]> gcc.gnu.org Git - gcc.git/blob - gcc/cp/class.c
re PR c++/17788 (poor diagnostic for missing reference initializer)
[gcc.git] / gcc / cp / class.c
1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23
24 /* High-level class interface. */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "flags.h"
33 #include "rtl.h"
34 #include "output.h"
35 #include "toplev.h"
36 #include "target.h"
37 #include "convert.h"
38
39 /* The number of nested classes being processed. If we are not in the
40 scope of any class, this is zero. */
41
42 int current_class_depth;
43
44 /* In order to deal with nested classes, we keep a stack of classes.
45 The topmost entry is the innermost class, and is the entry at index
46 CURRENT_CLASS_DEPTH */
47
48 typedef struct class_stack_node {
49 /* The name of the class. */
50 tree name;
51
52 /* The _TYPE node for the class. */
53 tree type;
54
55 /* The access specifier pending for new declarations in the scope of
56 this class. */
57 tree access;
58
59 /* If were defining TYPE, the names used in this class. */
60 splay_tree names_used;
61 }* class_stack_node_t;
62
63 typedef struct vtbl_init_data_s
64 {
65 /* The base for which we're building initializers. */
66 tree binfo;
67 /* The type of the most-derived type. */
68 tree derived;
69 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
70 unless ctor_vtbl_p is true. */
71 tree rtti_binfo;
72 /* The negative-index vtable initializers built up so far. These
73 are in order from least negative index to most negative index. */
74 tree inits;
75 /* The last (i.e., most negative) entry in INITS. */
76 tree* last_init;
77 /* The binfo for the virtual base for which we're building
78 vcall offset initializers. */
79 tree vbase;
80 /* The functions in vbase for which we have already provided vcall
81 offsets. */
82 varray_type fns;
83 /* The vtable index of the next vcall or vbase offset. */
84 tree index;
85 /* Nonzero if we are building the initializer for the primary
86 vtable. */
87 int primary_vtbl_p;
88 /* Nonzero if we are building the initializer for a construction
89 vtable. */
90 int ctor_vtbl_p;
91 /* True when adding vcall offset entries to the vtable. False when
92 merely computing the indices. */
93 bool generate_vcall_entries;
94 } vtbl_init_data;
95
96 /* The type of a function passed to walk_subobject_offsets. */
97 typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
98
99 /* The stack itself. This is a dynamically resized array. The
100 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
101 static int current_class_stack_size;
102 static class_stack_node_t current_class_stack;
103
104 /* An array of all local classes present in this translation unit, in
105 declaration order. */
106 varray_type local_classes;
107
108 static tree get_vfield_name (tree);
109 static void finish_struct_anon (tree);
110 static tree get_vtable_name (tree);
111 static tree get_basefndecls (tree, tree);
112 static int build_primary_vtable (tree, tree);
113 static int build_secondary_vtable (tree);
114 static void finish_vtbls (tree);
115 static void modify_vtable_entry (tree, tree, tree, tree, tree *);
116 static void finish_struct_bits (tree);
117 static int alter_access (tree, tree, tree);
118 static void handle_using_decl (tree, tree);
119 static tree dfs_modify_vtables (tree, void *);
120 static tree modify_all_vtables (tree, tree);
121 static void determine_primary_bases (tree);
122 static void finish_struct_methods (tree);
123 static void maybe_warn_about_overly_private_class (tree);
124 static int method_name_cmp (const void *, const void *);
125 static int resort_method_name_cmp (const void *, const void *);
126 static void add_implicitly_declared_members (tree, int, int);
127 static tree fixed_type_or_null (tree, int *, int *);
128 static tree resolve_address_of_overloaded_function (tree, tree, tsubst_flags_t,
129 bool, tree);
130 static tree build_simple_base_path (tree expr, tree binfo);
131 static tree build_vtbl_ref_1 (tree, tree);
132 static tree build_vtbl_initializer (tree, tree, tree, tree, int *);
133 static int count_fields (tree);
134 static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
135 static void check_bitfield_decl (tree);
136 static void check_field_decl (tree, tree, int *, int *, int *);
137 static void check_field_decls (tree, tree *, int *, int *);
138 static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
139 static void build_base_fields (record_layout_info, splay_tree, tree *);
140 static void check_methods (tree);
141 static void remove_zero_width_bit_fields (tree);
142 static void check_bases (tree, int *, int *);
143 static void check_bases_and_members (tree);
144 static tree create_vtable_ptr (tree, tree *);
145 static void include_empty_classes (record_layout_info);
146 static void layout_class_type (tree, tree *);
147 static void fixup_pending_inline (tree);
148 static void fixup_inline_methods (tree);
149 static void propagate_binfo_offsets (tree, tree);
150 static void layout_virtual_bases (record_layout_info, splay_tree);
151 static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
152 static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
153 static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
154 static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
155 static void add_vcall_offset (tree, tree, vtbl_init_data *);
156 static void layout_vtable_decl (tree, int);
157 static tree dfs_find_final_overrider_pre (tree, void *);
158 static tree dfs_find_final_overrider_post (tree, void *);
159 static tree find_final_overrider (tree, tree, tree);
160 static int make_new_vtable (tree, tree);
161 static int maybe_indent_hierarchy (FILE *, int, int);
162 static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
163 static void dump_class_hierarchy (tree);
164 static void dump_class_hierarchy_1 (FILE *, int, tree);
165 static void dump_array (FILE *, tree);
166 static void dump_vtable (tree, tree, tree);
167 static void dump_vtt (tree, tree);
168 static void dump_thunk (FILE *, int, tree);
169 static tree build_vtable (tree, tree, tree);
170 static void initialize_vtable (tree, tree);
171 static void layout_nonempty_base_or_field (record_layout_info,
172 tree, tree, splay_tree);
173 static tree end_of_class (tree, int);
174 static bool layout_empty_base (tree, tree, splay_tree);
175 static void accumulate_vtbl_inits (tree, tree, tree, tree, tree);
176 static tree dfs_accumulate_vtbl_inits (tree, tree, tree, tree,
177 tree);
178 static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
179 static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
180 static void clone_constructors_and_destructors (tree);
181 static tree build_clone (tree, tree);
182 static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
183 static void build_ctor_vtbl_group (tree, tree);
184 static void build_vtt (tree);
185 static tree binfo_ctor_vtable (tree);
186 static tree *build_vtt_inits (tree, tree, tree *, tree *);
187 static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
188 static tree dfs_fixup_binfo_vtbls (tree, void *);
189 static int record_subobject_offset (tree, tree, splay_tree);
190 static int check_subobject_offset (tree, tree, splay_tree);
191 static int walk_subobject_offsets (tree, subobject_offset_fn,
192 tree, splay_tree, tree, int);
193 static void record_subobject_offsets (tree, tree, splay_tree, int);
194 static int layout_conflict_p (tree, tree, splay_tree, int);
195 static int splay_tree_compare_integer_csts (splay_tree_key k1,
196 splay_tree_key k2);
197 static void warn_about_ambiguous_bases (tree);
198 static bool type_requires_array_cookie (tree);
199 static bool contains_empty_class_p (tree);
200 static bool base_derived_from (tree, tree);
201 static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
202 static tree end_of_base (tree);
203 static tree get_vcall_index (tree, tree);
204
205 /* Variables shared between class.c and call.c. */
206
207 #ifdef GATHER_STATISTICS
208 int n_vtables = 0;
209 int n_vtable_entries = 0;
210 int n_vtable_searches = 0;
211 int n_vtable_elems = 0;
212 int n_convert_harshness = 0;
213 int n_compute_conversion_costs = 0;
214 int n_inner_fields_searched = 0;
215 #endif
216
217 /* Convert to or from a base subobject. EXPR is an expression of type
218 `A' or `A*', an expression of type `B' or `B*' is returned. To
219 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
220 the B base instance within A. To convert base A to derived B, CODE
221 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
222 In this latter case, A must not be a morally virtual base of B.
223 NONNULL is true if EXPR is known to be non-NULL (this is only
224 needed when EXPR is of pointer type). CV qualifiers are preserved
225 from EXPR. */
226
227 tree
228 build_base_path (enum tree_code code,
229 tree expr,
230 tree binfo,
231 int nonnull)
232 {
233 tree v_binfo = NULL_TREE;
234 tree d_binfo = NULL_TREE;
235 tree probe;
236 tree offset;
237 tree target_type;
238 tree null_test = NULL;
239 tree ptr_target_type;
240 int fixed_type_p;
241 int want_pointer = TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE;
242 bool has_empty = false;
243 bool virtual_access;
244
245 if (expr == error_mark_node || binfo == error_mark_node || !binfo)
246 return error_mark_node;
247
248 for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
249 {
250 d_binfo = probe;
251 if (is_empty_class (BINFO_TYPE (probe)))
252 has_empty = true;
253 if (!v_binfo && BINFO_VIRTUAL_P (probe))
254 v_binfo = probe;
255 }
256
257 probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
258 if (want_pointer)
259 probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
260
261 gcc_assert ((code == MINUS_EXPR
262 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
263 || (code == PLUS_EXPR
264 && SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe)));
265
266 if (binfo == d_binfo)
267 /* Nothing to do. */
268 return expr;
269
270 if (code == MINUS_EXPR && v_binfo)
271 {
272 error ("cannot convert from base %qT to derived type %qT via virtual base %qT",
273 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo), BINFO_TYPE (v_binfo));
274 return error_mark_node;
275 }
276
277 if (!want_pointer)
278 /* This must happen before the call to save_expr. */
279 expr = build_unary_op (ADDR_EXPR, expr, 0);
280
281 offset = BINFO_OFFSET (binfo);
282 fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
283
284 /* Do we need to look in the vtable for the real offset? */
285 virtual_access = (v_binfo && fixed_type_p <= 0);
286
287 /* Do we need to check for a null pointer? */
288 if (want_pointer && !nonnull && (virtual_access || !integer_zerop (offset)))
289 null_test = error_mark_node;
290
291 /* Protect against multiple evaluation if necessary. */
292 if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
293 expr = save_expr (expr);
294
295 /* Now that we've saved expr, build the real null test. */
296 if (null_test)
297 {
298 tree zero = cp_convert (TREE_TYPE (expr), integer_zero_node);
299 null_test = fold (build2 (NE_EXPR, boolean_type_node,
300 expr, zero));
301 }
302
303 /* If this is a simple base reference, express it as a COMPONENT_REF. */
304 if (code == PLUS_EXPR && !virtual_access
305 /* We don't build base fields for empty bases, and they aren't very
306 interesting to the optimizers anyway. */
307 && !has_empty)
308 {
309 expr = build_indirect_ref (expr, NULL);
310 expr = build_simple_base_path (expr, binfo);
311 if (want_pointer)
312 expr = build_address (expr);
313 target_type = TREE_TYPE (expr);
314 goto out;
315 }
316
317 if (virtual_access)
318 {
319 /* Going via virtual base V_BINFO. We need the static offset
320 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
321 V_BINFO. That offset is an entry in D_BINFO's vtable. */
322 tree v_offset;
323
324 if (fixed_type_p < 0 && in_base_initializer)
325 {
326 /* In a base member initializer, we cannot rely on
327 the vtable being set up. We have to use the vtt_parm. */
328 tree derived = BINFO_INHERITANCE_CHAIN (v_binfo);
329 tree t;
330
331 t = TREE_TYPE (TYPE_VFIELD (BINFO_TYPE (derived)));
332 t = build_pointer_type (t);
333 v_offset = convert (t, current_vtt_parm);
334 v_offset = build2 (PLUS_EXPR, t, v_offset,
335 BINFO_VPTR_INDEX (derived));
336 v_offset = build_indirect_ref (v_offset, NULL);
337 }
338 else
339 v_offset = build_vfield_ref (build_indirect_ref (expr, NULL),
340 TREE_TYPE (TREE_TYPE (expr)));
341
342 v_offset = build2 (PLUS_EXPR, TREE_TYPE (v_offset),
343 v_offset, BINFO_VPTR_FIELD (v_binfo));
344 v_offset = build1 (NOP_EXPR,
345 build_pointer_type (ptrdiff_type_node),
346 v_offset);
347 v_offset = build_indirect_ref (v_offset, NULL);
348 TREE_CONSTANT (v_offset) = 1;
349 TREE_INVARIANT (v_offset) = 1;
350
351 offset = convert_to_integer (ptrdiff_type_node,
352 size_diffop (offset,
353 BINFO_OFFSET (v_binfo)));
354
355 if (!integer_zerop (offset))
356 v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);
357
358 if (fixed_type_p < 0)
359 /* Negative fixed_type_p means this is a constructor or destructor;
360 virtual base layout is fixed in in-charge [cd]tors, but not in
361 base [cd]tors. */
362 offset = build3 (COND_EXPR, ptrdiff_type_node,
363 build2 (EQ_EXPR, boolean_type_node,
364 current_in_charge_parm, integer_zero_node),
365 v_offset,
366 BINFO_OFFSET (binfo));
367 else
368 offset = v_offset;
369 }
370
371 target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
372
373 target_type = cp_build_qualified_type
374 (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
375 ptr_target_type = build_pointer_type (target_type);
376 if (want_pointer)
377 target_type = ptr_target_type;
378
379 expr = build1 (NOP_EXPR, ptr_target_type, expr);
380
381 if (!integer_zerop (offset))
382 expr = build2 (code, ptr_target_type, expr, offset);
383 else
384 null_test = NULL;
385
386 if (!want_pointer)
387 expr = build_indirect_ref (expr, NULL);
388
389 out:
390 if (null_test)
391 expr = fold (build3 (COND_EXPR, target_type, null_test, expr,
392 fold (build1 (NOP_EXPR, target_type,
393 integer_zero_node))));
394
395 return expr;
396 }
397
398 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
399 Perform a derived-to-base conversion by recursively building up a
400 sequence of COMPONENT_REFs to the appropriate base fields. */
401
402 static tree
403 build_simple_base_path (tree expr, tree binfo)
404 {
405 tree type = BINFO_TYPE (binfo);
406 tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
407 tree field;
408
409 if (d_binfo == NULL_TREE)
410 {
411 tree temp;
412
413 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);
414
415 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
416 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
417 an lvalue in the frontend; only _DECLs and _REFs are lvalues
418 in the backend. */
419 temp = unary_complex_lvalue (ADDR_EXPR, expr);
420 if (temp)
421 expr = build_indirect_ref (temp, NULL);
422
423 return expr;
424 }
425
426 /* Recurse. */
427 expr = build_simple_base_path (expr, d_binfo);
428
429 for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
430 field; field = TREE_CHAIN (field))
431 /* Is this the base field created by build_base_field? */
432 if (TREE_CODE (field) == FIELD_DECL
433 && DECL_FIELD_IS_BASE (field)
434 && TREE_TYPE (field) == type)
435 {
436 /* We don't use build_class_member_access_expr here, as that
437 has unnecessary checks, and more importantly results in
438 recursive calls to dfs_walk_once. */
439 int type_quals = cp_type_quals (TREE_TYPE (expr));
440
441 expr = build3 (COMPONENT_REF,
442 cp_build_qualified_type (type, type_quals),
443 expr, field, NULL_TREE);
444 expr = fold_if_not_in_template (expr);
445
446 /* Mark the expression const or volatile, as appropriate.
447 Even though we've dealt with the type above, we still have
448 to mark the expression itself. */
449 if (type_quals & TYPE_QUAL_CONST)
450 TREE_READONLY (expr) = 1;
451 if (type_quals & TYPE_QUAL_VOLATILE)
452 TREE_THIS_VOLATILE (expr) = 1;
453
454 return expr;
455 }
456
457 /* Didn't find the base field?!? */
458 gcc_unreachable ();
459 }
460
461 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
462 type is a class type or a pointer to a class type. In the former
463 case, TYPE is also a class type; in the latter it is another
464 pointer type. If CHECK_ACCESS is true, an error message is emitted
465 if TYPE is inaccessible. If OBJECT has pointer type, the value is
466 assumed to be non-NULL. */
467
468 tree
469 convert_to_base (tree object, tree type, bool check_access, bool nonnull)
470 {
471 tree binfo;
472 tree object_type;
473
474 if (TYPE_PTR_P (TREE_TYPE (object)))
475 {
476 object_type = TREE_TYPE (TREE_TYPE (object));
477 type = TREE_TYPE (type);
478 }
479 else
480 object_type = TREE_TYPE (object);
481
482 binfo = lookup_base (object_type, type,
483 check_access ? ba_check : ba_unique,
484 NULL);
485 if (!binfo || binfo == error_mark_node)
486 return error_mark_node;
487
488 return build_base_path (PLUS_EXPR, object, binfo, nonnull);
489 }
490
491 /* EXPR is an expression with unqualified class type. BASE is a base
492 binfo of that class type. Returns EXPR, converted to the BASE
493 type. This function assumes that EXPR is the most derived class;
494 therefore virtual bases can be found at their static offsets. */
495
496 tree
497 convert_to_base_statically (tree expr, tree base)
498 {
499 tree expr_type;
500
501 expr_type = TREE_TYPE (expr);
502 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
503 {
504 tree pointer_type;
505
506 pointer_type = build_pointer_type (expr_type);
507 expr = build_unary_op (ADDR_EXPR, expr, /*noconvert=*/1);
508 if (!integer_zerop (BINFO_OFFSET (base)))
509 expr = build2 (PLUS_EXPR, pointer_type, expr,
510 build_nop (pointer_type, BINFO_OFFSET (base)));
511 expr = build_nop (build_pointer_type (BINFO_TYPE (base)), expr);
512 expr = build1 (INDIRECT_REF, BINFO_TYPE (base), expr);
513 }
514
515 return expr;
516 }
517
518 \f
519 tree
520 build_vfield_ref (tree datum, tree type)
521 {
522 tree vfield, vcontext;
523
524 if (datum == error_mark_node)
525 return error_mark_node;
526
527 /* First, convert to the requested type. */
528 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
529 datum = convert_to_base (datum, type, /*check_access=*/false,
530 /*nonnull=*/true);
531
532 /* Second, the requested type may not be the owner of its own vptr.
533 If not, convert to the base class that owns it. We cannot use
534 convert_to_base here, because VCONTEXT may appear more than once
535 in the inheritance hierarchy of TYPE, and thus direct conversion
536 between the types may be ambiguous. Following the path back up
537 one step at a time via primary bases avoids the problem. */
538 vfield = TYPE_VFIELD (type);
539 vcontext = DECL_CONTEXT (vfield);
540 while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
541 {
542 datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
543 type = TREE_TYPE (datum);
544 }
545
546 return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
547 }
548
549 /* Given an object INSTANCE, return an expression which yields the
550 vtable element corresponding to INDEX. There are many special
551 cases for INSTANCE which we take care of here, mainly to avoid
552 creating extra tree nodes when we don't have to. */
553
554 static tree
555 build_vtbl_ref_1 (tree instance, tree idx)
556 {
557 tree aref;
558 tree vtbl = NULL_TREE;
559
560 /* Try to figure out what a reference refers to, and
561 access its virtual function table directly. */
562
563 int cdtorp = 0;
564 tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
565
566 tree basetype = non_reference (TREE_TYPE (instance));
567
568 if (fixed_type && !cdtorp)
569 {
570 tree binfo = lookup_base (fixed_type, basetype,
571 ba_unique | ba_quiet, NULL);
572 if (binfo)
573 vtbl = unshare_expr (BINFO_VTABLE (binfo));
574 }
575
576 if (!vtbl)
577 vtbl = build_vfield_ref (instance, basetype);
578
579 assemble_external (vtbl);
580
581 aref = build_array_ref (vtbl, idx);
582 TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
583 TREE_INVARIANT (aref) = TREE_CONSTANT (aref);
584
585 return aref;
586 }
587
588 tree
589 build_vtbl_ref (tree instance, tree idx)
590 {
591 tree aref = build_vtbl_ref_1 (instance, idx);
592
593 return aref;
594 }
595
596 /* Given a stable object pointer INSTANCE_PTR, return an expression which
597 yields a function pointer corresponding to vtable element INDEX. */
598
599 tree
600 build_vfn_ref (tree instance_ptr, tree idx)
601 {
602 tree aref;
603
604 aref = build_vtbl_ref_1 (build_indirect_ref (instance_ptr, 0), idx);
605
606 /* When using function descriptors, the address of the
607 vtable entry is treated as a function pointer. */
608 if (TARGET_VTABLE_USES_DESCRIPTORS)
609 aref = build1 (NOP_EXPR, TREE_TYPE (aref),
610 build_unary_op (ADDR_EXPR, aref, /*noconvert=*/1));
611
612 /* Remember this as a method reference, for later devirtualization. */
613 aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);
614
615 return aref;
616 }
617
618 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
619 for the given TYPE. */
620
621 static tree
622 get_vtable_name (tree type)
623 {
624 return mangle_vtbl_for_type (type);
625 }
626
627 /* Return an IDENTIFIER_NODE for the name of the virtual table table
628 for TYPE. */
629
630 tree
631 get_vtt_name (tree type)
632 {
633 return mangle_vtt_for_type (type);
634 }
635
636 /* DECL is an entity associated with TYPE, like a virtual table or an
637 implicitly generated constructor. Determine whether or not DECL
638 should have external or internal linkage at the object file
639 level. This routine does not deal with COMDAT linkage and other
640 similar complexities; it simply sets TREE_PUBLIC if it possible for
641 entities in other translation units to contain copies of DECL, in
642 the abstract. */
643
644 void
645 set_linkage_according_to_type (tree type, tree decl)
646 {
647 /* If TYPE involves a local class in a function with internal
648 linkage, then DECL should have internal linkage too. Other local
649 classes have no linkage -- but if their containing functions
650 have external linkage, it makes sense for DECL to have external
651 linkage too. That will allow template definitions to be merged,
652 for example. */
653 if (no_linkage_check (type, /*relaxed_p=*/true))
654 {
655 TREE_PUBLIC (decl) = 0;
656 DECL_INTERFACE_KNOWN (decl) = 1;
657 }
658 else
659 TREE_PUBLIC (decl) = 1;
660 }
661
662 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
663 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
664 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
665
666 static tree
667 build_vtable (tree class_type, tree name, tree vtable_type)
668 {
669 tree decl;
670
671 decl = build_lang_decl (VAR_DECL, name, vtable_type);
672 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
673 now to avoid confusion in mangle_decl. */
674 SET_DECL_ASSEMBLER_NAME (decl, name);
675 DECL_CONTEXT (decl) = class_type;
676 DECL_ARTIFICIAL (decl) = 1;
677 TREE_STATIC (decl) = 1;
678 TREE_READONLY (decl) = 1;
679 DECL_VIRTUAL_P (decl) = 1;
680 DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN;
681 DECL_VTABLE_OR_VTT_P (decl) = 1;
682 /* At one time the vtable info was grabbed 2 words at a time. This
683 fails on sparc unless you have 8-byte alignment. (tiemann) */
684 DECL_ALIGN (decl) = MAX (TYPE_ALIGN (double_type_node),
685 DECL_ALIGN (decl));
686 set_linkage_according_to_type (class_type, decl);
687 /* The vtable has not been defined -- yet. */
688 DECL_EXTERNAL (decl) = 1;
689 DECL_NOT_REALLY_EXTERN (decl) = 1;
690
691 /* Mark the VAR_DECL node representing the vtable itself as a
692 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
693 is rather important that such things be ignored because any
694 effort to actually generate DWARF for them will run into
695 trouble when/if we encounter code like:
696
697 #pragma interface
698 struct S { virtual void member (); };
699
700 because the artificial declaration of the vtable itself (as
701 manufactured by the g++ front end) will say that the vtable is
702 a static member of `S' but only *after* the debug output for
703 the definition of `S' has already been output. This causes
704 grief because the DWARF entry for the definition of the vtable
705 will try to refer back to an earlier *declaration* of the
706 vtable as a static member of `S' and there won't be one. We
707 might be able to arrange to have the "vtable static member"
708 attached to the member list for `S' before the debug info for
709 `S' get written (which would solve the problem) but that would
710 require more intrusive changes to the g++ front end. */
711 DECL_IGNORED_P (decl) = 1;
712
713 return decl;
714 }
715
716 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
717 or even complete. If this does not exist, create it. If COMPLETE is
718 nonzero, then complete the definition of it -- that will render it
719 impossible to actually build the vtable, but is useful to get at those
720 which are known to exist in the runtime. */
721
722 tree
723 get_vtable_decl (tree type, int complete)
724 {
725 tree decl;
726
727 if (CLASSTYPE_VTABLES (type))
728 return CLASSTYPE_VTABLES (type);
729
730 decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
731 CLASSTYPE_VTABLES (type) = decl;
732
733 if (complete)
734 {
735 DECL_EXTERNAL (decl) = 1;
736 cp_finish_decl (decl, NULL_TREE, NULL_TREE, 0);
737 }
738
739 return decl;
740 }
741
742 /* Build the primary virtual function table for TYPE. If BINFO is
743 non-NULL, build the vtable starting with the initial approximation
744 that it is the same as the one which is the head of the association
745 list. Returns a nonzero value if a new vtable is actually
746 created. */
747
748 static int
749 build_primary_vtable (tree binfo, tree type)
750 {
751 tree decl;
752 tree virtuals;
753
754 decl = get_vtable_decl (type, /*complete=*/0);
755
756 if (binfo)
757 {
758 if (BINFO_NEW_VTABLE_MARKED (binfo))
759 /* We have already created a vtable for this base, so there's
760 no need to do it again. */
761 return 0;
762
763 virtuals = copy_list (BINFO_VIRTUALS (binfo));
764 TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
765 DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
766 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
767 }
768 else
769 {
770 gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
771 virtuals = NULL_TREE;
772 }
773
774 #ifdef GATHER_STATISTICS
775 n_vtables += 1;
776 n_vtable_elems += list_length (virtuals);
777 #endif
778
779 /* Initialize the association list for this type, based
780 on our first approximation. */
781 BINFO_VTABLE (TYPE_BINFO (type)) = decl;
782 BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
783 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
784 return 1;
785 }
786
787 /* Give BINFO a new virtual function table which is initialized
788 with a skeleton-copy of its original initialization. The only
789 entry that changes is the `delta' entry, so we can really
790 share a lot of structure.
791
792 FOR_TYPE is the most derived type which caused this table to
793 be needed.
794
795 Returns nonzero if we haven't met BINFO before.
796
797 The order in which vtables are built (by calling this function) for
798 an object must remain the same, otherwise a binary incompatibility
799 can result. */
800
801 static int
802 build_secondary_vtable (tree binfo)
803 {
804 if (BINFO_NEW_VTABLE_MARKED (binfo))
805 /* We already created a vtable for this base. There's no need to
806 do it again. */
807 return 0;
808
809 /* Remember that we've created a vtable for this BINFO, so that we
810 don't try to do so again. */
811 SET_BINFO_NEW_VTABLE_MARKED (binfo);
812
813 /* Make fresh virtual list, so we can smash it later. */
814 BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
815
816 /* Secondary vtables are laid out as part of the same structure as
817 the primary vtable. */
818 BINFO_VTABLE (binfo) = NULL_TREE;
819 return 1;
820 }
821
822 /* Create a new vtable for BINFO which is the hierarchy dominated by
823 T. Return nonzero if we actually created a new vtable. */
824
825 static int
826 make_new_vtable (tree t, tree binfo)
827 {
828 if (binfo == TYPE_BINFO (t))
829 /* In this case, it is *type*'s vtable we are modifying. We start
830 with the approximation that its vtable is that of the
831 immediate base class. */
832 return build_primary_vtable (binfo, t);
833 else
834 /* This is our very own copy of `basetype' to play with. Later,
835 we will fill in all the virtual functions that override the
836 virtual functions in these base classes which are not defined
837 by the current type. */
838 return build_secondary_vtable (binfo);
839 }
840
841 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
842 (which is in the hierarchy dominated by T) list FNDECL as its
843 BV_FN. DELTA is the required constant adjustment from the `this'
844 pointer where the vtable entry appears to the `this' required when
845 the function is actually called. */
846
847 static void
848 modify_vtable_entry (tree t,
849 tree binfo,
850 tree fndecl,
851 tree delta,
852 tree *virtuals)
853 {
854 tree v;
855
856 v = *virtuals;
857
858 if (fndecl != BV_FN (v)
859 || !tree_int_cst_equal (delta, BV_DELTA (v)))
860 {
861 /* We need a new vtable for BINFO. */
862 if (make_new_vtable (t, binfo))
863 {
864 /* If we really did make a new vtable, we also made a copy
865 of the BINFO_VIRTUALS list. Now, we have to find the
866 corresponding entry in that list. */
867 *virtuals = BINFO_VIRTUALS (binfo);
868 while (BV_FN (*virtuals) != BV_FN (v))
869 *virtuals = TREE_CHAIN (*virtuals);
870 v = *virtuals;
871 }
872
873 BV_DELTA (v) = delta;
874 BV_VCALL_INDEX (v) = NULL_TREE;
875 BV_FN (v) = fndecl;
876 }
877 }
878
879 \f
880 /* Add method METHOD to class TYPE. */
881
882 void
883 add_method (tree type, tree method)
884 {
885 int using;
886 unsigned slot;
887 tree overload;
888 bool template_conv_p = false;
889 bool conv_p;
890 VEC(tree) *method_vec;
891 bool complete_p;
892 bool insert_p = false;
893 tree current_fns;
894
895 if (method == error_mark_node)
896 return;
897
898 complete_p = COMPLETE_TYPE_P (type);
899 using = (DECL_CONTEXT (method) != type);
900 conv_p = DECL_CONV_FN_P (method);
901 if (conv_p)
902 template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
903 && DECL_TEMPLATE_CONV_FN_P (method));
904
905 method_vec = CLASSTYPE_METHOD_VEC (type);
906 if (!method_vec)
907 {
908 /* Make a new method vector. We start with 8 entries. We must
909 allocate at least two (for constructors and destructors), and
910 we're going to end up with an assignment operator at some
911 point as well. */
912 method_vec = VEC_alloc (tree, 8);
913 /* Create slots for constructors and destructors. */
914 VEC_quick_push (tree, method_vec, NULL_TREE);
915 VEC_quick_push (tree, method_vec, NULL_TREE);
916 CLASSTYPE_METHOD_VEC (type) = method_vec;
917 }
918
919 /* Constructors and destructors go in special slots. */
920 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
921 slot = CLASSTYPE_CONSTRUCTOR_SLOT;
922 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
923 {
924 slot = CLASSTYPE_DESTRUCTOR_SLOT;
925
926 if (TYPE_FOR_JAVA (type))
927 {
928 if (!DECL_ARTIFICIAL (method))
929 error ("Java class %qT cannot have a destructor", type);
930 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
931 error ("Java class %qT cannot have an implicit non-trivial "
932 "destructor",
933 type);
934 }
935 }
936 else
937 {
938 tree m;
939
940 insert_p = true;
941 /* See if we already have an entry with this name. */
942 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
943 VEC_iterate (tree, method_vec, slot, m);
944 ++slot)
945 {
946 m = OVL_CURRENT (m);
947 if (template_conv_p)
948 {
949 if (TREE_CODE (m) == TEMPLATE_DECL
950 && DECL_TEMPLATE_CONV_FN_P (m))
951 insert_p = false;
952 break;
953 }
954 if (conv_p && !DECL_CONV_FN_P (m))
955 break;
956 if (DECL_NAME (m) == DECL_NAME (method))
957 {
958 insert_p = false;
959 break;
960 }
961 if (complete_p
962 && !DECL_CONV_FN_P (m)
963 && DECL_NAME (m) > DECL_NAME (method))
964 break;
965 }
966 }
967 current_fns = insert_p ? NULL_TREE : VEC_index (tree, method_vec, slot);
968
969 if (processing_template_decl)
970 /* TYPE is a template class. Don't issue any errors now; wait
971 until instantiation time to complain. */
972 ;
973 else
974 {
975 tree fns;
976
977 /* Check to see if we've already got this method. */
978 for (fns = current_fns; fns; fns = OVL_NEXT (fns))
979 {
980 tree fn = OVL_CURRENT (fns);
981 tree parms1;
982 tree parms2;
983 bool same = 1;
984
985 if (TREE_CODE (fn) != TREE_CODE (method))
986 continue;
987
988 /* [over.load] Member function declarations with the
989 same name and the same parameter types cannot be
990 overloaded if any of them is a static member
991 function declaration.
992
993 [namespace.udecl] When a using-declaration brings names
994 from a base class into a derived class scope, member
995 functions in the derived class override and/or hide member
996 functions with the same name and parameter types in a base
997 class (rather than conflicting). */
998 parms1 = TYPE_ARG_TYPES (TREE_TYPE (fn));
999 parms2 = TYPE_ARG_TYPES (TREE_TYPE (method));
1000
1001 /* Compare the quals on the 'this' parm. Don't compare
1002 the whole types, as used functions are treated as
1003 coming from the using class in overload resolution. */
1004 if (! DECL_STATIC_FUNCTION_P (fn)
1005 && ! DECL_STATIC_FUNCTION_P (method)
1006 && (TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms1)))
1007 != TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms2)))))
1008 same = 0;
1009
1010 /* For templates, the template parms must be identical. */
1011 if (TREE_CODE (fn) == TEMPLATE_DECL
1012 && !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
1013 DECL_TEMPLATE_PARMS (method)))
1014 same = 0;
1015
1016 if (! DECL_STATIC_FUNCTION_P (fn))
1017 parms1 = TREE_CHAIN (parms1);
1018 if (! DECL_STATIC_FUNCTION_P (method))
1019 parms2 = TREE_CHAIN (parms2);
1020
1021 if (same && compparms (parms1, parms2)
1022 && (!DECL_CONV_FN_P (fn)
1023 || same_type_p (TREE_TYPE (TREE_TYPE (fn)),
1024 TREE_TYPE (TREE_TYPE (method)))))
1025 {
1026 if (using && DECL_CONTEXT (fn) == type)
1027 /* Defer to the local function. */
1028 return;
1029 else
1030 {
1031 cp_error_at ("%q#D and %q#D cannot be overloaded",
1032 method, fn);
1033
1034 /* We don't call duplicate_decls here to merge
1035 the declarations because that will confuse
1036 things if the methods have inline
1037 definitions. In particular, we will crash
1038 while processing the definitions. */
1039 return;
1040 }
1041 }
1042 }
1043 }
1044
1045 /* Add the new binding. */
1046 overload = build_overload (method, current_fns);
1047
1048 if (!conv_p && slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p)
1049 push_class_level_binding (DECL_NAME (method), overload);
1050
1051 if (insert_p)
1052 {
1053 /* We only expect to add few methods in the COMPLETE_P case, so
1054 just make room for one more method in that case. */
1055 if (VEC_reserve (tree, method_vec, complete_p ? 1 : -1))
1056 CLASSTYPE_METHOD_VEC (type) = method_vec;
1057 if (slot == VEC_length (tree, method_vec))
1058 VEC_quick_push (tree, method_vec, overload);
1059 else
1060 VEC_quick_insert (tree, method_vec, slot, overload);
1061 }
1062 else
1063 /* Replace the current slot. */
1064 VEC_replace (tree, method_vec, slot, overload);
1065 }
1066
1067 /* Subroutines of finish_struct. */
1068
1069 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1070 legit, otherwise return 0. */
1071
1072 static int
1073 alter_access (tree t, tree fdecl, tree access)
1074 {
1075 tree elem;
1076
1077 if (!DECL_LANG_SPECIFIC (fdecl))
1078 retrofit_lang_decl (fdecl);
1079
1080 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));
1081
1082 elem = purpose_member (t, DECL_ACCESS (fdecl));
1083 if (elem)
1084 {
1085 if (TREE_VALUE (elem) != access)
1086 {
1087 if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
1088 cp_error_at ("conflicting access specifications for method"
1089 " %qD, ignored", TREE_TYPE (fdecl));
1090 else
1091 error ("conflicting access specifications for field %qE, ignored",
1092 DECL_NAME (fdecl));
1093 }
1094 else
1095 {
1096 /* They're changing the access to the same thing they changed
1097 it to before. That's OK. */
1098 ;
1099 }
1100 }
1101 else
1102 {
1103 perform_or_defer_access_check (TYPE_BINFO (t), fdecl);
1104 DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
1105 return 1;
1106 }
1107 return 0;
1108 }
1109
1110 /* Process the USING_DECL, which is a member of T. */
1111
1112 static void
1113 handle_using_decl (tree using_decl, tree t)
1114 {
1115 tree ctype = DECL_INITIAL (using_decl);
1116 tree name = DECL_NAME (using_decl);
1117 tree access
1118 = TREE_PRIVATE (using_decl) ? access_private_node
1119 : TREE_PROTECTED (using_decl) ? access_protected_node
1120 : access_public_node;
1121 tree fdecl, binfo;
1122 tree flist = NULL_TREE;
1123 tree old_value;
1124
1125 if (ctype == error_mark_node)
1126 return;
1127
1128 binfo = lookup_base (t, ctype, ba_any, NULL);
1129 if (! binfo)
1130 {
1131 location_t saved_loc = input_location;
1132
1133 input_location = DECL_SOURCE_LOCATION (using_decl);
1134 error_not_base_type (ctype, t);
1135 input_location = saved_loc;
1136 return;
1137 }
1138
1139 if (constructor_name_p (name, ctype))
1140 {
1141 cp_error_at ("%qD names constructor", using_decl);
1142 return;
1143 }
1144 if (constructor_name_p (name, t))
1145 {
1146 cp_error_at ("%qD invalid in %qT", using_decl, t);
1147 return;
1148 }
1149
1150 fdecl = lookup_member (binfo, name, 0, false);
1151
1152 if (!fdecl)
1153 {
1154 cp_error_at ("no members matching %qD in %q#T", using_decl, ctype);
1155 return;
1156 }
1157
1158 if (BASELINK_P (fdecl))
1159 /* Ignore base type this came from. */
1160 fdecl = BASELINK_FUNCTIONS (fdecl);
1161
1162 old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false);
1163 if (old_value)
1164 {
1165 if (is_overloaded_fn (old_value))
1166 old_value = OVL_CURRENT (old_value);
1167
1168 if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
1169 /* OK */;
1170 else
1171 old_value = NULL_TREE;
1172 }
1173
1174 if (is_overloaded_fn (fdecl))
1175 flist = fdecl;
1176
1177 if (! old_value)
1178 ;
1179 else if (is_overloaded_fn (old_value))
1180 {
1181 if (flist)
1182 /* It's OK to use functions from a base when there are functions with
1183 the same name already present in the current class. */;
1184 else
1185 {
1186 cp_error_at ("%qD invalid in %q#T", using_decl, t);
1187 cp_error_at (" because of local method %q#D with same name",
1188 OVL_CURRENT (old_value));
1189 return;
1190 }
1191 }
1192 else if (!DECL_ARTIFICIAL (old_value))
1193 {
1194 cp_error_at ("%qD invalid in %q#T", using_decl, t);
1195 cp_error_at (" because of local member %q#D with same name", old_value);
1196 return;
1197 }
1198
1199 /* Make type T see field decl FDECL with access ACCESS. */
1200 if (flist)
1201 for (; flist; flist = OVL_NEXT (flist))
1202 {
1203 add_method (t, OVL_CURRENT (flist));
1204 alter_access (t, OVL_CURRENT (flist), access);
1205 }
1206 else
1207 alter_access (t, fdecl, access);
1208 }
1209 \f
1210 /* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1211 and NO_CONST_ASN_REF_P. Also set flag bits in T based on
1212 properties of the bases. */
1213
1214 static void
1215 check_bases (tree t,
1216 int* cant_have_const_ctor_p,
1217 int* no_const_asn_ref_p)
1218 {
1219 int i;
1220 int seen_non_virtual_nearly_empty_base_p;
1221 tree base_binfo;
1222 tree binfo;
1223
1224 seen_non_virtual_nearly_empty_base_p = 0;
1225
1226 for (binfo = TYPE_BINFO (t), i = 0;
1227 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1228 {
1229 tree basetype = TREE_TYPE (base_binfo);
1230
1231 gcc_assert (COMPLETE_TYPE_P (basetype));
1232
1233 /* Effective C++ rule 14. We only need to check TYPE_POLYMORPHIC_P
1234 here because the case of virtual functions but non-virtual
1235 dtor is handled in finish_struct_1. */
1236 if (warn_ecpp && ! TYPE_POLYMORPHIC_P (basetype))
1237 warning ("base class %q#T has a non-virtual destructor", basetype);
1238
1239 /* If the base class doesn't have copy constructors or
1240 assignment operators that take const references, then the
1241 derived class cannot have such a member automatically
1242 generated. */
1243 if (! TYPE_HAS_CONST_INIT_REF (basetype))
1244 *cant_have_const_ctor_p = 1;
1245 if (TYPE_HAS_ASSIGN_REF (basetype)
1246 && !TYPE_HAS_CONST_ASSIGN_REF (basetype))
1247 *no_const_asn_ref_p = 1;
1248
1249 if (BINFO_VIRTUAL_P (base_binfo))
1250 /* A virtual base does not effect nearly emptiness. */
1251 ;
1252 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
1253 {
1254 if (seen_non_virtual_nearly_empty_base_p)
1255 /* And if there is more than one nearly empty base, then the
1256 derived class is not nearly empty either. */
1257 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1258 else
1259 /* Remember we've seen one. */
1260 seen_non_virtual_nearly_empty_base_p = 1;
1261 }
1262 else if (!is_empty_class (basetype))
1263 /* If the base class is not empty or nearly empty, then this
1264 class cannot be nearly empty. */
1265 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1266
1267 /* A lot of properties from the bases also apply to the derived
1268 class. */
1269 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
1270 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1271 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
1272 TYPE_HAS_COMPLEX_ASSIGN_REF (t)
1273 |= TYPE_HAS_COMPLEX_ASSIGN_REF (basetype);
1274 TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_HAS_COMPLEX_INIT_REF (basetype);
1275 TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
1276 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
1277 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
1278 }
1279 }
1280
1281 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1282 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1283 that have had a nearly-empty virtual primary base stolen by some
1284 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1285 T. */
1286
1287 static void
1288 determine_primary_bases (tree t)
1289 {
1290 unsigned i;
1291 tree primary = NULL_TREE;
1292 tree type_binfo = TYPE_BINFO (t);
1293 tree base_binfo;
1294
1295 /* Determine the primary bases of our bases. */
1296 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1297 base_binfo = TREE_CHAIN (base_binfo))
1298 {
1299 tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));
1300
1301 /* See if we're the non-virtual primary of our inheritance
1302 chain. */
1303 if (!BINFO_VIRTUAL_P (base_binfo))
1304 {
1305 tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
1306 tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));
1307
1308 if (parent_primary
1309 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
1310 BINFO_TYPE (parent_primary)))
1311 /* We are the primary binfo. */
1312 BINFO_PRIMARY_P (base_binfo) = 1;
1313 }
1314 /* Determine if we have a virtual primary base, and mark it so.
1315 */
1316 if (primary && BINFO_VIRTUAL_P (primary))
1317 {
1318 tree this_primary = copied_binfo (primary, base_binfo);
1319
1320 if (BINFO_PRIMARY_P (this_primary))
1321 /* Someone already claimed this base. */
1322 BINFO_LOST_PRIMARY_P (base_binfo) = 1;
1323 else
1324 {
1325 tree delta;
1326
1327 BINFO_PRIMARY_P (this_primary) = 1;
1328 BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;
1329
1330 /* A virtual binfo might have been copied from within
1331 another hierarchy. As we're about to use it as a
1332 primary base, make sure the offsets match. */
1333 delta = size_diffop (convert (ssizetype,
1334 BINFO_OFFSET (base_binfo)),
1335 convert (ssizetype,
1336 BINFO_OFFSET (this_primary)));
1337
1338 propagate_binfo_offsets (this_primary, delta);
1339 }
1340 }
1341 }
1342
1343 /* First look for a dynamic direct non-virtual base. */
1344 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
1345 {
1346 tree basetype = BINFO_TYPE (base_binfo);
1347
1348 if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
1349 {
1350 primary = base_binfo;
1351 goto found;
1352 }
1353 }
1354
1355 /* A "nearly-empty" virtual base class can be the primary base
1356 class, if no non-virtual polymorphic base can be found. Look for
1357 a nearly-empty virtual dynamic base that is not already a primary
1358 base of something in the hierarchy. If there is no such base,
1359 just pick the first nearly-empty virtual base. */
1360
1361 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1362 base_binfo = TREE_CHAIN (base_binfo))
1363 if (BINFO_VIRTUAL_P (base_binfo)
1364 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
1365 {
1366 if (!BINFO_PRIMARY_P (base_binfo))
1367 {
1368 /* Found one that is not primary. */
1369 primary = base_binfo;
1370 goto found;
1371 }
1372 else if (!primary)
1373 /* Remember the first candidate. */
1374 primary = base_binfo;
1375 }
1376
1377 found:
1378 /* If we've got a primary base, use it. */
1379 if (primary)
1380 {
1381 tree basetype = BINFO_TYPE (primary);
1382
1383 CLASSTYPE_PRIMARY_BINFO (t) = primary;
1384 if (BINFO_PRIMARY_P (primary))
1385 /* We are stealing a primary base. */
1386 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
1387 BINFO_PRIMARY_P (primary) = 1;
1388 if (BINFO_VIRTUAL_P (primary))
1389 {
1390 tree delta;
1391
1392 BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
1393 /* A virtual binfo might have been copied from within
1394 another hierarchy. As we're about to use it as a primary
1395 base, make sure the offsets match. */
1396 delta = size_diffop (ssize_int (0),
1397 convert (ssizetype, BINFO_OFFSET (primary)));
1398
1399 propagate_binfo_offsets (primary, delta);
1400 }
1401
1402 primary = TYPE_BINFO (basetype);
1403
1404 TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
1405 BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
1406 BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
1407 }
1408 }
1409 \f
1410 /* Set memoizing fields and bits of T (and its variants) for later
1411 use. */
1412
1413 static void
1414 finish_struct_bits (tree t)
1415 {
1416 tree variants;
1417
1418 /* Fix up variants (if any). */
1419 for (variants = TYPE_NEXT_VARIANT (t);
1420 variants;
1421 variants = TYPE_NEXT_VARIANT (variants))
1422 {
1423 /* These fields are in the _TYPE part of the node, not in
1424 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1425 TYPE_HAS_CONSTRUCTOR (variants) = TYPE_HAS_CONSTRUCTOR (t);
1426 TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
1427 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
1428 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
1429
1430 TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
1431
1432 TYPE_BINFO (variants) = TYPE_BINFO (t);
1433
1434 /* Copy whatever these are holding today. */
1435 TYPE_VFIELD (variants) = TYPE_VFIELD (t);
1436 TYPE_METHODS (variants) = TYPE_METHODS (t);
1437 TYPE_FIELDS (variants) = TYPE_FIELDS (t);
1438 TYPE_SIZE (variants) = TYPE_SIZE (t);
1439 TYPE_SIZE_UNIT (variants) = TYPE_SIZE_UNIT (t);
1440 }
1441
1442 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
1443 /* For a class w/o baseclasses, 'finish_struct' has set
1444 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
1445 Similarly for a class whose base classes do not have vtables.
1446 When neither of these is true, we might have removed abstract
1447 virtuals (by providing a definition), added some (by declaring
1448 new ones), or redeclared ones from a base class. We need to
1449 recalculate what's really an abstract virtual at this point (by
1450 looking in the vtables). */
1451 get_pure_virtuals (t);
1452
1453 /* If this type has a copy constructor or a destructor, force its
1454 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
1455 nonzero. This will cause it to be passed by invisible reference
1456 and prevent it from being returned in a register. */
1457 if (! TYPE_HAS_TRIVIAL_INIT_REF (t) || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
1458 {
1459 tree variants;
1460 DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
1461 for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
1462 {
1463 TYPE_MODE (variants) = BLKmode;
1464 TREE_ADDRESSABLE (variants) = 1;
1465 }
1466 }
1467 }
1468
1469 /* Issue warnings about T having private constructors, but no friends,
1470 and so forth.
1471
1472 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
1473 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
1474 non-private static member functions. */
1475
1476 static void
1477 maybe_warn_about_overly_private_class (tree t)
1478 {
1479 int has_member_fn = 0;
1480 int has_nonprivate_method = 0;
1481 tree fn;
1482
1483 if (!warn_ctor_dtor_privacy
1484 /* If the class has friends, those entities might create and
1485 access instances, so we should not warn. */
1486 || (CLASSTYPE_FRIEND_CLASSES (t)
1487 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1488 /* We will have warned when the template was declared; there's
1489 no need to warn on every instantiation. */
1490 || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
1491 /* There's no reason to even consider warning about this
1492 class. */
1493 return;
1494
1495 /* We only issue one warning, if more than one applies, because
1496 otherwise, on code like:
1497
1498 class A {
1499 // Oops - forgot `public:'
1500 A();
1501 A(const A&);
1502 ~A();
1503 };
1504
1505 we warn several times about essentially the same problem. */
1506
1507 /* Check to see if all (non-constructor, non-destructor) member
1508 functions are private. (Since there are no friends or
1509 non-private statics, we can't ever call any of the private member
1510 functions.) */
1511 for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn))
1512 /* We're not interested in compiler-generated methods; they don't
1513 provide any way to call private members. */
1514 if (!DECL_ARTIFICIAL (fn))
1515 {
1516 if (!TREE_PRIVATE (fn))
1517 {
1518 if (DECL_STATIC_FUNCTION_P (fn))
1519 /* A non-private static member function is just like a
1520 friend; it can create and invoke private member
1521 functions, and be accessed without a class
1522 instance. */
1523 return;
1524
1525 has_nonprivate_method = 1;
1526 /* Keep searching for a static member function. */
1527 }
1528 else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
1529 has_member_fn = 1;
1530 }
1531
1532 if (!has_nonprivate_method && has_member_fn)
1533 {
1534 /* There are no non-private methods, and there's at least one
1535 private member function that isn't a constructor or
1536 destructor. (If all the private members are
1537 constructors/destructors we want to use the code below that
1538 issues error messages specifically referring to
1539 constructors/destructors.) */
1540 unsigned i;
1541 tree binfo = TYPE_BINFO (t);
1542
1543 for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
1544 if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
1545 {
1546 has_nonprivate_method = 1;
1547 break;
1548 }
1549 if (!has_nonprivate_method)
1550 {
1551 warning ("all member functions in class %qT are private", t);
1552 return;
1553 }
1554 }
1555
1556 /* Even if some of the member functions are non-private, the class
1557 won't be useful for much if all the constructors or destructors
1558 are private: such an object can never be created or destroyed. */
1559 fn = CLASSTYPE_DESTRUCTORS (t);
1560 if (fn && TREE_PRIVATE (fn))
1561 {
1562 warning ("%q#T only defines a private destructor and has no friends",
1563 t);
1564 return;
1565 }
1566
1567 if (TYPE_HAS_CONSTRUCTOR (t))
1568 {
1569 int nonprivate_ctor = 0;
1570
1571 /* If a non-template class does not define a copy
1572 constructor, one is defined for it, enabling it to avoid
1573 this warning. For a template class, this does not
1574 happen, and so we would normally get a warning on:
1575
1576 template <class T> class C { private: C(); };
1577
1578 To avoid this asymmetry, we check TYPE_HAS_INIT_REF. All
1579 complete non-template or fully instantiated classes have this
1580 flag set. */
1581 if (!TYPE_HAS_INIT_REF (t))
1582 nonprivate_ctor = 1;
1583 else
1584 for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn))
1585 {
1586 tree ctor = OVL_CURRENT (fn);
1587 /* Ideally, we wouldn't count copy constructors (or, in
1588 fact, any constructor that takes an argument of the
1589 class type as a parameter) because such things cannot
1590 be used to construct an instance of the class unless
1591 you already have one. But, for now at least, we're
1592 more generous. */
1593 if (! TREE_PRIVATE (ctor))
1594 {
1595 nonprivate_ctor = 1;
1596 break;
1597 }
1598 }
1599
1600 if (nonprivate_ctor == 0)
1601 {
1602 warning ("%q#T only defines private constructors and has no friends",
1603 t);
1604 return;
1605 }
1606 }
1607 }
1608
1609 static struct {
1610 gt_pointer_operator new_value;
1611 void *cookie;
1612 } resort_data;
1613
1614 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
1615
1616 static int
1617 method_name_cmp (const void* m1_p, const void* m2_p)
1618 {
1619 const tree *const m1 = m1_p;
1620 const tree *const m2 = m2_p;
1621
1622 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1623 return 0;
1624 if (*m1 == NULL_TREE)
1625 return -1;
1626 if (*m2 == NULL_TREE)
1627 return 1;
1628 if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
1629 return -1;
1630 return 1;
1631 }
1632
1633 /* This routine compares two fields like method_name_cmp but using the
1634 pointer operator in resort_field_decl_data. */
1635
1636 static int
1637 resort_method_name_cmp (const void* m1_p, const void* m2_p)
1638 {
1639 const tree *const m1 = m1_p;
1640 const tree *const m2 = m2_p;
1641 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1642 return 0;
1643 if (*m1 == NULL_TREE)
1644 return -1;
1645 if (*m2 == NULL_TREE)
1646 return 1;
1647 {
1648 tree d1 = DECL_NAME (OVL_CURRENT (*m1));
1649 tree d2 = DECL_NAME (OVL_CURRENT (*m2));
1650 resort_data.new_value (&d1, resort_data.cookie);
1651 resort_data.new_value (&d2, resort_data.cookie);
1652 if (d1 < d2)
1653 return -1;
1654 }
1655 return 1;
1656 }
1657
1658 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
1659
1660 void
1661 resort_type_method_vec (void* obj,
1662 void* orig_obj ATTRIBUTE_UNUSED ,
1663 gt_pointer_operator new_value,
1664 void* cookie)
1665 {
1666 VEC(tree) *method_vec = (VEC(tree) *) obj;
1667 int len = VEC_length (tree, method_vec);
1668 size_t slot;
1669 tree fn;
1670
1671 /* The type conversion ops have to live at the front of the vec, so we
1672 can't sort them. */
1673 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1674 VEC_iterate (tree, method_vec, slot, fn);
1675 ++slot)
1676 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1677 break;
1678
1679 if (len - slot > 1)
1680 {
1681 resort_data.new_value = new_value;
1682 resort_data.cookie = cookie;
1683 qsort (VEC_address (tree, method_vec) + slot, len - slot, sizeof (tree),
1684 resort_method_name_cmp);
1685 }
1686 }
1687
1688 /* Warn about duplicate methods in fn_fields.
1689
1690 Sort methods that are not special (i.e., constructors, destructors,
1691 and type conversion operators) so that we can find them faster in
1692 search. */
1693
1694 static void
1695 finish_struct_methods (tree t)
1696 {
1697 tree fn_fields;
1698 VEC(tree) *method_vec;
1699 int slot, len;
1700
1701 method_vec = CLASSTYPE_METHOD_VEC (t);
1702 if (!method_vec)
1703 return;
1704
1705 len = VEC_length (tree, method_vec);
1706
1707 /* Clear DECL_IN_AGGR_P for all functions. */
1708 for (fn_fields = TYPE_METHODS (t); fn_fields;
1709 fn_fields = TREE_CHAIN (fn_fields))
1710 DECL_IN_AGGR_P (fn_fields) = 0;
1711
1712 /* Issue warnings about private constructors and such. If there are
1713 no methods, then some public defaults are generated. */
1714 maybe_warn_about_overly_private_class (t);
1715
1716 /* The type conversion ops have to live at the front of the vec, so we
1717 can't sort them. */
1718 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1719 VEC_iterate (tree, method_vec, slot, fn_fields);
1720 ++slot)
1721 if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields)))
1722 break;
1723 if (len - slot > 1)
1724 qsort (VEC_address (tree, method_vec) + slot,
1725 len-slot, sizeof (tree), method_name_cmp);
1726 }
1727
1728 /* Make BINFO's vtable have N entries, including RTTI entries,
1729 vbase and vcall offsets, etc. Set its type and call the backend
1730 to lay it out. */
1731
1732 static void
1733 layout_vtable_decl (tree binfo, int n)
1734 {
1735 tree atype;
1736 tree vtable;
1737
1738 atype = build_cplus_array_type (vtable_entry_type,
1739 build_index_type (size_int (n - 1)));
1740 layout_type (atype);
1741
1742 /* We may have to grow the vtable. */
1743 vtable = get_vtbl_decl_for_binfo (binfo);
1744 if (!same_type_p (TREE_TYPE (vtable), atype))
1745 {
1746 TREE_TYPE (vtable) = atype;
1747 DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
1748 layout_decl (vtable, 0);
1749 }
1750 }
1751
1752 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
1753 have the same signature. */
1754
1755 int
1756 same_signature_p (tree fndecl, tree base_fndecl)
1757 {
1758 /* One destructor overrides another if they are the same kind of
1759 destructor. */
1760 if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
1761 && special_function_p (base_fndecl) == special_function_p (fndecl))
1762 return 1;
1763 /* But a non-destructor never overrides a destructor, nor vice
1764 versa, nor do different kinds of destructors override
1765 one-another. For example, a complete object destructor does not
1766 override a deleting destructor. */
1767 if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
1768 return 0;
1769
1770 if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
1771 || (DECL_CONV_FN_P (fndecl)
1772 && DECL_CONV_FN_P (base_fndecl)
1773 && same_type_p (DECL_CONV_FN_TYPE (fndecl),
1774 DECL_CONV_FN_TYPE (base_fndecl))))
1775 {
1776 tree types, base_types;
1777 types = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1778 base_types = TYPE_ARG_TYPES (TREE_TYPE (base_fndecl));
1779 if ((TYPE_QUALS (TREE_TYPE (TREE_VALUE (base_types)))
1780 == TYPE_QUALS (TREE_TYPE (TREE_VALUE (types))))
1781 && compparms (TREE_CHAIN (base_types), TREE_CHAIN (types)))
1782 return 1;
1783 }
1784 return 0;
1785 }
1786
1787 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
1788 subobject. */
1789
1790 static bool
1791 base_derived_from (tree derived, tree base)
1792 {
1793 tree probe;
1794
1795 for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
1796 {
1797 if (probe == derived)
1798 return true;
1799 else if (BINFO_VIRTUAL_P (probe))
1800 /* If we meet a virtual base, we can't follow the inheritance
1801 any more. See if the complete type of DERIVED contains
1802 such a virtual base. */
1803 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
1804 != NULL_TREE);
1805 }
1806 return false;
1807 }
1808
1809 typedef struct find_final_overrider_data_s {
1810 /* The function for which we are trying to find a final overrider. */
1811 tree fn;
1812 /* The base class in which the function was declared. */
1813 tree declaring_base;
1814 /* The candidate overriders. */
1815 tree candidates;
1816 /* Path to most derived. */
1817 VEC (tree) *path;
1818 } find_final_overrider_data;
1819
1820 /* Add the overrider along the current path to FFOD->CANDIDATES.
1821 Returns true if an overrider was found; false otherwise. */
1822
1823 static bool
1824 dfs_find_final_overrider_1 (tree binfo,
1825 find_final_overrider_data *ffod,
1826 unsigned depth)
1827 {
1828 tree method;
1829
1830 /* If BINFO is not the most derived type, try a more derived class.
1831 A definition there will overrider a definition here. */
1832 if (depth)
1833 {
1834 depth--;
1835 if (dfs_find_final_overrider_1
1836 (VEC_index (tree, ffod->path, depth), ffod, depth))
1837 return true;
1838 }
1839
1840 method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
1841 if (method)
1842 {
1843 tree *candidate = &ffod->candidates;
1844
1845 /* Remove any candidates overridden by this new function. */
1846 while (*candidate)
1847 {
1848 /* If *CANDIDATE overrides METHOD, then METHOD
1849 cannot override anything else on the list. */
1850 if (base_derived_from (TREE_VALUE (*candidate), binfo))
1851 return true;
1852 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
1853 if (base_derived_from (binfo, TREE_VALUE (*candidate)))
1854 *candidate = TREE_CHAIN (*candidate);
1855 else
1856 candidate = &TREE_CHAIN (*candidate);
1857 }
1858
1859 /* Add the new function. */
1860 ffod->candidates = tree_cons (method, binfo, ffod->candidates);
1861 return true;
1862 }
1863
1864 return false;
1865 }
1866
1867 /* Called from find_final_overrider via dfs_walk. */
1868
1869 static tree
1870 dfs_find_final_overrider_pre (tree binfo, void *data)
1871 {
1872 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
1873
1874 if (binfo == ffod->declaring_base)
1875 dfs_find_final_overrider_1 (binfo, ffod, VEC_length (tree, ffod->path));
1876 VEC_safe_push (tree, ffod->path, binfo);
1877
1878 return NULL_TREE;
1879 }
1880
1881 static tree
1882 dfs_find_final_overrider_post (tree binfo ATTRIBUTE_UNUSED, void *data)
1883 {
1884 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
1885 VEC_pop (tree, ffod->path);
1886
1887 return NULL_TREE;
1888 }
1889
1890 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
1891 FN and whose TREE_VALUE is the binfo for the base where the
1892 overriding occurs. BINFO (in the hierarchy dominated by the binfo
1893 DERIVED) is the base object in which FN is declared. */
1894
1895 static tree
1896 find_final_overrider (tree derived, tree binfo, tree fn)
1897 {
1898 find_final_overrider_data ffod;
1899
1900 /* Getting this right is a little tricky. This is valid:
1901
1902 struct S { virtual void f (); };
1903 struct T { virtual void f (); };
1904 struct U : public S, public T { };
1905
1906 even though calling `f' in `U' is ambiguous. But,
1907
1908 struct R { virtual void f(); };
1909 struct S : virtual public R { virtual void f (); };
1910 struct T : virtual public R { virtual void f (); };
1911 struct U : public S, public T { };
1912
1913 is not -- there's no way to decide whether to put `S::f' or
1914 `T::f' in the vtable for `R'.
1915
1916 The solution is to look at all paths to BINFO. If we find
1917 different overriders along any two, then there is a problem. */
1918 if (DECL_THUNK_P (fn))
1919 fn = THUNK_TARGET (fn);
1920
1921 /* Determine the depth of the hierarchy. */
1922 ffod.fn = fn;
1923 ffod.declaring_base = binfo;
1924 ffod.candidates = NULL_TREE;
1925 ffod.path = VEC_alloc (tree, 30);
1926
1927 dfs_walk_all (derived, dfs_find_final_overrider_pre,
1928 dfs_find_final_overrider_post, &ffod);
1929
1930 VEC_free (tree, ffod.path);
1931
1932 /* If there was no winner, issue an error message. */
1933 if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
1934 {
1935 error ("no unique final overrider for %qD in %qT", fn,
1936 BINFO_TYPE (derived));
1937 return error_mark_node;
1938 }
1939
1940 return ffod.candidates;
1941 }
1942
1943 /* Return the index of the vcall offset for FN when TYPE is used as a
1944 virtual base. */
1945
1946 static tree
1947 get_vcall_index (tree fn, tree type)
1948 {
1949 VEC (tree_pair_s) *indices = CLASSTYPE_VCALL_INDICES (type);
1950 tree_pair_p p;
1951 unsigned ix;
1952
1953 for (ix = 0; VEC_iterate (tree_pair_s, indices, ix, p); ix++)
1954 if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
1955 || same_signature_p (fn, p->purpose))
1956 return p->value;
1957
1958 /* There should always be an appropriate index. */
1959 gcc_unreachable ();
1960 }
1961
1962 /* Update an entry in the vtable for BINFO, which is in the hierarchy
1963 dominated by T. FN has been overridden in BINFO; VIRTUALS points to the
1964 corresponding position in the BINFO_VIRTUALS list. */
1965
1966 static void
1967 update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
1968 unsigned ix)
1969 {
1970 tree b;
1971 tree overrider;
1972 tree delta;
1973 tree virtual_base;
1974 tree first_defn;
1975 tree overrider_fn, overrider_target;
1976 tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
1977 tree over_return, base_return;
1978 bool lost = false;
1979
1980 /* Find the nearest primary base (possibly binfo itself) which defines
1981 this function; this is the class the caller will convert to when
1982 calling FN through BINFO. */
1983 for (b = binfo; ; b = get_primary_binfo (b))
1984 {
1985 gcc_assert (b);
1986 if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
1987 break;
1988
1989 /* The nearest definition is from a lost primary. */
1990 if (BINFO_LOST_PRIMARY_P (b))
1991 lost = true;
1992 }
1993 first_defn = b;
1994
1995 /* Find the final overrider. */
1996 overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
1997 if (overrider == error_mark_node)
1998 return;
1999 overrider_target = overrider_fn = TREE_PURPOSE (overrider);
2000
2001 /* Check for adjusting covariant return types. */
2002 over_return = TREE_TYPE (TREE_TYPE (overrider_target));
2003 base_return = TREE_TYPE (TREE_TYPE (target_fn));
2004
2005 if (POINTER_TYPE_P (over_return)
2006 && TREE_CODE (over_return) == TREE_CODE (base_return)
2007 && CLASS_TYPE_P (TREE_TYPE (over_return))
2008 && CLASS_TYPE_P (TREE_TYPE (base_return)))
2009 {
2010 /* If FN is a covariant thunk, we must figure out the adjustment
2011 to the final base FN was converting to. As OVERRIDER_TARGET might
2012 also be converting to the return type of FN, we have to
2013 combine the two conversions here. */
2014 tree fixed_offset, virtual_offset;
2015
2016 over_return = TREE_TYPE (over_return);
2017 base_return = TREE_TYPE (base_return);
2018
2019 if (DECL_THUNK_P (fn))
2020 {
2021 gcc_assert (DECL_RESULT_THUNK_P (fn));
2022 fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
2023 virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
2024 }
2025 else
2026 fixed_offset = virtual_offset = NULL_TREE;
2027
2028 if (virtual_offset)
2029 /* Find the equivalent binfo within the return type of the
2030 overriding function. We will want the vbase offset from
2031 there. */
2032 virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
2033 over_return);
2034 else if (!same_type_ignoring_top_level_qualifiers_p
2035 (over_return, base_return))
2036 {
2037 /* There was no existing virtual thunk (which takes
2038 precedence). So find the binfo of the base function's
2039 return type within the overriding function's return type.
2040 We cannot call lookup base here, because we're inside a
2041 dfs_walk, and will therefore clobber the BINFO_MARKED
2042 flags. Fortunately we know the covariancy is valid (it
2043 has already been checked), so we can just iterate along
2044 the binfos, which have been chained in inheritance graph
2045 order. Of course it is lame that we have to repeat the
2046 search here anyway -- we should really be caching pieces
2047 of the vtable and avoiding this repeated work. */
2048 tree thunk_binfo, base_binfo;
2049
2050 /* Find the base binfo within the overriding function's
2051 return type. */
2052 for (base_binfo = TYPE_BINFO (base_return),
2053 thunk_binfo = TYPE_BINFO (over_return);
2054 !SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
2055 BINFO_TYPE (base_binfo));
2056 thunk_binfo = TREE_CHAIN (thunk_binfo))
2057 continue;
2058
2059 /* See if virtual inheritance is involved. */
2060 for (virtual_offset = thunk_binfo;
2061 virtual_offset;
2062 virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
2063 if (BINFO_VIRTUAL_P (virtual_offset))
2064 break;
2065
2066 if (virtual_offset || !BINFO_OFFSET_ZEROP (thunk_binfo))
2067 {
2068 tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo));
2069
2070 if (virtual_offset)
2071 {
2072 /* We convert via virtual base. Adjust the fixed
2073 offset to be from there. */
2074 offset = size_diffop
2075 (offset, convert
2076 (ssizetype, BINFO_OFFSET (virtual_offset)));
2077 }
2078 if (fixed_offset)
2079 /* There was an existing fixed offset, this must be
2080 from the base just converted to, and the base the
2081 FN was thunking to. */
2082 fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
2083 else
2084 fixed_offset = offset;
2085 }
2086 }
2087
2088 if (fixed_offset || virtual_offset)
2089 /* Replace the overriding function with a covariant thunk. We
2090 will emit the overriding function in its own slot as
2091 well. */
2092 overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
2093 fixed_offset, virtual_offset);
2094 }
2095 else
2096 gcc_assert (!DECL_THUNK_P (fn));
2097
2098 /* Assume that we will produce a thunk that convert all the way to
2099 the final overrider, and not to an intermediate virtual base. */
2100 virtual_base = NULL_TREE;
2101
2102 /* See if we can convert to an intermediate virtual base first, and then
2103 use the vcall offset located there to finish the conversion. */
2104 for (; b; b = BINFO_INHERITANCE_CHAIN (b))
2105 {
2106 /* If we find the final overrider, then we can stop
2107 walking. */
2108 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
2109 BINFO_TYPE (TREE_VALUE (overrider))))
2110 break;
2111
2112 /* If we find a virtual base, and we haven't yet found the
2113 overrider, then there is a virtual base between the
2114 declaring base (first_defn) and the final overrider. */
2115 if (BINFO_VIRTUAL_P (b))
2116 {
2117 virtual_base = b;
2118 break;
2119 }
2120 }
2121
2122 if (overrider_fn != overrider_target && !virtual_base)
2123 {
2124 /* The ABI specifies that a covariant thunk includes a mangling
2125 for a this pointer adjustment. This-adjusting thunks that
2126 override a function from a virtual base have a vcall
2127 adjustment. When the virtual base in question is a primary
2128 virtual base, we know the adjustments are zero, (and in the
2129 non-covariant case, we would not use the thunk).
2130 Unfortunately we didn't notice this could happen, when
2131 designing the ABI and so never mandated that such a covariant
2132 thunk should be emitted. Because we must use the ABI mandated
2133 name, we must continue searching from the binfo where we
2134 found the most recent definition of the function, towards the
2135 primary binfo which first introduced the function into the
2136 vtable. If that enters a virtual base, we must use a vcall
2137 this-adjusting thunk. Bleah! */
2138 tree probe = first_defn;
2139
2140 while ((probe = get_primary_binfo (probe))
2141 && (unsigned) list_length (BINFO_VIRTUALS (probe)) > ix)
2142 if (BINFO_VIRTUAL_P (probe))
2143 virtual_base = probe;
2144
2145 if (virtual_base)
2146 /* Even if we find a virtual base, the correct delta is
2147 between the overrider and the binfo we're building a vtable
2148 for. */
2149 goto virtual_covariant;
2150 }
2151
2152 /* Compute the constant adjustment to the `this' pointer. The
2153 `this' pointer, when this function is called, will point at BINFO
2154 (or one of its primary bases, which are at the same offset). */
2155 if (virtual_base)
2156 /* The `this' pointer needs to be adjusted from the declaration to
2157 the nearest virtual base. */
2158 delta = size_diffop (convert (ssizetype, BINFO_OFFSET (virtual_base)),
2159 convert (ssizetype, BINFO_OFFSET (first_defn)));
2160 else if (lost)
2161 /* If the nearest definition is in a lost primary, we don't need an
2162 entry in our vtable. Except possibly in a constructor vtable,
2163 if we happen to get our primary back. In that case, the offset
2164 will be zero, as it will be a primary base. */
2165 delta = size_zero_node;
2166 else
2167 /* The `this' pointer needs to be adjusted from pointing to
2168 BINFO to pointing at the base where the final overrider
2169 appears. */
2170 virtual_covariant:
2171 delta = size_diffop (convert (ssizetype,
2172 BINFO_OFFSET (TREE_VALUE (overrider))),
2173 convert (ssizetype, BINFO_OFFSET (binfo)));
2174
2175 modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
2176
2177 if (virtual_base)
2178 BV_VCALL_INDEX (*virtuals)
2179 = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
2180 else
2181 BV_VCALL_INDEX (*virtuals) = NULL_TREE;
2182 }
2183
2184 /* Called from modify_all_vtables via dfs_walk. */
2185
2186 static tree
2187 dfs_modify_vtables (tree binfo, void* data)
2188 {
2189 tree t = (tree) data;
2190 tree virtuals;
2191 tree old_virtuals;
2192 unsigned ix;
2193
2194 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2195 /* A base without a vtable needs no modification, and its bases
2196 are uninteresting. */
2197 return dfs_skip_bases;
2198
2199 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
2200 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
2201 /* Don't do the primary vtable, if it's new. */
2202 return NULL_TREE;
2203
2204 if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
2205 /* There's no need to modify the vtable for a non-virtual primary
2206 base; we're not going to use that vtable anyhow. We do still
2207 need to do this for virtual primary bases, as they could become
2208 non-primary in a construction vtable. */
2209 return NULL_TREE;
2210
2211 make_new_vtable (t, binfo);
2212
2213 /* Now, go through each of the virtual functions in the virtual
2214 function table for BINFO. Find the final overrider, and update
2215 the BINFO_VIRTUALS list appropriately. */
2216 for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
2217 old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
2218 virtuals;
2219 ix++, virtuals = TREE_CHAIN (virtuals),
2220 old_virtuals = TREE_CHAIN (old_virtuals))
2221 update_vtable_entry_for_fn (t,
2222 binfo,
2223 BV_FN (old_virtuals),
2224 &virtuals, ix);
2225
2226 return NULL_TREE;
2227 }
2228
2229 /* Update all of the primary and secondary vtables for T. Create new
2230 vtables as required, and initialize their RTTI information. Each
2231 of the functions in VIRTUALS is declared in T and may override a
2232 virtual function from a base class; find and modify the appropriate
2233 entries to point to the overriding functions. Returns a list, in
2234 declaration order, of the virtual functions that are declared in T,
2235 but do not appear in the primary base class vtable, and which
2236 should therefore be appended to the end of the vtable for T. */
2237
2238 static tree
2239 modify_all_vtables (tree t, tree virtuals)
2240 {
2241 tree binfo = TYPE_BINFO (t);
2242 tree *fnsp;
2243
2244 /* Update all of the vtables. */
2245 dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);
2246
2247 /* Add virtual functions not already in our primary vtable. These
2248 will be both those introduced by this class, and those overridden
2249 from secondary bases. It does not include virtuals merely
2250 inherited from secondary bases. */
2251 for (fnsp = &virtuals; *fnsp; )
2252 {
2253 tree fn = TREE_VALUE (*fnsp);
2254
2255 if (!value_member (fn, BINFO_VIRTUALS (binfo))
2256 || DECL_VINDEX (fn) == error_mark_node)
2257 {
2258 /* We don't need to adjust the `this' pointer when
2259 calling this function. */
2260 BV_DELTA (*fnsp) = integer_zero_node;
2261 BV_VCALL_INDEX (*fnsp) = NULL_TREE;
2262
2263 /* This is a function not already in our vtable. Keep it. */
2264 fnsp = &TREE_CHAIN (*fnsp);
2265 }
2266 else
2267 /* We've already got an entry for this function. Skip it. */
2268 *fnsp = TREE_CHAIN (*fnsp);
2269 }
2270
2271 return virtuals;
2272 }
2273
2274 /* Get the base virtual function declarations in T that have the
2275 indicated NAME. */
2276
2277 static tree
2278 get_basefndecls (tree name, tree t)
2279 {
2280 tree methods;
2281 tree base_fndecls = NULL_TREE;
2282 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
2283 int i;
2284
2285 /* Find virtual functions in T with the indicated NAME. */
2286 i = lookup_fnfields_1 (t, name);
2287 if (i != -1)
2288 for (methods = VEC_index (tree, CLASSTYPE_METHOD_VEC (t), i);
2289 methods;
2290 methods = OVL_NEXT (methods))
2291 {
2292 tree method = OVL_CURRENT (methods);
2293
2294 if (TREE_CODE (method) == FUNCTION_DECL
2295 && DECL_VINDEX (method))
2296 base_fndecls = tree_cons (NULL_TREE, method, base_fndecls);
2297 }
2298
2299 if (base_fndecls)
2300 return base_fndecls;
2301
2302 for (i = 0; i < n_baseclasses; i++)
2303 {
2304 tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
2305 base_fndecls = chainon (get_basefndecls (name, basetype),
2306 base_fndecls);
2307 }
2308
2309 return base_fndecls;
2310 }
2311
2312 /* If this declaration supersedes the declaration of
2313 a method declared virtual in the base class, then
2314 mark this field as being virtual as well. */
2315
2316 void
2317 check_for_override (tree decl, tree ctype)
2318 {
2319 if (TREE_CODE (decl) == TEMPLATE_DECL)
2320 /* In [temp.mem] we have:
2321
2322 A specialization of a member function template does not
2323 override a virtual function from a base class. */
2324 return;
2325 if ((DECL_DESTRUCTOR_P (decl)
2326 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
2327 || DECL_CONV_FN_P (decl))
2328 && look_for_overrides (ctype, decl)
2329 && !DECL_STATIC_FUNCTION_P (decl))
2330 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2331 the error_mark_node so that we know it is an overriding
2332 function. */
2333 DECL_VINDEX (decl) = decl;
2334
2335 if (DECL_VIRTUAL_P (decl))
2336 {
2337 if (!DECL_VINDEX (decl))
2338 DECL_VINDEX (decl) = error_mark_node;
2339 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
2340 }
2341 }
2342
2343 /* Warn about hidden virtual functions that are not overridden in t.
2344 We know that constructors and destructors don't apply. */
2345
2346 void
2347 warn_hidden (tree t)
2348 {
2349 VEC(tree) *method_vec = CLASSTYPE_METHOD_VEC (t);
2350 tree fns;
2351 size_t i;
2352
2353 /* We go through each separately named virtual function. */
2354 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2355 VEC_iterate (tree, method_vec, i, fns);
2356 ++i)
2357 {
2358 tree fn;
2359 tree name;
2360 tree fndecl;
2361 tree base_fndecls;
2362 tree base_binfo;
2363 tree binfo;
2364 int j;
2365
2366 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2367 have the same name. Figure out what name that is. */
2368 name = DECL_NAME (OVL_CURRENT (fns));
2369 /* There are no possibly hidden functions yet. */
2370 base_fndecls = NULL_TREE;
2371 /* Iterate through all of the base classes looking for possibly
2372 hidden functions. */
2373 for (binfo = TYPE_BINFO (t), j = 0;
2374 BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
2375 {
2376 tree basetype = BINFO_TYPE (base_binfo);
2377 base_fndecls = chainon (get_basefndecls (name, basetype),
2378 base_fndecls);
2379 }
2380
2381 /* If there are no functions to hide, continue. */
2382 if (!base_fndecls)
2383 continue;
2384
2385 /* Remove any overridden functions. */
2386 for (fn = fns; fn; fn = OVL_NEXT (fn))
2387 {
2388 fndecl = OVL_CURRENT (fn);
2389 if (DECL_VINDEX (fndecl))
2390 {
2391 tree *prev = &base_fndecls;
2392
2393 while (*prev)
2394 /* If the method from the base class has the same
2395 signature as the method from the derived class, it
2396 has been overridden. */
2397 if (same_signature_p (fndecl, TREE_VALUE (*prev)))
2398 *prev = TREE_CHAIN (*prev);
2399 else
2400 prev = &TREE_CHAIN (*prev);
2401 }
2402 }
2403
2404 /* Now give a warning for all base functions without overriders,
2405 as they are hidden. */
2406 while (base_fndecls)
2407 {
2408 /* Here we know it is a hider, and no overrider exists. */
2409 cp_warning_at ("%qD was hidden", TREE_VALUE (base_fndecls));
2410 cp_warning_at (" by %qD", fns);
2411 base_fndecls = TREE_CHAIN (base_fndecls);
2412 }
2413 }
2414 }
2415
2416 /* Check for things that are invalid. There are probably plenty of other
2417 things we should check for also. */
2418
2419 static void
2420 finish_struct_anon (tree t)
2421 {
2422 tree field;
2423
2424 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
2425 {
2426 if (TREE_STATIC (field))
2427 continue;
2428 if (TREE_CODE (field) != FIELD_DECL)
2429 continue;
2430
2431 if (DECL_NAME (field) == NULL_TREE
2432 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
2433 {
2434 tree elt = TYPE_FIELDS (TREE_TYPE (field));
2435 for (; elt; elt = TREE_CHAIN (elt))
2436 {
2437 /* We're generally only interested in entities the user
2438 declared, but we also find nested classes by noticing
2439 the TYPE_DECL that we create implicitly. You're
2440 allowed to put one anonymous union inside another,
2441 though, so we explicitly tolerate that. We use
2442 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
2443 we also allow unnamed types used for defining fields. */
2444 if (DECL_ARTIFICIAL (elt)
2445 && (!DECL_IMPLICIT_TYPEDEF_P (elt)
2446 || TYPE_ANONYMOUS_P (TREE_TYPE (elt))))
2447 continue;
2448
2449 if (TREE_CODE (elt) != FIELD_DECL)
2450 {
2451 cp_pedwarn_at ("%q#D invalid; an anonymous union can "
2452 "only have non-static data members",
2453 elt);
2454 continue;
2455 }
2456
2457 if (TREE_PRIVATE (elt))
2458 cp_pedwarn_at ("private member %q#D in anonymous union",
2459 elt);
2460 else if (TREE_PROTECTED (elt))
2461 cp_pedwarn_at ("protected member %q#D in anonymous union",
2462 elt);
2463
2464 TREE_PRIVATE (elt) = TREE_PRIVATE (field);
2465 TREE_PROTECTED (elt) = TREE_PROTECTED (field);
2466 }
2467 }
2468 }
2469 }
2470
2471 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
2472 will be used later during class template instantiation.
2473 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
2474 a non-static member data (FIELD_DECL), a member function
2475 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
2476 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
2477 When FRIEND_P is nonzero, T is either a friend class
2478 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
2479 (FUNCTION_DECL, TEMPLATE_DECL). */
2480
2481 void
2482 maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
2483 {
2484 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
2485 if (CLASSTYPE_TEMPLATE_INFO (type))
2486 CLASSTYPE_DECL_LIST (type)
2487 = tree_cons (friend_p ? NULL_TREE : type,
2488 t, CLASSTYPE_DECL_LIST (type));
2489 }
2490
2491 /* Create default constructors, assignment operators, and so forth for
2492 the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
2493 and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
2494 the class cannot have a default constructor, copy constructor
2495 taking a const reference argument, or an assignment operator taking
2496 a const reference, respectively. */
2497
2498 static void
2499 add_implicitly_declared_members (tree t,
2500 int cant_have_const_cctor,
2501 int cant_have_const_assignment)
2502 {
2503 /* Destructor. */
2504 if (!CLASSTYPE_DESTRUCTORS (t))
2505 {
2506 /* In general, we create destructors lazily. */
2507 CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
2508 /* However, if the implicit destructor is non-trivial
2509 destructor, we sometimes have to create it at this point. */
2510 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
2511 {
2512 bool lazy_p = true;
2513
2514 if (TYPE_FOR_JAVA (t))
2515 /* If this a Java class, any non-trivial destructor is
2516 invalid, even if compiler-generated. Therefore, if the
2517 destructor is non-trivial we create it now. */
2518 lazy_p = false;
2519 else
2520 {
2521 tree binfo;
2522 tree base_binfo;
2523 int ix;
2524
2525 /* If the implicit destructor will be virtual, then we must
2526 generate it now because (unfortunately) we do not
2527 generate virtual tables lazily. */
2528 binfo = TYPE_BINFO (t);
2529 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
2530 {
2531 tree base_type;
2532 tree dtor;
2533
2534 base_type = BINFO_TYPE (base_binfo);
2535 dtor = CLASSTYPE_DESTRUCTORS (base_type);
2536 if (dtor && DECL_VIRTUAL_P (dtor))
2537 {
2538 lazy_p = false;
2539 break;
2540 }
2541 }
2542 }
2543
2544 /* If we can't get away with being lazy, generate the destructor
2545 now. */
2546 if (!lazy_p)
2547 lazily_declare_fn (sfk_destructor, t);
2548 }
2549 }
2550
2551 /* Default constructor. */
2552 if (! TYPE_HAS_CONSTRUCTOR (t))
2553 {
2554 TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
2555 CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
2556 }
2557
2558 /* Copy constructor. */
2559 if (! TYPE_HAS_INIT_REF (t) && ! TYPE_FOR_JAVA (t))
2560 {
2561 TYPE_HAS_INIT_REF (t) = 1;
2562 TYPE_HAS_CONST_INIT_REF (t) = !cant_have_const_cctor;
2563 CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
2564 TYPE_HAS_CONSTRUCTOR (t) = 1;
2565 }
2566
2567 /* If there is no assignment operator, one will be created if and
2568 when it is needed. For now, just record whether or not the type
2569 of the parameter to the assignment operator will be a const or
2570 non-const reference. */
2571 if (!TYPE_HAS_ASSIGN_REF (t) && !TYPE_FOR_JAVA (t))
2572 {
2573 TYPE_HAS_ASSIGN_REF (t) = 1;
2574 TYPE_HAS_CONST_ASSIGN_REF (t) = !cant_have_const_assignment;
2575 CLASSTYPE_LAZY_ASSIGNMENT_OP (t) = 1;
2576 }
2577 }
2578
2579 /* Subroutine of finish_struct_1. Recursively count the number of fields
2580 in TYPE, including anonymous union members. */
2581
2582 static int
2583 count_fields (tree fields)
2584 {
2585 tree x;
2586 int n_fields = 0;
2587 for (x = fields; x; x = TREE_CHAIN (x))
2588 {
2589 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
2590 n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
2591 else
2592 n_fields += 1;
2593 }
2594 return n_fields;
2595 }
2596
2597 /* Subroutine of finish_struct_1. Recursively add all the fields in the
2598 TREE_LIST FIELDS to the SORTED_FIELDS_TYPE elts, starting at offset IDX. */
2599
2600 static int
2601 add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
2602 {
2603 tree x;
2604 for (x = fields; x; x = TREE_CHAIN (x))
2605 {
2606 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
2607 idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
2608 else
2609 field_vec->elts[idx++] = x;
2610 }
2611 return idx;
2612 }
2613
2614 /* FIELD is a bit-field. We are finishing the processing for its
2615 enclosing type. Issue any appropriate messages and set appropriate
2616 flags. */
2617
2618 static void
2619 check_bitfield_decl (tree field)
2620 {
2621 tree type = TREE_TYPE (field);
2622 tree w = NULL_TREE;
2623
2624 /* Detect invalid bit-field type. */
2625 if (DECL_INITIAL (field)
2626 && ! INTEGRAL_TYPE_P (TREE_TYPE (field)))
2627 {
2628 cp_error_at ("bit-field %q#D with non-integral type", field);
2629 w = error_mark_node;
2630 }
2631
2632 /* Detect and ignore out of range field width. */
2633 if (DECL_INITIAL (field))
2634 {
2635 w = DECL_INITIAL (field);
2636
2637 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
2638 STRIP_NOPS (w);
2639
2640 /* detect invalid field size. */
2641 w = integral_constant_value (w);
2642
2643 if (TREE_CODE (w) != INTEGER_CST)
2644 {
2645 cp_error_at ("bit-field %qD width not an integer constant",
2646 field);
2647 w = error_mark_node;
2648 }
2649 else if (tree_int_cst_sgn (w) < 0)
2650 {
2651 cp_error_at ("negative width in bit-field %qD", field);
2652 w = error_mark_node;
2653 }
2654 else if (integer_zerop (w) && DECL_NAME (field) != 0)
2655 {
2656 cp_error_at ("zero width for bit-field %qD", field);
2657 w = error_mark_node;
2658 }
2659 else if (compare_tree_int (w, TYPE_PRECISION (type)) > 0
2660 && TREE_CODE (type) != ENUMERAL_TYPE
2661 && TREE_CODE (type) != BOOLEAN_TYPE)
2662 cp_warning_at ("width of %qD exceeds its type", field);
2663 else if (TREE_CODE (type) == ENUMERAL_TYPE
2664 && (0 > compare_tree_int (w,
2665 min_precision (TYPE_MIN_VALUE (type),
2666 TYPE_UNSIGNED (type)))
2667 || 0 > compare_tree_int (w,
2668 min_precision
2669 (TYPE_MAX_VALUE (type),
2670 TYPE_UNSIGNED (type)))))
2671 cp_warning_at ("%qD is too small to hold all values of %q#T",
2672 field, type);
2673 }
2674
2675 /* Remove the bit-field width indicator so that the rest of the
2676 compiler does not treat that value as an initializer. */
2677 DECL_INITIAL (field) = NULL_TREE;
2678
2679 if (w != error_mark_node)
2680 {
2681 DECL_SIZE (field) = convert (bitsizetype, w);
2682 DECL_BIT_FIELD (field) = 1;
2683 }
2684 else
2685 {
2686 /* Non-bit-fields are aligned for their type. */
2687 DECL_BIT_FIELD (field) = 0;
2688 CLEAR_DECL_C_BIT_FIELD (field);
2689 }
2690 }
2691
2692 /* FIELD is a non bit-field. We are finishing the processing for its
2693 enclosing type T. Issue any appropriate messages and set appropriate
2694 flags. */
2695
2696 static void
2697 check_field_decl (tree field,
2698 tree t,
2699 int* cant_have_const_ctor,
2700 int* no_const_asn_ref,
2701 int* any_default_members)
2702 {
2703 tree type = strip_array_types (TREE_TYPE (field));
2704
2705 /* An anonymous union cannot contain any fields which would change
2706 the settings of CANT_HAVE_CONST_CTOR and friends. */
2707 if (ANON_UNION_TYPE_P (type))
2708 ;
2709 /* And, we don't set TYPE_HAS_CONST_INIT_REF, etc., for anonymous
2710 structs. So, we recurse through their fields here. */
2711 else if (ANON_AGGR_TYPE_P (type))
2712 {
2713 tree fields;
2714
2715 for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
2716 if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
2717 check_field_decl (fields, t, cant_have_const_ctor,
2718 no_const_asn_ref, any_default_members);
2719 }
2720 /* Check members with class type for constructors, destructors,
2721 etc. */
2722 else if (CLASS_TYPE_P (type))
2723 {
2724 /* Never let anything with uninheritable virtuals
2725 make it through without complaint. */
2726 abstract_virtuals_error (field, type);
2727
2728 if (TREE_CODE (t) == UNION_TYPE)
2729 {
2730 if (TYPE_NEEDS_CONSTRUCTING (type))
2731 cp_error_at ("member %q#D with constructor not allowed in union",
2732 field);
2733 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
2734 cp_error_at ("member %q#D with destructor not allowed in union",
2735 field);
2736 if (TYPE_HAS_COMPLEX_ASSIGN_REF (type))
2737 cp_error_at ("member %q#D with copy assignment operator not allowed in union",
2738 field);
2739 }
2740 else
2741 {
2742 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
2743 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
2744 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
2745 TYPE_HAS_COMPLEX_ASSIGN_REF (t) |= TYPE_HAS_COMPLEX_ASSIGN_REF (type);
2746 TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_HAS_COMPLEX_INIT_REF (type);
2747 }
2748
2749 if (!TYPE_HAS_CONST_INIT_REF (type))
2750 *cant_have_const_ctor = 1;
2751
2752 if (!TYPE_HAS_CONST_ASSIGN_REF (type))
2753 *no_const_asn_ref = 1;
2754 }
2755 if (DECL_INITIAL (field) != NULL_TREE)
2756 {
2757 /* `build_class_init_list' does not recognize
2758 non-FIELD_DECLs. */
2759 if (TREE_CODE (t) == UNION_TYPE && any_default_members != 0)
2760 error ("multiple fields in union %qT initialized", t);
2761 *any_default_members = 1;
2762 }
2763 }
2764
2765 /* Check the data members (both static and non-static), class-scoped
2766 typedefs, etc., appearing in the declaration of T. Issue
2767 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
2768 declaration order) of access declarations; each TREE_VALUE in this
2769 list is a USING_DECL.
2770
2771 In addition, set the following flags:
2772
2773 EMPTY_P
2774 The class is empty, i.e., contains no non-static data members.
2775
2776 CANT_HAVE_CONST_CTOR_P
2777 This class cannot have an implicitly generated copy constructor
2778 taking a const reference.
2779
2780 CANT_HAVE_CONST_ASN_REF
2781 This class cannot have an implicitly generated assignment
2782 operator taking a const reference.
2783
2784 All of these flags should be initialized before calling this
2785 function.
2786
2787 Returns a pointer to the end of the TYPE_FIELDs chain; additional
2788 fields can be added by adding to this chain. */
2789
2790 static void
2791 check_field_decls (tree t, tree *access_decls,
2792 int *cant_have_const_ctor_p,
2793 int *no_const_asn_ref_p)
2794 {
2795 tree *field;
2796 tree *next;
2797 bool has_pointers;
2798 int any_default_members;
2799
2800 /* Assume there are no access declarations. */
2801 *access_decls = NULL_TREE;
2802 /* Assume this class has no pointer members. */
2803 has_pointers = false;
2804 /* Assume none of the members of this class have default
2805 initializations. */
2806 any_default_members = 0;
2807
2808 for (field = &TYPE_FIELDS (t); *field; field = next)
2809 {
2810 tree x = *field;
2811 tree type = TREE_TYPE (x);
2812
2813 next = &TREE_CHAIN (x);
2814
2815 if (TREE_CODE (x) == FIELD_DECL)
2816 {
2817 if (TYPE_PACKED (t))
2818 {
2819 if (!pod_type_p (TREE_TYPE (x)) && !TYPE_PACKED (TREE_TYPE (x)))
2820 cp_warning_at
2821 ("ignoring packed attribute on unpacked non-POD field %q#D",
2822 x);
2823 else
2824 DECL_PACKED (x) = 1;
2825 }
2826
2827 if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
2828 /* We don't treat zero-width bitfields as making a class
2829 non-empty. */
2830 ;
2831 else
2832 {
2833 tree element_type;
2834
2835 /* The class is non-empty. */
2836 CLASSTYPE_EMPTY_P (t) = 0;
2837 /* The class is not even nearly empty. */
2838 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
2839 /* If one of the data members contains an empty class,
2840 so does T. */
2841 element_type = strip_array_types (type);
2842 if (CLASS_TYPE_P (element_type)
2843 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
2844 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
2845 }
2846 }
2847
2848 if (TREE_CODE (x) == USING_DECL)
2849 {
2850 /* Prune the access declaration from the list of fields. */
2851 *field = TREE_CHAIN (x);
2852
2853 /* Save the access declarations for our caller. */
2854 *access_decls = tree_cons (NULL_TREE, x, *access_decls);
2855
2856 /* Since we've reset *FIELD there's no reason to skip to the
2857 next field. */
2858 next = field;
2859 continue;
2860 }
2861
2862 if (TREE_CODE (x) == TYPE_DECL
2863 || TREE_CODE (x) == TEMPLATE_DECL)
2864 continue;
2865
2866 /* If we've gotten this far, it's a data member, possibly static,
2867 or an enumerator. */
2868 DECL_CONTEXT (x) = t;
2869
2870 /* When this goes into scope, it will be a non-local reference. */
2871 DECL_NONLOCAL (x) = 1;
2872
2873 if (TREE_CODE (t) == UNION_TYPE)
2874 {
2875 /* [class.union]
2876
2877 If a union contains a static data member, or a member of
2878 reference type, the program is ill-formed. */
2879 if (TREE_CODE (x) == VAR_DECL)
2880 {
2881 cp_error_at ("%qD may not be static because it is a member of a union", x);
2882 continue;
2883 }
2884 if (TREE_CODE (type) == REFERENCE_TYPE)
2885 {
2886 cp_error_at ("%qD may not have reference type %qT because"
2887 " it is a member of a union",
2888 x, type);
2889 continue;
2890 }
2891 }
2892
2893 /* ``A local class cannot have static data members.'' ARM 9.4 */
2894 if (current_function_decl && TREE_STATIC (x))
2895 cp_error_at ("field %qD in local class cannot be static", x);
2896
2897 /* Perform error checking that did not get done in
2898 grokdeclarator. */
2899 if (TREE_CODE (type) == FUNCTION_TYPE)
2900 {
2901 cp_error_at ("field %qD invalidly declared function type", x);
2902 type = build_pointer_type (type);
2903 TREE_TYPE (x) = type;
2904 }
2905 else if (TREE_CODE (type) == METHOD_TYPE)
2906 {
2907 cp_error_at ("field %qD invalidly declared method type", x);
2908 type = build_pointer_type (type);
2909 TREE_TYPE (x) = type;
2910 }
2911
2912 if (type == error_mark_node)
2913 continue;
2914
2915 if (TREE_CODE (x) == CONST_DECL || TREE_CODE (x) == VAR_DECL)
2916 continue;
2917
2918 /* Now it can only be a FIELD_DECL. */
2919
2920 if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
2921 CLASSTYPE_NON_AGGREGATE (t) = 1;
2922
2923 /* If this is of reference type, check if it needs an init.
2924 Also do a little ANSI jig if necessary. */
2925 if (TREE_CODE (type) == REFERENCE_TYPE)
2926 {
2927 CLASSTYPE_NON_POD_P (t) = 1;
2928 if (DECL_INITIAL (x) == NULL_TREE)
2929 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
2930
2931 /* ARM $12.6.2: [A member initializer list] (or, for an
2932 aggregate, initialization by a brace-enclosed list) is the
2933 only way to initialize nonstatic const and reference
2934 members. */
2935 TYPE_HAS_COMPLEX_ASSIGN_REF (t) = 1;
2936
2937 if (! TYPE_HAS_CONSTRUCTOR (t) && CLASSTYPE_NON_AGGREGATE (t)
2938 && extra_warnings)
2939 cp_warning_at ("non-static reference %q#D in class without a constructor", x);
2940 }
2941
2942 type = strip_array_types (type);
2943
2944 /* This is used by -Weffc++ (see below). Warn only for pointers
2945 to members which might hold dynamic memory. So do not warn
2946 for pointers to functions or pointers to members. */
2947 if (TYPE_PTR_P (type)
2948 && !TYPE_PTRFN_P (type)
2949 && !TYPE_PTR_TO_MEMBER_P (type))
2950 has_pointers = true;
2951
2952 if (CLASS_TYPE_P (type))
2953 {
2954 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
2955 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
2956 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
2957 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
2958 }
2959
2960 if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
2961 CLASSTYPE_HAS_MUTABLE (t) = 1;
2962
2963 if (! pod_type_p (type))
2964 /* DR 148 now allows pointers to members (which are POD themselves),
2965 to be allowed in POD structs. */
2966 CLASSTYPE_NON_POD_P (t) = 1;
2967
2968 if (! zero_init_p (type))
2969 CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
2970
2971 /* If any field is const, the structure type is pseudo-const. */
2972 if (CP_TYPE_CONST_P (type))
2973 {
2974 C_TYPE_FIELDS_READONLY (t) = 1;
2975 if (DECL_INITIAL (x) == NULL_TREE)
2976 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
2977
2978 /* ARM $12.6.2: [A member initializer list] (or, for an
2979 aggregate, initialization by a brace-enclosed list) is the
2980 only way to initialize nonstatic const and reference
2981 members. */
2982 TYPE_HAS_COMPLEX_ASSIGN_REF (t) = 1;
2983
2984 if (! TYPE_HAS_CONSTRUCTOR (t) && CLASSTYPE_NON_AGGREGATE (t)
2985 && extra_warnings)
2986 cp_warning_at ("non-static const member %q#D in class without a constructor", x);
2987 }
2988 /* A field that is pseudo-const makes the structure likewise. */
2989 else if (CLASS_TYPE_P (type))
2990 {
2991 C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
2992 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
2993 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
2994 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
2995 }
2996
2997 /* Core issue 80: A nonstatic data member is required to have a
2998 different name from the class iff the class has a
2999 user-defined constructor. */
3000 if (constructor_name_p (DECL_NAME (x), t) && TYPE_HAS_CONSTRUCTOR (t))
3001 cp_pedwarn_at ("field %q#D with same name as class", x);
3002
3003 /* We set DECL_C_BIT_FIELD in grokbitfield.
3004 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3005 if (DECL_C_BIT_FIELD (x))
3006 check_bitfield_decl (x);
3007 else
3008 check_field_decl (x, t,
3009 cant_have_const_ctor_p,
3010 no_const_asn_ref_p,
3011 &any_default_members);
3012 }
3013
3014 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3015 it should also define a copy constructor and an assignment operator to
3016 implement the correct copy semantic (deep vs shallow, etc.). As it is
3017 not feasible to check whether the constructors do allocate dynamic memory
3018 and store it within members, we approximate the warning like this:
3019
3020 -- Warn only if there are members which are pointers
3021 -- Warn only if there is a non-trivial constructor (otherwise,
3022 there cannot be memory allocated).
3023 -- Warn only if there is a non-trivial destructor. We assume that the
3024 user at least implemented the cleanup correctly, and a destructor
3025 is needed to free dynamic memory.
3026
3027 This seems enough for practical purposes. */
3028 if (warn_ecpp
3029 && has_pointers
3030 && TYPE_HAS_CONSTRUCTOR (t)
3031 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3032 && !(TYPE_HAS_INIT_REF (t) && TYPE_HAS_ASSIGN_REF (t)))
3033 {
3034 warning ("%q#T has pointer data members", t);
3035
3036 if (! TYPE_HAS_INIT_REF (t))
3037 {
3038 warning (" but does not override %<%T(const %T&)%>", t, t);
3039 if (! TYPE_HAS_ASSIGN_REF (t))
3040 warning (" or %<operator=(const %T&)%>", t);
3041 }
3042 else if (! TYPE_HAS_ASSIGN_REF (t))
3043 warning (" but does not override %<operator=(const %T&)%>", t);
3044 }
3045
3046
3047 /* Check anonymous struct/anonymous union fields. */
3048 finish_struct_anon (t);
3049
3050 /* We've built up the list of access declarations in reverse order.
3051 Fix that now. */
3052 *access_decls = nreverse (*access_decls);
3053 }
3054
3055 /* If TYPE is an empty class type, records its OFFSET in the table of
3056 OFFSETS. */
3057
3058 static int
3059 record_subobject_offset (tree type, tree offset, splay_tree offsets)
3060 {
3061 splay_tree_node n;
3062
3063 if (!is_empty_class (type))
3064 return 0;
3065
3066 /* Record the location of this empty object in OFFSETS. */
3067 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3068 if (!n)
3069 n = splay_tree_insert (offsets,
3070 (splay_tree_key) offset,
3071 (splay_tree_value) NULL_TREE);
3072 n->value = ((splay_tree_value)
3073 tree_cons (NULL_TREE,
3074 type,
3075 (tree) n->value));
3076
3077 return 0;
3078 }
3079
3080 /* Returns nonzero if TYPE is an empty class type and there is
3081 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3082
3083 static int
3084 check_subobject_offset (tree type, tree offset, splay_tree offsets)
3085 {
3086 splay_tree_node n;
3087 tree t;
3088
3089 if (!is_empty_class (type))
3090 return 0;
3091
3092 /* Record the location of this empty object in OFFSETS. */
3093 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3094 if (!n)
3095 return 0;
3096
3097 for (t = (tree) n->value; t; t = TREE_CHAIN (t))
3098 if (same_type_p (TREE_VALUE (t), type))
3099 return 1;
3100
3101 return 0;
3102 }
3103
3104 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3105 F for every subobject, passing it the type, offset, and table of
3106 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3107 be traversed.
3108
3109 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3110 than MAX_OFFSET will not be walked.
3111
3112 If F returns a nonzero value, the traversal ceases, and that value
3113 is returned. Otherwise, returns zero. */
3114
3115 static int
3116 walk_subobject_offsets (tree type,
3117 subobject_offset_fn f,
3118 tree offset,
3119 splay_tree offsets,
3120 tree max_offset,
3121 int vbases_p)
3122 {
3123 int r = 0;
3124 tree type_binfo = NULL_TREE;
3125
3126 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3127 stop. */
3128 if (max_offset && INT_CST_LT (max_offset, offset))
3129 return 0;
3130
3131 if (!TYPE_P (type))
3132 {
3133 if (abi_version_at_least (2))
3134 type_binfo = type;
3135 type = BINFO_TYPE (type);
3136 }
3137
3138 if (CLASS_TYPE_P (type))
3139 {
3140 tree field;
3141 tree binfo;
3142 int i;
3143
3144 /* Avoid recursing into objects that are not interesting. */
3145 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3146 return 0;
3147
3148 /* Record the location of TYPE. */
3149 r = (*f) (type, offset, offsets);
3150 if (r)
3151 return r;
3152
3153 /* Iterate through the direct base classes of TYPE. */
3154 if (!type_binfo)
3155 type_binfo = TYPE_BINFO (type);
3156 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
3157 {
3158 tree binfo_offset;
3159
3160 if (abi_version_at_least (2)
3161 && BINFO_VIRTUAL_P (binfo))
3162 continue;
3163
3164 if (!vbases_p
3165 && BINFO_VIRTUAL_P (binfo)
3166 && !BINFO_PRIMARY_P (binfo))
3167 continue;
3168
3169 if (!abi_version_at_least (2))
3170 binfo_offset = size_binop (PLUS_EXPR,
3171 offset,
3172 BINFO_OFFSET (binfo));
3173 else
3174 {
3175 tree orig_binfo;
3176 /* We cannot rely on BINFO_OFFSET being set for the base
3177 class yet, but the offsets for direct non-virtual
3178 bases can be calculated by going back to the TYPE. */
3179 orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
3180 binfo_offset = size_binop (PLUS_EXPR,
3181 offset,
3182 BINFO_OFFSET (orig_binfo));
3183 }
3184
3185 r = walk_subobject_offsets (binfo,
3186 f,
3187 binfo_offset,
3188 offsets,
3189 max_offset,
3190 (abi_version_at_least (2)
3191 ? /*vbases_p=*/0 : vbases_p));
3192 if (r)
3193 return r;
3194 }
3195
3196 if (abi_version_at_least (2) && CLASSTYPE_VBASECLASSES (type))
3197 {
3198 unsigned ix;
3199 VEC (tree) *vbases;
3200
3201 /* Iterate through the virtual base classes of TYPE. In G++
3202 3.2, we included virtual bases in the direct base class
3203 loop above, which results in incorrect results; the
3204 correct offsets for virtual bases are only known when
3205 working with the most derived type. */
3206 if (vbases_p)
3207 for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
3208 VEC_iterate (tree, vbases, ix, binfo); ix++)
3209 {
3210 r = walk_subobject_offsets (binfo,
3211 f,
3212 size_binop (PLUS_EXPR,
3213 offset,
3214 BINFO_OFFSET (binfo)),
3215 offsets,
3216 max_offset,
3217 /*vbases_p=*/0);
3218 if (r)
3219 return r;
3220 }
3221 else
3222 {
3223 /* We still have to walk the primary base, if it is
3224 virtual. (If it is non-virtual, then it was walked
3225 above.) */
3226 tree vbase = get_primary_binfo (type_binfo);
3227
3228 if (vbase && BINFO_VIRTUAL_P (vbase)
3229 && BINFO_PRIMARY_P (vbase)
3230 && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
3231 {
3232 r = (walk_subobject_offsets
3233 (vbase, f, offset,
3234 offsets, max_offset, /*vbases_p=*/0));
3235 if (r)
3236 return r;
3237 }
3238 }
3239 }
3240
3241 /* Iterate through the fields of TYPE. */
3242 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3243 if (TREE_CODE (field) == FIELD_DECL && !DECL_ARTIFICIAL (field))
3244 {
3245 tree field_offset;
3246
3247 if (abi_version_at_least (2))
3248 field_offset = byte_position (field);
3249 else
3250 /* In G++ 3.2, DECL_FIELD_OFFSET was used. */
3251 field_offset = DECL_FIELD_OFFSET (field);
3252
3253 r = walk_subobject_offsets (TREE_TYPE (field),
3254 f,
3255 size_binop (PLUS_EXPR,
3256 offset,
3257 field_offset),
3258 offsets,
3259 max_offset,
3260 /*vbases_p=*/1);
3261 if (r)
3262 return r;
3263 }
3264 }
3265 else if (TREE_CODE (type) == ARRAY_TYPE)
3266 {
3267 tree element_type = strip_array_types (type);
3268 tree domain = TYPE_DOMAIN (type);
3269 tree index;
3270
3271 /* Avoid recursing into objects that are not interesting. */
3272 if (!CLASS_TYPE_P (element_type)
3273 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
3274 return 0;
3275
3276 /* Step through each of the elements in the array. */
3277 for (index = size_zero_node;
3278 /* G++ 3.2 had an off-by-one error here. */
3279 (abi_version_at_least (2)
3280 ? !INT_CST_LT (TYPE_MAX_VALUE (domain), index)
3281 : INT_CST_LT (index, TYPE_MAX_VALUE (domain)));
3282 index = size_binop (PLUS_EXPR, index, size_one_node))
3283 {
3284 r = walk_subobject_offsets (TREE_TYPE (type),
3285 f,
3286 offset,
3287 offsets,
3288 max_offset,
3289 /*vbases_p=*/1);
3290 if (r)
3291 return r;
3292 offset = size_binop (PLUS_EXPR, offset,
3293 TYPE_SIZE_UNIT (TREE_TYPE (type)));
3294 /* If this new OFFSET is bigger than the MAX_OFFSET, then
3295 there's no point in iterating through the remaining
3296 elements of the array. */
3297 if (max_offset && INT_CST_LT (max_offset, offset))
3298 break;
3299 }
3300 }
3301
3302 return 0;
3303 }
3304
3305 /* Record all of the empty subobjects of TYPE (located at OFFSET) in
3306 OFFSETS. If VBASES_P is nonzero, virtual bases of TYPE are
3307 examined. */
3308
3309 static void
3310 record_subobject_offsets (tree type,
3311 tree offset,
3312 splay_tree offsets,
3313 int vbases_p)
3314 {
3315 walk_subobject_offsets (type, record_subobject_offset, offset,
3316 offsets, /*max_offset=*/NULL_TREE, vbases_p);
3317 }
3318
3319 /* Returns nonzero if any of the empty subobjects of TYPE (located at
3320 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
3321 virtual bases of TYPE are examined. */
3322
3323 static int
3324 layout_conflict_p (tree type,
3325 tree offset,
3326 splay_tree offsets,
3327 int vbases_p)
3328 {
3329 splay_tree_node max_node;
3330
3331 /* Get the node in OFFSETS that indicates the maximum offset where
3332 an empty subobject is located. */
3333 max_node = splay_tree_max (offsets);
3334 /* If there aren't any empty subobjects, then there's no point in
3335 performing this check. */
3336 if (!max_node)
3337 return 0;
3338
3339 return walk_subobject_offsets (type, check_subobject_offset, offset,
3340 offsets, (tree) (max_node->key),
3341 vbases_p);
3342 }
3343
3344 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
3345 non-static data member of the type indicated by RLI. BINFO is the
3346 binfo corresponding to the base subobject, OFFSETS maps offsets to
3347 types already located at those offsets. This function determines
3348 the position of the DECL. */
3349
3350 static void
3351 layout_nonempty_base_or_field (record_layout_info rli,
3352 tree decl,
3353 tree binfo,
3354 splay_tree offsets)
3355 {
3356 tree offset = NULL_TREE;
3357 bool field_p;
3358 tree type;
3359
3360 if (binfo)
3361 {
3362 /* For the purposes of determining layout conflicts, we want to
3363 use the class type of BINFO; TREE_TYPE (DECL) will be the
3364 CLASSTYPE_AS_BASE version, which does not contain entries for
3365 zero-sized bases. */
3366 type = TREE_TYPE (binfo);
3367 field_p = false;
3368 }
3369 else
3370 {
3371 type = TREE_TYPE (decl);
3372 field_p = true;
3373 }
3374
3375 /* Try to place the field. It may take more than one try if we have
3376 a hard time placing the field without putting two objects of the
3377 same type at the same address. */
3378 while (1)
3379 {
3380 struct record_layout_info_s old_rli = *rli;
3381
3382 /* Place this field. */
3383 place_field (rli, decl);
3384 offset = byte_position (decl);
3385
3386 /* We have to check to see whether or not there is already
3387 something of the same type at the offset we're about to use.
3388 For example, consider:
3389
3390 struct S {};
3391 struct T : public S { int i; };
3392 struct U : public S, public T {};
3393
3394 Here, we put S at offset zero in U. Then, we can't put T at
3395 offset zero -- its S component would be at the same address
3396 as the S we already allocated. So, we have to skip ahead.
3397 Since all data members, including those whose type is an
3398 empty class, have nonzero size, any overlap can happen only
3399 with a direct or indirect base-class -- it can't happen with
3400 a data member. */
3401 /* In a union, overlap is permitted; all members are placed at
3402 offset zero. */
3403 if (TREE_CODE (rli->t) == UNION_TYPE)
3404 break;
3405 /* G++ 3.2 did not check for overlaps when placing a non-empty
3406 virtual base. */
3407 if (!abi_version_at_least (2) && binfo && BINFO_VIRTUAL_P (binfo))
3408 break;
3409 if (layout_conflict_p (field_p ? type : binfo, offset,
3410 offsets, field_p))
3411 {
3412 /* Strip off the size allocated to this field. That puts us
3413 at the first place we could have put the field with
3414 proper alignment. */
3415 *rli = old_rli;
3416
3417 /* Bump up by the alignment required for the type. */
3418 rli->bitpos
3419 = size_binop (PLUS_EXPR, rli->bitpos,
3420 bitsize_int (binfo
3421 ? CLASSTYPE_ALIGN (type)
3422 : TYPE_ALIGN (type)));
3423 normalize_rli (rli);
3424 }
3425 else
3426 /* There was no conflict. We're done laying out this field. */
3427 break;
3428 }
3429
3430 /* Now that we know where it will be placed, update its
3431 BINFO_OFFSET. */
3432 if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
3433 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
3434 this point because their BINFO_OFFSET is copied from another
3435 hierarchy. Therefore, we may not need to add the entire
3436 OFFSET. */
3437 propagate_binfo_offsets (binfo,
3438 size_diffop (convert (ssizetype, offset),
3439 convert (ssizetype,
3440 BINFO_OFFSET (binfo))));
3441 }
3442
3443 /* Returns true if TYPE is empty and OFFSET is nonzero. */
3444
3445 static int
3446 empty_base_at_nonzero_offset_p (tree type,
3447 tree offset,
3448 splay_tree offsets ATTRIBUTE_UNUSED)
3449 {
3450 return is_empty_class (type) && !integer_zerop (offset);
3451 }
3452
3453 /* Layout the empty base BINFO. EOC indicates the byte currently just
3454 past the end of the class, and should be correctly aligned for a
3455 class of the type indicated by BINFO; OFFSETS gives the offsets of
3456 the empty bases allocated so far. T is the most derived
3457 type. Return nonzero iff we added it at the end. */
3458
3459 static bool
3460 layout_empty_base (tree binfo, tree eoc, splay_tree offsets)
3461 {
3462 tree alignment;
3463 tree basetype = BINFO_TYPE (binfo);
3464 bool atend = false;
3465
3466 /* This routine should only be used for empty classes. */
3467 gcc_assert (is_empty_class (basetype));
3468 alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));
3469
3470 if (!integer_zerop (BINFO_OFFSET (binfo)))
3471 {
3472 if (abi_version_at_least (2))
3473 propagate_binfo_offsets
3474 (binfo, size_diffop (size_zero_node, BINFO_OFFSET (binfo)));
3475 else if (warn_abi)
3476 warning ("offset of empty base %qT may not be ABI-compliant and may"
3477 "change in a future version of GCC",
3478 BINFO_TYPE (binfo));
3479 }
3480
3481 /* This is an empty base class. We first try to put it at offset
3482 zero. */
3483 if (layout_conflict_p (binfo,
3484 BINFO_OFFSET (binfo),
3485 offsets,
3486 /*vbases_p=*/0))
3487 {
3488 /* That didn't work. Now, we move forward from the next
3489 available spot in the class. */
3490 atend = true;
3491 propagate_binfo_offsets (binfo, convert (ssizetype, eoc));
3492 while (1)
3493 {
3494 if (!layout_conflict_p (binfo,
3495 BINFO_OFFSET (binfo),
3496 offsets,
3497 /*vbases_p=*/0))
3498 /* We finally found a spot where there's no overlap. */
3499 break;
3500
3501 /* There's overlap here, too. Bump along to the next spot. */
3502 propagate_binfo_offsets (binfo, alignment);
3503 }
3504 }
3505 return atend;
3506 }
3507
3508 /* Layout the the base given by BINFO in the class indicated by RLI.
3509 *BASE_ALIGN is a running maximum of the alignments of
3510 any base class. OFFSETS gives the location of empty base
3511 subobjects. T is the most derived type. Return nonzero if the new
3512 object cannot be nearly-empty. A new FIELD_DECL is inserted at
3513 *NEXT_FIELD, unless BINFO is for an empty base class.
3514
3515 Returns the location at which the next field should be inserted. */
3516
3517 static tree *
3518 build_base_field (record_layout_info rli, tree binfo,
3519 splay_tree offsets, tree *next_field)
3520 {
3521 tree t = rli->t;
3522 tree basetype = BINFO_TYPE (binfo);
3523
3524 if (!COMPLETE_TYPE_P (basetype))
3525 /* This error is now reported in xref_tag, thus giving better
3526 location information. */
3527 return next_field;
3528
3529 /* Place the base class. */
3530 if (!is_empty_class (basetype))
3531 {
3532 tree decl;
3533
3534 /* The containing class is non-empty because it has a non-empty
3535 base class. */
3536 CLASSTYPE_EMPTY_P (t) = 0;
3537
3538 /* Create the FIELD_DECL. */
3539 decl = build_decl (FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
3540 DECL_ARTIFICIAL (decl) = 1;
3541 DECL_IGNORED_P (decl) = 1;
3542 DECL_FIELD_CONTEXT (decl) = t;
3543 DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
3544 DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
3545 DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype);
3546 DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
3547 DECL_MODE (decl) = TYPE_MODE (basetype);
3548 DECL_FIELD_IS_BASE (decl) = 1;
3549
3550 /* Try to place the field. It may take more than one try if we
3551 have a hard time placing the field without putting two
3552 objects of the same type at the same address. */
3553 layout_nonempty_base_or_field (rli, decl, binfo, offsets);
3554 /* Add the new FIELD_DECL to the list of fields for T. */
3555 TREE_CHAIN (decl) = *next_field;
3556 *next_field = decl;
3557 next_field = &TREE_CHAIN (decl);
3558 }
3559 else
3560 {
3561 tree eoc;
3562 bool atend;
3563
3564 /* On some platforms (ARM), even empty classes will not be
3565 byte-aligned. */
3566 eoc = round_up (rli_size_unit_so_far (rli),
3567 CLASSTYPE_ALIGN_UNIT (basetype));
3568 atend = layout_empty_base (binfo, eoc, offsets);
3569 /* A nearly-empty class "has no proper base class that is empty,
3570 not morally virtual, and at an offset other than zero." */
3571 if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
3572 {
3573 if (atend)
3574 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3575 /* The check above (used in G++ 3.2) is insufficient because
3576 an empty class placed at offset zero might itself have an
3577 empty base at a nonzero offset. */
3578 else if (walk_subobject_offsets (basetype,
3579 empty_base_at_nonzero_offset_p,
3580 size_zero_node,
3581 /*offsets=*/NULL,
3582 /*max_offset=*/NULL_TREE,
3583 /*vbases_p=*/true))
3584 {
3585 if (abi_version_at_least (2))
3586 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3587 else if (warn_abi)
3588 warning ("class %qT will be considered nearly empty in a "
3589 "future version of GCC", t);
3590 }
3591 }
3592
3593 /* We do not create a FIELD_DECL for empty base classes because
3594 it might overlap some other field. We want to be able to
3595 create CONSTRUCTORs for the class by iterating over the
3596 FIELD_DECLs, and the back end does not handle overlapping
3597 FIELD_DECLs. */
3598
3599 /* An empty virtual base causes a class to be non-empty
3600 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
3601 here because that was already done when the virtual table
3602 pointer was created. */
3603 }
3604
3605 /* Record the offsets of BINFO and its base subobjects. */
3606 record_subobject_offsets (binfo,
3607 BINFO_OFFSET (binfo),
3608 offsets,
3609 /*vbases_p=*/0);
3610
3611 return next_field;
3612 }
3613
3614 /* Layout all of the non-virtual base classes. Record empty
3615 subobjects in OFFSETS. T is the most derived type. Return nonzero
3616 if the type cannot be nearly empty. The fields created
3617 corresponding to the base classes will be inserted at
3618 *NEXT_FIELD. */
3619
3620 static void
3621 build_base_fields (record_layout_info rli,
3622 splay_tree offsets, tree *next_field)
3623 {
3624 /* Chain to hold all the new FIELD_DECLs which stand in for base class
3625 subobjects. */
3626 tree t = rli->t;
3627 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
3628 int i;
3629
3630 /* The primary base class is always allocated first. */
3631 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
3632 next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
3633 offsets, next_field);
3634
3635 /* Now allocate the rest of the bases. */
3636 for (i = 0; i < n_baseclasses; ++i)
3637 {
3638 tree base_binfo;
3639
3640 base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
3641
3642 /* The primary base was already allocated above, so we don't
3643 need to allocate it again here. */
3644 if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
3645 continue;
3646
3647 /* Virtual bases are added at the end (a primary virtual base
3648 will have already been added). */
3649 if (BINFO_VIRTUAL_P (base_binfo))
3650 continue;
3651
3652 next_field = build_base_field (rli, base_binfo,
3653 offsets, next_field);
3654 }
3655 }
3656
3657 /* Go through the TYPE_METHODS of T issuing any appropriate
3658 diagnostics, figuring out which methods override which other
3659 methods, and so forth. */
3660
3661 static void
3662 check_methods (tree t)
3663 {
3664 tree x;
3665
3666 for (x = TYPE_METHODS (t); x; x = TREE_CHAIN (x))
3667 {
3668 check_for_override (x, t);
3669 if (DECL_PURE_VIRTUAL_P (x) && ! DECL_VINDEX (x))
3670 cp_error_at ("initializer specified for non-virtual method %qD", x);
3671 /* The name of the field is the original field name
3672 Save this in auxiliary field for later overloading. */
3673 if (DECL_VINDEX (x))
3674 {
3675 TYPE_POLYMORPHIC_P (t) = 1;
3676 if (DECL_PURE_VIRTUAL_P (x))
3677 VEC_safe_push (tree, CLASSTYPE_PURE_VIRTUALS (t), x);
3678 }
3679 /* All user-declared destructors are non-trivial. */
3680 if (DECL_DESTRUCTOR_P (x))
3681 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
3682 }
3683 }
3684
3685 /* FN is a constructor or destructor. Clone the declaration to create
3686 a specialized in-charge or not-in-charge version, as indicated by
3687 NAME. */
3688
3689 static tree
3690 build_clone (tree fn, tree name)
3691 {
3692 tree parms;
3693 tree clone;
3694
3695 /* Copy the function. */
3696 clone = copy_decl (fn);
3697 /* Remember where this function came from. */
3698 DECL_CLONED_FUNCTION (clone) = fn;
3699 DECL_ABSTRACT_ORIGIN (clone) = fn;
3700 /* Reset the function name. */
3701 DECL_NAME (clone) = name;
3702 SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
3703 /* There's no pending inline data for this function. */
3704 DECL_PENDING_INLINE_INFO (clone) = NULL;
3705 DECL_PENDING_INLINE_P (clone) = 0;
3706 /* And it hasn't yet been deferred. */
3707 DECL_DEFERRED_FN (clone) = 0;
3708
3709 /* The base-class destructor is not virtual. */
3710 if (name == base_dtor_identifier)
3711 {
3712 DECL_VIRTUAL_P (clone) = 0;
3713 if (TREE_CODE (clone) != TEMPLATE_DECL)
3714 DECL_VINDEX (clone) = NULL_TREE;
3715 }
3716
3717 /* If there was an in-charge parameter, drop it from the function
3718 type. */
3719 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
3720 {
3721 tree basetype;
3722 tree parmtypes;
3723 tree exceptions;
3724
3725 exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
3726 basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
3727 parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
3728 /* Skip the `this' parameter. */
3729 parmtypes = TREE_CHAIN (parmtypes);
3730 /* Skip the in-charge parameter. */
3731 parmtypes = TREE_CHAIN (parmtypes);
3732 /* And the VTT parm, in a complete [cd]tor. */
3733 if (DECL_HAS_VTT_PARM_P (fn)
3734 && ! DECL_NEEDS_VTT_PARM_P (clone))
3735 parmtypes = TREE_CHAIN (parmtypes);
3736 /* If this is subobject constructor or destructor, add the vtt
3737 parameter. */
3738 TREE_TYPE (clone)
3739 = build_method_type_directly (basetype,
3740 TREE_TYPE (TREE_TYPE (clone)),
3741 parmtypes);
3742 if (exceptions)
3743 TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
3744 exceptions);
3745 TREE_TYPE (clone)
3746 = cp_build_type_attribute_variant (TREE_TYPE (clone),
3747 TYPE_ATTRIBUTES (TREE_TYPE (fn)));
3748 }
3749
3750 /* Copy the function parameters. But, DECL_ARGUMENTS on a TEMPLATE_DECL
3751 aren't function parameters; those are the template parameters. */
3752 if (TREE_CODE (clone) != TEMPLATE_DECL)
3753 {
3754 DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
3755 /* Remove the in-charge parameter. */
3756 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
3757 {
3758 TREE_CHAIN (DECL_ARGUMENTS (clone))
3759 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone)));
3760 DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
3761 }
3762 /* And the VTT parm, in a complete [cd]tor. */
3763 if (DECL_HAS_VTT_PARM_P (fn))
3764 {
3765 if (DECL_NEEDS_VTT_PARM_P (clone))
3766 DECL_HAS_VTT_PARM_P (clone) = 1;
3767 else
3768 {
3769 TREE_CHAIN (DECL_ARGUMENTS (clone))
3770 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone)));
3771 DECL_HAS_VTT_PARM_P (clone) = 0;
3772 }
3773 }
3774
3775 for (parms = DECL_ARGUMENTS (clone); parms; parms = TREE_CHAIN (parms))
3776 {
3777 DECL_CONTEXT (parms) = clone;
3778 cxx_dup_lang_specific_decl (parms);
3779 }
3780 }
3781
3782 /* Create the RTL for this function. */
3783 SET_DECL_RTL (clone, NULL_RTX);
3784 rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);
3785
3786 /* Make it easy to find the CLONE given the FN. */
3787 TREE_CHAIN (clone) = TREE_CHAIN (fn);
3788 TREE_CHAIN (fn) = clone;
3789
3790 /* If this is a template, handle the DECL_TEMPLATE_RESULT as well. */
3791 if (TREE_CODE (clone) == TEMPLATE_DECL)
3792 {
3793 tree result;
3794
3795 DECL_TEMPLATE_RESULT (clone)
3796 = build_clone (DECL_TEMPLATE_RESULT (clone), name);
3797 result = DECL_TEMPLATE_RESULT (clone);
3798 DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
3799 DECL_TI_TEMPLATE (result) = clone;
3800 }
3801 else if (pch_file)
3802 note_decl_for_pch (clone);
3803
3804 return clone;
3805 }
3806
3807 /* Produce declarations for all appropriate clones of FN. If
3808 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
3809 CLASTYPE_METHOD_VEC as well. */
3810
3811 void
3812 clone_function_decl (tree fn, int update_method_vec_p)
3813 {
3814 tree clone;
3815
3816 /* Avoid inappropriate cloning. */
3817 if (TREE_CHAIN (fn)
3818 && DECL_CLONED_FUNCTION (TREE_CHAIN (fn)))
3819 return;
3820
3821 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
3822 {
3823 /* For each constructor, we need two variants: an in-charge version
3824 and a not-in-charge version. */
3825 clone = build_clone (fn, complete_ctor_identifier);
3826 if (update_method_vec_p)
3827 add_method (DECL_CONTEXT (clone), clone);
3828 clone = build_clone (fn, base_ctor_identifier);
3829 if (update_method_vec_p)
3830 add_method (DECL_CONTEXT (clone), clone);
3831 }
3832 else
3833 {
3834 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));
3835
3836 /* For each destructor, we need three variants: an in-charge
3837 version, a not-in-charge version, and an in-charge deleting
3838 version. We clone the deleting version first because that
3839 means it will go second on the TYPE_METHODS list -- and that
3840 corresponds to the correct layout order in the virtual
3841 function table.
3842
3843 For a non-virtual destructor, we do not build a deleting
3844 destructor. */
3845 if (DECL_VIRTUAL_P (fn))
3846 {
3847 clone = build_clone (fn, deleting_dtor_identifier);
3848 if (update_method_vec_p)
3849 add_method (DECL_CONTEXT (clone), clone);
3850 }
3851 clone = build_clone (fn, complete_dtor_identifier);
3852 if (update_method_vec_p)
3853 add_method (DECL_CONTEXT (clone), clone);
3854 clone = build_clone (fn, base_dtor_identifier);
3855 if (update_method_vec_p)
3856 add_method (DECL_CONTEXT (clone), clone);
3857 }
3858
3859 /* Note that this is an abstract function that is never emitted. */
3860 DECL_ABSTRACT (fn) = 1;
3861 }
3862
3863 /* DECL is an in charge constructor, which is being defined. This will
3864 have had an in class declaration, from whence clones were
3865 declared. An out-of-class definition can specify additional default
3866 arguments. As it is the clones that are involved in overload
3867 resolution, we must propagate the information from the DECL to its
3868 clones. */
3869
3870 void
3871 adjust_clone_args (tree decl)
3872 {
3873 tree clone;
3874
3875 for (clone = TREE_CHAIN (decl); clone && DECL_CLONED_FUNCTION (clone);
3876 clone = TREE_CHAIN (clone))
3877 {
3878 tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
3879 tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
3880 tree decl_parms, clone_parms;
3881
3882 clone_parms = orig_clone_parms;
3883
3884 /* Skip the 'this' parameter. */
3885 orig_clone_parms = TREE_CHAIN (orig_clone_parms);
3886 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3887
3888 if (DECL_HAS_IN_CHARGE_PARM_P (decl))
3889 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3890 if (DECL_HAS_VTT_PARM_P (decl))
3891 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3892
3893 clone_parms = orig_clone_parms;
3894 if (DECL_HAS_VTT_PARM_P (clone))
3895 clone_parms = TREE_CHAIN (clone_parms);
3896
3897 for (decl_parms = orig_decl_parms; decl_parms;
3898 decl_parms = TREE_CHAIN (decl_parms),
3899 clone_parms = TREE_CHAIN (clone_parms))
3900 {
3901 gcc_assert (same_type_p (TREE_TYPE (decl_parms),
3902 TREE_TYPE (clone_parms)));
3903
3904 if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
3905 {
3906 /* A default parameter has been added. Adjust the
3907 clone's parameters. */
3908 tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
3909 tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
3910 tree type;
3911
3912 clone_parms = orig_decl_parms;
3913
3914 if (DECL_HAS_VTT_PARM_P (clone))
3915 {
3916 clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
3917 TREE_VALUE (orig_clone_parms),
3918 clone_parms);
3919 TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
3920 }
3921 type = build_method_type_directly (basetype,
3922 TREE_TYPE (TREE_TYPE (clone)),
3923 clone_parms);
3924 if (exceptions)
3925 type = build_exception_variant (type, exceptions);
3926 TREE_TYPE (clone) = type;
3927
3928 clone_parms = NULL_TREE;
3929 break;
3930 }
3931 }
3932 gcc_assert (!clone_parms);
3933 }
3934 }
3935
3936 /* For each of the constructors and destructors in T, create an
3937 in-charge and not-in-charge variant. */
3938
3939 static void
3940 clone_constructors_and_destructors (tree t)
3941 {
3942 tree fns;
3943
3944 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
3945 out now. */
3946 if (!CLASSTYPE_METHOD_VEC (t))
3947 return;
3948
3949 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
3950 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
3951 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
3952 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
3953 }
3954
3955 /* Remove all zero-width bit-fields from T. */
3956
3957 static void
3958 remove_zero_width_bit_fields (tree t)
3959 {
3960 tree *fieldsp;
3961
3962 fieldsp = &TYPE_FIELDS (t);
3963 while (*fieldsp)
3964 {
3965 if (TREE_CODE (*fieldsp) == FIELD_DECL
3966 && DECL_C_BIT_FIELD (*fieldsp)
3967 && DECL_INITIAL (*fieldsp))
3968 *fieldsp = TREE_CHAIN (*fieldsp);
3969 else
3970 fieldsp = &TREE_CHAIN (*fieldsp);
3971 }
3972 }
3973
3974 /* Returns TRUE iff we need a cookie when dynamically allocating an
3975 array whose elements have the indicated class TYPE. */
3976
3977 static bool
3978 type_requires_array_cookie (tree type)
3979 {
3980 tree fns;
3981 bool has_two_argument_delete_p = false;
3982
3983 gcc_assert (CLASS_TYPE_P (type));
3984
3985 /* If there's a non-trivial destructor, we need a cookie. In order
3986 to iterate through the array calling the destructor for each
3987 element, we'll have to know how many elements there are. */
3988 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
3989 return true;
3990
3991 /* If the usual deallocation function is a two-argument whose second
3992 argument is of type `size_t', then we have to pass the size of
3993 the array to the deallocation function, so we will need to store
3994 a cookie. */
3995 fns = lookup_fnfields (TYPE_BINFO (type),
3996 ansi_opname (VEC_DELETE_EXPR),
3997 /*protect=*/0);
3998 /* If there are no `operator []' members, or the lookup is
3999 ambiguous, then we don't need a cookie. */
4000 if (!fns || fns == error_mark_node)
4001 return false;
4002 /* Loop through all of the functions. */
4003 for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
4004 {
4005 tree fn;
4006 tree second_parm;
4007
4008 /* Select the current function. */
4009 fn = OVL_CURRENT (fns);
4010 /* See if this function is a one-argument delete function. If
4011 it is, then it will be the usual deallocation function. */
4012 second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
4013 if (second_parm == void_list_node)
4014 return false;
4015 /* Otherwise, if we have a two-argument function and the second
4016 argument is `size_t', it will be the usual deallocation
4017 function -- unless there is one-argument function, too. */
4018 if (TREE_CHAIN (second_parm) == void_list_node
4019 && same_type_p (TREE_VALUE (second_parm), sizetype))
4020 has_two_argument_delete_p = true;
4021 }
4022
4023 return has_two_argument_delete_p;
4024 }
4025
4026 /* Check the validity of the bases and members declared in T. Add any
4027 implicitly-generated functions (like copy-constructors and
4028 assignment operators). Compute various flag bits (like
4029 CLASSTYPE_NON_POD_T) for T. This routine works purely at the C++
4030 level: i.e., independently of the ABI in use. */
4031
4032 static void
4033 check_bases_and_members (tree t)
4034 {
4035 /* Nonzero if the implicitly generated copy constructor should take
4036 a non-const reference argument. */
4037 int cant_have_const_ctor;
4038 /* Nonzero if the the implicitly generated assignment operator
4039 should take a non-const reference argument. */
4040 int no_const_asn_ref;
4041 tree access_decls;
4042
4043 /* By default, we use const reference arguments and generate default
4044 constructors. */
4045 cant_have_const_ctor = 0;
4046 no_const_asn_ref = 0;
4047
4048 /* Check all the base-classes. */
4049 check_bases (t, &cant_have_const_ctor,
4050 &no_const_asn_ref);
4051
4052 /* Check all the method declarations. */
4053 check_methods (t);
4054
4055 /* Check all the data member declarations. We cannot call
4056 check_field_decls until we have called check_bases check_methods,
4057 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
4058 being set appropriately. */
4059 check_field_decls (t, &access_decls,
4060 &cant_have_const_ctor,
4061 &no_const_asn_ref);
4062
4063 /* A nearly-empty class has to be vptr-containing; a nearly empty
4064 class contains just a vptr. */
4065 if (!TYPE_CONTAINS_VPTR_P (t))
4066 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4067
4068 /* Do some bookkeeping that will guide the generation of implicitly
4069 declared member functions. */
4070 TYPE_HAS_COMPLEX_INIT_REF (t)
4071 |= (TYPE_HAS_INIT_REF (t) || TYPE_CONTAINS_VPTR_P (t));
4072 TYPE_NEEDS_CONSTRUCTING (t)
4073 |= (TYPE_HAS_CONSTRUCTOR (t) || TYPE_CONTAINS_VPTR_P (t));
4074 CLASSTYPE_NON_AGGREGATE (t)
4075 |= (TYPE_HAS_CONSTRUCTOR (t) || TYPE_POLYMORPHIC_P (t));
4076 CLASSTYPE_NON_POD_P (t)
4077 |= (CLASSTYPE_NON_AGGREGATE (t)
4078 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
4079 || TYPE_HAS_ASSIGN_REF (t));
4080 TYPE_HAS_COMPLEX_ASSIGN_REF (t)
4081 |= TYPE_HAS_ASSIGN_REF (t) || TYPE_CONTAINS_VPTR_P (t);
4082
4083 /* Synthesize any needed methods. */
4084 add_implicitly_declared_members (t,
4085 cant_have_const_ctor,
4086 no_const_asn_ref);
4087
4088 /* Create the in-charge and not-in-charge variants of constructors
4089 and destructors. */
4090 clone_constructors_and_destructors (t);
4091
4092 /* Process the using-declarations. */
4093 for (; access_decls; access_decls = TREE_CHAIN (access_decls))
4094 handle_using_decl (TREE_VALUE (access_decls), t);
4095
4096 /* Build and sort the CLASSTYPE_METHOD_VEC. */
4097 finish_struct_methods (t);
4098
4099 /* Figure out whether or not we will need a cookie when dynamically
4100 allocating an array of this type. */
4101 TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
4102 = type_requires_array_cookie (t);
4103 }
4104
4105 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
4106 accordingly. If a new vfield was created (because T doesn't have a
4107 primary base class), then the newly created field is returned. It
4108 is not added to the TYPE_FIELDS list; it is the caller's
4109 responsibility to do that. Accumulate declared virtual functions
4110 on VIRTUALS_P. */
4111
4112 static tree
4113 create_vtable_ptr (tree t, tree* virtuals_p)
4114 {
4115 tree fn;
4116
4117 /* Collect the virtual functions declared in T. */
4118 for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn))
4119 if (DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
4120 && TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
4121 {
4122 tree new_virtual = make_node (TREE_LIST);
4123
4124 BV_FN (new_virtual) = fn;
4125 BV_DELTA (new_virtual) = integer_zero_node;
4126 BV_VCALL_INDEX (new_virtual) = NULL_TREE;
4127
4128 TREE_CHAIN (new_virtual) = *virtuals_p;
4129 *virtuals_p = new_virtual;
4130 }
4131
4132 /* If we couldn't find an appropriate base class, create a new field
4133 here. Even if there weren't any new virtual functions, we might need a
4134 new virtual function table if we're supposed to include vptrs in
4135 all classes that need them. */
4136 if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
4137 {
4138 /* We build this decl with vtbl_ptr_type_node, which is a
4139 `vtable_entry_type*'. It might seem more precise to use
4140 `vtable_entry_type (*)[N]' where N is the number of virtual
4141 functions. However, that would require the vtable pointer in
4142 base classes to have a different type than the vtable pointer
4143 in derived classes. We could make that happen, but that
4144 still wouldn't solve all the problems. In particular, the
4145 type-based alias analysis code would decide that assignments
4146 to the base class vtable pointer can't alias assignments to
4147 the derived class vtable pointer, since they have different
4148 types. Thus, in a derived class destructor, where the base
4149 class constructor was inlined, we could generate bad code for
4150 setting up the vtable pointer.
4151
4152 Therefore, we use one type for all vtable pointers. We still
4153 use a type-correct type; it's just doesn't indicate the array
4154 bounds. That's better than using `void*' or some such; it's
4155 cleaner, and it let's the alias analysis code know that these
4156 stores cannot alias stores to void*! */
4157 tree field;
4158
4159 field = build_decl (FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
4160 SET_DECL_ASSEMBLER_NAME (field, get_identifier (VFIELD_BASE));
4161 DECL_VIRTUAL_P (field) = 1;
4162 DECL_ARTIFICIAL (field) = 1;
4163 DECL_FIELD_CONTEXT (field) = t;
4164 DECL_FCONTEXT (field) = t;
4165
4166 TYPE_VFIELD (t) = field;
4167
4168 /* This class is non-empty. */
4169 CLASSTYPE_EMPTY_P (t) = 0;
4170
4171 return field;
4172 }
4173
4174 return NULL_TREE;
4175 }
4176
4177 /* Fixup the inline function given by INFO now that the class is
4178 complete. */
4179
4180 static void
4181 fixup_pending_inline (tree fn)
4182 {
4183 if (DECL_PENDING_INLINE_INFO (fn))
4184 {
4185 tree args = DECL_ARGUMENTS (fn);
4186 while (args)
4187 {
4188 DECL_CONTEXT (args) = fn;
4189 args = TREE_CHAIN (args);
4190 }
4191 }
4192 }
4193
4194 /* Fixup the inline methods and friends in TYPE now that TYPE is
4195 complete. */
4196
4197 static void
4198 fixup_inline_methods (tree type)
4199 {
4200 tree method = TYPE_METHODS (type);
4201 VEC (tree) *friends;
4202 unsigned ix;
4203
4204 if (method && TREE_CODE (method) == TREE_VEC)
4205 {
4206 if (TREE_VEC_ELT (method, 1))
4207 method = TREE_VEC_ELT (method, 1);
4208 else if (TREE_VEC_ELT (method, 0))
4209 method = TREE_VEC_ELT (method, 0);
4210 else
4211 method = TREE_VEC_ELT (method, 2);
4212 }
4213
4214 /* Do inline member functions. */
4215 for (; method; method = TREE_CHAIN (method))
4216 fixup_pending_inline (method);
4217
4218 /* Do friends. */
4219 for (friends = CLASSTYPE_INLINE_FRIENDS (type), ix = 0;
4220 VEC_iterate (tree, friends, ix, method); ix++)
4221 fixup_pending_inline (method);
4222 CLASSTYPE_INLINE_FRIENDS (type) = NULL;
4223 }
4224
4225 /* Add OFFSET to all base types of BINFO which is a base in the
4226 hierarchy dominated by T.
4227
4228 OFFSET, which is a type offset, is number of bytes. */
4229
4230 static void
4231 propagate_binfo_offsets (tree binfo, tree offset)
4232 {
4233 int i;
4234 tree primary_binfo;
4235 tree base_binfo;
4236
4237 /* Update BINFO's offset. */
4238 BINFO_OFFSET (binfo)
4239 = convert (sizetype,
4240 size_binop (PLUS_EXPR,
4241 convert (ssizetype, BINFO_OFFSET (binfo)),
4242 offset));
4243
4244 /* Find the primary base class. */
4245 primary_binfo = get_primary_binfo (binfo);
4246
4247 if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
4248 propagate_binfo_offsets (primary_binfo, offset);
4249
4250 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
4251 downwards. */
4252 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4253 {
4254 /* Don't do the primary base twice. */
4255 if (base_binfo == primary_binfo)
4256 continue;
4257
4258 if (BINFO_VIRTUAL_P (base_binfo))
4259 continue;
4260
4261 propagate_binfo_offsets (base_binfo, offset);
4262 }
4263 }
4264
4265 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
4266 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
4267 empty subobjects of T. */
4268
4269 static void
4270 layout_virtual_bases (record_layout_info rli, splay_tree offsets)
4271 {
4272 tree vbase;
4273 tree t = rli->t;
4274 bool first_vbase = true;
4275 tree *next_field;
4276
4277 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
4278 return;
4279
4280 if (!abi_version_at_least(2))
4281 {
4282 /* In G++ 3.2, we incorrectly rounded the size before laying out
4283 the virtual bases. */
4284 finish_record_layout (rli, /*free_p=*/false);
4285 #ifdef STRUCTURE_SIZE_BOUNDARY
4286 /* Packed structures don't need to have minimum size. */
4287 if (! TYPE_PACKED (t))
4288 TYPE_ALIGN (t) = MAX (TYPE_ALIGN (t), (unsigned) STRUCTURE_SIZE_BOUNDARY);
4289 #endif
4290 rli->offset = TYPE_SIZE_UNIT (t);
4291 rli->bitpos = bitsize_zero_node;
4292 rli->record_align = TYPE_ALIGN (t);
4293 }
4294
4295 /* Find the last field. The artificial fields created for virtual
4296 bases will go after the last extant field to date. */
4297 next_field = &TYPE_FIELDS (t);
4298 while (*next_field)
4299 next_field = &TREE_CHAIN (*next_field);
4300
4301 /* Go through the virtual bases, allocating space for each virtual
4302 base that is not already a primary base class. These are
4303 allocated in inheritance graph order. */
4304 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
4305 {
4306 if (!BINFO_VIRTUAL_P (vbase))
4307 continue;
4308
4309 if (!BINFO_PRIMARY_P (vbase))
4310 {
4311 tree basetype = TREE_TYPE (vbase);
4312
4313 /* This virtual base is not a primary base of any class in the
4314 hierarchy, so we have to add space for it. */
4315 next_field = build_base_field (rli, vbase,
4316 offsets, next_field);
4317
4318 /* If the first virtual base might have been placed at a
4319 lower address, had we started from CLASSTYPE_SIZE, rather
4320 than TYPE_SIZE, issue a warning. There can be both false
4321 positives and false negatives from this warning in rare
4322 cases; to deal with all the possibilities would probably
4323 require performing both layout algorithms and comparing
4324 the results which is not particularly tractable. */
4325 if (warn_abi
4326 && first_vbase
4327 && (tree_int_cst_lt
4328 (size_binop (CEIL_DIV_EXPR,
4329 round_up (CLASSTYPE_SIZE (t),
4330 CLASSTYPE_ALIGN (basetype)),
4331 bitsize_unit_node),
4332 BINFO_OFFSET (vbase))))
4333 warning ("offset of virtual base %qT is not ABI-compliant and "
4334 "may change in a future version of GCC",
4335 basetype);
4336
4337 first_vbase = false;
4338 }
4339 }
4340 }
4341
4342 /* Returns the offset of the byte just past the end of the base class
4343 BINFO. */
4344
4345 static tree
4346 end_of_base (tree binfo)
4347 {
4348 tree size;
4349
4350 if (is_empty_class (BINFO_TYPE (binfo)))
4351 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
4352 allocate some space for it. It cannot have virtual bases, so
4353 TYPE_SIZE_UNIT is fine. */
4354 size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
4355 else
4356 size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
4357
4358 return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
4359 }
4360
4361 /* Returns the offset of the byte just past the end of the base class
4362 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
4363 only non-virtual bases are included. */
4364
4365 static tree
4366 end_of_class (tree t, int include_virtuals_p)
4367 {
4368 tree result = size_zero_node;
4369 VEC (tree) *vbases;
4370 tree binfo;
4371 tree base_binfo;
4372 tree offset;
4373 int i;
4374
4375 for (binfo = TYPE_BINFO (t), i = 0;
4376 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4377 {
4378 if (!include_virtuals_p
4379 && BINFO_VIRTUAL_P (base_binfo)
4380 && (!BINFO_PRIMARY_P (base_binfo)
4381 || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
4382 continue;
4383
4384 offset = end_of_base (base_binfo);
4385 if (INT_CST_LT_UNSIGNED (result, offset))
4386 result = offset;
4387 }
4388
4389 /* G++ 3.2 did not check indirect virtual bases. */
4390 if (abi_version_at_least (2) && include_virtuals_p)
4391 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
4392 VEC_iterate (tree, vbases, i, base_binfo); i++)
4393 {
4394 offset = end_of_base (base_binfo);
4395 if (INT_CST_LT_UNSIGNED (result, offset))
4396 result = offset;
4397 }
4398
4399 return result;
4400 }
4401
4402 /* Warn about bases of T that are inaccessible because they are
4403 ambiguous. For example:
4404
4405 struct S {};
4406 struct T : public S {};
4407 struct U : public S, public T {};
4408
4409 Here, `(S*) new U' is not allowed because there are two `S'
4410 subobjects of U. */
4411
4412 static void
4413 warn_about_ambiguous_bases (tree t)
4414 {
4415 int i;
4416 VEC (tree) *vbases;
4417 tree basetype;
4418 tree binfo;
4419 tree base_binfo;
4420
4421 /* If there are no repeated bases, nothing can be ambiguous. */
4422 if (!CLASSTYPE_REPEATED_BASE_P (t))
4423 return;
4424
4425 /* Check direct bases. */
4426 for (binfo = TYPE_BINFO (t), i = 0;
4427 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4428 {
4429 basetype = BINFO_TYPE (base_binfo);
4430
4431 if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
4432 warning ("direct base %qT inaccessible in %qT due to ambiguity",
4433 basetype, t);
4434 }
4435
4436 /* Check for ambiguous virtual bases. */
4437 if (extra_warnings)
4438 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
4439 VEC_iterate (tree, vbases, i, binfo); i++)
4440 {
4441 basetype = BINFO_TYPE (binfo);
4442
4443 if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
4444 warning ("virtual base %qT inaccessible in %qT due to ambiguity",
4445 basetype, t);
4446 }
4447 }
4448
4449 /* Compare two INTEGER_CSTs K1 and K2. */
4450
4451 static int
4452 splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
4453 {
4454 return tree_int_cst_compare ((tree) k1, (tree) k2);
4455 }
4456
4457 /* Increase the size indicated in RLI to account for empty classes
4458 that are "off the end" of the class. */
4459
4460 static void
4461 include_empty_classes (record_layout_info rli)
4462 {
4463 tree eoc;
4464 tree rli_size;
4465
4466 /* It might be the case that we grew the class to allocate a
4467 zero-sized base class. That won't be reflected in RLI, yet,
4468 because we are willing to overlay multiple bases at the same
4469 offset. However, now we need to make sure that RLI is big enough
4470 to reflect the entire class. */
4471 eoc = end_of_class (rli->t,
4472 CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
4473 rli_size = rli_size_unit_so_far (rli);
4474 if (TREE_CODE (rli_size) == INTEGER_CST
4475 && INT_CST_LT_UNSIGNED (rli_size, eoc))
4476 {
4477 if (!abi_version_at_least (2))
4478 /* In version 1 of the ABI, the size of a class that ends with
4479 a bitfield was not rounded up to a whole multiple of a
4480 byte. Because rli_size_unit_so_far returns only the number
4481 of fully allocated bytes, any extra bits were not included
4482 in the size. */
4483 rli->bitpos = round_down (rli->bitpos, BITS_PER_UNIT);
4484 else
4485 /* The size should have been rounded to a whole byte. */
4486 gcc_assert (tree_int_cst_equal
4487 (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
4488 rli->bitpos
4489 = size_binop (PLUS_EXPR,
4490 rli->bitpos,
4491 size_binop (MULT_EXPR,
4492 convert (bitsizetype,
4493 size_binop (MINUS_EXPR,
4494 eoc, rli_size)),
4495 bitsize_int (BITS_PER_UNIT)));
4496 normalize_rli (rli);
4497 }
4498 }
4499
4500 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
4501 BINFO_OFFSETs for all of the base-classes. Position the vtable
4502 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
4503
4504 static void
4505 layout_class_type (tree t, tree *virtuals_p)
4506 {
4507 tree non_static_data_members;
4508 tree field;
4509 tree vptr;
4510 record_layout_info rli;
4511 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
4512 types that appear at that offset. */
4513 splay_tree empty_base_offsets;
4514 /* True if the last field layed out was a bit-field. */
4515 bool last_field_was_bitfield = false;
4516 /* The location at which the next field should be inserted. */
4517 tree *next_field;
4518 /* T, as a base class. */
4519 tree base_t;
4520
4521 /* Keep track of the first non-static data member. */
4522 non_static_data_members = TYPE_FIELDS (t);
4523
4524 /* Start laying out the record. */
4525 rli = start_record_layout (t);
4526
4527 /* Mark all the primary bases in the hierarchy. */
4528 determine_primary_bases (t);
4529
4530 /* Create a pointer to our virtual function table. */
4531 vptr = create_vtable_ptr (t, virtuals_p);
4532
4533 /* The vptr is always the first thing in the class. */
4534 if (vptr)
4535 {
4536 TREE_CHAIN (vptr) = TYPE_FIELDS (t);
4537 TYPE_FIELDS (t) = vptr;
4538 next_field = &TREE_CHAIN (vptr);
4539 place_field (rli, vptr);
4540 }
4541 else
4542 next_field = &TYPE_FIELDS (t);
4543
4544 /* Build FIELD_DECLs for all of the non-virtual base-types. */
4545 empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
4546 NULL, NULL);
4547 build_base_fields (rli, empty_base_offsets, next_field);
4548
4549 /* Layout the non-static data members. */
4550 for (field = non_static_data_members; field; field = TREE_CHAIN (field))
4551 {
4552 tree type;
4553 tree padding;
4554
4555 /* We still pass things that aren't non-static data members to
4556 the back-end, in case it wants to do something with them. */
4557 if (TREE_CODE (field) != FIELD_DECL)
4558 {
4559 place_field (rli, field);
4560 /* If the static data member has incomplete type, keep track
4561 of it so that it can be completed later. (The handling
4562 of pending statics in finish_record_layout is
4563 insufficient; consider:
4564
4565 struct S1;
4566 struct S2 { static S1 s1; };
4567
4568 At this point, finish_record_layout will be called, but
4569 S1 is still incomplete.) */
4570 if (TREE_CODE (field) == VAR_DECL)
4571 {
4572 maybe_register_incomplete_var (field);
4573 /* The visibility of static data members is determined
4574 at their point of declaration, not their point of
4575 definition. */
4576 determine_visibility (field);
4577 }
4578 continue;
4579 }
4580
4581 type = TREE_TYPE (field);
4582
4583 padding = NULL_TREE;
4584
4585 /* If this field is a bit-field whose width is greater than its
4586 type, then there are some special rules for allocating
4587 it. */
4588 if (DECL_C_BIT_FIELD (field)
4589 && INT_CST_LT (TYPE_SIZE (type), DECL_SIZE (field)))
4590 {
4591 integer_type_kind itk;
4592 tree integer_type;
4593 bool was_unnamed_p = false;
4594 /* We must allocate the bits as if suitably aligned for the
4595 longest integer type that fits in this many bits. type
4596 of the field. Then, we are supposed to use the left over
4597 bits as additional padding. */
4598 for (itk = itk_char; itk != itk_none; ++itk)
4599 if (INT_CST_LT (DECL_SIZE (field),
4600 TYPE_SIZE (integer_types[itk])))
4601 break;
4602
4603 /* ITK now indicates a type that is too large for the
4604 field. We have to back up by one to find the largest
4605 type that fits. */
4606 integer_type = integer_types[itk - 1];
4607
4608 /* Figure out how much additional padding is required. GCC
4609 3.2 always created a padding field, even if it had zero
4610 width. */
4611 if (!abi_version_at_least (2)
4612 || INT_CST_LT (TYPE_SIZE (integer_type), DECL_SIZE (field)))
4613 {
4614 if (abi_version_at_least (2) && TREE_CODE (t) == UNION_TYPE)
4615 /* In a union, the padding field must have the full width
4616 of the bit-field; all fields start at offset zero. */
4617 padding = DECL_SIZE (field);
4618 else
4619 {
4620 if (warn_abi && TREE_CODE (t) == UNION_TYPE)
4621 warning ("size assigned to %qT may not be "
4622 "ABI-compliant and may change in a future "
4623 "version of GCC",
4624 t);
4625 padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
4626 TYPE_SIZE (integer_type));
4627 }
4628 }
4629 #ifdef PCC_BITFIELD_TYPE_MATTERS
4630 /* An unnamed bitfield does not normally affect the
4631 alignment of the containing class on a target where
4632 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
4633 make any exceptions for unnamed bitfields when the
4634 bitfields are longer than their types. Therefore, we
4635 temporarily give the field a name. */
4636 if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
4637 {
4638 was_unnamed_p = true;
4639 DECL_NAME (field) = make_anon_name ();
4640 }
4641 #endif
4642 DECL_SIZE (field) = TYPE_SIZE (integer_type);
4643 DECL_ALIGN (field) = TYPE_ALIGN (integer_type);
4644 DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
4645 layout_nonempty_base_or_field (rli, field, NULL_TREE,
4646 empty_base_offsets);
4647 if (was_unnamed_p)
4648 DECL_NAME (field) = NULL_TREE;
4649 /* Now that layout has been performed, set the size of the
4650 field to the size of its declared type; the rest of the
4651 field is effectively invisible. */
4652 DECL_SIZE (field) = TYPE_SIZE (type);
4653 /* We must also reset the DECL_MODE of the field. */
4654 if (abi_version_at_least (2))
4655 DECL_MODE (field) = TYPE_MODE (type);
4656 else if (warn_abi
4657 && DECL_MODE (field) != TYPE_MODE (type))
4658 /* Versions of G++ before G++ 3.4 did not reset the
4659 DECL_MODE. */
4660 warning ("the offset of %qD may not be ABI-compliant and may "
4661 "change in a future version of GCC", field);
4662 }
4663 else
4664 layout_nonempty_base_or_field (rli, field, NULL_TREE,
4665 empty_base_offsets);
4666
4667 /* Remember the location of any empty classes in FIELD. */
4668 if (abi_version_at_least (2))
4669 record_subobject_offsets (TREE_TYPE (field),
4670 byte_position(field),
4671 empty_base_offsets,
4672 /*vbases_p=*/1);
4673
4674 /* If a bit-field does not immediately follow another bit-field,
4675 and yet it starts in the middle of a byte, we have failed to
4676 comply with the ABI. */
4677 if (warn_abi
4678 && DECL_C_BIT_FIELD (field)
4679 && !last_field_was_bitfield
4680 && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
4681 DECL_FIELD_BIT_OFFSET (field),
4682 bitsize_unit_node)))
4683 cp_warning_at ("offset of %qD is not ABI-compliant and may "
4684 "change in a future version of GCC",
4685 field);
4686
4687 /* G++ used to use DECL_FIELD_OFFSET as if it were the byte
4688 offset of the field. */
4689 if (warn_abi
4690 && !tree_int_cst_equal (DECL_FIELD_OFFSET (field),
4691 byte_position (field))
4692 && contains_empty_class_p (TREE_TYPE (field)))
4693 cp_warning_at ("%qD contains empty classes which may cause base "
4694 "classes to be placed at different locations in a "
4695 "future version of GCC",
4696 field);
4697
4698 /* If we needed additional padding after this field, add it
4699 now. */
4700 if (padding)
4701 {
4702 tree padding_field;
4703
4704 padding_field = build_decl (FIELD_DECL,
4705 NULL_TREE,
4706 char_type_node);
4707 DECL_BIT_FIELD (padding_field) = 1;
4708 DECL_SIZE (padding_field) = padding;
4709 DECL_CONTEXT (padding_field) = t;
4710 DECL_ARTIFICIAL (padding_field) = 1;
4711 DECL_IGNORED_P (padding_field) = 1;
4712 layout_nonempty_base_or_field (rli, padding_field,
4713 NULL_TREE,
4714 empty_base_offsets);
4715 }
4716
4717 last_field_was_bitfield = DECL_C_BIT_FIELD (field);
4718 }
4719
4720 if (abi_version_at_least (2) && !integer_zerop (rli->bitpos))
4721 {
4722 /* Make sure that we are on a byte boundary so that the size of
4723 the class without virtual bases will always be a round number
4724 of bytes. */
4725 rli->bitpos = round_up (rli->bitpos, BITS_PER_UNIT);
4726 normalize_rli (rli);
4727 }
4728
4729 /* G++ 3.2 does not allow virtual bases to be overlaid with tail
4730 padding. */
4731 if (!abi_version_at_least (2))
4732 include_empty_classes(rli);
4733
4734 /* Delete all zero-width bit-fields from the list of fields. Now
4735 that the type is laid out they are no longer important. */
4736 remove_zero_width_bit_fields (t);
4737
4738 /* Create the version of T used for virtual bases. We do not use
4739 make_aggr_type for this version; this is an artificial type. For
4740 a POD type, we just reuse T. */
4741 if (CLASSTYPE_NON_POD_P (t) || CLASSTYPE_EMPTY_P (t))
4742 {
4743 base_t = make_node (TREE_CODE (t));
4744
4745 /* Set the size and alignment for the new type. In G++ 3.2, all
4746 empty classes were considered to have size zero when used as
4747 base classes. */
4748 if (!abi_version_at_least (2) && CLASSTYPE_EMPTY_P (t))
4749 {
4750 TYPE_SIZE (base_t) = bitsize_zero_node;
4751 TYPE_SIZE_UNIT (base_t) = size_zero_node;
4752 if (warn_abi && !integer_zerop (rli_size_unit_so_far (rli)))
4753 warning ("layout of classes derived from empty class %qT "
4754 "may change in a future version of GCC",
4755 t);
4756 }
4757 else
4758 {
4759 tree eoc;
4760
4761 /* If the ABI version is not at least two, and the last
4762 field was a bit-field, RLI may not be on a byte
4763 boundary. In particular, rli_size_unit_so_far might
4764 indicate the last complete byte, while rli_size_so_far
4765 indicates the total number of bits used. Therefore,
4766 rli_size_so_far, rather than rli_size_unit_so_far, is
4767 used to compute TYPE_SIZE_UNIT. */
4768 eoc = end_of_class (t, /*include_virtuals_p=*/0);
4769 TYPE_SIZE_UNIT (base_t)
4770 = size_binop (MAX_EXPR,
4771 convert (sizetype,
4772 size_binop (CEIL_DIV_EXPR,
4773 rli_size_so_far (rli),
4774 bitsize_int (BITS_PER_UNIT))),
4775 eoc);
4776 TYPE_SIZE (base_t)
4777 = size_binop (MAX_EXPR,
4778 rli_size_so_far (rli),
4779 size_binop (MULT_EXPR,
4780 convert (bitsizetype, eoc),
4781 bitsize_int (BITS_PER_UNIT)));
4782 }
4783 TYPE_ALIGN (base_t) = rli->record_align;
4784 TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
4785
4786 /* Copy the fields from T. */
4787 next_field = &TYPE_FIELDS (base_t);
4788 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
4789 if (TREE_CODE (field) == FIELD_DECL)
4790 {
4791 *next_field = build_decl (FIELD_DECL,
4792 DECL_NAME (field),
4793 TREE_TYPE (field));
4794 DECL_CONTEXT (*next_field) = base_t;
4795 DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field);
4796 DECL_FIELD_BIT_OFFSET (*next_field)
4797 = DECL_FIELD_BIT_OFFSET (field);
4798 DECL_SIZE (*next_field) = DECL_SIZE (field);
4799 DECL_MODE (*next_field) = DECL_MODE (field);
4800 next_field = &TREE_CHAIN (*next_field);
4801 }
4802
4803 /* Record the base version of the type. */
4804 CLASSTYPE_AS_BASE (t) = base_t;
4805 TYPE_CONTEXT (base_t) = t;
4806 }
4807 else
4808 CLASSTYPE_AS_BASE (t) = t;
4809
4810 /* Every empty class contains an empty class. */
4811 if (CLASSTYPE_EMPTY_P (t))
4812 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
4813
4814 /* Set the TYPE_DECL for this type to contain the right
4815 value for DECL_OFFSET, so that we can use it as part
4816 of a COMPONENT_REF for multiple inheritance. */
4817 layout_decl (TYPE_MAIN_DECL (t), 0);
4818
4819 /* Now fix up any virtual base class types that we left lying
4820 around. We must get these done before we try to lay out the
4821 virtual function table. As a side-effect, this will remove the
4822 base subobject fields. */
4823 layout_virtual_bases (rli, empty_base_offsets);
4824
4825 /* Make sure that empty classes are reflected in RLI at this
4826 point. */
4827 include_empty_classes(rli);
4828
4829 /* Make sure not to create any structures with zero size. */
4830 if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
4831 place_field (rli,
4832 build_decl (FIELD_DECL, NULL_TREE, char_type_node));
4833
4834 /* Let the back-end lay out the type. */
4835 finish_record_layout (rli, /*free_p=*/true);
4836
4837 /* Warn about bases that can't be talked about due to ambiguity. */
4838 warn_about_ambiguous_bases (t);
4839
4840 /* Now that we're done with layout, give the base fields the real types. */
4841 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
4842 if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
4843 TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
4844
4845 /* Clean up. */
4846 splay_tree_delete (empty_base_offsets);
4847 }
4848
4849 /* Determine the "key method" for the class type indicated by TYPE,
4850 and set CLASSTYPE_KEY_METHOD accordingly. */
4851
4852 void
4853 determine_key_method (tree type)
4854 {
4855 tree method;
4856
4857 if (TYPE_FOR_JAVA (type)
4858 || processing_template_decl
4859 || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
4860 || CLASSTYPE_INTERFACE_KNOWN (type))
4861 return;
4862
4863 /* The key method is the first non-pure virtual function that is not
4864 inline at the point of class definition. On some targets the
4865 key function may not be inline; those targets should not call
4866 this function until the end of the translation unit. */
4867 for (method = TYPE_METHODS (type); method != NULL_TREE;
4868 method = TREE_CHAIN (method))
4869 if (DECL_VINDEX (method) != NULL_TREE
4870 && ! DECL_DECLARED_INLINE_P (method)
4871 && ! DECL_PURE_VIRTUAL_P (method))
4872 {
4873 CLASSTYPE_KEY_METHOD (type) = method;
4874 break;
4875 }
4876
4877 return;
4878 }
4879
4880 /* Perform processing required when the definition of T (a class type)
4881 is complete. */
4882
4883 void
4884 finish_struct_1 (tree t)
4885 {
4886 tree x;
4887 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
4888 tree virtuals = NULL_TREE;
4889 int n_fields = 0;
4890
4891 if (COMPLETE_TYPE_P (t))
4892 {
4893 gcc_assert (IS_AGGR_TYPE (t));
4894 error ("redefinition of %q#T", t);
4895 popclass ();
4896 return;
4897 }
4898
4899 /* If this type was previously laid out as a forward reference,
4900 make sure we lay it out again. */
4901 TYPE_SIZE (t) = NULL_TREE;
4902 CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
4903
4904 fixup_inline_methods (t);
4905
4906 /* Make assumptions about the class; we'll reset the flags if
4907 necessary. */
4908 CLASSTYPE_EMPTY_P (t) = 1;
4909 CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
4910 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
4911
4912 /* Do end-of-class semantic processing: checking the validity of the
4913 bases and members and add implicitly generated methods. */
4914 check_bases_and_members (t);
4915
4916 /* Find the key method. */
4917 if (TYPE_CONTAINS_VPTR_P (t))
4918 {
4919 /* The Itanium C++ ABI permits the key method to be chosen when
4920 the class is defined -- even though the key method so
4921 selected may later turn out to be an inline function. On
4922 some systems (such as ARM Symbian OS) the key method cannot
4923 be determined until the end of the translation unit. On such
4924 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
4925 will cause the class to be added to KEYED_CLASSES. Then, in
4926 finish_file we will determine the key method. */
4927 if (targetm.cxx.key_method_may_be_inline ())
4928 determine_key_method (t);
4929
4930 /* If a polymorphic class has no key method, we may emit the vtable
4931 in every translation unit where the class definition appears. */
4932 if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE)
4933 keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
4934 }
4935
4936 /* Layout the class itself. */
4937 layout_class_type (t, &virtuals);
4938 if (CLASSTYPE_AS_BASE (t) != t)
4939 /* We use the base type for trivial assignments, and hence it
4940 needs a mode. */
4941 compute_record_mode (CLASSTYPE_AS_BASE (t));
4942
4943 virtuals = modify_all_vtables (t, nreverse (virtuals));
4944
4945 /* If necessary, create the primary vtable for this class. */
4946 if (virtuals || TYPE_CONTAINS_VPTR_P (t))
4947 {
4948 /* We must enter these virtuals into the table. */
4949 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
4950 build_primary_vtable (NULL_TREE, t);
4951 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
4952 /* Here we know enough to change the type of our virtual
4953 function table, but we will wait until later this function. */
4954 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
4955 }
4956
4957 if (TYPE_CONTAINS_VPTR_P (t))
4958 {
4959 int vindex;
4960 tree fn;
4961
4962 if (BINFO_VTABLE (TYPE_BINFO (t)))
4963 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
4964 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
4965 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);
4966
4967 /* Add entries for virtual functions introduced by this class. */
4968 BINFO_VIRTUALS (TYPE_BINFO (t))
4969 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);
4970
4971 /* Set DECL_VINDEX for all functions declared in this class. */
4972 for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
4973 fn;
4974 fn = TREE_CHAIN (fn),
4975 vindex += (TARGET_VTABLE_USES_DESCRIPTORS
4976 ? TARGET_VTABLE_USES_DESCRIPTORS : 1))
4977 {
4978 tree fndecl = BV_FN (fn);
4979
4980 if (DECL_THUNK_P (fndecl))
4981 /* A thunk. We should never be calling this entry directly
4982 from this vtable -- we'd use the entry for the non
4983 thunk base function. */
4984 DECL_VINDEX (fndecl) = NULL_TREE;
4985 else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
4986 DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
4987 }
4988 }
4989
4990 finish_struct_bits (t);
4991
4992 /* Complete the rtl for any static member objects of the type we're
4993 working on. */
4994 for (x = TYPE_FIELDS (t); x; x = TREE_CHAIN (x))
4995 if (TREE_CODE (x) == VAR_DECL && TREE_STATIC (x)
4996 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
4997 DECL_MODE (x) = TYPE_MODE (t);
4998
4999 /* Done with FIELDS...now decide whether to sort these for
5000 faster lookups later.
5001
5002 We use a small number because most searches fail (succeeding
5003 ultimately as the search bores through the inheritance
5004 hierarchy), and we want this failure to occur quickly. */
5005
5006 n_fields = count_fields (TYPE_FIELDS (t));
5007 if (n_fields > 7)
5008 {
5009 struct sorted_fields_type *field_vec = GGC_NEWVAR
5010 (struct sorted_fields_type,
5011 sizeof (struct sorted_fields_type) + n_fields * sizeof (tree));
5012 field_vec->len = n_fields;
5013 add_fields_to_record_type (TYPE_FIELDS (t), field_vec, 0);
5014 qsort (field_vec->elts, n_fields, sizeof (tree),
5015 field_decl_cmp);
5016 if (! DECL_LANG_SPECIFIC (TYPE_MAIN_DECL (t)))
5017 retrofit_lang_decl (TYPE_MAIN_DECL (t));
5018 DECL_SORTED_FIELDS (TYPE_MAIN_DECL (t)) = field_vec;
5019 }
5020
5021 /* Make the rtl for any new vtables we have created, and unmark
5022 the base types we marked. */
5023 finish_vtbls (t);
5024
5025 /* Build the VTT for T. */
5026 build_vtt (t);
5027
5028 if (warn_nonvdtor && TYPE_POLYMORPHIC_P (t))
5029 {
5030 tree dtor;
5031
5032 dtor = CLASSTYPE_DESTRUCTORS (t);
5033 /* Warn only if the dtor is non-private or the class has
5034 friends. */
5035 if (/* An implicitly declared destructor is always public. And,
5036 if it were virtual, we would have created it by now. */
5037 !dtor
5038 || (!DECL_VINDEX (dtor)
5039 && (!TREE_PRIVATE (dtor)
5040 || CLASSTYPE_FRIEND_CLASSES (t)
5041 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))))
5042 warning ("%q#T has virtual functions but non-virtual destructor",
5043 t);
5044 }
5045
5046 complete_vars (t);
5047
5048 if (warn_overloaded_virtual)
5049 warn_hidden (t);
5050
5051 maybe_suppress_debug_info (t);
5052
5053 dump_class_hierarchy (t);
5054
5055 /* Finish debugging output for this type. */
5056 rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
5057 }
5058
5059 /* When T was built up, the member declarations were added in reverse
5060 order. Rearrange them to declaration order. */
5061
5062 void
5063 unreverse_member_declarations (tree t)
5064 {
5065 tree next;
5066 tree prev;
5067 tree x;
5068
5069 /* The following lists are all in reverse order. Put them in
5070 declaration order now. */
5071 TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
5072 CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
5073
5074 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
5075 reverse order, so we can't just use nreverse. */
5076 prev = NULL_TREE;
5077 for (x = TYPE_FIELDS (t);
5078 x && TREE_CODE (x) != TYPE_DECL;
5079 x = next)
5080 {
5081 next = TREE_CHAIN (x);
5082 TREE_CHAIN (x) = prev;
5083 prev = x;
5084 }
5085 if (prev)
5086 {
5087 TREE_CHAIN (TYPE_FIELDS (t)) = x;
5088 if (prev)
5089 TYPE_FIELDS (t) = prev;
5090 }
5091 }
5092
5093 tree
5094 finish_struct (tree t, tree attributes)
5095 {
5096 location_t saved_loc = input_location;
5097
5098 /* Now that we've got all the field declarations, reverse everything
5099 as necessary. */
5100 unreverse_member_declarations (t);
5101
5102 cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
5103
5104 /* Nadger the current location so that diagnostics point to the start of
5105 the struct, not the end. */
5106 input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
5107
5108 if (processing_template_decl)
5109 {
5110 tree x;
5111
5112 finish_struct_methods (t);
5113 TYPE_SIZE (t) = bitsize_zero_node;
5114
5115 /* We need to emit an error message if this type was used as a parameter
5116 and it is an abstract type, even if it is a template. We construct
5117 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
5118 account and we call complete_vars with this type, which will check
5119 the PARM_DECLS. Note that while the type is being defined,
5120 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
5121 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
5122 CLASSTYPE_PURE_VIRTUALS (t) = NULL;
5123 for (x = TYPE_METHODS (t); x; x = TREE_CHAIN (x))
5124 if (DECL_PURE_VIRTUAL_P (x))
5125 VEC_safe_push (tree, CLASSTYPE_PURE_VIRTUALS (t), x);
5126 complete_vars (t);
5127 }
5128 else
5129 finish_struct_1 (t);
5130
5131 input_location = saved_loc;
5132
5133 TYPE_BEING_DEFINED (t) = 0;
5134
5135 if (current_class_type)
5136 popclass ();
5137 else
5138 error ("trying to finish struct, but kicked out due to previous parse errors");
5139
5140 if (processing_template_decl && at_function_scope_p ())
5141 add_stmt (build_min (TAG_DEFN, t));
5142
5143 return t;
5144 }
5145 \f
5146 /* Return the dynamic type of INSTANCE, if known.
5147 Used to determine whether the virtual function table is needed
5148 or not.
5149
5150 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5151 of our knowledge of its type. *NONNULL should be initialized
5152 before this function is called. */
5153
5154 static tree
5155 fixed_type_or_null (tree instance, int* nonnull, int* cdtorp)
5156 {
5157 switch (TREE_CODE (instance))
5158 {
5159 case INDIRECT_REF:
5160 if (POINTER_TYPE_P (TREE_TYPE (instance)))
5161 return NULL_TREE;
5162 else
5163 return fixed_type_or_null (TREE_OPERAND (instance, 0),
5164 nonnull, cdtorp);
5165
5166 case CALL_EXPR:
5167 /* This is a call to a constructor, hence it's never zero. */
5168 if (TREE_HAS_CONSTRUCTOR (instance))
5169 {
5170 if (nonnull)
5171 *nonnull = 1;
5172 return TREE_TYPE (instance);
5173 }
5174 return NULL_TREE;
5175
5176 case SAVE_EXPR:
5177 /* This is a call to a constructor, hence it's never zero. */
5178 if (TREE_HAS_CONSTRUCTOR (instance))
5179 {
5180 if (nonnull)
5181 *nonnull = 1;
5182 return TREE_TYPE (instance);
5183 }
5184 return fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull, cdtorp);
5185
5186 case PLUS_EXPR:
5187 case MINUS_EXPR:
5188 if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
5189 return fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull, cdtorp);
5190 if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
5191 /* Propagate nonnull. */
5192 return fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull, cdtorp);
5193 return NULL_TREE;
5194
5195 case NOP_EXPR:
5196 case CONVERT_EXPR:
5197 return fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull, cdtorp);
5198
5199 case ADDR_EXPR:
5200 instance = TREE_OPERAND (instance, 0);
5201 if (nonnull)
5202 {
5203 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
5204 with a real object -- given &p->f, p can still be null. */
5205 tree t = get_base_address (instance);
5206 /* ??? Probably should check DECL_WEAK here. */
5207 if (t && DECL_P (t))
5208 *nonnull = 1;
5209 }
5210 return fixed_type_or_null (instance, nonnull, cdtorp);
5211
5212 case COMPONENT_REF:
5213 /* If this component is really a base class reference, then the field
5214 itself isn't definitive. */
5215 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
5216 return fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull, cdtorp);
5217 return fixed_type_or_null (TREE_OPERAND (instance, 1), nonnull, cdtorp);
5218
5219 case VAR_DECL:
5220 case FIELD_DECL:
5221 if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
5222 && IS_AGGR_TYPE (TREE_TYPE (TREE_TYPE (instance))))
5223 {
5224 if (nonnull)
5225 *nonnull = 1;
5226 return TREE_TYPE (TREE_TYPE (instance));
5227 }
5228 /* fall through... */
5229 case TARGET_EXPR:
5230 case PARM_DECL:
5231 case RESULT_DECL:
5232 if (IS_AGGR_TYPE (TREE_TYPE (instance)))
5233 {
5234 if (nonnull)
5235 *nonnull = 1;
5236 return TREE_TYPE (instance);
5237 }
5238 else if (instance == current_class_ptr)
5239 {
5240 if (nonnull)
5241 *nonnull = 1;
5242
5243 /* if we're in a ctor or dtor, we know our type. */
5244 if (DECL_LANG_SPECIFIC (current_function_decl)
5245 && (DECL_CONSTRUCTOR_P (current_function_decl)
5246 || DECL_DESTRUCTOR_P (current_function_decl)))
5247 {
5248 if (cdtorp)
5249 *cdtorp = 1;
5250 return TREE_TYPE (TREE_TYPE (instance));
5251 }
5252 }
5253 else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
5254 {
5255 /* Reference variables should be references to objects. */
5256 if (nonnull)
5257 *nonnull = 1;
5258
5259 /* DECL_VAR_MARKED_P is used to prevent recursion; a
5260 variable's initializer may refer to the variable
5261 itself. */
5262 if (TREE_CODE (instance) == VAR_DECL
5263 && DECL_INITIAL (instance)
5264 && !DECL_VAR_MARKED_P (instance))
5265 {
5266 tree type;
5267 DECL_VAR_MARKED_P (instance) = 1;
5268 type = fixed_type_or_null (DECL_INITIAL (instance),
5269 nonnull, cdtorp);
5270 DECL_VAR_MARKED_P (instance) = 0;
5271 return type;
5272 }
5273 }
5274 return NULL_TREE;
5275
5276 default:
5277 return NULL_TREE;
5278 }
5279 }
5280
5281 /* Return nonzero if the dynamic type of INSTANCE is known, and
5282 equivalent to the static type. We also handle the case where
5283 INSTANCE is really a pointer. Return negative if this is a
5284 ctor/dtor. There the dynamic type is known, but this might not be
5285 the most derived base of the original object, and hence virtual
5286 bases may not be layed out according to this type.
5287
5288 Used to determine whether the virtual function table is needed
5289 or not.
5290
5291 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5292 of our knowledge of its type. *NONNULL should be initialized
5293 before this function is called. */
5294
5295 int
5296 resolves_to_fixed_type_p (tree instance, int* nonnull)
5297 {
5298 tree t = TREE_TYPE (instance);
5299 int cdtorp = 0;
5300
5301 tree fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
5302 if (fixed == NULL_TREE)
5303 return 0;
5304 if (POINTER_TYPE_P (t))
5305 t = TREE_TYPE (t);
5306 if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
5307 return 0;
5308 return cdtorp ? -1 : 1;
5309 }
5310
5311 \f
5312 void
5313 init_class_processing (void)
5314 {
5315 current_class_depth = 0;
5316 current_class_stack_size = 10;
5317 current_class_stack
5318 = xmalloc (current_class_stack_size * sizeof (struct class_stack_node));
5319 VARRAY_TREE_INIT (local_classes, 8, "local_classes");
5320
5321 ridpointers[(int) RID_PUBLIC] = access_public_node;
5322 ridpointers[(int) RID_PRIVATE] = access_private_node;
5323 ridpointers[(int) RID_PROTECTED] = access_protected_node;
5324 }
5325
5326 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
5327
5328 static void
5329 restore_class_cache (void)
5330 {
5331 tree type;
5332
5333 /* We are re-entering the same class we just left, so we don't
5334 have to search the whole inheritance matrix to find all the
5335 decls to bind again. Instead, we install the cached
5336 class_shadowed list and walk through it binding names. */
5337 push_binding_level (previous_class_level);
5338 class_binding_level = previous_class_level;
5339 /* Restore IDENTIFIER_TYPE_VALUE. */
5340 for (type = class_binding_level->type_shadowed;
5341 type;
5342 type = TREE_CHAIN (type))
5343 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
5344 }
5345
5346 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
5347 appropriate for TYPE.
5348
5349 So that we may avoid calls to lookup_name, we cache the _TYPE
5350 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
5351
5352 For multiple inheritance, we perform a two-pass depth-first search
5353 of the type lattice. */
5354
5355 void
5356 pushclass (tree type)
5357 {
5358 type = TYPE_MAIN_VARIANT (type);
5359
5360 /* Make sure there is enough room for the new entry on the stack. */
5361 if (current_class_depth + 1 >= current_class_stack_size)
5362 {
5363 current_class_stack_size *= 2;
5364 current_class_stack
5365 = xrealloc (current_class_stack,
5366 current_class_stack_size
5367 * sizeof (struct class_stack_node));
5368 }
5369
5370 /* Insert a new entry on the class stack. */
5371 current_class_stack[current_class_depth].name = current_class_name;
5372 current_class_stack[current_class_depth].type = current_class_type;
5373 current_class_stack[current_class_depth].access = current_access_specifier;
5374 current_class_stack[current_class_depth].names_used = 0;
5375 current_class_depth++;
5376
5377 /* Now set up the new type. */
5378 current_class_name = TYPE_NAME (type);
5379 if (TREE_CODE (current_class_name) == TYPE_DECL)
5380 current_class_name = DECL_NAME (current_class_name);
5381 current_class_type = type;
5382
5383 /* By default, things in classes are private, while things in
5384 structures or unions are public. */
5385 current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
5386 ? access_private_node
5387 : access_public_node);
5388
5389 if (previous_class_level
5390 && type != previous_class_level->this_entity
5391 && current_class_depth == 1)
5392 {
5393 /* Forcibly remove any old class remnants. */
5394 invalidate_class_lookup_cache ();
5395 }
5396
5397 if (!previous_class_level
5398 || type != previous_class_level->this_entity
5399 || current_class_depth > 1)
5400 pushlevel_class ();
5401 else
5402 restore_class_cache ();
5403 }
5404
5405 /* When we exit a toplevel class scope, we save its binding level so
5406 that we can restore it quickly. Here, we've entered some other
5407 class, so we must invalidate our cache. */
5408
5409 void
5410 invalidate_class_lookup_cache (void)
5411 {
5412 previous_class_level = NULL;
5413 }
5414
5415 /* Get out of the current class scope. If we were in a class scope
5416 previously, that is the one popped to. */
5417
5418 void
5419 popclass (void)
5420 {
5421 poplevel_class ();
5422
5423 current_class_depth--;
5424 current_class_name = current_class_stack[current_class_depth].name;
5425 current_class_type = current_class_stack[current_class_depth].type;
5426 current_access_specifier = current_class_stack[current_class_depth].access;
5427 if (current_class_stack[current_class_depth].names_used)
5428 splay_tree_delete (current_class_stack[current_class_depth].names_used);
5429 }
5430
5431 /* Returns 1 if current_class_type is either T or a nested type of T.
5432 We start looking from 1 because entry 0 is from global scope, and has
5433 no type. */
5434
5435 int
5436 currently_open_class (tree t)
5437 {
5438 int i;
5439 if (current_class_type && same_type_p (t, current_class_type))
5440 return 1;
5441 for (i = 1; i < current_class_depth; ++i)
5442 if (current_class_stack[i].type
5443 && same_type_p (current_class_stack [i].type, t))
5444 return 1;
5445 return 0;
5446 }
5447
5448 /* If either current_class_type or one of its enclosing classes are derived
5449 from T, return the appropriate type. Used to determine how we found
5450 something via unqualified lookup. */
5451
5452 tree
5453 currently_open_derived_class (tree t)
5454 {
5455 int i;
5456
5457 /* The bases of a dependent type are unknown. */
5458 if (dependent_type_p (t))
5459 return NULL_TREE;
5460
5461 if (!current_class_type)
5462 return NULL_TREE;
5463
5464 if (DERIVED_FROM_P (t, current_class_type))
5465 return current_class_type;
5466
5467 for (i = current_class_depth - 1; i > 0; --i)
5468 if (DERIVED_FROM_P (t, current_class_stack[i].type))
5469 return current_class_stack[i].type;
5470
5471 return NULL_TREE;
5472 }
5473
5474 /* When entering a class scope, all enclosing class scopes' names with
5475 static meaning (static variables, static functions, types and
5476 enumerators) have to be visible. This recursive function calls
5477 pushclass for all enclosing class contexts until global or a local
5478 scope is reached. TYPE is the enclosed class. */
5479
5480 void
5481 push_nested_class (tree type)
5482 {
5483 tree context;
5484
5485 /* A namespace might be passed in error cases, like A::B:C. */
5486 if (type == NULL_TREE
5487 || type == error_mark_node
5488 || TREE_CODE (type) == NAMESPACE_DECL
5489 || ! IS_AGGR_TYPE (type)
5490 || TREE_CODE (type) == TEMPLATE_TYPE_PARM
5491 || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM)
5492 return;
5493
5494 context = DECL_CONTEXT (TYPE_MAIN_DECL (type));
5495
5496 if (context && CLASS_TYPE_P (context))
5497 push_nested_class (context);
5498 pushclass (type);
5499 }
5500
5501 /* Undoes a push_nested_class call. */
5502
5503 void
5504 pop_nested_class (void)
5505 {
5506 tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
5507
5508 popclass ();
5509 if (context && CLASS_TYPE_P (context))
5510 pop_nested_class ();
5511 }
5512
5513 /* Returns the number of extern "LANG" blocks we are nested within. */
5514
5515 int
5516 current_lang_depth (void)
5517 {
5518 return VARRAY_ACTIVE_SIZE (current_lang_base);
5519 }
5520
5521 /* Set global variables CURRENT_LANG_NAME to appropriate value
5522 so that behavior of name-mangling machinery is correct. */
5523
5524 void
5525 push_lang_context (tree name)
5526 {
5527 VARRAY_PUSH_TREE (current_lang_base, current_lang_name);
5528
5529 if (name == lang_name_cplusplus)
5530 {
5531 current_lang_name = name;
5532 }
5533 else if (name == lang_name_java)
5534 {
5535 current_lang_name = name;
5536 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
5537 (See record_builtin_java_type in decl.c.) However, that causes
5538 incorrect debug entries if these types are actually used.
5539 So we re-enable debug output after extern "Java". */
5540 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
5541 DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
5542 DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
5543 DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
5544 DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
5545 DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
5546 DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
5547 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
5548 }
5549 else if (name == lang_name_c)
5550 {
5551 current_lang_name = name;
5552 }
5553 else
5554 error ("language string %<\"%E\"%> not recognized", name);
5555 }
5556
5557 /* Get out of the current language scope. */
5558
5559 void
5560 pop_lang_context (void)
5561 {
5562 current_lang_name = VARRAY_TOP_TREE (current_lang_base);
5563 VARRAY_POP (current_lang_base);
5564 }
5565 \f
5566 /* Type instantiation routines. */
5567
5568 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
5569 matches the TARGET_TYPE. If there is no satisfactory match, return
5570 error_mark_node, and issue a error & warning messages under control
5571 of FLAGS. Permit pointers to member function if FLAGS permits. If
5572 TEMPLATE_ONLY, the name of the overloaded function was a
5573 template-id, and EXPLICIT_TARGS are the explicitly provided
5574 template arguments. */
5575
5576 static tree
5577 resolve_address_of_overloaded_function (tree target_type,
5578 tree overload,
5579 tsubst_flags_t flags,
5580 bool template_only,
5581 tree explicit_targs)
5582 {
5583 /* Here's what the standard says:
5584
5585 [over.over]
5586
5587 If the name is a function template, template argument deduction
5588 is done, and if the argument deduction succeeds, the deduced
5589 arguments are used to generate a single template function, which
5590 is added to the set of overloaded functions considered.
5591
5592 Non-member functions and static member functions match targets of
5593 type "pointer-to-function" or "reference-to-function." Nonstatic
5594 member functions match targets of type "pointer-to-member
5595 function;" the function type of the pointer to member is used to
5596 select the member function from the set of overloaded member
5597 functions. If a nonstatic member function is selected, the
5598 reference to the overloaded function name is required to have the
5599 form of a pointer to member as described in 5.3.1.
5600
5601 If more than one function is selected, any template functions in
5602 the set are eliminated if the set also contains a non-template
5603 function, and any given template function is eliminated if the
5604 set contains a second template function that is more specialized
5605 than the first according to the partial ordering rules 14.5.5.2.
5606 After such eliminations, if any, there shall remain exactly one
5607 selected function. */
5608
5609 int is_ptrmem = 0;
5610 int is_reference = 0;
5611 /* We store the matches in a TREE_LIST rooted here. The functions
5612 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
5613 interoperability with most_specialized_instantiation. */
5614 tree matches = NULL_TREE;
5615 tree fn;
5616
5617 /* By the time we get here, we should be seeing only real
5618 pointer-to-member types, not the internal POINTER_TYPE to
5619 METHOD_TYPE representation. */
5620 gcc_assert (TREE_CODE (target_type) != POINTER_TYPE
5621 || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);
5622
5623 gcc_assert (is_overloaded_fn (overload));
5624
5625 /* Check that the TARGET_TYPE is reasonable. */
5626 if (TYPE_PTRFN_P (target_type))
5627 /* This is OK. */;
5628 else if (TYPE_PTRMEMFUNC_P (target_type))
5629 /* This is OK, too. */
5630 is_ptrmem = 1;
5631 else if (TREE_CODE (target_type) == FUNCTION_TYPE)
5632 {
5633 /* This is OK, too. This comes from a conversion to reference
5634 type. */
5635 target_type = build_reference_type (target_type);
5636 is_reference = 1;
5637 }
5638 else
5639 {
5640 if (flags & tf_error)
5641 error ("cannot resolve overloaded function %qD based on"
5642 " conversion to type %qT",
5643 DECL_NAME (OVL_FUNCTION (overload)), target_type);
5644 return error_mark_node;
5645 }
5646
5647 /* If we can find a non-template function that matches, we can just
5648 use it. There's no point in generating template instantiations
5649 if we're just going to throw them out anyhow. But, of course, we
5650 can only do this when we don't *need* a template function. */
5651 if (!template_only)
5652 {
5653 tree fns;
5654
5655 for (fns = overload; fns; fns = OVL_NEXT (fns))
5656 {
5657 tree fn = OVL_CURRENT (fns);
5658 tree fntype;
5659
5660 if (TREE_CODE (fn) == TEMPLATE_DECL)
5661 /* We're not looking for templates just yet. */
5662 continue;
5663
5664 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
5665 != is_ptrmem)
5666 /* We're looking for a non-static member, and this isn't
5667 one, or vice versa. */
5668 continue;
5669
5670 /* Ignore anticipated decls of undeclared builtins. */
5671 if (DECL_ANTICIPATED (fn))
5672 continue;
5673
5674 /* See if there's a match. */
5675 fntype = TREE_TYPE (fn);
5676 if (is_ptrmem)
5677 fntype = build_ptrmemfunc_type (build_pointer_type (fntype));
5678 else if (!is_reference)
5679 fntype = build_pointer_type (fntype);
5680
5681 if (can_convert_arg (target_type, fntype, fn))
5682 matches = tree_cons (fn, NULL_TREE, matches);
5683 }
5684 }
5685
5686 /* Now, if we've already got a match (or matches), there's no need
5687 to proceed to the template functions. But, if we don't have a
5688 match we need to look at them, too. */
5689 if (!matches)
5690 {
5691 tree target_fn_type;
5692 tree target_arg_types;
5693 tree target_ret_type;
5694 tree fns;
5695
5696 if (is_ptrmem)
5697 target_fn_type
5698 = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (target_type));
5699 else
5700 target_fn_type = TREE_TYPE (target_type);
5701 target_arg_types = TYPE_ARG_TYPES (target_fn_type);
5702 target_ret_type = TREE_TYPE (target_fn_type);
5703
5704 /* Never do unification on the 'this' parameter. */
5705 if (TREE_CODE (target_fn_type) == METHOD_TYPE)
5706 target_arg_types = TREE_CHAIN (target_arg_types);
5707
5708 for (fns = overload; fns; fns = OVL_NEXT (fns))
5709 {
5710 tree fn = OVL_CURRENT (fns);
5711 tree instantiation;
5712 tree instantiation_type;
5713 tree targs;
5714
5715 if (TREE_CODE (fn) != TEMPLATE_DECL)
5716 /* We're only looking for templates. */
5717 continue;
5718
5719 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
5720 != is_ptrmem)
5721 /* We're not looking for a non-static member, and this is
5722 one, or vice versa. */
5723 continue;
5724
5725 /* Try to do argument deduction. */
5726 targs = make_tree_vec (DECL_NTPARMS (fn));
5727 if (fn_type_unification (fn, explicit_targs, targs,
5728 target_arg_types, target_ret_type,
5729 DEDUCE_EXACT, -1) != 0)
5730 /* Argument deduction failed. */
5731 continue;
5732
5733 /* Instantiate the template. */
5734 instantiation = instantiate_template (fn, targs, flags);
5735 if (instantiation == error_mark_node)
5736 /* Instantiation failed. */
5737 continue;
5738
5739 /* See if there's a match. */
5740 instantiation_type = TREE_TYPE (instantiation);
5741 if (is_ptrmem)
5742 instantiation_type =
5743 build_ptrmemfunc_type (build_pointer_type (instantiation_type));
5744 else if (!is_reference)
5745 instantiation_type = build_pointer_type (instantiation_type);
5746 if (can_convert_arg (target_type, instantiation_type, instantiation))
5747 matches = tree_cons (instantiation, fn, matches);
5748 }
5749
5750 /* Now, remove all but the most specialized of the matches. */
5751 if (matches)
5752 {
5753 tree match = most_specialized_instantiation (matches);
5754
5755 if (match != error_mark_node)
5756 matches = tree_cons (match, NULL_TREE, NULL_TREE);
5757 }
5758 }
5759
5760 /* Now we should have exactly one function in MATCHES. */
5761 if (matches == NULL_TREE)
5762 {
5763 /* There were *no* matches. */
5764 if (flags & tf_error)
5765 {
5766 error ("no matches converting function %qD to type %q#T",
5767 DECL_NAME (OVL_FUNCTION (overload)),
5768 target_type);
5769
5770 /* print_candidates expects a chain with the functions in
5771 TREE_VALUE slots, so we cons one up here (we're losing anyway,
5772 so why be clever?). */
5773 for (; overload; overload = OVL_NEXT (overload))
5774 matches = tree_cons (NULL_TREE, OVL_CURRENT (overload),
5775 matches);
5776
5777 print_candidates (matches);
5778 }
5779 return error_mark_node;
5780 }
5781 else if (TREE_CHAIN (matches))
5782 {
5783 /* There were too many matches. */
5784
5785 if (flags & tf_error)
5786 {
5787 tree match;
5788
5789 error ("converting overloaded function %qD to type %q#T is ambiguous",
5790 DECL_NAME (OVL_FUNCTION (overload)),
5791 target_type);
5792
5793 /* Since print_candidates expects the functions in the
5794 TREE_VALUE slot, we flip them here. */
5795 for (match = matches; match; match = TREE_CHAIN (match))
5796 TREE_VALUE (match) = TREE_PURPOSE (match);
5797
5798 print_candidates (matches);
5799 }
5800
5801 return error_mark_node;
5802 }
5803
5804 /* Good, exactly one match. Now, convert it to the correct type. */
5805 fn = TREE_PURPOSE (matches);
5806
5807 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
5808 && !(flags & tf_ptrmem_ok) && !flag_ms_extensions)
5809 {
5810 static int explained;
5811
5812 if (!(flags & tf_error))
5813 return error_mark_node;
5814
5815 pedwarn ("assuming pointer to member %qD", fn);
5816 if (!explained)
5817 {
5818 pedwarn ("(a pointer to member can only be formed with %<&%E%>)", fn);
5819 explained = 1;
5820 }
5821 }
5822
5823 /* If we're doing overload resolution purely for the purpose of
5824 determining conversion sequences, we should not consider the
5825 function used. If this conversion sequence is selected, the
5826 function will be marked as used at this point. */
5827 if (!(flags & tf_conv))
5828 mark_used (fn);
5829
5830 if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
5831 return build_unary_op (ADDR_EXPR, fn, 0);
5832 else
5833 {
5834 /* The target must be a REFERENCE_TYPE. Above, build_unary_op
5835 will mark the function as addressed, but here we must do it
5836 explicitly. */
5837 cxx_mark_addressable (fn);
5838
5839 return fn;
5840 }
5841 }
5842
5843 /* This function will instantiate the type of the expression given in
5844 RHS to match the type of LHSTYPE. If errors exist, then return
5845 error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
5846 we complain on errors. If we are not complaining, never modify rhs,
5847 as overload resolution wants to try many possible instantiations, in
5848 the hope that at least one will work.
5849
5850 For non-recursive calls, LHSTYPE should be a function, pointer to
5851 function, or a pointer to member function. */
5852
5853 tree
5854 instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags)
5855 {
5856 tsubst_flags_t flags_in = flags;
5857
5858 flags &= ~tf_ptrmem_ok;
5859
5860 if (TREE_CODE (lhstype) == UNKNOWN_TYPE)
5861 {
5862 if (flags & tf_error)
5863 error ("not enough type information");
5864 return error_mark_node;
5865 }
5866
5867 if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
5868 {
5869 if (same_type_p (lhstype, TREE_TYPE (rhs)))
5870 return rhs;
5871 if (flag_ms_extensions
5872 && TYPE_PTRMEMFUNC_P (lhstype)
5873 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
5874 /* Microsoft allows `A::f' to be resolved to a
5875 pointer-to-member. */
5876 ;
5877 else
5878 {
5879 if (flags & tf_error)
5880 error ("argument of type %qT does not match %qT",
5881 TREE_TYPE (rhs), lhstype);
5882 return error_mark_node;
5883 }
5884 }
5885
5886 if (TREE_CODE (rhs) == BASELINK)
5887 rhs = BASELINK_FUNCTIONS (rhs);
5888
5889 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
5890 deduce any type information. */
5891 if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
5892 {
5893 if (flags & tf_error)
5894 error ("not enough type information");
5895 return error_mark_node;
5896 }
5897
5898 /* We don't overwrite rhs if it is an overloaded function.
5899 Copying it would destroy the tree link. */
5900 if (TREE_CODE (rhs) != OVERLOAD)
5901 rhs = copy_node (rhs);
5902
5903 /* This should really only be used when attempting to distinguish
5904 what sort of a pointer to function we have. For now, any
5905 arithmetic operation which is not supported on pointers
5906 is rejected as an error. */
5907
5908 switch (TREE_CODE (rhs))
5909 {
5910 case TYPE_EXPR:
5911 case CONVERT_EXPR:
5912 case SAVE_EXPR:
5913 case CONSTRUCTOR:
5914 gcc_unreachable ();
5915
5916 case INDIRECT_REF:
5917 case ARRAY_REF:
5918 {
5919 tree new_rhs;
5920
5921 new_rhs = instantiate_type (build_pointer_type (lhstype),
5922 TREE_OPERAND (rhs, 0), flags);
5923 if (new_rhs == error_mark_node)
5924 return error_mark_node;
5925
5926 TREE_TYPE (rhs) = lhstype;
5927 TREE_OPERAND (rhs, 0) = new_rhs;
5928 return rhs;
5929 }
5930
5931 case NOP_EXPR:
5932 rhs = copy_node (TREE_OPERAND (rhs, 0));
5933 TREE_TYPE (rhs) = unknown_type_node;
5934 return instantiate_type (lhstype, rhs, flags);
5935
5936 case COMPONENT_REF:
5937 {
5938 tree member = TREE_OPERAND (rhs, 1);
5939
5940 member = instantiate_type (lhstype, member, flags);
5941 if (member != error_mark_node
5942 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
5943 /* Do not lose object's side effects. */
5944 return build2 (COMPOUND_EXPR, TREE_TYPE (member),
5945 TREE_OPERAND (rhs, 0), member);
5946 return member;
5947 }
5948
5949 case OFFSET_REF:
5950 rhs = TREE_OPERAND (rhs, 1);
5951 if (BASELINK_P (rhs))
5952 return instantiate_type (lhstype, BASELINK_FUNCTIONS (rhs), flags_in);
5953
5954 /* This can happen if we are forming a pointer-to-member for a
5955 member template. */
5956 gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);
5957
5958 /* Fall through. */
5959
5960 case TEMPLATE_ID_EXPR:
5961 {
5962 tree fns = TREE_OPERAND (rhs, 0);
5963 tree args = TREE_OPERAND (rhs, 1);
5964
5965 return
5966 resolve_address_of_overloaded_function (lhstype, fns, flags_in,
5967 /*template_only=*/true,
5968 args);
5969 }
5970
5971 case OVERLOAD:
5972 case FUNCTION_DECL:
5973 return
5974 resolve_address_of_overloaded_function (lhstype, rhs, flags_in,
5975 /*template_only=*/false,
5976 /*explicit_targs=*/NULL_TREE);
5977
5978 case CALL_EXPR:
5979 /* This is too hard for now. */
5980 gcc_unreachable ();
5981
5982 case PLUS_EXPR:
5983 case MINUS_EXPR:
5984 case COMPOUND_EXPR:
5985 TREE_OPERAND (rhs, 0)
5986 = instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
5987 if (TREE_OPERAND (rhs, 0) == error_mark_node)
5988 return error_mark_node;
5989 TREE_OPERAND (rhs, 1)
5990 = instantiate_type (lhstype, TREE_OPERAND (rhs, 1), flags);
5991 if (TREE_OPERAND (rhs, 1) == error_mark_node)
5992 return error_mark_node;
5993
5994 TREE_TYPE (rhs) = lhstype;
5995 return rhs;
5996
5997 case MULT_EXPR:
5998 case TRUNC_DIV_EXPR:
5999 case FLOOR_DIV_EXPR:
6000 case CEIL_DIV_EXPR:
6001 case ROUND_DIV_EXPR:
6002 case RDIV_EXPR:
6003 case TRUNC_MOD_EXPR:
6004 case FLOOR_MOD_EXPR:
6005 case CEIL_MOD_EXPR:
6006 case ROUND_MOD_EXPR:
6007 case FIX_ROUND_EXPR:
6008 case FIX_FLOOR_EXPR:
6009 case FIX_CEIL_EXPR:
6010 case FIX_TRUNC_EXPR:
6011 case FLOAT_EXPR:
6012 case NEGATE_EXPR:
6013 case ABS_EXPR:
6014 case MAX_EXPR:
6015 case MIN_EXPR:
6016
6017 case BIT_AND_EXPR:
6018 case BIT_IOR_EXPR:
6019 case BIT_XOR_EXPR:
6020 case LSHIFT_EXPR:
6021 case RSHIFT_EXPR:
6022 case LROTATE_EXPR:
6023 case RROTATE_EXPR:
6024
6025 case PREINCREMENT_EXPR:
6026 case PREDECREMENT_EXPR:
6027 case POSTINCREMENT_EXPR:
6028 case POSTDECREMENT_EXPR:
6029 if (flags & tf_error)
6030 error ("invalid operation on uninstantiated type");
6031 return error_mark_node;
6032
6033 case TRUTH_AND_EXPR:
6034 case TRUTH_OR_EXPR:
6035 case TRUTH_XOR_EXPR:
6036 case LT_EXPR:
6037 case LE_EXPR:
6038 case GT_EXPR:
6039 case GE_EXPR:
6040 case EQ_EXPR:
6041 case NE_EXPR:
6042 case TRUTH_ANDIF_EXPR:
6043 case TRUTH_ORIF_EXPR:
6044 case TRUTH_NOT_EXPR:
6045 if (flags & tf_error)
6046 error ("not enough type information");
6047 return error_mark_node;
6048
6049 case COND_EXPR:
6050 if (type_unknown_p (TREE_OPERAND (rhs, 0)))
6051 {
6052 if (flags & tf_error)
6053 error ("not enough type information");
6054 return error_mark_node;
6055 }
6056 TREE_OPERAND (rhs, 1)
6057 = instantiate_type (lhstype, TREE_OPERAND (rhs, 1), flags);
6058 if (TREE_OPERAND (rhs, 1) == error_mark_node)
6059 return error_mark_node;
6060 TREE_OPERAND (rhs, 2)
6061 = instantiate_type (lhstype, TREE_OPERAND (rhs, 2), flags);
6062 if (TREE_OPERAND (rhs, 2) == error_mark_node)
6063 return error_mark_node;
6064
6065 TREE_TYPE (rhs) = lhstype;
6066 return rhs;
6067
6068 case MODIFY_EXPR:
6069 TREE_OPERAND (rhs, 1)
6070 = instantiate_type (lhstype, TREE_OPERAND (rhs, 1), flags);
6071 if (TREE_OPERAND (rhs, 1) == error_mark_node)
6072 return error_mark_node;
6073
6074 TREE_TYPE (rhs) = lhstype;
6075 return rhs;
6076
6077 case ADDR_EXPR:
6078 {
6079 if (PTRMEM_OK_P (rhs))
6080 flags |= tf_ptrmem_ok;
6081
6082 return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
6083 }
6084
6085 case ERROR_MARK:
6086 return error_mark_node;
6087
6088 default:
6089 gcc_unreachable ();
6090 }
6091 return error_mark_node;
6092 }
6093 \f
6094 /* Return the name of the virtual function pointer field
6095 (as an IDENTIFIER_NODE) for the given TYPE. Note that
6096 this may have to look back through base types to find the
6097 ultimate field name. (For single inheritance, these could
6098 all be the same name. Who knows for multiple inheritance). */
6099
6100 static tree
6101 get_vfield_name (tree type)
6102 {
6103 tree binfo, base_binfo;
6104 char *buf;
6105
6106 for (binfo = TYPE_BINFO (type);
6107 BINFO_N_BASE_BINFOS (binfo);
6108 binfo = base_binfo)
6109 {
6110 base_binfo = BINFO_BASE_BINFO (binfo, 0);
6111
6112 if (BINFO_VIRTUAL_P (base_binfo)
6113 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
6114 break;
6115 }
6116
6117 type = BINFO_TYPE (binfo);
6118 buf = alloca (sizeof (VFIELD_NAME_FORMAT) + TYPE_NAME_LENGTH (type) + 2);
6119 sprintf (buf, VFIELD_NAME_FORMAT,
6120 IDENTIFIER_POINTER (constructor_name (type)));
6121 return get_identifier (buf);
6122 }
6123
6124 void
6125 print_class_statistics (void)
6126 {
6127 #ifdef GATHER_STATISTICS
6128 fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
6129 fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
6130 if (n_vtables)
6131 {
6132 fprintf (stderr, "vtables = %d; vtable searches = %d\n",
6133 n_vtables, n_vtable_searches);
6134 fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
6135 n_vtable_entries, n_vtable_elems);
6136 }
6137 #endif
6138 }
6139
6140 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
6141 according to [class]:
6142 The class-name is also inserted
6143 into the scope of the class itself. For purposes of access checking,
6144 the inserted class name is treated as if it were a public member name. */
6145
6146 void
6147 build_self_reference (void)
6148 {
6149 tree name = constructor_name (current_class_type);
6150 tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
6151 tree saved_cas;
6152
6153 DECL_NONLOCAL (value) = 1;
6154 DECL_CONTEXT (value) = current_class_type;
6155 DECL_ARTIFICIAL (value) = 1;
6156 SET_DECL_SELF_REFERENCE_P (value);
6157
6158 if (processing_template_decl)
6159 value = push_template_decl (value);
6160
6161 saved_cas = current_access_specifier;
6162 current_access_specifier = access_public_node;
6163 finish_member_declaration (value);
6164 current_access_specifier = saved_cas;
6165 }
6166
6167 /* Returns 1 if TYPE contains only padding bytes. */
6168
6169 int
6170 is_empty_class (tree type)
6171 {
6172 if (type == error_mark_node)
6173 return 0;
6174
6175 if (! IS_AGGR_TYPE (type))
6176 return 0;
6177
6178 /* In G++ 3.2, whether or not a class was empty was determined by
6179 looking at its size. */
6180 if (abi_version_at_least (2))
6181 return CLASSTYPE_EMPTY_P (type);
6182 else
6183 return integer_zerop (CLASSTYPE_SIZE (type));
6184 }
6185
6186 /* Returns true if TYPE contains an empty class. */
6187
6188 static bool
6189 contains_empty_class_p (tree type)
6190 {
6191 if (is_empty_class (type))
6192 return true;
6193 if (CLASS_TYPE_P (type))
6194 {
6195 tree field;
6196 tree binfo;
6197 tree base_binfo;
6198 int i;
6199
6200 for (binfo = TYPE_BINFO (type), i = 0;
6201 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
6202 if (contains_empty_class_p (BINFO_TYPE (base_binfo)))
6203 return true;
6204 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
6205 if (TREE_CODE (field) == FIELD_DECL
6206 && !DECL_ARTIFICIAL (field)
6207 && is_empty_class (TREE_TYPE (field)))
6208 return true;
6209 }
6210 else if (TREE_CODE (type) == ARRAY_TYPE)
6211 return contains_empty_class_p (TREE_TYPE (type));
6212 return false;
6213 }
6214
6215 /* Note that NAME was looked up while the current class was being
6216 defined and that the result of that lookup was DECL. */
6217
6218 void
6219 maybe_note_name_used_in_class (tree name, tree decl)
6220 {
6221 splay_tree names_used;
6222
6223 /* If we're not defining a class, there's nothing to do. */
6224 if (!(innermost_scope_kind() == sk_class
6225 && TYPE_BEING_DEFINED (current_class_type)))
6226 return;
6227
6228 /* If there's already a binding for this NAME, then we don't have
6229 anything to worry about. */
6230 if (lookup_member (current_class_type, name,
6231 /*protect=*/0, /*want_type=*/false))
6232 return;
6233
6234 if (!current_class_stack[current_class_depth - 1].names_used)
6235 current_class_stack[current_class_depth - 1].names_used
6236 = splay_tree_new (splay_tree_compare_pointers, 0, 0);
6237 names_used = current_class_stack[current_class_depth - 1].names_used;
6238
6239 splay_tree_insert (names_used,
6240 (splay_tree_key) name,
6241 (splay_tree_value) decl);
6242 }
6243
6244 /* Note that NAME was declared (as DECL) in the current class. Check
6245 to see that the declaration is valid. */
6246
6247 void
6248 note_name_declared_in_class (tree name, tree decl)
6249 {
6250 splay_tree names_used;
6251 splay_tree_node n;
6252
6253 /* Look to see if we ever used this name. */
6254 names_used
6255 = current_class_stack[current_class_depth - 1].names_used;
6256 if (!names_used)
6257 return;
6258
6259 n = splay_tree_lookup (names_used, (splay_tree_key) name);
6260 if (n)
6261 {
6262 /* [basic.scope.class]
6263
6264 A name N used in a class S shall refer to the same declaration
6265 in its context and when re-evaluated in the completed scope of
6266 S. */
6267 error ("declaration of %q#D", decl);
6268 cp_error_at ("changes meaning of %qD from %q+#D",
6269 DECL_NAME (OVL_CURRENT (decl)),
6270 (tree) n->value);
6271 }
6272 }
6273
6274 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
6275 Secondary vtables are merged with primary vtables; this function
6276 will return the VAR_DECL for the primary vtable. */
6277
6278 tree
6279 get_vtbl_decl_for_binfo (tree binfo)
6280 {
6281 tree decl;
6282
6283 decl = BINFO_VTABLE (binfo);
6284 if (decl && TREE_CODE (decl) == PLUS_EXPR)
6285 {
6286 gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
6287 decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
6288 }
6289 if (decl)
6290 gcc_assert (TREE_CODE (decl) == VAR_DECL);
6291 return decl;
6292 }
6293
6294
6295 /* Returns the binfo for the primary base of BINFO. If the resulting
6296 BINFO is a virtual base, and it is inherited elsewhere in the
6297 hierarchy, then the returned binfo might not be the primary base of
6298 BINFO in the complete object. Check BINFO_PRIMARY_P or
6299 BINFO_LOST_PRIMARY_P to be sure. */
6300
6301 tree
6302 get_primary_binfo (tree binfo)
6303 {
6304 tree primary_base;
6305 tree result;
6306
6307 primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
6308 if (!primary_base)
6309 return NULL_TREE;
6310
6311 result = copied_binfo (primary_base, binfo);
6312 return result;
6313 }
6314
6315 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
6316
6317 static int
6318 maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
6319 {
6320 if (!indented_p)
6321 fprintf (stream, "%*s", indent, "");
6322 return 1;
6323 }
6324
6325 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
6326 INDENT should be zero when called from the top level; it is
6327 incremented recursively. IGO indicates the next expected BINFO in
6328 inheritance graph ordering. */
6329
6330 static tree
6331 dump_class_hierarchy_r (FILE *stream,
6332 int flags,
6333 tree binfo,
6334 tree igo,
6335 int indent)
6336 {
6337 int indented = 0;
6338 tree base_binfo;
6339 int i;
6340
6341 indented = maybe_indent_hierarchy (stream, indent, 0);
6342 fprintf (stream, "%s (0x%lx) ",
6343 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
6344 (unsigned long) binfo);
6345 if (binfo != igo)
6346 {
6347 fprintf (stream, "alternative-path\n");
6348 return igo;
6349 }
6350 igo = TREE_CHAIN (binfo);
6351
6352 fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
6353 tree_low_cst (BINFO_OFFSET (binfo), 0));
6354 if (is_empty_class (BINFO_TYPE (binfo)))
6355 fprintf (stream, " empty");
6356 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
6357 fprintf (stream, " nearly-empty");
6358 if (BINFO_VIRTUAL_P (binfo))
6359 fprintf (stream, " virtual");
6360 fprintf (stream, "\n");
6361
6362 indented = 0;
6363 if (BINFO_PRIMARY_P (binfo))
6364 {
6365 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6366 fprintf (stream, " primary-for %s (0x%lx)",
6367 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
6368 TFF_PLAIN_IDENTIFIER),
6369 (unsigned long)BINFO_INHERITANCE_CHAIN (binfo));
6370 }
6371 if (BINFO_LOST_PRIMARY_P (binfo))
6372 {
6373 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6374 fprintf (stream, " lost-primary");
6375 }
6376 if (indented)
6377 fprintf (stream, "\n");
6378
6379 if (!(flags & TDF_SLIM))
6380 {
6381 int indented = 0;
6382
6383 if (BINFO_SUBVTT_INDEX (binfo))
6384 {
6385 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6386 fprintf (stream, " subvttidx=%s",
6387 expr_as_string (BINFO_SUBVTT_INDEX (binfo),
6388 TFF_PLAIN_IDENTIFIER));
6389 }
6390 if (BINFO_VPTR_INDEX (binfo))
6391 {
6392 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6393 fprintf (stream, " vptridx=%s",
6394 expr_as_string (BINFO_VPTR_INDEX (binfo),
6395 TFF_PLAIN_IDENTIFIER));
6396 }
6397 if (BINFO_VPTR_FIELD (binfo))
6398 {
6399 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6400 fprintf (stream, " vbaseoffset=%s",
6401 expr_as_string (BINFO_VPTR_FIELD (binfo),
6402 TFF_PLAIN_IDENTIFIER));
6403 }
6404 if (BINFO_VTABLE (binfo))
6405 {
6406 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6407 fprintf (stream, " vptr=%s",
6408 expr_as_string (BINFO_VTABLE (binfo),
6409 TFF_PLAIN_IDENTIFIER));
6410 }
6411
6412 if (indented)
6413 fprintf (stream, "\n");
6414 }
6415
6416 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
6417 igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);
6418
6419 return igo;
6420 }
6421
6422 /* Dump the BINFO hierarchy for T. */
6423
6424 static void
6425 dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
6426 {
6427 fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
6428 fprintf (stream, " size=%lu align=%lu\n",
6429 (unsigned long)(tree_low_cst (TYPE_SIZE (t), 0) / BITS_PER_UNIT),
6430 (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
6431 fprintf (stream, " base size=%lu base align=%lu\n",
6432 (unsigned long)(tree_low_cst (TYPE_SIZE (CLASSTYPE_AS_BASE (t)), 0)
6433 / BITS_PER_UNIT),
6434 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
6435 / BITS_PER_UNIT));
6436 dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
6437 fprintf (stream, "\n");
6438 }
6439
6440 /* Debug interface to hierarchy dumping. */
6441
6442 extern void
6443 debug_class (tree t)
6444 {
6445 dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
6446 }
6447
6448 static void
6449 dump_class_hierarchy (tree t)
6450 {
6451 int flags;
6452 FILE *stream = dump_begin (TDI_class, &flags);
6453
6454 if (stream)
6455 {
6456 dump_class_hierarchy_1 (stream, flags, t);
6457 dump_end (TDI_class, stream);
6458 }
6459 }
6460
6461 static void
6462 dump_array (FILE * stream, tree decl)
6463 {
6464 tree inits;
6465 int ix;
6466 HOST_WIDE_INT elt;
6467 tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
6468
6469 elt = (tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))), 0)
6470 / BITS_PER_UNIT);
6471 fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
6472 fprintf (stream, " %s entries",
6473 expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
6474 TFF_PLAIN_IDENTIFIER));
6475 fprintf (stream, "\n");
6476
6477 for (ix = 0, inits = CONSTRUCTOR_ELTS (DECL_INITIAL (decl));
6478 inits; ix++, inits = TREE_CHAIN (inits))
6479 fprintf (stream, "%-4ld %s\n", (long)(ix * elt),
6480 expr_as_string (TREE_VALUE (inits), TFF_PLAIN_IDENTIFIER));
6481 }
6482
6483 static void
6484 dump_vtable (tree t, tree binfo, tree vtable)
6485 {
6486 int flags;
6487 FILE *stream = dump_begin (TDI_class, &flags);
6488
6489 if (!stream)
6490 return;
6491
6492 if (!(flags & TDF_SLIM))
6493 {
6494 int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
6495
6496 fprintf (stream, "%s for %s",
6497 ctor_vtbl_p ? "Construction vtable" : "Vtable",
6498 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
6499 if (ctor_vtbl_p)
6500 {
6501 if (!BINFO_VIRTUAL_P (binfo))
6502 fprintf (stream, " (0x%lx instance)", (unsigned long)binfo);
6503 fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
6504 }
6505 fprintf (stream, "\n");
6506 dump_array (stream, vtable);
6507 fprintf (stream, "\n");
6508 }
6509
6510 dump_end (TDI_class, stream);
6511 }
6512
6513 static void
6514 dump_vtt (tree t, tree vtt)
6515 {
6516 int flags;
6517 FILE *stream = dump_begin (TDI_class, &flags);
6518
6519 if (!stream)
6520 return;
6521
6522 if (!(flags & TDF_SLIM))
6523 {
6524 fprintf (stream, "VTT for %s\n",
6525 type_as_string (t, TFF_PLAIN_IDENTIFIER));
6526 dump_array (stream, vtt);
6527 fprintf (stream, "\n");
6528 }
6529
6530 dump_end (TDI_class, stream);
6531 }
6532
6533 /* Dump a function or thunk and its thunkees. */
6534
6535 static void
6536 dump_thunk (FILE *stream, int indent, tree thunk)
6537 {
6538 static const char spaces[] = " ";
6539 tree name = DECL_NAME (thunk);
6540 tree thunks;
6541
6542 fprintf (stream, "%.*s%p %s %s", indent, spaces,
6543 (void *)thunk,
6544 !DECL_THUNK_P (thunk) ? "function"
6545 : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
6546 name ? IDENTIFIER_POINTER (name) : "<unset>");
6547 if (DECL_THUNK_P (thunk))
6548 {
6549 HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
6550 tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
6551
6552 fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
6553 if (!virtual_adjust)
6554 /*NOP*/;
6555 else if (DECL_THIS_THUNK_P (thunk))
6556 fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC,
6557 tree_low_cst (virtual_adjust, 0));
6558 else
6559 fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
6560 tree_low_cst (BINFO_VPTR_FIELD (virtual_adjust), 0),
6561 type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
6562 if (THUNK_ALIAS (thunk))
6563 fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
6564 }
6565 fprintf (stream, "\n");
6566 for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
6567 dump_thunk (stream, indent + 2, thunks);
6568 }
6569
6570 /* Dump the thunks for FN. */
6571
6572 extern void
6573 debug_thunks (tree fn)
6574 {
6575 dump_thunk (stderr, 0, fn);
6576 }
6577
6578 /* Virtual function table initialization. */
6579
6580 /* Create all the necessary vtables for T and its base classes. */
6581
6582 static void
6583 finish_vtbls (tree t)
6584 {
6585 tree list;
6586 tree vbase;
6587
6588 /* We lay out the primary and secondary vtables in one contiguous
6589 vtable. The primary vtable is first, followed by the non-virtual
6590 secondary vtables in inheritance graph order. */
6591 list = build_tree_list (BINFO_VTABLE (TYPE_BINFO (t)), NULL_TREE);
6592 accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t),
6593 TYPE_BINFO (t), t, list);
6594
6595 /* Then come the virtual bases, also in inheritance graph order. */
6596 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
6597 {
6598 if (!BINFO_VIRTUAL_P (vbase))
6599 continue;
6600 accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), t, list);
6601 }
6602
6603 if (BINFO_VTABLE (TYPE_BINFO (t)))
6604 initialize_vtable (TYPE_BINFO (t), TREE_VALUE (list));
6605 }
6606
6607 /* Initialize the vtable for BINFO with the INITS. */
6608
6609 static void
6610 initialize_vtable (tree binfo, tree inits)
6611 {
6612 tree decl;
6613
6614 layout_vtable_decl (binfo, list_length (inits));
6615 decl = get_vtbl_decl_for_binfo (binfo);
6616 initialize_artificial_var (decl, inits);
6617 dump_vtable (BINFO_TYPE (binfo), binfo, decl);
6618 }
6619
6620 /* Build the VTT (virtual table table) for T.
6621 A class requires a VTT if it has virtual bases.
6622
6623 This holds
6624 1 - primary virtual pointer for complete object T
6625 2 - secondary VTTs for each direct non-virtual base of T which requires a
6626 VTT
6627 3 - secondary virtual pointers for each direct or indirect base of T which
6628 has virtual bases or is reachable via a virtual path from T.
6629 4 - secondary VTTs for each direct or indirect virtual base of T.
6630
6631 Secondary VTTs look like complete object VTTs without part 4. */
6632
6633 static void
6634 build_vtt (tree t)
6635 {
6636 tree inits;
6637 tree type;
6638 tree vtt;
6639 tree index;
6640
6641 /* Build up the initializers for the VTT. */
6642 inits = NULL_TREE;
6643 index = size_zero_node;
6644 build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
6645
6646 /* If we didn't need a VTT, we're done. */
6647 if (!inits)
6648 return;
6649
6650 /* Figure out the type of the VTT. */
6651 type = build_index_type (size_int (list_length (inits) - 1));
6652 type = build_cplus_array_type (const_ptr_type_node, type);
6653
6654 /* Now, build the VTT object itself. */
6655 vtt = build_vtable (t, get_vtt_name (t), type);
6656 initialize_artificial_var (vtt, inits);
6657 /* Add the VTT to the vtables list. */
6658 TREE_CHAIN (vtt) = TREE_CHAIN (CLASSTYPE_VTABLES (t));
6659 TREE_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
6660
6661 dump_vtt (t, vtt);
6662 }
6663
6664 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
6665 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
6666 and CHAIN the vtable pointer for this binfo after construction is
6667 complete. VALUE can also be another BINFO, in which case we recurse. */
6668
6669 static tree
6670 binfo_ctor_vtable (tree binfo)
6671 {
6672 tree vt;
6673
6674 while (1)
6675 {
6676 vt = BINFO_VTABLE (binfo);
6677 if (TREE_CODE (vt) == TREE_LIST)
6678 vt = TREE_VALUE (vt);
6679 if (TREE_CODE (vt) == TREE_BINFO)
6680 binfo = vt;
6681 else
6682 break;
6683 }
6684
6685 return vt;
6686 }
6687
6688 /* Data for secondary VTT initialization. */
6689 typedef struct secondary_vptr_vtt_init_data_s
6690 {
6691 /* Is this the primary VTT? */
6692 bool top_level_p;
6693
6694 /* Current index into the VTT. */
6695 tree index;
6696
6697 /* TREE_LIST of initializers built up. */
6698 tree inits;
6699
6700 /* The type being constructed by this secondary VTT. */
6701 tree type_being_constructed;
6702 } secondary_vptr_vtt_init_data;
6703
6704 /* Recursively build the VTT-initializer for BINFO (which is in the
6705 hierarchy dominated by T). INITS points to the end of the initializer
6706 list to date. INDEX is the VTT index where the next element will be
6707 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
6708 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
6709 for virtual bases of T. When it is not so, we build the constructor
6710 vtables for the BINFO-in-T variant. */
6711
6712 static tree *
6713 build_vtt_inits (tree binfo, tree t, tree *inits, tree *index)
6714 {
6715 int i;
6716 tree b;
6717 tree init;
6718 tree secondary_vptrs;
6719 secondary_vptr_vtt_init_data data;
6720 int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
6721
6722 /* We only need VTTs for subobjects with virtual bases. */
6723 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
6724 return inits;
6725
6726 /* We need to use a construction vtable if this is not the primary
6727 VTT. */
6728 if (!top_level_p)
6729 {
6730 build_ctor_vtbl_group (binfo, t);
6731
6732 /* Record the offset in the VTT where this sub-VTT can be found. */
6733 BINFO_SUBVTT_INDEX (binfo) = *index;
6734 }
6735
6736 /* Add the address of the primary vtable for the complete object. */
6737 init = binfo_ctor_vtable (binfo);
6738 *inits = build_tree_list (NULL_TREE, init);
6739 inits = &TREE_CHAIN (*inits);
6740 if (top_level_p)
6741 {
6742 gcc_assert (!BINFO_VPTR_INDEX (binfo));
6743 BINFO_VPTR_INDEX (binfo) = *index;
6744 }
6745 *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
6746
6747 /* Recursively add the secondary VTTs for non-virtual bases. */
6748 for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
6749 if (!BINFO_VIRTUAL_P (b))
6750 inits = build_vtt_inits (b, t, inits, index);
6751
6752 /* Add secondary virtual pointers for all subobjects of BINFO with
6753 either virtual bases or reachable along a virtual path, except
6754 subobjects that are non-virtual primary bases. */
6755 data.top_level_p = top_level_p;
6756 data.index = *index;
6757 data.inits = NULL;
6758 data.type_being_constructed = BINFO_TYPE (binfo);
6759
6760 dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);
6761
6762 *index = data.index;
6763
6764 /* The secondary vptrs come back in reverse order. After we reverse
6765 them, and add the INITS, the last init will be the first element
6766 of the chain. */
6767 secondary_vptrs = data.inits;
6768 if (secondary_vptrs)
6769 {
6770 *inits = nreverse (secondary_vptrs);
6771 inits = &TREE_CHAIN (secondary_vptrs);
6772 gcc_assert (*inits == NULL_TREE);
6773 }
6774
6775 if (top_level_p)
6776 /* Add the secondary VTTs for virtual bases in inheritance graph
6777 order. */
6778 for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
6779 {
6780 if (!BINFO_VIRTUAL_P (b))
6781 continue;
6782
6783 inits = build_vtt_inits (b, t, inits, index);
6784 }
6785 else
6786 /* Remove the ctor vtables we created. */
6787 dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
6788
6789 return inits;
6790 }
6791
6792 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
6793 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
6794
6795 static tree
6796 dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
6797 {
6798 secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;
6799
6800 /* We don't care about bases that don't have vtables. */
6801 if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
6802 return dfs_skip_bases;
6803
6804 /* We're only interested in proper subobjects of the type being
6805 constructed. */
6806 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
6807 return NULL_TREE;
6808
6809 /* We're only interested in bases with virtual bases or reachable
6810 via a virtual path from the type being constructed. */
6811 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
6812 || binfo_via_virtual (binfo, data->type_being_constructed)))
6813 return dfs_skip_bases;
6814
6815 /* We're not interested in non-virtual primary bases. */
6816 if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
6817 return NULL_TREE;
6818
6819 /* Record the index where this secondary vptr can be found. */
6820 if (data->top_level_p)
6821 {
6822 gcc_assert (!BINFO_VPTR_INDEX (binfo));
6823 BINFO_VPTR_INDEX (binfo) = data->index;
6824
6825 if (BINFO_VIRTUAL_P (binfo))
6826 {
6827 /* It's a primary virtual base, and this is not a
6828 construction vtable. Find the base this is primary of in
6829 the inheritance graph, and use that base's vtable
6830 now. */
6831 while (BINFO_PRIMARY_P (binfo))
6832 binfo = BINFO_INHERITANCE_CHAIN (binfo);
6833 }
6834 }
6835
6836 /* Add the initializer for the secondary vptr itself. */
6837 data->inits = tree_cons (NULL_TREE, binfo_ctor_vtable (binfo), data->inits);
6838
6839 /* Advance the vtt index. */
6840 data->index = size_binop (PLUS_EXPR, data->index,
6841 TYPE_SIZE_UNIT (ptr_type_node));
6842
6843 return NULL_TREE;
6844 }
6845
6846 /* Called from build_vtt_inits via dfs_walk. After building
6847 constructor vtables and generating the sub-vtt from them, we need
6848 to restore the BINFO_VTABLES that were scribbled on. DATA is the
6849 binfo of the base whose sub vtt was generated. */
6850
6851 static tree
6852 dfs_fixup_binfo_vtbls (tree binfo, void* data)
6853 {
6854 tree vtable = BINFO_VTABLE (binfo);
6855
6856 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
6857 /* If this class has no vtable, none of its bases do. */
6858 return dfs_skip_bases;
6859
6860 if (!vtable)
6861 /* This might be a primary base, so have no vtable in this
6862 hierarchy. */
6863 return NULL_TREE;
6864
6865 /* If we scribbled the construction vtable vptr into BINFO, clear it
6866 out now. */
6867 if (TREE_CODE (vtable) == TREE_LIST
6868 && (TREE_PURPOSE (vtable) == (tree) data))
6869 BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);
6870
6871 return NULL_TREE;
6872 }
6873
6874 /* Build the construction vtable group for BINFO which is in the
6875 hierarchy dominated by T. */
6876
6877 static void
6878 build_ctor_vtbl_group (tree binfo, tree t)
6879 {
6880 tree list;
6881 tree type;
6882 tree vtbl;
6883 tree inits;
6884 tree id;
6885 tree vbase;
6886
6887 /* See if we've already created this construction vtable group. */
6888 id = mangle_ctor_vtbl_for_type (t, binfo);
6889 if (IDENTIFIER_GLOBAL_VALUE (id))
6890 return;
6891
6892 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
6893 /* Build a version of VTBL (with the wrong type) for use in
6894 constructing the addresses of secondary vtables in the
6895 construction vtable group. */
6896 vtbl = build_vtable (t, id, ptr_type_node);
6897 DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
6898 list = build_tree_list (vtbl, NULL_TREE);
6899 accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
6900 binfo, t, list);
6901
6902 /* Add the vtables for each of our virtual bases using the vbase in T
6903 binfo. */
6904 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
6905 vbase;
6906 vbase = TREE_CHAIN (vbase))
6907 {
6908 tree b;
6909
6910 if (!BINFO_VIRTUAL_P (vbase))
6911 continue;
6912 b = copied_binfo (vbase, binfo);
6913
6914 accumulate_vtbl_inits (b, vbase, binfo, t, list);
6915 }
6916 inits = TREE_VALUE (list);
6917
6918 /* Figure out the type of the construction vtable. */
6919 type = build_index_type (size_int (list_length (inits) - 1));
6920 type = build_cplus_array_type (vtable_entry_type, type);
6921 TREE_TYPE (vtbl) = type;
6922
6923 /* Initialize the construction vtable. */
6924 CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
6925 initialize_artificial_var (vtbl, inits);
6926 dump_vtable (t, binfo, vtbl);
6927 }
6928
6929 /* Add the vtbl initializers for BINFO (and its bases other than
6930 non-virtual primaries) to the list of INITS. BINFO is in the
6931 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
6932 the constructor the vtbl inits should be accumulated for. (If this
6933 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
6934 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
6935 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
6936 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
6937 but are not necessarily the same in terms of layout. */
6938
6939 static void
6940 accumulate_vtbl_inits (tree binfo,
6941 tree orig_binfo,
6942 tree rtti_binfo,
6943 tree t,
6944 tree inits)
6945 {
6946 int i;
6947 tree base_binfo;
6948 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
6949
6950 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));
6951
6952 /* If it doesn't have a vptr, we don't do anything. */
6953 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
6954 return;
6955
6956 /* If we're building a construction vtable, we're not interested in
6957 subobjects that don't require construction vtables. */
6958 if (ctor_vtbl_p
6959 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
6960 && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
6961 return;
6962
6963 /* Build the initializers for the BINFO-in-T vtable. */
6964 TREE_VALUE (inits)
6965 = chainon (TREE_VALUE (inits),
6966 dfs_accumulate_vtbl_inits (binfo, orig_binfo,
6967 rtti_binfo, t, inits));
6968
6969 /* Walk the BINFO and its bases. We walk in preorder so that as we
6970 initialize each vtable we can figure out at what offset the
6971 secondary vtable lies from the primary vtable. We can't use
6972 dfs_walk here because we need to iterate through bases of BINFO
6973 and RTTI_BINFO simultaneously. */
6974 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
6975 {
6976 /* Skip virtual bases. */
6977 if (BINFO_VIRTUAL_P (base_binfo))
6978 continue;
6979 accumulate_vtbl_inits (base_binfo,
6980 BINFO_BASE_BINFO (orig_binfo, i),
6981 rtti_binfo, t,
6982 inits);
6983 }
6984 }
6985
6986 /* Called from accumulate_vtbl_inits. Returns the initializers for
6987 the BINFO vtable. */
6988
6989 static tree
6990 dfs_accumulate_vtbl_inits (tree binfo,
6991 tree orig_binfo,
6992 tree rtti_binfo,
6993 tree t,
6994 tree l)
6995 {
6996 tree inits = NULL_TREE;
6997 tree vtbl = NULL_TREE;
6998 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
6999
7000 if (ctor_vtbl_p
7001 && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
7002 {
7003 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
7004 primary virtual base. If it is not the same primary in
7005 the hierarchy of T, we'll need to generate a ctor vtable
7006 for it, to place at its location in T. If it is the same
7007 primary, we still need a VTT entry for the vtable, but it
7008 should point to the ctor vtable for the base it is a
7009 primary for within the sub-hierarchy of RTTI_BINFO.
7010
7011 There are three possible cases:
7012
7013 1) We are in the same place.
7014 2) We are a primary base within a lost primary virtual base of
7015 RTTI_BINFO.
7016 3) We are primary to something not a base of RTTI_BINFO. */
7017
7018 tree b;
7019 tree last = NULL_TREE;
7020
7021 /* First, look through the bases we are primary to for RTTI_BINFO
7022 or a virtual base. */
7023 b = binfo;
7024 while (BINFO_PRIMARY_P (b))
7025 {
7026 b = BINFO_INHERITANCE_CHAIN (b);
7027 last = b;
7028 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
7029 goto found;
7030 }
7031 /* If we run out of primary links, keep looking down our
7032 inheritance chain; we might be an indirect primary. */
7033 for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
7034 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
7035 break;
7036 found:
7037
7038 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
7039 base B and it is a base of RTTI_BINFO, this is case 2. In
7040 either case, we share our vtable with LAST, i.e. the
7041 derived-most base within B of which we are a primary. */
7042 if (b == rtti_binfo
7043 || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
7044 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
7045 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
7046 binfo_ctor_vtable after everything's been set up. */
7047 vtbl = last;
7048
7049 /* Otherwise, this is case 3 and we get our own. */
7050 }
7051 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
7052 return inits;
7053
7054 if (!vtbl)
7055 {
7056 tree index;
7057 int non_fn_entries;
7058
7059 /* Compute the initializer for this vtable. */
7060 inits = build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
7061 &non_fn_entries);
7062
7063 /* Figure out the position to which the VPTR should point. */
7064 vtbl = TREE_PURPOSE (l);
7065 vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, vtbl);
7066 index = size_binop (PLUS_EXPR,
7067 size_int (non_fn_entries),
7068 size_int (list_length (TREE_VALUE (l))));
7069 index = size_binop (MULT_EXPR,
7070 TYPE_SIZE_UNIT (vtable_entry_type),
7071 index);
7072 vtbl = build2 (PLUS_EXPR, TREE_TYPE (vtbl), vtbl, index);
7073 }
7074
7075 if (ctor_vtbl_p)
7076 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
7077 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
7078 straighten this out. */
7079 BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
7080 else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
7081 inits = NULL_TREE;
7082 else
7083 /* For an ordinary vtable, set BINFO_VTABLE. */
7084 BINFO_VTABLE (binfo) = vtbl;
7085
7086 return inits;
7087 }
7088
7089 static GTY(()) tree abort_fndecl_addr;
7090
7091 /* Construct the initializer for BINFO's virtual function table. BINFO
7092 is part of the hierarchy dominated by T. If we're building a
7093 construction vtable, the ORIG_BINFO is the binfo we should use to
7094 find the actual function pointers to put in the vtable - but they
7095 can be overridden on the path to most-derived in the graph that
7096 ORIG_BINFO belongs. Otherwise,
7097 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
7098 BINFO that should be indicated by the RTTI information in the
7099 vtable; it will be a base class of T, rather than T itself, if we
7100 are building a construction vtable.
7101
7102 The value returned is a TREE_LIST suitable for wrapping in a
7103 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
7104 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
7105 number of non-function entries in the vtable.
7106
7107 It might seem that this function should never be called with a
7108 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
7109 base is always subsumed by a derived class vtable. However, when
7110 we are building construction vtables, we do build vtables for
7111 primary bases; we need these while the primary base is being
7112 constructed. */
7113
7114 static tree
7115 build_vtbl_initializer (tree binfo,
7116 tree orig_binfo,
7117 tree t,
7118 tree rtti_binfo,
7119 int* non_fn_entries_p)
7120 {
7121 tree v, b;
7122 tree vfun_inits;
7123 vtbl_init_data vid;
7124 unsigned ix;
7125 tree vbinfo;
7126 VEC (tree) *vbases;
7127
7128 /* Initialize VID. */
7129 memset (&vid, 0, sizeof (vid));
7130 vid.binfo = binfo;
7131 vid.derived = t;
7132 vid.rtti_binfo = rtti_binfo;
7133 vid.last_init = &vid.inits;
7134 vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
7135 vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7136 vid.generate_vcall_entries = true;
7137 /* The first vbase or vcall offset is at index -3 in the vtable. */
7138 vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
7139
7140 /* Add entries to the vtable for RTTI. */
7141 build_rtti_vtbl_entries (binfo, &vid);
7142
7143 /* Create an array for keeping track of the functions we've
7144 processed. When we see multiple functions with the same
7145 signature, we share the vcall offsets. */
7146 VARRAY_TREE_INIT (vid.fns, 32, "fns");
7147 /* Add the vcall and vbase offset entries. */
7148 build_vcall_and_vbase_vtbl_entries (binfo, &vid);
7149
7150 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
7151 build_vbase_offset_vtbl_entries. */
7152 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
7153 VEC_iterate (tree, vbases, ix, vbinfo); ix++)
7154 BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;
7155
7156 /* If the target requires padding between data entries, add that now. */
7157 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
7158 {
7159 tree cur, *prev;
7160
7161 for (prev = &vid.inits; (cur = *prev); prev = &TREE_CHAIN (cur))
7162 {
7163 tree add = cur;
7164 int i;
7165
7166 for (i = 1; i < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++i)
7167 add = tree_cons (NULL_TREE,
7168 build1 (NOP_EXPR, vtable_entry_type,
7169 null_pointer_node),
7170 add);
7171 *prev = add;
7172 }
7173 }
7174
7175 if (non_fn_entries_p)
7176 *non_fn_entries_p = list_length (vid.inits);
7177
7178 /* Go through all the ordinary virtual functions, building up
7179 initializers. */
7180 vfun_inits = NULL_TREE;
7181 for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
7182 {
7183 tree delta;
7184 tree vcall_index;
7185 tree fn, fn_original;
7186 tree init = NULL_TREE;
7187
7188 fn = BV_FN (v);
7189 fn_original = fn;
7190 if (DECL_THUNK_P (fn))
7191 {
7192 if (!DECL_NAME (fn))
7193 finish_thunk (fn);
7194 if (THUNK_ALIAS (fn))
7195 {
7196 fn = THUNK_ALIAS (fn);
7197 BV_FN (v) = fn;
7198 }
7199 fn_original = THUNK_TARGET (fn);
7200 }
7201
7202 /* If the only definition of this function signature along our
7203 primary base chain is from a lost primary, this vtable slot will
7204 never be used, so just zero it out. This is important to avoid
7205 requiring extra thunks which cannot be generated with the function.
7206
7207 We first check this in update_vtable_entry_for_fn, so we handle
7208 restored primary bases properly; we also need to do it here so we
7209 zero out unused slots in ctor vtables, rather than filling themff
7210 with erroneous values (though harmless, apart from relocation
7211 costs). */
7212 for (b = binfo; ; b = get_primary_binfo (b))
7213 {
7214 /* We found a defn before a lost primary; go ahead as normal. */
7215 if (look_for_overrides_here (BINFO_TYPE (b), fn_original))
7216 break;
7217
7218 /* The nearest definition is from a lost primary; clear the
7219 slot. */
7220 if (BINFO_LOST_PRIMARY_P (b))
7221 {
7222 init = size_zero_node;
7223 break;
7224 }
7225 }
7226
7227 if (! init)
7228 {
7229 /* Pull the offset for `this', and the function to call, out of
7230 the list. */
7231 delta = BV_DELTA (v);
7232 vcall_index = BV_VCALL_INDEX (v);
7233
7234 gcc_assert (TREE_CODE (delta) == INTEGER_CST);
7235 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
7236
7237 /* You can't call an abstract virtual function; it's abstract.
7238 So, we replace these functions with __pure_virtual. */
7239 if (DECL_PURE_VIRTUAL_P (fn_original))
7240 {
7241 fn = abort_fndecl;
7242 if (abort_fndecl_addr == NULL)
7243 abort_fndecl_addr = build1 (ADDR_EXPR, vfunc_ptr_type_node, fn);
7244 init = abort_fndecl_addr;
7245 }
7246 else
7247 {
7248 if (!integer_zerop (delta) || vcall_index)
7249 {
7250 fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
7251 if (!DECL_NAME (fn))
7252 finish_thunk (fn);
7253 }
7254 /* Take the address of the function, considering it to be of an
7255 appropriate generic type. */
7256 init = build1 (ADDR_EXPR, vfunc_ptr_type_node, fn);
7257 }
7258 }
7259
7260 /* And add it to the chain of initializers. */
7261 if (TARGET_VTABLE_USES_DESCRIPTORS)
7262 {
7263 int i;
7264 if (init == size_zero_node)
7265 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
7266 vfun_inits = tree_cons (NULL_TREE, init, vfun_inits);
7267 else
7268 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
7269 {
7270 tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
7271 TREE_OPERAND (init, 0),
7272 build_int_cst (NULL_TREE, i));
7273 TREE_CONSTANT (fdesc) = 1;
7274 TREE_INVARIANT (fdesc) = 1;
7275
7276 vfun_inits = tree_cons (NULL_TREE, fdesc, vfun_inits);
7277 }
7278 }
7279 else
7280 vfun_inits = tree_cons (NULL_TREE, init, vfun_inits);
7281 }
7282
7283 /* The initializers for virtual functions were built up in reverse
7284 order; straighten them out now. */
7285 vfun_inits = nreverse (vfun_inits);
7286
7287 /* The negative offset initializers are also in reverse order. */
7288 vid.inits = nreverse (vid.inits);
7289
7290 /* Chain the two together. */
7291 return chainon (vid.inits, vfun_inits);
7292 }
7293
7294 /* Adds to vid->inits the initializers for the vbase and vcall
7295 offsets in BINFO, which is in the hierarchy dominated by T. */
7296
7297 static void
7298 build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
7299 {
7300 tree b;
7301
7302 /* If this is a derived class, we must first create entries
7303 corresponding to the primary base class. */
7304 b = get_primary_binfo (binfo);
7305 if (b)
7306 build_vcall_and_vbase_vtbl_entries (b, vid);
7307
7308 /* Add the vbase entries for this base. */
7309 build_vbase_offset_vtbl_entries (binfo, vid);
7310 /* Add the vcall entries for this base. */
7311 build_vcall_offset_vtbl_entries (binfo, vid);
7312 }
7313
7314 /* Returns the initializers for the vbase offset entries in the vtable
7315 for BINFO (which is part of the class hierarchy dominated by T), in
7316 reverse order. VBASE_OFFSET_INDEX gives the vtable index
7317 where the next vbase offset will go. */
7318
7319 static void
7320 build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
7321 {
7322 tree vbase;
7323 tree t;
7324 tree non_primary_binfo;
7325
7326 /* If there are no virtual baseclasses, then there is nothing to
7327 do. */
7328 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
7329 return;
7330
7331 t = vid->derived;
7332
7333 /* We might be a primary base class. Go up the inheritance hierarchy
7334 until we find the most derived class of which we are a primary base:
7335 it is the offset of that which we need to use. */
7336 non_primary_binfo = binfo;
7337 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
7338 {
7339 tree b;
7340
7341 /* If we have reached a virtual base, then it must be a primary
7342 base (possibly multi-level) of vid->binfo, or we wouldn't
7343 have called build_vcall_and_vbase_vtbl_entries for it. But it
7344 might be a lost primary, so just skip down to vid->binfo. */
7345 if (BINFO_VIRTUAL_P (non_primary_binfo))
7346 {
7347 non_primary_binfo = vid->binfo;
7348 break;
7349 }
7350
7351 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
7352 if (get_primary_binfo (b) != non_primary_binfo)
7353 break;
7354 non_primary_binfo = b;
7355 }
7356
7357 /* Go through the virtual bases, adding the offsets. */
7358 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
7359 vbase;
7360 vbase = TREE_CHAIN (vbase))
7361 {
7362 tree b;
7363 tree delta;
7364
7365 if (!BINFO_VIRTUAL_P (vbase))
7366 continue;
7367
7368 /* Find the instance of this virtual base in the complete
7369 object. */
7370 b = copied_binfo (vbase, binfo);
7371
7372 /* If we've already got an offset for this virtual base, we
7373 don't need another one. */
7374 if (BINFO_VTABLE_PATH_MARKED (b))
7375 continue;
7376 BINFO_VTABLE_PATH_MARKED (b) = 1;
7377
7378 /* Figure out where we can find this vbase offset. */
7379 delta = size_binop (MULT_EXPR,
7380 vid->index,
7381 convert (ssizetype,
7382 TYPE_SIZE_UNIT (vtable_entry_type)));
7383 if (vid->primary_vtbl_p)
7384 BINFO_VPTR_FIELD (b) = delta;
7385
7386 if (binfo != TYPE_BINFO (t))
7387 /* The vbase offset had better be the same. */
7388 gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));
7389
7390 /* The next vbase will come at a more negative offset. */
7391 vid->index = size_binop (MINUS_EXPR, vid->index,
7392 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
7393
7394 /* The initializer is the delta from BINFO to this virtual base.
7395 The vbase offsets go in reverse inheritance-graph order, and
7396 we are walking in inheritance graph order so these end up in
7397 the right order. */
7398 delta = size_diffop (BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
7399
7400 *vid->last_init
7401 = build_tree_list (NULL_TREE,
7402 fold (build1 (NOP_EXPR,
7403 vtable_entry_type,
7404 delta)));
7405 vid->last_init = &TREE_CHAIN (*vid->last_init);
7406 }
7407 }
7408
7409 /* Adds the initializers for the vcall offset entries in the vtable
7410 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
7411 to VID->INITS. */
7412
7413 static void
7414 build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
7415 {
7416 /* We only need these entries if this base is a virtual base. We
7417 compute the indices -- but do not add to the vtable -- when
7418 building the main vtable for a class. */
7419 if (BINFO_VIRTUAL_P (binfo) || binfo == TYPE_BINFO (vid->derived))
7420 {
7421 /* We need a vcall offset for each of the virtual functions in this
7422 vtable. For example:
7423
7424 class A { virtual void f (); };
7425 class B1 : virtual public A { virtual void f (); };
7426 class B2 : virtual public A { virtual void f (); };
7427 class C: public B1, public B2 { virtual void f (); };
7428
7429 A C object has a primary base of B1, which has a primary base of A. A
7430 C also has a secondary base of B2, which no longer has a primary base
7431 of A. So the B2-in-C construction vtable needs a secondary vtable for
7432 A, which will adjust the A* to a B2* to call f. We have no way of
7433 knowing what (or even whether) this offset will be when we define B2,
7434 so we store this "vcall offset" in the A sub-vtable and look it up in
7435 a "virtual thunk" for B2::f.
7436
7437 We need entries for all the functions in our primary vtable and
7438 in our non-virtual bases' secondary vtables. */
7439 vid->vbase = binfo;
7440 /* If we are just computing the vcall indices -- but do not need
7441 the actual entries -- not that. */
7442 if (!BINFO_VIRTUAL_P (binfo))
7443 vid->generate_vcall_entries = false;
7444 /* Now, walk through the non-virtual bases, adding vcall offsets. */
7445 add_vcall_offset_vtbl_entries_r (binfo, vid);
7446 }
7447 }
7448
7449 /* Build vcall offsets, starting with those for BINFO. */
7450
7451 static void
7452 add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
7453 {
7454 int i;
7455 tree primary_binfo;
7456 tree base_binfo;
7457
7458 /* Don't walk into virtual bases -- except, of course, for the
7459 virtual base for which we are building vcall offsets. Any
7460 primary virtual base will have already had its offsets generated
7461 through the recursion in build_vcall_and_vbase_vtbl_entries. */
7462 if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
7463 return;
7464
7465 /* If BINFO has a primary base, process it first. */
7466 primary_binfo = get_primary_binfo (binfo);
7467 if (primary_binfo)
7468 add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
7469
7470 /* Add BINFO itself to the list. */
7471 add_vcall_offset_vtbl_entries_1 (binfo, vid);
7472
7473 /* Scan the non-primary bases of BINFO. */
7474 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7475 if (base_binfo != primary_binfo)
7476 add_vcall_offset_vtbl_entries_r (base_binfo, vid);
7477 }
7478
7479 /* Called from build_vcall_offset_vtbl_entries_r. */
7480
7481 static void
7482 add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
7483 {
7484 /* Make entries for the rest of the virtuals. */
7485 if (abi_version_at_least (2))
7486 {
7487 tree orig_fn;
7488
7489 /* The ABI requires that the methods be processed in declaration
7490 order. G++ 3.2 used the order in the vtable. */
7491 for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
7492 orig_fn;
7493 orig_fn = TREE_CHAIN (orig_fn))
7494 if (DECL_VINDEX (orig_fn))
7495 add_vcall_offset (orig_fn, binfo, vid);
7496 }
7497 else
7498 {
7499 tree derived_virtuals;
7500 tree base_virtuals;
7501 tree orig_virtuals;
7502 /* If BINFO is a primary base, the most derived class which has
7503 BINFO as a primary base; otherwise, just BINFO. */
7504 tree non_primary_binfo;
7505
7506 /* We might be a primary base class. Go up the inheritance hierarchy
7507 until we find the most derived class of which we are a primary base:
7508 it is the BINFO_VIRTUALS there that we need to consider. */
7509 non_primary_binfo = binfo;
7510 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
7511 {
7512 tree b;
7513
7514 /* If we have reached a virtual base, then it must be vid->vbase,
7515 because we ignore other virtual bases in
7516 add_vcall_offset_vtbl_entries_r. In turn, it must be a primary
7517 base (possibly multi-level) of vid->binfo, or we wouldn't
7518 have called build_vcall_and_vbase_vtbl_entries for it. But it
7519 might be a lost primary, so just skip down to vid->binfo. */
7520 if (BINFO_VIRTUAL_P (non_primary_binfo))
7521 {
7522 gcc_assert (non_primary_binfo == vid->vbase);
7523 non_primary_binfo = vid->binfo;
7524 break;
7525 }
7526
7527 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
7528 if (get_primary_binfo (b) != non_primary_binfo)
7529 break;
7530 non_primary_binfo = b;
7531 }
7532
7533 if (vid->ctor_vtbl_p)
7534 /* For a ctor vtable we need the equivalent binfo within the hierarchy
7535 where rtti_binfo is the most derived type. */
7536 non_primary_binfo
7537 = original_binfo (non_primary_binfo, vid->rtti_binfo);
7538
7539 for (base_virtuals = BINFO_VIRTUALS (binfo),
7540 derived_virtuals = BINFO_VIRTUALS (non_primary_binfo),
7541 orig_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
7542 base_virtuals;
7543 base_virtuals = TREE_CHAIN (base_virtuals),
7544 derived_virtuals = TREE_CHAIN (derived_virtuals),
7545 orig_virtuals = TREE_CHAIN (orig_virtuals))
7546 {
7547 tree orig_fn;
7548
7549 /* Find the declaration that originally caused this function to
7550 be present in BINFO_TYPE (binfo). */
7551 orig_fn = BV_FN (orig_virtuals);
7552
7553 /* When processing BINFO, we only want to generate vcall slots for
7554 function slots introduced in BINFO. So don't try to generate
7555 one if the function isn't even defined in BINFO. */
7556 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), DECL_CONTEXT (orig_fn)))
7557 continue;
7558
7559 add_vcall_offset (orig_fn, binfo, vid);
7560 }
7561 }
7562 }
7563
7564 /* Add a vcall offset entry for ORIG_FN to the vtable. */
7565
7566 static void
7567 add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
7568 {
7569 size_t i;
7570 tree vcall_offset;
7571
7572 /* If there is already an entry for a function with the same
7573 signature as FN, then we do not need a second vcall offset.
7574 Check the list of functions already present in the derived
7575 class vtable. */
7576 for (i = 0; i < VARRAY_ACTIVE_SIZE (vid->fns); ++i)
7577 {
7578 tree derived_entry;
7579
7580 derived_entry = VARRAY_TREE (vid->fns, i);
7581 if (same_signature_p (derived_entry, orig_fn)
7582 /* We only use one vcall offset for virtual destructors,
7583 even though there are two virtual table entries. */
7584 || (DECL_DESTRUCTOR_P (derived_entry)
7585 && DECL_DESTRUCTOR_P (orig_fn)))
7586 return;
7587 }
7588
7589 /* If we are building these vcall offsets as part of building
7590 the vtable for the most derived class, remember the vcall
7591 offset. */
7592 if (vid->binfo == TYPE_BINFO (vid->derived))
7593 {
7594 tree_pair_p elt = VEC_safe_push (tree_pair_s,
7595 CLASSTYPE_VCALL_INDICES (vid->derived),
7596 NULL);
7597 elt->purpose = orig_fn;
7598 elt->value = vid->index;
7599 }
7600
7601 /* The next vcall offset will be found at a more negative
7602 offset. */
7603 vid->index = size_binop (MINUS_EXPR, vid->index,
7604 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
7605
7606 /* Keep track of this function. */
7607 VARRAY_PUSH_TREE (vid->fns, orig_fn);
7608
7609 if (vid->generate_vcall_entries)
7610 {
7611 tree base;
7612 tree fn;
7613
7614 /* Find the overriding function. */
7615 fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
7616 if (fn == error_mark_node)
7617 vcall_offset = build1 (NOP_EXPR, vtable_entry_type,
7618 integer_zero_node);
7619 else
7620 {
7621 base = TREE_VALUE (fn);
7622
7623 /* The vbase we're working on is a primary base of
7624 vid->binfo. But it might be a lost primary, so its
7625 BINFO_OFFSET might be wrong, so we just use the
7626 BINFO_OFFSET from vid->binfo. */
7627 vcall_offset = size_diffop (BINFO_OFFSET (base),
7628 BINFO_OFFSET (vid->binfo));
7629 vcall_offset = fold (build1 (NOP_EXPR, vtable_entry_type,
7630 vcall_offset));
7631 }
7632 /* Add the initializer to the vtable. */
7633 *vid->last_init = build_tree_list (NULL_TREE, vcall_offset);
7634 vid->last_init = &TREE_CHAIN (*vid->last_init);
7635 }
7636 }
7637
7638 /* Return vtbl initializers for the RTTI entries corresponding to the
7639 BINFO's vtable. The RTTI entries should indicate the object given
7640 by VID->rtti_binfo. */
7641
7642 static void
7643 build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
7644 {
7645 tree b;
7646 tree t;
7647 tree basetype;
7648 tree offset;
7649 tree decl;
7650 tree init;
7651
7652 basetype = BINFO_TYPE (binfo);
7653 t = BINFO_TYPE (vid->rtti_binfo);
7654
7655 /* To find the complete object, we will first convert to our most
7656 primary base, and then add the offset in the vtbl to that value. */
7657 b = binfo;
7658 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
7659 && !BINFO_LOST_PRIMARY_P (b))
7660 {
7661 tree primary_base;
7662
7663 primary_base = get_primary_binfo (b);
7664 gcc_assert (BINFO_PRIMARY_P (primary_base)
7665 && BINFO_INHERITANCE_CHAIN (primary_base) == b);
7666 b = primary_base;
7667 }
7668 offset = size_diffop (BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
7669
7670 /* The second entry is the address of the typeinfo object. */
7671 if (flag_rtti)
7672 decl = build_address (get_tinfo_decl (t));
7673 else
7674 decl = integer_zero_node;
7675
7676 /* Convert the declaration to a type that can be stored in the
7677 vtable. */
7678 init = build_nop (vfunc_ptr_type_node, decl);
7679 *vid->last_init = build_tree_list (NULL_TREE, init);
7680 vid->last_init = &TREE_CHAIN (*vid->last_init);
7681
7682 /* Add the offset-to-top entry. It comes earlier in the vtable that
7683 the the typeinfo entry. Convert the offset to look like a
7684 function pointer, so that we can put it in the vtable. */
7685 init = build_nop (vfunc_ptr_type_node, offset);
7686 *vid->last_init = build_tree_list (NULL_TREE, init);
7687 vid->last_init = &TREE_CHAIN (*vid->last_init);
7688 }
7689
7690 /* Fold a OBJ_TYPE_REF expression to the address of a function.
7691 KNOWN_TYPE carries the true type of OBJ_TYPE_REF_OBJECT(REF). */
7692
7693 tree
7694 cp_fold_obj_type_ref (tree ref, tree known_type)
7695 {
7696 HOST_WIDE_INT index = tree_low_cst (OBJ_TYPE_REF_TOKEN (ref), 1);
7697 HOST_WIDE_INT i = 0;
7698 tree v = BINFO_VIRTUALS (TYPE_BINFO (known_type));
7699 tree fndecl;
7700
7701 while (i != index)
7702 {
7703 i += (TARGET_VTABLE_USES_DESCRIPTORS
7704 ? TARGET_VTABLE_USES_DESCRIPTORS : 1);
7705 v = TREE_CHAIN (v);
7706 }
7707
7708 fndecl = BV_FN (v);
7709
7710 #ifdef ENABLE_CHECKING
7711 gcc_assert (tree_int_cst_equal (OBJ_TYPE_REF_TOKEN (ref),
7712 DECL_VINDEX (fndecl)));
7713 #endif
7714
7715 return build_address (fndecl);
7716 }
7717
7718 #include "gt-cp-class.h"
This page took 0.365167 seconds and 6 git commands to generate.