]> gcc.gnu.org Git - gcc.git/blob - gcc/cp/init.c
c-decl.c (build_compound_literal): Use TYPE_READONLY.
[gcc.git] / gcc / cp / init.c
1 /* Handle initialization things in C++.
2 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* High-level class interface. */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "tree.h"
30 #include "rtl.h"
31 #include "expr.h"
32 #include "cp-tree.h"
33 #include "flags.h"
34 #include "output.h"
35 #include "except.h"
36 #include "toplev.h"
37
38 static bool begin_init_stmts (tree *, tree *);
39 static tree finish_init_stmts (bool, tree, tree);
40 static void construct_virtual_base (tree, tree);
41 static void expand_aggr_init_1 (tree, tree, tree, tree, int);
42 static void expand_default_init (tree, tree, tree, tree, int);
43 static tree build_vec_delete_1 (tree, tree, tree, special_function_kind, int);
44 static void perform_member_init (tree, tree);
45 static tree build_builtin_delete_call (tree);
46 static int member_init_ok_or_else (tree, tree, tree);
47 static void expand_virtual_init (tree, tree);
48 static tree sort_mem_initializers (tree, tree);
49 static tree initializing_context (tree);
50 static void expand_cleanup_for_base (tree, tree);
51 static tree get_temp_regvar (tree, tree);
52 static tree dfs_initialize_vtbl_ptrs (tree, void *);
53 static tree build_default_init (tree, tree);
54 static tree build_new_1 (tree);
55 static tree get_cookie_size (tree);
56 static tree build_dtor_call (tree, special_function_kind, int);
57 static tree build_field_list (tree, tree, int *);
58 static tree build_vtbl_address (tree);
59
60 /* We are about to generate some complex initialization code.
61 Conceptually, it is all a single expression. However, we may want
62 to include conditionals, loops, and other such statement-level
63 constructs. Therefore, we build the initialization code inside a
64 statement-expression. This function starts such an expression.
65 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
66 pass them back to finish_init_stmts when the expression is
67 complete. */
68
69 static bool
70 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
71 {
72 bool is_global = !building_stmt_tree ();
73
74 *stmt_expr_p = begin_stmt_expr ();
75 *compound_stmt_p = begin_compound_stmt (/*has_no_scope=*/true);
76
77 return is_global;
78 }
79
80 /* Finish out the statement-expression begun by the previous call to
81 begin_init_stmts. Returns the statement-expression itself. */
82
83 static tree
84 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
85 {
86 finish_compound_stmt (compound_stmt);
87
88 stmt_expr = finish_stmt_expr (stmt_expr, true);
89
90 my_friendly_assert (!building_stmt_tree () == is_global, 20030726);
91
92 return stmt_expr;
93 }
94
95 /* Constructors */
96
97 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
98 which we want to initialize the vtable pointer for, DATA is
99 TREE_LIST whose TREE_VALUE is the this ptr expression. */
100
101 static tree
102 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
103 {
104 if ((!BINFO_PRIMARY_P (binfo) || TREE_VIA_VIRTUAL (binfo))
105 && CLASSTYPE_VFIELDS (BINFO_TYPE (binfo)))
106 {
107 tree base_ptr = TREE_VALUE ((tree) data);
108
109 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
110
111 expand_virtual_init (binfo, base_ptr);
112 }
113
114 BINFO_MARKED (binfo) = 1;
115
116 return NULL_TREE;
117 }
118
119 /* Initialize all the vtable pointers in the object pointed to by
120 ADDR. */
121
122 void
123 initialize_vtbl_ptrs (tree addr)
124 {
125 tree list;
126 tree type;
127
128 type = TREE_TYPE (TREE_TYPE (addr));
129 list = build_tree_list (type, addr);
130
131 /* Walk through the hierarchy, initializing the vptr in each base
132 class. We do these in pre-order because we can't find the virtual
133 bases for a class until we've initialized the vtbl for that
134 class. */
135 dfs_walk_real (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs,
136 NULL, unmarkedp, list);
137 dfs_walk (TYPE_BINFO (type), dfs_unmark, markedp, type);
138 }
139
140 /* Return an expression for the zero-initialization of an object with
141 type T. This expression will either be a constant (in the case
142 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
143 aggregate). In either case, the value can be used as DECL_INITIAL
144 for a decl of the indicated TYPE; it is a valid static initializer.
145 If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS is the
146 number of elements in the array. If STATIC_STORAGE_P is TRUE,
147 initializers are only generated for entities for which
148 zero-initialization does not simply mean filling the storage with
149 zero bytes. */
150
151 tree
152 build_zero_init (tree type, tree nelts, bool static_storage_p)
153 {
154 tree init = NULL_TREE;
155
156 /* [dcl.init]
157
158 To zero-initialization storage for an object of type T means:
159
160 -- if T is a scalar type, the storage is set to the value of zero
161 converted to T.
162
163 -- if T is a non-union class type, the storage for each nonstatic
164 data member and each base-class subobject is zero-initialized.
165
166 -- if T is a union type, the storage for its first data member is
167 zero-initialized.
168
169 -- if T is an array type, the storage for each element is
170 zero-initialized.
171
172 -- if T is a reference type, no initialization is performed. */
173
174 my_friendly_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST,
175 20030618);
176
177 if (type == error_mark_node)
178 ;
179 else if (static_storage_p && zero_init_p (type))
180 /* In order to save space, we do not explicitly build initializers
181 for items that do not need them. GCC's semantics are that
182 items with static storage duration that are not otherwise
183 initialized are initialized to zero. */
184 ;
185 else if (SCALAR_TYPE_P (type))
186 init = convert (type, integer_zero_node);
187 else if (CLASS_TYPE_P (type))
188 {
189 tree field;
190 tree inits;
191
192 /* Build a constructor to contain the initializations. */
193 init = build_constructor (type, NULL_TREE);
194 /* Iterate over the fields, building initializations. */
195 inits = NULL_TREE;
196 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
197 {
198 if (TREE_CODE (field) != FIELD_DECL)
199 continue;
200
201 /* Note that for class types there will be FIELD_DECLs
202 corresponding to base classes as well. Thus, iterating
203 over TYPE_FIELDs will result in correct initialization of
204 all of the subobjects. */
205 if (static_storage_p && !zero_init_p (TREE_TYPE (field)))
206 inits = tree_cons (field,
207 build_zero_init (TREE_TYPE (field),
208 /*nelts=*/NULL_TREE,
209 static_storage_p),
210 inits);
211
212 /* For unions, only the first field is initialized. */
213 if (TREE_CODE (type) == UNION_TYPE)
214 break;
215 }
216 CONSTRUCTOR_ELTS (init) = nreverse (inits);
217 }
218 else if (TREE_CODE (type) == ARRAY_TYPE)
219 {
220 tree index;
221 tree max_index;
222 tree inits;
223
224 /* Build a constructor to contain the initializations. */
225 init = build_constructor (type, NULL_TREE);
226 /* Iterate over the array elements, building initializations. */
227 inits = NULL_TREE;
228 max_index = nelts ? nelts : array_type_nelts (type);
229 my_friendly_assert (TREE_CODE (max_index) == INTEGER_CST, 20030618);
230
231 /* A zero-sized array, which is accepted as an extension, will
232 have an upper bound of -1. */
233 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
234 for (index = size_zero_node;
235 !tree_int_cst_lt (max_index, index);
236 index = size_binop (PLUS_EXPR, index, size_one_node))
237 inits = tree_cons (index,
238 build_zero_init (TREE_TYPE (type),
239 /*nelts=*/NULL_TREE,
240 static_storage_p),
241 inits);
242 CONSTRUCTOR_ELTS (init) = nreverse (inits);
243 }
244 else if (TREE_CODE (type) == REFERENCE_TYPE)
245 ;
246 else
247 abort ();
248
249 /* In all cases, the initializer is a constant. */
250 if (init)
251 TREE_CONSTANT (init) = 1;
252
253 return init;
254 }
255
256 /* Build an expression for the default-initialization of an object of
257 the indicated TYPE. If NELTS is non-NULL, and TYPE is an
258 ARRAY_TYPE, NELTS is the number of elements in the array. If
259 initialization of TYPE requires calling constructors, this function
260 returns NULL_TREE; the caller is responsible for arranging for the
261 constructors to be called. */
262
263 static tree
264 build_default_init (tree type, tree nelts)
265 {
266 /* [dcl.init]:
267
268 To default-initialize an object of type T means:
269
270 --if T is a non-POD class type (clause _class_), the default construc-
271 tor for T is called (and the initialization is ill-formed if T has
272 no accessible default constructor);
273
274 --if T is an array type, each element is default-initialized;
275
276 --otherwise, the storage for the object is zero-initialized.
277
278 A program that calls for default-initialization of an entity of refer-
279 ence type is ill-formed. */
280
281 /* If TYPE_NEEDS_CONSTRUCTING is true, the caller is responsible for
282 performing the initialization. This is confusing in that some
283 non-PODs do not have TYPE_NEEDS_CONSTRUCTING set. (For example,
284 a class with a pointer-to-data member as a non-static data member
285 does not have TYPE_NEEDS_CONSTRUCTING set.) Therefore, we end up
286 passing non-PODs to build_zero_init below, which is contrary to
287 the semantics quoted above from [dcl.init].
288
289 It happens, however, that the behavior of the constructor the
290 standard says we should have generated would be precisely the
291 same as that obtained by calling build_zero_init below, so things
292 work out OK. */
293 if (TYPE_NEEDS_CONSTRUCTING (type)
294 || (nelts && TREE_CODE (nelts) != INTEGER_CST))
295 return NULL_TREE;
296
297 /* At this point, TYPE is either a POD class type, an array of POD
298 classes, or something even more innocuous. */
299 return build_zero_init (type, nelts, /*static_storage_p=*/false);
300 }
301
302 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
303 arguments. If TREE_LIST is void_type_node, an empty initializer
304 list was given; if NULL_TREE no initializer was given. */
305
306 static void
307 perform_member_init (tree member, tree init)
308 {
309 tree decl;
310 tree type = TREE_TYPE (member);
311 bool explicit;
312
313 explicit = (init != NULL_TREE);
314
315 /* Effective C++ rule 12 requires that all data members be
316 initialized. */
317 if (warn_ecpp && !explicit && TREE_CODE (type) != ARRAY_TYPE)
318 warning ("`%D' should be initialized in the member initialization "
319 "list",
320 member);
321
322 if (init == void_type_node)
323 init = NULL_TREE;
324
325 /* Get an lvalue for the data member. */
326 decl = build_class_member_access_expr (current_class_ref, member,
327 /*access_path=*/NULL_TREE,
328 /*preserve_reference=*/true);
329 if (decl == error_mark_node)
330 return;
331
332 /* Deal with this here, as we will get confused if we try to call the
333 assignment op for an anonymous union. This can happen in a
334 synthesized copy constructor. */
335 if (ANON_AGGR_TYPE_P (type))
336 {
337 if (init)
338 {
339 init = build (INIT_EXPR, type, decl, TREE_VALUE (init));
340 finish_expr_stmt (init);
341 }
342 }
343 else if (TYPE_NEEDS_CONSTRUCTING (type)
344 || (init && TYPE_HAS_CONSTRUCTOR (type)))
345 {
346 if (explicit
347 && TREE_CODE (type) == ARRAY_TYPE
348 && init != NULL_TREE
349 && TREE_CHAIN (init) == NULL_TREE
350 && TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
351 {
352 /* Initialization of one array from another. */
353 finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
354 /* from_array=*/1));
355 }
356 else
357 finish_expr_stmt (build_aggr_init (decl, init, 0));
358 }
359 else
360 {
361 if (init == NULL_TREE)
362 {
363 if (explicit)
364 {
365 init = build_default_init (type, /*nelts=*/NULL_TREE);
366 if (TREE_CODE (type) == REFERENCE_TYPE)
367 warning
368 ("default-initialization of `%#D', which has reference type",
369 member);
370 }
371 /* member traversal: note it leaves init NULL */
372 else if (TREE_CODE (type) == REFERENCE_TYPE)
373 pedwarn ("uninitialized reference member `%D'", member);
374 else if (CP_TYPE_CONST_P (type))
375 pedwarn ("uninitialized member `%D' with `const' type `%T'",
376 member, type);
377 }
378 else if (TREE_CODE (init) == TREE_LIST)
379 /* There was an explicit member initialization. Do some work
380 in that case. */
381 init = build_x_compound_expr_from_list (init, "member initializer");
382
383 if (init)
384 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
385 }
386
387 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
388 {
389 tree expr;
390
391 expr = build_class_member_access_expr (current_class_ref, member,
392 /*access_path=*/NULL_TREE,
393 /*preserve_reference=*/false);
394 expr = build_delete (type, expr, sfk_complete_destructor,
395 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
396
397 if (expr != error_mark_node)
398 finish_eh_cleanup (expr);
399 }
400 }
401
402 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
403 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
404
405 static tree
406 build_field_list (tree t, tree list, int *uses_unions_p)
407 {
408 tree fields;
409
410 *uses_unions_p = 0;
411
412 /* Note whether or not T is a union. */
413 if (TREE_CODE (t) == UNION_TYPE)
414 *uses_unions_p = 1;
415
416 for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
417 {
418 /* Skip CONST_DECLs for enumeration constants and so forth. */
419 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
420 continue;
421
422 /* Keep track of whether or not any fields are unions. */
423 if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
424 *uses_unions_p = 1;
425
426 /* For an anonymous struct or union, we must recursively
427 consider the fields of the anonymous type. They can be
428 directly initialized from the constructor. */
429 if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
430 {
431 /* Add this field itself. Synthesized copy constructors
432 initialize the entire aggregate. */
433 list = tree_cons (fields, NULL_TREE, list);
434 /* And now add the fields in the anonymous aggregate. */
435 list = build_field_list (TREE_TYPE (fields), list,
436 uses_unions_p);
437 }
438 /* Add this field. */
439 else if (DECL_NAME (fields))
440 list = tree_cons (fields, NULL_TREE, list);
441 }
442
443 return list;
444 }
445
446 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
447 a FIELD_DECL or BINFO in T that needs initialization. The
448 TREE_VALUE gives the initializer, or list of initializer arguments.
449
450 Return a TREE_LIST containing all of the initializations required
451 for T, in the order in which they should be performed. The output
452 list has the same format as the input. */
453
454 static tree
455 sort_mem_initializers (tree t, tree mem_inits)
456 {
457 tree init;
458 tree base;
459 tree sorted_inits;
460 tree next_subobject;
461 int i;
462 int uses_unions_p;
463
464 /* Build up a list of initializations. The TREE_PURPOSE of entry
465 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
466 TREE_VALUE will be the constructor arguments, or NULL if no
467 explicit initialization was provided. */
468 sorted_inits = NULL_TREE;
469 /* Process the virtual bases. */
470 for (base = CLASSTYPE_VBASECLASSES (t); base; base = TREE_CHAIN (base))
471 sorted_inits = tree_cons (TREE_VALUE (base), NULL_TREE, sorted_inits);
472 /* Process the direct bases. */
473 for (i = 0; i < CLASSTYPE_N_BASECLASSES (t); ++i)
474 {
475 base = BINFO_BASETYPE (TYPE_BINFO (t), i);
476 if (!TREE_VIA_VIRTUAL (base))
477 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
478 }
479 /* Process the non-static data members. */
480 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
481 /* Reverse the entire list of initializations, so that they are in
482 the order that they will actually be performed. */
483 sorted_inits = nreverse (sorted_inits);
484
485 /* If the user presented the initializers in an order different from
486 that in which they will actually occur, we issue a warning. Keep
487 track of the next subobject which can be explicitly initialized
488 without issuing a warning. */
489 next_subobject = sorted_inits;
490
491 /* Go through the explicit initializers, filling in TREE_PURPOSE in
492 the SORTED_INITS. */
493 for (init = mem_inits; init; init = TREE_CHAIN (init))
494 {
495 tree subobject;
496 tree subobject_init;
497
498 subobject = TREE_PURPOSE (init);
499
500 /* If the explicit initializers are in sorted order, then
501 SUBOBJECT will be NEXT_SUBOBJECT, or something following
502 it. */
503 for (subobject_init = next_subobject;
504 subobject_init;
505 subobject_init = TREE_CHAIN (subobject_init))
506 if (TREE_PURPOSE (subobject_init) == subobject)
507 break;
508
509 /* Issue a warning if the explicit initializer order does not
510 match that which will actually occur. */
511 if (warn_reorder && !subobject_init)
512 {
513 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
514 cp_warning_at ("`%D' will be initialized after",
515 TREE_PURPOSE (next_subobject));
516 else
517 warning ("base `%T' will be initialized after",
518 TREE_PURPOSE (next_subobject));
519 if (TREE_CODE (subobject) == FIELD_DECL)
520 cp_warning_at (" `%#D'", subobject);
521 else
522 warning (" base `%T'", subobject);
523 warning (" when initialized here");
524 }
525
526 /* Look again, from the beginning of the list. */
527 if (!subobject_init)
528 {
529 subobject_init = sorted_inits;
530 while (TREE_PURPOSE (subobject_init) != subobject)
531 subobject_init = TREE_CHAIN (subobject_init);
532 }
533
534 /* It is invalid to initialize the same subobject more than
535 once. */
536 if (TREE_VALUE (subobject_init))
537 {
538 if (TREE_CODE (subobject) == FIELD_DECL)
539 error ("multiple initializations given for `%D'", subobject);
540 else
541 error ("multiple initializations given for base `%T'",
542 subobject);
543 }
544
545 /* Record the initialization. */
546 TREE_VALUE (subobject_init) = TREE_VALUE (init);
547 next_subobject = subobject_init;
548 }
549
550 /* [class.base.init]
551
552 If a ctor-initializer specifies more than one mem-initializer for
553 multiple members of the same union (including members of
554 anonymous unions), the ctor-initializer is ill-formed. */
555 if (uses_unions_p)
556 {
557 tree last_field = NULL_TREE;
558 for (init = sorted_inits; init; init = TREE_CHAIN (init))
559 {
560 tree field;
561 tree field_type;
562 int done;
563
564 /* Skip uninitialized members and base classes. */
565 if (!TREE_VALUE (init)
566 || TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
567 continue;
568 /* See if this field is a member of a union, or a member of a
569 structure contained in a union, etc. */
570 field = TREE_PURPOSE (init);
571 for (field_type = DECL_CONTEXT (field);
572 !same_type_p (field_type, t);
573 field_type = TYPE_CONTEXT (field_type))
574 if (TREE_CODE (field_type) == UNION_TYPE)
575 break;
576 /* If this field is not a member of a union, skip it. */
577 if (TREE_CODE (field_type) != UNION_TYPE)
578 continue;
579
580 /* It's only an error if we have two initializers for the same
581 union type. */
582 if (!last_field)
583 {
584 last_field = field;
585 continue;
586 }
587
588 /* See if LAST_FIELD and the field initialized by INIT are
589 members of the same union. If so, there's a problem,
590 unless they're actually members of the same structure
591 which is itself a member of a union. For example, given:
592
593 union { struct { int i; int j; }; };
594
595 initializing both `i' and `j' makes sense. */
596 field_type = DECL_CONTEXT (field);
597 done = 0;
598 do
599 {
600 tree last_field_type;
601
602 last_field_type = DECL_CONTEXT (last_field);
603 while (1)
604 {
605 if (same_type_p (last_field_type, field_type))
606 {
607 if (TREE_CODE (field_type) == UNION_TYPE)
608 error ("initializations for multiple members of `%T'",
609 last_field_type);
610 done = 1;
611 break;
612 }
613
614 if (same_type_p (last_field_type, t))
615 break;
616
617 last_field_type = TYPE_CONTEXT (last_field_type);
618 }
619
620 /* If we've reached the outermost class, then we're
621 done. */
622 if (same_type_p (field_type, t))
623 break;
624
625 field_type = TYPE_CONTEXT (field_type);
626 }
627 while (!done);
628
629 last_field = field;
630 }
631 }
632
633 return sorted_inits;
634 }
635
636 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
637 is a TREE_LIST giving the explicit mem-initializer-list for the
638 constructor. The TREE_PURPOSE of each entry is a subobject (a
639 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
640 is a TREE_LIST giving the arguments to the constructor or
641 void_type_node for an empty list of arguments. */
642
643 void
644 emit_mem_initializers (tree mem_inits)
645 {
646 /* Sort the mem-initializers into the order in which the
647 initializations should be performed. */
648 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
649
650 in_base_initializer = 1;
651
652 /* Initialize base classes. */
653 while (mem_inits
654 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
655 {
656 tree subobject = TREE_PURPOSE (mem_inits);
657 tree arguments = TREE_VALUE (mem_inits);
658
659 /* If these initializations are taking place in a copy
660 constructor, the base class should probably be explicitly
661 initialized. */
662 if (extra_warnings && !arguments
663 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
664 && TYPE_NEEDS_CONSTRUCTING (BINFO_TYPE (subobject)))
665 warning ("base class `%#T' should be explicitly initialized in the "
666 "copy constructor",
667 BINFO_TYPE (subobject));
668
669 /* If an explicit -- but empty -- initializer list was present,
670 treat it just like default initialization at this point. */
671 if (arguments == void_type_node)
672 arguments = NULL_TREE;
673
674 /* Initialize the base. */
675 if (TREE_VIA_VIRTUAL (subobject))
676 construct_virtual_base (subobject, arguments);
677 else
678 {
679 tree base_addr;
680
681 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
682 subobject, 1);
683 expand_aggr_init_1 (subobject, NULL_TREE,
684 build_indirect_ref (base_addr, NULL),
685 arguments,
686 LOOKUP_NORMAL);
687 expand_cleanup_for_base (subobject, NULL_TREE);
688 }
689
690 mem_inits = TREE_CHAIN (mem_inits);
691 }
692 in_base_initializer = 0;
693
694 /* Initialize the vptrs. */
695 initialize_vtbl_ptrs (current_class_ptr);
696
697 /* Initialize the data members. */
698 while (mem_inits)
699 {
700 perform_member_init (TREE_PURPOSE (mem_inits),
701 TREE_VALUE (mem_inits));
702 mem_inits = TREE_CHAIN (mem_inits);
703 }
704 }
705
706 /* Returns the address of the vtable (i.e., the value that should be
707 assigned to the vptr) for BINFO. */
708
709 static tree
710 build_vtbl_address (tree binfo)
711 {
712 tree binfo_for = binfo;
713 tree vtbl;
714
715 if (BINFO_VPTR_INDEX (binfo) && TREE_VIA_VIRTUAL (binfo)
716 && BINFO_PRIMARY_P (binfo))
717 /* If this is a virtual primary base, then the vtable we want to store
718 is that for the base this is being used as the primary base of. We
719 can't simply skip the initialization, because we may be expanding the
720 inits of a subobject constructor where the virtual base layout
721 can be different. */
722 while (BINFO_PRIMARY_BASE_OF (binfo_for))
723 binfo_for = BINFO_PRIMARY_BASE_OF (binfo_for);
724
725 /* Figure out what vtable BINFO's vtable is based on, and mark it as
726 used. */
727 vtbl = get_vtbl_decl_for_binfo (binfo_for);
728 assemble_external (vtbl);
729 TREE_USED (vtbl) = 1;
730
731 /* Now compute the address to use when initializing the vptr. */
732 vtbl = BINFO_VTABLE (binfo_for);
733 if (TREE_CODE (vtbl) == VAR_DECL)
734 {
735 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
736 TREE_CONSTANT (vtbl) = 1;
737 }
738
739 return vtbl;
740 }
741
742 /* This code sets up the virtual function tables appropriate for
743 the pointer DECL. It is a one-ply initialization.
744
745 BINFO is the exact type that DECL is supposed to be. In
746 multiple inheritance, this might mean "C's A" if C : A, B. */
747
748 static void
749 expand_virtual_init (tree binfo, tree decl)
750 {
751 tree vtbl, vtbl_ptr;
752 tree vtt_index;
753
754 /* Compute the initializer for vptr. */
755 vtbl = build_vtbl_address (binfo);
756
757 /* We may get this vptr from a VTT, if this is a subobject
758 constructor or subobject destructor. */
759 vtt_index = BINFO_VPTR_INDEX (binfo);
760 if (vtt_index)
761 {
762 tree vtbl2;
763 tree vtt_parm;
764
765 /* Compute the value to use, when there's a VTT. */
766 vtt_parm = current_vtt_parm;
767 vtbl2 = build (PLUS_EXPR,
768 TREE_TYPE (vtt_parm),
769 vtt_parm,
770 vtt_index);
771 vtbl2 = build1 (INDIRECT_REF, TREE_TYPE (vtbl), vtbl2);
772
773 /* The actual initializer is the VTT value only in the subobject
774 constructor. In maybe_clone_body we'll substitute NULL for
775 the vtt_parm in the case of the non-subobject constructor. */
776 vtbl = build (COND_EXPR,
777 TREE_TYPE (vtbl),
778 build (EQ_EXPR, boolean_type_node,
779 current_in_charge_parm, integer_zero_node),
780 vtbl2,
781 vtbl);
782 }
783
784 /* Compute the location of the vtpr. */
785 vtbl_ptr = build_vfield_ref (build_indirect_ref (decl, NULL),
786 TREE_TYPE (binfo));
787 my_friendly_assert (vtbl_ptr != error_mark_node, 20010730);
788
789 /* Assign the vtable to the vptr. */
790 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
791 finish_expr_stmt (build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl));
792 }
793
794 /* If an exception is thrown in a constructor, those base classes already
795 constructed must be destroyed. This function creates the cleanup
796 for BINFO, which has just been constructed. If FLAG is non-NULL,
797 it is a DECL which is nonzero when this base needs to be
798 destroyed. */
799
800 static void
801 expand_cleanup_for_base (tree binfo, tree flag)
802 {
803 tree expr;
804
805 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
806 return;
807
808 /* Call the destructor. */
809 expr = build_special_member_call (current_class_ref,
810 base_dtor_identifier,
811 NULL_TREE,
812 binfo,
813 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
814 if (flag)
815 expr = fold (build (COND_EXPR, void_type_node,
816 c_common_truthvalue_conversion (flag),
817 expr, integer_zero_node));
818
819 finish_eh_cleanup (expr);
820 }
821
822 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
823 constructor. */
824
825 static void
826 construct_virtual_base (tree vbase, tree arguments)
827 {
828 tree inner_if_stmt;
829 tree compound_stmt;
830 tree exp;
831 tree flag;
832
833 /* If there are virtual base classes with destructors, we need to
834 emit cleanups to destroy them if an exception is thrown during
835 the construction process. These exception regions (i.e., the
836 period during which the cleanups must occur) begin from the time
837 the construction is complete to the end of the function. If we
838 create a conditional block in which to initialize the
839 base-classes, then the cleanup region for the virtual base begins
840 inside a block, and ends outside of that block. This situation
841 confuses the sjlj exception-handling code. Therefore, we do not
842 create a single conditional block, but one for each
843 initialization. (That way the cleanup regions always begin
844 in the outer block.) We trust the back-end to figure out
845 that the FLAG will not change across initializations, and
846 avoid doing multiple tests. */
847 flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
848 inner_if_stmt = begin_if_stmt ();
849 finish_if_stmt_cond (flag, inner_if_stmt);
850 compound_stmt = begin_compound_stmt (/*has_no_scope=*/true);
851
852 /* Compute the location of the virtual base. If we're
853 constructing virtual bases, then we must be the most derived
854 class. Therefore, we don't have to look up the virtual base;
855 we already know where it is. */
856 exp = convert_to_base_statically (current_class_ref, vbase);
857
858 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
859 LOOKUP_COMPLAIN);
860 finish_compound_stmt (compound_stmt);
861 finish_then_clause (inner_if_stmt);
862 finish_if_stmt ();
863
864 expand_cleanup_for_base (vbase, flag);
865 }
866
867 /* Find the context in which this FIELD can be initialized. */
868
869 static tree
870 initializing_context (tree field)
871 {
872 tree t = DECL_CONTEXT (field);
873
874 /* Anonymous union members can be initialized in the first enclosing
875 non-anonymous union context. */
876 while (t && ANON_AGGR_TYPE_P (t))
877 t = TYPE_CONTEXT (t);
878 return t;
879 }
880
881 /* Function to give error message if member initialization specification
882 is erroneous. FIELD is the member we decided to initialize.
883 TYPE is the type for which the initialization is being performed.
884 FIELD must be a member of TYPE.
885
886 MEMBER_NAME is the name of the member. */
887
888 static int
889 member_init_ok_or_else (tree field, tree type, tree member_name)
890 {
891 if (field == error_mark_node)
892 return 0;
893 if (!field)
894 {
895 error ("class `%T' does not have any field named `%D'", type,
896 member_name);
897 return 0;
898 }
899 if (TREE_CODE (field) == VAR_DECL)
900 {
901 error ("`%#D' is a static data member; it can only be "
902 "initialized at its definition",
903 field);
904 return 0;
905 }
906 if (TREE_CODE (field) != FIELD_DECL)
907 {
908 error ("`%#D' is not a non-static data member of `%T'",
909 field, type);
910 return 0;
911 }
912 if (initializing_context (field) != type)
913 {
914 error ("class `%T' does not have any field named `%D'", type,
915 member_name);
916 return 0;
917 }
918
919 return 1;
920 }
921
922 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
923 is a _TYPE node or TYPE_DECL which names a base for that type.
924 Check the validity of NAME, and return either the base _TYPE, base
925 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
926 NULL_TREE and issue a diagnostic.
927
928 An old style unnamed direct single base construction is permitted,
929 where NAME is NULL. */
930
931 tree
932 expand_member_init (tree name)
933 {
934 tree basetype;
935 tree field;
936
937 if (!current_class_ref)
938 return NULL_TREE;
939
940 if (!name)
941 {
942 /* This is an obsolete unnamed base class initializer. The
943 parser will already have warned about its use. */
944 switch (CLASSTYPE_N_BASECLASSES (current_class_type))
945 {
946 case 0:
947 error ("unnamed initializer for `%T', which has no base classes",
948 current_class_type);
949 return NULL_TREE;
950 case 1:
951 basetype = TYPE_BINFO_BASETYPE (current_class_type, 0);
952 break;
953 default:
954 error ("unnamed initializer for `%T', which uses multiple inheritance",
955 current_class_type);
956 return NULL_TREE;
957 }
958 }
959 else if (TYPE_P (name))
960 {
961 basetype = TYPE_MAIN_VARIANT (name);
962 name = TYPE_NAME (name);
963 }
964 else if (TREE_CODE (name) == TYPE_DECL)
965 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
966 else
967 basetype = NULL_TREE;
968
969 if (basetype)
970 {
971 tree class_binfo;
972 tree direct_binfo;
973 tree virtual_binfo;
974 int i;
975
976 if (current_template_parms)
977 return basetype;
978
979 class_binfo = TYPE_BINFO (current_class_type);
980 direct_binfo = NULL_TREE;
981 virtual_binfo = NULL_TREE;
982
983 /* Look for a direct base. */
984 for (i = 0; i < BINFO_N_BASETYPES (class_binfo); ++i)
985 if (same_type_p (basetype,
986 TYPE_BINFO_BASETYPE (current_class_type, i)))
987 {
988 direct_binfo = BINFO_BASETYPE (class_binfo, i);
989 break;
990 }
991 /* Look for a virtual base -- unless the direct base is itself
992 virtual. */
993 if (!direct_binfo || !TREE_VIA_VIRTUAL (direct_binfo))
994 {
995 virtual_binfo
996 = purpose_member (basetype,
997 CLASSTYPE_VBASECLASSES (current_class_type));
998 if (virtual_binfo)
999 virtual_binfo = TREE_VALUE (virtual_binfo);
1000 }
1001
1002 /* [class.base.init]
1003
1004 If a mem-initializer-id is ambiguous because it designates
1005 both a direct non-virtual base class and an inherited virtual
1006 base class, the mem-initializer is ill-formed. */
1007 if (direct_binfo && virtual_binfo)
1008 {
1009 error ("'%D' is both a direct base and an indirect virtual base",
1010 basetype);
1011 return NULL_TREE;
1012 }
1013
1014 if (!direct_binfo && !virtual_binfo)
1015 {
1016 if (TYPE_USES_VIRTUAL_BASECLASSES (current_class_type))
1017 error ("type `%D' is not a direct or virtual base of `%T'",
1018 name, current_class_type);
1019 else
1020 error ("type `%D' is not a direct base of `%T'",
1021 name, current_class_type);
1022 return NULL_TREE;
1023 }
1024
1025 return direct_binfo ? direct_binfo : virtual_binfo;
1026 }
1027 else
1028 {
1029 if (TREE_CODE (name) == IDENTIFIER_NODE)
1030 field = lookup_field (current_class_type, name, 1, false);
1031 else
1032 field = name;
1033
1034 if (member_init_ok_or_else (field, current_class_type, name))
1035 return field;
1036 }
1037
1038 return NULL_TREE;
1039 }
1040
1041 /* This is like `expand_member_init', only it stores one aggregate
1042 value into another.
1043
1044 INIT comes in two flavors: it is either a value which
1045 is to be stored in EXP, or it is a parameter list
1046 to go to a constructor, which will operate on EXP.
1047 If INIT is not a parameter list for a constructor, then set
1048 LOOKUP_ONLYCONVERTING.
1049 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1050 the initializer, if FLAGS is 0, then it is the (init) form.
1051 If `init' is a CONSTRUCTOR, then we emit a warning message,
1052 explaining that such initializations are invalid.
1053
1054 If INIT resolves to a CALL_EXPR which happens to return
1055 something of the type we are looking for, then we know
1056 that we can safely use that call to perform the
1057 initialization.
1058
1059 The virtual function table pointer cannot be set up here, because
1060 we do not really know its type.
1061
1062 This never calls operator=().
1063
1064 When initializing, nothing is CONST.
1065
1066 A default copy constructor may have to be used to perform the
1067 initialization.
1068
1069 A constructor or a conversion operator may have to be used to
1070 perform the initialization, but not both, as it would be ambiguous. */
1071
1072 tree
1073 build_aggr_init (tree exp, tree init, int flags)
1074 {
1075 tree stmt_expr;
1076 tree compound_stmt;
1077 int destroy_temps;
1078 tree type = TREE_TYPE (exp);
1079 int was_const = TREE_READONLY (exp);
1080 int was_volatile = TREE_THIS_VOLATILE (exp);
1081 int is_global;
1082
1083 if (init == error_mark_node)
1084 return error_mark_node;
1085
1086 TREE_READONLY (exp) = 0;
1087 TREE_THIS_VOLATILE (exp) = 0;
1088
1089 if (init && TREE_CODE (init) != TREE_LIST)
1090 flags |= LOOKUP_ONLYCONVERTING;
1091
1092 if (TREE_CODE (type) == ARRAY_TYPE)
1093 {
1094 /* Must arrange to initialize each element of EXP
1095 from elements of INIT. */
1096 tree itype = init ? TREE_TYPE (init) : NULL_TREE;
1097
1098 if (init && !itype)
1099 {
1100 /* Handle bad initializers like:
1101 class COMPLEX {
1102 public:
1103 double re, im;
1104 COMPLEX(double r = 0.0, double i = 0.0) {re = r; im = i;};
1105 ~COMPLEX() {};
1106 };
1107
1108 int main(int argc, char **argv) {
1109 COMPLEX zees(1.0, 0.0)[10];
1110 }
1111 */
1112 error ("bad array initializer");
1113 return error_mark_node;
1114 }
1115 if (cp_type_quals (type) != TYPE_UNQUALIFIED)
1116 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1117 if (itype && cp_type_quals (itype) != TYPE_UNQUALIFIED)
1118 TREE_TYPE (init) = TYPE_MAIN_VARIANT (itype);
1119 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1120 init && same_type_p (TREE_TYPE (init),
1121 TREE_TYPE (exp)));
1122 TREE_READONLY (exp) = was_const;
1123 TREE_THIS_VOLATILE (exp) = was_volatile;
1124 TREE_TYPE (exp) = type;
1125 if (init)
1126 TREE_TYPE (init) = itype;
1127 return stmt_expr;
1128 }
1129
1130 if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1131 /* Just know that we've seen something for this node. */
1132 TREE_USED (exp) = 1;
1133
1134 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1135 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1136 destroy_temps = stmts_are_full_exprs_p ();
1137 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1138 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1139 init, LOOKUP_NORMAL|flags);
1140 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1141 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1142 TREE_TYPE (exp) = type;
1143 TREE_READONLY (exp) = was_const;
1144 TREE_THIS_VOLATILE (exp) = was_volatile;
1145
1146 return stmt_expr;
1147 }
1148
1149 /* Like build_aggr_init, but not just for aggregates. */
1150
1151 tree
1152 build_init (tree decl, tree init, int flags)
1153 {
1154 tree expr;
1155
1156 if (IS_AGGR_TYPE (TREE_TYPE (decl))
1157 || TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
1158 expr = build_aggr_init (decl, init, flags);
1159 else
1160 expr = build (INIT_EXPR, TREE_TYPE (decl), decl, init);
1161
1162 return expr;
1163 }
1164
1165 static void
1166 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags)
1167 {
1168 tree type = TREE_TYPE (exp);
1169 tree ctor_name;
1170
1171 /* It fails because there may not be a constructor which takes
1172 its own type as the first (or only parameter), but which does
1173 take other types via a conversion. So, if the thing initializing
1174 the expression is a unit element of type X, first try X(X&),
1175 followed by initialization by X. If neither of these work
1176 out, then look hard. */
1177 tree rval;
1178 tree parms;
1179
1180 if (init && TREE_CODE (init) != TREE_LIST
1181 && (flags & LOOKUP_ONLYCONVERTING))
1182 {
1183 /* Base subobjects should only get direct-initialization. */
1184 if (true_exp != exp)
1185 abort ();
1186
1187 if (flags & DIRECT_BIND)
1188 /* Do nothing. We hit this in two cases: Reference initialization,
1189 where we aren't initializing a real variable, so we don't want
1190 to run a new constructor; and catching an exception, where we
1191 have already built up the constructor call so we could wrap it
1192 in an exception region. */;
1193 else if (TREE_CODE (init) == CONSTRUCTOR
1194 && TREE_HAS_CONSTRUCTOR (init))
1195 {
1196 /* A brace-enclosed initializer for an aggregate. */
1197 my_friendly_assert (CP_AGGREGATE_TYPE_P (type), 20021016);
1198 init = digest_init (type, init, (tree *)NULL);
1199 }
1200 else
1201 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
1202
1203 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1204 /* We need to protect the initialization of a catch parm with a
1205 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1206 around the TARGET_EXPR for the copy constructor. See
1207 initialize_handler_parm. */
1208 {
1209 TREE_OPERAND (init, 0) = build (INIT_EXPR, TREE_TYPE (exp), exp,
1210 TREE_OPERAND (init, 0));
1211 TREE_TYPE (init) = void_type_node;
1212 }
1213 else
1214 init = build (INIT_EXPR, TREE_TYPE (exp), exp, init);
1215 TREE_SIDE_EFFECTS (init) = 1;
1216 finish_expr_stmt (init);
1217 return;
1218 }
1219
1220 if (init == NULL_TREE
1221 || (TREE_CODE (init) == TREE_LIST && ! TREE_TYPE (init)))
1222 {
1223 parms = init;
1224 if (parms)
1225 init = TREE_VALUE (parms);
1226 }
1227 else
1228 parms = build_tree_list (NULL_TREE, init);
1229
1230 if (true_exp == exp)
1231 ctor_name = complete_ctor_identifier;
1232 else
1233 ctor_name = base_ctor_identifier;
1234
1235 rval = build_special_member_call (exp, ctor_name, parms, binfo, flags);
1236 if (TREE_SIDE_EFFECTS (rval))
1237 finish_expr_stmt (convert_to_void (rval, NULL));
1238 }
1239
1240 /* This function is responsible for initializing EXP with INIT
1241 (if any).
1242
1243 BINFO is the binfo of the type for who we are performing the
1244 initialization. For example, if W is a virtual base class of A and B,
1245 and C : A, B.
1246 If we are initializing B, then W must contain B's W vtable, whereas
1247 were we initializing C, W must contain C's W vtable.
1248
1249 TRUE_EXP is nonzero if it is the true expression being initialized.
1250 In this case, it may be EXP, or may just contain EXP. The reason we
1251 need this is because if EXP is a base element of TRUE_EXP, we
1252 don't necessarily know by looking at EXP where its virtual
1253 baseclass fields should really be pointing. But we do know
1254 from TRUE_EXP. In constructors, we don't know anything about
1255 the value being initialized.
1256
1257 FLAGS is just passed to `build_new_method_call'. See that function
1258 for its description. */
1259
1260 static void
1261 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags)
1262 {
1263 tree type = TREE_TYPE (exp);
1264
1265 my_friendly_assert (init != error_mark_node && type != error_mark_node, 211);
1266 my_friendly_assert (building_stmt_tree (), 20021010);
1267
1268 /* Use a function returning the desired type to initialize EXP for us.
1269 If the function is a constructor, and its first argument is
1270 NULL_TREE, know that it was meant for us--just slide exp on
1271 in and expand the constructor. Constructors now come
1272 as TARGET_EXPRs. */
1273
1274 if (init && TREE_CODE (exp) == VAR_DECL
1275 && TREE_CODE (init) == CONSTRUCTOR
1276 && TREE_HAS_CONSTRUCTOR (init))
1277 {
1278 /* If store_init_value returns NULL_TREE, the INIT has been
1279 record in the DECL_INITIAL for EXP. That means there's
1280 nothing more we have to do. */
1281 init = store_init_value (exp, init);
1282 if (init)
1283 finish_expr_stmt (init);
1284 return;
1285 }
1286
1287 /* We know that expand_default_init can handle everything we want
1288 at this point. */
1289 expand_default_init (binfo, true_exp, exp, init, flags);
1290 }
1291
1292 /* Report an error if TYPE is not a user-defined, aggregate type. If
1293 OR_ELSE is nonzero, give an error message. */
1294
1295 int
1296 is_aggr_type (tree type, int or_else)
1297 {
1298 if (type == error_mark_node)
1299 return 0;
1300
1301 if (! IS_AGGR_TYPE (type)
1302 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1303 && TREE_CODE (type) != BOUND_TEMPLATE_TEMPLATE_PARM)
1304 {
1305 if (or_else)
1306 error ("`%T' is not an aggregate type", type);
1307 return 0;
1308 }
1309 return 1;
1310 }
1311
1312 /* Like is_aggr_typedef, but returns typedef if successful. */
1313
1314 tree
1315 get_aggr_from_typedef (tree name, int or_else)
1316 {
1317 tree type;
1318
1319 if (name == error_mark_node)
1320 return NULL_TREE;
1321
1322 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1323 type = IDENTIFIER_TYPE_VALUE (name);
1324 else
1325 {
1326 if (or_else)
1327 error ("`%T' fails to be an aggregate typedef", name);
1328 return NULL_TREE;
1329 }
1330
1331 if (! IS_AGGR_TYPE (type)
1332 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1333 && TREE_CODE (type) != BOUND_TEMPLATE_TEMPLATE_PARM)
1334 {
1335 if (or_else)
1336 error ("type `%T' is of non-aggregate type", type);
1337 return NULL_TREE;
1338 }
1339 return type;
1340 }
1341
1342 tree
1343 get_type_value (tree name)
1344 {
1345 if (name == error_mark_node)
1346 return NULL_TREE;
1347
1348 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1349 return IDENTIFIER_TYPE_VALUE (name);
1350 else
1351 return NULL_TREE;
1352 }
1353
1354 /* Build a reference to a member of an aggregate. This is not a C++
1355 `&', but really something which can have its address taken, and
1356 then act as a pointer to member, for example TYPE :: FIELD can have
1357 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1358 this expression is the operand of "&".
1359
1360 @@ Prints out lousy diagnostics for operator <typename>
1361 @@ fields.
1362
1363 @@ This function should be rewritten and placed in search.c. */
1364
1365 tree
1366 build_offset_ref (tree type, tree name, bool address_p)
1367 {
1368 tree decl;
1369 tree member;
1370 tree basebinfo = NULL_TREE;
1371 tree orig_name = name;
1372
1373 /* class templates can come in as TEMPLATE_DECLs here. */
1374 if (TREE_CODE (name) == TEMPLATE_DECL)
1375 return name;
1376
1377 if (processing_template_decl || uses_template_parms (type))
1378 return build_min_nt (SCOPE_REF, type, name);
1379
1380 if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
1381 {
1382 /* If the NAME is a TEMPLATE_ID_EXPR, we are looking at
1383 something like `a.template f<int>' or the like. For the most
1384 part, we treat this just like a.f. We do remember, however,
1385 the template-id that was used. */
1386 name = TREE_OPERAND (orig_name, 0);
1387
1388 if (DECL_P (name))
1389 name = DECL_NAME (name);
1390 else
1391 {
1392 if (TREE_CODE (name) == COMPONENT_REF)
1393 name = TREE_OPERAND (name, 1);
1394 if (TREE_CODE (name) == OVERLOAD)
1395 name = DECL_NAME (OVL_CURRENT (name));
1396 }
1397
1398 my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE, 0);
1399 }
1400
1401 if (type == NULL_TREE)
1402 return error_mark_node;
1403
1404 /* Handle namespace names fully here. */
1405 if (TREE_CODE (type) == NAMESPACE_DECL)
1406 {
1407 tree t = lookup_namespace_name (type, name);
1408 if (t == error_mark_node)
1409 return t;
1410 if (TREE_CODE (orig_name) == TEMPLATE_ID_EXPR)
1411 /* Reconstruct the TEMPLATE_ID_EXPR. */
1412 t = build (TEMPLATE_ID_EXPR, TREE_TYPE (t),
1413 t, TREE_OPERAND (orig_name, 1));
1414 if (! type_unknown_p (t))
1415 {
1416 mark_used (t);
1417 t = convert_from_reference (t);
1418 }
1419 return t;
1420 }
1421
1422 if (! is_aggr_type (type, 1))
1423 return error_mark_node;
1424
1425 if (TREE_CODE (name) == BIT_NOT_EXPR)
1426 {
1427 if (! check_dtor_name (type, name))
1428 error ("qualified type `%T' does not match destructor name `~%T'",
1429 type, TREE_OPERAND (name, 0));
1430 name = dtor_identifier;
1431 }
1432
1433 if (!COMPLETE_TYPE_P (complete_type (type))
1434 && !TYPE_BEING_DEFINED (type))
1435 {
1436 error ("incomplete type `%T' does not have member `%D'", type,
1437 name);
1438 return error_mark_node;
1439 }
1440
1441 decl = maybe_dummy_object (type, &basebinfo);
1442
1443 if (BASELINK_P (name) || DECL_P (name))
1444 member = name;
1445 else
1446 {
1447 member = lookup_member (basebinfo, name, 1, 0);
1448
1449 if (member == error_mark_node)
1450 return error_mark_node;
1451 }
1452
1453 if (!member)
1454 {
1455 error ("`%D' is not a member of type `%T'", name, type);
1456 return error_mark_node;
1457 }
1458
1459 if (TREE_CODE (member) == TYPE_DECL)
1460 {
1461 TREE_USED (member) = 1;
1462 return member;
1463 }
1464 /* static class members and class-specific enum
1465 values can be returned without further ado. */
1466 if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
1467 {
1468 mark_used (member);
1469 return convert_from_reference (member);
1470 }
1471
1472 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1473 {
1474 error ("invalid pointer to bit-field `%D'", member);
1475 return error_mark_node;
1476 }
1477
1478 /* A lot of this logic is now handled in lookup_member. */
1479 if (BASELINK_P (member))
1480 {
1481 /* Go from the TREE_BASELINK to the member function info. */
1482 tree fnfields = member;
1483 tree t = BASELINK_FUNCTIONS (fnfields);
1484
1485 if (TREE_CODE (orig_name) == TEMPLATE_ID_EXPR)
1486 {
1487 /* The FNFIELDS are going to contain functions that aren't
1488 necessarily templates, and templates that don't
1489 necessarily match the explicit template parameters. We
1490 save all the functions, and the explicit parameters, and
1491 then figure out exactly what to instantiate with what
1492 arguments in instantiate_type. */
1493
1494 if (TREE_CODE (t) != OVERLOAD)
1495 /* The code in instantiate_type which will process this
1496 expects to encounter OVERLOADs, not raw functions. */
1497 t = ovl_cons (t, NULL_TREE);
1498
1499 t = build (TEMPLATE_ID_EXPR, TREE_TYPE (t), t,
1500 TREE_OPERAND (orig_name, 1));
1501 t = build (OFFSET_REF, unknown_type_node, decl, t);
1502
1503 PTRMEM_OK_P (t) = 1;
1504
1505 return t;
1506 }
1507
1508 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1509 {
1510 /* Get rid of a potential OVERLOAD around it. */
1511 t = OVL_CURRENT (t);
1512
1513 /* Unique functions are handled easily. */
1514
1515 /* For non-static member of base class, we need a special rule
1516 for access checking [class.protected]:
1517
1518 If the access is to form a pointer to member, the
1519 nested-name-specifier shall name the derived class
1520 (or any class derived from that class). */
1521 if (address_p && DECL_P (t)
1522 && DECL_NONSTATIC_MEMBER_P (t))
1523 perform_or_defer_access_check (TYPE_BINFO (type), t);
1524 else
1525 perform_or_defer_access_check (basebinfo, t);
1526
1527 mark_used (t);
1528 if (DECL_STATIC_FUNCTION_P (t))
1529 return t;
1530 member = t;
1531 }
1532 else
1533 {
1534 TREE_TYPE (fnfields) = unknown_type_node;
1535 member = fnfields;
1536 }
1537 }
1538 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1539 /* We need additional test besides the one in
1540 check_accessibility_of_qualified_id in case it is
1541 a pointer to non-static member. */
1542 perform_or_defer_access_check (TYPE_BINFO (type), member);
1543
1544 if (!address_p)
1545 {
1546 /* If MEMBER is non-static, then the program has fallen afoul of
1547 [expr.prim]:
1548
1549 An id-expression that denotes a nonstatic data member or
1550 nonstatic member function of a class can only be used:
1551
1552 -- as part of a class member access (_expr.ref_) in which the
1553 object-expression refers to the member's class or a class
1554 derived from that class, or
1555
1556 -- to form a pointer to member (_expr.unary.op_), or
1557
1558 -- in the body of a nonstatic member function of that class or
1559 of a class derived from that class (_class.mfct.nonstatic_), or
1560
1561 -- in a mem-initializer for a constructor for that class or for
1562 a class derived from that class (_class.base.init_). */
1563 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1564 {
1565 /* Build a representation of a the qualified name suitable
1566 for use as the operand to "&" -- even though the "&" is
1567 not actually present. */
1568 member = build (OFFSET_REF, TREE_TYPE (member), decl, member);
1569 /* In Microsoft mode, treat a non-static member function as if
1570 it were a pointer-to-member. */
1571 if (flag_ms_extensions)
1572 {
1573 PTRMEM_OK_P (member) = 1;
1574 return build_unary_op (ADDR_EXPR, member, 0);
1575 }
1576 error ("invalid use of non-static member function `%D'",
1577 TREE_OPERAND (member, 1));
1578 return member;
1579 }
1580 else if (TREE_CODE (member) == FIELD_DECL)
1581 {
1582 error ("invalid use of non-static data member `%D'", member);
1583 return error_mark_node;
1584 }
1585 return member;
1586 }
1587
1588 /* In member functions, the form `type::name' is no longer
1589 equivalent to `this->type::name', at least not until
1590 resolve_offset_ref. */
1591 member = build (OFFSET_REF, TREE_TYPE (member), decl, member);
1592 PTRMEM_OK_P (member) = 1;
1593 return member;
1594 }
1595
1596 /* If DECL is a `const' declaration, and its value is a known
1597 constant, then return that value. */
1598
1599 tree
1600 decl_constant_value (tree decl)
1601 {
1602 /* When we build a COND_EXPR, we don't know whether it will be used
1603 as an lvalue or as an rvalue. If it is an lvalue, it's not safe
1604 to replace the second and third operands with their
1605 initializers. So, we do that here. */
1606 if (TREE_CODE (decl) == COND_EXPR)
1607 {
1608 tree d1;
1609 tree d2;
1610
1611 d1 = decl_constant_value (TREE_OPERAND (decl, 1));
1612 d2 = decl_constant_value (TREE_OPERAND (decl, 2));
1613
1614 if (d1 != TREE_OPERAND (decl, 1) || d2 != TREE_OPERAND (decl, 2))
1615 return build (COND_EXPR,
1616 TREE_TYPE (decl),
1617 TREE_OPERAND (decl, 0), d1, d2);
1618 }
1619
1620 if (DECL_P (decl)
1621 && (/* Enumeration constants are constant. */
1622 TREE_CODE (decl) == CONST_DECL
1623 /* And so are variables with a 'const' type -- unless they
1624 are also 'volatile'. */
1625 || CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))
1626 && TREE_CODE (decl) != PARM_DECL
1627 && DECL_INITIAL (decl)
1628 && DECL_INITIAL (decl) != error_mark_node
1629 /* This is invalid if initial value is not constant.
1630 If it has either a function call, a memory reference,
1631 or a variable, then re-evaluating it could give different results. */
1632 && TREE_CONSTANT (DECL_INITIAL (decl))
1633 /* Check for cases where this is sub-optimal, even though valid. */
1634 && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1635 return DECL_INITIAL (decl);
1636 return decl;
1637 }
1638 \f
1639 /* Common subroutines of build_new and build_vec_delete. */
1640
1641 /* Call the global __builtin_delete to delete ADDR. */
1642
1643 static tree
1644 build_builtin_delete_call (tree addr)
1645 {
1646 mark_used (global_delete_fndecl);
1647 return build_call (global_delete_fndecl, build_tree_list (NULL_TREE, addr));
1648 }
1649 \f
1650 /* Generate a C++ "new" expression. DECL is either a TREE_LIST
1651 (which needs to go through some sort of groktypename) or it
1652 is the name of the class we are newing. INIT is an initialization value.
1653 It is either an EXPRLIST, an EXPR_NO_COMMAS, or something in braces.
1654 If INIT is void_type_node, it means do *not* call a constructor
1655 for this instance.
1656
1657 For types with constructors, the data returned is initialized
1658 by the appropriate constructor.
1659
1660 Whether the type has a constructor or not, if it has a pointer
1661 to a virtual function table, then that pointer is set up
1662 here.
1663
1664 Unless I am mistaken, a call to new () will return initialized
1665 data regardless of whether the constructor itself is private or
1666 not. NOPE; new fails if the constructor is private (jcm).
1667
1668 Note that build_new does nothing to assure that any special
1669 alignment requirements of the type are met. Rather, it leaves
1670 it up to malloc to do the right thing. Otherwise, folding to
1671 the right alignment cal cause problems if the user tries to later
1672 free the memory returned by `new'.
1673
1674 PLACEMENT is the `placement' list for user-defined operator new (). */
1675
1676 tree
1677 build_new (tree placement, tree decl, tree init, int use_global_new)
1678 {
1679 tree type, rval;
1680 tree nelts = NULL_TREE, t;
1681 int has_array = 0;
1682
1683 if (decl == error_mark_node)
1684 return error_mark_node;
1685
1686 if (TREE_CODE (decl) == TREE_LIST)
1687 {
1688 tree absdcl = TREE_VALUE (decl);
1689 tree last_absdcl = NULL_TREE;
1690
1691 if (current_function_decl
1692 && DECL_CONSTRUCTOR_P (current_function_decl))
1693 my_friendly_assert (immediate_size_expand == 0, 19990926);
1694
1695 nelts = integer_one_node;
1696
1697 if (absdcl && TREE_CODE (absdcl) == CALL_EXPR)
1698 abort ();
1699 while (absdcl && TREE_CODE (absdcl) == INDIRECT_REF)
1700 {
1701 last_absdcl = absdcl;
1702 absdcl = TREE_OPERAND (absdcl, 0);
1703 }
1704
1705 if (absdcl && TREE_CODE (absdcl) == ARRAY_REF)
1706 {
1707 /* Probably meant to be a vec new. */
1708 tree this_nelts;
1709
1710 while (TREE_OPERAND (absdcl, 0)
1711 && TREE_CODE (TREE_OPERAND (absdcl, 0)) == ARRAY_REF)
1712 {
1713 last_absdcl = absdcl;
1714 absdcl = TREE_OPERAND (absdcl, 0);
1715 }
1716
1717 has_array = 1;
1718 this_nelts = TREE_OPERAND (absdcl, 1);
1719 if (this_nelts != error_mark_node)
1720 {
1721 if (this_nelts == NULL_TREE)
1722 error ("new of array type fails to specify size");
1723 else if (processing_template_decl)
1724 {
1725 nelts = this_nelts;
1726 absdcl = TREE_OPERAND (absdcl, 0);
1727 }
1728 else
1729 {
1730 if (build_expr_type_conversion (WANT_INT | WANT_ENUM,
1731 this_nelts, false)
1732 == NULL_TREE)
1733 pedwarn ("size in array new must have integral type");
1734
1735 this_nelts = save_expr (cp_convert (sizetype, this_nelts));
1736 absdcl = TREE_OPERAND (absdcl, 0);
1737 if (this_nelts == integer_zero_node)
1738 {
1739 warning ("zero size array reserves no space");
1740 nelts = integer_zero_node;
1741 }
1742 else
1743 nelts = cp_build_binary_op (MULT_EXPR, nelts, this_nelts);
1744 }
1745 }
1746 else
1747 nelts = integer_zero_node;
1748 }
1749
1750 if (last_absdcl)
1751 TREE_OPERAND (last_absdcl, 0) = absdcl;
1752 else
1753 TREE_VALUE (decl) = absdcl;
1754
1755 type = groktypename (decl);
1756 if (! type || type == error_mark_node)
1757 return error_mark_node;
1758 }
1759 else if (TREE_CODE (decl) == IDENTIFIER_NODE)
1760 {
1761 if (IDENTIFIER_HAS_TYPE_VALUE (decl))
1762 {
1763 /* An aggregate type. */
1764 type = IDENTIFIER_TYPE_VALUE (decl);
1765 decl = TYPE_MAIN_DECL (type);
1766 }
1767 else
1768 {
1769 /* A builtin type. */
1770 decl = lookup_name (decl, 1);
1771 my_friendly_assert (TREE_CODE (decl) == TYPE_DECL, 215);
1772 type = TREE_TYPE (decl);
1773 }
1774 }
1775 else if (TREE_CODE (decl) == TYPE_DECL)
1776 {
1777 type = TREE_TYPE (decl);
1778 }
1779 else
1780 {
1781 type = decl;
1782 decl = TYPE_MAIN_DECL (type);
1783 }
1784
1785 if (processing_template_decl)
1786 {
1787 if (has_array)
1788 t = tree_cons (tree_cons (NULL_TREE, type, NULL_TREE),
1789 build_min_nt (ARRAY_REF, NULL_TREE, nelts),
1790 NULL_TREE);
1791 else
1792 t = type;
1793
1794 rval = build_min (NEW_EXPR, build_pointer_type (type),
1795 placement, t, init);
1796 NEW_EXPR_USE_GLOBAL (rval) = use_global_new;
1797 return rval;
1798 }
1799
1800 /* ``A reference cannot be created by the new operator. A reference
1801 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
1802 returned by new.'' ARM 5.3.3 */
1803 if (TREE_CODE (type) == REFERENCE_TYPE)
1804 {
1805 error ("new cannot be applied to a reference type");
1806 type = TREE_TYPE (type);
1807 }
1808
1809 if (TREE_CODE (type) == FUNCTION_TYPE)
1810 {
1811 error ("new cannot be applied to a function type");
1812 return error_mark_node;
1813 }
1814
1815 /* When the object being created is an array, the new-expression yields a
1816 pointer to the initial element (if any) of the array. For example,
1817 both new int and new int[10] return an int*. 5.3.4. */
1818 if (TREE_CODE (type) == ARRAY_TYPE && has_array == 0)
1819 {
1820 nelts = array_type_nelts_top (type);
1821 has_array = 1;
1822 type = TREE_TYPE (type);
1823 }
1824
1825 if (has_array)
1826 t = build_nt (ARRAY_REF, type, nelts);
1827 else
1828 t = type;
1829
1830 rval = build (NEW_EXPR, build_pointer_type (type), placement, t, init);
1831 NEW_EXPR_USE_GLOBAL (rval) = use_global_new;
1832 TREE_SIDE_EFFECTS (rval) = 1;
1833 rval = build_new_1 (rval);
1834 if (rval == error_mark_node)
1835 return error_mark_node;
1836
1837 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
1838 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
1839 TREE_NO_UNUSED_WARNING (rval) = 1;
1840
1841 return rval;
1842 }
1843
1844 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
1845
1846 tree
1847 build_java_class_ref (tree type)
1848 {
1849 tree name = NULL_TREE, class_decl;
1850 static tree CL_suffix = NULL_TREE;
1851 if (CL_suffix == NULL_TREE)
1852 CL_suffix = get_identifier("class$");
1853 if (jclass_node == NULL_TREE)
1854 {
1855 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
1856 if (jclass_node == NULL_TREE)
1857 fatal_error ("call to Java constructor, while `jclass' undefined");
1858
1859 jclass_node = TREE_TYPE (jclass_node);
1860 }
1861
1862 /* Mangle the class$ field. */
1863 {
1864 tree field;
1865 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1866 if (DECL_NAME (field) == CL_suffix)
1867 {
1868 mangle_decl (field);
1869 name = DECL_ASSEMBLER_NAME (field);
1870 break;
1871 }
1872 if (!field)
1873 internal_error ("can't find class$");
1874 }
1875
1876 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
1877 if (class_decl == NULL_TREE)
1878 {
1879 class_decl = build_decl (VAR_DECL, name, TREE_TYPE (jclass_node));
1880 TREE_STATIC (class_decl) = 1;
1881 DECL_EXTERNAL (class_decl) = 1;
1882 TREE_PUBLIC (class_decl) = 1;
1883 DECL_ARTIFICIAL (class_decl) = 1;
1884 DECL_IGNORED_P (class_decl) = 1;
1885 pushdecl_top_level (class_decl);
1886 make_decl_rtl (class_decl, NULL);
1887 }
1888 return class_decl;
1889 }
1890
1891 /* Returns the size of the cookie to use when allocating an array
1892 whose elements have the indicated TYPE. Assumes that it is already
1893 known that a cookie is needed. */
1894
1895 static tree
1896 get_cookie_size (tree type)
1897 {
1898 tree cookie_size;
1899
1900 /* We need to allocate an additional max (sizeof (size_t), alignof
1901 (true_type)) bytes. */
1902 tree sizetype_size;
1903 tree type_align;
1904
1905 sizetype_size = size_in_bytes (sizetype);
1906 type_align = size_int (TYPE_ALIGN_UNIT (type));
1907 if (INT_CST_LT_UNSIGNED (type_align, sizetype_size))
1908 cookie_size = sizetype_size;
1909 else
1910 cookie_size = type_align;
1911
1912 return cookie_size;
1913 }
1914
1915 /* Called from cplus_expand_expr when expanding a NEW_EXPR. The return
1916 value is immediately handed to expand_expr. */
1917
1918 static tree
1919 build_new_1 (tree exp)
1920 {
1921 tree placement, init;
1922 tree true_type, size, rval, t;
1923 /* The type of the new-expression. (This type is always a pointer
1924 type.) */
1925 tree pointer_type;
1926 /* The type pointed to by POINTER_TYPE. */
1927 tree type;
1928 /* The type being allocated. For "new T[...]" this will be an
1929 ARRAY_TYPE. */
1930 tree full_type;
1931 /* A pointer type pointing to to the FULL_TYPE. */
1932 tree full_pointer_type;
1933 tree outer_nelts = NULL_TREE;
1934 tree nelts = NULL_TREE;
1935 tree alloc_call, alloc_expr;
1936 /* The address returned by the call to "operator new". This node is
1937 a VAR_DECL and is therefore reusable. */
1938 tree alloc_node;
1939 tree alloc_fn;
1940 tree cookie_expr, init_expr;
1941 int has_array = 0;
1942 enum tree_code code;
1943 int nothrow, check_new;
1944 /* Nonzero if the user wrote `::new' rather than just `new'. */
1945 int globally_qualified_p;
1946 int use_java_new = 0;
1947 /* If non-NULL, the number of extra bytes to allocate at the
1948 beginning of the storage allocated for an array-new expression in
1949 order to store the number of elements. */
1950 tree cookie_size = NULL_TREE;
1951 /* True if the function we are calling is a placement allocation
1952 function. */
1953 bool placement_allocation_fn_p;
1954 tree args = NULL_TREE;
1955 /* True if the storage must be initialized, either by a constructor
1956 or due to an explicit new-initializer. */
1957 bool is_initialized;
1958 /* The address of the thing allocated, not including any cookie. In
1959 particular, if an array cookie is in use, DATA_ADDR is the
1960 address of the first array element. This node is a VAR_DECL, and
1961 is therefore reusable. */
1962 tree data_addr;
1963
1964 placement = TREE_OPERAND (exp, 0);
1965 type = TREE_OPERAND (exp, 1);
1966 init = TREE_OPERAND (exp, 2);
1967 globally_qualified_p = NEW_EXPR_USE_GLOBAL (exp);
1968
1969 if (TREE_CODE (type) == ARRAY_REF)
1970 {
1971 has_array = 1;
1972 nelts = outer_nelts = TREE_OPERAND (type, 1);
1973 type = TREE_OPERAND (type, 0);
1974
1975 /* Use an incomplete array type to avoid VLA headaches. */
1976 full_type = build_cplus_array_type (type, NULL_TREE);
1977 }
1978 else
1979 full_type = type;
1980
1981 true_type = type;
1982
1983 code = has_array ? VEC_NEW_EXPR : NEW_EXPR;
1984
1985 /* If our base type is an array, then make sure we know how many elements
1986 it has. */
1987 while (TREE_CODE (true_type) == ARRAY_TYPE)
1988 {
1989 tree this_nelts = array_type_nelts_top (true_type);
1990 nelts = cp_build_binary_op (MULT_EXPR, nelts, this_nelts);
1991 true_type = TREE_TYPE (true_type);
1992 }
1993
1994 if (!complete_type_or_else (true_type, exp))
1995 return error_mark_node;
1996
1997 if (TREE_CODE (true_type) == VOID_TYPE)
1998 {
1999 error ("invalid type `void' for new");
2000 return error_mark_node;
2001 }
2002
2003 if (abstract_virtuals_error (NULL_TREE, true_type))
2004 return error_mark_node;
2005
2006 is_initialized = (TYPE_NEEDS_CONSTRUCTING (type) || init);
2007 if (CP_TYPE_CONST_P (true_type) && !is_initialized)
2008 {
2009 error ("uninitialized const in `new' of `%#T'", true_type);
2010 return error_mark_node;
2011 }
2012
2013 size = size_in_bytes (true_type);
2014 if (has_array)
2015 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
2016
2017 /* Allocate the object. */
2018 if (! placement && TYPE_FOR_JAVA (true_type))
2019 {
2020 tree class_addr, alloc_decl;
2021 tree class_decl = build_java_class_ref (true_type);
2022 tree class_size = size_in_bytes (true_type);
2023 static const char alloc_name[] = "_Jv_AllocObject";
2024 use_java_new = 1;
2025 if (!get_global_value_if_present (get_identifier (alloc_name),
2026 &alloc_decl))
2027 {
2028 error ("call to Java constructor with `%s' undefined", alloc_name);
2029 return error_mark_node;
2030 }
2031 else if (really_overloaded_fn (alloc_decl))
2032 {
2033 error ("`%D' should never be overloaded", alloc_decl);
2034 return error_mark_node;
2035 }
2036 alloc_decl = OVL_CURRENT (alloc_decl);
2037 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
2038 alloc_call = (build_function_call
2039 (alloc_decl,
2040 tree_cons (NULL_TREE, class_addr,
2041 build_tree_list (NULL_TREE, class_size))));
2042 }
2043 else
2044 {
2045 tree fnname;
2046 tree fns;
2047
2048 fnname = ansi_opname (code);
2049
2050 if (!globally_qualified_p
2051 && CLASS_TYPE_P (true_type)
2052 && (has_array
2053 ? TYPE_HAS_ARRAY_NEW_OPERATOR (true_type)
2054 : TYPE_HAS_NEW_OPERATOR (true_type)))
2055 {
2056 /* Use a class-specific operator new. */
2057 /* If a cookie is required, add some extra space. */
2058 if (has_array && TYPE_VEC_NEW_USES_COOKIE (true_type))
2059 {
2060 cookie_size = get_cookie_size (true_type);
2061 size = size_binop (PLUS_EXPR, size, cookie_size);
2062 }
2063 /* Create the argument list. */
2064 args = tree_cons (NULL_TREE, size, placement);
2065 /* Do name-lookup to find the appropriate operator. */
2066 fns = lookup_fnfields (true_type, fnname, /*protect=*/2);
2067 if (TREE_CODE (fns) == TREE_LIST)
2068 {
2069 error ("request for member `%D' is ambiguous", fnname);
2070 print_candidates (fns);
2071 return error_mark_node;
2072 }
2073 alloc_call = build_new_method_call (build_dummy_object (true_type),
2074 fns, args,
2075 /*conversion_path=*/NULL_TREE,
2076 LOOKUP_NORMAL);
2077 }
2078 else
2079 {
2080 /* Use a global operator new. */
2081 /* See if a cookie might be required. */
2082 if (has_array && TYPE_VEC_NEW_USES_COOKIE (true_type))
2083 cookie_size = get_cookie_size (true_type);
2084 else
2085 cookie_size = NULL_TREE;
2086
2087 alloc_call = build_operator_new_call (fnname, placement,
2088 &size, &cookie_size);
2089 }
2090 }
2091
2092 if (alloc_call == error_mark_node)
2093 return error_mark_node;
2094
2095 /* In the simple case, we can stop now. */
2096 pointer_type = build_pointer_type (type);
2097 if (!cookie_size && !is_initialized)
2098 return build_nop (pointer_type, alloc_call);
2099
2100 /* While we're working, use a pointer to the type we've actually
2101 allocated. Store the result of the call in a variable so that we
2102 can use it more than once. */
2103 full_pointer_type = build_pointer_type (full_type);
2104 alloc_expr = get_target_expr (build_nop (full_pointer_type, alloc_call));
2105 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
2106
2107 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
2108 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
2109 alloc_call = TREE_OPERAND (alloc_call, 1);
2110 alloc_fn = get_callee_fndecl (alloc_call);
2111 my_friendly_assert (alloc_fn != NULL_TREE, 20020325);
2112
2113 /* Now, check to see if this function is actually a placement
2114 allocation function. This can happen even when PLACEMENT is NULL
2115 because we might have something like:
2116
2117 struct S { void* operator new (size_t, int i = 0); };
2118
2119 A call to `new S' will get this allocation function, even though
2120 there is no explicit placement argument. If there is more than
2121 one argument, or there are variable arguments, then this is a
2122 placement allocation function. */
2123 placement_allocation_fn_p
2124 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
2125 || varargs_function_p (alloc_fn));
2126
2127 /* Preevaluate the placement args so that we don't reevaluate them for a
2128 placement delete. */
2129 if (placement_allocation_fn_p)
2130 {
2131 tree inits = NULL_TREE;
2132 t = TREE_CHAIN (TREE_OPERAND (alloc_call, 1));
2133 for (; t; t = TREE_CHAIN (t))
2134 if (TREE_SIDE_EFFECTS (TREE_VALUE (t)))
2135 {
2136 tree init;
2137 TREE_VALUE (t) = stabilize_expr (TREE_VALUE (t), &init);
2138 if (inits)
2139 inits = build (COMPOUND_EXPR, void_type_node, inits, init);
2140 else
2141 inits = init;
2142 }
2143 if (inits)
2144 alloc_expr = build (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
2145 alloc_expr);
2146 }
2147
2148 /* unless an allocation function is declared with an empty excep-
2149 tion-specification (_except.spec_), throw(), it indicates failure to
2150 allocate storage by throwing a bad_alloc exception (clause _except_,
2151 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
2152 cation function is declared with an empty exception-specification,
2153 throw(), it returns null to indicate failure to allocate storage and a
2154 non-null pointer otherwise.
2155
2156 So check for a null exception spec on the op new we just called. */
2157
2158 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
2159 check_new = (flag_check_new || nothrow) && ! use_java_new;
2160
2161 if (cookie_size)
2162 {
2163 tree cookie;
2164
2165 /* Adjust so we're pointing to the start of the object. */
2166 data_addr = get_target_expr (build (PLUS_EXPR, full_pointer_type,
2167 alloc_node, cookie_size));
2168
2169 /* Store the number of bytes allocated so that we can know how
2170 many elements to destroy later. We use the last sizeof
2171 (size_t) bytes to store the number of elements. */
2172 cookie = build (MINUS_EXPR, build_pointer_type (sizetype),
2173 data_addr, size_in_bytes (sizetype));
2174 cookie = build_indirect_ref (cookie, NULL);
2175
2176 cookie_expr = build (MODIFY_EXPR, sizetype, cookie, nelts);
2177 data_addr = TARGET_EXPR_SLOT (data_addr);
2178 }
2179 else
2180 {
2181 cookie_expr = NULL_TREE;
2182 data_addr = alloc_node;
2183 }
2184
2185 /* Now initialize the allocated object. */
2186 if (is_initialized)
2187 {
2188 init_expr = build_indirect_ref (data_addr, NULL);
2189
2190 if (init == void_zero_node)
2191 init = build_default_init (full_type, nelts);
2192 else if (init && pedantic && has_array)
2193 pedwarn ("ISO C++ forbids initialization in array new");
2194
2195 if (has_array)
2196 init_expr
2197 = build_vec_init (init_expr,
2198 cp_build_binary_op (MINUS_EXPR, outer_nelts,
2199 integer_one_node),
2200 init, /*from_array=*/0);
2201 else if (TYPE_NEEDS_CONSTRUCTING (type))
2202 init_expr = build_special_member_call (init_expr,
2203 complete_ctor_identifier,
2204 init, TYPE_BINFO (true_type),
2205 LOOKUP_NORMAL);
2206 else
2207 {
2208 /* We are processing something like `new int (10)', which
2209 means allocate an int, and initialize it with 10. */
2210
2211 if (TREE_CODE (init) == TREE_LIST)
2212 init = build_x_compound_expr_from_list (init, "new initializer");
2213
2214 else if (TREE_CODE (init) == CONSTRUCTOR
2215 && TREE_TYPE (init) == NULL_TREE)
2216 {
2217 pedwarn ("ISO C++ forbids aggregate initializer to new");
2218 init = digest_init (type, init, 0);
2219 }
2220
2221 init_expr = build_modify_expr (init_expr, INIT_EXPR, init);
2222 }
2223
2224 if (init_expr == error_mark_node)
2225 return error_mark_node;
2226
2227 /* If any part of the object initialization terminates by throwing an
2228 exception and a suitable deallocation function can be found, the
2229 deallocation function is called to free the memory in which the
2230 object was being constructed, after which the exception continues
2231 to propagate in the context of the new-expression. If no
2232 unambiguous matching deallocation function can be found,
2233 propagating the exception does not cause the object's memory to be
2234 freed. */
2235 if (flag_exceptions && ! use_java_new)
2236 {
2237 enum tree_code dcode = has_array ? VEC_DELETE_EXPR : DELETE_EXPR;
2238 tree cleanup;
2239
2240 /* The Standard is unclear here, but the right thing to do
2241 is to use the same method for finding deallocation
2242 functions that we use for finding allocation functions. */
2243 cleanup = build_op_delete_call (dcode, alloc_node, size,
2244 globally_qualified_p,
2245 (placement_allocation_fn_p
2246 ? alloc_call : NULL_TREE));
2247
2248 /* Ack! First we allocate the memory. Then we set our sentry
2249 variable to true, and expand a cleanup that deletes the memory
2250 if sentry is true. Then we run the constructor, and finally
2251 clear the sentry.
2252
2253 It would be nice to be able to handle this without the sentry
2254 variable, perhaps with a TRY_CATCH_EXPR, but this doesn't
2255 work. We allocate the space first, so if there are any
2256 temporaries with cleanups in the constructor args we need this
2257 EH region to extend until end of full-expression to preserve
2258 nesting.
2259
2260 If the backend had some mechanism so that we could force the
2261 allocation to be expanded after all the other args to the
2262 constructor, that would fix the nesting problem and we could
2263 do away with this complexity. But that would complicate other
2264 things; in particular, it would make it difficult to bail out
2265 if the allocation function returns null. Er, no, it wouldn't;
2266 we just don't run the constructor. The standard says it's
2267 unspecified whether or not the args are evaluated.
2268
2269 FIXME FIXME FIXME inline invisible refs as refs. That way we
2270 can preevaluate value parameters. */
2271
2272 if (cleanup)
2273 {
2274 tree end, sentry, begin;
2275
2276 begin = get_target_expr (boolean_true_node);
2277 CLEANUP_EH_ONLY (begin) = 1;
2278
2279 sentry = TARGET_EXPR_SLOT (begin);
2280
2281 TARGET_EXPR_CLEANUP (begin)
2282 = build (COND_EXPR, void_type_node, sentry,
2283 cleanup, void_zero_node);
2284
2285 end = build (MODIFY_EXPR, TREE_TYPE (sentry),
2286 sentry, boolean_false_node);
2287
2288 init_expr
2289 = build (COMPOUND_EXPR, void_type_node, begin,
2290 build (COMPOUND_EXPR, void_type_node, init_expr,
2291 end));
2292 }
2293 }
2294 }
2295 else
2296 init_expr = NULL_TREE;
2297
2298 /* Now build up the return value in reverse order. */
2299
2300 rval = data_addr;
2301
2302 if (init_expr)
2303 rval = build (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2304 if (cookie_expr)
2305 rval = build (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2306
2307 if (rval == alloc_node)
2308 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2309 and return the call (which doesn't need to be adjusted). */
2310 rval = TARGET_EXPR_INITIAL (alloc_expr);
2311 else
2312 {
2313 if (check_new)
2314 {
2315 tree ifexp = cp_build_binary_op (NE_EXPR, alloc_node,
2316 integer_zero_node);
2317 rval = build_conditional_expr (ifexp, rval, alloc_node);
2318 }
2319
2320 /* Perform the allocation before anything else, so that ALLOC_NODE
2321 has been initialized before we start using it. */
2322 rval = build (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2323 }
2324
2325 /* Convert to the final type. */
2326 rval = build_nop (pointer_type, rval);
2327
2328 /* A new-expression is never an lvalue. */
2329 if (real_lvalue_p (rval))
2330 rval = build1 (NON_LVALUE_EXPR, TREE_TYPE (rval), rval);
2331
2332 return rval;
2333 }
2334 \f
2335 static tree
2336 build_vec_delete_1 (tree base, tree maxindex, tree type,
2337 special_function_kind auto_delete_vec, int use_global_delete)
2338 {
2339 tree virtual_size;
2340 tree ptype = build_pointer_type (type = complete_type (type));
2341 tree size_exp = size_in_bytes (type);
2342
2343 /* Temporary variables used by the loop. */
2344 tree tbase, tbase_init;
2345
2346 /* This is the body of the loop that implements the deletion of a
2347 single element, and moves temp variables to next elements. */
2348 tree body;
2349
2350 /* This is the LOOP_EXPR that governs the deletion of the elements. */
2351 tree loop = 0;
2352
2353 /* This is the thing that governs what to do after the loop has run. */
2354 tree deallocate_expr = 0;
2355
2356 /* This is the BIND_EXPR which holds the outermost iterator of the
2357 loop. It is convenient to set this variable up and test it before
2358 executing any other code in the loop.
2359 This is also the containing expression returned by this function. */
2360 tree controller = NULL_TREE;
2361
2362 /* We should only have 1-D arrays here. */
2363 if (TREE_CODE (type) == ARRAY_TYPE)
2364 abort ();
2365
2366 if (! IS_AGGR_TYPE (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2367 goto no_destructor;
2368
2369 /* The below is short by the cookie size. */
2370 virtual_size = size_binop (MULT_EXPR, size_exp,
2371 convert (sizetype, maxindex));
2372
2373 tbase = create_temporary_var (ptype);
2374 tbase_init = build_modify_expr (tbase, NOP_EXPR,
2375 fold (build (PLUS_EXPR, ptype,
2376 base,
2377 virtual_size)));
2378 DECL_REGISTER (tbase) = 1;
2379 controller = build (BIND_EXPR, void_type_node, tbase, NULL_TREE, NULL_TREE);
2380 TREE_SIDE_EFFECTS (controller) = 1;
2381
2382 body = build (EXIT_EXPR, void_type_node,
2383 build (EQ_EXPR, boolean_type_node, base, tbase));
2384 body = build_compound_expr
2385 (body, build_modify_expr (tbase, NOP_EXPR,
2386 build (MINUS_EXPR, ptype, tbase, size_exp)));
2387 body = build_compound_expr
2388 (body, build_delete (ptype, tbase, sfk_complete_destructor,
2389 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1));
2390
2391 loop = build (LOOP_EXPR, void_type_node, body);
2392 loop = build_compound_expr (tbase_init, loop);
2393
2394 no_destructor:
2395 /* If the delete flag is one, or anything else with the low bit set,
2396 delete the storage. */
2397 if (auto_delete_vec != sfk_base_destructor)
2398 {
2399 tree base_tbd;
2400
2401 /* The below is short by the cookie size. */
2402 virtual_size = size_binop (MULT_EXPR, size_exp,
2403 convert (sizetype, maxindex));
2404
2405 if (! TYPE_VEC_NEW_USES_COOKIE (type))
2406 /* no header */
2407 base_tbd = base;
2408 else
2409 {
2410 tree cookie_size;
2411
2412 cookie_size = get_cookie_size (type);
2413 base_tbd
2414 = cp_convert (ptype,
2415 cp_build_binary_op (MINUS_EXPR,
2416 cp_convert (string_type_node,
2417 base),
2418 cookie_size));
2419 /* True size with header. */
2420 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
2421 }
2422
2423 if (auto_delete_vec == sfk_deleting_destructor)
2424 deallocate_expr = build_x_delete (base_tbd,
2425 2 | use_global_delete,
2426 virtual_size);
2427 }
2428
2429 body = loop;
2430 if (!deallocate_expr)
2431 ;
2432 else if (!body)
2433 body = deallocate_expr;
2434 else
2435 body = build_compound_expr (body, deallocate_expr);
2436
2437 if (!body)
2438 body = integer_zero_node;
2439
2440 /* Outermost wrapper: If pointer is null, punt. */
2441 body = fold (build (COND_EXPR, void_type_node,
2442 fold (build (NE_EXPR, boolean_type_node, base,
2443 convert (TREE_TYPE (base),
2444 integer_zero_node))),
2445 body, integer_zero_node));
2446 body = build1 (NOP_EXPR, void_type_node, body);
2447
2448 if (controller)
2449 {
2450 TREE_OPERAND (controller, 1) = body;
2451 body = controller;
2452 }
2453
2454 if (TREE_CODE (base) == SAVE_EXPR)
2455 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
2456 body = build (COMPOUND_EXPR, void_type_node, base, body);
2457
2458 return convert_to_void (body, /*implicit=*/NULL);
2459 }
2460
2461 /* Create an unnamed variable of the indicated TYPE. */
2462
2463 tree
2464 create_temporary_var (tree type)
2465 {
2466 tree decl;
2467
2468 decl = build_decl (VAR_DECL, NULL_TREE, type);
2469 TREE_USED (decl) = 1;
2470 DECL_ARTIFICIAL (decl) = 1;
2471 DECL_SOURCE_LOCATION (decl) = input_location;
2472 DECL_IGNORED_P (decl) = 1;
2473 DECL_CONTEXT (decl) = current_function_decl;
2474
2475 return decl;
2476 }
2477
2478 /* Create a new temporary variable of the indicated TYPE, initialized
2479 to INIT.
2480
2481 It is not entered into current_binding_level, because that breaks
2482 things when it comes time to do final cleanups (which take place
2483 "outside" the binding contour of the function). */
2484
2485 static tree
2486 get_temp_regvar (tree type, tree init)
2487 {
2488 tree decl;
2489
2490 decl = create_temporary_var (type);
2491 add_decl_stmt (decl);
2492
2493 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
2494
2495 return decl;
2496 }
2497
2498 /* `build_vec_init' returns tree structure that performs
2499 initialization of a vector of aggregate types.
2500
2501 BASE is a reference to the vector, of ARRAY_TYPE.
2502 MAXINDEX is the maximum index of the array (one less than the
2503 number of elements). It is only used if
2504 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
2505 INIT is the (possibly NULL) initializer.
2506
2507 FROM_ARRAY is 0 if we should init everything with INIT
2508 (i.e., every element initialized from INIT).
2509 FROM_ARRAY is 1 if we should index into INIT in parallel
2510 with initialization of DECL.
2511 FROM_ARRAY is 2 if we should index into INIT in parallel,
2512 but use assignment instead of initialization. */
2513
2514 tree
2515 build_vec_init (tree base, tree maxindex, tree init, int from_array)
2516 {
2517 tree rval;
2518 tree base2 = NULL_TREE;
2519 tree size;
2520 tree itype = NULL_TREE;
2521 tree iterator;
2522 /* The type of the array. */
2523 tree atype = TREE_TYPE (base);
2524 /* The type of an element in the array. */
2525 tree type = TREE_TYPE (atype);
2526 /* The type of a pointer to an element in the array. */
2527 tree ptype;
2528 tree stmt_expr;
2529 tree compound_stmt;
2530 int destroy_temps;
2531 tree try_block = NULL_TREE;
2532 tree try_body = NULL_TREE;
2533 int num_initialized_elts = 0;
2534 bool is_global;
2535
2536 if (TYPE_DOMAIN (atype))
2537 maxindex = array_type_nelts (atype);
2538
2539 if (maxindex == NULL_TREE || maxindex == error_mark_node)
2540 return error_mark_node;
2541
2542 if (init
2543 && (from_array == 2
2544 ? (!CLASS_TYPE_P (type) || !TYPE_HAS_COMPLEX_ASSIGN_REF (type))
2545 : !TYPE_NEEDS_CONSTRUCTING (type))
2546 && ((TREE_CODE (init) == CONSTRUCTOR
2547 /* Don't do this if the CONSTRUCTOR might contain something
2548 that might throw and require us to clean up. */
2549 && (CONSTRUCTOR_ELTS (init) == NULL_TREE
2550 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (target_type (type))))
2551 || from_array))
2552 {
2553 /* Do non-default initialization of POD arrays resulting from
2554 brace-enclosed initializers. In this case, digest_init and
2555 store_constructor will handle the semantics for us. */
2556
2557 stmt_expr = build (INIT_EXPR, atype, base, init);
2558 return stmt_expr;
2559 }
2560
2561 maxindex = cp_convert (ptrdiff_type_node, maxindex);
2562 ptype = build_pointer_type (type);
2563 size = size_in_bytes (type);
2564 if (TREE_CODE (TREE_TYPE (base)) == ARRAY_TYPE)
2565 base = cp_convert (ptype, decay_conversion (base));
2566
2567 /* The code we are generating looks like:
2568 ({
2569 T* t1 = (T*) base;
2570 T* rval = t1;
2571 ptrdiff_t iterator = maxindex;
2572 try {
2573 for (; iterator != -1; --iterator) {
2574 ... initialize *t1 ...
2575 ++t1;
2576 }
2577 } catch (...) {
2578 ... destroy elements that were constructed ...
2579 }
2580 rval;
2581 })
2582
2583 We can omit the try and catch blocks if we know that the
2584 initialization will never throw an exception, or if the array
2585 elements do not have destructors. We can omit the loop completely if
2586 the elements of the array do not have constructors.
2587
2588 We actually wrap the entire body of the above in a STMT_EXPR, for
2589 tidiness.
2590
2591 When copying from array to another, when the array elements have
2592 only trivial copy constructors, we should use __builtin_memcpy
2593 rather than generating a loop. That way, we could take advantage
2594 of whatever cleverness the back-end has for dealing with copies
2595 of blocks of memory. */
2596
2597 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
2598 destroy_temps = stmts_are_full_exprs_p ();
2599 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2600 rval = get_temp_regvar (ptype, base);
2601 base = get_temp_regvar (ptype, rval);
2602 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
2603
2604 /* Protect the entire array initialization so that we can destroy
2605 the partially constructed array if an exception is thrown.
2606 But don't do this if we're assigning. */
2607 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2608 && from_array != 2)
2609 {
2610 try_block = begin_try_block ();
2611 try_body = begin_compound_stmt (/*has_no_scope=*/true);
2612 }
2613
2614 if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
2615 {
2616 /* Do non-default initialization of non-POD arrays resulting from
2617 brace-enclosed initializers. */
2618
2619 tree elts;
2620 from_array = 0;
2621
2622 for (elts = CONSTRUCTOR_ELTS (init); elts; elts = TREE_CHAIN (elts))
2623 {
2624 tree elt = TREE_VALUE (elts);
2625 tree baseref = build1 (INDIRECT_REF, type, base);
2626
2627 num_initialized_elts++;
2628
2629 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2630 if (IS_AGGR_TYPE (type) || TREE_CODE (type) == ARRAY_TYPE)
2631 finish_expr_stmt (build_aggr_init (baseref, elt, 0));
2632 else
2633 finish_expr_stmt (build_modify_expr (baseref, NOP_EXPR,
2634 elt));
2635 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2636
2637 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2638 finish_expr_stmt (build_unary_op (PREDECREMENT_EXPR, iterator, 0));
2639 }
2640
2641 /* Clear out INIT so that we don't get confused below. */
2642 init = NULL_TREE;
2643 }
2644 else if (from_array)
2645 {
2646 /* If initializing one array from another, initialize element by
2647 element. We rely upon the below calls the do argument
2648 checking. */
2649 if (init)
2650 {
2651 base2 = decay_conversion (init);
2652 itype = TREE_TYPE (base2);
2653 base2 = get_temp_regvar (itype, base2);
2654 itype = TREE_TYPE (itype);
2655 }
2656 else if (TYPE_LANG_SPECIFIC (type)
2657 && TYPE_NEEDS_CONSTRUCTING (type)
2658 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2659 {
2660 error ("initializer ends prematurely");
2661 return error_mark_node;
2662 }
2663 }
2664
2665 /* Now, default-initialize any remaining elements. We don't need to
2666 do that if a) the type does not need constructing, or b) we've
2667 already initialized all the elements.
2668
2669 We do need to keep going if we're copying an array. */
2670
2671 if (from_array
2672 || (TYPE_NEEDS_CONSTRUCTING (type)
2673 && ! (host_integerp (maxindex, 0)
2674 && (num_initialized_elts
2675 == tree_low_cst (maxindex, 0) + 1))))
2676 {
2677 /* If the ITERATOR is equal to -1, then we don't have to loop;
2678 we've already initialized all the elements. */
2679 tree for_stmt;
2680 tree for_body;
2681 tree elt_init;
2682
2683 for_stmt = begin_for_stmt ();
2684 finish_for_init_stmt (for_stmt);
2685 finish_for_cond (build (NE_EXPR, boolean_type_node,
2686 iterator, integer_minus_one_node),
2687 for_stmt);
2688 finish_for_expr (build_unary_op (PREDECREMENT_EXPR, iterator, 0),
2689 for_stmt);
2690
2691 /* Otherwise, loop through the elements. */
2692 for_body = begin_compound_stmt (/*has_no_scope=*/true);
2693
2694 if (from_array)
2695 {
2696 tree to = build1 (INDIRECT_REF, type, base);
2697 tree from;
2698
2699 if (base2)
2700 from = build1 (INDIRECT_REF, itype, base2);
2701 else
2702 from = NULL_TREE;
2703
2704 if (from_array == 2)
2705 elt_init = build_modify_expr (to, NOP_EXPR, from);
2706 else if (TYPE_NEEDS_CONSTRUCTING (type))
2707 elt_init = build_aggr_init (to, from, 0);
2708 else if (from)
2709 elt_init = build_modify_expr (to, NOP_EXPR, from);
2710 else
2711 abort ();
2712 }
2713 else if (TREE_CODE (type) == ARRAY_TYPE)
2714 {
2715 if (init != 0)
2716 sorry
2717 ("cannot initialize multi-dimensional array with initializer");
2718 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
2719 0, 0, 0);
2720 }
2721 else
2722 elt_init = build_aggr_init (build1 (INDIRECT_REF, type, base),
2723 init, 0);
2724
2725 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2726 finish_expr_stmt (elt_init);
2727 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2728
2729 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2730 if (base2)
2731 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base2, 0));
2732
2733 finish_compound_stmt (for_body);
2734 finish_for_stmt (for_stmt);
2735 }
2736
2737 /* Make sure to cleanup any partially constructed elements. */
2738 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2739 && from_array != 2)
2740 {
2741 tree e;
2742 tree m = cp_build_binary_op (MINUS_EXPR, maxindex, iterator);
2743
2744 /* Flatten multi-dimensional array since build_vec_delete only
2745 expects one-dimensional array. */
2746 if (TREE_CODE (type) == ARRAY_TYPE)
2747 {
2748 m = cp_build_binary_op (MULT_EXPR, m,
2749 array_type_nelts_total (type));
2750 type = strip_array_types (type);
2751 }
2752
2753 finish_compound_stmt (try_body);
2754 finish_cleanup_try_block (try_block);
2755 e = build_vec_delete_1 (rval, m, type, sfk_base_destructor,
2756 /*use_global_delete=*/0);
2757 finish_cleanup (e, try_block);
2758 }
2759
2760 /* The value of the array initialization is the array itself, RVAL
2761 is a pointer to the first element. */
2762 finish_stmt_expr_expr (rval);
2763
2764 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
2765
2766 /* Now convert make the result have the correct type. */
2767 atype = build_pointer_type (atype);
2768 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
2769 stmt_expr = build_indirect_ref (stmt_expr, NULL);
2770
2771 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
2772 return stmt_expr;
2773 }
2774
2775 /* Free up storage of type TYPE, at address ADDR.
2776
2777 TYPE is a POINTER_TYPE and can be ptr_type_node for no special type
2778 of pointer.
2779
2780 VIRTUAL_SIZE is the amount of storage that was allocated, and is
2781 used as the second argument to operator delete. It can include
2782 things like padding and magic size cookies. It has virtual in it,
2783 because if you have a base pointer and you delete through a virtual
2784 destructor, it should be the size of the dynamic object, not the
2785 static object, see Free Store 12.5 ISO C++.
2786
2787 This does not call any destructors. */
2788
2789 tree
2790 build_x_delete (tree addr, int which_delete, tree virtual_size)
2791 {
2792 int use_global_delete = which_delete & 1;
2793 int use_vec_delete = !!(which_delete & 2);
2794 enum tree_code code = use_vec_delete ? VEC_DELETE_EXPR : DELETE_EXPR;
2795
2796 return build_op_delete_call (code, addr, virtual_size, use_global_delete,
2797 NULL_TREE);
2798 }
2799
2800 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
2801 build_delete. */
2802
2803 static tree
2804 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags)
2805 {
2806 tree name;
2807 tree fn;
2808 switch (dtor_kind)
2809 {
2810 case sfk_complete_destructor:
2811 name = complete_dtor_identifier;
2812 break;
2813
2814 case sfk_base_destructor:
2815 name = base_dtor_identifier;
2816 break;
2817
2818 case sfk_deleting_destructor:
2819 name = deleting_dtor_identifier;
2820 break;
2821
2822 default:
2823 abort ();
2824 }
2825
2826 exp = convert_from_reference (exp);
2827 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
2828 return build_new_method_call (exp, fn,
2829 /*args=*/NULL_TREE,
2830 /*conversion_path=*/NULL_TREE,
2831 flags);
2832 }
2833
2834 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
2835 ADDR is an expression which yields the store to be destroyed.
2836 AUTO_DELETE is the name of the destructor to call, i.e., either
2837 sfk_complete_destructor, sfk_base_destructor, or
2838 sfk_deleting_destructor.
2839
2840 FLAGS is the logical disjunction of zero or more LOOKUP_
2841 flags. See cp-tree.h for more info. */
2842
2843 tree
2844 build_delete (tree type, tree addr, special_function_kind auto_delete,
2845 int flags, int use_global_delete)
2846 {
2847 tree expr;
2848
2849 if (addr == error_mark_node)
2850 return error_mark_node;
2851
2852 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
2853 set to `error_mark_node' before it gets properly cleaned up. */
2854 if (type == error_mark_node)
2855 return error_mark_node;
2856
2857 type = TYPE_MAIN_VARIANT (type);
2858
2859 if (TREE_CODE (type) == POINTER_TYPE)
2860 {
2861 bool complete_p = true;
2862
2863 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
2864 if (TREE_CODE (type) == ARRAY_TYPE)
2865 goto handle_array;
2866
2867 /* We don't want to warn about delete of void*, only other
2868 incomplete types. Deleting other incomplete types
2869 invokes undefined behavior, but it is not ill-formed, so
2870 compile to something that would even do The Right Thing
2871 (TM) should the type have a trivial dtor and no delete
2872 operator. */
2873 if (!VOID_TYPE_P (type))
2874 {
2875 complete_type (type);
2876 if (!COMPLETE_TYPE_P (type))
2877 {
2878 warning ("possible problem detected in invocation of "
2879 "delete operator:");
2880 cxx_incomplete_type_diagnostic (addr, type, 1);
2881 inform ("neither the destructor nor the class-specific "
2882 "operator delete will be called, even if they are "
2883 "declared when the class is defined.");
2884 complete_p = false;
2885 }
2886 }
2887 if (VOID_TYPE_P (type) || !complete_p || !IS_AGGR_TYPE (type))
2888 /* Call the builtin operator delete. */
2889 return build_builtin_delete_call (addr);
2890 if (TREE_SIDE_EFFECTS (addr))
2891 addr = save_expr (addr);
2892
2893 /* Throw away const and volatile on target type of addr. */
2894 addr = convert_force (build_pointer_type (type), addr, 0);
2895 }
2896 else if (TREE_CODE (type) == ARRAY_TYPE)
2897 {
2898 handle_array:
2899
2900 if (TYPE_DOMAIN (type) == NULL_TREE)
2901 {
2902 error ("unknown array size in delete");
2903 return error_mark_node;
2904 }
2905 return build_vec_delete (addr, array_type_nelts (type),
2906 auto_delete, use_global_delete);
2907 }
2908 else
2909 {
2910 /* Don't check PROTECT here; leave that decision to the
2911 destructor. If the destructor is accessible, call it,
2912 else report error. */
2913 addr = build_unary_op (ADDR_EXPR, addr, 0);
2914 if (TREE_SIDE_EFFECTS (addr))
2915 addr = save_expr (addr);
2916
2917 addr = convert_force (build_pointer_type (type), addr, 0);
2918 }
2919
2920 my_friendly_assert (IS_AGGR_TYPE (type), 220);
2921
2922 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2923 {
2924 if (auto_delete != sfk_deleting_destructor)
2925 return void_zero_node;
2926
2927 return build_op_delete_call
2928 (DELETE_EXPR, addr, cxx_sizeof_nowarn (type), use_global_delete,
2929 NULL_TREE);
2930 }
2931 else
2932 {
2933 tree do_delete = NULL_TREE;
2934 tree ifexp;
2935
2936 my_friendly_assert (TYPE_HAS_DESTRUCTOR (type), 20011213);
2937
2938 /* For `::delete x', we must not use the deleting destructor
2939 since then we would not be sure to get the global `operator
2940 delete'. */
2941 if (use_global_delete && auto_delete == sfk_deleting_destructor)
2942 {
2943 /* We will use ADDR multiple times so we must save it. */
2944 addr = save_expr (addr);
2945 /* Delete the object. */
2946 do_delete = build_builtin_delete_call (addr);
2947 /* Otherwise, treat this like a complete object destructor
2948 call. */
2949 auto_delete = sfk_complete_destructor;
2950 }
2951 /* If the destructor is non-virtual, there is no deleting
2952 variant. Instead, we must explicitly call the appropriate
2953 `operator delete' here. */
2954 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
2955 && auto_delete == sfk_deleting_destructor)
2956 {
2957 /* We will use ADDR multiple times so we must save it. */
2958 addr = save_expr (addr);
2959 /* Build the call. */
2960 do_delete = build_op_delete_call (DELETE_EXPR,
2961 addr,
2962 cxx_sizeof_nowarn (type),
2963 /*global_p=*/false,
2964 NULL_TREE);
2965 /* Call the complete object destructor. */
2966 auto_delete = sfk_complete_destructor;
2967 }
2968 else if (auto_delete == sfk_deleting_destructor
2969 && TYPE_GETS_REG_DELETE (type))
2970 {
2971 /* Make sure we have access to the member op delete, even though
2972 we'll actually be calling it from the destructor. */
2973 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
2974 /*global_p=*/false, NULL_TREE);
2975 }
2976
2977 expr = build_dtor_call (build_indirect_ref (addr, NULL),
2978 auto_delete, flags);
2979 if (do_delete)
2980 expr = build (COMPOUND_EXPR, void_type_node, expr, do_delete);
2981
2982 if (flags & LOOKUP_DESTRUCTOR)
2983 /* Explicit destructor call; don't check for null pointer. */
2984 ifexp = integer_one_node;
2985 else
2986 /* Handle deleting a null pointer. */
2987 ifexp = fold (cp_build_binary_op (NE_EXPR, addr, integer_zero_node));
2988
2989 if (ifexp != integer_one_node)
2990 expr = build (COND_EXPR, void_type_node,
2991 ifexp, expr, void_zero_node);
2992
2993 return expr;
2994 }
2995 }
2996
2997 /* At the beginning of a destructor, push cleanups that will call the
2998 destructors for our base classes and members.
2999
3000 Called from begin_destructor_body. */
3001
3002 void
3003 push_base_cleanups (void)
3004 {
3005 tree binfos;
3006 int i, n_baseclasses;
3007 tree member;
3008 tree expr;
3009
3010 /* Run destructors for all virtual baseclasses. */
3011 if (TYPE_USES_VIRTUAL_BASECLASSES (current_class_type))
3012 {
3013 tree vbases;
3014 tree cond = (condition_conversion
3015 (build (BIT_AND_EXPR, integer_type_node,
3016 current_in_charge_parm,
3017 integer_two_node)));
3018
3019 vbases = CLASSTYPE_VBASECLASSES (current_class_type);
3020 /* The CLASSTYPE_VBASECLASSES list is in initialization
3021 order, which is also the right order for pushing cleanups. */
3022 for (; vbases;
3023 vbases = TREE_CHAIN (vbases))
3024 {
3025 tree vbase = TREE_VALUE (vbases);
3026 tree base_type = BINFO_TYPE (vbase);
3027
3028 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (base_type))
3029 {
3030 expr = build_special_member_call (current_class_ref,
3031 base_dtor_identifier,
3032 NULL_TREE,
3033 vbase,
3034 (LOOKUP_NORMAL
3035 | LOOKUP_NONVIRTUAL));
3036 expr = build (COND_EXPR, void_type_node, cond,
3037 expr, void_zero_node);
3038 finish_decl_cleanup (NULL_TREE, expr);
3039 }
3040 }
3041 }
3042
3043 binfos = BINFO_BASETYPES (TYPE_BINFO (current_class_type));
3044 n_baseclasses = CLASSTYPE_N_BASECLASSES (current_class_type);
3045
3046 /* Take care of the remaining baseclasses. */
3047 for (i = 0; i < n_baseclasses; i++)
3048 {
3049 tree base_binfo = TREE_VEC_ELT (binfos, i);
3050 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
3051 || TREE_VIA_VIRTUAL (base_binfo))
3052 continue;
3053
3054 expr = build_special_member_call (current_class_ref,
3055 base_dtor_identifier,
3056 NULL_TREE, base_binfo,
3057 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
3058 finish_decl_cleanup (NULL_TREE, expr);
3059 }
3060
3061 for (member = TYPE_FIELDS (current_class_type); member;
3062 member = TREE_CHAIN (member))
3063 {
3064 if (TREE_CODE (member) != FIELD_DECL || DECL_ARTIFICIAL (member))
3065 continue;
3066 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
3067 {
3068 tree this_member = (build_class_member_access_expr
3069 (current_class_ref, member,
3070 /*access_path=*/NULL_TREE,
3071 /*preserve_reference=*/false));
3072 tree this_type = TREE_TYPE (member);
3073 expr = build_delete (this_type, this_member,
3074 sfk_complete_destructor,
3075 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
3076 0);
3077 finish_decl_cleanup (NULL_TREE, expr);
3078 }
3079 }
3080 }
3081
3082 /* For type TYPE, delete the virtual baseclass objects of DECL. */
3083
3084 tree
3085 build_vbase_delete (tree type, tree decl)
3086 {
3087 tree vbases = CLASSTYPE_VBASECLASSES (type);
3088 tree result;
3089 tree addr = build_unary_op (ADDR_EXPR, decl, 0);
3090
3091 my_friendly_assert (addr != error_mark_node, 222);
3092
3093 for (result = convert_to_void (integer_zero_node, NULL);
3094 vbases; vbases = TREE_CHAIN (vbases))
3095 {
3096 tree base_addr = convert_force
3097 (build_pointer_type (BINFO_TYPE (TREE_VALUE (vbases))), addr, 0);
3098 tree base_delete = build_delete
3099 (TREE_TYPE (base_addr), base_addr, sfk_base_destructor,
3100 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 0);
3101
3102 result = build_compound_expr (result, base_delete);
3103 }
3104 return result;
3105 }
3106
3107 /* Build a C++ vector delete expression.
3108 MAXINDEX is the number of elements to be deleted.
3109 ELT_SIZE is the nominal size of each element in the vector.
3110 BASE is the expression that should yield the store to be deleted.
3111 This function expands (or synthesizes) these calls itself.
3112 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
3113
3114 This also calls delete for virtual baseclasses of elements of the vector.
3115
3116 Update: MAXINDEX is no longer needed. The size can be extracted from the
3117 start of the vector for pointers, and from the type for arrays. We still
3118 use MAXINDEX for arrays because it happens to already have one of the
3119 values we'd have to extract. (We could use MAXINDEX with pointers to
3120 confirm the size, and trap if the numbers differ; not clear that it'd
3121 be worth bothering.) */
3122
3123 tree
3124 build_vec_delete (tree base, tree maxindex,
3125 special_function_kind auto_delete_vec, int use_global_delete)
3126 {
3127 tree type;
3128 tree rval;
3129 tree base_init = NULL_TREE;
3130
3131 type = TREE_TYPE (base);
3132
3133 if (TREE_CODE (type) == POINTER_TYPE)
3134 {
3135 /* Step back one from start of vector, and read dimension. */
3136 tree cookie_addr;
3137
3138 if (TREE_SIDE_EFFECTS (base))
3139 {
3140 base_init = get_target_expr (base);
3141 base = TARGET_EXPR_SLOT (base_init);
3142 }
3143 type = strip_array_types (TREE_TYPE (type));
3144 cookie_addr = build (MINUS_EXPR,
3145 build_pointer_type (sizetype),
3146 base,
3147 TYPE_SIZE_UNIT (sizetype));
3148 maxindex = build_indirect_ref (cookie_addr, NULL);
3149 }
3150 else if (TREE_CODE (type) == ARRAY_TYPE)
3151 {
3152 /* Get the total number of things in the array, maxindex is a
3153 bad name. */
3154 maxindex = array_type_nelts_total (type);
3155 type = strip_array_types (type);
3156 base = build_unary_op (ADDR_EXPR, base, 1);
3157 if (TREE_SIDE_EFFECTS (base))
3158 {
3159 base_init = get_target_expr (base);
3160 base = TARGET_EXPR_SLOT (base_init);
3161 }
3162 }
3163 else
3164 {
3165 if (base != error_mark_node)
3166 error ("type to vector delete is neither pointer or array type");
3167 return error_mark_node;
3168 }
3169
3170 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
3171 use_global_delete);
3172 if (base_init)
3173 rval = build (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
3174
3175 return rval;
3176 }
This page took 0.214423 seconds and 5 git commands to generate.