]> gcc.gnu.org Git - gcc.git/blob - gcc/cp/init.c
re PR c++/43890 (invalid uninitialized reference in class)
[gcc.git] / gcc / cp / init.c
1 /* Handle initialization things in C++.
2 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* High-level class interface. */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "tree.h"
30 #include "rtl.h"
31 #include "expr.h"
32 #include "cp-tree.h"
33 #include "flags.h"
34 #include "output.h"
35 #include "except.h"
36 #include "toplev.h"
37 #include "target.h"
38
39 static bool begin_init_stmts (tree *, tree *);
40 static tree finish_init_stmts (bool, tree, tree);
41 static void construct_virtual_base (tree, tree);
42 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
43 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
44 static tree build_vec_delete_1 (tree, tree, tree, special_function_kind, int);
45 static void perform_member_init (tree, tree);
46 static tree build_builtin_delete_call (tree);
47 static int member_init_ok_or_else (tree, tree, tree);
48 static void expand_virtual_init (tree, tree);
49 static tree sort_mem_initializers (tree, tree);
50 static tree initializing_context (tree);
51 static void expand_cleanup_for_base (tree, tree);
52 static tree get_temp_regvar (tree, tree);
53 static tree dfs_initialize_vtbl_ptrs (tree, void *);
54 static tree build_dtor_call (tree, special_function_kind, int);
55 static tree build_field_list (tree, tree, int *);
56 static tree build_vtbl_address (tree);
57 static void diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool);
58
59 /* We are about to generate some complex initialization code.
60 Conceptually, it is all a single expression. However, we may want
61 to include conditionals, loops, and other such statement-level
62 constructs. Therefore, we build the initialization code inside a
63 statement-expression. This function starts such an expression.
64 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
65 pass them back to finish_init_stmts when the expression is
66 complete. */
67
68 static bool
69 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
70 {
71 bool is_global = !building_stmt_tree ();
72
73 *stmt_expr_p = begin_stmt_expr ();
74 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
75
76 return is_global;
77 }
78
79 /* Finish out the statement-expression begun by the previous call to
80 begin_init_stmts. Returns the statement-expression itself. */
81
82 static tree
83 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
84 {
85 finish_compound_stmt (compound_stmt);
86
87 stmt_expr = finish_stmt_expr (stmt_expr, true);
88
89 gcc_assert (!building_stmt_tree () == is_global);
90
91 return stmt_expr;
92 }
93
94 /* Constructors */
95
96 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
97 which we want to initialize the vtable pointer for, DATA is
98 TREE_LIST whose TREE_VALUE is the this ptr expression. */
99
100 static tree
101 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
102 {
103 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
104 return dfs_skip_bases;
105
106 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
107 {
108 tree base_ptr = TREE_VALUE ((tree) data);
109
110 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
111
112 expand_virtual_init (binfo, base_ptr);
113 }
114
115 return NULL_TREE;
116 }
117
118 /* Initialize all the vtable pointers in the object pointed to by
119 ADDR. */
120
121 void
122 initialize_vtbl_ptrs (tree addr)
123 {
124 tree list;
125 tree type;
126
127 type = TREE_TYPE (TREE_TYPE (addr));
128 list = build_tree_list (type, addr);
129
130 /* Walk through the hierarchy, initializing the vptr in each base
131 class. We do these in pre-order because we can't find the virtual
132 bases for a class until we've initialized the vtbl for that
133 class. */
134 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
135 }
136
137 /* Return an expression for the zero-initialization of an object with
138 type T. This expression will either be a constant (in the case
139 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
140 aggregate), or NULL (in the case that T does not require
141 initialization). In either case, the value can be used as
142 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
143 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
144 is the number of elements in the array. If STATIC_STORAGE_P is
145 TRUE, initializers are only generated for entities for which
146 zero-initialization does not simply mean filling the storage with
147 zero bytes. */
148
149 tree
150 build_zero_init (tree type, tree nelts, bool static_storage_p)
151 {
152 tree init = NULL_TREE;
153
154 /* [dcl.init]
155
156 To zero-initialize an object of type T means:
157
158 -- if T is a scalar type, the storage is set to the value of zero
159 converted to T.
160
161 -- if T is a non-union class type, the storage for each nonstatic
162 data member and each base-class subobject is zero-initialized.
163
164 -- if T is a union type, the storage for its first data member is
165 zero-initialized.
166
167 -- if T is an array type, the storage for each element is
168 zero-initialized.
169
170 -- if T is a reference type, no initialization is performed. */
171
172 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
173
174 if (type == error_mark_node)
175 ;
176 else if (static_storage_p && zero_init_p (type))
177 /* In order to save space, we do not explicitly build initializers
178 for items that do not need them. GCC's semantics are that
179 items with static storage duration that are not otherwise
180 initialized are initialized to zero. */
181 ;
182 else if (SCALAR_TYPE_P (type))
183 init = convert (type, integer_zero_node);
184 else if (CLASS_TYPE_P (type))
185 {
186 tree field;
187 VEC(constructor_elt,gc) *v = NULL;
188
189 /* Iterate over the fields, building initializations. */
190 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
191 {
192 if (TREE_CODE (field) != FIELD_DECL)
193 continue;
194
195 /* Note that for class types there will be FIELD_DECLs
196 corresponding to base classes as well. Thus, iterating
197 over TYPE_FIELDs will result in correct initialization of
198 all of the subobjects. */
199 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
200 {
201 tree value = build_zero_init (TREE_TYPE (field),
202 /*nelts=*/NULL_TREE,
203 static_storage_p);
204 if (value)
205 CONSTRUCTOR_APPEND_ELT(v, field, value);
206 }
207
208 /* For unions, only the first field is initialized. */
209 if (TREE_CODE (type) == UNION_TYPE)
210 break;
211 }
212
213 /* Build a constructor to contain the initializations. */
214 init = build_constructor (type, v);
215 }
216 else if (TREE_CODE (type) == ARRAY_TYPE)
217 {
218 tree max_index;
219 VEC(constructor_elt,gc) *v = NULL;
220
221 /* Iterate over the array elements, building initializations. */
222 if (nelts)
223 max_index = fold_build2_loc (input_location,
224 MINUS_EXPR, TREE_TYPE (nelts),
225 nelts, integer_one_node);
226 else
227 max_index = array_type_nelts (type);
228
229 /* If we have an error_mark here, we should just return error mark
230 as we don't know the size of the array yet. */
231 if (max_index == error_mark_node)
232 return error_mark_node;
233 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
234
235 /* A zero-sized array, which is accepted as an extension, will
236 have an upper bound of -1. */
237 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
238 {
239 constructor_elt *ce;
240
241 v = VEC_alloc (constructor_elt, gc, 1);
242 ce = VEC_quick_push (constructor_elt, v, NULL);
243
244 /* If this is a one element array, we just use a regular init. */
245 if (tree_int_cst_equal (size_zero_node, max_index))
246 ce->index = size_zero_node;
247 else
248 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
249 max_index);
250
251 ce->value = build_zero_init (TREE_TYPE (type),
252 /*nelts=*/NULL_TREE,
253 static_storage_p);
254 }
255
256 /* Build a constructor to contain the initializations. */
257 init = build_constructor (type, v);
258 }
259 else if (TREE_CODE (type) == VECTOR_TYPE)
260 init = fold_convert (type, integer_zero_node);
261 else
262 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
263
264 /* In all cases, the initializer is a constant. */
265 if (init)
266 TREE_CONSTANT (init) = 1;
267
268 return init;
269 }
270
271 /* Return a suitable initializer for value-initializing an object of type
272 TYPE, as described in [dcl.init]. */
273
274 tree
275 build_value_init (tree type)
276 {
277 /* [dcl.init]
278
279 To value-initialize an object of type T means:
280
281 - if T is a class type (clause 9) with a user-provided constructor
282 (12.1), then the default constructor for T is called (and the
283 initialization is ill-formed if T has no accessible default
284 constructor);
285
286 - if T is a non-union class type without a user-provided constructor,
287 then every non-static data member and base-class component of T is
288 value-initialized;92)
289
290 - if T is an array type, then each element is value-initialized;
291
292 - otherwise, the object is zero-initialized.
293
294 A program that calls for default-initialization or
295 value-initialization of an entity of reference type is ill-formed.
296
297 92) Value-initialization for such a class object may be implemented by
298 zero-initializing the object and then calling the default
299 constructor. */
300
301 if (CLASS_TYPE_P (type))
302 {
303 if (type_has_user_provided_constructor (type))
304 return build_aggr_init_expr
305 (type,
306 build_special_member_call (NULL_TREE, complete_ctor_identifier,
307 NULL, type, LOOKUP_NORMAL,
308 tf_warning_or_error));
309 else if (TREE_CODE (type) != UNION_TYPE && TYPE_NEEDS_CONSTRUCTING (type))
310 {
311 /* This is a class that needs constructing, but doesn't have
312 a user-provided constructor. So we need to zero-initialize
313 the object and then call the implicitly defined ctor.
314 This will be handled in simplify_aggr_init_expr. */
315 tree ctor = build_special_member_call
316 (NULL_TREE, complete_ctor_identifier,
317 NULL, type, LOOKUP_NORMAL, tf_warning_or_error);
318
319 ctor = build_aggr_init_expr (type, ctor);
320 AGGR_INIT_ZERO_FIRST (ctor) = 1;
321 return ctor;
322 }
323 }
324 return build_value_init_noctor (type);
325 }
326
327 /* Like build_value_init, but don't call the constructor for TYPE. Used
328 for base initializers. */
329
330 tree
331 build_value_init_noctor (tree type)
332 {
333 if (CLASS_TYPE_P (type))
334 {
335 gcc_assert (!TYPE_NEEDS_CONSTRUCTING (type));
336
337 if (TREE_CODE (type) != UNION_TYPE)
338 {
339 tree field;
340 VEC(constructor_elt,gc) *v = NULL;
341
342 /* Iterate over the fields, building initializations. */
343 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
344 {
345 tree ftype, value;
346
347 if (TREE_CODE (field) != FIELD_DECL)
348 continue;
349
350 ftype = TREE_TYPE (field);
351
352 if (TREE_CODE (ftype) == REFERENCE_TYPE)
353 error ("value-initialization of reference");
354
355 /* We could skip vfields and fields of types with
356 user-defined constructors, but I think that won't improve
357 performance at all; it should be simpler in general just
358 to zero out the entire object than try to only zero the
359 bits that actually need it. */
360
361 /* Note that for class types there will be FIELD_DECLs
362 corresponding to base classes as well. Thus, iterating
363 over TYPE_FIELDs will result in correct initialization of
364 all of the subobjects. */
365 value = build_value_init (ftype);
366
367 if (value)
368 CONSTRUCTOR_APPEND_ELT(v, field, value);
369 }
370
371 /* Build a constructor to contain the zero- initializations. */
372 return build_constructor (type, v);
373 }
374 }
375 else if (TREE_CODE (type) == ARRAY_TYPE)
376 {
377 VEC(constructor_elt,gc) *v = NULL;
378
379 /* Iterate over the array elements, building initializations. */
380 tree max_index = array_type_nelts (type);
381
382 /* If we have an error_mark here, we should just return error mark
383 as we don't know the size of the array yet. */
384 if (max_index == error_mark_node)
385 return error_mark_node;
386 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
387
388 /* A zero-sized array, which is accepted as an extension, will
389 have an upper bound of -1. */
390 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
391 {
392 constructor_elt *ce;
393
394 v = VEC_alloc (constructor_elt, gc, 1);
395 ce = VEC_quick_push (constructor_elt, v, NULL);
396
397 /* If this is a one element array, we just use a regular init. */
398 if (tree_int_cst_equal (size_zero_node, max_index))
399 ce->index = size_zero_node;
400 else
401 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
402 max_index);
403
404 ce->value = build_value_init (TREE_TYPE (type));
405
406 /* The gimplifier can't deal with a RANGE_EXPR of TARGET_EXPRs. */
407 gcc_assert (TREE_CODE (ce->value) != TARGET_EXPR
408 && TREE_CODE (ce->value) != AGGR_INIT_EXPR);
409 }
410
411 /* Build a constructor to contain the initializations. */
412 return build_constructor (type, v);
413 }
414
415 return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
416 }
417
418 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
419 arguments. If TREE_LIST is void_type_node, an empty initializer
420 list was given; if NULL_TREE no initializer was given. */
421
422 static void
423 perform_member_init (tree member, tree init)
424 {
425 tree decl;
426 tree type = TREE_TYPE (member);
427
428 /* Effective C++ rule 12 requires that all data members be
429 initialized. */
430 if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
431 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
432 "%qD should be initialized in the member initialization list",
433 member);
434
435 /* Get an lvalue for the data member. */
436 decl = build_class_member_access_expr (current_class_ref, member,
437 /*access_path=*/NULL_TREE,
438 /*preserve_reference=*/true,
439 tf_warning_or_error);
440 if (decl == error_mark_node)
441 return;
442
443 if (init == void_type_node)
444 {
445 /* mem() means value-initialization. */
446 if (TREE_CODE (type) == ARRAY_TYPE)
447 {
448 init = build_vec_init (decl, NULL_TREE, NULL_TREE,
449 /*explicit_value_init_p=*/true,
450 /* from_array=*/0,
451 tf_warning_or_error);
452 finish_expr_stmt (init);
453 }
454 else
455 {
456 if (TREE_CODE (type) == REFERENCE_TYPE)
457 permerror (DECL_SOURCE_LOCATION (current_function_decl),
458 "value-initialization of %q#D, which has reference type",
459 member);
460 else
461 {
462 init = build2 (INIT_EXPR, type, decl, build_value_init (type));
463 finish_expr_stmt (init);
464 }
465 }
466 }
467 /* Deal with this here, as we will get confused if we try to call the
468 assignment op for an anonymous union. This can happen in a
469 synthesized copy constructor. */
470 else if (ANON_AGGR_TYPE_P (type))
471 {
472 if (init)
473 {
474 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
475 finish_expr_stmt (init);
476 }
477 }
478 else if (TYPE_NEEDS_CONSTRUCTING (type))
479 {
480 if (init != NULL_TREE
481 && TREE_CODE (type) == ARRAY_TYPE
482 && TREE_CHAIN (init) == NULL_TREE
483 && TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
484 {
485 /* Initialization of one array from another. */
486 finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
487 /*explicit_value_init_p=*/false,
488 /* from_array=*/1,
489 tf_warning_or_error));
490 }
491 else
492 {
493 if (CP_TYPE_CONST_P (type)
494 && init == NULL_TREE
495 && !type_has_user_provided_default_constructor (type))
496 /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
497 vtable; still give this diagnostic. */
498 permerror (DECL_SOURCE_LOCATION (current_function_decl),
499 "uninitialized member %qD with %<const%> type %qT",
500 member, type);
501 finish_expr_stmt (build_aggr_init (decl, init, 0,
502 tf_warning_or_error));
503 }
504 }
505 else
506 {
507 if (init == NULL_TREE)
508 {
509 tree core_type;
510 /* member traversal: note it leaves init NULL */
511 if (TREE_CODE (type) == REFERENCE_TYPE)
512 permerror (DECL_SOURCE_LOCATION (current_function_decl),
513 "uninitialized reference member %qD",
514 member);
515 else if (CP_TYPE_CONST_P (type))
516 permerror (DECL_SOURCE_LOCATION (current_function_decl),
517 "uninitialized member %qD with %<const%> type %qT",
518 member, type);
519
520 core_type = strip_array_types (type);
521 if (CLASS_TYPE_P (core_type)
522 && (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type)
523 || CLASSTYPE_REF_FIELDS_NEED_INIT (core_type)))
524 diagnose_uninitialized_cst_or_ref_member (core_type,
525 /*using_new=*/false);
526 }
527 else if (TREE_CODE (init) == TREE_LIST)
528 /* There was an explicit member initialization. Do some work
529 in that case. */
530 init = build_x_compound_expr_from_list (init, "member initializer");
531
532 if (init)
533 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
534 tf_warning_or_error));
535 }
536
537 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
538 {
539 tree expr;
540
541 expr = build_class_member_access_expr (current_class_ref, member,
542 /*access_path=*/NULL_TREE,
543 /*preserve_reference=*/false,
544 tf_warning_or_error);
545 expr = build_delete (type, expr, sfk_complete_destructor,
546 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
547
548 if (expr != error_mark_node)
549 finish_eh_cleanup (expr);
550 }
551 }
552
553 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
554 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
555
556 static tree
557 build_field_list (tree t, tree list, int *uses_unions_p)
558 {
559 tree fields;
560
561 *uses_unions_p = 0;
562
563 /* Note whether or not T is a union. */
564 if (TREE_CODE (t) == UNION_TYPE)
565 *uses_unions_p = 1;
566
567 for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
568 {
569 /* Skip CONST_DECLs for enumeration constants and so forth. */
570 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
571 continue;
572
573 /* Keep track of whether or not any fields are unions. */
574 if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
575 *uses_unions_p = 1;
576
577 /* For an anonymous struct or union, we must recursively
578 consider the fields of the anonymous type. They can be
579 directly initialized from the constructor. */
580 if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
581 {
582 /* Add this field itself. Synthesized copy constructors
583 initialize the entire aggregate. */
584 list = tree_cons (fields, NULL_TREE, list);
585 /* And now add the fields in the anonymous aggregate. */
586 list = build_field_list (TREE_TYPE (fields), list,
587 uses_unions_p);
588 }
589 /* Add this field. */
590 else if (DECL_NAME (fields))
591 list = tree_cons (fields, NULL_TREE, list);
592 }
593
594 return list;
595 }
596
597 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
598 a FIELD_DECL or BINFO in T that needs initialization. The
599 TREE_VALUE gives the initializer, or list of initializer arguments.
600
601 Return a TREE_LIST containing all of the initializations required
602 for T, in the order in which they should be performed. The output
603 list has the same format as the input. */
604
605 static tree
606 sort_mem_initializers (tree t, tree mem_inits)
607 {
608 tree init;
609 tree base, binfo, base_binfo;
610 tree sorted_inits;
611 tree next_subobject;
612 VEC(tree,gc) *vbases;
613 int i;
614 int uses_unions_p;
615
616 /* Build up a list of initializations. The TREE_PURPOSE of entry
617 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
618 TREE_VALUE will be the constructor arguments, or NULL if no
619 explicit initialization was provided. */
620 sorted_inits = NULL_TREE;
621
622 /* Process the virtual bases. */
623 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
624 VEC_iterate (tree, vbases, i, base); i++)
625 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
626
627 /* Process the direct bases. */
628 for (binfo = TYPE_BINFO (t), i = 0;
629 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
630 if (!BINFO_VIRTUAL_P (base_binfo))
631 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
632
633 /* Process the non-static data members. */
634 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
635 /* Reverse the entire list of initializations, so that they are in
636 the order that they will actually be performed. */
637 sorted_inits = nreverse (sorted_inits);
638
639 /* If the user presented the initializers in an order different from
640 that in which they will actually occur, we issue a warning. Keep
641 track of the next subobject which can be explicitly initialized
642 without issuing a warning. */
643 next_subobject = sorted_inits;
644
645 /* Go through the explicit initializers, filling in TREE_PURPOSE in
646 the SORTED_INITS. */
647 for (init = mem_inits; init; init = TREE_CHAIN (init))
648 {
649 tree subobject;
650 tree subobject_init;
651
652 subobject = TREE_PURPOSE (init);
653
654 /* If the explicit initializers are in sorted order, then
655 SUBOBJECT will be NEXT_SUBOBJECT, or something following
656 it. */
657 for (subobject_init = next_subobject;
658 subobject_init;
659 subobject_init = TREE_CHAIN (subobject_init))
660 if (TREE_PURPOSE (subobject_init) == subobject)
661 break;
662
663 /* Issue a warning if the explicit initializer order does not
664 match that which will actually occur.
665 ??? Are all these on the correct lines? */
666 if (warn_reorder && !subobject_init)
667 {
668 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
669 warning (OPT_Wreorder, "%q+D will be initialized after",
670 TREE_PURPOSE (next_subobject));
671 else
672 warning (OPT_Wreorder, "base %qT will be initialized after",
673 TREE_PURPOSE (next_subobject));
674 if (TREE_CODE (subobject) == FIELD_DECL)
675 warning (OPT_Wreorder, " %q+#D", subobject);
676 else
677 warning (OPT_Wreorder, " base %qT", subobject);
678 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
679 OPT_Wreorder, " when initialized here");
680 }
681
682 /* Look again, from the beginning of the list. */
683 if (!subobject_init)
684 {
685 subobject_init = sorted_inits;
686 while (TREE_PURPOSE (subobject_init) != subobject)
687 subobject_init = TREE_CHAIN (subobject_init);
688 }
689
690 /* It is invalid to initialize the same subobject more than
691 once. */
692 if (TREE_VALUE (subobject_init))
693 {
694 if (TREE_CODE (subobject) == FIELD_DECL)
695 error_at (DECL_SOURCE_LOCATION (current_function_decl),
696 "multiple initializations given for %qD",
697 subobject);
698 else
699 error_at (DECL_SOURCE_LOCATION (current_function_decl),
700 "multiple initializations given for base %qT",
701 subobject);
702 }
703
704 /* Record the initialization. */
705 TREE_VALUE (subobject_init) = TREE_VALUE (init);
706 next_subobject = subobject_init;
707 }
708
709 /* [class.base.init]
710
711 If a ctor-initializer specifies more than one mem-initializer for
712 multiple members of the same union (including members of
713 anonymous unions), the ctor-initializer is ill-formed. */
714 if (uses_unions_p)
715 {
716 tree last_field = NULL_TREE;
717 for (init = sorted_inits; init; init = TREE_CHAIN (init))
718 {
719 tree field;
720 tree field_type;
721 int done;
722
723 /* Skip uninitialized members and base classes. */
724 if (!TREE_VALUE (init)
725 || TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
726 continue;
727 /* See if this field is a member of a union, or a member of a
728 structure contained in a union, etc. */
729 field = TREE_PURPOSE (init);
730 for (field_type = DECL_CONTEXT (field);
731 !same_type_p (field_type, t);
732 field_type = TYPE_CONTEXT (field_type))
733 if (TREE_CODE (field_type) == UNION_TYPE)
734 break;
735 /* If this field is not a member of a union, skip it. */
736 if (TREE_CODE (field_type) != UNION_TYPE)
737 continue;
738
739 /* It's only an error if we have two initializers for the same
740 union type. */
741 if (!last_field)
742 {
743 last_field = field;
744 continue;
745 }
746
747 /* See if LAST_FIELD and the field initialized by INIT are
748 members of the same union. If so, there's a problem,
749 unless they're actually members of the same structure
750 which is itself a member of a union. For example, given:
751
752 union { struct { int i; int j; }; };
753
754 initializing both `i' and `j' makes sense. */
755 field_type = DECL_CONTEXT (field);
756 done = 0;
757 do
758 {
759 tree last_field_type;
760
761 last_field_type = DECL_CONTEXT (last_field);
762 while (1)
763 {
764 if (same_type_p (last_field_type, field_type))
765 {
766 if (TREE_CODE (field_type) == UNION_TYPE)
767 error_at (DECL_SOURCE_LOCATION (current_function_decl),
768 "initializations for multiple members of %qT",
769 last_field_type);
770 done = 1;
771 break;
772 }
773
774 if (same_type_p (last_field_type, t))
775 break;
776
777 last_field_type = TYPE_CONTEXT (last_field_type);
778 }
779
780 /* If we've reached the outermost class, then we're
781 done. */
782 if (same_type_p (field_type, t))
783 break;
784
785 field_type = TYPE_CONTEXT (field_type);
786 }
787 while (!done);
788
789 last_field = field;
790 }
791 }
792
793 return sorted_inits;
794 }
795
796 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
797 is a TREE_LIST giving the explicit mem-initializer-list for the
798 constructor. The TREE_PURPOSE of each entry is a subobject (a
799 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
800 is a TREE_LIST giving the arguments to the constructor or
801 void_type_node for an empty list of arguments. */
802
803 void
804 emit_mem_initializers (tree mem_inits)
805 {
806 /* We will already have issued an error message about the fact that
807 the type is incomplete. */
808 if (!COMPLETE_TYPE_P (current_class_type))
809 return;
810
811 /* Sort the mem-initializers into the order in which the
812 initializations should be performed. */
813 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
814
815 in_base_initializer = 1;
816
817 /* Initialize base classes. */
818 while (mem_inits
819 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
820 {
821 tree subobject = TREE_PURPOSE (mem_inits);
822 tree arguments = TREE_VALUE (mem_inits);
823
824 /* If these initializations are taking place in a copy constructor,
825 the base class should probably be explicitly initialized if there
826 is a user-defined constructor in the base class (other than the
827 default constructor, which will be called anyway). */
828 if (extra_warnings && !arguments
829 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
830 && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
831 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Wextra,
832 "base class %q#T should be explicitly initialized in the "
833 "copy constructor",
834 BINFO_TYPE (subobject));
835
836 /* Initialize the base. */
837 if (BINFO_VIRTUAL_P (subobject))
838 construct_virtual_base (subobject, arguments);
839 else
840 {
841 tree base_addr;
842
843 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
844 subobject, 1);
845 expand_aggr_init_1 (subobject, NULL_TREE,
846 cp_build_indirect_ref (base_addr, RO_NULL,
847 tf_warning_or_error),
848 arguments,
849 LOOKUP_NORMAL,
850 tf_warning_or_error);
851 expand_cleanup_for_base (subobject, NULL_TREE);
852 }
853
854 mem_inits = TREE_CHAIN (mem_inits);
855 }
856 in_base_initializer = 0;
857
858 /* Initialize the vptrs. */
859 initialize_vtbl_ptrs (current_class_ptr);
860
861 /* Initialize the data members. */
862 while (mem_inits)
863 {
864 perform_member_init (TREE_PURPOSE (mem_inits),
865 TREE_VALUE (mem_inits));
866 mem_inits = TREE_CHAIN (mem_inits);
867 }
868 }
869
870 /* Returns the address of the vtable (i.e., the value that should be
871 assigned to the vptr) for BINFO. */
872
873 static tree
874 build_vtbl_address (tree binfo)
875 {
876 tree binfo_for = binfo;
877 tree vtbl;
878
879 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
880 /* If this is a virtual primary base, then the vtable we want to store
881 is that for the base this is being used as the primary base of. We
882 can't simply skip the initialization, because we may be expanding the
883 inits of a subobject constructor where the virtual base layout
884 can be different. */
885 while (BINFO_PRIMARY_P (binfo_for))
886 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
887
888 /* Figure out what vtable BINFO's vtable is based on, and mark it as
889 used. */
890 vtbl = get_vtbl_decl_for_binfo (binfo_for);
891 TREE_USED (vtbl) = 1;
892
893 /* Now compute the address to use when initializing the vptr. */
894 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
895 if (TREE_CODE (vtbl) == VAR_DECL)
896 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
897
898 return vtbl;
899 }
900
901 /* This code sets up the virtual function tables appropriate for
902 the pointer DECL. It is a one-ply initialization.
903
904 BINFO is the exact type that DECL is supposed to be. In
905 multiple inheritance, this might mean "C's A" if C : A, B. */
906
907 static void
908 expand_virtual_init (tree binfo, tree decl)
909 {
910 tree vtbl, vtbl_ptr;
911 tree vtt_index;
912
913 /* Compute the initializer for vptr. */
914 vtbl = build_vtbl_address (binfo);
915
916 /* We may get this vptr from a VTT, if this is a subobject
917 constructor or subobject destructor. */
918 vtt_index = BINFO_VPTR_INDEX (binfo);
919 if (vtt_index)
920 {
921 tree vtbl2;
922 tree vtt_parm;
923
924 /* Compute the value to use, when there's a VTT. */
925 vtt_parm = current_vtt_parm;
926 vtbl2 = build2 (POINTER_PLUS_EXPR,
927 TREE_TYPE (vtt_parm),
928 vtt_parm,
929 vtt_index);
930 vtbl2 = cp_build_indirect_ref (vtbl2, RO_NULL, tf_warning_or_error);
931 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
932
933 /* The actual initializer is the VTT value only in the subobject
934 constructor. In maybe_clone_body we'll substitute NULL for
935 the vtt_parm in the case of the non-subobject constructor. */
936 vtbl = build3 (COND_EXPR,
937 TREE_TYPE (vtbl),
938 build2 (EQ_EXPR, boolean_type_node,
939 current_in_charge_parm, integer_zero_node),
940 vtbl2,
941 vtbl);
942 }
943
944 /* Compute the location of the vtpr. */
945 vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, RO_NULL,
946 tf_warning_or_error),
947 TREE_TYPE (binfo));
948 gcc_assert (vtbl_ptr != error_mark_node);
949
950 /* Assign the vtable to the vptr. */
951 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
952 finish_expr_stmt (cp_build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl,
953 tf_warning_or_error));
954 }
955
956 /* If an exception is thrown in a constructor, those base classes already
957 constructed must be destroyed. This function creates the cleanup
958 for BINFO, which has just been constructed. If FLAG is non-NULL,
959 it is a DECL which is nonzero when this base needs to be
960 destroyed. */
961
962 static void
963 expand_cleanup_for_base (tree binfo, tree flag)
964 {
965 tree expr;
966
967 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
968 return;
969
970 /* Call the destructor. */
971 expr = build_special_member_call (current_class_ref,
972 base_dtor_identifier,
973 NULL,
974 binfo,
975 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
976 tf_warning_or_error);
977 if (flag)
978 expr = fold_build3_loc (input_location,
979 COND_EXPR, void_type_node,
980 c_common_truthvalue_conversion (input_location, flag),
981 expr, integer_zero_node);
982
983 finish_eh_cleanup (expr);
984 }
985
986 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
987 constructor. */
988
989 static void
990 construct_virtual_base (tree vbase, tree arguments)
991 {
992 tree inner_if_stmt;
993 tree exp;
994 tree flag;
995
996 /* If there are virtual base classes with destructors, we need to
997 emit cleanups to destroy them if an exception is thrown during
998 the construction process. These exception regions (i.e., the
999 period during which the cleanups must occur) begin from the time
1000 the construction is complete to the end of the function. If we
1001 create a conditional block in which to initialize the
1002 base-classes, then the cleanup region for the virtual base begins
1003 inside a block, and ends outside of that block. This situation
1004 confuses the sjlj exception-handling code. Therefore, we do not
1005 create a single conditional block, but one for each
1006 initialization. (That way the cleanup regions always begin
1007 in the outer block.) We trust the back end to figure out
1008 that the FLAG will not change across initializations, and
1009 avoid doing multiple tests. */
1010 flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
1011 inner_if_stmt = begin_if_stmt ();
1012 finish_if_stmt_cond (flag, inner_if_stmt);
1013
1014 /* Compute the location of the virtual base. If we're
1015 constructing virtual bases, then we must be the most derived
1016 class. Therefore, we don't have to look up the virtual base;
1017 we already know where it is. */
1018 exp = convert_to_base_statically (current_class_ref, vbase);
1019
1020 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1021 LOOKUP_COMPLAIN, tf_warning_or_error);
1022 finish_then_clause (inner_if_stmt);
1023 finish_if_stmt (inner_if_stmt);
1024
1025 expand_cleanup_for_base (vbase, flag);
1026 }
1027
1028 /* Find the context in which this FIELD can be initialized. */
1029
1030 static tree
1031 initializing_context (tree field)
1032 {
1033 tree t = DECL_CONTEXT (field);
1034
1035 /* Anonymous union members can be initialized in the first enclosing
1036 non-anonymous union context. */
1037 while (t && ANON_AGGR_TYPE_P (t))
1038 t = TYPE_CONTEXT (t);
1039 return t;
1040 }
1041
1042 /* Function to give error message if member initialization specification
1043 is erroneous. FIELD is the member we decided to initialize.
1044 TYPE is the type for which the initialization is being performed.
1045 FIELD must be a member of TYPE.
1046
1047 MEMBER_NAME is the name of the member. */
1048
1049 static int
1050 member_init_ok_or_else (tree field, tree type, tree member_name)
1051 {
1052 if (field == error_mark_node)
1053 return 0;
1054 if (!field)
1055 {
1056 error ("class %qT does not have any field named %qD", type,
1057 member_name);
1058 return 0;
1059 }
1060 if (TREE_CODE (field) == VAR_DECL)
1061 {
1062 error ("%q#D is a static data member; it can only be "
1063 "initialized at its definition",
1064 field);
1065 return 0;
1066 }
1067 if (TREE_CODE (field) != FIELD_DECL)
1068 {
1069 error ("%q#D is not a non-static data member of %qT",
1070 field, type);
1071 return 0;
1072 }
1073 if (initializing_context (field) != type)
1074 {
1075 error ("class %qT does not have any field named %qD", type,
1076 member_name);
1077 return 0;
1078 }
1079
1080 return 1;
1081 }
1082
1083 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1084 is a _TYPE node or TYPE_DECL which names a base for that type.
1085 Check the validity of NAME, and return either the base _TYPE, base
1086 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
1087 NULL_TREE and issue a diagnostic.
1088
1089 An old style unnamed direct single base construction is permitted,
1090 where NAME is NULL. */
1091
1092 tree
1093 expand_member_init (tree name)
1094 {
1095 tree basetype;
1096 tree field;
1097
1098 if (!current_class_ref)
1099 return NULL_TREE;
1100
1101 if (!name)
1102 {
1103 /* This is an obsolete unnamed base class initializer. The
1104 parser will already have warned about its use. */
1105 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1106 {
1107 case 0:
1108 error ("unnamed initializer for %qT, which has no base classes",
1109 current_class_type);
1110 return NULL_TREE;
1111 case 1:
1112 basetype = BINFO_TYPE
1113 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1114 break;
1115 default:
1116 error ("unnamed initializer for %qT, which uses multiple inheritance",
1117 current_class_type);
1118 return NULL_TREE;
1119 }
1120 }
1121 else if (TYPE_P (name))
1122 {
1123 basetype = TYPE_MAIN_VARIANT (name);
1124 name = TYPE_NAME (name);
1125 }
1126 else if (TREE_CODE (name) == TYPE_DECL)
1127 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1128 else
1129 basetype = NULL_TREE;
1130
1131 if (basetype)
1132 {
1133 tree class_binfo;
1134 tree direct_binfo;
1135 tree virtual_binfo;
1136 int i;
1137
1138 if (current_template_parms)
1139 return basetype;
1140
1141 class_binfo = TYPE_BINFO (current_class_type);
1142 direct_binfo = NULL_TREE;
1143 virtual_binfo = NULL_TREE;
1144
1145 /* Look for a direct base. */
1146 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1147 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1148 break;
1149
1150 /* Look for a virtual base -- unless the direct base is itself
1151 virtual. */
1152 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1153 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1154
1155 /* [class.base.init]
1156
1157 If a mem-initializer-id is ambiguous because it designates
1158 both a direct non-virtual base class and an inherited virtual
1159 base class, the mem-initializer is ill-formed. */
1160 if (direct_binfo && virtual_binfo)
1161 {
1162 error ("%qD is both a direct base and an indirect virtual base",
1163 basetype);
1164 return NULL_TREE;
1165 }
1166
1167 if (!direct_binfo && !virtual_binfo)
1168 {
1169 if (CLASSTYPE_VBASECLASSES (current_class_type))
1170 error ("type %qT is not a direct or virtual base of %qT",
1171 basetype, current_class_type);
1172 else
1173 error ("type %qT is not a direct base of %qT",
1174 basetype, current_class_type);
1175 return NULL_TREE;
1176 }
1177
1178 return direct_binfo ? direct_binfo : virtual_binfo;
1179 }
1180 else
1181 {
1182 if (TREE_CODE (name) == IDENTIFIER_NODE)
1183 field = lookup_field (current_class_type, name, 1, false);
1184 else
1185 field = name;
1186
1187 if (member_init_ok_or_else (field, current_class_type, name))
1188 return field;
1189 }
1190
1191 return NULL_TREE;
1192 }
1193
1194 /* This is like `expand_member_init', only it stores one aggregate
1195 value into another.
1196
1197 INIT comes in two flavors: it is either a value which
1198 is to be stored in EXP, or it is a parameter list
1199 to go to a constructor, which will operate on EXP.
1200 If INIT is not a parameter list for a constructor, then set
1201 LOOKUP_ONLYCONVERTING.
1202 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1203 the initializer, if FLAGS is 0, then it is the (init) form.
1204 If `init' is a CONSTRUCTOR, then we emit a warning message,
1205 explaining that such initializations are invalid.
1206
1207 If INIT resolves to a CALL_EXPR which happens to return
1208 something of the type we are looking for, then we know
1209 that we can safely use that call to perform the
1210 initialization.
1211
1212 The virtual function table pointer cannot be set up here, because
1213 we do not really know its type.
1214
1215 This never calls operator=().
1216
1217 When initializing, nothing is CONST.
1218
1219 A default copy constructor may have to be used to perform the
1220 initialization.
1221
1222 A constructor or a conversion operator may have to be used to
1223 perform the initialization, but not both, as it would be ambiguous. */
1224
1225 tree
1226 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1227 {
1228 tree stmt_expr;
1229 tree compound_stmt;
1230 int destroy_temps;
1231 tree type = TREE_TYPE (exp);
1232 int was_const = TREE_READONLY (exp);
1233 int was_volatile = TREE_THIS_VOLATILE (exp);
1234 int is_global;
1235
1236 if (init == error_mark_node)
1237 return error_mark_node;
1238
1239 TREE_READONLY (exp) = 0;
1240 TREE_THIS_VOLATILE (exp) = 0;
1241
1242 if (init && TREE_CODE (init) != TREE_LIST)
1243 flags |= LOOKUP_ONLYCONVERTING;
1244
1245 if (TREE_CODE (type) == ARRAY_TYPE)
1246 {
1247 tree itype;
1248
1249 /* An array may not be initialized use the parenthesized
1250 initialization form -- unless the initializer is "()". */
1251 if (init && TREE_CODE (init) == TREE_LIST)
1252 {
1253 if (complain & tf_error)
1254 error ("bad array initializer");
1255 return error_mark_node;
1256 }
1257 /* Must arrange to initialize each element of EXP
1258 from elements of INIT. */
1259 itype = init ? TREE_TYPE (init) : NULL_TREE;
1260 if (cv_qualified_p (type))
1261 TREE_TYPE (exp) = cv_unqualified (type);
1262 if (itype && cv_qualified_p (itype))
1263 TREE_TYPE (init) = cv_unqualified (itype);
1264 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1265 /*explicit_value_init_p=*/false,
1266 itype && same_type_p (TREE_TYPE (init),
1267 TREE_TYPE (exp)),
1268 complain);
1269 TREE_READONLY (exp) = was_const;
1270 TREE_THIS_VOLATILE (exp) = was_volatile;
1271 TREE_TYPE (exp) = type;
1272 if (init)
1273 TREE_TYPE (init) = itype;
1274 return stmt_expr;
1275 }
1276
1277 if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1278 /* Just know that we've seen something for this node. */
1279 TREE_USED (exp) = 1;
1280
1281 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1282 destroy_temps = stmts_are_full_exprs_p ();
1283 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1284 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1285 init, LOOKUP_NORMAL|flags, complain);
1286 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1287 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1288 TREE_READONLY (exp) = was_const;
1289 TREE_THIS_VOLATILE (exp) = was_volatile;
1290
1291 return stmt_expr;
1292 }
1293
1294 static void
1295 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1296 tsubst_flags_t complain)
1297 {
1298 tree type = TREE_TYPE (exp);
1299 tree ctor_name;
1300
1301 /* It fails because there may not be a constructor which takes
1302 its own type as the first (or only parameter), but which does
1303 take other types via a conversion. So, if the thing initializing
1304 the expression is a unit element of type X, first try X(X&),
1305 followed by initialization by X. If neither of these work
1306 out, then look hard. */
1307 tree rval;
1308 VEC(tree,gc) *parms;
1309
1310 if (init && TREE_CODE (init) != TREE_LIST
1311 && (flags & LOOKUP_ONLYCONVERTING))
1312 {
1313 /* Base subobjects should only get direct-initialization. */
1314 gcc_assert (true_exp == exp);
1315
1316 if (flags & DIRECT_BIND)
1317 /* Do nothing. We hit this in two cases: Reference initialization,
1318 where we aren't initializing a real variable, so we don't want
1319 to run a new constructor; and catching an exception, where we
1320 have already built up the constructor call so we could wrap it
1321 in an exception region. */;
1322 else if (BRACE_ENCLOSED_INITIALIZER_P (init)
1323 && CP_AGGREGATE_TYPE_P (type))
1324 {
1325 /* A brace-enclosed initializer for an aggregate. */
1326 init = digest_init (type, init);
1327 }
1328 else
1329 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
1330
1331 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1332 /* We need to protect the initialization of a catch parm with a
1333 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1334 around the TARGET_EXPR for the copy constructor. See
1335 initialize_handler_parm. */
1336 {
1337 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1338 TREE_OPERAND (init, 0));
1339 TREE_TYPE (init) = void_type_node;
1340 }
1341 else
1342 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1343 TREE_SIDE_EFFECTS (init) = 1;
1344 finish_expr_stmt (init);
1345 return;
1346 }
1347
1348 if (init == NULL_TREE)
1349 parms = NULL;
1350 else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
1351 {
1352 parms = make_tree_vector ();
1353 for (; init != NULL_TREE; init = TREE_CHAIN (init))
1354 VEC_safe_push (tree, gc, parms, TREE_VALUE (init));
1355 }
1356 else
1357 parms = make_tree_vector_single (init);
1358
1359 if (true_exp == exp)
1360 ctor_name = complete_ctor_identifier;
1361 else
1362 ctor_name = base_ctor_identifier;
1363
1364 rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
1365 complain);
1366
1367 if (parms != NULL)
1368 release_tree_vector (parms);
1369
1370 if (TREE_SIDE_EFFECTS (rval))
1371 finish_expr_stmt (convert_to_void (rval, NULL, complain));
1372 }
1373
1374 /* This function is responsible for initializing EXP with INIT
1375 (if any).
1376
1377 BINFO is the binfo of the type for who we are performing the
1378 initialization. For example, if W is a virtual base class of A and B,
1379 and C : A, B.
1380 If we are initializing B, then W must contain B's W vtable, whereas
1381 were we initializing C, W must contain C's W vtable.
1382
1383 TRUE_EXP is nonzero if it is the true expression being initialized.
1384 In this case, it may be EXP, or may just contain EXP. The reason we
1385 need this is because if EXP is a base element of TRUE_EXP, we
1386 don't necessarily know by looking at EXP where its virtual
1387 baseclass fields should really be pointing. But we do know
1388 from TRUE_EXP. In constructors, we don't know anything about
1389 the value being initialized.
1390
1391 FLAGS is just passed to `build_new_method_call'. See that function
1392 for its description. */
1393
1394 static void
1395 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
1396 tsubst_flags_t complain)
1397 {
1398 tree type = TREE_TYPE (exp);
1399
1400 gcc_assert (init != error_mark_node && type != error_mark_node);
1401 gcc_assert (building_stmt_tree ());
1402
1403 /* Use a function returning the desired type to initialize EXP for us.
1404 If the function is a constructor, and its first argument is
1405 NULL_TREE, know that it was meant for us--just slide exp on
1406 in and expand the constructor. Constructors now come
1407 as TARGET_EXPRs. */
1408
1409 if (init && TREE_CODE (exp) == VAR_DECL
1410 && COMPOUND_LITERAL_P (init))
1411 {
1412 /* If store_init_value returns NULL_TREE, the INIT has been
1413 recorded as the DECL_INITIAL for EXP. That means there's
1414 nothing more we have to do. */
1415 init = store_init_value (exp, init, flags);
1416 if (init)
1417 finish_expr_stmt (init);
1418 return;
1419 }
1420
1421 /* If an explicit -- but empty -- initializer list was present,
1422 that's value-initialization. */
1423 if (init == void_type_node)
1424 {
1425 /* If there's a user-provided constructor, we just call that. */
1426 if (type_has_user_provided_constructor (type))
1427 /* Fall through. */;
1428 /* If there isn't, but we still need to call the constructor,
1429 zero out the object first. */
1430 else if (TYPE_NEEDS_CONSTRUCTING (type))
1431 {
1432 init = build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
1433 init = build2 (INIT_EXPR, type, exp, init);
1434 finish_expr_stmt (init);
1435 /* And then call the constructor. */
1436 }
1437 /* If we don't need to mess with the constructor at all,
1438 then just zero out the object and we're done. */
1439 else
1440 {
1441 init = build2 (INIT_EXPR, type, exp, build_value_init_noctor (type));
1442 finish_expr_stmt (init);
1443 return;
1444 }
1445 init = NULL_TREE;
1446 }
1447
1448 /* We know that expand_default_init can handle everything we want
1449 at this point. */
1450 expand_default_init (binfo, true_exp, exp, init, flags, complain);
1451 }
1452
1453 /* Report an error if TYPE is not a user-defined, class type. If
1454 OR_ELSE is nonzero, give an error message. */
1455
1456 int
1457 is_class_type (tree type, int or_else)
1458 {
1459 if (type == error_mark_node)
1460 return 0;
1461
1462 if (! CLASS_TYPE_P (type))
1463 {
1464 if (or_else)
1465 error ("%qT is not a class type", type);
1466 return 0;
1467 }
1468 return 1;
1469 }
1470
1471 tree
1472 get_type_value (tree name)
1473 {
1474 if (name == error_mark_node)
1475 return NULL_TREE;
1476
1477 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1478 return IDENTIFIER_TYPE_VALUE (name);
1479 else
1480 return NULL_TREE;
1481 }
1482
1483 /* Build a reference to a member of an aggregate. This is not a C++
1484 `&', but really something which can have its address taken, and
1485 then act as a pointer to member, for example TYPE :: FIELD can have
1486 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1487 this expression is the operand of "&".
1488
1489 @@ Prints out lousy diagnostics for operator <typename>
1490 @@ fields.
1491
1492 @@ This function should be rewritten and placed in search.c. */
1493
1494 tree
1495 build_offset_ref (tree type, tree member, bool address_p)
1496 {
1497 tree decl;
1498 tree basebinfo = NULL_TREE;
1499
1500 /* class templates can come in as TEMPLATE_DECLs here. */
1501 if (TREE_CODE (member) == TEMPLATE_DECL)
1502 return member;
1503
1504 if (dependent_type_p (type) || type_dependent_expression_p (member))
1505 return build_qualified_name (NULL_TREE, type, member,
1506 /*template_p=*/false);
1507
1508 gcc_assert (TYPE_P (type));
1509 if (! is_class_type (type, 1))
1510 return error_mark_node;
1511
1512 gcc_assert (DECL_P (member) || BASELINK_P (member));
1513 /* Callers should call mark_used before this point. */
1514 gcc_assert (!DECL_P (member) || TREE_USED (member));
1515
1516 if (!COMPLETE_TYPE_P (complete_type (type))
1517 && !TYPE_BEING_DEFINED (type))
1518 {
1519 error ("incomplete type %qT does not have member %qD", type, member);
1520 return error_mark_node;
1521 }
1522
1523 /* Entities other than non-static members need no further
1524 processing. */
1525 if (TREE_CODE (member) == TYPE_DECL)
1526 return member;
1527 if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
1528 return convert_from_reference (member);
1529
1530 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1531 {
1532 error ("invalid pointer to bit-field %qD", member);
1533 return error_mark_node;
1534 }
1535
1536 /* Set up BASEBINFO for member lookup. */
1537 decl = maybe_dummy_object (type, &basebinfo);
1538
1539 /* A lot of this logic is now handled in lookup_member. */
1540 if (BASELINK_P (member))
1541 {
1542 /* Go from the TREE_BASELINK to the member function info. */
1543 tree t = BASELINK_FUNCTIONS (member);
1544
1545 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1546 {
1547 /* Get rid of a potential OVERLOAD around it. */
1548 t = OVL_CURRENT (t);
1549
1550 /* Unique functions are handled easily. */
1551
1552 /* For non-static member of base class, we need a special rule
1553 for access checking [class.protected]:
1554
1555 If the access is to form a pointer to member, the
1556 nested-name-specifier shall name the derived class
1557 (or any class derived from that class). */
1558 if (address_p && DECL_P (t)
1559 && DECL_NONSTATIC_MEMBER_P (t))
1560 perform_or_defer_access_check (TYPE_BINFO (type), t, t);
1561 else
1562 perform_or_defer_access_check (basebinfo, t, t);
1563
1564 if (DECL_STATIC_FUNCTION_P (t))
1565 return t;
1566 member = t;
1567 }
1568 else
1569 TREE_TYPE (member) = unknown_type_node;
1570 }
1571 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1572 /* We need additional test besides the one in
1573 check_accessibility_of_qualified_id in case it is
1574 a pointer to non-static member. */
1575 perform_or_defer_access_check (TYPE_BINFO (type), member, member);
1576
1577 if (!address_p)
1578 {
1579 /* If MEMBER is non-static, then the program has fallen afoul of
1580 [expr.prim]:
1581
1582 An id-expression that denotes a nonstatic data member or
1583 nonstatic member function of a class can only be used:
1584
1585 -- as part of a class member access (_expr.ref_) in which the
1586 object-expression refers to the member's class or a class
1587 derived from that class, or
1588
1589 -- to form a pointer to member (_expr.unary.op_), or
1590
1591 -- in the body of a nonstatic member function of that class or
1592 of a class derived from that class (_class.mfct.nonstatic_), or
1593
1594 -- in a mem-initializer for a constructor for that class or for
1595 a class derived from that class (_class.base.init_). */
1596 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1597 {
1598 /* Build a representation of the qualified name suitable
1599 for use as the operand to "&" -- even though the "&" is
1600 not actually present. */
1601 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1602 /* In Microsoft mode, treat a non-static member function as if
1603 it were a pointer-to-member. */
1604 if (flag_ms_extensions)
1605 {
1606 PTRMEM_OK_P (member) = 1;
1607 return cp_build_unary_op (ADDR_EXPR, member, 0,
1608 tf_warning_or_error);
1609 }
1610 error ("invalid use of non-static member function %qD",
1611 TREE_OPERAND (member, 1));
1612 return error_mark_node;
1613 }
1614 else if (TREE_CODE (member) == FIELD_DECL)
1615 {
1616 error ("invalid use of non-static data member %qD", member);
1617 return error_mark_node;
1618 }
1619 return member;
1620 }
1621
1622 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1623 PTRMEM_OK_P (member) = 1;
1624 return member;
1625 }
1626
1627 /* If DECL is a scalar enumeration constant or variable with a
1628 constant initializer, return the initializer (or, its initializers,
1629 recursively); otherwise, return DECL. If INTEGRAL_P, the
1630 initializer is only returned if DECL is an integral
1631 constant-expression. */
1632
1633 static tree
1634 constant_value_1 (tree decl, bool integral_p)
1635 {
1636 while (TREE_CODE (decl) == CONST_DECL
1637 || (integral_p
1638 ? DECL_INTEGRAL_CONSTANT_VAR_P (decl)
1639 : (TREE_CODE (decl) == VAR_DECL
1640 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
1641 {
1642 tree init;
1643 /* Static data members in template classes may have
1644 non-dependent initializers. References to such non-static
1645 data members are not value-dependent, so we must retrieve the
1646 initializer here. The DECL_INITIAL will have the right type,
1647 but will not have been folded because that would prevent us
1648 from performing all appropriate semantic checks at
1649 instantiation time. */
1650 if (DECL_CLASS_SCOPE_P (decl)
1651 && CLASSTYPE_TEMPLATE_INFO (DECL_CONTEXT (decl))
1652 && uses_template_parms (CLASSTYPE_TI_ARGS
1653 (DECL_CONTEXT (decl))))
1654 {
1655 ++processing_template_decl;
1656 init = fold_non_dependent_expr (DECL_INITIAL (decl));
1657 --processing_template_decl;
1658 }
1659 else
1660 {
1661 /* If DECL is a static data member in a template
1662 specialization, we must instantiate it here. The
1663 initializer for the static data member is not processed
1664 until needed; we need it now. */
1665 mark_used (decl);
1666 init = DECL_INITIAL (decl);
1667 }
1668 if (init == error_mark_node)
1669 {
1670 if (DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
1671 /* Treat the error as a constant to avoid cascading errors on
1672 excessively recursive template instantiation (c++/9335). */
1673 return init;
1674 else
1675 return decl;
1676 }
1677 /* Initializers in templates are generally expanded during
1678 instantiation, so before that for const int i(2)
1679 INIT is a TREE_LIST with the actual initializer as
1680 TREE_VALUE. */
1681 if (processing_template_decl
1682 && init
1683 && TREE_CODE (init) == TREE_LIST
1684 && TREE_CHAIN (init) == NULL_TREE)
1685 init = TREE_VALUE (init);
1686 if (!init
1687 || !TREE_TYPE (init)
1688 || (integral_p
1689 ? !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (init))
1690 : (!TREE_CONSTANT (init)
1691 /* Do not return an aggregate constant (of which
1692 string literals are a special case), as we do not
1693 want to make inadvertent copies of such entities,
1694 and we must be sure that their addresses are the
1695 same everywhere. */
1696 || TREE_CODE (init) == CONSTRUCTOR
1697 || TREE_CODE (init) == STRING_CST)))
1698 break;
1699 decl = unshare_expr (init);
1700 }
1701 return decl;
1702 }
1703
1704 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by
1705 constant of integral or enumeration type, then return that value.
1706 These are those variables permitted in constant expressions by
1707 [5.19/1]. */
1708
1709 tree
1710 integral_constant_value (tree decl)
1711 {
1712 return constant_value_1 (decl, /*integral_p=*/true);
1713 }
1714
1715 /* A more relaxed version of integral_constant_value, used by the
1716 common C/C++ code and by the C++ front end for optimization
1717 purposes. */
1718
1719 tree
1720 decl_constant_value (tree decl)
1721 {
1722 return constant_value_1 (decl,
1723 /*integral_p=*/processing_template_decl);
1724 }
1725 \f
1726 /* Common subroutines of build_new and build_vec_delete. */
1727
1728 /* Call the global __builtin_delete to delete ADDR. */
1729
1730 static tree
1731 build_builtin_delete_call (tree addr)
1732 {
1733 mark_used (global_delete_fndecl);
1734 return build_call_n (global_delete_fndecl, 1, addr);
1735 }
1736 \f
1737 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
1738 the type of the object being allocated; otherwise, it's just TYPE.
1739 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
1740 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
1741 a vector of arguments to be provided as arguments to a placement
1742 new operator. This routine performs no semantic checks; it just
1743 creates and returns a NEW_EXPR. */
1744
1745 static tree
1746 build_raw_new_expr (VEC(tree,gc) *placement, tree type, tree nelts,
1747 VEC(tree,gc) *init, int use_global_new)
1748 {
1749 tree init_list;
1750 tree new_expr;
1751
1752 /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
1753 If INIT is not NULL, then we want to store VOID_ZERO_NODE. This
1754 permits us to distinguish the case of a missing initializer "new
1755 int" from an empty initializer "new int()". */
1756 if (init == NULL)
1757 init_list = NULL_TREE;
1758 else if (VEC_empty (tree, init))
1759 init_list = void_zero_node;
1760 else
1761 init_list = build_tree_list_vec (init);
1762
1763 new_expr = build4 (NEW_EXPR, build_pointer_type (type),
1764 build_tree_list_vec (placement), type, nelts,
1765 init_list);
1766 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
1767 TREE_SIDE_EFFECTS (new_expr) = 1;
1768
1769 return new_expr;
1770 }
1771
1772 /* Diagnose uninitialized const members or reference members of type
1773 TYPE. USING_NEW is used to disambiguate the diagnostic between a
1774 new expression without a new-initializer and a declaration */
1775
1776 static void
1777 diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin,
1778 bool using_new)
1779 {
1780 tree field;
1781
1782 if (type_has_user_provided_constructor (type))
1783 return;
1784
1785 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1786 {
1787 tree field_type;
1788
1789 if (TREE_CODE (field) != FIELD_DECL)
1790 continue;
1791
1792 field_type = strip_array_types (TREE_TYPE (field));
1793
1794 if (TREE_CODE (field_type) == REFERENCE_TYPE)
1795 {
1796 if (using_new)
1797 error ("uninitialized reference member in %q#T "
1798 "using %<new%> without new-initializer", origin);
1799 else
1800 error ("uninitialized reference member in %q#T", origin);
1801 inform (DECL_SOURCE_LOCATION (field),
1802 "%qD should be initialized", field);
1803 }
1804
1805 if (CP_TYPE_CONST_P (field_type))
1806 {
1807 if (using_new)
1808 error ("uninitialized const member in %q#T "
1809 "using %<new%> without new-initializer", origin);
1810 else
1811 error ("uninitialized const member in %q#T", origin);
1812 inform (DECL_SOURCE_LOCATION (field),
1813 "%qD should be initialized", field);
1814 }
1815
1816 if (CLASS_TYPE_P (field_type))
1817 diagnose_uninitialized_cst_or_ref_member_1 (field_type,
1818 origin, using_new);
1819 }
1820 }
1821
1822 void
1823 diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new)
1824 {
1825 diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new);
1826 }
1827
1828 /* Generate code for a new-expression, including calling the "operator
1829 new" function, initializing the object, and, if an exception occurs
1830 during construction, cleaning up. The arguments are as for
1831 build_raw_new_expr. This may change PLACEMENT and INIT. */
1832
1833 static tree
1834 build_new_1 (VEC(tree,gc) **placement, tree type, tree nelts,
1835 VEC(tree,gc) **init, bool globally_qualified_p,
1836 tsubst_flags_t complain)
1837 {
1838 tree size, rval;
1839 /* True iff this is a call to "operator new[]" instead of just
1840 "operator new". */
1841 bool array_p = false;
1842 /* If ARRAY_P is true, the element type of the array. This is never
1843 an ARRAY_TYPE; for something like "new int[3][4]", the
1844 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
1845 TYPE. */
1846 tree elt_type;
1847 /* The type of the new-expression. (This type is always a pointer
1848 type.) */
1849 tree pointer_type;
1850 tree non_const_pointer_type;
1851 tree outer_nelts = NULL_TREE;
1852 tree alloc_call, alloc_expr;
1853 /* The address returned by the call to "operator new". This node is
1854 a VAR_DECL and is therefore reusable. */
1855 tree alloc_node;
1856 tree alloc_fn;
1857 tree cookie_expr, init_expr;
1858 int nothrow, check_new;
1859 int use_java_new = 0;
1860 /* If non-NULL, the number of extra bytes to allocate at the
1861 beginning of the storage allocated for an array-new expression in
1862 order to store the number of elements. */
1863 tree cookie_size = NULL_TREE;
1864 tree placement_first;
1865 tree placement_expr = NULL_TREE;
1866 /* True if the function we are calling is a placement allocation
1867 function. */
1868 bool placement_allocation_fn_p;
1869 /* True if the storage must be initialized, either by a constructor
1870 or due to an explicit new-initializer. */
1871 bool is_initialized;
1872 /* The address of the thing allocated, not including any cookie. In
1873 particular, if an array cookie is in use, DATA_ADDR is the
1874 address of the first array element. This node is a VAR_DECL, and
1875 is therefore reusable. */
1876 tree data_addr;
1877 tree init_preeval_expr = NULL_TREE;
1878
1879 if (nelts)
1880 {
1881 outer_nelts = nelts;
1882 array_p = true;
1883 }
1884 else if (TREE_CODE (type) == ARRAY_TYPE)
1885 {
1886 array_p = true;
1887 nelts = array_type_nelts_top (type);
1888 outer_nelts = nelts;
1889 type = TREE_TYPE (type);
1890 }
1891
1892 /* If our base type is an array, then make sure we know how many elements
1893 it has. */
1894 for (elt_type = type;
1895 TREE_CODE (elt_type) == ARRAY_TYPE;
1896 elt_type = TREE_TYPE (elt_type))
1897 nelts = cp_build_binary_op (input_location,
1898 MULT_EXPR, nelts,
1899 array_type_nelts_top (elt_type),
1900 complain);
1901
1902 if (TREE_CODE (elt_type) == VOID_TYPE)
1903 {
1904 if (complain & tf_error)
1905 error ("invalid type %<void%> for new");
1906 return error_mark_node;
1907 }
1908
1909 if (abstract_virtuals_error (NULL_TREE, elt_type))
1910 return error_mark_node;
1911
1912 is_initialized = (TYPE_NEEDS_CONSTRUCTING (elt_type) || *init != NULL);
1913
1914 if (*init == NULL)
1915 {
1916 bool maybe_uninitialized_error = false;
1917 /* A program that calls for default-initialization [...] of an
1918 entity of reference type is ill-formed. */
1919 if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type))
1920 maybe_uninitialized_error = true;
1921
1922 /* A new-expression that creates an object of type T initializes
1923 that object as follows:
1924 - If the new-initializer is omitted:
1925 -- If T is a (possibly cv-qualified) non-POD class type
1926 (or array thereof), the object is default-initialized (8.5).
1927 [...]
1928 -- Otherwise, the object created has indeterminate
1929 value. If T is a const-qualified type, or a (possibly
1930 cv-qualified) POD class type (or array thereof)
1931 containing (directly or indirectly) a member of
1932 const-qualified type, the program is ill-formed; */
1933
1934 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type))
1935 maybe_uninitialized_error = true;
1936
1937 if (maybe_uninitialized_error)
1938 {
1939 if (complain & tf_error)
1940 diagnose_uninitialized_cst_or_ref_member (elt_type,
1941 /*using_new*/true);
1942 return error_mark_node;
1943 }
1944 }
1945
1946 if (CP_TYPE_CONST_P (elt_type) && *init == NULL
1947 && !type_has_user_provided_default_constructor (elt_type))
1948 {
1949 if (complain & tf_error)
1950 error ("uninitialized const in %<new%> of %q#T", elt_type);
1951 return error_mark_node;
1952 }
1953
1954 size = size_in_bytes (elt_type);
1955 if (array_p)
1956 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
1957
1958 alloc_fn = NULL_TREE;
1959
1960 /* If PLACEMENT is a single simple pointer type not passed by
1961 reference, prepare to capture it in a temporary variable. Do
1962 this now, since PLACEMENT will change in the calls below. */
1963 placement_first = NULL_TREE;
1964 if (VEC_length (tree, *placement) == 1
1965 && (TREE_CODE (TREE_TYPE (VEC_index (tree, *placement, 0)))
1966 == POINTER_TYPE))
1967 placement_first = VEC_index (tree, *placement, 0);
1968
1969 /* Allocate the object. */
1970 if (VEC_empty (tree, *placement) && TYPE_FOR_JAVA (elt_type))
1971 {
1972 tree class_addr;
1973 tree class_decl = build_java_class_ref (elt_type);
1974 static const char alloc_name[] = "_Jv_AllocObject";
1975
1976 if (class_decl == error_mark_node)
1977 return error_mark_node;
1978
1979 use_java_new = 1;
1980 if (!get_global_value_if_present (get_identifier (alloc_name),
1981 &alloc_fn))
1982 {
1983 if (complain & tf_error)
1984 error ("call to Java constructor with %qs undefined", alloc_name);
1985 return error_mark_node;
1986 }
1987 else if (really_overloaded_fn (alloc_fn))
1988 {
1989 if (complain & tf_error)
1990 error ("%qD should never be overloaded", alloc_fn);
1991 return error_mark_node;
1992 }
1993 alloc_fn = OVL_CURRENT (alloc_fn);
1994 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
1995 alloc_call = (cp_build_function_call
1996 (alloc_fn,
1997 build_tree_list (NULL_TREE, class_addr),
1998 complain));
1999 }
2000 else if (TYPE_FOR_JAVA (elt_type) && MAYBE_CLASS_TYPE_P (elt_type))
2001 {
2002 error ("Java class %q#T object allocated using placement new", elt_type);
2003 return error_mark_node;
2004 }
2005 else
2006 {
2007 tree fnname;
2008 tree fns;
2009
2010 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
2011
2012 if (!globally_qualified_p
2013 && CLASS_TYPE_P (elt_type)
2014 && (array_p
2015 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
2016 : TYPE_HAS_NEW_OPERATOR (elt_type)))
2017 {
2018 /* Use a class-specific operator new. */
2019 /* If a cookie is required, add some extra space. */
2020 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
2021 {
2022 cookie_size = targetm.cxx.get_cookie_size (elt_type);
2023 size = size_binop (PLUS_EXPR, size, cookie_size);
2024 }
2025 /* Create the argument list. */
2026 VEC_safe_insert (tree, gc, *placement, 0, size);
2027 /* Do name-lookup to find the appropriate operator. */
2028 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
2029 if (fns == NULL_TREE)
2030 {
2031 if (complain & tf_error)
2032 error ("no suitable %qD found in class %qT", fnname, elt_type);
2033 return error_mark_node;
2034 }
2035 if (TREE_CODE (fns) == TREE_LIST)
2036 {
2037 if (complain & tf_error)
2038 {
2039 error ("request for member %qD is ambiguous", fnname);
2040 print_candidates (fns);
2041 }
2042 return error_mark_node;
2043 }
2044 alloc_call = build_new_method_call (build_dummy_object (elt_type),
2045 fns, placement,
2046 /*conversion_path=*/NULL_TREE,
2047 LOOKUP_NORMAL,
2048 &alloc_fn,
2049 complain);
2050 }
2051 else
2052 {
2053 /* Use a global operator new. */
2054 /* See if a cookie might be required. */
2055 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
2056 cookie_size = targetm.cxx.get_cookie_size (elt_type);
2057 else
2058 cookie_size = NULL_TREE;
2059
2060 alloc_call = build_operator_new_call (fnname, placement,
2061 &size, &cookie_size,
2062 &alloc_fn);
2063 }
2064 }
2065
2066 if (alloc_call == error_mark_node)
2067 return error_mark_node;
2068
2069 gcc_assert (alloc_fn != NULL_TREE);
2070
2071 /* If we found a simple case of PLACEMENT_EXPR above, then copy it
2072 into a temporary variable. */
2073 if (!processing_template_decl
2074 && placement_first != NULL_TREE
2075 && TREE_CODE (alloc_call) == CALL_EXPR
2076 && call_expr_nargs (alloc_call) == 2
2077 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
2078 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))) == POINTER_TYPE)
2079 {
2080 tree placement_arg = CALL_EXPR_ARG (alloc_call, 1);
2081
2082 if (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg)))
2083 || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg))))
2084 {
2085 placement_expr = get_target_expr (placement_first);
2086 CALL_EXPR_ARG (alloc_call, 1)
2087 = convert (TREE_TYPE (placement_arg), placement_expr);
2088 }
2089 }
2090
2091 /* In the simple case, we can stop now. */
2092 pointer_type = build_pointer_type (type);
2093 if (!cookie_size && !is_initialized)
2094 return build_nop (pointer_type, alloc_call);
2095
2096 /* Store the result of the allocation call in a variable so that we can
2097 use it more than once. */
2098 alloc_expr = get_target_expr (alloc_call);
2099 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
2100
2101 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
2102 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
2103 alloc_call = TREE_OPERAND (alloc_call, 1);
2104
2105 /* Now, check to see if this function is actually a placement
2106 allocation function. This can happen even when PLACEMENT is NULL
2107 because we might have something like:
2108
2109 struct S { void* operator new (size_t, int i = 0); };
2110
2111 A call to `new S' will get this allocation function, even though
2112 there is no explicit placement argument. If there is more than
2113 one argument, or there are variable arguments, then this is a
2114 placement allocation function. */
2115 placement_allocation_fn_p
2116 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
2117 || varargs_function_p (alloc_fn));
2118
2119 /* Preevaluate the placement args so that we don't reevaluate them for a
2120 placement delete. */
2121 if (placement_allocation_fn_p)
2122 {
2123 tree inits;
2124 stabilize_call (alloc_call, &inits);
2125 if (inits)
2126 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
2127 alloc_expr);
2128 }
2129
2130 /* unless an allocation function is declared with an empty excep-
2131 tion-specification (_except.spec_), throw(), it indicates failure to
2132 allocate storage by throwing a bad_alloc exception (clause _except_,
2133 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
2134 cation function is declared with an empty exception-specification,
2135 throw(), it returns null to indicate failure to allocate storage and a
2136 non-null pointer otherwise.
2137
2138 So check for a null exception spec on the op new we just called. */
2139
2140 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
2141 check_new = (flag_check_new || nothrow) && ! use_java_new;
2142
2143 if (cookie_size)
2144 {
2145 tree cookie;
2146 tree cookie_ptr;
2147 tree size_ptr_type;
2148
2149 /* Adjust so we're pointing to the start of the object. */
2150 data_addr = build2 (POINTER_PLUS_EXPR, TREE_TYPE (alloc_node),
2151 alloc_node, cookie_size);
2152
2153 /* Store the number of bytes allocated so that we can know how
2154 many elements to destroy later. We use the last sizeof
2155 (size_t) bytes to store the number of elements. */
2156 cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
2157 cookie_ptr = fold_build2_loc (input_location,
2158 POINTER_PLUS_EXPR, TREE_TYPE (alloc_node),
2159 alloc_node, cookie_ptr);
2160 size_ptr_type = build_pointer_type (sizetype);
2161 cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
2162 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2163
2164 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
2165
2166 if (targetm.cxx.cookie_has_size ())
2167 {
2168 /* Also store the element size. */
2169 cookie_ptr = build2 (POINTER_PLUS_EXPR, size_ptr_type, cookie_ptr,
2170 fold_build1_loc (input_location,
2171 NEGATE_EXPR, sizetype,
2172 size_in_bytes (sizetype)));
2173
2174 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2175 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
2176 size_in_bytes (elt_type));
2177 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
2178 cookie, cookie_expr);
2179 }
2180 }
2181 else
2182 {
2183 cookie_expr = NULL_TREE;
2184 data_addr = alloc_node;
2185 }
2186
2187 /* Now use a pointer to the type we've actually allocated. */
2188
2189 /* But we want to operate on a non-const version to start with,
2190 since we'll be modifying the elements. */
2191 non_const_pointer_type = build_pointer_type
2192 (cp_build_qualified_type (type, TYPE_QUALS (type) & ~TYPE_QUAL_CONST));
2193
2194 data_addr = fold_convert (non_const_pointer_type, data_addr);
2195 /* Any further uses of alloc_node will want this type, too. */
2196 alloc_node = fold_convert (non_const_pointer_type, alloc_node);
2197
2198 /* Now initialize the allocated object. Note that we preevaluate the
2199 initialization expression, apart from the actual constructor call or
2200 assignment--we do this because we want to delay the allocation as long
2201 as possible in order to minimize the size of the exception region for
2202 placement delete. */
2203 if (is_initialized)
2204 {
2205 bool stable;
2206 bool explicit_value_init_p = false;
2207
2208 if (*init != NULL && VEC_empty (tree, *init))
2209 {
2210 *init = NULL;
2211 explicit_value_init_p = true;
2212 }
2213
2214 if (array_p)
2215 {
2216 tree vecinit = NULL_TREE;
2217 if (*init && VEC_length (tree, *init) == 1
2218 && BRACE_ENCLOSED_INITIALIZER_P (VEC_index (tree, *init, 0))
2219 && CONSTRUCTOR_IS_DIRECT_INIT (VEC_index (tree, *init, 0)))
2220 {
2221 tree arraytype, domain;
2222 vecinit = VEC_index (tree, *init, 0);
2223 if (TREE_CONSTANT (nelts))
2224 domain = compute_array_index_type (NULL_TREE, nelts);
2225 else
2226 {
2227 domain = NULL_TREE;
2228 if (CONSTRUCTOR_NELTS (vecinit) > 0)
2229 warning (0, "non-constant array size in new, unable to "
2230 "verify length of initializer-list");
2231 }
2232 arraytype = build_cplus_array_type (type, domain);
2233 vecinit = digest_init (arraytype, vecinit);
2234 }
2235 else if (*init)
2236 {
2237 if (complain & tf_error)
2238 permerror (input_location, "ISO C++ forbids initialization in array new");
2239 else
2240 return error_mark_node;
2241 vecinit = build_tree_list_vec (*init);
2242 }
2243 init_expr
2244 = build_vec_init (data_addr,
2245 cp_build_binary_op (input_location,
2246 MINUS_EXPR, outer_nelts,
2247 integer_one_node,
2248 complain),
2249 vecinit,
2250 explicit_value_init_p,
2251 /*from_array=*/0,
2252 complain);
2253
2254 /* An array initialization is stable because the initialization
2255 of each element is a full-expression, so the temporaries don't
2256 leak out. */
2257 stable = true;
2258 }
2259 else
2260 {
2261 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
2262
2263 if (TYPE_NEEDS_CONSTRUCTING (type) && !explicit_value_init_p)
2264 {
2265 init_expr = build_special_member_call (init_expr,
2266 complete_ctor_identifier,
2267 init, elt_type,
2268 LOOKUP_NORMAL,
2269 complain);
2270 }
2271 else if (explicit_value_init_p)
2272 {
2273 /* Something like `new int()'. */
2274 init_expr = build2 (INIT_EXPR, type,
2275 init_expr, build_value_init (type));
2276 }
2277 else
2278 {
2279 tree ie;
2280
2281 /* We are processing something like `new int (10)', which
2282 means allocate an int, and initialize it with 10. */
2283
2284 ie = build_x_compound_expr_from_vec (*init, "new initializer");
2285 init_expr = cp_build_modify_expr (init_expr, INIT_EXPR, ie,
2286 complain);
2287 }
2288 stable = stabilize_init (init_expr, &init_preeval_expr);
2289 }
2290
2291 if (init_expr == error_mark_node)
2292 return error_mark_node;
2293
2294 /* If any part of the object initialization terminates by throwing an
2295 exception and a suitable deallocation function can be found, the
2296 deallocation function is called to free the memory in which the
2297 object was being constructed, after which the exception continues
2298 to propagate in the context of the new-expression. If no
2299 unambiguous matching deallocation function can be found,
2300 propagating the exception does not cause the object's memory to be
2301 freed. */
2302 if (flag_exceptions && ! use_java_new)
2303 {
2304 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
2305 tree cleanup;
2306
2307 /* The Standard is unclear here, but the right thing to do
2308 is to use the same method for finding deallocation
2309 functions that we use for finding allocation functions. */
2310 cleanup = (build_op_delete_call
2311 (dcode,
2312 alloc_node,
2313 size,
2314 globally_qualified_p,
2315 placement_allocation_fn_p ? alloc_call : NULL_TREE,
2316 alloc_fn));
2317
2318 if (!cleanup)
2319 /* We're done. */;
2320 else if (stable)
2321 /* This is much simpler if we were able to preevaluate all of
2322 the arguments to the constructor call. */
2323 {
2324 /* CLEANUP is compiler-generated, so no diagnostics. */
2325 TREE_NO_WARNING (cleanup) = true;
2326 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
2327 init_expr, cleanup);
2328 /* Likewise, this try-catch is compiler-generated. */
2329 TREE_NO_WARNING (init_expr) = true;
2330 }
2331 else
2332 /* Ack! First we allocate the memory. Then we set our sentry
2333 variable to true, and expand a cleanup that deletes the
2334 memory if sentry is true. Then we run the constructor, and
2335 finally clear the sentry.
2336
2337 We need to do this because we allocate the space first, so
2338 if there are any temporaries with cleanups in the
2339 constructor args and we weren't able to preevaluate them, we
2340 need this EH region to extend until end of full-expression
2341 to preserve nesting. */
2342 {
2343 tree end, sentry, begin;
2344
2345 begin = get_target_expr (boolean_true_node);
2346 CLEANUP_EH_ONLY (begin) = 1;
2347
2348 sentry = TARGET_EXPR_SLOT (begin);
2349
2350 /* CLEANUP is compiler-generated, so no diagnostics. */
2351 TREE_NO_WARNING (cleanup) = true;
2352
2353 TARGET_EXPR_CLEANUP (begin)
2354 = build3 (COND_EXPR, void_type_node, sentry,
2355 cleanup, void_zero_node);
2356
2357 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
2358 sentry, boolean_false_node);
2359
2360 init_expr
2361 = build2 (COMPOUND_EXPR, void_type_node, begin,
2362 build2 (COMPOUND_EXPR, void_type_node, init_expr,
2363 end));
2364 /* Likewise, this is compiler-generated. */
2365 TREE_NO_WARNING (init_expr) = true;
2366 }
2367 }
2368 }
2369 else
2370 init_expr = NULL_TREE;
2371
2372 /* Now build up the return value in reverse order. */
2373
2374 rval = data_addr;
2375
2376 if (init_expr)
2377 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2378 if (cookie_expr)
2379 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2380
2381 if (rval == data_addr)
2382 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2383 and return the call (which doesn't need to be adjusted). */
2384 rval = TARGET_EXPR_INITIAL (alloc_expr);
2385 else
2386 {
2387 if (check_new)
2388 {
2389 tree ifexp = cp_build_binary_op (input_location,
2390 NE_EXPR, alloc_node,
2391 integer_zero_node,
2392 complain);
2393 rval = build_conditional_expr (ifexp, rval, alloc_node,
2394 complain);
2395 }
2396
2397 /* Perform the allocation before anything else, so that ALLOC_NODE
2398 has been initialized before we start using it. */
2399 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2400 }
2401
2402 if (init_preeval_expr)
2403 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2404
2405 /* A new-expression is never an lvalue. */
2406 gcc_assert (!lvalue_p (rval));
2407
2408 return convert (pointer_type, rval);
2409 }
2410
2411 /* Generate a representation for a C++ "new" expression. *PLACEMENT
2412 is a vector of placement-new arguments (or NULL if none). If NELTS
2413 is NULL, TYPE is the type of the storage to be allocated. If NELTS
2414 is not NULL, then this is an array-new allocation; TYPE is the type
2415 of the elements in the array and NELTS is the number of elements in
2416 the array. *INIT, if non-NULL, is the initializer for the new
2417 object, or an empty vector to indicate an initializer of "()". If
2418 USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
2419 rather than just "new". This may change PLACEMENT and INIT. */
2420
2421 tree
2422 build_new (VEC(tree,gc) **placement, tree type, tree nelts,
2423 VEC(tree,gc) **init, int use_global_new, tsubst_flags_t complain)
2424 {
2425 tree rval;
2426 VEC(tree,gc) *orig_placement = NULL;
2427 tree orig_nelts = NULL_TREE;
2428 VEC(tree,gc) *orig_init = NULL;
2429
2430 if (type == error_mark_node)
2431 return error_mark_node;
2432
2433 if (nelts == NULL_TREE && VEC_length (tree, *init) == 1)
2434 {
2435 tree auto_node = type_uses_auto (type);
2436 if (auto_node && describable_type (VEC_index (tree, *init, 0)))
2437 type = do_auto_deduction (type, VEC_index (tree, *init, 0), auto_node);
2438 }
2439
2440 if (processing_template_decl)
2441 {
2442 if (dependent_type_p (type)
2443 || any_type_dependent_arguments_p (*placement)
2444 || (nelts && type_dependent_expression_p (nelts))
2445 || any_type_dependent_arguments_p (*init))
2446 return build_raw_new_expr (*placement, type, nelts, *init,
2447 use_global_new);
2448
2449 orig_placement = make_tree_vector_copy (*placement);
2450 orig_nelts = nelts;
2451 orig_init = make_tree_vector_copy (*init);
2452
2453 make_args_non_dependent (*placement);
2454 if (nelts)
2455 nelts = build_non_dependent_expr (nelts);
2456 make_args_non_dependent (*init);
2457 }
2458
2459 if (nelts)
2460 {
2461 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
2462 {
2463 if (complain & tf_error)
2464 permerror (input_location, "size in array new must have integral type");
2465 else
2466 return error_mark_node;
2467 }
2468 nelts = cp_save_expr (cp_convert (sizetype, nelts));
2469 }
2470
2471 /* ``A reference cannot be created by the new operator. A reference
2472 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
2473 returned by new.'' ARM 5.3.3 */
2474 if (TREE_CODE (type) == REFERENCE_TYPE)
2475 {
2476 if (complain & tf_error)
2477 error ("new cannot be applied to a reference type");
2478 else
2479 return error_mark_node;
2480 type = TREE_TYPE (type);
2481 }
2482
2483 if (TREE_CODE (type) == FUNCTION_TYPE)
2484 {
2485 if (complain & tf_error)
2486 error ("new cannot be applied to a function type");
2487 return error_mark_node;
2488 }
2489
2490 /* The type allocated must be complete. If the new-type-id was
2491 "T[N]" then we are just checking that "T" is complete here, but
2492 that is equivalent, since the value of "N" doesn't matter. */
2493 if (!complete_type_or_else (type, NULL_TREE))
2494 return error_mark_node;
2495
2496 rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
2497 if (rval == error_mark_node)
2498 return error_mark_node;
2499
2500 if (processing_template_decl)
2501 {
2502 tree ret = build_raw_new_expr (orig_placement, type, orig_nelts,
2503 orig_init, use_global_new);
2504 release_tree_vector (orig_placement);
2505 release_tree_vector (orig_init);
2506 return ret;
2507 }
2508
2509 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
2510 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
2511 TREE_NO_WARNING (rval) = 1;
2512
2513 return rval;
2514 }
2515
2516 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
2517
2518 tree
2519 build_java_class_ref (tree type)
2520 {
2521 tree name = NULL_TREE, class_decl;
2522 static tree CL_suffix = NULL_TREE;
2523 if (CL_suffix == NULL_TREE)
2524 CL_suffix = get_identifier("class$");
2525 if (jclass_node == NULL_TREE)
2526 {
2527 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
2528 if (jclass_node == NULL_TREE)
2529 {
2530 error ("call to Java constructor, while %<jclass%> undefined");
2531 return error_mark_node;
2532 }
2533 jclass_node = TREE_TYPE (jclass_node);
2534 }
2535
2536 /* Mangle the class$ field. */
2537 {
2538 tree field;
2539 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2540 if (DECL_NAME (field) == CL_suffix)
2541 {
2542 mangle_decl (field);
2543 name = DECL_ASSEMBLER_NAME (field);
2544 break;
2545 }
2546 if (!field)
2547 {
2548 error ("can't find %<class$%> in %qT", type);
2549 return error_mark_node;
2550 }
2551 }
2552
2553 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
2554 if (class_decl == NULL_TREE)
2555 {
2556 class_decl = build_decl (input_location,
2557 VAR_DECL, name, TREE_TYPE (jclass_node));
2558 TREE_STATIC (class_decl) = 1;
2559 DECL_EXTERNAL (class_decl) = 1;
2560 TREE_PUBLIC (class_decl) = 1;
2561 DECL_ARTIFICIAL (class_decl) = 1;
2562 DECL_IGNORED_P (class_decl) = 1;
2563 pushdecl_top_level (class_decl);
2564 make_decl_rtl (class_decl);
2565 }
2566 return class_decl;
2567 }
2568 \f
2569 static tree
2570 build_vec_delete_1 (tree base, tree maxindex, tree type,
2571 special_function_kind auto_delete_vec, int use_global_delete)
2572 {
2573 tree virtual_size;
2574 tree ptype = build_pointer_type (type = complete_type (type));
2575 tree size_exp = size_in_bytes (type);
2576
2577 /* Temporary variables used by the loop. */
2578 tree tbase, tbase_init;
2579
2580 /* This is the body of the loop that implements the deletion of a
2581 single element, and moves temp variables to next elements. */
2582 tree body;
2583
2584 /* This is the LOOP_EXPR that governs the deletion of the elements. */
2585 tree loop = 0;
2586
2587 /* This is the thing that governs what to do after the loop has run. */
2588 tree deallocate_expr = 0;
2589
2590 /* This is the BIND_EXPR which holds the outermost iterator of the
2591 loop. It is convenient to set this variable up and test it before
2592 executing any other code in the loop.
2593 This is also the containing expression returned by this function. */
2594 tree controller = NULL_TREE;
2595 tree tmp;
2596
2597 /* We should only have 1-D arrays here. */
2598 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
2599
2600 if (! MAYBE_CLASS_TYPE_P (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2601 goto no_destructor;
2602
2603 /* The below is short by the cookie size. */
2604 virtual_size = size_binop (MULT_EXPR, size_exp,
2605 convert (sizetype, maxindex));
2606
2607 tbase = create_temporary_var (ptype);
2608 tbase_init = cp_build_modify_expr (tbase, NOP_EXPR,
2609 fold_build2_loc (input_location,
2610 POINTER_PLUS_EXPR, ptype,
2611 fold_convert (ptype, base),
2612 virtual_size),
2613 tf_warning_or_error);
2614 controller = build3 (BIND_EXPR, void_type_node, tbase,
2615 NULL_TREE, NULL_TREE);
2616 TREE_SIDE_EFFECTS (controller) = 1;
2617
2618 body = build1 (EXIT_EXPR, void_type_node,
2619 build2 (EQ_EXPR, boolean_type_node, tbase,
2620 fold_convert (ptype, base)));
2621 tmp = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, size_exp);
2622 body = build_compound_expr
2623 (input_location,
2624 body, cp_build_modify_expr (tbase, NOP_EXPR,
2625 build2 (POINTER_PLUS_EXPR, ptype, tbase, tmp),
2626 tf_warning_or_error));
2627 body = build_compound_expr
2628 (input_location,
2629 body, build_delete (ptype, tbase, sfk_complete_destructor,
2630 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1));
2631
2632 loop = build1 (LOOP_EXPR, void_type_node, body);
2633 loop = build_compound_expr (input_location, tbase_init, loop);
2634
2635 no_destructor:
2636 /* If the delete flag is one, or anything else with the low bit set,
2637 delete the storage. */
2638 if (auto_delete_vec != sfk_base_destructor)
2639 {
2640 tree base_tbd;
2641
2642 /* The below is short by the cookie size. */
2643 virtual_size = size_binop (MULT_EXPR, size_exp,
2644 convert (sizetype, maxindex));
2645
2646 if (! TYPE_VEC_NEW_USES_COOKIE (type))
2647 /* no header */
2648 base_tbd = base;
2649 else
2650 {
2651 tree cookie_size;
2652
2653 cookie_size = targetm.cxx.get_cookie_size (type);
2654 base_tbd
2655 = cp_convert (ptype,
2656 cp_build_binary_op (input_location,
2657 MINUS_EXPR,
2658 cp_convert (string_type_node,
2659 base),
2660 cookie_size,
2661 tf_warning_or_error));
2662 /* True size with header. */
2663 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
2664 }
2665
2666 if (auto_delete_vec == sfk_deleting_destructor)
2667 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
2668 base_tbd, virtual_size,
2669 use_global_delete & 1,
2670 /*placement=*/NULL_TREE,
2671 /*alloc_fn=*/NULL_TREE);
2672 }
2673
2674 body = loop;
2675 if (!deallocate_expr)
2676 ;
2677 else if (!body)
2678 body = deallocate_expr;
2679 else
2680 body = build_compound_expr (input_location, body, deallocate_expr);
2681
2682 if (!body)
2683 body = integer_zero_node;
2684
2685 /* Outermost wrapper: If pointer is null, punt. */
2686 body = fold_build3_loc (input_location, COND_EXPR, void_type_node,
2687 fold_build2_loc (input_location,
2688 NE_EXPR, boolean_type_node, base,
2689 convert (TREE_TYPE (base),
2690 integer_zero_node)),
2691 body, integer_zero_node);
2692 body = build1 (NOP_EXPR, void_type_node, body);
2693
2694 if (controller)
2695 {
2696 TREE_OPERAND (controller, 1) = body;
2697 body = controller;
2698 }
2699
2700 if (TREE_CODE (base) == SAVE_EXPR)
2701 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
2702 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
2703
2704 return convert_to_void (body, /*implicit=*/NULL, tf_warning_or_error);
2705 }
2706
2707 /* Create an unnamed variable of the indicated TYPE. */
2708
2709 tree
2710 create_temporary_var (tree type)
2711 {
2712 tree decl;
2713
2714 decl = build_decl (input_location,
2715 VAR_DECL, NULL_TREE, type);
2716 TREE_USED (decl) = 1;
2717 DECL_ARTIFICIAL (decl) = 1;
2718 DECL_IGNORED_P (decl) = 1;
2719 DECL_CONTEXT (decl) = current_function_decl;
2720
2721 return decl;
2722 }
2723
2724 /* Create a new temporary variable of the indicated TYPE, initialized
2725 to INIT.
2726
2727 It is not entered into current_binding_level, because that breaks
2728 things when it comes time to do final cleanups (which take place
2729 "outside" the binding contour of the function). */
2730
2731 static tree
2732 get_temp_regvar (tree type, tree init)
2733 {
2734 tree decl;
2735
2736 decl = create_temporary_var (type);
2737 add_decl_expr (decl);
2738
2739 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
2740 tf_warning_or_error));
2741
2742 return decl;
2743 }
2744
2745 /* `build_vec_init' returns tree structure that performs
2746 initialization of a vector of aggregate types.
2747
2748 BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
2749 to the first element, of POINTER_TYPE.
2750 MAXINDEX is the maximum index of the array (one less than the
2751 number of elements). It is only used if BASE is a pointer or
2752 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
2753
2754 INIT is the (possibly NULL) initializer.
2755
2756 If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
2757 elements in the array are value-initialized.
2758
2759 FROM_ARRAY is 0 if we should init everything with INIT
2760 (i.e., every element initialized from INIT).
2761 FROM_ARRAY is 1 if we should index into INIT in parallel
2762 with initialization of DECL.
2763 FROM_ARRAY is 2 if we should index into INIT in parallel,
2764 but use assignment instead of initialization. */
2765
2766 tree
2767 build_vec_init (tree base, tree maxindex, tree init,
2768 bool explicit_value_init_p,
2769 int from_array, tsubst_flags_t complain)
2770 {
2771 tree rval;
2772 tree base2 = NULL_TREE;
2773 tree itype = NULL_TREE;
2774 tree iterator;
2775 /* The type of BASE. */
2776 tree atype = TREE_TYPE (base);
2777 /* The type of an element in the array. */
2778 tree type = TREE_TYPE (atype);
2779 /* The element type reached after removing all outer array
2780 types. */
2781 tree inner_elt_type;
2782 /* The type of a pointer to an element in the array. */
2783 tree ptype;
2784 tree stmt_expr;
2785 tree compound_stmt;
2786 int destroy_temps;
2787 tree try_block = NULL_TREE;
2788 int num_initialized_elts = 0;
2789 bool is_global;
2790
2791 if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
2792 maxindex = array_type_nelts (atype);
2793
2794 if (maxindex == NULL_TREE || maxindex == error_mark_node)
2795 return error_mark_node;
2796
2797 if (explicit_value_init_p)
2798 gcc_assert (!init);
2799
2800 inner_elt_type = strip_array_types (type);
2801
2802 /* Look through the TARGET_EXPR around a compound literal. */
2803 if (init && TREE_CODE (init) == TARGET_EXPR
2804 && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
2805 && from_array != 2)
2806 init = TARGET_EXPR_INITIAL (init);
2807
2808 if (init
2809 && TREE_CODE (atype) == ARRAY_TYPE
2810 && (from_array == 2
2811 ? (!CLASS_TYPE_P (inner_elt_type)
2812 || !TYPE_HAS_COMPLEX_ASSIGN_REF (inner_elt_type))
2813 : !TYPE_NEEDS_CONSTRUCTING (type))
2814 && ((TREE_CODE (init) == CONSTRUCTOR
2815 /* Don't do this if the CONSTRUCTOR might contain something
2816 that might throw and require us to clean up. */
2817 && (VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (init))
2818 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
2819 || from_array))
2820 {
2821 /* Do non-default initialization of trivial arrays resulting from
2822 brace-enclosed initializers. In this case, digest_init and
2823 store_constructor will handle the semantics for us. */
2824
2825 stmt_expr = build2 (INIT_EXPR, atype, base, init);
2826 return stmt_expr;
2827 }
2828
2829 maxindex = cp_convert (ptrdiff_type_node, maxindex);
2830 if (TREE_CODE (atype) == ARRAY_TYPE)
2831 {
2832 ptype = build_pointer_type (type);
2833 base = cp_convert (ptype, decay_conversion (base));
2834 }
2835 else
2836 ptype = atype;
2837
2838 /* The code we are generating looks like:
2839 ({
2840 T* t1 = (T*) base;
2841 T* rval = t1;
2842 ptrdiff_t iterator = maxindex;
2843 try {
2844 for (; iterator != -1; --iterator) {
2845 ... initialize *t1 ...
2846 ++t1;
2847 }
2848 } catch (...) {
2849 ... destroy elements that were constructed ...
2850 }
2851 rval;
2852 })
2853
2854 We can omit the try and catch blocks if we know that the
2855 initialization will never throw an exception, or if the array
2856 elements do not have destructors. We can omit the loop completely if
2857 the elements of the array do not have constructors.
2858
2859 We actually wrap the entire body of the above in a STMT_EXPR, for
2860 tidiness.
2861
2862 When copying from array to another, when the array elements have
2863 only trivial copy constructors, we should use __builtin_memcpy
2864 rather than generating a loop. That way, we could take advantage
2865 of whatever cleverness the back end has for dealing with copies
2866 of blocks of memory. */
2867
2868 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
2869 destroy_temps = stmts_are_full_exprs_p ();
2870 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2871 rval = get_temp_regvar (ptype, base);
2872 base = get_temp_regvar (ptype, rval);
2873 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
2874
2875 /* If initializing one array from another, initialize element by
2876 element. We rely upon the below calls to do the argument
2877 checking. Evaluate the initializer before entering the try block. */
2878 if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
2879 {
2880 base2 = decay_conversion (init);
2881 itype = TREE_TYPE (base2);
2882 base2 = get_temp_regvar (itype, base2);
2883 itype = TREE_TYPE (itype);
2884 }
2885
2886 /* Protect the entire array initialization so that we can destroy
2887 the partially constructed array if an exception is thrown.
2888 But don't do this if we're assigning. */
2889 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2890 && from_array != 2)
2891 {
2892 try_block = begin_try_block ();
2893 }
2894
2895 if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
2896 {
2897 /* Do non-default initialization of non-trivial arrays resulting from
2898 brace-enclosed initializers. */
2899 unsigned HOST_WIDE_INT idx;
2900 tree elt;
2901 from_array = 0;
2902
2903 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
2904 {
2905 tree baseref = build1 (INDIRECT_REF, type, base);
2906
2907 num_initialized_elts++;
2908
2909 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2910 if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
2911 finish_expr_stmt (build_aggr_init (baseref, elt, 0, complain));
2912 else
2913 finish_expr_stmt (cp_build_modify_expr (baseref, NOP_EXPR,
2914 elt, complain));
2915 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2916
2917 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
2918 complain));
2919 finish_expr_stmt (cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
2920 complain));
2921 }
2922
2923 /* Clear out INIT so that we don't get confused below. */
2924 init = NULL_TREE;
2925 }
2926 else if (from_array)
2927 {
2928 if (init)
2929 /* OK, we set base2 above. */;
2930 else if (TYPE_LANG_SPECIFIC (type)
2931 && TYPE_NEEDS_CONSTRUCTING (type)
2932 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2933 {
2934 if (complain & tf_error)
2935 error ("initializer ends prematurely");
2936 return error_mark_node;
2937 }
2938 }
2939
2940 /* Now, default-initialize any remaining elements. We don't need to
2941 do that if a) the type does not need constructing, or b) we've
2942 already initialized all the elements.
2943
2944 We do need to keep going if we're copying an array. */
2945
2946 if (from_array
2947 || ((TYPE_NEEDS_CONSTRUCTING (type) || explicit_value_init_p)
2948 && ! (host_integerp (maxindex, 0)
2949 && (num_initialized_elts
2950 == tree_low_cst (maxindex, 0) + 1))))
2951 {
2952 /* If the ITERATOR is equal to -1, then we don't have to loop;
2953 we've already initialized all the elements. */
2954 tree for_stmt;
2955 tree elt_init;
2956 tree to;
2957
2958 for_stmt = begin_for_stmt ();
2959 finish_for_init_stmt (for_stmt);
2960 finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
2961 build_int_cst (TREE_TYPE (iterator), -1)),
2962 for_stmt);
2963 finish_for_expr (cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
2964 complain),
2965 for_stmt);
2966
2967 to = build1 (INDIRECT_REF, type, base);
2968
2969 if (from_array)
2970 {
2971 tree from;
2972
2973 if (base2)
2974 from = build1 (INDIRECT_REF, itype, base2);
2975 else
2976 from = NULL_TREE;
2977
2978 if (from_array == 2)
2979 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
2980 complain);
2981 else if (TYPE_NEEDS_CONSTRUCTING (type))
2982 elt_init = build_aggr_init (to, from, 0, complain);
2983 else if (from)
2984 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
2985 complain);
2986 else
2987 gcc_unreachable ();
2988 }
2989 else if (TREE_CODE (type) == ARRAY_TYPE)
2990 {
2991 if (init != 0)
2992 sorry
2993 ("cannot initialize multi-dimensional array with initializer");
2994 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
2995 0, 0,
2996 explicit_value_init_p,
2997 0, complain);
2998 }
2999 else if (explicit_value_init_p)
3000 elt_init = build2 (INIT_EXPR, type, to,
3001 build_value_init (type));
3002 else
3003 {
3004 gcc_assert (TYPE_NEEDS_CONSTRUCTING (type));
3005 elt_init = build_aggr_init (to, init, 0, complain);
3006 }
3007
3008 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
3009 finish_expr_stmt (elt_init);
3010 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3011
3012 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
3013 complain));
3014 if (base2)
3015 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, 0,
3016 complain));
3017
3018 finish_for_stmt (for_stmt);
3019 }
3020
3021 /* Make sure to cleanup any partially constructed elements. */
3022 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
3023 && from_array != 2)
3024 {
3025 tree e;
3026 tree m = cp_build_binary_op (input_location,
3027 MINUS_EXPR, maxindex, iterator,
3028 complain);
3029
3030 /* Flatten multi-dimensional array since build_vec_delete only
3031 expects one-dimensional array. */
3032 if (TREE_CODE (type) == ARRAY_TYPE)
3033 m = cp_build_binary_op (input_location,
3034 MULT_EXPR, m,
3035 array_type_nelts_total (type),
3036 complain);
3037
3038 finish_cleanup_try_block (try_block);
3039 e = build_vec_delete_1 (rval, m,
3040 inner_elt_type, sfk_base_destructor,
3041 /*use_global_delete=*/0);
3042 finish_cleanup (e, try_block);
3043 }
3044
3045 /* The value of the array initialization is the array itself, RVAL
3046 is a pointer to the first element. */
3047 finish_stmt_expr_expr (rval, stmt_expr);
3048
3049 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
3050
3051 /* Now make the result have the correct type. */
3052 if (TREE_CODE (atype) == ARRAY_TYPE)
3053 {
3054 atype = build_pointer_type (atype);
3055 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
3056 stmt_expr = cp_build_indirect_ref (stmt_expr, RO_NULL, complain);
3057 TREE_NO_WARNING (stmt_expr) = 1;
3058 }
3059
3060 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
3061 return stmt_expr;
3062 }
3063
3064 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
3065 build_delete. */
3066
3067 static tree
3068 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags)
3069 {
3070 tree name;
3071 tree fn;
3072 switch (dtor_kind)
3073 {
3074 case sfk_complete_destructor:
3075 name = complete_dtor_identifier;
3076 break;
3077
3078 case sfk_base_destructor:
3079 name = base_dtor_identifier;
3080 break;
3081
3082 case sfk_deleting_destructor:
3083 name = deleting_dtor_identifier;
3084 break;
3085
3086 default:
3087 gcc_unreachable ();
3088 }
3089 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
3090 return build_new_method_call (exp, fn,
3091 /*args=*/NULL,
3092 /*conversion_path=*/NULL_TREE,
3093 flags,
3094 /*fn_p=*/NULL,
3095 tf_warning_or_error);
3096 }
3097
3098 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
3099 ADDR is an expression which yields the store to be destroyed.
3100 AUTO_DELETE is the name of the destructor to call, i.e., either
3101 sfk_complete_destructor, sfk_base_destructor, or
3102 sfk_deleting_destructor.
3103
3104 FLAGS is the logical disjunction of zero or more LOOKUP_
3105 flags. See cp-tree.h for more info. */
3106
3107 tree
3108 build_delete (tree type, tree addr, special_function_kind auto_delete,
3109 int flags, int use_global_delete)
3110 {
3111 tree expr;
3112
3113 if (addr == error_mark_node)
3114 return error_mark_node;
3115
3116 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
3117 set to `error_mark_node' before it gets properly cleaned up. */
3118 if (type == error_mark_node)
3119 return error_mark_node;
3120
3121 type = TYPE_MAIN_VARIANT (type);
3122
3123 if (TREE_CODE (type) == POINTER_TYPE)
3124 {
3125 bool complete_p = true;
3126
3127 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
3128 if (TREE_CODE (type) == ARRAY_TYPE)
3129 goto handle_array;
3130
3131 /* We don't want to warn about delete of void*, only other
3132 incomplete types. Deleting other incomplete types
3133 invokes undefined behavior, but it is not ill-formed, so
3134 compile to something that would even do The Right Thing
3135 (TM) should the type have a trivial dtor and no delete
3136 operator. */
3137 if (!VOID_TYPE_P (type))
3138 {
3139 complete_type (type);
3140 if (!COMPLETE_TYPE_P (type))
3141 {
3142 if (warning (0, "possible problem detected in invocation of "
3143 "delete operator:"))
3144 {
3145 cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
3146 inform (input_location, "neither the destructor nor the class-specific "
3147 "operator delete will be called, even if they are "
3148 "declared when the class is defined.");
3149 }
3150 complete_p = false;
3151 }
3152 }
3153 if (VOID_TYPE_P (type) || !complete_p || !MAYBE_CLASS_TYPE_P (type))
3154 /* Call the builtin operator delete. */
3155 return build_builtin_delete_call (addr);
3156 if (TREE_SIDE_EFFECTS (addr))
3157 addr = save_expr (addr);
3158
3159 /* Throw away const and volatile on target type of addr. */
3160 addr = convert_force (build_pointer_type (type), addr, 0);
3161 }
3162 else if (TREE_CODE (type) == ARRAY_TYPE)
3163 {
3164 handle_array:
3165
3166 if (TYPE_DOMAIN (type) == NULL_TREE)
3167 {
3168 error ("unknown array size in delete");
3169 return error_mark_node;
3170 }
3171 return build_vec_delete (addr, array_type_nelts (type),
3172 auto_delete, use_global_delete);
3173 }
3174 else
3175 {
3176 /* Don't check PROTECT here; leave that decision to the
3177 destructor. If the destructor is accessible, call it,
3178 else report error. */
3179 addr = cp_build_unary_op (ADDR_EXPR, addr, 0, tf_warning_or_error);
3180 if (TREE_SIDE_EFFECTS (addr))
3181 addr = save_expr (addr);
3182
3183 addr = convert_force (build_pointer_type (type), addr, 0);
3184 }
3185
3186 gcc_assert (MAYBE_CLASS_TYPE_P (type));
3187
3188 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3189 {
3190 if (auto_delete != sfk_deleting_destructor)
3191 return void_zero_node;
3192
3193 return build_op_delete_call (DELETE_EXPR, addr,
3194 cxx_sizeof_nowarn (type),
3195 use_global_delete,
3196 /*placement=*/NULL_TREE,
3197 /*alloc_fn=*/NULL_TREE);
3198 }
3199 else
3200 {
3201 tree head = NULL_TREE;
3202 tree do_delete = NULL_TREE;
3203 tree ifexp;
3204
3205 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
3206 lazily_declare_fn (sfk_destructor, type);
3207
3208 /* For `::delete x', we must not use the deleting destructor
3209 since then we would not be sure to get the global `operator
3210 delete'. */
3211 if (use_global_delete && auto_delete == sfk_deleting_destructor)
3212 {
3213 /* We will use ADDR multiple times so we must save it. */
3214 addr = save_expr (addr);
3215 head = get_target_expr (build_headof (addr));
3216 /* Delete the object. */
3217 do_delete = build_builtin_delete_call (head);
3218 /* Otherwise, treat this like a complete object destructor
3219 call. */
3220 auto_delete = sfk_complete_destructor;
3221 }
3222 /* If the destructor is non-virtual, there is no deleting
3223 variant. Instead, we must explicitly call the appropriate
3224 `operator delete' here. */
3225 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
3226 && auto_delete == sfk_deleting_destructor)
3227 {
3228 /* We will use ADDR multiple times so we must save it. */
3229 addr = save_expr (addr);
3230 /* Build the call. */
3231 do_delete = build_op_delete_call (DELETE_EXPR,
3232 addr,
3233 cxx_sizeof_nowarn (type),
3234 /*global_p=*/false,
3235 /*placement=*/NULL_TREE,
3236 /*alloc_fn=*/NULL_TREE);
3237 /* Call the complete object destructor. */
3238 auto_delete = sfk_complete_destructor;
3239 }
3240 else if (auto_delete == sfk_deleting_destructor
3241 && TYPE_GETS_REG_DELETE (type))
3242 {
3243 /* Make sure we have access to the member op delete, even though
3244 we'll actually be calling it from the destructor. */
3245 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
3246 /*global_p=*/false,
3247 /*placement=*/NULL_TREE,
3248 /*alloc_fn=*/NULL_TREE);
3249 }
3250
3251 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL,
3252 tf_warning_or_error),
3253 auto_delete, flags);
3254 if (do_delete)
3255 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
3256
3257 /* We need to calculate this before the dtor changes the vptr. */
3258 if (head)
3259 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
3260
3261 if (flags & LOOKUP_DESTRUCTOR)
3262 /* Explicit destructor call; don't check for null pointer. */
3263 ifexp = integer_one_node;
3264 else
3265 /* Handle deleting a null pointer. */
3266 ifexp = fold (cp_build_binary_op (input_location,
3267 NE_EXPR, addr, integer_zero_node,
3268 tf_warning_or_error));
3269
3270 if (ifexp != integer_one_node)
3271 expr = build3 (COND_EXPR, void_type_node,
3272 ifexp, expr, void_zero_node);
3273
3274 return expr;
3275 }
3276 }
3277
3278 /* At the beginning of a destructor, push cleanups that will call the
3279 destructors for our base classes and members.
3280
3281 Called from begin_destructor_body. */
3282
3283 void
3284 push_base_cleanups (void)
3285 {
3286 tree binfo, base_binfo;
3287 int i;
3288 tree member;
3289 tree expr;
3290 VEC(tree,gc) *vbases;
3291
3292 /* Run destructors for all virtual baseclasses. */
3293 if (CLASSTYPE_VBASECLASSES (current_class_type))
3294 {
3295 tree cond = (condition_conversion
3296 (build2 (BIT_AND_EXPR, integer_type_node,
3297 current_in_charge_parm,
3298 integer_two_node)));
3299
3300 /* The CLASSTYPE_VBASECLASSES vector is in initialization
3301 order, which is also the right order for pushing cleanups. */
3302 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
3303 VEC_iterate (tree, vbases, i, base_binfo); i++)
3304 {
3305 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
3306 {
3307 expr = build_special_member_call (current_class_ref,
3308 base_dtor_identifier,
3309 NULL,
3310 base_binfo,
3311 (LOOKUP_NORMAL
3312 | LOOKUP_NONVIRTUAL),
3313 tf_warning_or_error);
3314 expr = build3 (COND_EXPR, void_type_node, cond,
3315 expr, void_zero_node);
3316 finish_decl_cleanup (NULL_TREE, expr);
3317 }
3318 }
3319 }
3320
3321 /* Take care of the remaining baseclasses. */
3322 for (binfo = TYPE_BINFO (current_class_type), i = 0;
3323 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
3324 {
3325 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
3326 || BINFO_VIRTUAL_P (base_binfo))
3327 continue;
3328
3329 expr = build_special_member_call (current_class_ref,
3330 base_dtor_identifier,
3331 NULL, base_binfo,
3332 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
3333 tf_warning_or_error);
3334 finish_decl_cleanup (NULL_TREE, expr);
3335 }
3336
3337 for (member = TYPE_FIELDS (current_class_type); member;
3338 member = TREE_CHAIN (member))
3339 {
3340 if (TREE_TYPE (member) == error_mark_node
3341 || TREE_CODE (member) != FIELD_DECL
3342 || DECL_ARTIFICIAL (member))
3343 continue;
3344 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
3345 {
3346 tree this_member = (build_class_member_access_expr
3347 (current_class_ref, member,
3348 /*access_path=*/NULL_TREE,
3349 /*preserve_reference=*/false,
3350 tf_warning_or_error));
3351 tree this_type = TREE_TYPE (member);
3352 expr = build_delete (this_type, this_member,
3353 sfk_complete_destructor,
3354 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
3355 0);
3356 finish_decl_cleanup (NULL_TREE, expr);
3357 }
3358 }
3359 }
3360
3361 /* Build a C++ vector delete expression.
3362 MAXINDEX is the number of elements to be deleted.
3363 ELT_SIZE is the nominal size of each element in the vector.
3364 BASE is the expression that should yield the store to be deleted.
3365 This function expands (or synthesizes) these calls itself.
3366 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
3367
3368 This also calls delete for virtual baseclasses of elements of the vector.
3369
3370 Update: MAXINDEX is no longer needed. The size can be extracted from the
3371 start of the vector for pointers, and from the type for arrays. We still
3372 use MAXINDEX for arrays because it happens to already have one of the
3373 values we'd have to extract. (We could use MAXINDEX with pointers to
3374 confirm the size, and trap if the numbers differ; not clear that it'd
3375 be worth bothering.) */
3376
3377 tree
3378 build_vec_delete (tree base, tree maxindex,
3379 special_function_kind auto_delete_vec, int use_global_delete)
3380 {
3381 tree type;
3382 tree rval;
3383 tree base_init = NULL_TREE;
3384
3385 type = TREE_TYPE (base);
3386
3387 if (TREE_CODE (type) == POINTER_TYPE)
3388 {
3389 /* Step back one from start of vector, and read dimension. */
3390 tree cookie_addr;
3391 tree size_ptr_type = build_pointer_type (sizetype);
3392
3393 if (TREE_SIDE_EFFECTS (base))
3394 {
3395 base_init = get_target_expr (base);
3396 base = TARGET_EXPR_SLOT (base_init);
3397 }
3398 type = strip_array_types (TREE_TYPE (type));
3399 cookie_addr = fold_build1_loc (input_location, NEGATE_EXPR,
3400 sizetype, TYPE_SIZE_UNIT (sizetype));
3401 cookie_addr = build2 (POINTER_PLUS_EXPR,
3402 size_ptr_type,
3403 fold_convert (size_ptr_type, base),
3404 cookie_addr);
3405 maxindex = cp_build_indirect_ref (cookie_addr, RO_NULL, tf_warning_or_error);
3406 }
3407 else if (TREE_CODE (type) == ARRAY_TYPE)
3408 {
3409 /* Get the total number of things in the array, maxindex is a
3410 bad name. */
3411 maxindex = array_type_nelts_total (type);
3412 type = strip_array_types (type);
3413 base = cp_build_unary_op (ADDR_EXPR, base, 1, tf_warning_or_error);
3414 if (TREE_SIDE_EFFECTS (base))
3415 {
3416 base_init = get_target_expr (base);
3417 base = TARGET_EXPR_SLOT (base_init);
3418 }
3419 }
3420 else
3421 {
3422 if (base != error_mark_node)
3423 error ("type to vector delete is neither pointer or array type");
3424 return error_mark_node;
3425 }
3426
3427 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
3428 use_global_delete);
3429 if (base_init)
3430 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
3431
3432 return rval;
3433 }
This page took 0.195561 seconds and 5 git commands to generate.