]> gcc.gnu.org Git - gcc.git/blob - gcc/cp/init.c
re PR c++/27801 (ICE in invert_truthvalue with template)
[gcc.git] / gcc / cp / init.c
1 /* Handle initialization things in C++.
2 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 /* High-level class interface. */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "tree.h"
30 #include "rtl.h"
31 #include "expr.h"
32 #include "cp-tree.h"
33 #include "flags.h"
34 #include "output.h"
35 #include "except.h"
36 #include "toplev.h"
37 #include "target.h"
38
39 static bool begin_init_stmts (tree *, tree *);
40 static tree finish_init_stmts (bool, tree, tree);
41 static void construct_virtual_base (tree, tree);
42 static void expand_aggr_init_1 (tree, tree, tree, tree, int);
43 static void expand_default_init (tree, tree, tree, tree, int);
44 static tree build_vec_delete_1 (tree, tree, tree, special_function_kind, int);
45 static void perform_member_init (tree, tree);
46 static tree build_builtin_delete_call (tree);
47 static int member_init_ok_or_else (tree, tree, tree);
48 static void expand_virtual_init (tree, tree);
49 static tree sort_mem_initializers (tree, tree);
50 static tree initializing_context (tree);
51 static void expand_cleanup_for_base (tree, tree);
52 static tree get_temp_regvar (tree, tree);
53 static tree dfs_initialize_vtbl_ptrs (tree, void *);
54 static tree build_default_init (tree, tree);
55 static tree build_dtor_call (tree, special_function_kind, int);
56 static tree build_field_list (tree, tree, int *);
57 static tree build_vtbl_address (tree);
58
59 /* We are about to generate some complex initialization code.
60 Conceptually, it is all a single expression. However, we may want
61 to include conditionals, loops, and other such statement-level
62 constructs. Therefore, we build the initialization code inside a
63 statement-expression. This function starts such an expression.
64 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
65 pass them back to finish_init_stmts when the expression is
66 complete. */
67
68 static bool
69 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
70 {
71 bool is_global = !building_stmt_tree ();
72
73 *stmt_expr_p = begin_stmt_expr ();
74 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
75
76 return is_global;
77 }
78
79 /* Finish out the statement-expression begun by the previous call to
80 begin_init_stmts. Returns the statement-expression itself. */
81
82 static tree
83 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
84 {
85 finish_compound_stmt (compound_stmt);
86
87 stmt_expr = finish_stmt_expr (stmt_expr, true);
88
89 gcc_assert (!building_stmt_tree () == is_global);
90
91 return stmt_expr;
92 }
93
94 /* Constructors */
95
96 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
97 which we want to initialize the vtable pointer for, DATA is
98 TREE_LIST whose TREE_VALUE is the this ptr expression. */
99
100 static tree
101 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
102 {
103 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
104 return dfs_skip_bases;
105
106 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
107 {
108 tree base_ptr = TREE_VALUE ((tree) data);
109
110 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
111
112 expand_virtual_init (binfo, base_ptr);
113 }
114
115 return NULL_TREE;
116 }
117
118 /* Initialize all the vtable pointers in the object pointed to by
119 ADDR. */
120
121 void
122 initialize_vtbl_ptrs (tree addr)
123 {
124 tree list;
125 tree type;
126
127 type = TREE_TYPE (TREE_TYPE (addr));
128 list = build_tree_list (type, addr);
129
130 /* Walk through the hierarchy, initializing the vptr in each base
131 class. We do these in pre-order because we can't find the virtual
132 bases for a class until we've initialized the vtbl for that
133 class. */
134 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
135 }
136
137 /* Return an expression for the zero-initialization of an object with
138 type T. This expression will either be a constant (in the case
139 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
140 aggregate). In either case, the value can be used as DECL_INITIAL
141 for a decl of the indicated TYPE; it is a valid static initializer.
142 If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS is the
143 number of elements in the array. If STATIC_STORAGE_P is TRUE,
144 initializers are only generated for entities for which
145 zero-initialization does not simply mean filling the storage with
146 zero bytes. */
147
148 tree
149 build_zero_init (tree type, tree nelts, bool static_storage_p)
150 {
151 tree init = NULL_TREE;
152
153 /* [dcl.init]
154
155 To zero-initialization storage for an object of type T means:
156
157 -- if T is a scalar type, the storage is set to the value of zero
158 converted to T.
159
160 -- if T is a non-union class type, the storage for each nonstatic
161 data member and each base-class subobject is zero-initialized.
162
163 -- if T is a union type, the storage for its first data member is
164 zero-initialized.
165
166 -- if T is an array type, the storage for each element is
167 zero-initialized.
168
169 -- if T is a reference type, no initialization is performed. */
170
171 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
172
173 if (type == error_mark_node)
174 ;
175 else if (static_storage_p && zero_init_p (type))
176 /* In order to save space, we do not explicitly build initializers
177 for items that do not need them. GCC's semantics are that
178 items with static storage duration that are not otherwise
179 initialized are initialized to zero. */
180 ;
181 else if (SCALAR_TYPE_P (type))
182 init = convert (type, integer_zero_node);
183 else if (CLASS_TYPE_P (type))
184 {
185 tree field;
186 VEC(constructor_elt,gc) *v = NULL;
187
188 /* Iterate over the fields, building initializations. */
189 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
190 {
191 if (TREE_CODE (field) != FIELD_DECL)
192 continue;
193
194 /* Note that for class types there will be FIELD_DECLs
195 corresponding to base classes as well. Thus, iterating
196 over TYPE_FIELDs will result in correct initialization of
197 all of the subobjects. */
198 if (static_storage_p && !zero_init_p (TREE_TYPE (field)))
199 {
200 tree value = build_zero_init (TREE_TYPE (field),
201 /*nelts=*/NULL_TREE,
202 static_storage_p);
203 CONSTRUCTOR_APPEND_ELT(v, field, value);
204 }
205
206 /* For unions, only the first field is initialized. */
207 if (TREE_CODE (type) == UNION_TYPE)
208 break;
209 }
210
211 /* Build a constructor to contain the initializations. */
212 init = build_constructor (type, v);
213 }
214 else if (TREE_CODE (type) == ARRAY_TYPE)
215 {
216 tree max_index;
217 VEC(constructor_elt,gc) *v = NULL;
218
219 /* Iterate over the array elements, building initializations. */
220 if (nelts)
221 max_index = fold_build2 (MINUS_EXPR, TREE_TYPE (nelts),
222 nelts, integer_one_node);
223 else
224 max_index = array_type_nelts (type);
225 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
226
227 /* A zero-sized array, which is accepted as an extension, will
228 have an upper bound of -1. */
229 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
230 {
231 constructor_elt *ce;
232
233 v = VEC_alloc (constructor_elt, gc, 1);
234 ce = VEC_quick_push (constructor_elt, v, NULL);
235
236 /* If this is a one element array, we just use a regular init. */
237 if (tree_int_cst_equal (size_zero_node, max_index))
238 ce->index = size_zero_node;
239 else
240 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
241 max_index);
242
243 ce->value = build_zero_init (TREE_TYPE (type),
244 /*nelts=*/NULL_TREE,
245 static_storage_p);
246 }
247
248 /* Build a constructor to contain the initializations. */
249 init = build_constructor (type, v);
250 }
251 else
252 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
253
254 /* In all cases, the initializer is a constant. */
255 if (init)
256 {
257 TREE_CONSTANT (init) = 1;
258 TREE_INVARIANT (init) = 1;
259 }
260
261 return init;
262 }
263
264 /* Build an expression for the default-initialization of an object of
265 the indicated TYPE. If NELTS is non-NULL, and TYPE is an
266 ARRAY_TYPE, NELTS is the number of elements in the array. If
267 initialization of TYPE requires calling constructors, this function
268 returns NULL_TREE; the caller is responsible for arranging for the
269 constructors to be called. */
270
271 static tree
272 build_default_init (tree type, tree nelts)
273 {
274 /* [dcl.init]:
275
276 To default-initialize an object of type T means:
277
278 --if T is a non-POD class type (clause _class_), the default construc-
279 tor for T is called (and the initialization is ill-formed if T has
280 no accessible default constructor);
281
282 --if T is an array type, each element is default-initialized;
283
284 --otherwise, the storage for the object is zero-initialized.
285
286 A program that calls for default-initialization of an entity of refer-
287 ence type is ill-formed. */
288
289 /* If TYPE_NEEDS_CONSTRUCTING is true, the caller is responsible for
290 performing the initialization. This is confusing in that some
291 non-PODs do not have TYPE_NEEDS_CONSTRUCTING set. (For example,
292 a class with a pointer-to-data member as a non-static data member
293 does not have TYPE_NEEDS_CONSTRUCTING set.) Therefore, we end up
294 passing non-PODs to build_zero_init below, which is contrary to
295 the semantics quoted above from [dcl.init].
296
297 It happens, however, that the behavior of the constructor the
298 standard says we should have generated would be precisely the
299 same as that obtained by calling build_zero_init below, so things
300 work out OK. */
301 if (TYPE_NEEDS_CONSTRUCTING (type)
302 || (nelts && TREE_CODE (nelts) != INTEGER_CST))
303 return NULL_TREE;
304
305 /* At this point, TYPE is either a POD class type, an array of POD
306 classes, or something even more innocuous. */
307 return build_zero_init (type, nelts, /*static_storage_p=*/false);
308 }
309
310 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
311 arguments. If TREE_LIST is void_type_node, an empty initializer
312 list was given; if NULL_TREE no initializer was given. */
313
314 static void
315 perform_member_init (tree member, tree init)
316 {
317 tree decl;
318 tree type = TREE_TYPE (member);
319 bool explicit;
320
321 explicit = (init != NULL_TREE);
322
323 /* Effective C++ rule 12 requires that all data members be
324 initialized. */
325 if (warn_ecpp && !explicit && TREE_CODE (type) != ARRAY_TYPE)
326 warning (OPT_Weffc__, "%J%qD should be initialized in the member initialization "
327 "list", current_function_decl, member);
328
329 if (init == void_type_node)
330 init = NULL_TREE;
331
332 /* Get an lvalue for the data member. */
333 decl = build_class_member_access_expr (current_class_ref, member,
334 /*access_path=*/NULL_TREE,
335 /*preserve_reference=*/true);
336 if (decl == error_mark_node)
337 return;
338
339 /* Deal with this here, as we will get confused if we try to call the
340 assignment op for an anonymous union. This can happen in a
341 synthesized copy constructor. */
342 if (ANON_AGGR_TYPE_P (type))
343 {
344 if (init)
345 {
346 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
347 finish_expr_stmt (init);
348 }
349 }
350 else if (TYPE_NEEDS_CONSTRUCTING (type))
351 {
352 if (explicit
353 && TREE_CODE (type) == ARRAY_TYPE
354 && init != NULL_TREE
355 && TREE_CHAIN (init) == NULL_TREE
356 && TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
357 {
358 /* Initialization of one array from another. */
359 finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
360 /*explicit_default_init_p=*/false,
361 /* from_array=*/1));
362 }
363 else
364 finish_expr_stmt (build_aggr_init (decl, init, 0));
365 }
366 else
367 {
368 if (init == NULL_TREE)
369 {
370 if (explicit)
371 {
372 init = build_default_init (type, /*nelts=*/NULL_TREE);
373 if (TREE_CODE (type) == REFERENCE_TYPE)
374 warning (0, "%Jdefault-initialization of %q#D, "
375 "which has reference type",
376 current_function_decl, member);
377 }
378 /* member traversal: note it leaves init NULL */
379 else if (TREE_CODE (type) == REFERENCE_TYPE)
380 pedwarn ("%Juninitialized reference member %qD",
381 current_function_decl, member);
382 else if (CP_TYPE_CONST_P (type))
383 pedwarn ("%Juninitialized member %qD with %<const%> type %qT",
384 current_function_decl, member, type);
385 }
386 else if (TREE_CODE (init) == TREE_LIST)
387 /* There was an explicit member initialization. Do some work
388 in that case. */
389 init = build_x_compound_expr_from_list (init, "member initializer");
390
391 if (init)
392 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
393 }
394
395 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
396 {
397 tree expr;
398
399 expr = build_class_member_access_expr (current_class_ref, member,
400 /*access_path=*/NULL_TREE,
401 /*preserve_reference=*/false);
402 expr = build_delete (type, expr, sfk_complete_destructor,
403 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
404
405 if (expr != error_mark_node)
406 finish_eh_cleanup (expr);
407 }
408 }
409
410 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
411 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
412
413 static tree
414 build_field_list (tree t, tree list, int *uses_unions_p)
415 {
416 tree fields;
417
418 *uses_unions_p = 0;
419
420 /* Note whether or not T is a union. */
421 if (TREE_CODE (t) == UNION_TYPE)
422 *uses_unions_p = 1;
423
424 for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
425 {
426 /* Skip CONST_DECLs for enumeration constants and so forth. */
427 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
428 continue;
429
430 /* Keep track of whether or not any fields are unions. */
431 if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
432 *uses_unions_p = 1;
433
434 /* For an anonymous struct or union, we must recursively
435 consider the fields of the anonymous type. They can be
436 directly initialized from the constructor. */
437 if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
438 {
439 /* Add this field itself. Synthesized copy constructors
440 initialize the entire aggregate. */
441 list = tree_cons (fields, NULL_TREE, list);
442 /* And now add the fields in the anonymous aggregate. */
443 list = build_field_list (TREE_TYPE (fields), list,
444 uses_unions_p);
445 }
446 /* Add this field. */
447 else if (DECL_NAME (fields))
448 list = tree_cons (fields, NULL_TREE, list);
449 }
450
451 return list;
452 }
453
454 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
455 a FIELD_DECL or BINFO in T that needs initialization. The
456 TREE_VALUE gives the initializer, or list of initializer arguments.
457
458 Return a TREE_LIST containing all of the initializations required
459 for T, in the order in which they should be performed. The output
460 list has the same format as the input. */
461
462 static tree
463 sort_mem_initializers (tree t, tree mem_inits)
464 {
465 tree init;
466 tree base, binfo, base_binfo;
467 tree sorted_inits;
468 tree next_subobject;
469 VEC(tree,gc) *vbases;
470 int i;
471 int uses_unions_p;
472
473 /* Build up a list of initializations. The TREE_PURPOSE of entry
474 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
475 TREE_VALUE will be the constructor arguments, or NULL if no
476 explicit initialization was provided. */
477 sorted_inits = NULL_TREE;
478
479 /* Process the virtual bases. */
480 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
481 VEC_iterate (tree, vbases, i, base); i++)
482 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
483
484 /* Process the direct bases. */
485 for (binfo = TYPE_BINFO (t), i = 0;
486 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
487 if (!BINFO_VIRTUAL_P (base_binfo))
488 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
489
490 /* Process the non-static data members. */
491 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
492 /* Reverse the entire list of initializations, so that they are in
493 the order that they will actually be performed. */
494 sorted_inits = nreverse (sorted_inits);
495
496 /* If the user presented the initializers in an order different from
497 that in which they will actually occur, we issue a warning. Keep
498 track of the next subobject which can be explicitly initialized
499 without issuing a warning. */
500 next_subobject = sorted_inits;
501
502 /* Go through the explicit initializers, filling in TREE_PURPOSE in
503 the SORTED_INITS. */
504 for (init = mem_inits; init; init = TREE_CHAIN (init))
505 {
506 tree subobject;
507 tree subobject_init;
508
509 subobject = TREE_PURPOSE (init);
510
511 /* If the explicit initializers are in sorted order, then
512 SUBOBJECT will be NEXT_SUBOBJECT, or something following
513 it. */
514 for (subobject_init = next_subobject;
515 subobject_init;
516 subobject_init = TREE_CHAIN (subobject_init))
517 if (TREE_PURPOSE (subobject_init) == subobject)
518 break;
519
520 /* Issue a warning if the explicit initializer order does not
521 match that which will actually occur.
522 ??? Are all these on the correct lines? */
523 if (warn_reorder && !subobject_init)
524 {
525 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
526 warning (OPT_Wreorder, "%q+D will be initialized after",
527 TREE_PURPOSE (next_subobject));
528 else
529 warning (OPT_Wreorder, "base %qT will be initialized after",
530 TREE_PURPOSE (next_subobject));
531 if (TREE_CODE (subobject) == FIELD_DECL)
532 warning (OPT_Wreorder, " %q+#D", subobject);
533 else
534 warning (OPT_Wreorder, " base %qT", subobject);
535 warning (OPT_Wreorder, "%J when initialized here", current_function_decl);
536 }
537
538 /* Look again, from the beginning of the list. */
539 if (!subobject_init)
540 {
541 subobject_init = sorted_inits;
542 while (TREE_PURPOSE (subobject_init) != subobject)
543 subobject_init = TREE_CHAIN (subobject_init);
544 }
545
546 /* It is invalid to initialize the same subobject more than
547 once. */
548 if (TREE_VALUE (subobject_init))
549 {
550 if (TREE_CODE (subobject) == FIELD_DECL)
551 error ("%Jmultiple initializations given for %qD",
552 current_function_decl, subobject);
553 else
554 error ("%Jmultiple initializations given for base %qT",
555 current_function_decl, subobject);
556 }
557
558 /* Record the initialization. */
559 TREE_VALUE (subobject_init) = TREE_VALUE (init);
560 next_subobject = subobject_init;
561 }
562
563 /* [class.base.init]
564
565 If a ctor-initializer specifies more than one mem-initializer for
566 multiple members of the same union (including members of
567 anonymous unions), the ctor-initializer is ill-formed. */
568 if (uses_unions_p)
569 {
570 tree last_field = NULL_TREE;
571 for (init = sorted_inits; init; init = TREE_CHAIN (init))
572 {
573 tree field;
574 tree field_type;
575 int done;
576
577 /* Skip uninitialized members and base classes. */
578 if (!TREE_VALUE (init)
579 || TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
580 continue;
581 /* See if this field is a member of a union, or a member of a
582 structure contained in a union, etc. */
583 field = TREE_PURPOSE (init);
584 for (field_type = DECL_CONTEXT (field);
585 !same_type_p (field_type, t);
586 field_type = TYPE_CONTEXT (field_type))
587 if (TREE_CODE (field_type) == UNION_TYPE)
588 break;
589 /* If this field is not a member of a union, skip it. */
590 if (TREE_CODE (field_type) != UNION_TYPE)
591 continue;
592
593 /* It's only an error if we have two initializers for the same
594 union type. */
595 if (!last_field)
596 {
597 last_field = field;
598 continue;
599 }
600
601 /* See if LAST_FIELD and the field initialized by INIT are
602 members of the same union. If so, there's a problem,
603 unless they're actually members of the same structure
604 which is itself a member of a union. For example, given:
605
606 union { struct { int i; int j; }; };
607
608 initializing both `i' and `j' makes sense. */
609 field_type = DECL_CONTEXT (field);
610 done = 0;
611 do
612 {
613 tree last_field_type;
614
615 last_field_type = DECL_CONTEXT (last_field);
616 while (1)
617 {
618 if (same_type_p (last_field_type, field_type))
619 {
620 if (TREE_CODE (field_type) == UNION_TYPE)
621 error ("%Jinitializations for multiple members of %qT",
622 current_function_decl, last_field_type);
623 done = 1;
624 break;
625 }
626
627 if (same_type_p (last_field_type, t))
628 break;
629
630 last_field_type = TYPE_CONTEXT (last_field_type);
631 }
632
633 /* If we've reached the outermost class, then we're
634 done. */
635 if (same_type_p (field_type, t))
636 break;
637
638 field_type = TYPE_CONTEXT (field_type);
639 }
640 while (!done);
641
642 last_field = field;
643 }
644 }
645
646 return sorted_inits;
647 }
648
649 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
650 is a TREE_LIST giving the explicit mem-initializer-list for the
651 constructor. The TREE_PURPOSE of each entry is a subobject (a
652 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
653 is a TREE_LIST giving the arguments to the constructor or
654 void_type_node for an empty list of arguments. */
655
656 void
657 emit_mem_initializers (tree mem_inits)
658 {
659 /* We will already have issued an error message about the fact that
660 the type is incomplete. */
661 if (!COMPLETE_TYPE_P (current_class_type))
662 return;
663
664 /* Sort the mem-initializers into the order in which the
665 initializations should be performed. */
666 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
667
668 in_base_initializer = 1;
669
670 /* Initialize base classes. */
671 while (mem_inits
672 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
673 {
674 tree subobject = TREE_PURPOSE (mem_inits);
675 tree arguments = TREE_VALUE (mem_inits);
676
677 /* If these initializations are taking place in a copy
678 constructor, the base class should probably be explicitly
679 initialized. */
680 if (extra_warnings && !arguments
681 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
682 && TYPE_NEEDS_CONSTRUCTING (BINFO_TYPE (subobject)))
683 warning (OPT_Wextra, "%Jbase class %q#T should be explicitly initialized in the "
684 "copy constructor",
685 current_function_decl, BINFO_TYPE (subobject));
686
687 /* If an explicit -- but empty -- initializer list was present,
688 treat it just like default initialization at this point. */
689 if (arguments == void_type_node)
690 arguments = NULL_TREE;
691
692 /* Initialize the base. */
693 if (BINFO_VIRTUAL_P (subobject))
694 construct_virtual_base (subobject, arguments);
695 else
696 {
697 tree base_addr;
698
699 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
700 subobject, 1);
701 expand_aggr_init_1 (subobject, NULL_TREE,
702 build_indirect_ref (base_addr, NULL),
703 arguments,
704 LOOKUP_NORMAL);
705 expand_cleanup_for_base (subobject, NULL_TREE);
706 }
707
708 mem_inits = TREE_CHAIN (mem_inits);
709 }
710 in_base_initializer = 0;
711
712 /* Initialize the vptrs. */
713 initialize_vtbl_ptrs (current_class_ptr);
714
715 /* Initialize the data members. */
716 while (mem_inits)
717 {
718 perform_member_init (TREE_PURPOSE (mem_inits),
719 TREE_VALUE (mem_inits));
720 mem_inits = TREE_CHAIN (mem_inits);
721 }
722 }
723
724 /* Returns the address of the vtable (i.e., the value that should be
725 assigned to the vptr) for BINFO. */
726
727 static tree
728 build_vtbl_address (tree binfo)
729 {
730 tree binfo_for = binfo;
731 tree vtbl;
732
733 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
734 /* If this is a virtual primary base, then the vtable we want to store
735 is that for the base this is being used as the primary base of. We
736 can't simply skip the initialization, because we may be expanding the
737 inits of a subobject constructor where the virtual base layout
738 can be different. */
739 while (BINFO_PRIMARY_P (binfo_for))
740 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
741
742 /* Figure out what vtable BINFO's vtable is based on, and mark it as
743 used. */
744 vtbl = get_vtbl_decl_for_binfo (binfo_for);
745 assemble_external (vtbl);
746 TREE_USED (vtbl) = 1;
747
748 /* Now compute the address to use when initializing the vptr. */
749 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
750 if (TREE_CODE (vtbl) == VAR_DECL)
751 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
752
753 return vtbl;
754 }
755
756 /* This code sets up the virtual function tables appropriate for
757 the pointer DECL. It is a one-ply initialization.
758
759 BINFO is the exact type that DECL is supposed to be. In
760 multiple inheritance, this might mean "C's A" if C : A, B. */
761
762 static void
763 expand_virtual_init (tree binfo, tree decl)
764 {
765 tree vtbl, vtbl_ptr;
766 tree vtt_index;
767
768 /* Compute the initializer for vptr. */
769 vtbl = build_vtbl_address (binfo);
770
771 /* We may get this vptr from a VTT, if this is a subobject
772 constructor or subobject destructor. */
773 vtt_index = BINFO_VPTR_INDEX (binfo);
774 if (vtt_index)
775 {
776 tree vtbl2;
777 tree vtt_parm;
778
779 /* Compute the value to use, when there's a VTT. */
780 vtt_parm = current_vtt_parm;
781 vtbl2 = build2 (PLUS_EXPR,
782 TREE_TYPE (vtt_parm),
783 vtt_parm,
784 vtt_index);
785 vtbl2 = build_indirect_ref (vtbl2, NULL);
786 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
787
788 /* The actual initializer is the VTT value only in the subobject
789 constructor. In maybe_clone_body we'll substitute NULL for
790 the vtt_parm in the case of the non-subobject constructor. */
791 vtbl = build3 (COND_EXPR,
792 TREE_TYPE (vtbl),
793 build2 (EQ_EXPR, boolean_type_node,
794 current_in_charge_parm, integer_zero_node),
795 vtbl2,
796 vtbl);
797 }
798
799 /* Compute the location of the vtpr. */
800 vtbl_ptr = build_vfield_ref (build_indirect_ref (decl, NULL),
801 TREE_TYPE (binfo));
802 gcc_assert (vtbl_ptr != error_mark_node);
803
804 /* Assign the vtable to the vptr. */
805 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
806 finish_expr_stmt (build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl));
807 }
808
809 /* If an exception is thrown in a constructor, those base classes already
810 constructed must be destroyed. This function creates the cleanup
811 for BINFO, which has just been constructed. If FLAG is non-NULL,
812 it is a DECL which is nonzero when this base needs to be
813 destroyed. */
814
815 static void
816 expand_cleanup_for_base (tree binfo, tree flag)
817 {
818 tree expr;
819
820 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
821 return;
822
823 /* Call the destructor. */
824 expr = build_special_member_call (current_class_ref,
825 base_dtor_identifier,
826 NULL_TREE,
827 binfo,
828 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
829 if (flag)
830 expr = fold_build3 (COND_EXPR, void_type_node,
831 c_common_truthvalue_conversion (flag),
832 expr, integer_zero_node);
833
834 finish_eh_cleanup (expr);
835 }
836
837 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
838 constructor. */
839
840 static void
841 construct_virtual_base (tree vbase, tree arguments)
842 {
843 tree inner_if_stmt;
844 tree exp;
845 tree flag;
846
847 /* If there are virtual base classes with destructors, we need to
848 emit cleanups to destroy them if an exception is thrown during
849 the construction process. These exception regions (i.e., the
850 period during which the cleanups must occur) begin from the time
851 the construction is complete to the end of the function. If we
852 create a conditional block in which to initialize the
853 base-classes, then the cleanup region for the virtual base begins
854 inside a block, and ends outside of that block. This situation
855 confuses the sjlj exception-handling code. Therefore, we do not
856 create a single conditional block, but one for each
857 initialization. (That way the cleanup regions always begin
858 in the outer block.) We trust the back-end to figure out
859 that the FLAG will not change across initializations, and
860 avoid doing multiple tests. */
861 flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
862 inner_if_stmt = begin_if_stmt ();
863 finish_if_stmt_cond (flag, inner_if_stmt);
864
865 /* Compute the location of the virtual base. If we're
866 constructing virtual bases, then we must be the most derived
867 class. Therefore, we don't have to look up the virtual base;
868 we already know where it is. */
869 exp = convert_to_base_statically (current_class_ref, vbase);
870
871 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
872 LOOKUP_COMPLAIN);
873 finish_then_clause (inner_if_stmt);
874 finish_if_stmt (inner_if_stmt);
875
876 expand_cleanup_for_base (vbase, flag);
877 }
878
879 /* Find the context in which this FIELD can be initialized. */
880
881 static tree
882 initializing_context (tree field)
883 {
884 tree t = DECL_CONTEXT (field);
885
886 /* Anonymous union members can be initialized in the first enclosing
887 non-anonymous union context. */
888 while (t && ANON_AGGR_TYPE_P (t))
889 t = TYPE_CONTEXT (t);
890 return t;
891 }
892
893 /* Function to give error message if member initialization specification
894 is erroneous. FIELD is the member we decided to initialize.
895 TYPE is the type for which the initialization is being performed.
896 FIELD must be a member of TYPE.
897
898 MEMBER_NAME is the name of the member. */
899
900 static int
901 member_init_ok_or_else (tree field, tree type, tree member_name)
902 {
903 if (field == error_mark_node)
904 return 0;
905 if (!field)
906 {
907 error ("class %qT does not have any field named %qD", type,
908 member_name);
909 return 0;
910 }
911 if (TREE_CODE (field) == VAR_DECL)
912 {
913 error ("%q#D is a static data member; it can only be "
914 "initialized at its definition",
915 field);
916 return 0;
917 }
918 if (TREE_CODE (field) != FIELD_DECL)
919 {
920 error ("%q#D is not a non-static data member of %qT",
921 field, type);
922 return 0;
923 }
924 if (initializing_context (field) != type)
925 {
926 error ("class %qT does not have any field named %qD", type,
927 member_name);
928 return 0;
929 }
930
931 return 1;
932 }
933
934 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
935 is a _TYPE node or TYPE_DECL which names a base for that type.
936 Check the validity of NAME, and return either the base _TYPE, base
937 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
938 NULL_TREE and issue a diagnostic.
939
940 An old style unnamed direct single base construction is permitted,
941 where NAME is NULL. */
942
943 tree
944 expand_member_init (tree name)
945 {
946 tree basetype;
947 tree field;
948
949 if (!current_class_ref)
950 return NULL_TREE;
951
952 if (!name)
953 {
954 /* This is an obsolete unnamed base class initializer. The
955 parser will already have warned about its use. */
956 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
957 {
958 case 0:
959 error ("unnamed initializer for %qT, which has no base classes",
960 current_class_type);
961 return NULL_TREE;
962 case 1:
963 basetype = BINFO_TYPE
964 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
965 break;
966 default:
967 error ("unnamed initializer for %qT, which uses multiple inheritance",
968 current_class_type);
969 return NULL_TREE;
970 }
971 }
972 else if (TYPE_P (name))
973 {
974 basetype = TYPE_MAIN_VARIANT (name);
975 name = TYPE_NAME (name);
976 }
977 else if (TREE_CODE (name) == TYPE_DECL)
978 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
979 else
980 basetype = NULL_TREE;
981
982 if (basetype)
983 {
984 tree class_binfo;
985 tree direct_binfo;
986 tree virtual_binfo;
987 int i;
988
989 if (current_template_parms)
990 return basetype;
991
992 class_binfo = TYPE_BINFO (current_class_type);
993 direct_binfo = NULL_TREE;
994 virtual_binfo = NULL_TREE;
995
996 /* Look for a direct base. */
997 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
998 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
999 break;
1000
1001 /* Look for a virtual base -- unless the direct base is itself
1002 virtual. */
1003 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1004 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1005
1006 /* [class.base.init]
1007
1008 If a mem-initializer-id is ambiguous because it designates
1009 both a direct non-virtual base class and an inherited virtual
1010 base class, the mem-initializer is ill-formed. */
1011 if (direct_binfo && virtual_binfo)
1012 {
1013 error ("%qD is both a direct base and an indirect virtual base",
1014 basetype);
1015 return NULL_TREE;
1016 }
1017
1018 if (!direct_binfo && !virtual_binfo)
1019 {
1020 if (CLASSTYPE_VBASECLASSES (current_class_type))
1021 error ("type %qT is not a direct or virtual base of %qT",
1022 basetype, current_class_type);
1023 else
1024 error ("type %qT is not a direct base of %qT",
1025 basetype, current_class_type);
1026 return NULL_TREE;
1027 }
1028
1029 return direct_binfo ? direct_binfo : virtual_binfo;
1030 }
1031 else
1032 {
1033 if (TREE_CODE (name) == IDENTIFIER_NODE)
1034 field = lookup_field (current_class_type, name, 1, false);
1035 else
1036 field = name;
1037
1038 if (member_init_ok_or_else (field, current_class_type, name))
1039 return field;
1040 }
1041
1042 return NULL_TREE;
1043 }
1044
1045 /* This is like `expand_member_init', only it stores one aggregate
1046 value into another.
1047
1048 INIT comes in two flavors: it is either a value which
1049 is to be stored in EXP, or it is a parameter list
1050 to go to a constructor, which will operate on EXP.
1051 If INIT is not a parameter list for a constructor, then set
1052 LOOKUP_ONLYCONVERTING.
1053 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1054 the initializer, if FLAGS is 0, then it is the (init) form.
1055 If `init' is a CONSTRUCTOR, then we emit a warning message,
1056 explaining that such initializations are invalid.
1057
1058 If INIT resolves to a CALL_EXPR which happens to return
1059 something of the type we are looking for, then we know
1060 that we can safely use that call to perform the
1061 initialization.
1062
1063 The virtual function table pointer cannot be set up here, because
1064 we do not really know its type.
1065
1066 This never calls operator=().
1067
1068 When initializing, nothing is CONST.
1069
1070 A default copy constructor may have to be used to perform the
1071 initialization.
1072
1073 A constructor or a conversion operator may have to be used to
1074 perform the initialization, but not both, as it would be ambiguous. */
1075
1076 tree
1077 build_aggr_init (tree exp, tree init, int flags)
1078 {
1079 tree stmt_expr;
1080 tree compound_stmt;
1081 int destroy_temps;
1082 tree type = TREE_TYPE (exp);
1083 int was_const = TREE_READONLY (exp);
1084 int was_volatile = TREE_THIS_VOLATILE (exp);
1085 int is_global;
1086
1087 if (init == error_mark_node)
1088 return error_mark_node;
1089
1090 TREE_READONLY (exp) = 0;
1091 TREE_THIS_VOLATILE (exp) = 0;
1092
1093 if (init && TREE_CODE (init) != TREE_LIST)
1094 flags |= LOOKUP_ONLYCONVERTING;
1095
1096 if (TREE_CODE (type) == ARRAY_TYPE)
1097 {
1098 tree itype;
1099
1100 /* An array may not be initialized use the parenthesized
1101 initialization form -- unless the initializer is "()". */
1102 if (init && TREE_CODE (init) == TREE_LIST)
1103 {
1104 error ("bad array initializer");
1105 return error_mark_node;
1106 }
1107 /* Must arrange to initialize each element of EXP
1108 from elements of INIT. */
1109 itype = init ? TREE_TYPE (init) : NULL_TREE;
1110 if (cp_type_quals (type) != TYPE_UNQUALIFIED)
1111 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1112 if (itype && cp_type_quals (itype) != TYPE_UNQUALIFIED)
1113 itype = TREE_TYPE (init) = TYPE_MAIN_VARIANT (itype);
1114 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1115 /*explicit_default_init_p=*/false,
1116 itype && same_type_p (itype,
1117 TREE_TYPE (exp)));
1118 TREE_READONLY (exp) = was_const;
1119 TREE_THIS_VOLATILE (exp) = was_volatile;
1120 TREE_TYPE (exp) = type;
1121 if (init)
1122 TREE_TYPE (init) = itype;
1123 return stmt_expr;
1124 }
1125
1126 if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1127 /* Just know that we've seen something for this node. */
1128 TREE_USED (exp) = 1;
1129
1130 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1131 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1132 destroy_temps = stmts_are_full_exprs_p ();
1133 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1134 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1135 init, LOOKUP_NORMAL|flags);
1136 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1137 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1138 TREE_TYPE (exp) = type;
1139 TREE_READONLY (exp) = was_const;
1140 TREE_THIS_VOLATILE (exp) = was_volatile;
1141
1142 return stmt_expr;
1143 }
1144
1145 static void
1146 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags)
1147 {
1148 tree type = TREE_TYPE (exp);
1149 tree ctor_name;
1150
1151 /* It fails because there may not be a constructor which takes
1152 its own type as the first (or only parameter), but which does
1153 take other types via a conversion. So, if the thing initializing
1154 the expression is a unit element of type X, first try X(X&),
1155 followed by initialization by X. If neither of these work
1156 out, then look hard. */
1157 tree rval;
1158 tree parms;
1159
1160 if (init && TREE_CODE (init) != TREE_LIST
1161 && (flags & LOOKUP_ONLYCONVERTING))
1162 {
1163 /* Base subobjects should only get direct-initialization. */
1164 gcc_assert (true_exp == exp);
1165
1166 if (flags & DIRECT_BIND)
1167 /* Do nothing. We hit this in two cases: Reference initialization,
1168 where we aren't initializing a real variable, so we don't want
1169 to run a new constructor; and catching an exception, where we
1170 have already built up the constructor call so we could wrap it
1171 in an exception region. */;
1172 else if (BRACE_ENCLOSED_INITIALIZER_P (init))
1173 {
1174 /* A brace-enclosed initializer for an aggregate. */
1175 gcc_assert (CP_AGGREGATE_TYPE_P (type));
1176 init = digest_init (type, init);
1177 }
1178 else
1179 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
1180
1181 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1182 /* We need to protect the initialization of a catch parm with a
1183 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1184 around the TARGET_EXPR for the copy constructor. See
1185 initialize_handler_parm. */
1186 {
1187 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1188 TREE_OPERAND (init, 0));
1189 TREE_TYPE (init) = void_type_node;
1190 }
1191 else
1192 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1193 TREE_SIDE_EFFECTS (init) = 1;
1194 finish_expr_stmt (init);
1195 return;
1196 }
1197
1198 if (init == NULL_TREE
1199 || (TREE_CODE (init) == TREE_LIST && ! TREE_TYPE (init)))
1200 {
1201 parms = init;
1202 if (parms)
1203 init = TREE_VALUE (parms);
1204 }
1205 else
1206 parms = build_tree_list (NULL_TREE, init);
1207
1208 if (true_exp == exp)
1209 ctor_name = complete_ctor_identifier;
1210 else
1211 ctor_name = base_ctor_identifier;
1212
1213 rval = build_special_member_call (exp, ctor_name, parms, binfo, flags);
1214 if (TREE_SIDE_EFFECTS (rval))
1215 finish_expr_stmt (convert_to_void (rval, NULL));
1216 }
1217
1218 /* This function is responsible for initializing EXP with INIT
1219 (if any).
1220
1221 BINFO is the binfo of the type for who we are performing the
1222 initialization. For example, if W is a virtual base class of A and B,
1223 and C : A, B.
1224 If we are initializing B, then W must contain B's W vtable, whereas
1225 were we initializing C, W must contain C's W vtable.
1226
1227 TRUE_EXP is nonzero if it is the true expression being initialized.
1228 In this case, it may be EXP, or may just contain EXP. The reason we
1229 need this is because if EXP is a base element of TRUE_EXP, we
1230 don't necessarily know by looking at EXP where its virtual
1231 baseclass fields should really be pointing. But we do know
1232 from TRUE_EXP. In constructors, we don't know anything about
1233 the value being initialized.
1234
1235 FLAGS is just passed to `build_new_method_call'. See that function
1236 for its description. */
1237
1238 static void
1239 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags)
1240 {
1241 tree type = TREE_TYPE (exp);
1242
1243 gcc_assert (init != error_mark_node && type != error_mark_node);
1244 gcc_assert (building_stmt_tree ());
1245
1246 /* Use a function returning the desired type to initialize EXP for us.
1247 If the function is a constructor, and its first argument is
1248 NULL_TREE, know that it was meant for us--just slide exp on
1249 in and expand the constructor. Constructors now come
1250 as TARGET_EXPRs. */
1251
1252 if (init && TREE_CODE (exp) == VAR_DECL
1253 && COMPOUND_LITERAL_P (init))
1254 {
1255 /* If store_init_value returns NULL_TREE, the INIT has been
1256 recorded as the DECL_INITIAL for EXP. That means there's
1257 nothing more we have to do. */
1258 init = store_init_value (exp, init);
1259 if (init)
1260 finish_expr_stmt (init);
1261 return;
1262 }
1263
1264 /* We know that expand_default_init can handle everything we want
1265 at this point. */
1266 expand_default_init (binfo, true_exp, exp, init, flags);
1267 }
1268
1269 /* Report an error if TYPE is not a user-defined, aggregate type. If
1270 OR_ELSE is nonzero, give an error message. */
1271
1272 int
1273 is_aggr_type (tree type, int or_else)
1274 {
1275 if (type == error_mark_node)
1276 return 0;
1277
1278 if (! IS_AGGR_TYPE (type)
1279 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1280 && TREE_CODE (type) != BOUND_TEMPLATE_TEMPLATE_PARM)
1281 {
1282 if (or_else)
1283 error ("%qT is not an aggregate type", type);
1284 return 0;
1285 }
1286 return 1;
1287 }
1288
1289 tree
1290 get_type_value (tree name)
1291 {
1292 if (name == error_mark_node)
1293 return NULL_TREE;
1294
1295 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1296 return IDENTIFIER_TYPE_VALUE (name);
1297 else
1298 return NULL_TREE;
1299 }
1300
1301 /* Build a reference to a member of an aggregate. This is not a C++
1302 `&', but really something which can have its address taken, and
1303 then act as a pointer to member, for example TYPE :: FIELD can have
1304 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1305 this expression is the operand of "&".
1306
1307 @@ Prints out lousy diagnostics for operator <typename>
1308 @@ fields.
1309
1310 @@ This function should be rewritten and placed in search.c. */
1311
1312 tree
1313 build_offset_ref (tree type, tree member, bool address_p)
1314 {
1315 tree decl;
1316 tree basebinfo = NULL_TREE;
1317
1318 /* class templates can come in as TEMPLATE_DECLs here. */
1319 if (TREE_CODE (member) == TEMPLATE_DECL)
1320 return member;
1321
1322 if (dependent_type_p (type) || type_dependent_expression_p (member))
1323 return build_qualified_name (NULL_TREE, type, member,
1324 /*template_p=*/false);
1325
1326 gcc_assert (TYPE_P (type));
1327 if (! is_aggr_type (type, 1))
1328 return error_mark_node;
1329
1330 gcc_assert (DECL_P (member) || BASELINK_P (member));
1331 /* Callers should call mark_used before this point. */
1332 gcc_assert (!DECL_P (member) || TREE_USED (member));
1333
1334 if (!COMPLETE_TYPE_P (complete_type (type))
1335 && !TYPE_BEING_DEFINED (type))
1336 {
1337 error ("incomplete type %qT does not have member %qD", type, member);
1338 return error_mark_node;
1339 }
1340
1341 /* Entities other than non-static members need no further
1342 processing. */
1343 if (TREE_CODE (member) == TYPE_DECL)
1344 return member;
1345 if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
1346 return convert_from_reference (member);
1347
1348 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1349 {
1350 error ("invalid pointer to bit-field %qD", member);
1351 return error_mark_node;
1352 }
1353
1354 /* Set up BASEBINFO for member lookup. */
1355 decl = maybe_dummy_object (type, &basebinfo);
1356
1357 /* A lot of this logic is now handled in lookup_member. */
1358 if (BASELINK_P (member))
1359 {
1360 /* Go from the TREE_BASELINK to the member function info. */
1361 tree t = BASELINK_FUNCTIONS (member);
1362
1363 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1364 {
1365 /* Get rid of a potential OVERLOAD around it. */
1366 t = OVL_CURRENT (t);
1367
1368 /* Unique functions are handled easily. */
1369
1370 /* For non-static member of base class, we need a special rule
1371 for access checking [class.protected]:
1372
1373 If the access is to form a pointer to member, the
1374 nested-name-specifier shall name the derived class
1375 (or any class derived from that class). */
1376 if (address_p && DECL_P (t)
1377 && DECL_NONSTATIC_MEMBER_P (t))
1378 perform_or_defer_access_check (TYPE_BINFO (type), t);
1379 else
1380 perform_or_defer_access_check (basebinfo, t);
1381
1382 if (DECL_STATIC_FUNCTION_P (t))
1383 return t;
1384 member = t;
1385 }
1386 else
1387 TREE_TYPE (member) = unknown_type_node;
1388 }
1389 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1390 /* We need additional test besides the one in
1391 check_accessibility_of_qualified_id in case it is
1392 a pointer to non-static member. */
1393 perform_or_defer_access_check (TYPE_BINFO (type), member);
1394
1395 if (!address_p)
1396 {
1397 /* If MEMBER is non-static, then the program has fallen afoul of
1398 [expr.prim]:
1399
1400 An id-expression that denotes a nonstatic data member or
1401 nonstatic member function of a class can only be used:
1402
1403 -- as part of a class member access (_expr.ref_) in which the
1404 object-expression refers to the member's class or a class
1405 derived from that class, or
1406
1407 -- to form a pointer to member (_expr.unary.op_), or
1408
1409 -- in the body of a nonstatic member function of that class or
1410 of a class derived from that class (_class.mfct.nonstatic_), or
1411
1412 -- in a mem-initializer for a constructor for that class or for
1413 a class derived from that class (_class.base.init_). */
1414 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1415 {
1416 /* Build a representation of a the qualified name suitable
1417 for use as the operand to "&" -- even though the "&" is
1418 not actually present. */
1419 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1420 /* In Microsoft mode, treat a non-static member function as if
1421 it were a pointer-to-member. */
1422 if (flag_ms_extensions)
1423 {
1424 PTRMEM_OK_P (member) = 1;
1425 return build_unary_op (ADDR_EXPR, member, 0);
1426 }
1427 error ("invalid use of non-static member function %qD",
1428 TREE_OPERAND (member, 1));
1429 return error_mark_node;
1430 }
1431 else if (TREE_CODE (member) == FIELD_DECL)
1432 {
1433 error ("invalid use of non-static data member %qD", member);
1434 return error_mark_node;
1435 }
1436 return member;
1437 }
1438
1439 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1440 PTRMEM_OK_P (member) = 1;
1441 return member;
1442 }
1443
1444 /* If DECL is a scalar enumeration constant or variable with a
1445 constant initializer, return the initializer (or, its initializers,
1446 recursively); otherwise, return DECL. If INTEGRAL_P, the
1447 initializer is only returned if DECL is an integral
1448 constant-expression. */
1449
1450 static tree
1451 constant_value_1 (tree decl, bool integral_p)
1452 {
1453 while (TREE_CODE (decl) == CONST_DECL
1454 || (integral_p
1455 ? DECL_INTEGRAL_CONSTANT_VAR_P (decl)
1456 : (TREE_CODE (decl) == VAR_DECL
1457 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
1458 {
1459 tree init;
1460 /* Static data members in template classes may have
1461 non-dependent initializers. References to such non-static
1462 data members are not value-dependent, so we must retrieve the
1463 initializer here. The DECL_INITIAL will have the right type,
1464 but will not have been folded because that would prevent us
1465 from performing all appropriate semantic checks at
1466 instantiation time. */
1467 if (DECL_CLASS_SCOPE_P (decl)
1468 && CLASSTYPE_TEMPLATE_INFO (DECL_CONTEXT (decl))
1469 && uses_template_parms (CLASSTYPE_TI_ARGS
1470 (DECL_CONTEXT (decl))))
1471 {
1472 ++processing_template_decl;
1473 init = fold_non_dependent_expr (DECL_INITIAL (decl));
1474 --processing_template_decl;
1475 }
1476 else
1477 {
1478 /* If DECL is a static data member in a template
1479 specialization, we must instantiate it here. The
1480 initializer for the static data member is not processed
1481 until needed; we need it now. */
1482 mark_used (decl);
1483 init = DECL_INITIAL (decl);
1484 }
1485 if (init == error_mark_node)
1486 return error_mark_node;
1487 if (!init
1488 || !TREE_TYPE (init)
1489 || (integral_p
1490 ? !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (init))
1491 : (!TREE_CONSTANT (init)
1492 /* Do not return an aggregate constant (of which
1493 string literals are a special case), as we do not
1494 want to make inadvertent copies of such entities,
1495 and we must be sure that their addresses are the
1496 same everywhere. */
1497 || TREE_CODE (init) == CONSTRUCTOR
1498 || TREE_CODE (init) == STRING_CST)))
1499 break;
1500 decl = unshare_expr (init);
1501 }
1502 return decl;
1503 }
1504
1505 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by
1506 constant of integral or enumeration type, then return that value.
1507 These are those variables permitted in constant expressions by
1508 [5.19/1]. */
1509
1510 tree
1511 integral_constant_value (tree decl)
1512 {
1513 return constant_value_1 (decl, /*integral_p=*/true);
1514 }
1515
1516 /* A more relaxed version of integral_constant_value, used by the
1517 common C/C++ code and by the C++ front-end for optimization
1518 purposes. */
1519
1520 tree
1521 decl_constant_value (tree decl)
1522 {
1523 return constant_value_1 (decl,
1524 /*integral_p=*/processing_template_decl);
1525 }
1526 \f
1527 /* Common subroutines of build_new and build_vec_delete. */
1528
1529 /* Call the global __builtin_delete to delete ADDR. */
1530
1531 static tree
1532 build_builtin_delete_call (tree addr)
1533 {
1534 mark_used (global_delete_fndecl);
1535 return build_call (global_delete_fndecl, build_tree_list (NULL_TREE, addr));
1536 }
1537 \f
1538 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
1539 the type of the object being allocated; otherwise, it's just TYPE.
1540 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
1541 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
1542 the TREE_LIST of arguments to be provided as arguments to a
1543 placement new operator. This routine performs no semantic checks;
1544 it just creates and returns a NEW_EXPR. */
1545
1546 static tree
1547 build_raw_new_expr (tree placement, tree type, tree nelts, tree init,
1548 int use_global_new)
1549 {
1550 tree new_expr;
1551
1552 new_expr = build4 (NEW_EXPR, build_pointer_type (type), placement, type,
1553 nelts, init);
1554 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
1555 TREE_SIDE_EFFECTS (new_expr) = 1;
1556
1557 return new_expr;
1558 }
1559
1560 /* Generate code for a new-expression, including calling the "operator
1561 new" function, initializing the object, and, if an exception occurs
1562 during construction, cleaning up. The arguments are as for
1563 build_raw_new_expr. */
1564
1565 static tree
1566 build_new_1 (tree placement, tree type, tree nelts, tree init,
1567 bool globally_qualified_p)
1568
1569 {
1570 tree size, rval;
1571 /* True iff this is a call to "operator new[]" instead of just
1572 "operator new". */
1573 bool array_p = false;
1574 /* True iff ARRAY_P is true and the bound of the array type is
1575 not necessarily a compile time constant. For example, VLA_P is
1576 true for "new int[f()]". */
1577 bool vla_p = false;
1578 /* The type being allocated. If ARRAY_P is true, this will be an
1579 ARRAY_TYPE. */
1580 tree full_type;
1581 /* If ARRAY_P is true, the element type of the array. This is an
1582 never ARRAY_TYPE; for something like "new int[3][4]", the
1583 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
1584 FULL_TYPE. */
1585 tree elt_type;
1586 /* The type of the new-expression. (This type is always a pointer
1587 type.) */
1588 tree pointer_type;
1589 /* A pointer type pointing to the FULL_TYPE. */
1590 tree full_pointer_type;
1591 tree outer_nelts = NULL_TREE;
1592 tree alloc_call, alloc_expr;
1593 /* The address returned by the call to "operator new". This node is
1594 a VAR_DECL and is therefore reusable. */
1595 tree alloc_node;
1596 tree alloc_fn;
1597 tree cookie_expr, init_expr;
1598 int nothrow, check_new;
1599 int use_java_new = 0;
1600 /* If non-NULL, the number of extra bytes to allocate at the
1601 beginning of the storage allocated for an array-new expression in
1602 order to store the number of elements. */
1603 tree cookie_size = NULL_TREE;
1604 /* True if the function we are calling is a placement allocation
1605 function. */
1606 bool placement_allocation_fn_p;
1607 tree args = NULL_TREE;
1608 /* True if the storage must be initialized, either by a constructor
1609 or due to an explicit new-initializer. */
1610 bool is_initialized;
1611 /* The address of the thing allocated, not including any cookie. In
1612 particular, if an array cookie is in use, DATA_ADDR is the
1613 address of the first array element. This node is a VAR_DECL, and
1614 is therefore reusable. */
1615 tree data_addr;
1616 tree init_preeval_expr = NULL_TREE;
1617
1618 if (nelts)
1619 {
1620 tree index;
1621
1622 outer_nelts = nelts;
1623 array_p = true;
1624
1625 /* ??? The middle-end will error on us for building a VLA outside a
1626 function context. Methinks that's not it's purvey. So we'll do
1627 our own VLA layout later. */
1628 vla_p = true;
1629 full_type = build_cplus_array_type (type, NULL_TREE);
1630 index = convert (sizetype, nelts);
1631 index = size_binop (MINUS_EXPR, index, size_one_node);
1632 TYPE_DOMAIN (full_type) = build_index_type (index);
1633 }
1634 else
1635 {
1636 full_type = type;
1637 if (TREE_CODE (type) == ARRAY_TYPE)
1638 {
1639 array_p = true;
1640 nelts = array_type_nelts_top (type);
1641 outer_nelts = nelts;
1642 type = TREE_TYPE (type);
1643 }
1644 }
1645
1646 if (!complete_type_or_else (type, NULL_TREE))
1647 return error_mark_node;
1648
1649 /* If our base type is an array, then make sure we know how many elements
1650 it has. */
1651 for (elt_type = type;
1652 TREE_CODE (elt_type) == ARRAY_TYPE;
1653 elt_type = TREE_TYPE (elt_type))
1654 nelts = cp_build_binary_op (MULT_EXPR, nelts,
1655 array_type_nelts_top (elt_type));
1656
1657 if (TREE_CODE (elt_type) == VOID_TYPE)
1658 {
1659 error ("invalid type %<void%> for new");
1660 return error_mark_node;
1661 }
1662
1663 if (abstract_virtuals_error (NULL_TREE, elt_type))
1664 return error_mark_node;
1665
1666 is_initialized = (TYPE_NEEDS_CONSTRUCTING (elt_type) || init);
1667 if (CP_TYPE_CONST_P (elt_type) && !is_initialized)
1668 {
1669 error ("uninitialized const in %<new%> of %q#T", elt_type);
1670 return error_mark_node;
1671 }
1672
1673 size = size_in_bytes (elt_type);
1674 if (array_p)
1675 {
1676 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
1677 if (vla_p)
1678 {
1679 tree n, bitsize;
1680
1681 /* Do our own VLA layout. Setting TYPE_SIZE/_UNIT is
1682 necessary in order for the <INIT_EXPR <*foo> <CONSTRUCTOR
1683 ...>> to be valid. */
1684 TYPE_SIZE_UNIT (full_type) = size;
1685 n = convert (bitsizetype, nelts);
1686 bitsize = size_binop (MULT_EXPR, TYPE_SIZE (elt_type), n);
1687 TYPE_SIZE (full_type) = bitsize;
1688 }
1689 }
1690
1691 alloc_fn = NULL_TREE;
1692
1693 /* Allocate the object. */
1694 if (! placement && TYPE_FOR_JAVA (elt_type))
1695 {
1696 tree class_addr;
1697 tree class_decl = build_java_class_ref (elt_type);
1698 static const char alloc_name[] = "_Jv_AllocObject";
1699
1700 use_java_new = 1;
1701 if (!get_global_value_if_present (get_identifier (alloc_name),
1702 &alloc_fn))
1703 {
1704 error ("call to Java constructor with %qs undefined", alloc_name);
1705 return error_mark_node;
1706 }
1707 else if (really_overloaded_fn (alloc_fn))
1708 {
1709 error ("%qD should never be overloaded", alloc_fn);
1710 return error_mark_node;
1711 }
1712 alloc_fn = OVL_CURRENT (alloc_fn);
1713 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
1714 alloc_call = (build_function_call
1715 (alloc_fn,
1716 build_tree_list (NULL_TREE, class_addr)));
1717 }
1718 else
1719 {
1720 tree fnname;
1721 tree fns;
1722
1723 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
1724
1725 if (!globally_qualified_p
1726 && CLASS_TYPE_P (elt_type)
1727 && (array_p
1728 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
1729 : TYPE_HAS_NEW_OPERATOR (elt_type)))
1730 {
1731 /* Use a class-specific operator new. */
1732 /* If a cookie is required, add some extra space. */
1733 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
1734 {
1735 cookie_size = targetm.cxx.get_cookie_size (elt_type);
1736 size = size_binop (PLUS_EXPR, size, cookie_size);
1737 }
1738 /* Create the argument list. */
1739 args = tree_cons (NULL_TREE, size, placement);
1740 /* Do name-lookup to find the appropriate operator. */
1741 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
1742 if (fns == NULL_TREE)
1743 {
1744 error ("no suitable %qD found in class %qT", fnname, elt_type);
1745 return error_mark_node;
1746 }
1747 if (TREE_CODE (fns) == TREE_LIST)
1748 {
1749 error ("request for member %qD is ambiguous", fnname);
1750 print_candidates (fns);
1751 return error_mark_node;
1752 }
1753 alloc_call = build_new_method_call (build_dummy_object (elt_type),
1754 fns, args,
1755 /*conversion_path=*/NULL_TREE,
1756 LOOKUP_NORMAL,
1757 &alloc_fn);
1758 }
1759 else
1760 {
1761 /* Use a global operator new. */
1762 /* See if a cookie might be required. */
1763 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
1764 cookie_size = targetm.cxx.get_cookie_size (elt_type);
1765 else
1766 cookie_size = NULL_TREE;
1767
1768 alloc_call = build_operator_new_call (fnname, placement,
1769 &size, &cookie_size,
1770 &alloc_fn);
1771 }
1772 }
1773
1774 if (alloc_call == error_mark_node)
1775 return error_mark_node;
1776
1777 gcc_assert (alloc_fn != NULL_TREE);
1778
1779 /* In the simple case, we can stop now. */
1780 pointer_type = build_pointer_type (type);
1781 if (!cookie_size && !is_initialized)
1782 return build_nop (pointer_type, alloc_call);
1783
1784 /* While we're working, use a pointer to the type we've actually
1785 allocated. Store the result of the call in a variable so that we
1786 can use it more than once. */
1787 full_pointer_type = build_pointer_type (full_type);
1788 alloc_expr = get_target_expr (build_nop (full_pointer_type, alloc_call));
1789 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
1790
1791 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
1792 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
1793 alloc_call = TREE_OPERAND (alloc_call, 1);
1794
1795 /* Now, check to see if this function is actually a placement
1796 allocation function. This can happen even when PLACEMENT is NULL
1797 because we might have something like:
1798
1799 struct S { void* operator new (size_t, int i = 0); };
1800
1801 A call to `new S' will get this allocation function, even though
1802 there is no explicit placement argument. If there is more than
1803 one argument, or there are variable arguments, then this is a
1804 placement allocation function. */
1805 placement_allocation_fn_p
1806 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
1807 || varargs_function_p (alloc_fn));
1808
1809 /* Preevaluate the placement args so that we don't reevaluate them for a
1810 placement delete. */
1811 if (placement_allocation_fn_p)
1812 {
1813 tree inits;
1814 stabilize_call (alloc_call, &inits);
1815 if (inits)
1816 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
1817 alloc_expr);
1818 }
1819
1820 /* unless an allocation function is declared with an empty excep-
1821 tion-specification (_except.spec_), throw(), it indicates failure to
1822 allocate storage by throwing a bad_alloc exception (clause _except_,
1823 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
1824 cation function is declared with an empty exception-specification,
1825 throw(), it returns null to indicate failure to allocate storage and a
1826 non-null pointer otherwise.
1827
1828 So check for a null exception spec on the op new we just called. */
1829
1830 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
1831 check_new = (flag_check_new || nothrow) && ! use_java_new;
1832
1833 if (cookie_size)
1834 {
1835 tree cookie;
1836 tree cookie_ptr;
1837
1838 /* Adjust so we're pointing to the start of the object. */
1839 data_addr = get_target_expr (build2 (PLUS_EXPR, full_pointer_type,
1840 alloc_node, cookie_size));
1841
1842 /* Store the number of bytes allocated so that we can know how
1843 many elements to destroy later. We use the last sizeof
1844 (size_t) bytes to store the number of elements. */
1845 cookie_ptr = build2 (MINUS_EXPR, build_pointer_type (sizetype),
1846 data_addr, size_in_bytes (sizetype));
1847 cookie = build_indirect_ref (cookie_ptr, NULL);
1848
1849 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
1850
1851 if (targetm.cxx.cookie_has_size ())
1852 {
1853 /* Also store the element size. */
1854 cookie_ptr = build2 (MINUS_EXPR, build_pointer_type (sizetype),
1855 cookie_ptr, size_in_bytes (sizetype));
1856 cookie = build_indirect_ref (cookie_ptr, NULL);
1857 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
1858 size_in_bytes(elt_type));
1859 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
1860 cookie, cookie_expr);
1861 }
1862 data_addr = TARGET_EXPR_SLOT (data_addr);
1863 }
1864 else
1865 {
1866 cookie_expr = NULL_TREE;
1867 data_addr = alloc_node;
1868 }
1869
1870 /* Now initialize the allocated object. Note that we preevaluate the
1871 initialization expression, apart from the actual constructor call or
1872 assignment--we do this because we want to delay the allocation as long
1873 as possible in order to minimize the size of the exception region for
1874 placement delete. */
1875 if (is_initialized)
1876 {
1877 bool stable;
1878
1879 init_expr = build_indirect_ref (data_addr, NULL);
1880
1881 if (array_p)
1882 {
1883 bool explicit_default_init_p = false;
1884
1885 if (init == void_zero_node)
1886 {
1887 init = NULL_TREE;
1888 explicit_default_init_p = true;
1889 }
1890 else if (init)
1891 pedwarn ("ISO C++ forbids initialization in array new");
1892
1893 init_expr
1894 = build_vec_init (init_expr,
1895 cp_build_binary_op (MINUS_EXPR, outer_nelts,
1896 integer_one_node),
1897 init,
1898 explicit_default_init_p,
1899 /*from_array=*/0);
1900
1901 /* An array initialization is stable because the initialization
1902 of each element is a full-expression, so the temporaries don't
1903 leak out. */
1904 stable = true;
1905 }
1906 else
1907 {
1908 if (init == void_zero_node)
1909 init = build_default_init (full_type, nelts);
1910
1911 if (TYPE_NEEDS_CONSTRUCTING (type))
1912 {
1913 init_expr = build_special_member_call (init_expr,
1914 complete_ctor_identifier,
1915 init, elt_type,
1916 LOOKUP_NORMAL);
1917 stable = stabilize_init (init_expr, &init_preeval_expr);
1918 }
1919 else
1920 {
1921 /* We are processing something like `new int (10)', which
1922 means allocate an int, and initialize it with 10. */
1923
1924 if (TREE_CODE (init) == TREE_LIST)
1925 init = build_x_compound_expr_from_list (init,
1926 "new initializer");
1927 else
1928 gcc_assert (TREE_CODE (init) != CONSTRUCTOR
1929 || TREE_TYPE (init) != NULL_TREE);
1930
1931 init_expr = build_modify_expr (init_expr, INIT_EXPR, init);
1932 stable = stabilize_init (init_expr, &init_preeval_expr);
1933 }
1934 }
1935
1936 if (init_expr == error_mark_node)
1937 return error_mark_node;
1938
1939 /* If any part of the object initialization terminates by throwing an
1940 exception and a suitable deallocation function can be found, the
1941 deallocation function is called to free the memory in which the
1942 object was being constructed, after which the exception continues
1943 to propagate in the context of the new-expression. If no
1944 unambiguous matching deallocation function can be found,
1945 propagating the exception does not cause the object's memory to be
1946 freed. */
1947 if (flag_exceptions && ! use_java_new)
1948 {
1949 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
1950 tree cleanup;
1951
1952 /* The Standard is unclear here, but the right thing to do
1953 is to use the same method for finding deallocation
1954 functions that we use for finding allocation functions. */
1955 cleanup = build_op_delete_call (dcode, alloc_node, size,
1956 globally_qualified_p,
1957 (placement_allocation_fn_p
1958 ? alloc_call : NULL_TREE),
1959 (placement_allocation_fn_p
1960 ? alloc_fn : NULL_TREE));
1961
1962 if (!cleanup)
1963 /* We're done. */;
1964 else if (stable)
1965 /* This is much simpler if we were able to preevaluate all of
1966 the arguments to the constructor call. */
1967 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
1968 init_expr, cleanup);
1969 else
1970 /* Ack! First we allocate the memory. Then we set our sentry
1971 variable to true, and expand a cleanup that deletes the
1972 memory if sentry is true. Then we run the constructor, and
1973 finally clear the sentry.
1974
1975 We need to do this because we allocate the space first, so
1976 if there are any temporaries with cleanups in the
1977 constructor args and we weren't able to preevaluate them, we
1978 need this EH region to extend until end of full-expression
1979 to preserve nesting. */
1980 {
1981 tree end, sentry, begin;
1982
1983 begin = get_target_expr (boolean_true_node);
1984 CLEANUP_EH_ONLY (begin) = 1;
1985
1986 sentry = TARGET_EXPR_SLOT (begin);
1987
1988 TARGET_EXPR_CLEANUP (begin)
1989 = build3 (COND_EXPR, void_type_node, sentry,
1990 cleanup, void_zero_node);
1991
1992 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
1993 sentry, boolean_false_node);
1994
1995 init_expr
1996 = build2 (COMPOUND_EXPR, void_type_node, begin,
1997 build2 (COMPOUND_EXPR, void_type_node, init_expr,
1998 end));
1999 }
2000
2001 }
2002 }
2003 else
2004 init_expr = NULL_TREE;
2005
2006 /* Now build up the return value in reverse order. */
2007
2008 rval = data_addr;
2009
2010 if (init_expr)
2011 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2012 if (cookie_expr)
2013 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2014
2015 if (rval == alloc_node)
2016 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2017 and return the call (which doesn't need to be adjusted). */
2018 rval = TARGET_EXPR_INITIAL (alloc_expr);
2019 else
2020 {
2021 if (check_new)
2022 {
2023 tree ifexp = cp_build_binary_op (NE_EXPR, alloc_node,
2024 integer_zero_node);
2025 rval = build_conditional_expr (ifexp, rval, alloc_node);
2026 }
2027
2028 /* Perform the allocation before anything else, so that ALLOC_NODE
2029 has been initialized before we start using it. */
2030 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2031 }
2032
2033 if (init_preeval_expr)
2034 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2035
2036 /* Convert to the final type. */
2037 rval = build_nop (pointer_type, rval);
2038
2039 /* A new-expression is never an lvalue. */
2040 gcc_assert (!lvalue_p (rval));
2041
2042 return rval;
2043 }
2044
2045 /* Generate a representation for a C++ "new" expression. PLACEMENT is
2046 a TREE_LIST of placement-new arguments (or NULL_TREE if none). If
2047 NELTS is NULL, TYPE is the type of the storage to be allocated. If
2048 NELTS is not NULL, then this is an array-new allocation; TYPE is
2049 the type of the elements in the array and NELTS is the number of
2050 elements in the array. INIT, if non-NULL, is the initializer for
2051 the new object, or void_zero_node to indicate an initializer of
2052 "()". If USE_GLOBAL_NEW is true, then the user explicitly wrote
2053 "::new" rather than just "new". */
2054
2055 tree
2056 build_new (tree placement, tree type, tree nelts, tree init,
2057 int use_global_new)
2058 {
2059 tree rval;
2060 tree orig_placement;
2061 tree orig_nelts;
2062 tree orig_init;
2063
2064 if (type == error_mark_node)
2065 return error_mark_node;
2066
2067 orig_placement = placement;
2068 orig_nelts = nelts;
2069 orig_init = init;
2070
2071 if (processing_template_decl)
2072 {
2073 if (dependent_type_p (type)
2074 || any_type_dependent_arguments_p (placement)
2075 || (nelts && type_dependent_expression_p (nelts))
2076 || (init != void_zero_node
2077 && any_type_dependent_arguments_p (init)))
2078 return build_raw_new_expr (placement, type, nelts, init,
2079 use_global_new);
2080 placement = build_non_dependent_args (placement);
2081 if (nelts)
2082 nelts = build_non_dependent_expr (nelts);
2083 if (init != void_zero_node)
2084 init = build_non_dependent_args (init);
2085 }
2086
2087 if (nelts)
2088 {
2089 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
2090 pedwarn ("size in array new must have integral type");
2091 nelts = cp_save_expr (cp_convert (sizetype, nelts));
2092 /* It is valid to allocate a zero-element array:
2093
2094 [expr.new]
2095
2096 When the value of the expression in a direct-new-declarator
2097 is zero, the allocation function is called to allocate an
2098 array with no elements. The pointer returned by the
2099 new-expression is non-null. [Note: If the library allocation
2100 function is called, the pointer returned is distinct from the
2101 pointer to any other object.]
2102
2103 However, that is not generally useful, so we issue a
2104 warning. */
2105 if (integer_zerop (nelts))
2106 warning (0, "allocating zero-element array");
2107 }
2108
2109 /* ``A reference cannot be created by the new operator. A reference
2110 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
2111 returned by new.'' ARM 5.3.3 */
2112 if (TREE_CODE (type) == REFERENCE_TYPE)
2113 {
2114 error ("new cannot be applied to a reference type");
2115 type = TREE_TYPE (type);
2116 }
2117
2118 if (TREE_CODE (type) == FUNCTION_TYPE)
2119 {
2120 error ("new cannot be applied to a function type");
2121 return error_mark_node;
2122 }
2123
2124 rval = build_new_1 (placement, type, nelts, init, use_global_new);
2125 if (rval == error_mark_node)
2126 return error_mark_node;
2127
2128 if (processing_template_decl)
2129 return build_raw_new_expr (orig_placement, type, orig_nelts, orig_init,
2130 use_global_new);
2131
2132 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
2133 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
2134 TREE_NO_WARNING (rval) = 1;
2135
2136 return rval;
2137 }
2138
2139 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
2140
2141 tree
2142 build_java_class_ref (tree type)
2143 {
2144 tree name = NULL_TREE, class_decl;
2145 static tree CL_suffix = NULL_TREE;
2146 if (CL_suffix == NULL_TREE)
2147 CL_suffix = get_identifier("class$");
2148 if (jclass_node == NULL_TREE)
2149 {
2150 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
2151 if (jclass_node == NULL_TREE)
2152 fatal_error ("call to Java constructor, while %<jclass%> undefined");
2153
2154 jclass_node = TREE_TYPE (jclass_node);
2155 }
2156
2157 /* Mangle the class$ field. */
2158 {
2159 tree field;
2160 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2161 if (DECL_NAME (field) == CL_suffix)
2162 {
2163 mangle_decl (field);
2164 name = DECL_ASSEMBLER_NAME (field);
2165 break;
2166 }
2167 if (!field)
2168 internal_error ("can't find class$");
2169 }
2170
2171 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
2172 if (class_decl == NULL_TREE)
2173 {
2174 class_decl = build_decl (VAR_DECL, name, TREE_TYPE (jclass_node));
2175 TREE_STATIC (class_decl) = 1;
2176 DECL_EXTERNAL (class_decl) = 1;
2177 TREE_PUBLIC (class_decl) = 1;
2178 DECL_ARTIFICIAL (class_decl) = 1;
2179 DECL_IGNORED_P (class_decl) = 1;
2180 pushdecl_top_level (class_decl);
2181 make_decl_rtl (class_decl);
2182 }
2183 return class_decl;
2184 }
2185 \f
2186 static tree
2187 build_vec_delete_1 (tree base, tree maxindex, tree type,
2188 special_function_kind auto_delete_vec, int use_global_delete)
2189 {
2190 tree virtual_size;
2191 tree ptype = build_pointer_type (type = complete_type (type));
2192 tree size_exp = size_in_bytes (type);
2193
2194 /* Temporary variables used by the loop. */
2195 tree tbase, tbase_init;
2196
2197 /* This is the body of the loop that implements the deletion of a
2198 single element, and moves temp variables to next elements. */
2199 tree body;
2200
2201 /* This is the LOOP_EXPR that governs the deletion of the elements. */
2202 tree loop = 0;
2203
2204 /* This is the thing that governs what to do after the loop has run. */
2205 tree deallocate_expr = 0;
2206
2207 /* This is the BIND_EXPR which holds the outermost iterator of the
2208 loop. It is convenient to set this variable up and test it before
2209 executing any other code in the loop.
2210 This is also the containing expression returned by this function. */
2211 tree controller = NULL_TREE;
2212
2213 /* We should only have 1-D arrays here. */
2214 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
2215
2216 if (! IS_AGGR_TYPE (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2217 goto no_destructor;
2218
2219 /* The below is short by the cookie size. */
2220 virtual_size = size_binop (MULT_EXPR, size_exp,
2221 convert (sizetype, maxindex));
2222
2223 tbase = create_temporary_var (ptype);
2224 tbase_init = build_modify_expr (tbase, NOP_EXPR,
2225 fold_build2 (PLUS_EXPR, ptype,
2226 base,
2227 virtual_size));
2228 DECL_REGISTER (tbase) = 1;
2229 controller = build3 (BIND_EXPR, void_type_node, tbase,
2230 NULL_TREE, NULL_TREE);
2231 TREE_SIDE_EFFECTS (controller) = 1;
2232
2233 body = build1 (EXIT_EXPR, void_type_node,
2234 build2 (EQ_EXPR, boolean_type_node, tbase,
2235 fold_convert (ptype, base)));
2236 body = build_compound_expr
2237 (body, build_modify_expr (tbase, NOP_EXPR,
2238 build2 (MINUS_EXPR, ptype, tbase, size_exp)));
2239 body = build_compound_expr
2240 (body, build_delete (ptype, tbase, sfk_complete_destructor,
2241 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1));
2242
2243 loop = build1 (LOOP_EXPR, void_type_node, body);
2244 loop = build_compound_expr (tbase_init, loop);
2245
2246 no_destructor:
2247 /* If the delete flag is one, or anything else with the low bit set,
2248 delete the storage. */
2249 if (auto_delete_vec != sfk_base_destructor)
2250 {
2251 tree base_tbd;
2252
2253 /* The below is short by the cookie size. */
2254 virtual_size = size_binop (MULT_EXPR, size_exp,
2255 convert (sizetype, maxindex));
2256
2257 if (! TYPE_VEC_NEW_USES_COOKIE (type))
2258 /* no header */
2259 base_tbd = base;
2260 else
2261 {
2262 tree cookie_size;
2263
2264 cookie_size = targetm.cxx.get_cookie_size (type);
2265 base_tbd
2266 = cp_convert (ptype,
2267 cp_build_binary_op (MINUS_EXPR,
2268 cp_convert (string_type_node,
2269 base),
2270 cookie_size));
2271 /* True size with header. */
2272 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
2273 }
2274
2275 if (auto_delete_vec == sfk_deleting_destructor)
2276 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
2277 base_tbd, virtual_size,
2278 use_global_delete & 1,
2279 /*placement=*/NULL_TREE,
2280 /*alloc_fn=*/NULL_TREE);
2281 }
2282
2283 body = loop;
2284 if (!deallocate_expr)
2285 ;
2286 else if (!body)
2287 body = deallocate_expr;
2288 else
2289 body = build_compound_expr (body, deallocate_expr);
2290
2291 if (!body)
2292 body = integer_zero_node;
2293
2294 /* Outermost wrapper: If pointer is null, punt. */
2295 body = fold_build3 (COND_EXPR, void_type_node,
2296 fold_build2 (NE_EXPR, boolean_type_node, base,
2297 convert (TREE_TYPE (base),
2298 integer_zero_node)),
2299 body, integer_zero_node);
2300 body = build1 (NOP_EXPR, void_type_node, body);
2301
2302 if (controller)
2303 {
2304 TREE_OPERAND (controller, 1) = body;
2305 body = controller;
2306 }
2307
2308 if (TREE_CODE (base) == SAVE_EXPR)
2309 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
2310 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
2311
2312 return convert_to_void (body, /*implicit=*/NULL);
2313 }
2314
2315 /* Create an unnamed variable of the indicated TYPE. */
2316
2317 tree
2318 create_temporary_var (tree type)
2319 {
2320 tree decl;
2321
2322 decl = build_decl (VAR_DECL, NULL_TREE, type);
2323 TREE_USED (decl) = 1;
2324 DECL_ARTIFICIAL (decl) = 1;
2325 DECL_IGNORED_P (decl) = 1;
2326 DECL_SOURCE_LOCATION (decl) = input_location;
2327 DECL_CONTEXT (decl) = current_function_decl;
2328
2329 return decl;
2330 }
2331
2332 /* Create a new temporary variable of the indicated TYPE, initialized
2333 to INIT.
2334
2335 It is not entered into current_binding_level, because that breaks
2336 things when it comes time to do final cleanups (which take place
2337 "outside" the binding contour of the function). */
2338
2339 static tree
2340 get_temp_regvar (tree type, tree init)
2341 {
2342 tree decl;
2343
2344 decl = create_temporary_var (type);
2345 add_decl_expr (decl);
2346
2347 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
2348
2349 return decl;
2350 }
2351
2352 /* `build_vec_init' returns tree structure that performs
2353 initialization of a vector of aggregate types.
2354
2355 BASE is a reference to the vector, of ARRAY_TYPE.
2356 MAXINDEX is the maximum index of the array (one less than the
2357 number of elements). It is only used if
2358 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
2359
2360 INIT is the (possibly NULL) initializer.
2361
2362 If EXPLICIT_DEFAULT_INIT_P is true, then INIT must be NULL. All
2363 elements in the array are default-initialized.
2364
2365 FROM_ARRAY is 0 if we should init everything with INIT
2366 (i.e., every element initialized from INIT).
2367 FROM_ARRAY is 1 if we should index into INIT in parallel
2368 with initialization of DECL.
2369 FROM_ARRAY is 2 if we should index into INIT in parallel,
2370 but use assignment instead of initialization. */
2371
2372 tree
2373 build_vec_init (tree base, tree maxindex, tree init,
2374 bool explicit_default_init_p,
2375 int from_array)
2376 {
2377 tree rval;
2378 tree base2 = NULL_TREE;
2379 tree size;
2380 tree itype = NULL_TREE;
2381 tree iterator;
2382 /* The type of the array. */
2383 tree atype = TREE_TYPE (base);
2384 /* The type of an element in the array. */
2385 tree type = TREE_TYPE (atype);
2386 /* The element type reached after removing all outer array
2387 types. */
2388 tree inner_elt_type;
2389 /* The type of a pointer to an element in the array. */
2390 tree ptype;
2391 tree stmt_expr;
2392 tree compound_stmt;
2393 int destroy_temps;
2394 tree try_block = NULL_TREE;
2395 int num_initialized_elts = 0;
2396 bool is_global;
2397
2398 if (TYPE_DOMAIN (atype))
2399 maxindex = array_type_nelts (atype);
2400
2401 if (maxindex == NULL_TREE || maxindex == error_mark_node)
2402 return error_mark_node;
2403
2404 if (explicit_default_init_p)
2405 gcc_assert (!init);
2406
2407 inner_elt_type = strip_array_types (atype);
2408 if (init
2409 && (from_array == 2
2410 ? (!CLASS_TYPE_P (inner_elt_type)
2411 || !TYPE_HAS_COMPLEX_ASSIGN_REF (inner_elt_type))
2412 : !TYPE_NEEDS_CONSTRUCTING (type))
2413 && ((TREE_CODE (init) == CONSTRUCTOR
2414 /* Don't do this if the CONSTRUCTOR might contain something
2415 that might throw and require us to clean up. */
2416 && (VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (init))
2417 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
2418 || from_array))
2419 {
2420 /* Do non-default initialization of POD arrays resulting from
2421 brace-enclosed initializers. In this case, digest_init and
2422 store_constructor will handle the semantics for us. */
2423
2424 stmt_expr = build2 (INIT_EXPR, atype, base, init);
2425 return stmt_expr;
2426 }
2427
2428 maxindex = cp_convert (ptrdiff_type_node, maxindex);
2429 ptype = build_pointer_type (type);
2430 size = size_in_bytes (type);
2431 if (TREE_CODE (TREE_TYPE (base)) == ARRAY_TYPE)
2432 base = cp_convert (ptype, decay_conversion (base));
2433
2434 /* The code we are generating looks like:
2435 ({
2436 T* t1 = (T*) base;
2437 T* rval = t1;
2438 ptrdiff_t iterator = maxindex;
2439 try {
2440 for (; iterator != -1; --iterator) {
2441 ... initialize *t1 ...
2442 ++t1;
2443 }
2444 } catch (...) {
2445 ... destroy elements that were constructed ...
2446 }
2447 rval;
2448 })
2449
2450 We can omit the try and catch blocks if we know that the
2451 initialization will never throw an exception, or if the array
2452 elements do not have destructors. We can omit the loop completely if
2453 the elements of the array do not have constructors.
2454
2455 We actually wrap the entire body of the above in a STMT_EXPR, for
2456 tidiness.
2457
2458 When copying from array to another, when the array elements have
2459 only trivial copy constructors, we should use __builtin_memcpy
2460 rather than generating a loop. That way, we could take advantage
2461 of whatever cleverness the back-end has for dealing with copies
2462 of blocks of memory. */
2463
2464 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
2465 destroy_temps = stmts_are_full_exprs_p ();
2466 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2467 rval = get_temp_regvar (ptype, base);
2468 base = get_temp_regvar (ptype, rval);
2469 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
2470
2471 /* Protect the entire array initialization so that we can destroy
2472 the partially constructed array if an exception is thrown.
2473 But don't do this if we're assigning. */
2474 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2475 && from_array != 2)
2476 {
2477 try_block = begin_try_block ();
2478 }
2479
2480 if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
2481 {
2482 /* Do non-default initialization of non-POD arrays resulting from
2483 brace-enclosed initializers. */
2484 unsigned HOST_WIDE_INT idx;
2485 tree elt;
2486 from_array = 0;
2487
2488 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
2489 {
2490 tree baseref = build1 (INDIRECT_REF, type, base);
2491
2492 num_initialized_elts++;
2493
2494 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2495 if (IS_AGGR_TYPE (type) || TREE_CODE (type) == ARRAY_TYPE)
2496 finish_expr_stmt (build_aggr_init (baseref, elt, 0));
2497 else
2498 finish_expr_stmt (build_modify_expr (baseref, NOP_EXPR,
2499 elt));
2500 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2501
2502 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2503 finish_expr_stmt (build_unary_op (PREDECREMENT_EXPR, iterator, 0));
2504 }
2505
2506 /* Clear out INIT so that we don't get confused below. */
2507 init = NULL_TREE;
2508 }
2509 else if (from_array)
2510 {
2511 /* If initializing one array from another, initialize element by
2512 element. We rely upon the below calls the do argument
2513 checking. */
2514 if (init)
2515 {
2516 base2 = decay_conversion (init);
2517 itype = TREE_TYPE (base2);
2518 base2 = get_temp_regvar (itype, base2);
2519 itype = TREE_TYPE (itype);
2520 }
2521 else if (TYPE_LANG_SPECIFIC (type)
2522 && TYPE_NEEDS_CONSTRUCTING (type)
2523 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2524 {
2525 error ("initializer ends prematurely");
2526 return error_mark_node;
2527 }
2528 }
2529
2530 /* Now, default-initialize any remaining elements. We don't need to
2531 do that if a) the type does not need constructing, or b) we've
2532 already initialized all the elements.
2533
2534 We do need to keep going if we're copying an array. */
2535
2536 if (from_array
2537 || ((TYPE_NEEDS_CONSTRUCTING (type) || explicit_default_init_p)
2538 && ! (host_integerp (maxindex, 0)
2539 && (num_initialized_elts
2540 == tree_low_cst (maxindex, 0) + 1))))
2541 {
2542 /* If the ITERATOR is equal to -1, then we don't have to loop;
2543 we've already initialized all the elements. */
2544 tree for_stmt;
2545 tree elt_init;
2546 tree to;
2547
2548 for_stmt = begin_for_stmt ();
2549 finish_for_init_stmt (for_stmt);
2550 finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
2551 build_int_cst (TREE_TYPE (iterator), -1)),
2552 for_stmt);
2553 finish_for_expr (build_unary_op (PREDECREMENT_EXPR, iterator, 0),
2554 for_stmt);
2555
2556 to = build1 (INDIRECT_REF, type, base);
2557
2558 if (from_array)
2559 {
2560 tree from;
2561
2562 if (base2)
2563 from = build1 (INDIRECT_REF, itype, base2);
2564 else
2565 from = NULL_TREE;
2566
2567 if (from_array == 2)
2568 elt_init = build_modify_expr (to, NOP_EXPR, from);
2569 else if (TYPE_NEEDS_CONSTRUCTING (type))
2570 elt_init = build_aggr_init (to, from, 0);
2571 else if (from)
2572 elt_init = build_modify_expr (to, NOP_EXPR, from);
2573 else
2574 gcc_unreachable ();
2575 }
2576 else if (TREE_CODE (type) == ARRAY_TYPE)
2577 {
2578 if (init != 0)
2579 sorry
2580 ("cannot initialize multi-dimensional array with initializer");
2581 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
2582 0, 0,
2583 /*explicit_default_init_p=*/false,
2584 0);
2585 }
2586 else if (!TYPE_NEEDS_CONSTRUCTING (type))
2587 elt_init = (build_modify_expr
2588 (to, INIT_EXPR,
2589 build_zero_init (type, size_one_node,
2590 /*static_storage_p=*/false)));
2591 else
2592 elt_init = build_aggr_init (to, init, 0);
2593
2594 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2595 finish_expr_stmt (elt_init);
2596 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2597
2598 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2599 if (base2)
2600 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base2, 0));
2601
2602 finish_for_stmt (for_stmt);
2603 }
2604
2605 /* Make sure to cleanup any partially constructed elements. */
2606 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2607 && from_array != 2)
2608 {
2609 tree e;
2610 tree m = cp_build_binary_op (MINUS_EXPR, maxindex, iterator);
2611
2612 /* Flatten multi-dimensional array since build_vec_delete only
2613 expects one-dimensional array. */
2614 if (TREE_CODE (type) == ARRAY_TYPE)
2615 m = cp_build_binary_op (MULT_EXPR, m,
2616 array_type_nelts_total (type));
2617
2618 finish_cleanup_try_block (try_block);
2619 e = build_vec_delete_1 (rval, m,
2620 inner_elt_type, sfk_base_destructor,
2621 /*use_global_delete=*/0);
2622 finish_cleanup (e, try_block);
2623 }
2624
2625 /* The value of the array initialization is the array itself, RVAL
2626 is a pointer to the first element. */
2627 finish_stmt_expr_expr (rval, stmt_expr);
2628
2629 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
2630
2631 /* Now convert make the result have the correct type. */
2632 atype = build_pointer_type (atype);
2633 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
2634 stmt_expr = build_indirect_ref (stmt_expr, NULL);
2635
2636 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
2637 return stmt_expr;
2638 }
2639
2640 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
2641 build_delete. */
2642
2643 static tree
2644 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags)
2645 {
2646 tree name;
2647 tree fn;
2648 switch (dtor_kind)
2649 {
2650 case sfk_complete_destructor:
2651 name = complete_dtor_identifier;
2652 break;
2653
2654 case sfk_base_destructor:
2655 name = base_dtor_identifier;
2656 break;
2657
2658 case sfk_deleting_destructor:
2659 name = deleting_dtor_identifier;
2660 break;
2661
2662 default:
2663 gcc_unreachable ();
2664 }
2665 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
2666 return build_new_method_call (exp, fn,
2667 /*args=*/NULL_TREE,
2668 /*conversion_path=*/NULL_TREE,
2669 flags,
2670 /*fn_p=*/NULL);
2671 }
2672
2673 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
2674 ADDR is an expression which yields the store to be destroyed.
2675 AUTO_DELETE is the name of the destructor to call, i.e., either
2676 sfk_complete_destructor, sfk_base_destructor, or
2677 sfk_deleting_destructor.
2678
2679 FLAGS is the logical disjunction of zero or more LOOKUP_
2680 flags. See cp-tree.h for more info. */
2681
2682 tree
2683 build_delete (tree type, tree addr, special_function_kind auto_delete,
2684 int flags, int use_global_delete)
2685 {
2686 tree expr;
2687
2688 if (addr == error_mark_node)
2689 return error_mark_node;
2690
2691 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
2692 set to `error_mark_node' before it gets properly cleaned up. */
2693 if (type == error_mark_node)
2694 return error_mark_node;
2695
2696 type = TYPE_MAIN_VARIANT (type);
2697
2698 if (TREE_CODE (type) == POINTER_TYPE)
2699 {
2700 bool complete_p = true;
2701
2702 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
2703 if (TREE_CODE (type) == ARRAY_TYPE)
2704 goto handle_array;
2705
2706 /* We don't want to warn about delete of void*, only other
2707 incomplete types. Deleting other incomplete types
2708 invokes undefined behavior, but it is not ill-formed, so
2709 compile to something that would even do The Right Thing
2710 (TM) should the type have a trivial dtor and no delete
2711 operator. */
2712 if (!VOID_TYPE_P (type))
2713 {
2714 complete_type (type);
2715 if (!COMPLETE_TYPE_P (type))
2716 {
2717 warning (0, "possible problem detected in invocation of "
2718 "delete operator:");
2719 cxx_incomplete_type_diagnostic (addr, type, 1);
2720 inform ("neither the destructor nor the class-specific "
2721 "operator delete will be called, even if they are "
2722 "declared when the class is defined.");
2723 complete_p = false;
2724 }
2725 }
2726 if (VOID_TYPE_P (type) || !complete_p || !IS_AGGR_TYPE (type))
2727 /* Call the builtin operator delete. */
2728 return build_builtin_delete_call (addr);
2729 if (TREE_SIDE_EFFECTS (addr))
2730 addr = save_expr (addr);
2731
2732 /* Throw away const and volatile on target type of addr. */
2733 addr = convert_force (build_pointer_type (type), addr, 0);
2734 }
2735 else if (TREE_CODE (type) == ARRAY_TYPE)
2736 {
2737 handle_array:
2738
2739 if (TYPE_DOMAIN (type) == NULL_TREE)
2740 {
2741 error ("unknown array size in delete");
2742 return error_mark_node;
2743 }
2744 return build_vec_delete (addr, array_type_nelts (type),
2745 auto_delete, use_global_delete);
2746 }
2747 else
2748 {
2749 /* Don't check PROTECT here; leave that decision to the
2750 destructor. If the destructor is accessible, call it,
2751 else report error. */
2752 addr = build_unary_op (ADDR_EXPR, addr, 0);
2753 if (TREE_SIDE_EFFECTS (addr))
2754 addr = save_expr (addr);
2755
2756 addr = convert_force (build_pointer_type (type), addr, 0);
2757 }
2758
2759 gcc_assert (IS_AGGR_TYPE (type));
2760
2761 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2762 {
2763 if (auto_delete != sfk_deleting_destructor)
2764 return void_zero_node;
2765
2766 return build_op_delete_call (DELETE_EXPR, addr,
2767 cxx_sizeof_nowarn (type),
2768 use_global_delete,
2769 /*placement=*/NULL_TREE,
2770 /*alloc_fn=*/NULL_TREE);
2771 }
2772 else
2773 {
2774 tree do_delete = NULL_TREE;
2775 tree ifexp;
2776
2777 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
2778 lazily_declare_fn (sfk_destructor, type);
2779
2780 /* For `::delete x', we must not use the deleting destructor
2781 since then we would not be sure to get the global `operator
2782 delete'. */
2783 if (use_global_delete && auto_delete == sfk_deleting_destructor)
2784 {
2785 /* We will use ADDR multiple times so we must save it. */
2786 addr = save_expr (addr);
2787 /* Delete the object. */
2788 do_delete = build_builtin_delete_call (addr);
2789 /* Otherwise, treat this like a complete object destructor
2790 call. */
2791 auto_delete = sfk_complete_destructor;
2792 }
2793 /* If the destructor is non-virtual, there is no deleting
2794 variant. Instead, we must explicitly call the appropriate
2795 `operator delete' here. */
2796 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
2797 && auto_delete == sfk_deleting_destructor)
2798 {
2799 /* We will use ADDR multiple times so we must save it. */
2800 addr = save_expr (addr);
2801 /* Build the call. */
2802 do_delete = build_op_delete_call (DELETE_EXPR,
2803 addr,
2804 cxx_sizeof_nowarn (type),
2805 /*global_p=*/false,
2806 /*placement=*/NULL_TREE,
2807 /*alloc_fn=*/NULL_TREE);
2808 /* Call the complete object destructor. */
2809 auto_delete = sfk_complete_destructor;
2810 }
2811 else if (auto_delete == sfk_deleting_destructor
2812 && TYPE_GETS_REG_DELETE (type))
2813 {
2814 /* Make sure we have access to the member op delete, even though
2815 we'll actually be calling it from the destructor. */
2816 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
2817 /*global_p=*/false,
2818 /*placement=*/NULL_TREE,
2819 /*alloc_fn=*/NULL_TREE);
2820 }
2821
2822 expr = build_dtor_call (build_indirect_ref (addr, NULL),
2823 auto_delete, flags);
2824 if (do_delete)
2825 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
2826
2827 if (flags & LOOKUP_DESTRUCTOR)
2828 /* Explicit destructor call; don't check for null pointer. */
2829 ifexp = integer_one_node;
2830 else
2831 /* Handle deleting a null pointer. */
2832 ifexp = fold (cp_build_binary_op (NE_EXPR, addr, integer_zero_node));
2833
2834 if (ifexp != integer_one_node)
2835 expr = build3 (COND_EXPR, void_type_node,
2836 ifexp, expr, void_zero_node);
2837
2838 return expr;
2839 }
2840 }
2841
2842 /* At the beginning of a destructor, push cleanups that will call the
2843 destructors for our base classes and members.
2844
2845 Called from begin_destructor_body. */
2846
2847 void
2848 push_base_cleanups (void)
2849 {
2850 tree binfo, base_binfo;
2851 int i;
2852 tree member;
2853 tree expr;
2854 VEC(tree,gc) *vbases;
2855
2856 /* Run destructors for all virtual baseclasses. */
2857 if (CLASSTYPE_VBASECLASSES (current_class_type))
2858 {
2859 tree cond = (condition_conversion
2860 (build2 (BIT_AND_EXPR, integer_type_node,
2861 current_in_charge_parm,
2862 integer_two_node)));
2863
2864 /* The CLASSTYPE_VBASECLASSES vector is in initialization
2865 order, which is also the right order for pushing cleanups. */
2866 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
2867 VEC_iterate (tree, vbases, i, base_binfo); i++)
2868 {
2869 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
2870 {
2871 expr = build_special_member_call (current_class_ref,
2872 base_dtor_identifier,
2873 NULL_TREE,
2874 base_binfo,
2875 (LOOKUP_NORMAL
2876 | LOOKUP_NONVIRTUAL));
2877 expr = build3 (COND_EXPR, void_type_node, cond,
2878 expr, void_zero_node);
2879 finish_decl_cleanup (NULL_TREE, expr);
2880 }
2881 }
2882 }
2883
2884 /* Take care of the remaining baseclasses. */
2885 for (binfo = TYPE_BINFO (current_class_type), i = 0;
2886 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
2887 {
2888 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
2889 || BINFO_VIRTUAL_P (base_binfo))
2890 continue;
2891
2892 expr = build_special_member_call (current_class_ref,
2893 base_dtor_identifier,
2894 NULL_TREE, base_binfo,
2895 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
2896 finish_decl_cleanup (NULL_TREE, expr);
2897 }
2898
2899 for (member = TYPE_FIELDS (current_class_type); member;
2900 member = TREE_CHAIN (member))
2901 {
2902 if (TREE_CODE (member) != FIELD_DECL || DECL_ARTIFICIAL (member))
2903 continue;
2904 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
2905 {
2906 tree this_member = (build_class_member_access_expr
2907 (current_class_ref, member,
2908 /*access_path=*/NULL_TREE,
2909 /*preserve_reference=*/false));
2910 tree this_type = TREE_TYPE (member);
2911 expr = build_delete (this_type, this_member,
2912 sfk_complete_destructor,
2913 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
2914 0);
2915 finish_decl_cleanup (NULL_TREE, expr);
2916 }
2917 }
2918 }
2919
2920 /* Build a C++ vector delete expression.
2921 MAXINDEX is the number of elements to be deleted.
2922 ELT_SIZE is the nominal size of each element in the vector.
2923 BASE is the expression that should yield the store to be deleted.
2924 This function expands (or synthesizes) these calls itself.
2925 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
2926
2927 This also calls delete for virtual baseclasses of elements of the vector.
2928
2929 Update: MAXINDEX is no longer needed. The size can be extracted from the
2930 start of the vector for pointers, and from the type for arrays. We still
2931 use MAXINDEX for arrays because it happens to already have one of the
2932 values we'd have to extract. (We could use MAXINDEX with pointers to
2933 confirm the size, and trap if the numbers differ; not clear that it'd
2934 be worth bothering.) */
2935
2936 tree
2937 build_vec_delete (tree base, tree maxindex,
2938 special_function_kind auto_delete_vec, int use_global_delete)
2939 {
2940 tree type;
2941 tree rval;
2942 tree base_init = NULL_TREE;
2943
2944 type = TREE_TYPE (base);
2945
2946 if (TREE_CODE (type) == POINTER_TYPE)
2947 {
2948 /* Step back one from start of vector, and read dimension. */
2949 tree cookie_addr;
2950
2951 if (TREE_SIDE_EFFECTS (base))
2952 {
2953 base_init = get_target_expr (base);
2954 base = TARGET_EXPR_SLOT (base_init);
2955 }
2956 type = strip_array_types (TREE_TYPE (type));
2957 cookie_addr = build2 (MINUS_EXPR,
2958 build_pointer_type (sizetype),
2959 base,
2960 TYPE_SIZE_UNIT (sizetype));
2961 maxindex = build_indirect_ref (cookie_addr, NULL);
2962 }
2963 else if (TREE_CODE (type) == ARRAY_TYPE)
2964 {
2965 /* Get the total number of things in the array, maxindex is a
2966 bad name. */
2967 maxindex = array_type_nelts_total (type);
2968 type = strip_array_types (type);
2969 base = build_unary_op (ADDR_EXPR, base, 1);
2970 if (TREE_SIDE_EFFECTS (base))
2971 {
2972 base_init = get_target_expr (base);
2973 base = TARGET_EXPR_SLOT (base_init);
2974 }
2975 }
2976 else
2977 {
2978 if (base != error_mark_node)
2979 error ("type to vector delete is neither pointer or array type");
2980 return error_mark_node;
2981 }
2982
2983 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
2984 use_global_delete);
2985 if (base_init)
2986 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
2987
2988 return rval;
2989 }
This page took 0.165606 seconds and 6 git commands to generate.