]> gcc.gnu.org Git - gcc.git/blob - gcc/cp/init.c
re PR c++/7586 (Incorrect handling of attributes in template codes)
[gcc.git] / gcc / cp / init.c
1 /* Handle initialization things in C++.
2 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* High-level class interface. */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "tree.h"
30 #include "rtl.h"
31 #include "expr.h"
32 #include "cp-tree.h"
33 #include "flags.h"
34 #include "output.h"
35 #include "except.h"
36 #include "toplev.h"
37 #include "target.h"
38
39 static bool begin_init_stmts (tree *, tree *);
40 static tree finish_init_stmts (bool, tree, tree);
41 static void construct_virtual_base (tree, tree);
42 static void expand_aggr_init_1 (tree, tree, tree, tree, int);
43 static void expand_default_init (tree, tree, tree, tree, int);
44 static tree build_vec_delete_1 (tree, tree, tree, special_function_kind, int);
45 static void perform_member_init (tree, tree);
46 static tree build_builtin_delete_call (tree);
47 static int member_init_ok_or_else (tree, tree, tree);
48 static void expand_virtual_init (tree, tree);
49 static tree sort_mem_initializers (tree, tree);
50 static tree initializing_context (tree);
51 static void expand_cleanup_for_base (tree, tree);
52 static tree get_temp_regvar (tree, tree);
53 static tree dfs_initialize_vtbl_ptrs (tree, void *);
54 static tree build_dtor_call (tree, special_function_kind, int);
55 static tree build_field_list (tree, tree, int *);
56 static tree build_vtbl_address (tree);
57
58 /* We are about to generate some complex initialization code.
59 Conceptually, it is all a single expression. However, we may want
60 to include conditionals, loops, and other such statement-level
61 constructs. Therefore, we build the initialization code inside a
62 statement-expression. This function starts such an expression.
63 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
64 pass them back to finish_init_stmts when the expression is
65 complete. */
66
67 static bool
68 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
69 {
70 bool is_global = !building_stmt_tree ();
71
72 *stmt_expr_p = begin_stmt_expr ();
73 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
74
75 return is_global;
76 }
77
78 /* Finish out the statement-expression begun by the previous call to
79 begin_init_stmts. Returns the statement-expression itself. */
80
81 static tree
82 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
83 {
84 finish_compound_stmt (compound_stmt);
85
86 stmt_expr = finish_stmt_expr (stmt_expr, true);
87
88 gcc_assert (!building_stmt_tree () == is_global);
89
90 return stmt_expr;
91 }
92
93 /* Constructors */
94
95 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
96 which we want to initialize the vtable pointer for, DATA is
97 TREE_LIST whose TREE_VALUE is the this ptr expression. */
98
99 static tree
100 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
101 {
102 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
103 return dfs_skip_bases;
104
105 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
106 {
107 tree base_ptr = TREE_VALUE ((tree) data);
108
109 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
110
111 expand_virtual_init (binfo, base_ptr);
112 }
113
114 return NULL_TREE;
115 }
116
117 /* Initialize all the vtable pointers in the object pointed to by
118 ADDR. */
119
120 void
121 initialize_vtbl_ptrs (tree addr)
122 {
123 tree list;
124 tree type;
125
126 type = TREE_TYPE (TREE_TYPE (addr));
127 list = build_tree_list (type, addr);
128
129 /* Walk through the hierarchy, initializing the vptr in each base
130 class. We do these in pre-order because we can't find the virtual
131 bases for a class until we've initialized the vtbl for that
132 class. */
133 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
134 }
135
136 /* Return an expression for the zero-initialization of an object with
137 type T. This expression will either be a constant (in the case
138 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
139 aggregate), or NULL (in the case that T does not require
140 initialization). In either case, the value can be used as
141 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
142 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
143 is the number of elements in the array. If STATIC_STORAGE_P is
144 TRUE, initializers are only generated for entities for which
145 zero-initialization does not simply mean filling the storage with
146 zero bytes. */
147
148 tree
149 build_zero_init (tree type, tree nelts, bool static_storage_p)
150 {
151 tree init = NULL_TREE;
152
153 /* [dcl.init]
154
155 To zero-initialization storage for an object of type T means:
156
157 -- if T is a scalar type, the storage is set to the value of zero
158 converted to T.
159
160 -- if T is a non-union class type, the storage for each nonstatic
161 data member and each base-class subobject is zero-initialized.
162
163 -- if T is a union type, the storage for its first data member is
164 zero-initialized.
165
166 -- if T is an array type, the storage for each element is
167 zero-initialized.
168
169 -- if T is a reference type, no initialization is performed. */
170
171 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
172
173 if (type == error_mark_node)
174 ;
175 else if (static_storage_p && zero_init_p (type))
176 /* In order to save space, we do not explicitly build initializers
177 for items that do not need them. GCC's semantics are that
178 items with static storage duration that are not otherwise
179 initialized are initialized to zero. */
180 ;
181 else if (SCALAR_TYPE_P (type))
182 init = convert (type, integer_zero_node);
183 else if (CLASS_TYPE_P (type))
184 {
185 tree field;
186 VEC(constructor_elt,gc) *v = NULL;
187
188 /* Iterate over the fields, building initializations. */
189 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
190 {
191 if (TREE_CODE (field) != FIELD_DECL)
192 continue;
193
194 /* Note that for class types there will be FIELD_DECLs
195 corresponding to base classes as well. Thus, iterating
196 over TYPE_FIELDs will result in correct initialization of
197 all of the subobjects. */
198 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
199 {
200 tree value = build_zero_init (TREE_TYPE (field),
201 /*nelts=*/NULL_TREE,
202 static_storage_p);
203 if (value)
204 CONSTRUCTOR_APPEND_ELT(v, field, value);
205 }
206
207 /* For unions, only the first field is initialized. */
208 if (TREE_CODE (type) == UNION_TYPE)
209 break;
210 }
211
212 /* Build a constructor to contain the initializations. */
213 init = build_constructor (type, v);
214 }
215 else if (TREE_CODE (type) == ARRAY_TYPE)
216 {
217 tree max_index;
218 VEC(constructor_elt,gc) *v = NULL;
219
220 /* Iterate over the array elements, building initializations. */
221 if (nelts)
222 max_index = fold_build2 (MINUS_EXPR, TREE_TYPE (nelts),
223 nelts, integer_one_node);
224 else
225 max_index = array_type_nelts (type);
226
227 /* If we have an error_mark here, we should just return error mark
228 as we don't know the size of the array yet. */
229 if (max_index == error_mark_node)
230 return error_mark_node;
231 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
232
233 /* A zero-sized array, which is accepted as an extension, will
234 have an upper bound of -1. */
235 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
236 {
237 constructor_elt *ce;
238
239 v = VEC_alloc (constructor_elt, gc, 1);
240 ce = VEC_quick_push (constructor_elt, v, NULL);
241
242 /* If this is a one element array, we just use a regular init. */
243 if (tree_int_cst_equal (size_zero_node, max_index))
244 ce->index = size_zero_node;
245 else
246 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
247 max_index);
248
249 ce->value = build_zero_init (TREE_TYPE (type),
250 /*nelts=*/NULL_TREE,
251 static_storage_p);
252 }
253
254 /* Build a constructor to contain the initializations. */
255 init = build_constructor (type, v);
256 }
257 else if (TREE_CODE (type) == VECTOR_TYPE)
258 init = fold_convert (type, integer_zero_node);
259 else
260 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
261
262 /* In all cases, the initializer is a constant. */
263 if (init)
264 {
265 TREE_CONSTANT (init) = 1;
266 TREE_INVARIANT (init) = 1;
267 }
268
269 return init;
270 }
271
272 /* Build an expression for the default-initialization of an object of
273 the indicated TYPE. If NELTS is non-NULL, and TYPE is an
274 ARRAY_TYPE, NELTS is the number of elements in the array. If
275 initialization of TYPE requires calling constructors, this function
276 returns NULL_TREE; the caller is responsible for arranging for the
277 constructors to be called. */
278
279 tree
280 build_default_init (tree type, tree nelts)
281 {
282 /* [dcl.init]:
283
284 To default-initialize an object of type T means:
285
286 --if T is a non-POD class type (clause _class_), the default construc-
287 tor for T is called (and the initialization is ill-formed if T has
288 no accessible default constructor);
289
290 --if T is an array type, each element is default-initialized;
291
292 --otherwise, the storage for the object is zero-initialized.
293
294 A program that calls for default-initialization of an entity of refer-
295 ence type is ill-formed. */
296
297 /* If TYPE_NEEDS_CONSTRUCTING is true, the caller is responsible for
298 performing the initialization. This is confusing in that some
299 non-PODs do not have TYPE_NEEDS_CONSTRUCTING set. (For example,
300 a class with a pointer-to-data member as a non-static data member
301 does not have TYPE_NEEDS_CONSTRUCTING set.) Therefore, we end up
302 passing non-PODs to build_zero_init below, which is contrary to
303 the semantics quoted above from [dcl.init].
304
305 It happens, however, that the behavior of the constructor the
306 standard says we should have generated would be precisely the
307 same as that obtained by calling build_zero_init below, so things
308 work out OK. */
309 if (TYPE_NEEDS_CONSTRUCTING (type)
310 || (nelts && TREE_CODE (nelts) != INTEGER_CST))
311 return NULL_TREE;
312
313 /* At this point, TYPE is either a POD class type, an array of POD
314 classes, or something even more innocuous. */
315 return build_zero_init (type, nelts, /*static_storage_p=*/false);
316 }
317
318 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
319 arguments. If TREE_LIST is void_type_node, an empty initializer
320 list was given; if NULL_TREE no initializer was given. */
321
322 static void
323 perform_member_init (tree member, tree init)
324 {
325 tree decl;
326 tree type = TREE_TYPE (member);
327 bool explicit;
328
329 explicit = (init != NULL_TREE);
330
331 /* Effective C++ rule 12 requires that all data members be
332 initialized. */
333 if (warn_ecpp && !explicit && TREE_CODE (type) != ARRAY_TYPE)
334 warning (OPT_Weffc__, "%J%qD should be initialized in the member initialization "
335 "list", current_function_decl, member);
336
337 if (init == void_type_node)
338 init = NULL_TREE;
339
340 /* Get an lvalue for the data member. */
341 decl = build_class_member_access_expr (current_class_ref, member,
342 /*access_path=*/NULL_TREE,
343 /*preserve_reference=*/true);
344 if (decl == error_mark_node)
345 return;
346
347 /* Deal with this here, as we will get confused if we try to call the
348 assignment op for an anonymous union. This can happen in a
349 synthesized copy constructor. */
350 if (ANON_AGGR_TYPE_P (type))
351 {
352 if (init)
353 {
354 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
355 finish_expr_stmt (init);
356 }
357 }
358 else if (TYPE_NEEDS_CONSTRUCTING (type))
359 {
360 if (explicit
361 && TREE_CODE (type) == ARRAY_TYPE
362 && init != NULL_TREE
363 && TREE_CHAIN (init) == NULL_TREE
364 && TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
365 {
366 /* Initialization of one array from another. */
367 finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
368 /*explicit_default_init_p=*/false,
369 /* from_array=*/1));
370 }
371 else
372 finish_expr_stmt (build_aggr_init (decl, init, 0));
373 }
374 else
375 {
376 if (init == NULL_TREE)
377 {
378 if (explicit)
379 {
380 init = build_default_init (type, /*nelts=*/NULL_TREE);
381 if (TREE_CODE (type) == REFERENCE_TYPE)
382 warning (0, "%Jdefault-initialization of %q#D, "
383 "which has reference type",
384 current_function_decl, member);
385 }
386 /* member traversal: note it leaves init NULL */
387 else if (TREE_CODE (type) == REFERENCE_TYPE)
388 pedwarn ("%Juninitialized reference member %qD",
389 current_function_decl, member);
390 else if (CP_TYPE_CONST_P (type))
391 pedwarn ("%Juninitialized member %qD with %<const%> type %qT",
392 current_function_decl, member, type);
393 }
394 else if (TREE_CODE (init) == TREE_LIST)
395 /* There was an explicit member initialization. Do some work
396 in that case. */
397 init = build_x_compound_expr_from_list (init, "member initializer");
398
399 if (init)
400 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
401 }
402
403 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
404 {
405 tree expr;
406
407 expr = build_class_member_access_expr (current_class_ref, member,
408 /*access_path=*/NULL_TREE,
409 /*preserve_reference=*/false);
410 expr = build_delete (type, expr, sfk_complete_destructor,
411 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
412
413 if (expr != error_mark_node)
414 finish_eh_cleanup (expr);
415 }
416 }
417
418 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
419 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
420
421 static tree
422 build_field_list (tree t, tree list, int *uses_unions_p)
423 {
424 tree fields;
425
426 *uses_unions_p = 0;
427
428 /* Note whether or not T is a union. */
429 if (TREE_CODE (t) == UNION_TYPE)
430 *uses_unions_p = 1;
431
432 for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
433 {
434 /* Skip CONST_DECLs for enumeration constants and so forth. */
435 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
436 continue;
437
438 /* Keep track of whether or not any fields are unions. */
439 if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
440 *uses_unions_p = 1;
441
442 /* For an anonymous struct or union, we must recursively
443 consider the fields of the anonymous type. They can be
444 directly initialized from the constructor. */
445 if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
446 {
447 /* Add this field itself. Synthesized copy constructors
448 initialize the entire aggregate. */
449 list = tree_cons (fields, NULL_TREE, list);
450 /* And now add the fields in the anonymous aggregate. */
451 list = build_field_list (TREE_TYPE (fields), list,
452 uses_unions_p);
453 }
454 /* Add this field. */
455 else if (DECL_NAME (fields))
456 list = tree_cons (fields, NULL_TREE, list);
457 }
458
459 return list;
460 }
461
462 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
463 a FIELD_DECL or BINFO in T that needs initialization. The
464 TREE_VALUE gives the initializer, or list of initializer arguments.
465
466 Return a TREE_LIST containing all of the initializations required
467 for T, in the order in which they should be performed. The output
468 list has the same format as the input. */
469
470 static tree
471 sort_mem_initializers (tree t, tree mem_inits)
472 {
473 tree init;
474 tree base, binfo, base_binfo;
475 tree sorted_inits;
476 tree next_subobject;
477 VEC(tree,gc) *vbases;
478 int i;
479 int uses_unions_p;
480
481 /* Build up a list of initializations. The TREE_PURPOSE of entry
482 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
483 TREE_VALUE will be the constructor arguments, or NULL if no
484 explicit initialization was provided. */
485 sorted_inits = NULL_TREE;
486
487 /* Process the virtual bases. */
488 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
489 VEC_iterate (tree, vbases, i, base); i++)
490 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
491
492 /* Process the direct bases. */
493 for (binfo = TYPE_BINFO (t), i = 0;
494 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
495 if (!BINFO_VIRTUAL_P (base_binfo))
496 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
497
498 /* Process the non-static data members. */
499 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
500 /* Reverse the entire list of initializations, so that they are in
501 the order that they will actually be performed. */
502 sorted_inits = nreverse (sorted_inits);
503
504 /* If the user presented the initializers in an order different from
505 that in which they will actually occur, we issue a warning. Keep
506 track of the next subobject which can be explicitly initialized
507 without issuing a warning. */
508 next_subobject = sorted_inits;
509
510 /* Go through the explicit initializers, filling in TREE_PURPOSE in
511 the SORTED_INITS. */
512 for (init = mem_inits; init; init = TREE_CHAIN (init))
513 {
514 tree subobject;
515 tree subobject_init;
516
517 subobject = TREE_PURPOSE (init);
518
519 /* If the explicit initializers are in sorted order, then
520 SUBOBJECT will be NEXT_SUBOBJECT, or something following
521 it. */
522 for (subobject_init = next_subobject;
523 subobject_init;
524 subobject_init = TREE_CHAIN (subobject_init))
525 if (TREE_PURPOSE (subobject_init) == subobject)
526 break;
527
528 /* Issue a warning if the explicit initializer order does not
529 match that which will actually occur.
530 ??? Are all these on the correct lines? */
531 if (warn_reorder && !subobject_init)
532 {
533 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
534 warning (OPT_Wreorder, "%q+D will be initialized after",
535 TREE_PURPOSE (next_subobject));
536 else
537 warning (OPT_Wreorder, "base %qT will be initialized after",
538 TREE_PURPOSE (next_subobject));
539 if (TREE_CODE (subobject) == FIELD_DECL)
540 warning (OPT_Wreorder, " %q+#D", subobject);
541 else
542 warning (OPT_Wreorder, " base %qT", subobject);
543 warning (OPT_Wreorder, "%J when initialized here", current_function_decl);
544 }
545
546 /* Look again, from the beginning of the list. */
547 if (!subobject_init)
548 {
549 subobject_init = sorted_inits;
550 while (TREE_PURPOSE (subobject_init) != subobject)
551 subobject_init = TREE_CHAIN (subobject_init);
552 }
553
554 /* It is invalid to initialize the same subobject more than
555 once. */
556 if (TREE_VALUE (subobject_init))
557 {
558 if (TREE_CODE (subobject) == FIELD_DECL)
559 error ("%Jmultiple initializations given for %qD",
560 current_function_decl, subobject);
561 else
562 error ("%Jmultiple initializations given for base %qT",
563 current_function_decl, subobject);
564 }
565
566 /* Record the initialization. */
567 TREE_VALUE (subobject_init) = TREE_VALUE (init);
568 next_subobject = subobject_init;
569 }
570
571 /* [class.base.init]
572
573 If a ctor-initializer specifies more than one mem-initializer for
574 multiple members of the same union (including members of
575 anonymous unions), the ctor-initializer is ill-formed. */
576 if (uses_unions_p)
577 {
578 tree last_field = NULL_TREE;
579 for (init = sorted_inits; init; init = TREE_CHAIN (init))
580 {
581 tree field;
582 tree field_type;
583 int done;
584
585 /* Skip uninitialized members and base classes. */
586 if (!TREE_VALUE (init)
587 || TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
588 continue;
589 /* See if this field is a member of a union, or a member of a
590 structure contained in a union, etc. */
591 field = TREE_PURPOSE (init);
592 for (field_type = DECL_CONTEXT (field);
593 !same_type_p (field_type, t);
594 field_type = TYPE_CONTEXT (field_type))
595 if (TREE_CODE (field_type) == UNION_TYPE)
596 break;
597 /* If this field is not a member of a union, skip it. */
598 if (TREE_CODE (field_type) != UNION_TYPE)
599 continue;
600
601 /* It's only an error if we have two initializers for the same
602 union type. */
603 if (!last_field)
604 {
605 last_field = field;
606 continue;
607 }
608
609 /* See if LAST_FIELD and the field initialized by INIT are
610 members of the same union. If so, there's a problem,
611 unless they're actually members of the same structure
612 which is itself a member of a union. For example, given:
613
614 union { struct { int i; int j; }; };
615
616 initializing both `i' and `j' makes sense. */
617 field_type = DECL_CONTEXT (field);
618 done = 0;
619 do
620 {
621 tree last_field_type;
622
623 last_field_type = DECL_CONTEXT (last_field);
624 while (1)
625 {
626 if (same_type_p (last_field_type, field_type))
627 {
628 if (TREE_CODE (field_type) == UNION_TYPE)
629 error ("%Jinitializations for multiple members of %qT",
630 current_function_decl, last_field_type);
631 done = 1;
632 break;
633 }
634
635 if (same_type_p (last_field_type, t))
636 break;
637
638 last_field_type = TYPE_CONTEXT (last_field_type);
639 }
640
641 /* If we've reached the outermost class, then we're
642 done. */
643 if (same_type_p (field_type, t))
644 break;
645
646 field_type = TYPE_CONTEXT (field_type);
647 }
648 while (!done);
649
650 last_field = field;
651 }
652 }
653
654 return sorted_inits;
655 }
656
657 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
658 is a TREE_LIST giving the explicit mem-initializer-list for the
659 constructor. The TREE_PURPOSE of each entry is a subobject (a
660 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
661 is a TREE_LIST giving the arguments to the constructor or
662 void_type_node for an empty list of arguments. */
663
664 void
665 emit_mem_initializers (tree mem_inits)
666 {
667 /* We will already have issued an error message about the fact that
668 the type is incomplete. */
669 if (!COMPLETE_TYPE_P (current_class_type))
670 return;
671
672 /* Sort the mem-initializers into the order in which the
673 initializations should be performed. */
674 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
675
676 in_base_initializer = 1;
677
678 /* Initialize base classes. */
679 while (mem_inits
680 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
681 {
682 tree subobject = TREE_PURPOSE (mem_inits);
683 tree arguments = TREE_VALUE (mem_inits);
684
685 /* If these initializations are taking place in a copy
686 constructor, the base class should probably be explicitly
687 initialized. */
688 if (extra_warnings && !arguments
689 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
690 && TYPE_NEEDS_CONSTRUCTING (BINFO_TYPE (subobject)))
691 warning (OPT_Wextra, "%Jbase class %q#T should be explicitly initialized in the "
692 "copy constructor",
693 current_function_decl, BINFO_TYPE (subobject));
694
695 /* If an explicit -- but empty -- initializer list was present,
696 treat it just like default initialization at this point. */
697 if (arguments == void_type_node)
698 arguments = NULL_TREE;
699
700 /* Initialize the base. */
701 if (BINFO_VIRTUAL_P (subobject))
702 construct_virtual_base (subobject, arguments);
703 else
704 {
705 tree base_addr;
706
707 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
708 subobject, 1);
709 expand_aggr_init_1 (subobject, NULL_TREE,
710 build_indirect_ref (base_addr, NULL),
711 arguments,
712 LOOKUP_NORMAL);
713 expand_cleanup_for_base (subobject, NULL_TREE);
714 }
715
716 mem_inits = TREE_CHAIN (mem_inits);
717 }
718 in_base_initializer = 0;
719
720 /* Initialize the vptrs. */
721 initialize_vtbl_ptrs (current_class_ptr);
722
723 /* Initialize the data members. */
724 while (mem_inits)
725 {
726 perform_member_init (TREE_PURPOSE (mem_inits),
727 TREE_VALUE (mem_inits));
728 mem_inits = TREE_CHAIN (mem_inits);
729 }
730 }
731
732 /* Returns the address of the vtable (i.e., the value that should be
733 assigned to the vptr) for BINFO. */
734
735 static tree
736 build_vtbl_address (tree binfo)
737 {
738 tree binfo_for = binfo;
739 tree vtbl;
740
741 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
742 /* If this is a virtual primary base, then the vtable we want to store
743 is that for the base this is being used as the primary base of. We
744 can't simply skip the initialization, because we may be expanding the
745 inits of a subobject constructor where the virtual base layout
746 can be different. */
747 while (BINFO_PRIMARY_P (binfo_for))
748 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
749
750 /* Figure out what vtable BINFO's vtable is based on, and mark it as
751 used. */
752 vtbl = get_vtbl_decl_for_binfo (binfo_for);
753 assemble_external (vtbl);
754 TREE_USED (vtbl) = 1;
755
756 /* Now compute the address to use when initializing the vptr. */
757 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
758 if (TREE_CODE (vtbl) == VAR_DECL)
759 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
760
761 return vtbl;
762 }
763
764 /* This code sets up the virtual function tables appropriate for
765 the pointer DECL. It is a one-ply initialization.
766
767 BINFO is the exact type that DECL is supposed to be. In
768 multiple inheritance, this might mean "C's A" if C : A, B. */
769
770 static void
771 expand_virtual_init (tree binfo, tree decl)
772 {
773 tree vtbl, vtbl_ptr;
774 tree vtt_index;
775
776 /* Compute the initializer for vptr. */
777 vtbl = build_vtbl_address (binfo);
778
779 /* We may get this vptr from a VTT, if this is a subobject
780 constructor or subobject destructor. */
781 vtt_index = BINFO_VPTR_INDEX (binfo);
782 if (vtt_index)
783 {
784 tree vtbl2;
785 tree vtt_parm;
786
787 /* Compute the value to use, when there's a VTT. */
788 vtt_parm = current_vtt_parm;
789 vtbl2 = build2 (POINTER_PLUS_EXPR,
790 TREE_TYPE (vtt_parm),
791 vtt_parm,
792 vtt_index);
793 vtbl2 = build_indirect_ref (vtbl2, NULL);
794 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
795
796 /* The actual initializer is the VTT value only in the subobject
797 constructor. In maybe_clone_body we'll substitute NULL for
798 the vtt_parm in the case of the non-subobject constructor. */
799 vtbl = build3 (COND_EXPR,
800 TREE_TYPE (vtbl),
801 build2 (EQ_EXPR, boolean_type_node,
802 current_in_charge_parm, integer_zero_node),
803 vtbl2,
804 vtbl);
805 }
806
807 /* Compute the location of the vtpr. */
808 vtbl_ptr = build_vfield_ref (build_indirect_ref (decl, NULL),
809 TREE_TYPE (binfo));
810 gcc_assert (vtbl_ptr != error_mark_node);
811
812 /* Assign the vtable to the vptr. */
813 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
814 finish_expr_stmt (build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl));
815 }
816
817 /* If an exception is thrown in a constructor, those base classes already
818 constructed must be destroyed. This function creates the cleanup
819 for BINFO, which has just been constructed. If FLAG is non-NULL,
820 it is a DECL which is nonzero when this base needs to be
821 destroyed. */
822
823 static void
824 expand_cleanup_for_base (tree binfo, tree flag)
825 {
826 tree expr;
827
828 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
829 return;
830
831 /* Call the destructor. */
832 expr = build_special_member_call (current_class_ref,
833 base_dtor_identifier,
834 NULL_TREE,
835 binfo,
836 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
837 if (flag)
838 expr = fold_build3 (COND_EXPR, void_type_node,
839 c_common_truthvalue_conversion (flag),
840 expr, integer_zero_node);
841
842 finish_eh_cleanup (expr);
843 }
844
845 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
846 constructor. */
847
848 static void
849 construct_virtual_base (tree vbase, tree arguments)
850 {
851 tree inner_if_stmt;
852 tree exp;
853 tree flag;
854
855 /* If there are virtual base classes with destructors, we need to
856 emit cleanups to destroy them if an exception is thrown during
857 the construction process. These exception regions (i.e., the
858 period during which the cleanups must occur) begin from the time
859 the construction is complete to the end of the function. If we
860 create a conditional block in which to initialize the
861 base-classes, then the cleanup region for the virtual base begins
862 inside a block, and ends outside of that block. This situation
863 confuses the sjlj exception-handling code. Therefore, we do not
864 create a single conditional block, but one for each
865 initialization. (That way the cleanup regions always begin
866 in the outer block.) We trust the back end to figure out
867 that the FLAG will not change across initializations, and
868 avoid doing multiple tests. */
869 flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
870 inner_if_stmt = begin_if_stmt ();
871 finish_if_stmt_cond (flag, inner_if_stmt);
872
873 /* Compute the location of the virtual base. If we're
874 constructing virtual bases, then we must be the most derived
875 class. Therefore, we don't have to look up the virtual base;
876 we already know where it is. */
877 exp = convert_to_base_statically (current_class_ref, vbase);
878
879 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
880 LOOKUP_COMPLAIN);
881 finish_then_clause (inner_if_stmt);
882 finish_if_stmt (inner_if_stmt);
883
884 expand_cleanup_for_base (vbase, flag);
885 }
886
887 /* Find the context in which this FIELD can be initialized. */
888
889 static tree
890 initializing_context (tree field)
891 {
892 tree t = DECL_CONTEXT (field);
893
894 /* Anonymous union members can be initialized in the first enclosing
895 non-anonymous union context. */
896 while (t && ANON_AGGR_TYPE_P (t))
897 t = TYPE_CONTEXT (t);
898 return t;
899 }
900
901 /* Function to give error message if member initialization specification
902 is erroneous. FIELD is the member we decided to initialize.
903 TYPE is the type for which the initialization is being performed.
904 FIELD must be a member of TYPE.
905
906 MEMBER_NAME is the name of the member. */
907
908 static int
909 member_init_ok_or_else (tree field, tree type, tree member_name)
910 {
911 if (field == error_mark_node)
912 return 0;
913 if (!field)
914 {
915 error ("class %qT does not have any field named %qD", type,
916 member_name);
917 return 0;
918 }
919 if (TREE_CODE (field) == VAR_DECL)
920 {
921 error ("%q#D is a static data member; it can only be "
922 "initialized at its definition",
923 field);
924 return 0;
925 }
926 if (TREE_CODE (field) != FIELD_DECL)
927 {
928 error ("%q#D is not a non-static data member of %qT",
929 field, type);
930 return 0;
931 }
932 if (initializing_context (field) != type)
933 {
934 error ("class %qT does not have any field named %qD", type,
935 member_name);
936 return 0;
937 }
938
939 return 1;
940 }
941
942 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
943 is a _TYPE node or TYPE_DECL which names a base for that type.
944 Check the validity of NAME, and return either the base _TYPE, base
945 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
946 NULL_TREE and issue a diagnostic.
947
948 An old style unnamed direct single base construction is permitted,
949 where NAME is NULL. */
950
951 tree
952 expand_member_init (tree name)
953 {
954 tree basetype;
955 tree field;
956
957 if (!current_class_ref)
958 return NULL_TREE;
959
960 if (!name)
961 {
962 /* This is an obsolete unnamed base class initializer. The
963 parser will already have warned about its use. */
964 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
965 {
966 case 0:
967 error ("unnamed initializer for %qT, which has no base classes",
968 current_class_type);
969 return NULL_TREE;
970 case 1:
971 basetype = BINFO_TYPE
972 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
973 break;
974 default:
975 error ("unnamed initializer for %qT, which uses multiple inheritance",
976 current_class_type);
977 return NULL_TREE;
978 }
979 }
980 else if (TYPE_P (name))
981 {
982 basetype = TYPE_MAIN_VARIANT (name);
983 name = TYPE_NAME (name);
984 }
985 else if (TREE_CODE (name) == TYPE_DECL)
986 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
987 else
988 basetype = NULL_TREE;
989
990 if (basetype)
991 {
992 tree class_binfo;
993 tree direct_binfo;
994 tree virtual_binfo;
995 int i;
996
997 if (current_template_parms)
998 return basetype;
999
1000 class_binfo = TYPE_BINFO (current_class_type);
1001 direct_binfo = NULL_TREE;
1002 virtual_binfo = NULL_TREE;
1003
1004 /* Look for a direct base. */
1005 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1006 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1007 break;
1008
1009 /* Look for a virtual base -- unless the direct base is itself
1010 virtual. */
1011 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1012 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1013
1014 /* [class.base.init]
1015
1016 If a mem-initializer-id is ambiguous because it designates
1017 both a direct non-virtual base class and an inherited virtual
1018 base class, the mem-initializer is ill-formed. */
1019 if (direct_binfo && virtual_binfo)
1020 {
1021 error ("%qD is both a direct base and an indirect virtual base",
1022 basetype);
1023 return NULL_TREE;
1024 }
1025
1026 if (!direct_binfo && !virtual_binfo)
1027 {
1028 if (CLASSTYPE_VBASECLASSES (current_class_type))
1029 error ("type %qT is not a direct or virtual base of %qT",
1030 basetype, current_class_type);
1031 else
1032 error ("type %qT is not a direct base of %qT",
1033 basetype, current_class_type);
1034 return NULL_TREE;
1035 }
1036
1037 return direct_binfo ? direct_binfo : virtual_binfo;
1038 }
1039 else
1040 {
1041 if (TREE_CODE (name) == IDENTIFIER_NODE)
1042 field = lookup_field (current_class_type, name, 1, false);
1043 else
1044 field = name;
1045
1046 if (member_init_ok_or_else (field, current_class_type, name))
1047 return field;
1048 }
1049
1050 return NULL_TREE;
1051 }
1052
1053 /* This is like `expand_member_init', only it stores one aggregate
1054 value into another.
1055
1056 INIT comes in two flavors: it is either a value which
1057 is to be stored in EXP, or it is a parameter list
1058 to go to a constructor, which will operate on EXP.
1059 If INIT is not a parameter list for a constructor, then set
1060 LOOKUP_ONLYCONVERTING.
1061 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1062 the initializer, if FLAGS is 0, then it is the (init) form.
1063 If `init' is a CONSTRUCTOR, then we emit a warning message,
1064 explaining that such initializations are invalid.
1065
1066 If INIT resolves to a CALL_EXPR which happens to return
1067 something of the type we are looking for, then we know
1068 that we can safely use that call to perform the
1069 initialization.
1070
1071 The virtual function table pointer cannot be set up here, because
1072 we do not really know its type.
1073
1074 This never calls operator=().
1075
1076 When initializing, nothing is CONST.
1077
1078 A default copy constructor may have to be used to perform the
1079 initialization.
1080
1081 A constructor or a conversion operator may have to be used to
1082 perform the initialization, but not both, as it would be ambiguous. */
1083
1084 tree
1085 build_aggr_init (tree exp, tree init, int flags)
1086 {
1087 tree stmt_expr;
1088 tree compound_stmt;
1089 int destroy_temps;
1090 tree type = TREE_TYPE (exp);
1091 int was_const = TREE_READONLY (exp);
1092 int was_volatile = TREE_THIS_VOLATILE (exp);
1093 int is_global;
1094
1095 if (init == error_mark_node)
1096 return error_mark_node;
1097
1098 TREE_READONLY (exp) = 0;
1099 TREE_THIS_VOLATILE (exp) = 0;
1100
1101 if (init && TREE_CODE (init) != TREE_LIST)
1102 flags |= LOOKUP_ONLYCONVERTING;
1103
1104 if (TREE_CODE (type) == ARRAY_TYPE)
1105 {
1106 tree itype;
1107
1108 /* An array may not be initialized use the parenthesized
1109 initialization form -- unless the initializer is "()". */
1110 if (init && TREE_CODE (init) == TREE_LIST)
1111 {
1112 error ("bad array initializer");
1113 return error_mark_node;
1114 }
1115 /* Must arrange to initialize each element of EXP
1116 from elements of INIT. */
1117 itype = init ? TREE_TYPE (init) : NULL_TREE;
1118 if (cp_type_quals (type) != TYPE_UNQUALIFIED)
1119 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1120 if (itype && cp_type_quals (itype) != TYPE_UNQUALIFIED)
1121 itype = TREE_TYPE (init) = TYPE_MAIN_VARIANT (itype);
1122 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1123 /*explicit_default_init_p=*/false,
1124 itype && same_type_p (itype,
1125 TREE_TYPE (exp)));
1126 TREE_READONLY (exp) = was_const;
1127 TREE_THIS_VOLATILE (exp) = was_volatile;
1128 TREE_TYPE (exp) = type;
1129 if (init)
1130 TREE_TYPE (init) = itype;
1131 return stmt_expr;
1132 }
1133
1134 if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1135 /* Just know that we've seen something for this node. */
1136 TREE_USED (exp) = 1;
1137
1138 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1139 destroy_temps = stmts_are_full_exprs_p ();
1140 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1141 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1142 init, LOOKUP_NORMAL|flags);
1143 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1144 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1145 TREE_READONLY (exp) = was_const;
1146 TREE_THIS_VOLATILE (exp) = was_volatile;
1147
1148 return stmt_expr;
1149 }
1150
1151 static void
1152 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags)
1153 {
1154 tree type = TREE_TYPE (exp);
1155 tree ctor_name;
1156
1157 /* It fails because there may not be a constructor which takes
1158 its own type as the first (or only parameter), but which does
1159 take other types via a conversion. So, if the thing initializing
1160 the expression is a unit element of type X, first try X(X&),
1161 followed by initialization by X. If neither of these work
1162 out, then look hard. */
1163 tree rval;
1164 tree parms;
1165
1166 if (init && TREE_CODE (init) != TREE_LIST
1167 && (flags & LOOKUP_ONLYCONVERTING))
1168 {
1169 /* Base subobjects should only get direct-initialization. */
1170 gcc_assert (true_exp == exp);
1171
1172 if (flags & DIRECT_BIND)
1173 /* Do nothing. We hit this in two cases: Reference initialization,
1174 where we aren't initializing a real variable, so we don't want
1175 to run a new constructor; and catching an exception, where we
1176 have already built up the constructor call so we could wrap it
1177 in an exception region. */;
1178 else if (BRACE_ENCLOSED_INITIALIZER_P (init))
1179 {
1180 /* A brace-enclosed initializer for an aggregate. */
1181 gcc_assert (CP_AGGREGATE_TYPE_P (type));
1182 init = digest_init (type, init);
1183 }
1184 else
1185 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
1186
1187 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1188 /* We need to protect the initialization of a catch parm with a
1189 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1190 around the TARGET_EXPR for the copy constructor. See
1191 initialize_handler_parm. */
1192 {
1193 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1194 TREE_OPERAND (init, 0));
1195 TREE_TYPE (init) = void_type_node;
1196 }
1197 else
1198 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1199 TREE_SIDE_EFFECTS (init) = 1;
1200 finish_expr_stmt (init);
1201 return;
1202 }
1203
1204 if (init == NULL_TREE
1205 || (TREE_CODE (init) == TREE_LIST && ! TREE_TYPE (init)))
1206 {
1207 parms = init;
1208 if (parms)
1209 init = TREE_VALUE (parms);
1210 }
1211 else
1212 parms = build_tree_list (NULL_TREE, init);
1213
1214 if (true_exp == exp)
1215 ctor_name = complete_ctor_identifier;
1216 else
1217 ctor_name = base_ctor_identifier;
1218
1219 rval = build_special_member_call (exp, ctor_name, parms, binfo, flags);
1220 if (TREE_SIDE_EFFECTS (rval))
1221 finish_expr_stmt (convert_to_void (rval, NULL));
1222 }
1223
1224 /* This function is responsible for initializing EXP with INIT
1225 (if any).
1226
1227 BINFO is the binfo of the type for who we are performing the
1228 initialization. For example, if W is a virtual base class of A and B,
1229 and C : A, B.
1230 If we are initializing B, then W must contain B's W vtable, whereas
1231 were we initializing C, W must contain C's W vtable.
1232
1233 TRUE_EXP is nonzero if it is the true expression being initialized.
1234 In this case, it may be EXP, or may just contain EXP. The reason we
1235 need this is because if EXP is a base element of TRUE_EXP, we
1236 don't necessarily know by looking at EXP where its virtual
1237 baseclass fields should really be pointing. But we do know
1238 from TRUE_EXP. In constructors, we don't know anything about
1239 the value being initialized.
1240
1241 FLAGS is just passed to `build_new_method_call'. See that function
1242 for its description. */
1243
1244 static void
1245 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags)
1246 {
1247 tree type = TREE_TYPE (exp);
1248
1249 gcc_assert (init != error_mark_node && type != error_mark_node);
1250 gcc_assert (building_stmt_tree ());
1251
1252 /* Use a function returning the desired type to initialize EXP for us.
1253 If the function is a constructor, and its first argument is
1254 NULL_TREE, know that it was meant for us--just slide exp on
1255 in and expand the constructor. Constructors now come
1256 as TARGET_EXPRs. */
1257
1258 if (init && TREE_CODE (exp) == VAR_DECL
1259 && COMPOUND_LITERAL_P (init))
1260 {
1261 /* If store_init_value returns NULL_TREE, the INIT has been
1262 recorded as the DECL_INITIAL for EXP. That means there's
1263 nothing more we have to do. */
1264 init = store_init_value (exp, init);
1265 if (init)
1266 finish_expr_stmt (init);
1267 return;
1268 }
1269
1270 /* We know that expand_default_init can handle everything we want
1271 at this point. */
1272 expand_default_init (binfo, true_exp, exp, init, flags);
1273 }
1274
1275 /* Report an error if TYPE is not a user-defined, aggregate type. If
1276 OR_ELSE is nonzero, give an error message. */
1277
1278 int
1279 is_aggr_type (tree type, int or_else)
1280 {
1281 if (type == error_mark_node)
1282 return 0;
1283
1284 if (! IS_AGGR_TYPE (type))
1285 {
1286 if (or_else)
1287 error ("%qT is not an aggregate type", type);
1288 return 0;
1289 }
1290 return 1;
1291 }
1292
1293 tree
1294 get_type_value (tree name)
1295 {
1296 if (name == error_mark_node)
1297 return NULL_TREE;
1298
1299 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1300 return IDENTIFIER_TYPE_VALUE (name);
1301 else
1302 return NULL_TREE;
1303 }
1304
1305 /* Build a reference to a member of an aggregate. This is not a C++
1306 `&', but really something which can have its address taken, and
1307 then act as a pointer to member, for example TYPE :: FIELD can have
1308 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1309 this expression is the operand of "&".
1310
1311 @@ Prints out lousy diagnostics for operator <typename>
1312 @@ fields.
1313
1314 @@ This function should be rewritten and placed in search.c. */
1315
1316 tree
1317 build_offset_ref (tree type, tree member, bool address_p)
1318 {
1319 tree decl;
1320 tree basebinfo = NULL_TREE;
1321
1322 /* class templates can come in as TEMPLATE_DECLs here. */
1323 if (TREE_CODE (member) == TEMPLATE_DECL)
1324 return member;
1325
1326 if (dependent_type_p (type) || type_dependent_expression_p (member))
1327 return build_qualified_name (NULL_TREE, type, member,
1328 /*template_p=*/false);
1329
1330 gcc_assert (TYPE_P (type));
1331 if (! is_aggr_type (type, 1))
1332 return error_mark_node;
1333
1334 gcc_assert (DECL_P (member) || BASELINK_P (member));
1335 /* Callers should call mark_used before this point. */
1336 gcc_assert (!DECL_P (member) || TREE_USED (member));
1337
1338 if (!COMPLETE_TYPE_P (complete_type (type))
1339 && !TYPE_BEING_DEFINED (type))
1340 {
1341 error ("incomplete type %qT does not have member %qD", type, member);
1342 return error_mark_node;
1343 }
1344
1345 /* Entities other than non-static members need no further
1346 processing. */
1347 if (TREE_CODE (member) == TYPE_DECL)
1348 return member;
1349 if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
1350 return convert_from_reference (member);
1351
1352 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1353 {
1354 error ("invalid pointer to bit-field %qD", member);
1355 return error_mark_node;
1356 }
1357
1358 /* Set up BASEBINFO for member lookup. */
1359 decl = maybe_dummy_object (type, &basebinfo);
1360
1361 /* A lot of this logic is now handled in lookup_member. */
1362 if (BASELINK_P (member))
1363 {
1364 /* Go from the TREE_BASELINK to the member function info. */
1365 tree t = BASELINK_FUNCTIONS (member);
1366
1367 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1368 {
1369 /* Get rid of a potential OVERLOAD around it. */
1370 t = OVL_CURRENT (t);
1371
1372 /* Unique functions are handled easily. */
1373
1374 /* For non-static member of base class, we need a special rule
1375 for access checking [class.protected]:
1376
1377 If the access is to form a pointer to member, the
1378 nested-name-specifier shall name the derived class
1379 (or any class derived from that class). */
1380 if (address_p && DECL_P (t)
1381 && DECL_NONSTATIC_MEMBER_P (t))
1382 perform_or_defer_access_check (TYPE_BINFO (type), t, t);
1383 else
1384 perform_or_defer_access_check (basebinfo, t, t);
1385
1386 if (DECL_STATIC_FUNCTION_P (t))
1387 return t;
1388 member = t;
1389 }
1390 else
1391 TREE_TYPE (member) = unknown_type_node;
1392 }
1393 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1394 /* We need additional test besides the one in
1395 check_accessibility_of_qualified_id in case it is
1396 a pointer to non-static member. */
1397 perform_or_defer_access_check (TYPE_BINFO (type), member, member);
1398
1399 if (!address_p)
1400 {
1401 /* If MEMBER is non-static, then the program has fallen afoul of
1402 [expr.prim]:
1403
1404 An id-expression that denotes a nonstatic data member or
1405 nonstatic member function of a class can only be used:
1406
1407 -- as part of a class member access (_expr.ref_) in which the
1408 object-expression refers to the member's class or a class
1409 derived from that class, or
1410
1411 -- to form a pointer to member (_expr.unary.op_), or
1412
1413 -- in the body of a nonstatic member function of that class or
1414 of a class derived from that class (_class.mfct.nonstatic_), or
1415
1416 -- in a mem-initializer for a constructor for that class or for
1417 a class derived from that class (_class.base.init_). */
1418 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1419 {
1420 /* Build a representation of a the qualified name suitable
1421 for use as the operand to "&" -- even though the "&" is
1422 not actually present. */
1423 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1424 /* In Microsoft mode, treat a non-static member function as if
1425 it were a pointer-to-member. */
1426 if (flag_ms_extensions)
1427 {
1428 PTRMEM_OK_P (member) = 1;
1429 return build_unary_op (ADDR_EXPR, member, 0);
1430 }
1431 error ("invalid use of non-static member function %qD",
1432 TREE_OPERAND (member, 1));
1433 return error_mark_node;
1434 }
1435 else if (TREE_CODE (member) == FIELD_DECL)
1436 {
1437 error ("invalid use of non-static data member %qD", member);
1438 return error_mark_node;
1439 }
1440 return member;
1441 }
1442
1443 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1444 PTRMEM_OK_P (member) = 1;
1445 return member;
1446 }
1447
1448 /* If DECL is a scalar enumeration constant or variable with a
1449 constant initializer, return the initializer (or, its initializers,
1450 recursively); otherwise, return DECL. If INTEGRAL_P, the
1451 initializer is only returned if DECL is an integral
1452 constant-expression. */
1453
1454 static tree
1455 constant_value_1 (tree decl, bool integral_p)
1456 {
1457 while (TREE_CODE (decl) == CONST_DECL
1458 || (integral_p
1459 ? DECL_INTEGRAL_CONSTANT_VAR_P (decl)
1460 : (TREE_CODE (decl) == VAR_DECL
1461 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
1462 {
1463 tree init;
1464 /* Static data members in template classes may have
1465 non-dependent initializers. References to such non-static
1466 data members are not value-dependent, so we must retrieve the
1467 initializer here. The DECL_INITIAL will have the right type,
1468 but will not have been folded because that would prevent us
1469 from performing all appropriate semantic checks at
1470 instantiation time. */
1471 if (DECL_CLASS_SCOPE_P (decl)
1472 && CLASSTYPE_TEMPLATE_INFO (DECL_CONTEXT (decl))
1473 && uses_template_parms (CLASSTYPE_TI_ARGS
1474 (DECL_CONTEXT (decl))))
1475 {
1476 ++processing_template_decl;
1477 init = fold_non_dependent_expr (DECL_INITIAL (decl));
1478 --processing_template_decl;
1479 }
1480 else
1481 {
1482 /* If DECL is a static data member in a template
1483 specialization, we must instantiate it here. The
1484 initializer for the static data member is not processed
1485 until needed; we need it now. */
1486 mark_used (decl);
1487 init = DECL_INITIAL (decl);
1488 }
1489 if (init == error_mark_node)
1490 return decl;
1491 if (!init
1492 || !TREE_TYPE (init)
1493 || (integral_p
1494 ? !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (init))
1495 : (!TREE_CONSTANT (init)
1496 /* Do not return an aggregate constant (of which
1497 string literals are a special case), as we do not
1498 want to make inadvertent copies of such entities,
1499 and we must be sure that their addresses are the
1500 same everywhere. */
1501 || TREE_CODE (init) == CONSTRUCTOR
1502 || TREE_CODE (init) == STRING_CST)))
1503 break;
1504 decl = unshare_expr (init);
1505 }
1506 return decl;
1507 }
1508
1509 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by
1510 constant of integral or enumeration type, then return that value.
1511 These are those variables permitted in constant expressions by
1512 [5.19/1]. */
1513
1514 tree
1515 integral_constant_value (tree decl)
1516 {
1517 return constant_value_1 (decl, /*integral_p=*/true);
1518 }
1519
1520 /* A more relaxed version of integral_constant_value, used by the
1521 common C/C++ code and by the C++ front end for optimization
1522 purposes. */
1523
1524 tree
1525 decl_constant_value (tree decl)
1526 {
1527 return constant_value_1 (decl,
1528 /*integral_p=*/processing_template_decl);
1529 }
1530 \f
1531 /* Common subroutines of build_new and build_vec_delete. */
1532
1533 /* Call the global __builtin_delete to delete ADDR. */
1534
1535 static tree
1536 build_builtin_delete_call (tree addr)
1537 {
1538 mark_used (global_delete_fndecl);
1539 return build_call_n (global_delete_fndecl, 1, addr);
1540 }
1541 \f
1542 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
1543 the type of the object being allocated; otherwise, it's just TYPE.
1544 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
1545 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
1546 the TREE_LIST of arguments to be provided as arguments to a
1547 placement new operator. This routine performs no semantic checks;
1548 it just creates and returns a NEW_EXPR. */
1549
1550 static tree
1551 build_raw_new_expr (tree placement, tree type, tree nelts, tree init,
1552 int use_global_new)
1553 {
1554 tree new_expr;
1555
1556 new_expr = build4 (NEW_EXPR, build_pointer_type (type), placement, type,
1557 nelts, init);
1558 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
1559 TREE_SIDE_EFFECTS (new_expr) = 1;
1560
1561 return new_expr;
1562 }
1563
1564 /* Make sure that there are no aliasing issues with T, a placement new
1565 expression applied to PLACEMENT, by recording the change in dynamic
1566 type. If placement new is inlined, as it is with libstdc++, and if
1567 the type of the placement new differs from the type of the
1568 placement location itself, then alias analysis may think it is OK
1569 to interchange writes to the location from before the placement new
1570 and from after the placement new. We have to prevent type-based
1571 alias analysis from applying. PLACEMENT may be NULL, which means
1572 that we couldn't capture it in a temporary variable, in which case
1573 we use a memory clobber. */
1574
1575 static tree
1576 avoid_placement_new_aliasing (tree t, tree placement)
1577 {
1578 tree type_change;
1579
1580 if (processing_template_decl)
1581 return t;
1582
1583 /* If we are not using type based aliasing, we don't have to do
1584 anything. */
1585 if (!flag_strict_aliasing)
1586 return t;
1587
1588 /* If we have a pointer and a location, record the change in dynamic
1589 type. Otherwise we need a general memory clobber. */
1590 if (TREE_CODE (TREE_TYPE (t)) == POINTER_TYPE
1591 && placement != NULL_TREE
1592 && TREE_CODE (TREE_TYPE (placement)) == POINTER_TYPE)
1593 type_change = build_stmt (CHANGE_DYNAMIC_TYPE_EXPR,
1594 TREE_TYPE (t),
1595 placement);
1596 else
1597 {
1598 /* Build a memory clobber. */
1599 type_change = build_stmt (ASM_EXPR,
1600 build_string (0, ""),
1601 NULL_TREE,
1602 NULL_TREE,
1603 tree_cons (NULL_TREE,
1604 build_string (6, "memory"),
1605 NULL_TREE));
1606
1607 ASM_VOLATILE_P (type_change) = 1;
1608 }
1609
1610 return build2 (COMPOUND_EXPR, TREE_TYPE (t), type_change, t);
1611 }
1612
1613 /* Generate code for a new-expression, including calling the "operator
1614 new" function, initializing the object, and, if an exception occurs
1615 during construction, cleaning up. The arguments are as for
1616 build_raw_new_expr. */
1617
1618 static tree
1619 build_new_1 (tree placement, tree type, tree nelts, tree init,
1620 bool globally_qualified_p)
1621 {
1622 tree size, rval;
1623 /* True iff this is a call to "operator new[]" instead of just
1624 "operator new". */
1625 bool array_p = false;
1626 /* True iff ARRAY_P is true and the bound of the array type is
1627 not necessarily a compile time constant. For example, VLA_P is
1628 true for "new int[f()]". */
1629 bool vla_p = false;
1630 /* The type being allocated. If ARRAY_P is true, this will be an
1631 ARRAY_TYPE. */
1632 tree full_type;
1633 /* If ARRAY_P is true, the element type of the array. This is an
1634 never ARRAY_TYPE; for something like "new int[3][4]", the
1635 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
1636 FULL_TYPE. */
1637 tree elt_type;
1638 /* The type of the new-expression. (This type is always a pointer
1639 type.) */
1640 tree pointer_type;
1641 /* A pointer type pointing to the FULL_TYPE. */
1642 tree full_pointer_type;
1643 tree outer_nelts = NULL_TREE;
1644 tree alloc_call, alloc_expr;
1645 /* The address returned by the call to "operator new". This node is
1646 a VAR_DECL and is therefore reusable. */
1647 tree alloc_node;
1648 tree alloc_fn;
1649 tree cookie_expr, init_expr;
1650 int nothrow, check_new;
1651 int use_java_new = 0;
1652 /* If non-NULL, the number of extra bytes to allocate at the
1653 beginning of the storage allocated for an array-new expression in
1654 order to store the number of elements. */
1655 tree cookie_size = NULL_TREE;
1656 tree placement_expr;
1657 /* True if the function we are calling is a placement allocation
1658 function. */
1659 bool placement_allocation_fn_p;
1660 tree args = NULL_TREE;
1661 /* True if the storage must be initialized, either by a constructor
1662 or due to an explicit new-initializer. */
1663 bool is_initialized;
1664 /* The address of the thing allocated, not including any cookie. In
1665 particular, if an array cookie is in use, DATA_ADDR is the
1666 address of the first array element. This node is a VAR_DECL, and
1667 is therefore reusable. */
1668 tree data_addr;
1669 tree init_preeval_expr = NULL_TREE;
1670
1671 if (nelts)
1672 {
1673 tree index;
1674
1675 outer_nelts = nelts;
1676 array_p = true;
1677
1678 /* ??? The middle-end will error on us for building a VLA outside a
1679 function context. Methinks that's not it's purvey. So we'll do
1680 our own VLA layout later. */
1681 vla_p = true;
1682 index = convert (sizetype, nelts);
1683 index = size_binop (MINUS_EXPR, index, size_one_node);
1684 index = build_index_type (index);
1685 full_type = build_cplus_array_type (type, NULL_TREE);
1686 /* We need a copy of the type as build_array_type will return a shared copy
1687 of the incomplete array type. */
1688 full_type = build_distinct_type_copy (full_type);
1689 TYPE_DOMAIN (full_type) = index;
1690 SET_TYPE_STRUCTURAL_EQUALITY (full_type);
1691 }
1692 else
1693 {
1694 full_type = type;
1695 if (TREE_CODE (type) == ARRAY_TYPE)
1696 {
1697 array_p = true;
1698 nelts = array_type_nelts_top (type);
1699 outer_nelts = nelts;
1700 type = TREE_TYPE (type);
1701 }
1702 }
1703
1704 /* If our base type is an array, then make sure we know how many elements
1705 it has. */
1706 for (elt_type = type;
1707 TREE_CODE (elt_type) == ARRAY_TYPE;
1708 elt_type = TREE_TYPE (elt_type))
1709 nelts = cp_build_binary_op (MULT_EXPR, nelts,
1710 array_type_nelts_top (elt_type));
1711
1712 if (TREE_CODE (elt_type) == VOID_TYPE)
1713 {
1714 error ("invalid type %<void%> for new");
1715 return error_mark_node;
1716 }
1717
1718 if (abstract_virtuals_error (NULL_TREE, elt_type))
1719 return error_mark_node;
1720
1721 is_initialized = (TYPE_NEEDS_CONSTRUCTING (elt_type) || init);
1722 if (CP_TYPE_CONST_P (elt_type) && !is_initialized)
1723 {
1724 error ("uninitialized const in %<new%> of %q#T", elt_type);
1725 return error_mark_node;
1726 }
1727
1728 size = size_in_bytes (elt_type);
1729 if (array_p)
1730 {
1731 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
1732 if (vla_p)
1733 {
1734 tree n, bitsize;
1735
1736 /* Do our own VLA layout. Setting TYPE_SIZE/_UNIT is
1737 necessary in order for the <INIT_EXPR <*foo> <CONSTRUCTOR
1738 ...>> to be valid. */
1739 TYPE_SIZE_UNIT (full_type) = size;
1740 n = convert (bitsizetype, nelts);
1741 bitsize = size_binop (MULT_EXPR, TYPE_SIZE (elt_type), n);
1742 TYPE_SIZE (full_type) = bitsize;
1743 }
1744 }
1745
1746 alloc_fn = NULL_TREE;
1747
1748 /* If PLACEMENT is a simple pointer type, then copy it into
1749 PLACEMENT_EXPR. */
1750 if (processing_template_decl
1751 || placement == NULL_TREE
1752 || TREE_CHAIN (placement) != NULL_TREE
1753 || TREE_CODE (TREE_TYPE (TREE_VALUE (placement))) != POINTER_TYPE)
1754 placement_expr = NULL_TREE;
1755 else
1756 {
1757 placement_expr = get_target_expr (TREE_VALUE (placement));
1758 placement = tree_cons (NULL_TREE, placement_expr, NULL_TREE);
1759 }
1760
1761 /* Allocate the object. */
1762 if (! placement && TYPE_FOR_JAVA (elt_type))
1763 {
1764 tree class_addr;
1765 tree class_decl = build_java_class_ref (elt_type);
1766 static const char alloc_name[] = "_Jv_AllocObject";
1767
1768 if (class_decl == error_mark_node)
1769 return error_mark_node;
1770
1771 use_java_new = 1;
1772 if (!get_global_value_if_present (get_identifier (alloc_name),
1773 &alloc_fn))
1774 {
1775 error ("call to Java constructor with %qs undefined", alloc_name);
1776 return error_mark_node;
1777 }
1778 else if (really_overloaded_fn (alloc_fn))
1779 {
1780 error ("%qD should never be overloaded", alloc_fn);
1781 return error_mark_node;
1782 }
1783 alloc_fn = OVL_CURRENT (alloc_fn);
1784 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
1785 alloc_call = (build_function_call
1786 (alloc_fn,
1787 build_tree_list (NULL_TREE, class_addr)));
1788 }
1789 else
1790 {
1791 tree fnname;
1792 tree fns;
1793
1794 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
1795
1796 if (!globally_qualified_p
1797 && CLASS_TYPE_P (elt_type)
1798 && (array_p
1799 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
1800 : TYPE_HAS_NEW_OPERATOR (elt_type)))
1801 {
1802 /* Use a class-specific operator new. */
1803 /* If a cookie is required, add some extra space. */
1804 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
1805 {
1806 cookie_size = targetm.cxx.get_cookie_size (elt_type);
1807 size = size_binop (PLUS_EXPR, size, cookie_size);
1808 }
1809 /* Create the argument list. */
1810 args = tree_cons (NULL_TREE, size, placement);
1811 /* Do name-lookup to find the appropriate operator. */
1812 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
1813 if (fns == NULL_TREE)
1814 {
1815 error ("no suitable %qD found in class %qT", fnname, elt_type);
1816 return error_mark_node;
1817 }
1818 if (TREE_CODE (fns) == TREE_LIST)
1819 {
1820 error ("request for member %qD is ambiguous", fnname);
1821 print_candidates (fns);
1822 return error_mark_node;
1823 }
1824 alloc_call = build_new_method_call (build_dummy_object (elt_type),
1825 fns, args,
1826 /*conversion_path=*/NULL_TREE,
1827 LOOKUP_NORMAL,
1828 &alloc_fn);
1829 }
1830 else
1831 {
1832 /* Use a global operator new. */
1833 /* See if a cookie might be required. */
1834 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
1835 cookie_size = targetm.cxx.get_cookie_size (elt_type);
1836 else
1837 cookie_size = NULL_TREE;
1838
1839 alloc_call = build_operator_new_call (fnname, placement,
1840 &size, &cookie_size,
1841 &alloc_fn);
1842 }
1843 }
1844
1845 if (alloc_call == error_mark_node)
1846 return error_mark_node;
1847
1848 gcc_assert (alloc_fn != NULL_TREE);
1849
1850 /* In the simple case, we can stop now. */
1851 pointer_type = build_pointer_type (type);
1852 if (!cookie_size && !is_initialized)
1853 {
1854 rval = build_nop (pointer_type, alloc_call);
1855 if (placement != NULL)
1856 rval = avoid_placement_new_aliasing (rval, placement_expr);
1857 return rval;
1858 }
1859
1860 /* While we're working, use a pointer to the type we've actually
1861 allocated. Store the result of the call in a variable so that we
1862 can use it more than once. */
1863 full_pointer_type = build_pointer_type (full_type);
1864 alloc_expr = get_target_expr (build_nop (full_pointer_type, alloc_call));
1865 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
1866
1867 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
1868 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
1869 alloc_call = TREE_OPERAND (alloc_call, 1);
1870
1871 /* Now, check to see if this function is actually a placement
1872 allocation function. This can happen even when PLACEMENT is NULL
1873 because we might have something like:
1874
1875 struct S { void* operator new (size_t, int i = 0); };
1876
1877 A call to `new S' will get this allocation function, even though
1878 there is no explicit placement argument. If there is more than
1879 one argument, or there are variable arguments, then this is a
1880 placement allocation function. */
1881 placement_allocation_fn_p
1882 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
1883 || varargs_function_p (alloc_fn));
1884
1885 /* Preevaluate the placement args so that we don't reevaluate them for a
1886 placement delete. */
1887 if (placement_allocation_fn_p)
1888 {
1889 tree inits;
1890 stabilize_call (alloc_call, &inits);
1891 if (inits)
1892 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
1893 alloc_expr);
1894 }
1895
1896 /* unless an allocation function is declared with an empty excep-
1897 tion-specification (_except.spec_), throw(), it indicates failure to
1898 allocate storage by throwing a bad_alloc exception (clause _except_,
1899 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
1900 cation function is declared with an empty exception-specification,
1901 throw(), it returns null to indicate failure to allocate storage and a
1902 non-null pointer otherwise.
1903
1904 So check for a null exception spec on the op new we just called. */
1905
1906 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
1907 check_new = (flag_check_new || nothrow) && ! use_java_new;
1908
1909 if (cookie_size)
1910 {
1911 tree cookie;
1912 tree cookie_ptr;
1913 tree size_ptr_type;
1914
1915 /* Adjust so we're pointing to the start of the object. */
1916 data_addr = get_target_expr (build2 (POINTER_PLUS_EXPR, full_pointer_type,
1917 alloc_node, cookie_size));
1918
1919 /* Store the number of bytes allocated so that we can know how
1920 many elements to destroy later. We use the last sizeof
1921 (size_t) bytes to store the number of elements. */
1922 cookie_ptr = fold_build1 (NEGATE_EXPR, sizetype, size_in_bytes (sizetype));
1923 size_ptr_type = build_pointer_type (sizetype);
1924 cookie_ptr = build2 (POINTER_PLUS_EXPR, size_ptr_type,
1925 fold_convert (size_ptr_type, data_addr), cookie_ptr);
1926 cookie = build_indirect_ref (cookie_ptr, NULL);
1927
1928 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
1929
1930 if (targetm.cxx.cookie_has_size ())
1931 {
1932 /* Also store the element size. */
1933 cookie_ptr = build2 (POINTER_PLUS_EXPR, size_ptr_type, cookie_ptr,
1934 fold_build1 (NEGATE_EXPR, sizetype,
1935 size_in_bytes (sizetype)));
1936
1937 cookie = build_indirect_ref (cookie_ptr, NULL);
1938 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
1939 size_in_bytes(elt_type));
1940 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
1941 cookie, cookie_expr);
1942 }
1943 data_addr = TARGET_EXPR_SLOT (data_addr);
1944 }
1945 else
1946 {
1947 cookie_expr = NULL_TREE;
1948 data_addr = alloc_node;
1949 }
1950
1951 /* Now initialize the allocated object. Note that we preevaluate the
1952 initialization expression, apart from the actual constructor call or
1953 assignment--we do this because we want to delay the allocation as long
1954 as possible in order to minimize the size of the exception region for
1955 placement delete. */
1956 if (is_initialized)
1957 {
1958 bool stable;
1959
1960 init_expr = build_indirect_ref (data_addr, NULL);
1961
1962 if (array_p)
1963 {
1964 bool explicit_default_init_p = false;
1965
1966 if (init == void_zero_node)
1967 {
1968 init = NULL_TREE;
1969 explicit_default_init_p = true;
1970 }
1971 else if (init)
1972 pedwarn ("ISO C++ forbids initialization in array new");
1973
1974 init_expr
1975 = build_vec_init (init_expr,
1976 cp_build_binary_op (MINUS_EXPR, outer_nelts,
1977 integer_one_node),
1978 init,
1979 explicit_default_init_p,
1980 /*from_array=*/0);
1981
1982 /* An array initialization is stable because the initialization
1983 of each element is a full-expression, so the temporaries don't
1984 leak out. */
1985 stable = true;
1986 }
1987 else
1988 {
1989 if (init == void_zero_node)
1990 init = build_default_init (full_type, nelts);
1991
1992 if (TYPE_NEEDS_CONSTRUCTING (type))
1993 {
1994 init_expr = build_special_member_call (init_expr,
1995 complete_ctor_identifier,
1996 init, elt_type,
1997 LOOKUP_NORMAL);
1998 stable = stabilize_init (init_expr, &init_preeval_expr);
1999 }
2000 else
2001 {
2002 /* We are processing something like `new int (10)', which
2003 means allocate an int, and initialize it with 10. */
2004
2005 if (TREE_CODE (init) == TREE_LIST)
2006 init = build_x_compound_expr_from_list (init,
2007 "new initializer");
2008 else
2009 gcc_assert (TREE_CODE (init) != CONSTRUCTOR
2010 || TREE_TYPE (init) != NULL_TREE);
2011
2012 init_expr = build_modify_expr (init_expr, INIT_EXPR, init);
2013 stable = stabilize_init (init_expr, &init_preeval_expr);
2014 }
2015 }
2016
2017 if (init_expr == error_mark_node)
2018 return error_mark_node;
2019
2020 /* If any part of the object initialization terminates by throwing an
2021 exception and a suitable deallocation function can be found, the
2022 deallocation function is called to free the memory in which the
2023 object was being constructed, after which the exception continues
2024 to propagate in the context of the new-expression. If no
2025 unambiguous matching deallocation function can be found,
2026 propagating the exception does not cause the object's memory to be
2027 freed. */
2028 if (flag_exceptions && ! use_java_new)
2029 {
2030 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
2031 tree cleanup;
2032
2033 /* The Standard is unclear here, but the right thing to do
2034 is to use the same method for finding deallocation
2035 functions that we use for finding allocation functions. */
2036 cleanup = build_op_delete_call (dcode, alloc_node, size,
2037 globally_qualified_p,
2038 (placement_allocation_fn_p
2039 ? alloc_call : NULL_TREE),
2040 alloc_fn);
2041
2042 if (!cleanup)
2043 /* We're done. */;
2044 else if (stable)
2045 /* This is much simpler if we were able to preevaluate all of
2046 the arguments to the constructor call. */
2047 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
2048 init_expr, cleanup);
2049 else
2050 /* Ack! First we allocate the memory. Then we set our sentry
2051 variable to true, and expand a cleanup that deletes the
2052 memory if sentry is true. Then we run the constructor, and
2053 finally clear the sentry.
2054
2055 We need to do this because we allocate the space first, so
2056 if there are any temporaries with cleanups in the
2057 constructor args and we weren't able to preevaluate them, we
2058 need this EH region to extend until end of full-expression
2059 to preserve nesting. */
2060 {
2061 tree end, sentry, begin;
2062
2063 begin = get_target_expr (boolean_true_node);
2064 CLEANUP_EH_ONLY (begin) = 1;
2065
2066 sentry = TARGET_EXPR_SLOT (begin);
2067
2068 TARGET_EXPR_CLEANUP (begin)
2069 = build3 (COND_EXPR, void_type_node, sentry,
2070 cleanup, void_zero_node);
2071
2072 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
2073 sentry, boolean_false_node);
2074
2075 init_expr
2076 = build2 (COMPOUND_EXPR, void_type_node, begin,
2077 build2 (COMPOUND_EXPR, void_type_node, init_expr,
2078 end));
2079 }
2080
2081 }
2082 }
2083 else
2084 init_expr = NULL_TREE;
2085
2086 /* Now build up the return value in reverse order. */
2087
2088 rval = data_addr;
2089
2090 if (init_expr)
2091 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2092 if (cookie_expr)
2093 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2094
2095 if (rval == alloc_node)
2096 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2097 and return the call (which doesn't need to be adjusted). */
2098 rval = TARGET_EXPR_INITIAL (alloc_expr);
2099 else
2100 {
2101 if (check_new)
2102 {
2103 tree ifexp = cp_build_binary_op (NE_EXPR, alloc_node,
2104 integer_zero_node);
2105 rval = build_conditional_expr (ifexp, rval, alloc_node);
2106 }
2107
2108 /* Perform the allocation before anything else, so that ALLOC_NODE
2109 has been initialized before we start using it. */
2110 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2111 }
2112
2113 if (init_preeval_expr)
2114 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2115
2116 /* Convert to the final type. */
2117 rval = build_nop (pointer_type, rval);
2118
2119 /* A new-expression is never an lvalue. */
2120 gcc_assert (!lvalue_p (rval));
2121
2122 if (placement != NULL)
2123 rval = avoid_placement_new_aliasing (rval, placement_expr);
2124
2125 return rval;
2126 }
2127
2128 /* Generate a representation for a C++ "new" expression. PLACEMENT is
2129 a TREE_LIST of placement-new arguments (or NULL_TREE if none). If
2130 NELTS is NULL, TYPE is the type of the storage to be allocated. If
2131 NELTS is not NULL, then this is an array-new allocation; TYPE is
2132 the type of the elements in the array and NELTS is the number of
2133 elements in the array. INIT, if non-NULL, is the initializer for
2134 the new object, or void_zero_node to indicate an initializer of
2135 "()". If USE_GLOBAL_NEW is true, then the user explicitly wrote
2136 "::new" rather than just "new". */
2137
2138 tree
2139 build_new (tree placement, tree type, tree nelts, tree init,
2140 int use_global_new)
2141 {
2142 tree rval;
2143 tree orig_placement;
2144 tree orig_nelts;
2145 tree orig_init;
2146
2147 if (placement == error_mark_node || type == error_mark_node
2148 || init == error_mark_node)
2149 return error_mark_node;
2150
2151 orig_placement = placement;
2152 orig_nelts = nelts;
2153 orig_init = init;
2154
2155 if (processing_template_decl)
2156 {
2157 if (dependent_type_p (type)
2158 || any_type_dependent_arguments_p (placement)
2159 || (nelts && type_dependent_expression_p (nelts))
2160 || (init != void_zero_node
2161 && any_type_dependent_arguments_p (init)))
2162 return build_raw_new_expr (placement, type, nelts, init,
2163 use_global_new);
2164 placement = build_non_dependent_args (placement);
2165 if (nelts)
2166 nelts = build_non_dependent_expr (nelts);
2167 if (init != void_zero_node)
2168 init = build_non_dependent_args (init);
2169 }
2170
2171 if (nelts)
2172 {
2173 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
2174 pedwarn ("size in array new must have integral type");
2175 nelts = cp_save_expr (cp_convert (sizetype, nelts));
2176 }
2177
2178 /* ``A reference cannot be created by the new operator. A reference
2179 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
2180 returned by new.'' ARM 5.3.3 */
2181 if (TREE_CODE (type) == REFERENCE_TYPE)
2182 {
2183 error ("new cannot be applied to a reference type");
2184 type = TREE_TYPE (type);
2185 }
2186
2187 if (TREE_CODE (type) == FUNCTION_TYPE)
2188 {
2189 error ("new cannot be applied to a function type");
2190 return error_mark_node;
2191 }
2192
2193 /* The type allocated must be complete. If the new-type-id was
2194 "T[N]" then we are just checking that "T" is complete here, but
2195 that is equivalent, since the value of "N" doesn't matter. */
2196 if (!complete_type_or_else (type, NULL_TREE))
2197 return error_mark_node;
2198
2199 rval = build_new_1 (placement, type, nelts, init, use_global_new);
2200 if (rval == error_mark_node)
2201 return error_mark_node;
2202
2203 if (processing_template_decl)
2204 return build_raw_new_expr (orig_placement, type, orig_nelts, orig_init,
2205 use_global_new);
2206
2207 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
2208 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
2209 TREE_NO_WARNING (rval) = 1;
2210
2211 return rval;
2212 }
2213
2214 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
2215
2216 tree
2217 build_java_class_ref (tree type)
2218 {
2219 tree name = NULL_TREE, class_decl;
2220 static tree CL_suffix = NULL_TREE;
2221 if (CL_suffix == NULL_TREE)
2222 CL_suffix = get_identifier("class$");
2223 if (jclass_node == NULL_TREE)
2224 {
2225 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
2226 if (jclass_node == NULL_TREE)
2227 {
2228 error ("call to Java constructor, while %<jclass%> undefined");
2229 return error_mark_node;
2230 }
2231 jclass_node = TREE_TYPE (jclass_node);
2232 }
2233
2234 /* Mangle the class$ field. */
2235 {
2236 tree field;
2237 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2238 if (DECL_NAME (field) == CL_suffix)
2239 {
2240 mangle_decl (field);
2241 name = DECL_ASSEMBLER_NAME (field);
2242 break;
2243 }
2244 if (!field)
2245 {
2246 error ("can't find %<class$%> in %qT", type);
2247 return error_mark_node;
2248 }
2249 }
2250
2251 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
2252 if (class_decl == NULL_TREE)
2253 {
2254 class_decl = build_decl (VAR_DECL, name, TREE_TYPE (jclass_node));
2255 TREE_STATIC (class_decl) = 1;
2256 DECL_EXTERNAL (class_decl) = 1;
2257 TREE_PUBLIC (class_decl) = 1;
2258 DECL_ARTIFICIAL (class_decl) = 1;
2259 DECL_IGNORED_P (class_decl) = 1;
2260 pushdecl_top_level (class_decl);
2261 make_decl_rtl (class_decl);
2262 }
2263 return class_decl;
2264 }
2265 \f
2266 static tree
2267 build_vec_delete_1 (tree base, tree maxindex, tree type,
2268 special_function_kind auto_delete_vec, int use_global_delete)
2269 {
2270 tree virtual_size;
2271 tree ptype = build_pointer_type (type = complete_type (type));
2272 tree size_exp = size_in_bytes (type);
2273
2274 /* Temporary variables used by the loop. */
2275 tree tbase, tbase_init;
2276
2277 /* This is the body of the loop that implements the deletion of a
2278 single element, and moves temp variables to next elements. */
2279 tree body;
2280
2281 /* This is the LOOP_EXPR that governs the deletion of the elements. */
2282 tree loop = 0;
2283
2284 /* This is the thing that governs what to do after the loop has run. */
2285 tree deallocate_expr = 0;
2286
2287 /* This is the BIND_EXPR which holds the outermost iterator of the
2288 loop. It is convenient to set this variable up and test it before
2289 executing any other code in the loop.
2290 This is also the containing expression returned by this function. */
2291 tree controller = NULL_TREE;
2292 tree tmp;
2293
2294 /* We should only have 1-D arrays here. */
2295 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
2296
2297 if (! IS_AGGR_TYPE (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2298 goto no_destructor;
2299
2300 /* The below is short by the cookie size. */
2301 virtual_size = size_binop (MULT_EXPR, size_exp,
2302 convert (sizetype, maxindex));
2303
2304 tbase = create_temporary_var (ptype);
2305 tbase_init = build_modify_expr (tbase, NOP_EXPR,
2306 fold_build2 (POINTER_PLUS_EXPR, ptype,
2307 fold_convert (ptype, base),
2308 virtual_size));
2309 DECL_REGISTER (tbase) = 1;
2310 controller = build3 (BIND_EXPR, void_type_node, tbase,
2311 NULL_TREE, NULL_TREE);
2312 TREE_SIDE_EFFECTS (controller) = 1;
2313
2314 body = build1 (EXIT_EXPR, void_type_node,
2315 build2 (EQ_EXPR, boolean_type_node, tbase,
2316 fold_convert (ptype, base)));
2317 tmp = fold_build1 (NEGATE_EXPR, sizetype, size_exp);
2318 body = build_compound_expr
2319 (body, build_modify_expr (tbase, NOP_EXPR,
2320 build2 (POINTER_PLUS_EXPR, ptype, tbase, tmp)));
2321 body = build_compound_expr
2322 (body, build_delete (ptype, tbase, sfk_complete_destructor,
2323 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1));
2324
2325 loop = build1 (LOOP_EXPR, void_type_node, body);
2326 loop = build_compound_expr (tbase_init, loop);
2327
2328 no_destructor:
2329 /* If the delete flag is one, or anything else with the low bit set,
2330 delete the storage. */
2331 if (auto_delete_vec != sfk_base_destructor)
2332 {
2333 tree base_tbd;
2334
2335 /* The below is short by the cookie size. */
2336 virtual_size = size_binop (MULT_EXPR, size_exp,
2337 convert (sizetype, maxindex));
2338
2339 if (! TYPE_VEC_NEW_USES_COOKIE (type))
2340 /* no header */
2341 base_tbd = base;
2342 else
2343 {
2344 tree cookie_size;
2345
2346 cookie_size = targetm.cxx.get_cookie_size (type);
2347 base_tbd
2348 = cp_convert (ptype,
2349 cp_build_binary_op (MINUS_EXPR,
2350 cp_convert (string_type_node,
2351 base),
2352 cookie_size));
2353 /* True size with header. */
2354 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
2355 }
2356
2357 if (auto_delete_vec == sfk_deleting_destructor)
2358 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
2359 base_tbd, virtual_size,
2360 use_global_delete & 1,
2361 /*placement=*/NULL_TREE,
2362 /*alloc_fn=*/NULL_TREE);
2363 }
2364
2365 body = loop;
2366 if (!deallocate_expr)
2367 ;
2368 else if (!body)
2369 body = deallocate_expr;
2370 else
2371 body = build_compound_expr (body, deallocate_expr);
2372
2373 if (!body)
2374 body = integer_zero_node;
2375
2376 /* Outermost wrapper: If pointer is null, punt. */
2377 body = fold_build3 (COND_EXPR, void_type_node,
2378 fold_build2 (NE_EXPR, boolean_type_node, base,
2379 convert (TREE_TYPE (base),
2380 integer_zero_node)),
2381 body, integer_zero_node);
2382 body = build1 (NOP_EXPR, void_type_node, body);
2383
2384 if (controller)
2385 {
2386 TREE_OPERAND (controller, 1) = body;
2387 body = controller;
2388 }
2389
2390 if (TREE_CODE (base) == SAVE_EXPR)
2391 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
2392 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
2393
2394 return convert_to_void (body, /*implicit=*/NULL);
2395 }
2396
2397 /* Create an unnamed variable of the indicated TYPE. */
2398
2399 tree
2400 create_temporary_var (tree type)
2401 {
2402 tree decl;
2403
2404 decl = build_decl (VAR_DECL, NULL_TREE, type);
2405 TREE_USED (decl) = 1;
2406 DECL_ARTIFICIAL (decl) = 1;
2407 DECL_IGNORED_P (decl) = 1;
2408 DECL_SOURCE_LOCATION (decl) = input_location;
2409 DECL_CONTEXT (decl) = current_function_decl;
2410
2411 return decl;
2412 }
2413
2414 /* Create a new temporary variable of the indicated TYPE, initialized
2415 to INIT.
2416
2417 It is not entered into current_binding_level, because that breaks
2418 things when it comes time to do final cleanups (which take place
2419 "outside" the binding contour of the function). */
2420
2421 static tree
2422 get_temp_regvar (tree type, tree init)
2423 {
2424 tree decl;
2425
2426 decl = create_temporary_var (type);
2427 add_decl_expr (decl);
2428
2429 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
2430
2431 return decl;
2432 }
2433
2434 /* `build_vec_init' returns tree structure that performs
2435 initialization of a vector of aggregate types.
2436
2437 BASE is a reference to the vector, of ARRAY_TYPE.
2438 MAXINDEX is the maximum index of the array (one less than the
2439 number of elements). It is only used if
2440 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
2441
2442 INIT is the (possibly NULL) initializer.
2443
2444 If EXPLICIT_DEFAULT_INIT_P is true, then INIT must be NULL. All
2445 elements in the array are default-initialized.
2446
2447 FROM_ARRAY is 0 if we should init everything with INIT
2448 (i.e., every element initialized from INIT).
2449 FROM_ARRAY is 1 if we should index into INIT in parallel
2450 with initialization of DECL.
2451 FROM_ARRAY is 2 if we should index into INIT in parallel,
2452 but use assignment instead of initialization. */
2453
2454 tree
2455 build_vec_init (tree base, tree maxindex, tree init,
2456 bool explicit_default_init_p,
2457 int from_array)
2458 {
2459 tree rval;
2460 tree base2 = NULL_TREE;
2461 tree size;
2462 tree itype = NULL_TREE;
2463 tree iterator;
2464 /* The type of the array. */
2465 tree atype = TREE_TYPE (base);
2466 /* The type of an element in the array. */
2467 tree type = TREE_TYPE (atype);
2468 /* The element type reached after removing all outer array
2469 types. */
2470 tree inner_elt_type;
2471 /* The type of a pointer to an element in the array. */
2472 tree ptype;
2473 tree stmt_expr;
2474 tree compound_stmt;
2475 int destroy_temps;
2476 tree try_block = NULL_TREE;
2477 int num_initialized_elts = 0;
2478 bool is_global;
2479
2480 if (TYPE_DOMAIN (atype))
2481 maxindex = array_type_nelts (atype);
2482
2483 if (maxindex == NULL_TREE || maxindex == error_mark_node)
2484 return error_mark_node;
2485
2486 if (explicit_default_init_p)
2487 gcc_assert (!init);
2488
2489 inner_elt_type = strip_array_types (atype);
2490 if (init
2491 && (from_array == 2
2492 ? (!CLASS_TYPE_P (inner_elt_type)
2493 || !TYPE_HAS_COMPLEX_ASSIGN_REF (inner_elt_type))
2494 : !TYPE_NEEDS_CONSTRUCTING (type))
2495 && ((TREE_CODE (init) == CONSTRUCTOR
2496 /* Don't do this if the CONSTRUCTOR might contain something
2497 that might throw and require us to clean up. */
2498 && (VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (init))
2499 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
2500 || from_array))
2501 {
2502 /* Do non-default initialization of POD arrays resulting from
2503 brace-enclosed initializers. In this case, digest_init and
2504 store_constructor will handle the semantics for us. */
2505
2506 stmt_expr = build2 (INIT_EXPR, atype, base, init);
2507 return stmt_expr;
2508 }
2509
2510 maxindex = cp_convert (ptrdiff_type_node, maxindex);
2511 ptype = build_pointer_type (type);
2512 size = size_in_bytes (type);
2513 if (TREE_CODE (TREE_TYPE (base)) == ARRAY_TYPE)
2514 base = cp_convert (ptype, decay_conversion (base));
2515
2516 /* The code we are generating looks like:
2517 ({
2518 T* t1 = (T*) base;
2519 T* rval = t1;
2520 ptrdiff_t iterator = maxindex;
2521 try {
2522 for (; iterator != -1; --iterator) {
2523 ... initialize *t1 ...
2524 ++t1;
2525 }
2526 } catch (...) {
2527 ... destroy elements that were constructed ...
2528 }
2529 rval;
2530 })
2531
2532 We can omit the try and catch blocks if we know that the
2533 initialization will never throw an exception, or if the array
2534 elements do not have destructors. We can omit the loop completely if
2535 the elements of the array do not have constructors.
2536
2537 We actually wrap the entire body of the above in a STMT_EXPR, for
2538 tidiness.
2539
2540 When copying from array to another, when the array elements have
2541 only trivial copy constructors, we should use __builtin_memcpy
2542 rather than generating a loop. That way, we could take advantage
2543 of whatever cleverness the back end has for dealing with copies
2544 of blocks of memory. */
2545
2546 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
2547 destroy_temps = stmts_are_full_exprs_p ();
2548 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2549 rval = get_temp_regvar (ptype, base);
2550 base = get_temp_regvar (ptype, rval);
2551 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
2552
2553 /* Protect the entire array initialization so that we can destroy
2554 the partially constructed array if an exception is thrown.
2555 But don't do this if we're assigning. */
2556 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2557 && from_array != 2)
2558 {
2559 try_block = begin_try_block ();
2560 }
2561
2562 if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
2563 {
2564 /* Do non-default initialization of non-POD arrays resulting from
2565 brace-enclosed initializers. */
2566 unsigned HOST_WIDE_INT idx;
2567 tree elt;
2568 from_array = 0;
2569
2570 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
2571 {
2572 tree baseref = build1 (INDIRECT_REF, type, base);
2573
2574 num_initialized_elts++;
2575
2576 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2577 if (IS_AGGR_TYPE (type) || TREE_CODE (type) == ARRAY_TYPE)
2578 finish_expr_stmt (build_aggr_init (baseref, elt, 0));
2579 else
2580 finish_expr_stmt (build_modify_expr (baseref, NOP_EXPR,
2581 elt));
2582 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2583
2584 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2585 finish_expr_stmt (build_unary_op (PREDECREMENT_EXPR, iterator, 0));
2586 }
2587
2588 /* Clear out INIT so that we don't get confused below. */
2589 init = NULL_TREE;
2590 }
2591 else if (from_array)
2592 {
2593 /* If initializing one array from another, initialize element by
2594 element. We rely upon the below calls the do argument
2595 checking. */
2596 if (init)
2597 {
2598 base2 = decay_conversion (init);
2599 itype = TREE_TYPE (base2);
2600 base2 = get_temp_regvar (itype, base2);
2601 itype = TREE_TYPE (itype);
2602 }
2603 else if (TYPE_LANG_SPECIFIC (type)
2604 && TYPE_NEEDS_CONSTRUCTING (type)
2605 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2606 {
2607 error ("initializer ends prematurely");
2608 return error_mark_node;
2609 }
2610 }
2611
2612 /* Now, default-initialize any remaining elements. We don't need to
2613 do that if a) the type does not need constructing, or b) we've
2614 already initialized all the elements.
2615
2616 We do need to keep going if we're copying an array. */
2617
2618 if (from_array
2619 || ((TYPE_NEEDS_CONSTRUCTING (type) || explicit_default_init_p)
2620 && ! (host_integerp (maxindex, 0)
2621 && (num_initialized_elts
2622 == tree_low_cst (maxindex, 0) + 1))))
2623 {
2624 /* If the ITERATOR is equal to -1, then we don't have to loop;
2625 we've already initialized all the elements. */
2626 tree for_stmt;
2627 tree elt_init;
2628 tree to;
2629
2630 for_stmt = begin_for_stmt ();
2631 finish_for_init_stmt (for_stmt);
2632 finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
2633 build_int_cst (TREE_TYPE (iterator), -1)),
2634 for_stmt);
2635 finish_for_expr (build_unary_op (PREDECREMENT_EXPR, iterator, 0),
2636 for_stmt);
2637
2638 to = build1 (INDIRECT_REF, type, base);
2639
2640 if (from_array)
2641 {
2642 tree from;
2643
2644 if (base2)
2645 from = build1 (INDIRECT_REF, itype, base2);
2646 else
2647 from = NULL_TREE;
2648
2649 if (from_array == 2)
2650 elt_init = build_modify_expr (to, NOP_EXPR, from);
2651 else if (TYPE_NEEDS_CONSTRUCTING (type))
2652 elt_init = build_aggr_init (to, from, 0);
2653 else if (from)
2654 elt_init = build_modify_expr (to, NOP_EXPR, from);
2655 else
2656 gcc_unreachable ();
2657 }
2658 else if (TREE_CODE (type) == ARRAY_TYPE)
2659 {
2660 if (init != 0)
2661 sorry
2662 ("cannot initialize multi-dimensional array with initializer");
2663 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
2664 0, 0,
2665 /*explicit_default_init_p=*/false,
2666 0);
2667 }
2668 else if (!TYPE_NEEDS_CONSTRUCTING (type))
2669 elt_init = (build_modify_expr
2670 (to, INIT_EXPR,
2671 build_zero_init (type, size_one_node,
2672 /*static_storage_p=*/false)));
2673 else
2674 elt_init = build_aggr_init (to, init, 0);
2675
2676 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2677 finish_expr_stmt (elt_init);
2678 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2679
2680 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2681 if (base2)
2682 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base2, 0));
2683
2684 finish_for_stmt (for_stmt);
2685 }
2686
2687 /* Make sure to cleanup any partially constructed elements. */
2688 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2689 && from_array != 2)
2690 {
2691 tree e;
2692 tree m = cp_build_binary_op (MINUS_EXPR, maxindex, iterator);
2693
2694 /* Flatten multi-dimensional array since build_vec_delete only
2695 expects one-dimensional array. */
2696 if (TREE_CODE (type) == ARRAY_TYPE)
2697 m = cp_build_binary_op (MULT_EXPR, m,
2698 array_type_nelts_total (type));
2699
2700 finish_cleanup_try_block (try_block);
2701 e = build_vec_delete_1 (rval, m,
2702 inner_elt_type, sfk_base_destructor,
2703 /*use_global_delete=*/0);
2704 finish_cleanup (e, try_block);
2705 }
2706
2707 /* The value of the array initialization is the array itself, RVAL
2708 is a pointer to the first element. */
2709 finish_stmt_expr_expr (rval, stmt_expr);
2710
2711 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
2712
2713 /* Now convert make the result have the correct type. */
2714 atype = build_pointer_type (atype);
2715 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
2716 stmt_expr = build_indirect_ref (stmt_expr, NULL);
2717
2718 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
2719 return stmt_expr;
2720 }
2721
2722 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
2723 build_delete. */
2724
2725 static tree
2726 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags)
2727 {
2728 tree name;
2729 tree fn;
2730 switch (dtor_kind)
2731 {
2732 case sfk_complete_destructor:
2733 name = complete_dtor_identifier;
2734 break;
2735
2736 case sfk_base_destructor:
2737 name = base_dtor_identifier;
2738 break;
2739
2740 case sfk_deleting_destructor:
2741 name = deleting_dtor_identifier;
2742 break;
2743
2744 default:
2745 gcc_unreachable ();
2746 }
2747 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
2748 return build_new_method_call (exp, fn,
2749 /*args=*/NULL_TREE,
2750 /*conversion_path=*/NULL_TREE,
2751 flags,
2752 /*fn_p=*/NULL);
2753 }
2754
2755 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
2756 ADDR is an expression which yields the store to be destroyed.
2757 AUTO_DELETE is the name of the destructor to call, i.e., either
2758 sfk_complete_destructor, sfk_base_destructor, or
2759 sfk_deleting_destructor.
2760
2761 FLAGS is the logical disjunction of zero or more LOOKUP_
2762 flags. See cp-tree.h for more info. */
2763
2764 tree
2765 build_delete (tree type, tree addr, special_function_kind auto_delete,
2766 int flags, int use_global_delete)
2767 {
2768 tree expr;
2769
2770 if (addr == error_mark_node)
2771 return error_mark_node;
2772
2773 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
2774 set to `error_mark_node' before it gets properly cleaned up. */
2775 if (type == error_mark_node)
2776 return error_mark_node;
2777
2778 type = TYPE_MAIN_VARIANT (type);
2779
2780 if (TREE_CODE (type) == POINTER_TYPE)
2781 {
2782 bool complete_p = true;
2783
2784 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
2785 if (TREE_CODE (type) == ARRAY_TYPE)
2786 goto handle_array;
2787
2788 /* We don't want to warn about delete of void*, only other
2789 incomplete types. Deleting other incomplete types
2790 invokes undefined behavior, but it is not ill-formed, so
2791 compile to something that would even do The Right Thing
2792 (TM) should the type have a trivial dtor and no delete
2793 operator. */
2794 if (!VOID_TYPE_P (type))
2795 {
2796 complete_type (type);
2797 if (!COMPLETE_TYPE_P (type))
2798 {
2799 warning (0, "possible problem detected in invocation of "
2800 "delete operator:");
2801 cxx_incomplete_type_diagnostic (addr, type, 1);
2802 inform ("neither the destructor nor the class-specific "
2803 "operator delete will be called, even if they are "
2804 "declared when the class is defined.");
2805 complete_p = false;
2806 }
2807 }
2808 if (VOID_TYPE_P (type) || !complete_p || !IS_AGGR_TYPE (type))
2809 /* Call the builtin operator delete. */
2810 return build_builtin_delete_call (addr);
2811 if (TREE_SIDE_EFFECTS (addr))
2812 addr = save_expr (addr);
2813
2814 /* Throw away const and volatile on target type of addr. */
2815 addr = convert_force (build_pointer_type (type), addr, 0);
2816 }
2817 else if (TREE_CODE (type) == ARRAY_TYPE)
2818 {
2819 handle_array:
2820
2821 if (TYPE_DOMAIN (type) == NULL_TREE)
2822 {
2823 error ("unknown array size in delete");
2824 return error_mark_node;
2825 }
2826 return build_vec_delete (addr, array_type_nelts (type),
2827 auto_delete, use_global_delete);
2828 }
2829 else
2830 {
2831 /* Don't check PROTECT here; leave that decision to the
2832 destructor. If the destructor is accessible, call it,
2833 else report error. */
2834 addr = build_unary_op (ADDR_EXPR, addr, 0);
2835 if (TREE_SIDE_EFFECTS (addr))
2836 addr = save_expr (addr);
2837
2838 addr = convert_force (build_pointer_type (type), addr, 0);
2839 }
2840
2841 gcc_assert (IS_AGGR_TYPE (type));
2842
2843 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2844 {
2845 if (auto_delete != sfk_deleting_destructor)
2846 return void_zero_node;
2847
2848 return build_op_delete_call (DELETE_EXPR, addr,
2849 cxx_sizeof_nowarn (type),
2850 use_global_delete,
2851 /*placement=*/NULL_TREE,
2852 /*alloc_fn=*/NULL_TREE);
2853 }
2854 else
2855 {
2856 tree head = NULL_TREE;
2857 tree do_delete = NULL_TREE;
2858 tree ifexp;
2859
2860 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
2861 lazily_declare_fn (sfk_destructor, type);
2862
2863 /* For `::delete x', we must not use the deleting destructor
2864 since then we would not be sure to get the global `operator
2865 delete'. */
2866 if (use_global_delete && auto_delete == sfk_deleting_destructor)
2867 {
2868 /* We will use ADDR multiple times so we must save it. */
2869 addr = save_expr (addr);
2870 head = get_target_expr (build_headof (addr));
2871 /* Delete the object. */
2872 do_delete = build_builtin_delete_call (head);
2873 /* Otherwise, treat this like a complete object destructor
2874 call. */
2875 auto_delete = sfk_complete_destructor;
2876 }
2877 /* If the destructor is non-virtual, there is no deleting
2878 variant. Instead, we must explicitly call the appropriate
2879 `operator delete' here. */
2880 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
2881 && auto_delete == sfk_deleting_destructor)
2882 {
2883 /* We will use ADDR multiple times so we must save it. */
2884 addr = save_expr (addr);
2885 /* Build the call. */
2886 do_delete = build_op_delete_call (DELETE_EXPR,
2887 addr,
2888 cxx_sizeof_nowarn (type),
2889 /*global_p=*/false,
2890 /*placement=*/NULL_TREE,
2891 /*alloc_fn=*/NULL_TREE);
2892 /* Call the complete object destructor. */
2893 auto_delete = sfk_complete_destructor;
2894 }
2895 else if (auto_delete == sfk_deleting_destructor
2896 && TYPE_GETS_REG_DELETE (type))
2897 {
2898 /* Make sure we have access to the member op delete, even though
2899 we'll actually be calling it from the destructor. */
2900 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
2901 /*global_p=*/false,
2902 /*placement=*/NULL_TREE,
2903 /*alloc_fn=*/NULL_TREE);
2904 }
2905
2906 expr = build_dtor_call (build_indirect_ref (addr, NULL),
2907 auto_delete, flags);
2908 if (do_delete)
2909 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
2910
2911 /* We need to calculate this before the dtor changes the vptr. */
2912 if (head)
2913 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
2914
2915 if (flags & LOOKUP_DESTRUCTOR)
2916 /* Explicit destructor call; don't check for null pointer. */
2917 ifexp = integer_one_node;
2918 else
2919 /* Handle deleting a null pointer. */
2920 ifexp = fold (cp_build_binary_op (NE_EXPR, addr, integer_zero_node));
2921
2922 if (ifexp != integer_one_node)
2923 expr = build3 (COND_EXPR, void_type_node,
2924 ifexp, expr, void_zero_node);
2925
2926 return expr;
2927 }
2928 }
2929
2930 /* At the beginning of a destructor, push cleanups that will call the
2931 destructors for our base classes and members.
2932
2933 Called from begin_destructor_body. */
2934
2935 void
2936 push_base_cleanups (void)
2937 {
2938 tree binfo, base_binfo;
2939 int i;
2940 tree member;
2941 tree expr;
2942 VEC(tree,gc) *vbases;
2943
2944 /* Run destructors for all virtual baseclasses. */
2945 if (CLASSTYPE_VBASECLASSES (current_class_type))
2946 {
2947 tree cond = (condition_conversion
2948 (build2 (BIT_AND_EXPR, integer_type_node,
2949 current_in_charge_parm,
2950 integer_two_node)));
2951
2952 /* The CLASSTYPE_VBASECLASSES vector is in initialization
2953 order, which is also the right order for pushing cleanups. */
2954 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
2955 VEC_iterate (tree, vbases, i, base_binfo); i++)
2956 {
2957 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
2958 {
2959 expr = build_special_member_call (current_class_ref,
2960 base_dtor_identifier,
2961 NULL_TREE,
2962 base_binfo,
2963 (LOOKUP_NORMAL
2964 | LOOKUP_NONVIRTUAL));
2965 expr = build3 (COND_EXPR, void_type_node, cond,
2966 expr, void_zero_node);
2967 finish_decl_cleanup (NULL_TREE, expr);
2968 }
2969 }
2970 }
2971
2972 /* Take care of the remaining baseclasses. */
2973 for (binfo = TYPE_BINFO (current_class_type), i = 0;
2974 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
2975 {
2976 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
2977 || BINFO_VIRTUAL_P (base_binfo))
2978 continue;
2979
2980 expr = build_special_member_call (current_class_ref,
2981 base_dtor_identifier,
2982 NULL_TREE, base_binfo,
2983 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
2984 finish_decl_cleanup (NULL_TREE, expr);
2985 }
2986
2987 for (member = TYPE_FIELDS (current_class_type); member;
2988 member = TREE_CHAIN (member))
2989 {
2990 if (TREE_TYPE (member) == error_mark_node
2991 || TREE_CODE (member) != FIELD_DECL
2992 || DECL_ARTIFICIAL (member))
2993 continue;
2994 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
2995 {
2996 tree this_member = (build_class_member_access_expr
2997 (current_class_ref, member,
2998 /*access_path=*/NULL_TREE,
2999 /*preserve_reference=*/false));
3000 tree this_type = TREE_TYPE (member);
3001 expr = build_delete (this_type, this_member,
3002 sfk_complete_destructor,
3003 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
3004 0);
3005 finish_decl_cleanup (NULL_TREE, expr);
3006 }
3007 }
3008 }
3009
3010 /* Build a C++ vector delete expression.
3011 MAXINDEX is the number of elements to be deleted.
3012 ELT_SIZE is the nominal size of each element in the vector.
3013 BASE is the expression that should yield the store to be deleted.
3014 This function expands (or synthesizes) these calls itself.
3015 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
3016
3017 This also calls delete for virtual baseclasses of elements of the vector.
3018
3019 Update: MAXINDEX is no longer needed. The size can be extracted from the
3020 start of the vector for pointers, and from the type for arrays. We still
3021 use MAXINDEX for arrays because it happens to already have one of the
3022 values we'd have to extract. (We could use MAXINDEX with pointers to
3023 confirm the size, and trap if the numbers differ; not clear that it'd
3024 be worth bothering.) */
3025
3026 tree
3027 build_vec_delete (tree base, tree maxindex,
3028 special_function_kind auto_delete_vec, int use_global_delete)
3029 {
3030 tree type;
3031 tree rval;
3032 tree base_init = NULL_TREE;
3033
3034 type = TREE_TYPE (base);
3035
3036 if (TREE_CODE (type) == POINTER_TYPE)
3037 {
3038 /* Step back one from start of vector, and read dimension. */
3039 tree cookie_addr;
3040
3041 if (TREE_SIDE_EFFECTS (base))
3042 {
3043 base_init = get_target_expr (base);
3044 base = TARGET_EXPR_SLOT (base_init);
3045 }
3046 type = strip_array_types (TREE_TYPE (type));
3047 cookie_addr = fold_build1 (NEGATE_EXPR, sizetype, TYPE_SIZE_UNIT (sizetype));
3048 cookie_addr = build2 (POINTER_PLUS_EXPR,
3049 build_pointer_type (sizetype),
3050 base,
3051 cookie_addr);
3052 maxindex = build_indirect_ref (cookie_addr, NULL);
3053 }
3054 else if (TREE_CODE (type) == ARRAY_TYPE)
3055 {
3056 /* Get the total number of things in the array, maxindex is a
3057 bad name. */
3058 maxindex = array_type_nelts_total (type);
3059 type = strip_array_types (type);
3060 base = build_unary_op (ADDR_EXPR, base, 1);
3061 if (TREE_SIDE_EFFECTS (base))
3062 {
3063 base_init = get_target_expr (base);
3064 base = TARGET_EXPR_SLOT (base_init);
3065 }
3066 }
3067 else
3068 {
3069 if (base != error_mark_node)
3070 error ("type to vector delete is neither pointer or array type");
3071 return error_mark_node;
3072 }
3073
3074 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
3075 use_global_delete);
3076 if (base_init)
3077 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
3078
3079 return rval;
3080 }
This page took 0.178051 seconds and 6 git commands to generate.