation function. */
1881 placement_allocation_fn_p
1882 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
1883 || varargs_function_p (alloc_fn));
1884
1885 /* Preevaluate the placement args so that we don't reevaluate them for a
1886 placement delete. */
1887 if (placement_allocation_fn_p)
1888 {
1889 tree inits;
1890 stabilize_call (alloc_call, &inits);
1891 if (inits)
1892 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
1893 alloc_expr);
1894 }
1895
1896 /* unless an allocation function is declared with an empty excep-
1897 tion-specification (_except.spec_), throw(), it indicates failure to
1898 allocate storage by throwing a bad_alloc exception (clause _except_,
1899 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
1900 cation function is declared with an empty exception-specification,
1901 throw(), it returns null to indicate failure to allocate storage and a
1902 non-null pointer otherwise.
1903
1904 So check for a null exception spec on the op new we just called. */
1905
1906 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
1907 check_new = (flag_check_new || nothrow) && ! use_java_new;
1908
1909 if (cookie_size)
1910 {
1911 tree cookie;
1912 tree cookie_ptr;
1913 tree size_ptr_type;
1914
1915 /* Adjust so we're pointing to the start of the object. */
1916 data_addr = get_target_expr (build2 (POINTER_PLUS_EXPR, full_pointer_type,
1917 alloc_node, cookie_size));
1918
1919 /* Store the number of bytes allocated so that we can know how
1920 many elements to destroy later. We use the last sizeof
1921 (size_t) bytes to store the number of elements. */
1922 cookie_ptr = fold_build1 (NEGATE_EXPR, sizetype, size_in_bytes (sizetype));
1923 size_ptr_type = build_pointer_type (sizetype);
1924 cookie_ptr = build2 (POINTER_PLUS_EXPR, size_ptr_type,
1925 fold_convert (size_ptr_type, data_addr), cookie_ptr);
1926 cookie = build_indirect_ref (cookie_ptr, NULL);
1927
1928 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
1929
1930 if (targetm.cxx.cookie_has_size ())
1931 {
1932 /* Also store the element size. */
1933 cookie_ptr = build2 (POINTER_PLUS_EXPR, size_ptr_type, cookie_ptr,
1934 fold_build1 (NEGATE_EXPR, sizetype,
1935 size_in_bytes (sizetype)));
1936
1937 cookie = build_indirect_ref (cookie_ptr, NULL);
1938 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
1939 size_in_bytes(elt_type));
1940 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
1941 cookie, cookie_expr);
1942 }
1943 data_addr = TARGET_EXPR_SLOT (data_addr);
1944 }
1945 else
1946 {
1947 cookie_expr = NULL_TREE;
1948 data_addr = alloc_node;
1949 }
1950
1951 /* Now initialize the allocated object. Note that we preevaluate the
1952 initialization expression, apart from the actual constructor call or
1953 assignment--we do this because we want to delay the allocation as long
1954 as possible in order to minimize the size of the exception region for
1955 placement delete. */
1956 if (is_initialized)
1957 {
1958 bool stable;
1959
1960 init_expr = build_indirect_ref (data_addr, NULL);
1961
1962 if (array_p)
1963 {
1964 bool explicit_default_init_p = false;
1965
1966 if (init == void_zero_node)
1967 {
1968 init = NULL_TREE;
1969 explicit_default_init_p = true;
1970 }
1971 else if (init)
1972 pedwarn ("ISO C++ forbids initialization in array new");
1973
1974 init_expr
1975 = build_vec_init (init_expr,
1976 cp_build_binary_op (MINUS_EXPR, outer_nelts,
1977 integer_one_node),
1978 init,
1979 explicit_default_init_p,
1980 /*from_array=*/0);
1981
1982 /* An array initialization is stable because the initialization
1983 of each element is a full-expression, so the temporaries don't
1984 leak out. */
1985 stable = true;
1986 }
1987 else
1988 {
1989 if (init == void_zero_node)
1990 init = build_default_init (full_type, nelts);
1991
1992 if (TYPE_NEEDS_CONSTRUCTING (type))
1993 {
1994 init_expr = build_special_member_call (init_expr,
1995 complete_ctor_identifier,
1996 init, elt_type,
1997 LOOKUP_NORMAL);
1998 stable = stabilize_init (init_expr, &init_preeval_expr);
1999 }
2000 else
2001 {
2002 /* We are processing something like `new int (10)', which
2003 means allocate an int, and initialize it with 10. */
2004
2005 if (TREE_CODE (init) == TREE_LIST)
2006 init = build_x_compound_expr_from_list (init,
2007 "new initializer");
2008 else
2009 gcc_assert (TREE_CODE (init) != CONSTRUCTOR
2010 || TREE_TYPE (init) != NULL_TREE);
2011
2012 init_expr = build_modify_expr (init_expr, INIT_EXPR, init);
2013 stable = stabilize_init (init_expr, &init_preeval_expr);
2014 }
2015 }
2016
2017 if (init_expr == error_mark_node)
2018 return error_mark_node;
2019
2020 /* If any part of the object initialization terminates by throwing an
2021 exception and a suitable deallocation function can be found, the
2022 deallocation function is called to free the memory in which the
2023 object was being constructed, after which the exception continues
2024 to propagate in the context of the new-expression. If no
2025 unambiguous matching deallocation function can be found,
2026 propagating the exception does not cause the object's memory to be
2027 freed. */
2028 if (flag_exceptions && ! use_java_new)
2029 {
2030 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
2031 tree cleanup;
2032
2033 /* The Standard is unclear here, but the right thing to do
2034 is to use the same method for finding deallocation
2035 functions that we use for finding allocation functions. */
2036 cleanup = build_op_delete_call (dcode, alloc_node, size,
2037 globally_qualified_p,
2038 (placement_allocation_fn_p
2039 ? alloc_call : NULL_TREE),
2040 alloc_fn);
2041
2042 if (!cleanup)
2043 /* We're done. */;
2044 else if (stable)
2045 /* This is much simpler if we were able to preevaluate all of
2046 the arguments to the constructor call. */
2047 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
2048 init_expr, cleanup);
2049 else
2050 /* Ack! First we allocate the memory. Then we set our sentry
2051 variable to true, and expand a cleanup that deletes the
2052 memory if sentry is true. Then we run the constructor, and
2053 finally clear the sentry.
2054
2055 We need to do this because we allocate the space first, so
2056 if there are any temporaries with cleanups in the
2057 constructor args and we weren't able to preevaluate them, we
2058 need this EH region to extend until end of full-expression
2059 to preserve nesting. */
2060 {
2061 tree end, sentry, begin;
2062
2063 begin = get_target_expr (boolean_true_node);
2064 CLEANUP_EH_ONLY (begin) = 1;
2065
2066 sentry = TARGET_EXPR_SLOT (begin);
2067
2068 TARGET_EXPR_CLEANUP (begin)
2069 = build3 (COND_EXPR, void_type_node, sentry,
2070 cleanup, void_zero_node);
2071
2072 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
2073 sentry, boolean_false_node);
2074
2075 init_expr
2076 = build2 (COMPOUND_EXPR, void_type_node, begin,
2077 build2 (COMPOUND_EXPR, void_type_node, init_expr,
2078 end));
2079 }
2080
2081 }
2082 }
2083 else
2084 init_expr = NULL_TREE;
2085
2086 /* Now build up the return value in reverse order. */
2087
2088 rval = data_addr;
2089
2090 if (init_expr)
2091 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2092 if (cookie_expr)
2093 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2094
2095 if (rval == alloc_node)
2096 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2097 and return the call (which doesn't need to be adjusted). */
2098 rval = TARGET_EXPR_INITIAL (alloc_expr);
2099 else
2100 {
2101 if (check_new)
2102 {
2103 tree ifexp = cp_build_binary_op (NE_EXPR, alloc_node,
2104 integer_zero_node);
2105 rval = build_conditional_expr (ifexp, rval, alloc_node);
2106 }
2107
2108 /* Perform the allocation before anything else, so that ALLOC_NODE
2109 has been initialized before we start using it. */
2110 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2111 }
2112
2113 if (init_preeval_expr)
2114 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2115
2116 /* Convert to the final type. */
2117 rval = build_nop (pointer_type, rval);
2118
2119 /* A new-expression is never an lvalue. */
2120 gcc_assert (!lvalue_p (rval));
2121
2122 if (placement != NULL)
2123 rval = avoid_placement_new_aliasing (rval, placement_expr);
2124
2125 return rval;
2126 }
2127
2128 /* Generate a representation for a C++ "new" expression. PLACEMENT is
2129 a TREE_LIST of placement-new arguments (or NULL_TREE if none). If
2130 NELTS is NULL, TYPE is the type of the storage to be allocated. If
2131 NELTS is not NULL, then this is an array-new allocation; TYPE is
2132 the type of the elements in the array and NELTS is the number of
2133 elements in the array. INIT, if non-NULL, is the initializer for
2134 the new object, or void_zero_node to indicate an initializer of
2135 "()". If USE_GLOBAL_NEW is true, then the user explicitly wrote
2136 "::new" rather than just "new". */
2137
2138 tree
2139 build_new (tree placement, tree type, tree nelts, tree init,
2140 int use_global_new)
2141 {
2142 tree rval;
2143 tree orig_placement;
2144 tree orig_nelts;
2145 tree orig_init;
2146
2147 if (placement == error_mark_node || type == error_mark_node
2148 || init == error_mark_node)
2149 return error_mark_node;
2150
2151 orig_placement = placement;
2152 orig_nelts = nelts;
2153 orig_init = init;
2154
2155 if (processing_template_decl)
2156 {
2157 if (dependent_type_p (type)
2158 || any_type_dependent_arguments_p (placement)
2159 || (nelts && type_dependent_expression_p (nelts))
2160 || (init != void_zero_node
2161 && any_type_dependent_arguments_p (init)))
2162 return build_raw_new_expr (placement, type, nelts, init,
2163 use_global_new);
2164 placement = build_non_dependent_args (placement);
2165 if (nelts)
2166 nelts = build_non_dependent_expr (nelts);
2167 if (init != void_zero_node)
2168 init = build_non_dependent_args (init);
2169 }
2170
2171 if (nelts)
2172 {
2173 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
2174 pedwarn ("size in array new must have integral type");
2175 nelts = cp_save_expr (cp_convert (sizetype, nelts));
2176 /* It is valid to allocate a zero-element array:
2177
2178 [expr.new]
2179
2180 When the value of the expression in a direct-new-declarator
2181 is zero, the allocation function is called to allocate an
2182 array with no elements. The pointer returned by the
2183 new-expression is non-null. [Note: If the library allocation
2184 function is called, the pointer returned is distinct from the
2185 pointer to any other object.]
2186
2187 However, that is not generally useful, so we issue a
2188 warning. */
2189 if (integer_zerop (nelts))
2190 warning (0, "allocating zero-element array");
2191 }
2192
2193 /* ``A reference cannot be created by the new operator. A reference
2194 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
2195 returned by new.'' ARM 5.3.3 */
2196 if (TREE_CODE (type) == REFERENCE_TYPE)
2197 {
2198 error ("new cannot be applied to a reference type");
2199 type = TREE_TYPE (type);
2200 }
2201
2202 if (TREE_CODE (type) == FUNCTION_TYPE)
2203 {
2204 error ("new cannot be applied to a function type");
2205 return error_mark_node;
2206 }
2207
2208 /* The type allocated must be complete. If the new-type-id was
2209 "T[N]" then we are just checking that "T" is complete here, but
2210 that is equivalent, since the value of "N" doesn't matter. */
2211 if (!complete_type_or_else (type, NULL_TREE))
2212 return error_mark_node;
2213
2214 rval = build_new_1 (placement, type, nelts, init, use_global_new);
2215 if (rval == error_mark_node)
2216 return error_mark_node;
2217
2218 if (processing_template_decl)
2219 return build_raw_new_expr (orig_placement, type, orig_nelts, orig_init,
2220 use_global_new);
2221
2222 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
2223 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
2224 TREE_NO_WARNING (rval) = 1;
2225
2226 return rval;
2227 }
2228
2229 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
2230
2231 tree
2232 build_java_class_ref (tree type)
2233 {
2234 tree name = NULL_TREE, class_decl;
2235 static tree CL_suffix = NULL_TREE;
2236 if (CL_suffix == NULL_TREE)
2237 CL_suffix = get_identifier("class$");
2238 if (jclass_node == NULL_TREE)
2239 {
2240 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
2241 if (jclass_node == NULL_TREE)
2242 {
2243 error ("call to Java constructor, while %<jclass%> undefined");
2244 return error_mark_node;
2245 }
2246 jclass_node = TREE_TYPE (jclass_node);
2247 }
2248
2249 /* Mangle the class$ field. */
2250 {
2251 tree field;
2252 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2253 if (DECL_NAME (field) == CL_suffix)
2254 {
2255 mangle_decl (field);
2256 name = DECL_ASSEMBLER_NAME (field);
2257 break;
2258 }
2259 if (!field)
2260 {
2261 error ("can't find %<class$%> in %qT", type);
2262 return error_mark_node;
2263 }
2264 }
2265
2266 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
2267 if (class_decl == NULL_TREE)
2268 {
2269 class_decl = build_decl (VAR_DECL, name, TREE_TYPE (jclass_node));
2270 TREE_STATIC (class_decl) = 1;
2271 DECL_EXTERNAL (class_decl) = 1;
2272 TREE_PUBLIC (class_decl) = 1;
2273 DECL_ARTIFICIAL (class_decl) = 1;
2274 DECL_IGNORED_P (class_decl) = 1;
2275 pushdecl_top_level (class_decl);
2276 make_decl_rtl (class_decl);
2277 }
2278 return class_decl;
2279 }
2280 \f
2281 static tree
2282 build_vec_delete_1 (tree base, tree maxindex, tree type,
2283 special_function_kind auto_delete_vec, int use_global_delete)
2284 {
2285 tree virtual_size;
2286 tree ptype = build_pointer_type (type = complete_type (type));
2287 tree size_exp = size_in_bytes (type);
2288
2289 /* Temporary variables used by the loop. */
2290 tree tbase, tbase_init;
2291
2292 /* This is the body of the loop that implements the deletion of a
2293 single element, and moves temp variables to next elements. */
2294 tree body;
2295
2296 /* This is the LOOP_EXPR that governs the deletion of the elements. */
2297 tree loop = 0;
2298
2299 /* This is the thing that governs what to do after the loop has run. */
2300 tree deallocate_expr = 0;
2301
2302 /* This is the BIND_EXPR which holds the outermost iterator of the
2303 loop. It is convenient to set this variable up and test it before
2304 executing any other code in the loop.
2305 This is also the containing expression returned by this function. */
2306 tree controller = NULL_TREE;
2307 tree tmp;
2308
2309 /* We should only have 1-D arrays here. */
2310 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
2311
2312 if (! IS_AGGR_TYPE (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2313 goto no_destructor;
2314
2315 /* The below is short by the cookie size. */
2316 virtual_size = size_binop (MULT_EXPR, size_exp,
2317 convert (sizetype, maxindex));
2318
2319 tbase = create_temporary_var (ptype);
2320 tbase_init = build_modify_expr (tbase, NOP_EXPR,
2321 fold_build2 (POINTER_PLUS_EXPR, ptype,
2322 fold_convert (ptype, base),
2323 virtual_size));
2324 DECL_REGISTER (tbase) = 1;
2325 controller = build3 (BIND_EXPR, void_type_node, tbase,
2326 NULL_TREE, NULL_TREE);
2327 TREE_SIDE_EFFECTS (controller) = 1;
2328
2329 body = build1 (EXIT_EXPR, void_type_node,
2330 build2 (EQ_EXPR, boolean_type_node, tbase,
2331 fold_convert (ptype, base)));
2332 tmp = fold_build1 (NEGATE_EXPR, sizetype, size_exp);
2333 body = build_compound_expr
2334 (body, build_modify_expr (tbase, NOP_EXPR,
2335 build2 (POINTER_PLUS_EXPR, ptype, tbase, tmp)));
2336 body = build_compound_expr
2337 (body, build_delete (ptype, tbase, sfk_complete_destructor,
2338 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1));
2339
2340 loop = build1 (LOOP_EXPR, void_type_node, body);
2341 loop = build_compound_expr (tbase_init, loop);
2342
2343 no_destructor:
2344 /* If the delete flag is one, or anything else with the low bit set,
2345 delete the storage. */
2346 if (auto_delete_vec != sfk_base_destructor)
2347 {
2348 tree base_tbd;
2349
2350 /* The below is short by the cookie size. */
2351 virtual_size = size_binop (MULT_EXPR, size_exp,
2352 convert (sizetype, maxindex));
2353
2354 if (! TYPE_VEC_NEW_USES_COOKIE (type))
2355 /* no header */
2356 base_tbd = base;
2357 else
2358 {
2359 tree cookie_size;
2360
2361 cookie_size = targetm.cxx.get_cookie_size (type);
2362 base_tbd
2363 = cp_convert (ptype,
2364 cp_build_binary_op (MINUS_EXPR,
2365 cp_convert (string_type_node,
2366 base),
2367 cookie_size));
2368 /* True size with header. */
2369 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
2370 }
2371
2372 if (auto_delete_vec == sfk_deleting_destructor)
2373 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
2374 base_tbd, virtual_size,
2375 use_global_delete & 1,
2376 /*placement=*/NULL_TREE,
2377 /*alloc_fn=*/NULL_TREE);
2378 }
2379
2380 body = loop;
2381 if (!deallocate_expr)
2382 ;
2383 else if (!body)
2384 body = deallocate_expr;
2385 else
2386 body = build_compound_expr (body, deallocate_expr);
2387
2388 if (!body)
2389 body = integer_zero_node;
2390
2391 /* Outermost wrapper: If pointer is null, punt. */
2392 body = fold_build3 (COND_EXPR, void_type_node,
2393 fold_build2 (NE_EXPR, boolean_type_node, base,
2394 convert (TREE_TYPE (base),
2395 integer_zero_node)),
2396 body, integer_zero_node);
2397 body = build1 (NOP_EXPR, void_type_node, body);
2398
2399 if (controller)
2400 {
2401 TREE_OPERAND (controller, 1) = body;
2402 body = controller;
2403 }
2404
2405 if (TREE_CODE (base) == SAVE_EXPR)
2406 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
2407 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
2408
2409 return convert_to_void (body, /*implicit=*/NULL);
2410 }
2411
2412 /* Create an unnamed variable of the indicated TYPE. */
2413
2414 tree
2415 create_temporary_var (tree type)
2416 {
2417 tree decl;
2418
2419 decl = build_decl (VAR_DECL, NULL_TREE, type);
2420 TREE_USED (decl) = 1;
2421 DECL_ARTIFICIAL (decl) = 1;
2422 DECL_IGNORED_P (decl) = 1;
2423 DECL_SOURCE_LOCATION (decl) = input_location;
2424 DECL_CONTEXT (decl) = current_function_decl;
2425
2426 return decl;
2427 }
2428
2429 /* Create a new temporary variable of the indicated TYPE, initialized
2430 to INIT.
2431
2432 It is not entered into current_binding_level, because that breaks
2433 things when it comes time to do final cleanups (which take place
2434 "outside" the binding contour of the function). */
2435
2436 static tree
2437 get_temp_regvar (tree type, tree init)
2438 {
2439 tree decl;
2440
2441 decl = create_temporary_var (type);
2442 add_decl_expr (decl);
2443
2444 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
2445
2446 return decl;
2447 }
2448
2449 /* `build_vec_init' returns tree structure that performs
2450 initialization of a vector of aggregate types.
2451
2452 BASE is a reference to the vector, of ARRAY_TYPE.
2453 MAXINDEX is the maximum index of the array (one less than the
2454 number of elements). It is only used if
2455 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
2456
2457 INIT is the (possibly NULL) initializer.
2458
2459 If EXPLICIT_DEFAULT_INIT_P is true, then INIT must be NULL. All
2460 elements in the array are default-initialized.
2461
2462 FROM_ARRAY is 0 if we should init everything with INIT
2463 (i.e., every element initialized from INIT).
2464 FROM_ARRAY is 1 if we should index into INIT in parallel
2465 with initialization of DECL.
2466 FROM_ARRAY is 2 if we should index into INIT in parallel,
2467 but use assignment instead of initialization. */
2468
2469 tree
2470 build_vec_init (tree base, tree maxindex, tree init,
2471 bool explicit_default_init_p,
2472 int from_array)
2473 {
2474 tree rval;
2475 tree base2 = NULL_TREE;
2476 tree size;
2477 tree itype = NULL_TREE;
2478 tree iterator;
2479 /* The type of the array. */
2480 tree atype = TREE_TYPE (base);
2481 /* The type of an element in the array. */
2482 tree type = TREE_TYPE (atype);
2483 /* The element type reached after removing all outer array
2484 types. */
2485 tree inner_elt_type;
2486 /* The type of a pointer to an element in the array. */
2487 tree ptype;
2488 tree stmt_expr;
2489 tree compound_stmt;
2490 int destroy_temps;
2491 tree try_block = NULL_TREE;
2492 int num_initialized_elts = 0;
2493 bool is_global;
2494
2495 if (TYPE_DOMAIN (atype))
2496 maxindex = array_type_nelts (atype);
2497
2498 if (maxindex == NULL_TREE || maxindex == error_mark_node)
2499 return error_mark_node;
2500
2501 if (explicit_default_init_p)
2502 gcc_assert (!init);
2503
2504 inner_elt_type = strip_array_types (atype);
2505 if (init
2506 && (from_array == 2
2507 ? (!CLASS_TYPE_P (inner_elt_type)
2508 || !TYPE_HAS_COMPLEX_ASSIGN_REF (inner_elt_type))
2509 : !TYPE_NEEDS_CONSTRUCTING (type))
2510 && ((TREE_CODE (init) == CONSTRUCTOR
2511 /* Don't do this if the CONSTRUCTOR might contain something
2512 that might throw and require us to clean up. */
2513 && (VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (init))
2514 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
2515 || from_array))
2516 {
2517 /* Do non-default initialization of POD arrays resulting from
2518 brace-enclosed initializers. In this case, digest_init and
2519 store_constructor will handle the semantics for us. */
2520
2521 stmt_expr = build2 (INIT_EXPR, atype, base, init);
2522 return stmt_expr;
2523 }
2524
2525 maxindex = cp_convert (ptrdiff_type_node, maxindex);
2526 ptype = build_pointer_type (type);
2527 size = size_in_bytes (type);
2528 if (TREE_CODE (TREE_TYPE (base)) == ARRAY_TYPE)
2529 base = cp_convert (ptype, decay_conversion (base));
2530
2531 /* The code we are generating looks like:
2532 ({
2533 T* t1 = (T*) base;
2534 T* rval = t1;
2535 ptrdiff_t iterator = maxindex;
2536 try {
2537 for (; iterator != -1; --iterator) {
2538 ... initialize *t1 ...
2539 ++t1;
2540 }
2541 } catch (...) {
2542 ... destroy elements that were constructed ...
2543 }
2544 rval;
2545 })
2546
2547 We can omit the try and catch blocks if we know that the
2548 initialization will never throw an exception, or if the array
2549 elements do not have destructors. We can omit the loop completely if
2550 the elements of the array do not have constructors.
2551
2552 We actually wrap the entire body of the above in a STMT_EXPR, for
2553 tidiness.
2554
2555 When copying from array to another, when the array elements have
2556 only trivial copy constructors, we should use __builtin_memcpy
2557 rather than generating a loop. That way, we could take advantage
2558 of whatever cleverness the back end has for dealing with copies
2559 of blocks of memory. */
2560
2561 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
2562 destroy_temps = stmts_are_full_exprs_p ();
2563 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2564 rval = get_temp_regvar (ptype, base);
2565 base = get_temp_regvar (ptype, rval);
2566 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
2567
2568 /* Protect the entire array initialization so that we can destroy
2569 the partially constructed array if an exception is thrown.
2570 But don't do this if we're assigning. */
2571 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2572 && from_array != 2)
2573 {
2574 try_block = begin_try_block ();
2575 }
2576
2577 if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
2578 {
2579 /* Do non-default initialization of non-POD arrays resulting from
2580 brace-enclosed initializers. */
2581 unsigned HOST_WIDE_INT idx;
2582 tree elt;
2583 from_array = 0;
2584
2585 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
2586 {
2587 tree baseref = build1 (INDIRECT_REF, type, base);
2588
2589 num_initialized_elts++;
2590
2591 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2592 if (IS_AGGR_TYPE (type) || TREE_CODE (type) == ARRAY_TYPE)
2593 finish_expr_stmt (build_aggr_init (baseref, elt, 0));
2594 else
2595 finish_expr_stmt (build_modify_expr (baseref, NOP_EXPR,
2596 elt));
2597 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2598
2599 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2600 finish_expr_stmt (build_unary_op (PREDECREMENT_EXPR, iterator, 0));
2601 }
2602
2603 /* Clear out INIT so that we don't get confused below. */
2604 init = NULL_TREE;
2605 }
2606 else if (from_array)
2607 {
2608 /* If initializing one array from another, initialize element by
2609 element. We rely upon the below calls the do argument
2610 checking. */
2611 if (init)
2612 {
2613 base2 = decay_conversion (init);
2614 itype = TREE_TYPE (base2);
2615 base2 = get_temp_regvar (itype, base2);
2616 itype = TREE_TYPE (itype);
2617 }
2618 else if (TYPE_LANG_SPECIFIC (type)
2619 && TYPE_NEEDS_CONSTRUCTING (type)
2620 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2621 {
2622 error ("initializer ends prematurely");
2623 return error_mark_node;
2624 }
2625 }
2626
2627 /* Now, default-initialize any remaining elements. We don't need to
2628 do that if a) the type does not need constructing, or b) we've
2629 already initialized all the elements.
2630
2631 We do need to keep going if we're copying an array. */
2632
2633 if (from_array
2634 || ((TYPE_NEEDS_CONSTRUCTING (type) || explicit_default_init_p)
2635 && ! (host_integerp (maxindex, 0)
2636 && (num_initialized_elts
2637 == tree_low_cst (maxindex, 0) + 1))))
2638 {
2639 /* If the ITERATOR is equal to -1, then we don't have to loop;
2640 we've already initialized all the elements. */
2641 tree for_stmt;
2642 tree elt_init;
2643 tree to;
2644
2645 for_stmt = begin_for_stmt ();
2646 finish_for_init_stmt (for_stmt);
2647 finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
2648 build_int_cst (TREE_TYPE (iterator), -1)),
2649 for_stmt);
2650 finish_for_expr (build_unary_op (PREDECREMENT_EXPR, iterator, 0),
2651 for_stmt);
2652
2653 to = build1 (INDIRECT_REF, type, base);
2654
2655 if (from_array)
2656 {
2657 tree from;
2658
2659 if (base2)
2660 from = build1 (INDIRECT_REF, itype, base2);
2661 else
2662 from = NULL_TREE;
2663
2664 if (from_array == 2)
2665 elt_init = build_modify_expr (to, NOP_EXPR, from);
2666 else if (TYPE_NEEDS_CONSTRUCTING (type))
2667 elt_init = build_aggr_init (to, from, 0);
2668 else if (from)
2669 elt_init = build_modify_expr (to, NOP_EXPR, from);
2670 else
2671 gcc_unreachable ();
2672 }
2673 else if (TREE_CODE (type) == ARRAY_TYPE)
2674 {
2675 if (init != 0)
2676 sorry
2677 ("cannot initialize multi-dimensional array with initializer");
2678 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
2679 0, 0,
2680 /*explicit_default_init_p=*/false,
2681 0);
2682 }
2683 else if (!TYPE_NEEDS_CONSTRUCTING (type))
2684 elt_init = (build_modify_expr
2685 (to, INIT_EXPR,
2686 build_zero_init (type, size_one_node,
2687 /*static_storage_p=*/false)));
2688 else
2689 elt_init = build_aggr_init (to, init, 0);
2690
2691 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2692 finish_expr_stmt (elt_init);
2693 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2694
2695 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2696 if (base2)
2697 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base2, 0));
2698
2699 finish_for_stmt (for_stmt);
2700 }
2701
2702 /* Make sure to cleanup any partially constructed elements. */
2703 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2704 && from_array != 2)
2705 {
2706 tree e;
2707 tree m = cp_build_binary_op (MINUS_EXPR, maxindex, iterator);
2708
2709 /* Flatten multi-dimensional array since build_vec_delete only
2710 expects one-dimensional array. */
2711 if (TREE_CODE (type) == ARRAY_TYPE)
2712 m = cp_build_binary_op (MULT_EXPR, m,
2713 array_type_nelts_total (type));
2714
2715 finish_cleanup_try_block (try_block);
2716 e = build_vec_delete_1 (rval, m,
2717 inner_elt_type, sfk_base_destructor,
2718 /*use_global_delete=*/0);
2719 finish_cleanup (e, try_block);
2720 }
2721
2722 /* The value of the array initialization is the array itself, RVAL
2723 is a pointer to the first element. */
2724 finish_stmt_expr_expr (rval, stmt_expr);
2725
2726 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
2727
2728 /* Now convert make the result have the correct type. */
2729 atype = build_pointer_type (atype);
2730 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
2731 stmt_expr = build_indirect_ref (stmt_expr, NULL);
2732
2733 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
2734 return stmt_expr;
2735 }
2736
2737 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
2738 build_delete. */
2739
2740 static tree
2741 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags)
2742 {
2743 tree name;
2744 tree fn;
2745 switch (dtor_kind)
2746 {
2747 case sfk_complete_destructor:
2748 name = complete_dtor_identifier;
2749 break;
2750
2751 case sfk_base_destructor:
2752 name = base_dtor_identifier;
2753 break;
2754
2755 case sfk_deleting_destructor:
2756 name = deleting_dtor_identifier;
2757 break;
2758
2759 default:
2760 gcc_unreachable ();
2761 }
2762 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
2763 return build_new_method_call (exp, fn,
2764 /*args=*/NULL_TREE,
2765 /*conversion_path=*/NULL_TREE,
2766 flags,
2767 /*fn_p=*/NULL);
2768 }
2769
2770 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
2771 ADDR is an expression which yields the store to be destroyed.
2772 AUTO_DELETE is the name of the destructor to call, i.e., either
2773 sfk_complete_destructor, sfk_base_destructor, or
2774 sfk_deleting_destructor.
2775
2776 FLAGS is the logical disjunction of zero or more LOOKUP_
2777 flags. See cp-tree.h for more info. */
2778
2779 tree
2780 build_delete (tree type, tree addr, special_function_kind auto_delete,
2781 int flags, int use_global_delete)
2782 {
2783 tree expr;
2784
2785 if (addr == error_mark_node)
2786 return error_mark_node;
2787
2788 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
2789 set to `error_mark_node' before it gets properly cleaned up. */
2790 if (type == error_mark_node)
2791 return error_mark_node;
2792
2793 type = TYPE_MAIN_VARIANT (type);
2794
2795 if (TREE_CODE (type) == POINTER_TYPE)
2796 {
2797 bool complete_p = true;
2798
2799 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
2800 if (TREE_CODE (type) == ARRAY_TYPE)
2801 goto handle_array;
2802
2803 /* We don't want to warn about delete of void*, only other
2804 incomplete types. Deleting other incomplete types
2805 invokes undefined behavior, but it is not ill-formed, so
2806 compile to something that would even do The Right Thing
2807 (TM) should the type have a trivial dtor and no delete
2808 operator. */
2809 if (!VOID_TYPE_P (type))
2810 {
2811 complete_type (type);
2812 if (!COMPLETE_TYPE_P (type))
2813 {
2814 warning (0, "possible problem detected in invocation of "
2815 "delete operator:");
2816 cxx_incomplete_type_diagnostic (addr, type, 1);
2817 inform ("neither the destructor nor the class-specific "
2818 "operator delete will be called, even if they are "
2819 "declared when the class is defined.");
2820 complete_p = false;
2821 }
2822 }
2823 if (VOID_TYPE_P (type) || !complete_p || !IS_AGGR_TYPE (type))
2824 /* Call the builtin operator delete. */
2825 return build_builtin_delete_call (addr);
2826 if (TREE_SIDE_EFFECTS (addr))
2827 addr = save_expr (addr);
2828
2829 /* Throw away const and volatile on target type of addr. */
2830 addr = convert_force (build_pointer_type (type), addr, 0);
2831 }
2832 else if (TREE_CODE (type) == ARRAY_TYPE)
2833 {
2834 handle_array:
2835
2836 if (TYPE_DOMAIN (type) == NULL_TREE)
2837 {
2838 error ("unknown array size in delete");
2839 return error_mark_node;
2840 }
2841 return build_vec_delete (addr, array_type_nelts (type),
2842 auto_delete, use_global_delete);
2843 }
2844 else
2845 {
2846 /* Don't check PROTECT here; leave that decision to the
2847 destructor. If the destructor is accessible, call it,
2848 else report error. */
2849 addr = build_unary_op (ADDR_EXPR, addr, 0);
2850 if (TREE_SIDE_EFFECTS (addr))
2851 addr = save_expr (addr);
2852
2853 addr = convert_force (build_pointer_type (type), addr, 0);
2854 }
2855
2856 gcc_assert (IS_AGGR_TYPE (type));
2857
2858 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2859 {
2860 if (auto_delete != sfk_deleting_destructor)
2861 return void_zero_node;
2862
2863 return build_op_delete_call (DELETE_EXPR, addr,
2864 cxx_sizeof_nowarn (type),
2865 use_global_delete,
2866 /*placement=*/NULL_TREE,
2867 /*alloc_fn=*/NULL_TREE);
2868 }
2869 else
2870 {
2871 tree head = NULL_TREE;
2872 tree do_delete = NULL_TREE;
2873 tree ifexp;
2874
2875 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
2876 lazily_declare_fn (sfk_destructor, type);
2877
2878 /* For `::delete x', we must not use the deleting destructor
2879 since then we would not be sure to get the global `operator
2880 delete'. */
2881 if (use_global_delete && auto_delete == sfk_deleting_destructor)
2882 {
2883 /* We will use ADDR multiple times so we must save it. */
2884 addr = save_expr (addr);
2885 head = get_target_expr (build_headof (addr));
2886 /* Delete the object. */
2887 do_delete = build_builtin_delete_call (head);
2888 /* Otherwise, treat this like a complete object destructor
2889 call. */
2890 auto_delete = sfk_complete_destructor;
2891 }
2892 /* If the destructor is non-virtual, there is no deleting
2893 variant. Instead, we must explicitly call the appropriate
2894 `operator delete' here. */
2895 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
2896 && auto_delete == sfk_deleting_destructor)
2897 {
2898 /* We will use ADDR multiple times so we must save it. */
2899 addr = save_expr (addr);
2900 /* Build the call. */
2901 do_delete = build_op_delete_call (DELETE_EXPR,
2902 addr,
2903 cxx_sizeof_nowarn (type),
2904 /*global_p=*/false,
2905 /*placement=*/NULL_TREE,
2906 /*alloc_fn=*/NULL_TREE);
2907 /* Call the complete object destructor. */
2908 auto_delete = sfk_complete_destructor;
2909 }
2910 else if (auto_delete == sfk_deleting_destructor
2911 && TYPE_GETS_REG_DELETE (type))
2912 {
2913 /* Make sure we have access to the member op delete, even though
2914 we'll actually be calling it from the destructor. */
2915 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
2916 /*global_p=*/false,
2917 /*placement=*/NULL_TREE,
2918 /*alloc_fn=*/NULL_TREE);
2919 }
2920
2921 expr = build_dtor_call (build_indirect_ref (addr, NULL),
2922 auto_delete, flags);
2923 if (do_delete)
2924 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
2925
2926 /* We need to calculate this before the dtor changes the vptr. */
2927 if (head)
2928 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
2929
2930 if (flags & LOOKUP_DESTRUCTOR)
2931 /* Explicit destructor call; don't check for null pointer. */
2932 ifexp = integer_one_node;
2933 else
2934 /* Handle deleting a null pointer. */
2935 ifexp = fold (cp_build_binary_op (NE_EXPR, addr, integer_zero_node));
2936
2937 if (ifexp != integer_one_node)
2938 expr = build3 (COND_EXPR, void_type_node,
2939 ifexp, expr, void_zero_node);
2940
2941 return expr;
2942 }
2943 }
2944
2945 /* At the beginning of a destructor, push cleanups that will call the
2946 destructors for our base classes and members.
2947
2948 Called from begin_destructor_body. */
2949
2950 void
2951 push_base_cleanups (void)
2952 {
2953 tree binfo, base_binfo;
2954 int i;
2955 tree member;
2956 tree expr;
2957 VEC(tree,gc) *vbases;
2958
2959 /* Run destructors for all virtual baseclasses. */
2960 if (CLASSTYPE_VBASECLASSES (current_class_type))
2961 {
2962 tree cond = (condition_conversion
2963 (build2 (BIT_AND_EXPR, integer_type_node,
2964 current_in_charge_parm,
2965 integer_two_node)));
2966
2967 /* The CLASSTYPE_VBASECLASSES vector is in initialization
2968 order, which is also the right order for pushing cleanups. */
2969 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
2970 VEC_iterate (tree, vbases, i, base_binfo); i++)
2971 {
2972 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
2973 {
2974 expr = build_special_member_call (current_class_ref,
2975 base_dtor_identifier,
2976 NULL_TREE,
2977 base_binfo,
2978 (LOOKUP_NORMAL
2979 | LOOKUP_NONVIRTUAL));
2980 expr = build3 (COND_EXPR, void_type_node, cond,
2981 expr, void_zero_node);
2982 finish_decl_cleanup (NULL_TREE, expr);
2983 }
2984 }
2985 }
2986
2987 /* Take care of the remaining baseclasses. */
2988 for (binfo = TYPE_BINFO (current_class_type), i = 0;
2989 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
2990 {
2991 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
2992 || BINFO_VIRTUAL_P (base_binfo))
2993 continue;
2994
2995 expr = build_special_member_call (current_class_ref,
2996 base_dtor_identifier,
2997 NULL_TREE, base_binfo,
2998 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
2999 finish_decl_cleanup (NULL_TREE, expr);
3000 }
3001
3002 for (member = TYPE_FIELDS (current_class_type); member;
3003 member = TREE_CHAIN (member))
3004 {
3005 if (TREE_TYPE (member) == error_mark_node
3006 || TREE_CODE (member) != FIELD_DECL
3007 || DECL_ARTIFICIAL (member))
3008 continue;
3009 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
3010 {
3011 tree this_member = (build_class_member_access_expr
3012 (current_class_ref, member,
3013 /*access_path=*/NULL_TREE,
3014 /*preserve_reference=*/false));
3015 tree this_type = TREE_TYPE (member);
3016 expr = build_delete (this_type, this_member,
3017 sfk_complete_destructor,
3018 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
3019 0);
3020 finish_decl_cleanup (NULL_TREE, expr);
3021 }
3022 }
3023 }
3024
3025 /* Build a C++ vector delete expression.
3026 MAXINDEX is the number of elements to be deleted.
3027 ELT_SIZE is the nominal size of each element in the vector.
3028 BASE is the expression that should yield the store to be deleted.
3029 This function expands (or synthesizes) these calls itself.
3030 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
3031
3032 This also calls delete for virtual baseclasses of elements of the vector.
3033
3034 Update: MAXINDEX is no longer needed. The size can be extracted from the
3035 start of the vector for pointers, and from the type for arrays. We still
3036 use MAXINDEX for arrays because it happens to already have one of the
3037 values we'd have to extract. (We could use MAXINDEX with pointers to
3038 confirm the size, and trap if the numbers differ; not clear that it'd
3039 be worth bothering.) */
3040
3041 tree
3042 build_vec_delete (tree base, tree maxindex,
3043 special_function_kind auto_delete_vec, int use_global_delete)
3044 {
3045 tree type;
3046 tree rval;
3047 tree base_init = NULL_TREE;
3048
3049 type = TREE_TYPE (base);
3050
3051 if (TREE_CODE (type) == POINTER_TYPE)
3052 {
3053 /* Step back one from start of vector, and read dimension. */
3054 tree cookie_addr;
3055
3056 if (TREE_SIDE_EFFECTS (base))
3057 {
3058 base_init = get_target_expr (base);
3059 base = TARGET_EXPR_SLOT (base_init);
3060 }
3061 type = strip_array_types (TREE_TYPE (type));
3062 cookie_addr = fold_build1 (NEGATE_EXPR, sizetype, TYPE_SIZE_UNIT (sizetype));
3063 cookie_addr = build2 (POINTER_PLUS_EXPR,
3064 build_pointer_type (sizetype),
3065 base,
3066 cookie_addr);
3067 maxindex = build_indirect_ref (cookie_addr, NULL);
3068 }
3069 else if (TREE_CODE (type) == ARRAY_TYPE)
3070 {
3071 /* Get the total number of things in the array, maxindex is a
3072 bad name. */
3073 maxindex = array_type_nelts_total (type);
3074 type = strip_array_types (type);
3075 base = build_unary_op (ADDR_EXPR, base, 1);
3076 if (TREE_SIDE_EFFECTS (base))
3077 {
3078 base_init = get_target_expr (base);
3079 base = TARGET_EXPR_SLOT (base_init);
3080 }
3081 }
3082 else
3083 {
3084 if (base != error_mark_node)
3085 error ("type to vector delete is neither pointer or array type");
3086 return error_mark_node;
3087 }
3088
3089 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
3090 use_global_delete);
3091 if (base_init)
3092 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
3093
3094 return rval;
3095 }
This page took 0.18006 seconds and 6 git commands to generate.