]> gcc.gnu.org Git - gcc.git/blob - gcc/cp/class.c
re PR c++/19891 (Covariant returns are broken)
[gcc.git] / gcc / cp / class.c
1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23
24 /* High-level class interface. */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "flags.h"
33 #include "rtl.h"
34 #include "output.h"
35 #include "toplev.h"
36 #include "target.h"
37 #include "convert.h"
38
39 /* The number of nested classes being processed. If we are not in the
40 scope of any class, this is zero. */
41
42 int current_class_depth;
43
44 /* In order to deal with nested classes, we keep a stack of classes.
45 The topmost entry is the innermost class, and is the entry at index
46 CURRENT_CLASS_DEPTH */
47
48 typedef struct class_stack_node {
49 /* The name of the class. */
50 tree name;
51
52 /* The _TYPE node for the class. */
53 tree type;
54
55 /* The access specifier pending for new declarations in the scope of
56 this class. */
57 tree access;
58
59 /* If were defining TYPE, the names used in this class. */
60 splay_tree names_used;
61 }* class_stack_node_t;
62
63 typedef struct vtbl_init_data_s
64 {
65 /* The base for which we're building initializers. */
66 tree binfo;
67 /* The type of the most-derived type. */
68 tree derived;
69 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
70 unless ctor_vtbl_p is true. */
71 tree rtti_binfo;
72 /* The negative-index vtable initializers built up so far. These
73 are in order from least negative index to most negative index. */
74 tree inits;
75 /* The last (i.e., most negative) entry in INITS. */
76 tree* last_init;
77 /* The binfo for the virtual base for which we're building
78 vcall offset initializers. */
79 tree vbase;
80 /* The functions in vbase for which we have already provided vcall
81 offsets. */
82 varray_type fns;
83 /* The vtable index of the next vcall or vbase offset. */
84 tree index;
85 /* Nonzero if we are building the initializer for the primary
86 vtable. */
87 int primary_vtbl_p;
88 /* Nonzero if we are building the initializer for a construction
89 vtable. */
90 int ctor_vtbl_p;
91 /* True when adding vcall offset entries to the vtable. False when
92 merely computing the indices. */
93 bool generate_vcall_entries;
94 } vtbl_init_data;
95
96 /* The type of a function passed to walk_subobject_offsets. */
97 typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
98
99 /* The stack itself. This is a dynamically resized array. The
100 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
101 static int current_class_stack_size;
102 static class_stack_node_t current_class_stack;
103
104 /* An array of all local classes present in this translation unit, in
105 declaration order. */
106 varray_type local_classes;
107
108 static tree get_vfield_name (tree);
109 static void finish_struct_anon (tree);
110 static tree get_vtable_name (tree);
111 static tree get_basefndecls (tree, tree);
112 static int build_primary_vtable (tree, tree);
113 static int build_secondary_vtable (tree);
114 static void finish_vtbls (tree);
115 static void modify_vtable_entry (tree, tree, tree, tree, tree *);
116 static void finish_struct_bits (tree);
117 static int alter_access (tree, tree, tree);
118 static void handle_using_decl (tree, tree);
119 static tree dfs_modify_vtables (tree, void *);
120 static tree modify_all_vtables (tree, tree);
121 static void determine_primary_bases (tree);
122 static void finish_struct_methods (tree);
123 static void maybe_warn_about_overly_private_class (tree);
124 static int method_name_cmp (const void *, const void *);
125 static int resort_method_name_cmp (const void *, const void *);
126 static void add_implicitly_declared_members (tree, int, int, int);
127 static tree fixed_type_or_null (tree, int *, int *);
128 static tree resolve_address_of_overloaded_function (tree, tree, tsubst_flags_t,
129 bool, tree);
130 static tree build_simple_base_path (tree expr, tree binfo);
131 static tree build_vtbl_ref_1 (tree, tree);
132 static tree build_vtbl_initializer (tree, tree, tree, tree, int *);
133 static int count_fields (tree);
134 static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
135 static void check_bitfield_decl (tree);
136 static void check_field_decl (tree, tree, int *, int *, int *, int *);
137 static void check_field_decls (tree, tree *, int *, int *, int *);
138 static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
139 static void build_base_fields (record_layout_info, splay_tree, tree *);
140 static void check_methods (tree);
141 static void remove_zero_width_bit_fields (tree);
142 static void check_bases (tree, int *, int *, int *);
143 static void check_bases_and_members (tree);
144 static tree create_vtable_ptr (tree, tree *);
145 static void include_empty_classes (record_layout_info);
146 static void layout_class_type (tree, tree *);
147 static void fixup_pending_inline (tree);
148 static void fixup_inline_methods (tree);
149 static void propagate_binfo_offsets (tree, tree);
150 static void layout_virtual_bases (record_layout_info, splay_tree);
151 static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
152 static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
153 static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
154 static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
155 static void add_vcall_offset (tree, tree, vtbl_init_data *);
156 static void layout_vtable_decl (tree, int);
157 static tree dfs_find_final_overrider_pre (tree, void *);
158 static tree dfs_find_final_overrider_post (tree, void *);
159 static tree find_final_overrider (tree, tree, tree);
160 static int make_new_vtable (tree, tree);
161 static int maybe_indent_hierarchy (FILE *, int, int);
162 static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
163 static void dump_class_hierarchy (tree);
164 static void dump_class_hierarchy_1 (FILE *, int, tree);
165 static void dump_array (FILE *, tree);
166 static void dump_vtable (tree, tree, tree);
167 static void dump_vtt (tree, tree);
168 static void dump_thunk (FILE *, int, tree);
169 static tree build_vtable (tree, tree, tree);
170 static void initialize_vtable (tree, tree);
171 static void layout_nonempty_base_or_field (record_layout_info,
172 tree, tree, splay_tree);
173 static tree end_of_class (tree, int);
174 static bool layout_empty_base (tree, tree, splay_tree);
175 static void accumulate_vtbl_inits (tree, tree, tree, tree, tree);
176 static tree dfs_accumulate_vtbl_inits (tree, tree, tree, tree,
177 tree);
178 static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
179 static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
180 static void clone_constructors_and_destructors (tree);
181 static tree build_clone (tree, tree);
182 static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
183 static void build_ctor_vtbl_group (tree, tree);
184 static void build_vtt (tree);
185 static tree binfo_ctor_vtable (tree);
186 static tree *build_vtt_inits (tree, tree, tree *, tree *);
187 static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
188 static tree dfs_fixup_binfo_vtbls (tree, void *);
189 static int record_subobject_offset (tree, tree, splay_tree);
190 static int check_subobject_offset (tree, tree, splay_tree);
191 static int walk_subobject_offsets (tree, subobject_offset_fn,
192 tree, splay_tree, tree, int);
193 static void record_subobject_offsets (tree, tree, splay_tree, int);
194 static int layout_conflict_p (tree, tree, splay_tree, int);
195 static int splay_tree_compare_integer_csts (splay_tree_key k1,
196 splay_tree_key k2);
197 static void warn_about_ambiguous_bases (tree);
198 static bool type_requires_array_cookie (tree);
199 static bool contains_empty_class_p (tree);
200 static bool base_derived_from (tree, tree);
201 static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
202 static tree end_of_base (tree);
203 static tree get_vcall_index (tree, tree);
204
205 /* Variables shared between class.c and call.c. */
206
207 #ifdef GATHER_STATISTICS
208 int n_vtables = 0;
209 int n_vtable_entries = 0;
210 int n_vtable_searches = 0;
211 int n_vtable_elems = 0;
212 int n_convert_harshness = 0;
213 int n_compute_conversion_costs = 0;
214 int n_inner_fields_searched = 0;
215 #endif
216
217 /* Convert to or from a base subobject. EXPR is an expression of type
218 `A' or `A*', an expression of type `B' or `B*' is returned. To
219 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
220 the B base instance within A. To convert base A to derived B, CODE
221 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
222 In this latter case, A must not be a morally virtual base of B.
223 NONNULL is true if EXPR is known to be non-NULL (this is only
224 needed when EXPR is of pointer type). CV qualifiers are preserved
225 from EXPR. */
226
227 tree
228 build_base_path (enum tree_code code,
229 tree expr,
230 tree binfo,
231 int nonnull)
232 {
233 tree v_binfo = NULL_TREE;
234 tree d_binfo = NULL_TREE;
235 tree probe;
236 tree offset;
237 tree target_type;
238 tree null_test = NULL;
239 tree ptr_target_type;
240 int fixed_type_p;
241 int want_pointer = TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE;
242 bool has_empty = false;
243 bool virtual_access;
244
245 if (expr == error_mark_node || binfo == error_mark_node || !binfo)
246 return error_mark_node;
247
248 for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
249 {
250 d_binfo = probe;
251 if (is_empty_class (BINFO_TYPE (probe)))
252 has_empty = true;
253 if (!v_binfo && BINFO_VIRTUAL_P (probe))
254 v_binfo = probe;
255 }
256
257 probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
258 if (want_pointer)
259 probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
260
261 gcc_assert ((code == MINUS_EXPR
262 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
263 || (code == PLUS_EXPR
264 && SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe)));
265
266 if (binfo == d_binfo)
267 /* Nothing to do. */
268 return expr;
269
270 if (code == MINUS_EXPR && v_binfo)
271 {
272 error ("cannot convert from base %qT to derived type %qT via virtual base %qT",
273 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo), BINFO_TYPE (v_binfo));
274 return error_mark_node;
275 }
276
277 if (!want_pointer)
278 /* This must happen before the call to save_expr. */
279 expr = build_unary_op (ADDR_EXPR, expr, 0);
280
281 offset = BINFO_OFFSET (binfo);
282 fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
283
284 /* Do we need to look in the vtable for the real offset? */
285 virtual_access = (v_binfo && fixed_type_p <= 0);
286
287 /* Do we need to check for a null pointer? */
288 if (want_pointer && !nonnull && (virtual_access || !integer_zerop (offset)))
289 null_test = error_mark_node;
290
291 /* Protect against multiple evaluation if necessary. */
292 if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
293 expr = save_expr (expr);
294
295 /* Now that we've saved expr, build the real null test. */
296 if (null_test)
297 {
298 tree zero = cp_convert (TREE_TYPE (expr), integer_zero_node);
299 null_test = fold (build2 (NE_EXPR, boolean_type_node,
300 expr, zero));
301 }
302
303 /* If this is a simple base reference, express it as a COMPONENT_REF. */
304 if (code == PLUS_EXPR && !virtual_access
305 /* We don't build base fields for empty bases, and they aren't very
306 interesting to the optimizers anyway. */
307 && !has_empty)
308 {
309 expr = build_indirect_ref (expr, NULL);
310 expr = build_simple_base_path (expr, binfo);
311 if (want_pointer)
312 expr = build_address (expr);
313 target_type = TREE_TYPE (expr);
314 goto out;
315 }
316
317 if (virtual_access)
318 {
319 /* Going via virtual base V_BINFO. We need the static offset
320 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
321 V_BINFO. That offset is an entry in D_BINFO's vtable. */
322 tree v_offset;
323
324 if (fixed_type_p < 0 && in_base_initializer)
325 {
326 /* In a base member initializer, we cannot rely on
327 the vtable being set up. We have to use the vtt_parm. */
328 tree derived = BINFO_INHERITANCE_CHAIN (v_binfo);
329 tree t;
330
331 t = TREE_TYPE (TYPE_VFIELD (BINFO_TYPE (derived)));
332 t = build_pointer_type (t);
333 v_offset = convert (t, current_vtt_parm);
334 v_offset = build2 (PLUS_EXPR, t, v_offset,
335 BINFO_VPTR_INDEX (derived));
336 v_offset = build_indirect_ref (v_offset, NULL);
337 }
338 else
339 v_offset = build_vfield_ref (build_indirect_ref (expr, NULL),
340 TREE_TYPE (TREE_TYPE (expr)));
341
342 v_offset = build2 (PLUS_EXPR, TREE_TYPE (v_offset),
343 v_offset, BINFO_VPTR_FIELD (v_binfo));
344 v_offset = build1 (NOP_EXPR,
345 build_pointer_type (ptrdiff_type_node),
346 v_offset);
347 v_offset = build_indirect_ref (v_offset, NULL);
348 TREE_CONSTANT (v_offset) = 1;
349 TREE_INVARIANT (v_offset) = 1;
350
351 offset = convert_to_integer (ptrdiff_type_node,
352 size_diffop (offset,
353 BINFO_OFFSET (v_binfo)));
354
355 if (!integer_zerop (offset))
356 v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);
357
358 if (fixed_type_p < 0)
359 /* Negative fixed_type_p means this is a constructor or destructor;
360 virtual base layout is fixed in in-charge [cd]tors, but not in
361 base [cd]tors. */
362 offset = build3 (COND_EXPR, ptrdiff_type_node,
363 build2 (EQ_EXPR, boolean_type_node,
364 current_in_charge_parm, integer_zero_node),
365 v_offset,
366 BINFO_OFFSET (binfo));
367 else
368 offset = v_offset;
369 }
370
371 target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
372
373 target_type = cp_build_qualified_type
374 (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
375 ptr_target_type = build_pointer_type (target_type);
376 if (want_pointer)
377 target_type = ptr_target_type;
378
379 expr = build1 (NOP_EXPR, ptr_target_type, expr);
380
381 if (!integer_zerop (offset))
382 expr = build2 (code, ptr_target_type, expr, offset);
383 else
384 null_test = NULL;
385
386 if (!want_pointer)
387 expr = build_indirect_ref (expr, NULL);
388
389 out:
390 if (null_test)
391 expr = fold (build3 (COND_EXPR, target_type, null_test, expr,
392 fold (build1 (NOP_EXPR, target_type,
393 integer_zero_node))));
394
395 return expr;
396 }
397
398 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
399 Perform a derived-to-base conversion by recursively building up a
400 sequence of COMPONENT_REFs to the appropriate base fields. */
401
402 static tree
403 build_simple_base_path (tree expr, tree binfo)
404 {
405 tree type = BINFO_TYPE (binfo);
406 tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
407 tree field;
408
409 if (d_binfo == NULL_TREE)
410 {
411 tree temp;
412
413 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);
414
415 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
416 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
417 an lvalue in the frontend; only _DECLs and _REFs are lvalues
418 in the backend. */
419 temp = unary_complex_lvalue (ADDR_EXPR, expr);
420 if (temp)
421 expr = build_indirect_ref (temp, NULL);
422
423 return expr;
424 }
425
426 /* Recurse. */
427 expr = build_simple_base_path (expr, d_binfo);
428
429 for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
430 field; field = TREE_CHAIN (field))
431 /* Is this the base field created by build_base_field? */
432 if (TREE_CODE (field) == FIELD_DECL
433 && DECL_FIELD_IS_BASE (field)
434 && TREE_TYPE (field) == type)
435 {
436 /* We don't use build_class_member_access_expr here, as that
437 has unnecessary checks, and more importantly results in
438 recursive calls to dfs_walk_once. */
439 int type_quals = cp_type_quals (TREE_TYPE (expr));
440
441 expr = build3 (COMPONENT_REF,
442 cp_build_qualified_type (type, type_quals),
443 expr, field, NULL_TREE);
444 expr = fold_if_not_in_template (expr);
445
446 /* Mark the expression const or volatile, as appropriate.
447 Even though we've dealt with the type above, we still have
448 to mark the expression itself. */
449 if (type_quals & TYPE_QUAL_CONST)
450 TREE_READONLY (expr) = 1;
451 if (type_quals & TYPE_QUAL_VOLATILE)
452 TREE_THIS_VOLATILE (expr) = 1;
453
454 return expr;
455 }
456
457 /* Didn't find the base field?!? */
458 gcc_unreachable ();
459 }
460
461 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
462 type is a class type or a pointer to a class type. In the former
463 case, TYPE is also a class type; in the latter it is another
464 pointer type. If CHECK_ACCESS is true, an error message is emitted
465 if TYPE is inaccessible. If OBJECT has pointer type, the value is
466 assumed to be non-NULL. */
467
468 tree
469 convert_to_base (tree object, tree type, bool check_access, bool nonnull)
470 {
471 tree binfo;
472 tree object_type;
473
474 if (TYPE_PTR_P (TREE_TYPE (object)))
475 {
476 object_type = TREE_TYPE (TREE_TYPE (object));
477 type = TREE_TYPE (type);
478 }
479 else
480 object_type = TREE_TYPE (object);
481
482 binfo = lookup_base (object_type, type,
483 check_access ? ba_check : ba_unique,
484 NULL);
485 if (!binfo || binfo == error_mark_node)
486 return error_mark_node;
487
488 return build_base_path (PLUS_EXPR, object, binfo, nonnull);
489 }
490
491 /* EXPR is an expression with unqualified class type. BASE is a base
492 binfo of that class type. Returns EXPR, converted to the BASE
493 type. This function assumes that EXPR is the most derived class;
494 therefore virtual bases can be found at their static offsets. */
495
496 tree
497 convert_to_base_statically (tree expr, tree base)
498 {
499 tree expr_type;
500
501 expr_type = TREE_TYPE (expr);
502 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
503 {
504 tree pointer_type;
505
506 pointer_type = build_pointer_type (expr_type);
507 expr = build_unary_op (ADDR_EXPR, expr, /*noconvert=*/1);
508 if (!integer_zerop (BINFO_OFFSET (base)))
509 expr = build2 (PLUS_EXPR, pointer_type, expr,
510 build_nop (pointer_type, BINFO_OFFSET (base)));
511 expr = build_nop (build_pointer_type (BINFO_TYPE (base)), expr);
512 expr = build1 (INDIRECT_REF, BINFO_TYPE (base), expr);
513 }
514
515 return expr;
516 }
517
518 \f
519 tree
520 build_vfield_ref (tree datum, tree type)
521 {
522 tree vfield, vcontext;
523
524 if (datum == error_mark_node)
525 return error_mark_node;
526
527 /* First, convert to the requested type. */
528 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
529 datum = convert_to_base (datum, type, /*check_access=*/false,
530 /*nonnull=*/true);
531
532 /* Second, the requested type may not be the owner of its own vptr.
533 If not, convert to the base class that owns it. We cannot use
534 convert_to_base here, because VCONTEXT may appear more than once
535 in the inheritance hierarchy of TYPE, and thus direct conversion
536 between the types may be ambiguous. Following the path back up
537 one step at a time via primary bases avoids the problem. */
538 vfield = TYPE_VFIELD (type);
539 vcontext = DECL_CONTEXT (vfield);
540 while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
541 {
542 datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
543 type = TREE_TYPE (datum);
544 }
545
546 return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
547 }
548
549 /* Given an object INSTANCE, return an expression which yields the
550 vtable element corresponding to INDEX. There are many special
551 cases for INSTANCE which we take care of here, mainly to avoid
552 creating extra tree nodes when we don't have to. */
553
554 static tree
555 build_vtbl_ref_1 (tree instance, tree idx)
556 {
557 tree aref;
558 tree vtbl = NULL_TREE;
559
560 /* Try to figure out what a reference refers to, and
561 access its virtual function table directly. */
562
563 int cdtorp = 0;
564 tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
565
566 tree basetype = non_reference (TREE_TYPE (instance));
567
568 if (fixed_type && !cdtorp)
569 {
570 tree binfo = lookup_base (fixed_type, basetype,
571 ba_unique | ba_quiet, NULL);
572 if (binfo)
573 vtbl = unshare_expr (BINFO_VTABLE (binfo));
574 }
575
576 if (!vtbl)
577 vtbl = build_vfield_ref (instance, basetype);
578
579 assemble_external (vtbl);
580
581 aref = build_array_ref (vtbl, idx);
582 TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
583 TREE_INVARIANT (aref) = TREE_CONSTANT (aref);
584
585 return aref;
586 }
587
588 tree
589 build_vtbl_ref (tree instance, tree idx)
590 {
591 tree aref = build_vtbl_ref_1 (instance, idx);
592
593 return aref;
594 }
595
596 /* Given a stable object pointer INSTANCE_PTR, return an expression which
597 yields a function pointer corresponding to vtable element INDEX. */
598
599 tree
600 build_vfn_ref (tree instance_ptr, tree idx)
601 {
602 tree aref;
603
604 aref = build_vtbl_ref_1 (build_indirect_ref (instance_ptr, 0), idx);
605
606 /* When using function descriptors, the address of the
607 vtable entry is treated as a function pointer. */
608 if (TARGET_VTABLE_USES_DESCRIPTORS)
609 aref = build1 (NOP_EXPR, TREE_TYPE (aref),
610 build_unary_op (ADDR_EXPR, aref, /*noconvert=*/1));
611
612 /* Remember this as a method reference, for later devirtualization. */
613 aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);
614
615 return aref;
616 }
617
618 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
619 for the given TYPE. */
620
621 static tree
622 get_vtable_name (tree type)
623 {
624 return mangle_vtbl_for_type (type);
625 }
626
627 /* Return an IDENTIFIER_NODE for the name of the virtual table table
628 for TYPE. */
629
630 tree
631 get_vtt_name (tree type)
632 {
633 return mangle_vtt_for_type (type);
634 }
635
636 /* DECL is an entity associated with TYPE, like a virtual table or an
637 implicitly generated constructor. Determine whether or not DECL
638 should have external or internal linkage at the object file
639 level. This routine does not deal with COMDAT linkage and other
640 similar complexities; it simply sets TREE_PUBLIC if it possible for
641 entities in other translation units to contain copies of DECL, in
642 the abstract. */
643
644 void
645 set_linkage_according_to_type (tree type, tree decl)
646 {
647 /* If TYPE involves a local class in a function with internal
648 linkage, then DECL should have internal linkage too. Other local
649 classes have no linkage -- but if their containing functions
650 have external linkage, it makes sense for DECL to have external
651 linkage too. That will allow template definitions to be merged,
652 for example. */
653 if (no_linkage_check (type, /*relaxed_p=*/true))
654 {
655 TREE_PUBLIC (decl) = 0;
656 DECL_INTERFACE_KNOWN (decl) = 1;
657 }
658 else
659 TREE_PUBLIC (decl) = 1;
660 }
661
662 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
663 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
664 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
665
666 static tree
667 build_vtable (tree class_type, tree name, tree vtable_type)
668 {
669 tree decl;
670
671 decl = build_lang_decl (VAR_DECL, name, vtable_type);
672 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
673 now to avoid confusion in mangle_decl. */
674 SET_DECL_ASSEMBLER_NAME (decl, name);
675 DECL_CONTEXT (decl) = class_type;
676 DECL_ARTIFICIAL (decl) = 1;
677 TREE_STATIC (decl) = 1;
678 TREE_READONLY (decl) = 1;
679 DECL_VIRTUAL_P (decl) = 1;
680 DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN;
681 DECL_VTABLE_OR_VTT_P (decl) = 1;
682 /* At one time the vtable info was grabbed 2 words at a time. This
683 fails on sparc unless you have 8-byte alignment. (tiemann) */
684 DECL_ALIGN (decl) = MAX (TYPE_ALIGN (double_type_node),
685 DECL_ALIGN (decl));
686 set_linkage_according_to_type (class_type, decl);
687 /* The vtable has not been defined -- yet. */
688 DECL_EXTERNAL (decl) = 1;
689 DECL_NOT_REALLY_EXTERN (decl) = 1;
690
691 /* Mark the VAR_DECL node representing the vtable itself as a
692 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
693 is rather important that such things be ignored because any
694 effort to actually generate DWARF for them will run into
695 trouble when/if we encounter code like:
696
697 #pragma interface
698 struct S { virtual void member (); };
699
700 because the artificial declaration of the vtable itself (as
701 manufactured by the g++ front end) will say that the vtable is
702 a static member of `S' but only *after* the debug output for
703 the definition of `S' has already been output. This causes
704 grief because the DWARF entry for the definition of the vtable
705 will try to refer back to an earlier *declaration* of the
706 vtable as a static member of `S' and there won't be one. We
707 might be able to arrange to have the "vtable static member"
708 attached to the member list for `S' before the debug info for
709 `S' get written (which would solve the problem) but that would
710 require more intrusive changes to the g++ front end. */
711 DECL_IGNORED_P (decl) = 1;
712
713 return decl;
714 }
715
716 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
717 or even complete. If this does not exist, create it. If COMPLETE is
718 nonzero, then complete the definition of it -- that will render it
719 impossible to actually build the vtable, but is useful to get at those
720 which are known to exist in the runtime. */
721
722 tree
723 get_vtable_decl (tree type, int complete)
724 {
725 tree decl;
726
727 if (CLASSTYPE_VTABLES (type))
728 return CLASSTYPE_VTABLES (type);
729
730 decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
731 CLASSTYPE_VTABLES (type) = decl;
732
733 if (complete)
734 {
735 DECL_EXTERNAL (decl) = 1;
736 cp_finish_decl (decl, NULL_TREE, NULL_TREE, 0);
737 }
738
739 return decl;
740 }
741
742 /* Build the primary virtual function table for TYPE. If BINFO is
743 non-NULL, build the vtable starting with the initial approximation
744 that it is the same as the one which is the head of the association
745 list. Returns a nonzero value if a new vtable is actually
746 created. */
747
748 static int
749 build_primary_vtable (tree binfo, tree type)
750 {
751 tree decl;
752 tree virtuals;
753
754 decl = get_vtable_decl (type, /*complete=*/0);
755
756 if (binfo)
757 {
758 if (BINFO_NEW_VTABLE_MARKED (binfo))
759 /* We have already created a vtable for this base, so there's
760 no need to do it again. */
761 return 0;
762
763 virtuals = copy_list (BINFO_VIRTUALS (binfo));
764 TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
765 DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
766 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
767 }
768 else
769 {
770 gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
771 virtuals = NULL_TREE;
772 }
773
774 #ifdef GATHER_STATISTICS
775 n_vtables += 1;
776 n_vtable_elems += list_length (virtuals);
777 #endif
778
779 /* Initialize the association list for this type, based
780 on our first approximation. */
781 BINFO_VTABLE (TYPE_BINFO (type)) = decl;
782 BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
783 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
784 return 1;
785 }
786
787 /* Give BINFO a new virtual function table which is initialized
788 with a skeleton-copy of its original initialization. The only
789 entry that changes is the `delta' entry, so we can really
790 share a lot of structure.
791
792 FOR_TYPE is the most derived type which caused this table to
793 be needed.
794
795 Returns nonzero if we haven't met BINFO before.
796
797 The order in which vtables are built (by calling this function) for
798 an object must remain the same, otherwise a binary incompatibility
799 can result. */
800
801 static int
802 build_secondary_vtable (tree binfo)
803 {
804 if (BINFO_NEW_VTABLE_MARKED (binfo))
805 /* We already created a vtable for this base. There's no need to
806 do it again. */
807 return 0;
808
809 /* Remember that we've created a vtable for this BINFO, so that we
810 don't try to do so again. */
811 SET_BINFO_NEW_VTABLE_MARKED (binfo);
812
813 /* Make fresh virtual list, so we can smash it later. */
814 BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
815
816 /* Secondary vtables are laid out as part of the same structure as
817 the primary vtable. */
818 BINFO_VTABLE (binfo) = NULL_TREE;
819 return 1;
820 }
821
822 /* Create a new vtable for BINFO which is the hierarchy dominated by
823 T. Return nonzero if we actually created a new vtable. */
824
825 static int
826 make_new_vtable (tree t, tree binfo)
827 {
828 if (binfo == TYPE_BINFO (t))
829 /* In this case, it is *type*'s vtable we are modifying. We start
830 with the approximation that its vtable is that of the
831 immediate base class. */
832 return build_primary_vtable (binfo, t);
833 else
834 /* This is our very own copy of `basetype' to play with. Later,
835 we will fill in all the virtual functions that override the
836 virtual functions in these base classes which are not defined
837 by the current type. */
838 return build_secondary_vtable (binfo);
839 }
840
841 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
842 (which is in the hierarchy dominated by T) list FNDECL as its
843 BV_FN. DELTA is the required constant adjustment from the `this'
844 pointer where the vtable entry appears to the `this' required when
845 the function is actually called. */
846
847 static void
848 modify_vtable_entry (tree t,
849 tree binfo,
850 tree fndecl,
851 tree delta,
852 tree *virtuals)
853 {
854 tree v;
855
856 v = *virtuals;
857
858 if (fndecl != BV_FN (v)
859 || !tree_int_cst_equal (delta, BV_DELTA (v)))
860 {
861 /* We need a new vtable for BINFO. */
862 if (make_new_vtable (t, binfo))
863 {
864 /* If we really did make a new vtable, we also made a copy
865 of the BINFO_VIRTUALS list. Now, we have to find the
866 corresponding entry in that list. */
867 *virtuals = BINFO_VIRTUALS (binfo);
868 while (BV_FN (*virtuals) != BV_FN (v))
869 *virtuals = TREE_CHAIN (*virtuals);
870 v = *virtuals;
871 }
872
873 BV_DELTA (v) = delta;
874 BV_VCALL_INDEX (v) = NULL_TREE;
875 BV_FN (v) = fndecl;
876 }
877 }
878
879 \f
880 /* Add method METHOD to class TYPE. */
881
882 void
883 add_method (tree type, tree method)
884 {
885 int using;
886 unsigned slot;
887 tree overload;
888 bool template_conv_p = false;
889 bool conv_p;
890 VEC(tree) *method_vec;
891 bool complete_p;
892 bool insert_p = false;
893 tree current_fns;
894
895 if (method == error_mark_node)
896 return;
897
898 complete_p = COMPLETE_TYPE_P (type);
899 using = (DECL_CONTEXT (method) != type);
900 conv_p = DECL_CONV_FN_P (method);
901 if (conv_p)
902 template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
903 && DECL_TEMPLATE_CONV_FN_P (method));
904
905 method_vec = CLASSTYPE_METHOD_VEC (type);
906 if (!method_vec)
907 {
908 /* Make a new method vector. We start with 8 entries. We must
909 allocate at least two (for constructors and destructors), and
910 we're going to end up with an assignment operator at some
911 point as well. */
912 method_vec = VEC_alloc (tree, 8);
913 /* Create slots for constructors and destructors. */
914 VEC_quick_push (tree, method_vec, NULL_TREE);
915 VEC_quick_push (tree, method_vec, NULL_TREE);
916 CLASSTYPE_METHOD_VEC (type) = method_vec;
917 }
918
919 /* Constructors and destructors go in special slots. */
920 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
921 slot = CLASSTYPE_CONSTRUCTOR_SLOT;
922 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
923 {
924 slot = CLASSTYPE_DESTRUCTOR_SLOT;
925
926 if (TYPE_FOR_JAVA (type))
927 {
928 if (!DECL_ARTIFICIAL (method))
929 error ("Java class %qT cannot have a destructor", type);
930 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
931 error ("Java class %qT cannot have an implicit non-trivial "
932 "destructor",
933 type);
934 }
935 }
936 else
937 {
938 tree m;
939
940 insert_p = true;
941 /* See if we already have an entry with this name. */
942 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
943 VEC_iterate (tree, method_vec, slot, m);
944 ++slot)
945 {
946 m = OVL_CURRENT (m);
947 if (template_conv_p)
948 {
949 if (TREE_CODE (m) == TEMPLATE_DECL
950 && DECL_TEMPLATE_CONV_FN_P (m))
951 insert_p = false;
952 break;
953 }
954 if (conv_p && !DECL_CONV_FN_P (m))
955 break;
956 if (DECL_NAME (m) == DECL_NAME (method))
957 {
958 insert_p = false;
959 break;
960 }
961 if (complete_p
962 && !DECL_CONV_FN_P (m)
963 && DECL_NAME (m) > DECL_NAME (method))
964 break;
965 }
966 }
967 current_fns = insert_p ? NULL_TREE : VEC_index (tree, method_vec, slot);
968
969 if (processing_template_decl)
970 /* TYPE is a template class. Don't issue any errors now; wait
971 until instantiation time to complain. */
972 ;
973 else
974 {
975 tree fns;
976
977 /* Check to see if we've already got this method. */
978 for (fns = current_fns; fns; fns = OVL_NEXT (fns))
979 {
980 tree fn = OVL_CURRENT (fns);
981 tree parms1;
982 tree parms2;
983 bool same = 1;
984
985 if (TREE_CODE (fn) != TREE_CODE (method))
986 continue;
987
988 /* [over.load] Member function declarations with the
989 same name and the same parameter types cannot be
990 overloaded if any of them is a static member
991 function declaration.
992
993 [namespace.udecl] When a using-declaration brings names
994 from a base class into a derived class scope, member
995 functions in the derived class override and/or hide member
996 functions with the same name and parameter types in a base
997 class (rather than conflicting). */
998 parms1 = TYPE_ARG_TYPES (TREE_TYPE (fn));
999 parms2 = TYPE_ARG_TYPES (TREE_TYPE (method));
1000
1001 /* Compare the quals on the 'this' parm. Don't compare
1002 the whole types, as used functions are treated as
1003 coming from the using class in overload resolution. */
1004 if (! DECL_STATIC_FUNCTION_P (fn)
1005 && ! DECL_STATIC_FUNCTION_P (method)
1006 && (TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms1)))
1007 != TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms2)))))
1008 same = 0;
1009
1010 /* For templates, the template parms must be identical. */
1011 if (TREE_CODE (fn) == TEMPLATE_DECL
1012 && !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
1013 DECL_TEMPLATE_PARMS (method)))
1014 same = 0;
1015
1016 if (! DECL_STATIC_FUNCTION_P (fn))
1017 parms1 = TREE_CHAIN (parms1);
1018 if (! DECL_STATIC_FUNCTION_P (method))
1019 parms2 = TREE_CHAIN (parms2);
1020
1021 if (same && compparms (parms1, parms2)
1022 && (!DECL_CONV_FN_P (fn)
1023 || same_type_p (TREE_TYPE (TREE_TYPE (fn)),
1024 TREE_TYPE (TREE_TYPE (method)))))
1025 {
1026 if (using && DECL_CONTEXT (fn) == type)
1027 /* Defer to the local function. */
1028 return;
1029 else
1030 {
1031 cp_error_at ("%q#D and %q#D cannot be overloaded",
1032 method, fn);
1033
1034 /* We don't call duplicate_decls here to merge
1035 the declarations because that will confuse
1036 things if the methods have inline
1037 definitions. In particular, we will crash
1038 while processing the definitions. */
1039 return;
1040 }
1041 }
1042 }
1043 }
1044
1045 /* Add the new binding. */
1046 overload = build_overload (method, current_fns);
1047
1048 if (!conv_p && slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p)
1049 push_class_level_binding (DECL_NAME (method), overload);
1050
1051 if (insert_p)
1052 {
1053 /* We only expect to add few methods in the COMPLETE_P case, so
1054 just make room for one more method in that case. */
1055 if (VEC_reserve (tree, method_vec, complete_p ? 1 : -1))
1056 CLASSTYPE_METHOD_VEC (type) = method_vec;
1057 if (slot == VEC_length (tree, method_vec))
1058 VEC_quick_push (tree, method_vec, overload);
1059 else
1060 VEC_quick_insert (tree, method_vec, slot, overload);
1061 }
1062 else
1063 /* Replace the current slot. */
1064 VEC_replace (tree, method_vec, slot, overload);
1065 }
1066
1067 /* Subroutines of finish_struct. */
1068
1069 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1070 legit, otherwise return 0. */
1071
1072 static int
1073 alter_access (tree t, tree fdecl, tree access)
1074 {
1075 tree elem;
1076
1077 if (!DECL_LANG_SPECIFIC (fdecl))
1078 retrofit_lang_decl (fdecl);
1079
1080 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));
1081
1082 elem = purpose_member (t, DECL_ACCESS (fdecl));
1083 if (elem)
1084 {
1085 if (TREE_VALUE (elem) != access)
1086 {
1087 if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
1088 cp_error_at ("conflicting access specifications for method"
1089 " %qD, ignored", TREE_TYPE (fdecl));
1090 else
1091 error ("conflicting access specifications for field %qE, ignored",
1092 DECL_NAME (fdecl));
1093 }
1094 else
1095 {
1096 /* They're changing the access to the same thing they changed
1097 it to before. That's OK. */
1098 ;
1099 }
1100 }
1101 else
1102 {
1103 perform_or_defer_access_check (TYPE_BINFO (t), fdecl);
1104 DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
1105 return 1;
1106 }
1107 return 0;
1108 }
1109
1110 /* Process the USING_DECL, which is a member of T. */
1111
1112 static void
1113 handle_using_decl (tree using_decl, tree t)
1114 {
1115 tree ctype = DECL_INITIAL (using_decl);
1116 tree name = DECL_NAME (using_decl);
1117 tree access
1118 = TREE_PRIVATE (using_decl) ? access_private_node
1119 : TREE_PROTECTED (using_decl) ? access_protected_node
1120 : access_public_node;
1121 tree fdecl, binfo;
1122 tree flist = NULL_TREE;
1123 tree old_value;
1124
1125 if (ctype == error_mark_node)
1126 return;
1127
1128 binfo = lookup_base (t, ctype, ba_any, NULL);
1129 if (! binfo)
1130 {
1131 location_t saved_loc = input_location;
1132
1133 input_location = DECL_SOURCE_LOCATION (using_decl);
1134 error_not_base_type (ctype, t);
1135 input_location = saved_loc;
1136 return;
1137 }
1138
1139 if (constructor_name_p (name, ctype))
1140 {
1141 cp_error_at ("%qD names constructor", using_decl);
1142 return;
1143 }
1144 if (constructor_name_p (name, t))
1145 {
1146 cp_error_at ("%qD invalid in %qT", using_decl, t);
1147 return;
1148 }
1149
1150 fdecl = lookup_member (binfo, name, 0, false);
1151
1152 if (!fdecl)
1153 {
1154 cp_error_at ("no members matching %qD in %q#T", using_decl, ctype);
1155 return;
1156 }
1157
1158 if (BASELINK_P (fdecl))
1159 /* Ignore base type this came from. */
1160 fdecl = BASELINK_FUNCTIONS (fdecl);
1161
1162 old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false);
1163 if (old_value)
1164 {
1165 if (is_overloaded_fn (old_value))
1166 old_value = OVL_CURRENT (old_value);
1167
1168 if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
1169 /* OK */;
1170 else
1171 old_value = NULL_TREE;
1172 }
1173
1174 if (is_overloaded_fn (fdecl))
1175 flist = fdecl;
1176
1177 if (! old_value)
1178 ;
1179 else if (is_overloaded_fn (old_value))
1180 {
1181 if (flist)
1182 /* It's OK to use functions from a base when there are functions with
1183 the same name already present in the current class. */;
1184 else
1185 {
1186 cp_error_at ("%qD invalid in %q#T", using_decl, t);
1187 cp_error_at (" because of local method %q#D with same name",
1188 OVL_CURRENT (old_value));
1189 return;
1190 }
1191 }
1192 else if (!DECL_ARTIFICIAL (old_value))
1193 {
1194 cp_error_at ("%qD invalid in %q#T", using_decl, t);
1195 cp_error_at (" because of local member %q#D with same name", old_value);
1196 return;
1197 }
1198
1199 /* Make type T see field decl FDECL with access ACCESS. */
1200 if (flist)
1201 for (; flist; flist = OVL_NEXT (flist))
1202 {
1203 add_method (t, OVL_CURRENT (flist));
1204 alter_access (t, OVL_CURRENT (flist), access);
1205 }
1206 else
1207 alter_access (t, fdecl, access);
1208 }
1209 \f
1210 /* Run through the base classes of T, updating
1211 CANT_HAVE_DEFAULT_CTOR_P, CANT_HAVE_CONST_CTOR_P, and
1212 NO_CONST_ASN_REF_P. Also set flag bits in T based on properties of
1213 the bases. */
1214
1215 static void
1216 check_bases (tree t,
1217 int* cant_have_default_ctor_p,
1218 int* cant_have_const_ctor_p,
1219 int* no_const_asn_ref_p)
1220 {
1221 int i;
1222 int seen_non_virtual_nearly_empty_base_p;
1223 tree base_binfo;
1224 tree binfo;
1225
1226 seen_non_virtual_nearly_empty_base_p = 0;
1227
1228 for (binfo = TYPE_BINFO (t), i = 0;
1229 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1230 {
1231 tree basetype = TREE_TYPE (base_binfo);
1232
1233 gcc_assert (COMPLETE_TYPE_P (basetype));
1234
1235 /* Effective C++ rule 14. We only need to check TYPE_POLYMORPHIC_P
1236 here because the case of virtual functions but non-virtual
1237 dtor is handled in finish_struct_1. */
1238 if (warn_ecpp && ! TYPE_POLYMORPHIC_P (basetype))
1239 warning ("base class %q#T has a non-virtual destructor", basetype);
1240
1241 /* If the base class doesn't have copy constructors or
1242 assignment operators that take const references, then the
1243 derived class cannot have such a member automatically
1244 generated. */
1245 if (! TYPE_HAS_CONST_INIT_REF (basetype))
1246 *cant_have_const_ctor_p = 1;
1247 if (TYPE_HAS_ASSIGN_REF (basetype)
1248 && !TYPE_HAS_CONST_ASSIGN_REF (basetype))
1249 *no_const_asn_ref_p = 1;
1250 /* Similarly, if the base class doesn't have a default
1251 constructor, then the derived class won't have an
1252 automatically generated default constructor. */
1253 if (TYPE_HAS_CONSTRUCTOR (basetype)
1254 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (basetype))
1255 {
1256 *cant_have_default_ctor_p = 1;
1257 if (! TYPE_HAS_CONSTRUCTOR (t))
1258 pedwarn ("base %qT with only non-default constructor in class "
1259 "without a constructor",
1260 basetype);
1261 }
1262
1263 if (BINFO_VIRTUAL_P (base_binfo))
1264 /* A virtual base does not effect nearly emptiness. */
1265 ;
1266 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
1267 {
1268 if (seen_non_virtual_nearly_empty_base_p)
1269 /* And if there is more than one nearly empty base, then the
1270 derived class is not nearly empty either. */
1271 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1272 else
1273 /* Remember we've seen one. */
1274 seen_non_virtual_nearly_empty_base_p = 1;
1275 }
1276 else if (!is_empty_class (basetype))
1277 /* If the base class is not empty or nearly empty, then this
1278 class cannot be nearly empty. */
1279 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1280
1281 /* A lot of properties from the bases also apply to the derived
1282 class. */
1283 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
1284 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1285 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
1286 TYPE_HAS_COMPLEX_ASSIGN_REF (t)
1287 |= TYPE_HAS_COMPLEX_ASSIGN_REF (basetype);
1288 TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_HAS_COMPLEX_INIT_REF (basetype);
1289 TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
1290 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
1291 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
1292 }
1293 }
1294
1295 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1296 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1297 that have had a nearly-empty virtual primary base stolen by some
1298 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1299 T. */
1300
1301 static void
1302 determine_primary_bases (tree t)
1303 {
1304 unsigned i;
1305 tree primary = NULL_TREE;
1306 tree type_binfo = TYPE_BINFO (t);
1307 tree base_binfo;
1308
1309 /* Determine the primary bases of our bases. */
1310 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1311 base_binfo = TREE_CHAIN (base_binfo))
1312 {
1313 tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));
1314
1315 /* See if we're the non-virtual primary of our inheritance
1316 chain. */
1317 if (!BINFO_VIRTUAL_P (base_binfo))
1318 {
1319 tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
1320 tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));
1321
1322 if (parent_primary
1323 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
1324 BINFO_TYPE (parent_primary)))
1325 /* We are the primary binfo. */
1326 BINFO_PRIMARY_P (base_binfo) = 1;
1327 }
1328 /* Determine if we have a virtual primary base, and mark it so.
1329 */
1330 if (primary && BINFO_VIRTUAL_P (primary))
1331 {
1332 tree this_primary = copied_binfo (primary, base_binfo);
1333
1334 if (BINFO_PRIMARY_P (this_primary))
1335 /* Someone already claimed this base. */
1336 BINFO_LOST_PRIMARY_P (base_binfo) = 1;
1337 else
1338 {
1339 tree delta;
1340
1341 BINFO_PRIMARY_P (this_primary) = 1;
1342 BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;
1343
1344 /* A virtual binfo might have been copied from within
1345 another hierarchy. As we're about to use it as a
1346 primary base, make sure the offsets match. */
1347 delta = size_diffop (convert (ssizetype,
1348 BINFO_OFFSET (base_binfo)),
1349 convert (ssizetype,
1350 BINFO_OFFSET (this_primary)));
1351
1352 propagate_binfo_offsets (this_primary, delta);
1353 }
1354 }
1355 }
1356
1357 /* First look for a dynamic direct non-virtual base. */
1358 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
1359 {
1360 tree basetype = BINFO_TYPE (base_binfo);
1361
1362 if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
1363 {
1364 primary = base_binfo;
1365 goto found;
1366 }
1367 }
1368
1369 /* A "nearly-empty" virtual base class can be the primary base
1370 class, if no non-virtual polymorphic base can be found. Look for
1371 a nearly-empty virtual dynamic base that is not already a primary
1372 base of something in the hierarchy. If there is no such base,
1373 just pick the first nearly-empty virtual base. */
1374
1375 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1376 base_binfo = TREE_CHAIN (base_binfo))
1377 if (BINFO_VIRTUAL_P (base_binfo)
1378 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
1379 {
1380 if (!BINFO_PRIMARY_P (base_binfo))
1381 {
1382 /* Found one that is not primary. */
1383 primary = base_binfo;
1384 goto found;
1385 }
1386 else if (!primary)
1387 /* Remember the first candidate. */
1388 primary = base_binfo;
1389 }
1390
1391 found:
1392 /* If we've got a primary base, use it. */
1393 if (primary)
1394 {
1395 tree basetype = BINFO_TYPE (primary);
1396
1397 CLASSTYPE_PRIMARY_BINFO (t) = primary;
1398 if (BINFO_PRIMARY_P (primary))
1399 /* We are stealing a primary base. */
1400 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
1401 BINFO_PRIMARY_P (primary) = 1;
1402 if (BINFO_VIRTUAL_P (primary))
1403 {
1404 tree delta;
1405
1406 BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
1407 /* A virtual binfo might have been copied from within
1408 another hierarchy. As we're about to use it as a primary
1409 base, make sure the offsets match. */
1410 delta = size_diffop (ssize_int (0),
1411 convert (ssizetype, BINFO_OFFSET (primary)));
1412
1413 propagate_binfo_offsets (primary, delta);
1414 }
1415
1416 primary = TYPE_BINFO (basetype);
1417
1418 TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
1419 BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
1420 BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
1421 }
1422 }
1423 \f
1424 /* Set memoizing fields and bits of T (and its variants) for later
1425 use. */
1426
1427 static void
1428 finish_struct_bits (tree t)
1429 {
1430 tree variants;
1431
1432 /* Fix up variants (if any). */
1433 for (variants = TYPE_NEXT_VARIANT (t);
1434 variants;
1435 variants = TYPE_NEXT_VARIANT (variants))
1436 {
1437 /* These fields are in the _TYPE part of the node, not in
1438 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1439 TYPE_HAS_CONSTRUCTOR (variants) = TYPE_HAS_CONSTRUCTOR (t);
1440 TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
1441 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
1442 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
1443
1444 TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
1445
1446 TYPE_BINFO (variants) = TYPE_BINFO (t);
1447
1448 /* Copy whatever these are holding today. */
1449 TYPE_VFIELD (variants) = TYPE_VFIELD (t);
1450 TYPE_METHODS (variants) = TYPE_METHODS (t);
1451 TYPE_FIELDS (variants) = TYPE_FIELDS (t);
1452 TYPE_SIZE (variants) = TYPE_SIZE (t);
1453 TYPE_SIZE_UNIT (variants) = TYPE_SIZE_UNIT (t);
1454 }
1455
1456 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
1457 /* For a class w/o baseclasses, 'finish_struct' has set
1458 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
1459 Similarly for a class whose base classes do not have vtables.
1460 When neither of these is true, we might have removed abstract
1461 virtuals (by providing a definition), added some (by declaring
1462 new ones), or redeclared ones from a base class. We need to
1463 recalculate what's really an abstract virtual at this point (by
1464 looking in the vtables). */
1465 get_pure_virtuals (t);
1466
1467 /* If this type has a copy constructor or a destructor, force its
1468 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
1469 nonzero. This will cause it to be passed by invisible reference
1470 and prevent it from being returned in a register. */
1471 if (! TYPE_HAS_TRIVIAL_INIT_REF (t) || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
1472 {
1473 tree variants;
1474 DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
1475 for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
1476 {
1477 TYPE_MODE (variants) = BLKmode;
1478 TREE_ADDRESSABLE (variants) = 1;
1479 }
1480 }
1481 }
1482
1483 /* Issue warnings about T having private constructors, but no friends,
1484 and so forth.
1485
1486 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
1487 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
1488 non-private static member functions. */
1489
1490 static void
1491 maybe_warn_about_overly_private_class (tree t)
1492 {
1493 int has_member_fn = 0;
1494 int has_nonprivate_method = 0;
1495 tree fn;
1496
1497 if (!warn_ctor_dtor_privacy
1498 /* If the class has friends, those entities might create and
1499 access instances, so we should not warn. */
1500 || (CLASSTYPE_FRIEND_CLASSES (t)
1501 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1502 /* We will have warned when the template was declared; there's
1503 no need to warn on every instantiation. */
1504 || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
1505 /* There's no reason to even consider warning about this
1506 class. */
1507 return;
1508
1509 /* We only issue one warning, if more than one applies, because
1510 otherwise, on code like:
1511
1512 class A {
1513 // Oops - forgot `public:'
1514 A();
1515 A(const A&);
1516 ~A();
1517 };
1518
1519 we warn several times about essentially the same problem. */
1520
1521 /* Check to see if all (non-constructor, non-destructor) member
1522 functions are private. (Since there are no friends or
1523 non-private statics, we can't ever call any of the private member
1524 functions.) */
1525 for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn))
1526 /* We're not interested in compiler-generated methods; they don't
1527 provide any way to call private members. */
1528 if (!DECL_ARTIFICIAL (fn))
1529 {
1530 if (!TREE_PRIVATE (fn))
1531 {
1532 if (DECL_STATIC_FUNCTION_P (fn))
1533 /* A non-private static member function is just like a
1534 friend; it can create and invoke private member
1535 functions, and be accessed without a class
1536 instance. */
1537 return;
1538
1539 has_nonprivate_method = 1;
1540 /* Keep searching for a static member function. */
1541 }
1542 else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
1543 has_member_fn = 1;
1544 }
1545
1546 if (!has_nonprivate_method && has_member_fn)
1547 {
1548 /* There are no non-private methods, and there's at least one
1549 private member function that isn't a constructor or
1550 destructor. (If all the private members are
1551 constructors/destructors we want to use the code below that
1552 issues error messages specifically referring to
1553 constructors/destructors.) */
1554 unsigned i;
1555 tree binfo = TYPE_BINFO (t);
1556
1557 for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
1558 if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
1559 {
1560 has_nonprivate_method = 1;
1561 break;
1562 }
1563 if (!has_nonprivate_method)
1564 {
1565 warning ("all member functions in class %qT are private", t);
1566 return;
1567 }
1568 }
1569
1570 /* Even if some of the member functions are non-private, the class
1571 won't be useful for much if all the constructors or destructors
1572 are private: such an object can never be created or destroyed. */
1573 fn = CLASSTYPE_DESTRUCTORS (t);
1574 if (fn && TREE_PRIVATE (fn))
1575 {
1576 warning ("%q#T only defines a private destructor and has no friends",
1577 t);
1578 return;
1579 }
1580
1581 if (TYPE_HAS_CONSTRUCTOR (t))
1582 {
1583 int nonprivate_ctor = 0;
1584
1585 /* If a non-template class does not define a copy
1586 constructor, one is defined for it, enabling it to avoid
1587 this warning. For a template class, this does not
1588 happen, and so we would normally get a warning on:
1589
1590 template <class T> class C { private: C(); };
1591
1592 To avoid this asymmetry, we check TYPE_HAS_INIT_REF. All
1593 complete non-template or fully instantiated classes have this
1594 flag set. */
1595 if (!TYPE_HAS_INIT_REF (t))
1596 nonprivate_ctor = 1;
1597 else
1598 for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn))
1599 {
1600 tree ctor = OVL_CURRENT (fn);
1601 /* Ideally, we wouldn't count copy constructors (or, in
1602 fact, any constructor that takes an argument of the
1603 class type as a parameter) because such things cannot
1604 be used to construct an instance of the class unless
1605 you already have one. But, for now at least, we're
1606 more generous. */
1607 if (! TREE_PRIVATE (ctor))
1608 {
1609 nonprivate_ctor = 1;
1610 break;
1611 }
1612 }
1613
1614 if (nonprivate_ctor == 0)
1615 {
1616 warning ("%q#T only defines private constructors and has no friends",
1617 t);
1618 return;
1619 }
1620 }
1621 }
1622
1623 static struct {
1624 gt_pointer_operator new_value;
1625 void *cookie;
1626 } resort_data;
1627
1628 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
1629
1630 static int
1631 method_name_cmp (const void* m1_p, const void* m2_p)
1632 {
1633 const tree *const m1 = m1_p;
1634 const tree *const m2 = m2_p;
1635
1636 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1637 return 0;
1638 if (*m1 == NULL_TREE)
1639 return -1;
1640 if (*m2 == NULL_TREE)
1641 return 1;
1642 if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
1643 return -1;
1644 return 1;
1645 }
1646
1647 /* This routine compares two fields like method_name_cmp but using the
1648 pointer operator in resort_field_decl_data. */
1649
1650 static int
1651 resort_method_name_cmp (const void* m1_p, const void* m2_p)
1652 {
1653 const tree *const m1 = m1_p;
1654 const tree *const m2 = m2_p;
1655 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1656 return 0;
1657 if (*m1 == NULL_TREE)
1658 return -1;
1659 if (*m2 == NULL_TREE)
1660 return 1;
1661 {
1662 tree d1 = DECL_NAME (OVL_CURRENT (*m1));
1663 tree d2 = DECL_NAME (OVL_CURRENT (*m2));
1664 resort_data.new_value (&d1, resort_data.cookie);
1665 resort_data.new_value (&d2, resort_data.cookie);
1666 if (d1 < d2)
1667 return -1;
1668 }
1669 return 1;
1670 }
1671
1672 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
1673
1674 void
1675 resort_type_method_vec (void* obj,
1676 void* orig_obj ATTRIBUTE_UNUSED ,
1677 gt_pointer_operator new_value,
1678 void* cookie)
1679 {
1680 VEC(tree) *method_vec = (VEC(tree) *) obj;
1681 int len = VEC_length (tree, method_vec);
1682 size_t slot;
1683 tree fn;
1684
1685 /* The type conversion ops have to live at the front of the vec, so we
1686 can't sort them. */
1687 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1688 VEC_iterate (tree, method_vec, slot, fn);
1689 ++slot)
1690 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1691 break;
1692
1693 if (len - slot > 1)
1694 {
1695 resort_data.new_value = new_value;
1696 resort_data.cookie = cookie;
1697 qsort (VEC_address (tree, method_vec) + slot, len - slot, sizeof (tree),
1698 resort_method_name_cmp);
1699 }
1700 }
1701
1702 /* Warn about duplicate methods in fn_fields.
1703
1704 Sort methods that are not special (i.e., constructors, destructors,
1705 and type conversion operators) so that we can find them faster in
1706 search. */
1707
1708 static void
1709 finish_struct_methods (tree t)
1710 {
1711 tree fn_fields;
1712 VEC(tree) *method_vec;
1713 int slot, len;
1714
1715 method_vec = CLASSTYPE_METHOD_VEC (t);
1716 if (!method_vec)
1717 return;
1718
1719 len = VEC_length (tree, method_vec);
1720
1721 /* Clear DECL_IN_AGGR_P for all functions. */
1722 for (fn_fields = TYPE_METHODS (t); fn_fields;
1723 fn_fields = TREE_CHAIN (fn_fields))
1724 DECL_IN_AGGR_P (fn_fields) = 0;
1725
1726 /* Issue warnings about private constructors and such. If there are
1727 no methods, then some public defaults are generated. */
1728 maybe_warn_about_overly_private_class (t);
1729
1730 /* The type conversion ops have to live at the front of the vec, so we
1731 can't sort them. */
1732 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1733 VEC_iterate (tree, method_vec, slot, fn_fields);
1734 ++slot)
1735 if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields)))
1736 break;
1737 if (len - slot > 1)
1738 qsort (VEC_address (tree, method_vec) + slot,
1739 len-slot, sizeof (tree), method_name_cmp);
1740 }
1741
1742 /* Make BINFO's vtable have N entries, including RTTI entries,
1743 vbase and vcall offsets, etc. Set its type and call the backend
1744 to lay it out. */
1745
1746 static void
1747 layout_vtable_decl (tree binfo, int n)
1748 {
1749 tree atype;
1750 tree vtable;
1751
1752 atype = build_cplus_array_type (vtable_entry_type,
1753 build_index_type (size_int (n - 1)));
1754 layout_type (atype);
1755
1756 /* We may have to grow the vtable. */
1757 vtable = get_vtbl_decl_for_binfo (binfo);
1758 if (!same_type_p (TREE_TYPE (vtable), atype))
1759 {
1760 TREE_TYPE (vtable) = atype;
1761 DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
1762 layout_decl (vtable, 0);
1763 }
1764 }
1765
1766 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
1767 have the same signature. */
1768
1769 int
1770 same_signature_p (tree fndecl, tree base_fndecl)
1771 {
1772 /* One destructor overrides another if they are the same kind of
1773 destructor. */
1774 if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
1775 && special_function_p (base_fndecl) == special_function_p (fndecl))
1776 return 1;
1777 /* But a non-destructor never overrides a destructor, nor vice
1778 versa, nor do different kinds of destructors override
1779 one-another. For example, a complete object destructor does not
1780 override a deleting destructor. */
1781 if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
1782 return 0;
1783
1784 if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
1785 || (DECL_CONV_FN_P (fndecl)
1786 && DECL_CONV_FN_P (base_fndecl)
1787 && same_type_p (DECL_CONV_FN_TYPE (fndecl),
1788 DECL_CONV_FN_TYPE (base_fndecl))))
1789 {
1790 tree types, base_types;
1791 types = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1792 base_types = TYPE_ARG_TYPES (TREE_TYPE (base_fndecl));
1793 if ((TYPE_QUALS (TREE_TYPE (TREE_VALUE (base_types)))
1794 == TYPE_QUALS (TREE_TYPE (TREE_VALUE (types))))
1795 && compparms (TREE_CHAIN (base_types), TREE_CHAIN (types)))
1796 return 1;
1797 }
1798 return 0;
1799 }
1800
1801 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
1802 subobject. */
1803
1804 static bool
1805 base_derived_from (tree derived, tree base)
1806 {
1807 tree probe;
1808
1809 for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
1810 {
1811 if (probe == derived)
1812 return true;
1813 else if (BINFO_VIRTUAL_P (probe))
1814 /* If we meet a virtual base, we can't follow the inheritance
1815 any more. See if the complete type of DERIVED contains
1816 such a virtual base. */
1817 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
1818 != NULL_TREE);
1819 }
1820 return false;
1821 }
1822
1823 typedef struct find_final_overrider_data_s {
1824 /* The function for which we are trying to find a final overrider. */
1825 tree fn;
1826 /* The base class in which the function was declared. */
1827 tree declaring_base;
1828 /* The candidate overriders. */
1829 tree candidates;
1830 /* Path to most derived. */
1831 VEC (tree) *path;
1832 } find_final_overrider_data;
1833
1834 /* Add the overrider along the current path to FFOD->CANDIDATES.
1835 Returns true if an overrider was found; false otherwise. */
1836
1837 static bool
1838 dfs_find_final_overrider_1 (tree binfo,
1839 find_final_overrider_data *ffod,
1840 unsigned depth)
1841 {
1842 tree method;
1843
1844 /* If BINFO is not the most derived type, try a more derived class.
1845 A definition there will overrider a definition here. */
1846 if (depth)
1847 {
1848 depth--;
1849 if (dfs_find_final_overrider_1
1850 (VEC_index (tree, ffod->path, depth), ffod, depth))
1851 return true;
1852 }
1853
1854 method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
1855 if (method)
1856 {
1857 tree *candidate = &ffod->candidates;
1858
1859 /* Remove any candidates overridden by this new function. */
1860 while (*candidate)
1861 {
1862 /* If *CANDIDATE overrides METHOD, then METHOD
1863 cannot override anything else on the list. */
1864 if (base_derived_from (TREE_VALUE (*candidate), binfo))
1865 return true;
1866 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
1867 if (base_derived_from (binfo, TREE_VALUE (*candidate)))
1868 *candidate = TREE_CHAIN (*candidate);
1869 else
1870 candidate = &TREE_CHAIN (*candidate);
1871 }
1872
1873 /* Add the new function. */
1874 ffod->candidates = tree_cons (method, binfo, ffod->candidates);
1875 return true;
1876 }
1877
1878 return false;
1879 }
1880
1881 /* Called from find_final_overrider via dfs_walk. */
1882
1883 static tree
1884 dfs_find_final_overrider_pre (tree binfo, void *data)
1885 {
1886 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
1887
1888 if (binfo == ffod->declaring_base)
1889 dfs_find_final_overrider_1 (binfo, ffod, VEC_length (tree, ffod->path));
1890 VEC_safe_push (tree, ffod->path, binfo);
1891
1892 return NULL_TREE;
1893 }
1894
1895 static tree
1896 dfs_find_final_overrider_post (tree binfo ATTRIBUTE_UNUSED, void *data)
1897 {
1898 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
1899 VEC_pop (tree, ffod->path);
1900
1901 return NULL_TREE;
1902 }
1903
1904 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
1905 FN and whose TREE_VALUE is the binfo for the base where the
1906 overriding occurs. BINFO (in the hierarchy dominated by the binfo
1907 DERIVED) is the base object in which FN is declared. */
1908
1909 static tree
1910 find_final_overrider (tree derived, tree binfo, tree fn)
1911 {
1912 find_final_overrider_data ffod;
1913
1914 /* Getting this right is a little tricky. This is valid:
1915
1916 struct S { virtual void f (); };
1917 struct T { virtual void f (); };
1918 struct U : public S, public T { };
1919
1920 even though calling `f' in `U' is ambiguous. But,
1921
1922 struct R { virtual void f(); };
1923 struct S : virtual public R { virtual void f (); };
1924 struct T : virtual public R { virtual void f (); };
1925 struct U : public S, public T { };
1926
1927 is not -- there's no way to decide whether to put `S::f' or
1928 `T::f' in the vtable for `R'.
1929
1930 The solution is to look at all paths to BINFO. If we find
1931 different overriders along any two, then there is a problem. */
1932 if (DECL_THUNK_P (fn))
1933 fn = THUNK_TARGET (fn);
1934
1935 /* Determine the depth of the hierarchy. */
1936 ffod.fn = fn;
1937 ffod.declaring_base = binfo;
1938 ffod.candidates = NULL_TREE;
1939 ffod.path = VEC_alloc (tree, 30);
1940
1941 dfs_walk_all (derived, dfs_find_final_overrider_pre,
1942 dfs_find_final_overrider_post, &ffod);
1943
1944 VEC_free (tree, ffod.path);
1945
1946 /* If there was no winner, issue an error message. */
1947 if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
1948 {
1949 error ("no unique final overrider for %qD in %qT", fn,
1950 BINFO_TYPE (derived));
1951 return error_mark_node;
1952 }
1953
1954 return ffod.candidates;
1955 }
1956
1957 /* Return the index of the vcall offset for FN when TYPE is used as a
1958 virtual base. */
1959
1960 static tree
1961 get_vcall_index (tree fn, tree type)
1962 {
1963 VEC (tree_pair_s) *indices = CLASSTYPE_VCALL_INDICES (type);
1964 tree_pair_p p;
1965 unsigned ix;
1966
1967 for (ix = 0; VEC_iterate (tree_pair_s, indices, ix, p); ix++)
1968 if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
1969 || same_signature_p (fn, p->purpose))
1970 return p->value;
1971
1972 /* There should always be an appropriate index. */
1973 gcc_unreachable ();
1974 }
1975
1976 /* Update an entry in the vtable for BINFO, which is in the hierarchy
1977 dominated by T. FN has been overridden in BINFO; VIRTUALS points to the
1978 corresponding position in the BINFO_VIRTUALS list. */
1979
1980 static void
1981 update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
1982 unsigned ix)
1983 {
1984 tree b;
1985 tree overrider;
1986 tree delta;
1987 tree virtual_base;
1988 tree first_defn;
1989 tree overrider_fn, overrider_target;
1990 tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
1991 tree over_return, base_return;
1992 bool lost = false;
1993
1994 /* Find the nearest primary base (possibly binfo itself) which defines
1995 this function; this is the class the caller will convert to when
1996 calling FN through BINFO. */
1997 for (b = binfo; ; b = get_primary_binfo (b))
1998 {
1999 gcc_assert (b);
2000 if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
2001 break;
2002
2003 /* The nearest definition is from a lost primary. */
2004 if (BINFO_LOST_PRIMARY_P (b))
2005 lost = true;
2006 }
2007 first_defn = b;
2008
2009 /* Find the final overrider. */
2010 overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
2011 if (overrider == error_mark_node)
2012 return;
2013 overrider_target = overrider_fn = TREE_PURPOSE (overrider);
2014
2015 /* Check for adjusting covariant return types. */
2016 over_return = TREE_TYPE (TREE_TYPE (overrider_target));
2017 base_return = TREE_TYPE (TREE_TYPE (target_fn));
2018
2019 if (POINTER_TYPE_P (over_return)
2020 && TREE_CODE (over_return) == TREE_CODE (base_return)
2021 && CLASS_TYPE_P (TREE_TYPE (over_return))
2022 && CLASS_TYPE_P (TREE_TYPE (base_return)))
2023 {
2024 /* If FN is a covariant thunk, we must figure out the adjustment
2025 to the final base FN was converting to. As OVERRIDER_TARGET might
2026 also be converting to the return type of FN, we have to
2027 combine the two conversions here. */
2028 tree fixed_offset, virtual_offset;
2029
2030 over_return = TREE_TYPE (over_return);
2031 base_return = TREE_TYPE (base_return);
2032
2033 if (DECL_THUNK_P (fn))
2034 {
2035 gcc_assert (DECL_RESULT_THUNK_P (fn));
2036 fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
2037 virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
2038 }
2039 else
2040 fixed_offset = virtual_offset = NULL_TREE;
2041
2042 if (virtual_offset)
2043 /* Find the equivalent binfo within the return type of the
2044 overriding function. We will want the vbase offset from
2045 there. */
2046 virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
2047 over_return);
2048 else if (!same_type_ignoring_top_level_qualifiers_p
2049 (over_return, base_return))
2050 {
2051 /* There was no existing virtual thunk (which takes
2052 precedence). So find the binfo of the base function's
2053 return type within the overriding function's return type.
2054 We cannot call lookup base here, because we're inside a
2055 dfs_walk, and will therefore clobber the BINFO_MARKED
2056 flags. Fortunately we know the covariancy is valid (it
2057 has already been checked), so we can just iterate along
2058 the binfos, which have been chained in inheritance graph
2059 order. Of course it is lame that we have to repeat the
2060 search here anyway -- we should really be caching pieces
2061 of the vtable and avoiding this repeated work. */
2062 tree thunk_binfo, base_binfo;
2063
2064 /* Find the base binfo within the overriding function's
2065 return type. */
2066 for (base_binfo = TYPE_BINFO (base_return),
2067 thunk_binfo = TYPE_BINFO (over_return);
2068 !SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
2069 BINFO_TYPE (base_binfo));
2070 thunk_binfo = TREE_CHAIN (thunk_binfo))
2071 continue;
2072
2073 /* See if virtual inheritance is involved. */
2074 for (virtual_offset = thunk_binfo;
2075 virtual_offset;
2076 virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
2077 if (BINFO_VIRTUAL_P (virtual_offset))
2078 break;
2079
2080 if (virtual_offset || !BINFO_OFFSET_ZEROP (thunk_binfo))
2081 {
2082 tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo));
2083
2084 if (virtual_offset)
2085 {
2086 /* We convert via virtual base. Adjust the fixed
2087 offset to be from there. */
2088 offset = size_diffop
2089 (offset, convert
2090 (ssizetype, BINFO_OFFSET (virtual_offset)));
2091 }
2092 if (fixed_offset)
2093 /* There was an existing fixed offset, this must be
2094 from the base just converted to, and the base the
2095 FN was thunking to. */
2096 fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
2097 else
2098 fixed_offset = offset;
2099 }
2100 }
2101
2102 if (fixed_offset || virtual_offset)
2103 /* Replace the overriding function with a covariant thunk. We
2104 will emit the overriding function in its own slot as
2105 well. */
2106 overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
2107 fixed_offset, virtual_offset);
2108 }
2109 else
2110 gcc_assert (!DECL_THUNK_P (fn));
2111
2112 /* Assume that we will produce a thunk that convert all the way to
2113 the final overrider, and not to an intermediate virtual base. */
2114 virtual_base = NULL_TREE;
2115
2116 /* See if we can convert to an intermediate virtual base first, and then
2117 use the vcall offset located there to finish the conversion. */
2118 for (; b; b = BINFO_INHERITANCE_CHAIN (b))
2119 {
2120 /* If we find the final overrider, then we can stop
2121 walking. */
2122 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
2123 BINFO_TYPE (TREE_VALUE (overrider))))
2124 break;
2125
2126 /* If we find a virtual base, and we haven't yet found the
2127 overrider, then there is a virtual base between the
2128 declaring base (first_defn) and the final overrider. */
2129 if (BINFO_VIRTUAL_P (b))
2130 {
2131 virtual_base = b;
2132 break;
2133 }
2134 }
2135
2136 if (overrider_fn != overrider_target && !virtual_base)
2137 {
2138 /* The ABI specifies that a covariant thunk includes a mangling
2139 for a this pointer adjustment. This-adjusting thunks that
2140 override a function from a virtual base have a vcall
2141 adjustment. When the virtual base in question is a primary
2142 virtual base, we know the adjustments are zero, (and in the
2143 non-covariant case, we would not use the thunk).
2144 Unfortunately we didn't notice this could happen, when
2145 designing the ABI and so never mandated that such a covariant
2146 thunk should be emitted. Because we must use the ABI mandated
2147 name, we must continue searching from the binfo where we
2148 found the most recent definition of the function, towards the
2149 primary binfo which first introduced the function into the
2150 vtable. If that enters a virtual base, we must use a vcall
2151 this-adjusting thunk. Bleah! */
2152 tree probe = first_defn;
2153
2154 while ((probe = get_primary_binfo (probe))
2155 && (unsigned) list_length (BINFO_VIRTUALS (probe)) > ix)
2156 if (BINFO_VIRTUAL_P (probe))
2157 virtual_base = probe;
2158
2159 if (virtual_base)
2160 /* Even if we find a virtual base, the correct delta is
2161 between the overrider and the binfo we're building a vtable
2162 for. */
2163 goto virtual_covariant;
2164 }
2165
2166 /* Compute the constant adjustment to the `this' pointer. The
2167 `this' pointer, when this function is called, will point at BINFO
2168 (or one of its primary bases, which are at the same offset). */
2169 if (virtual_base)
2170 /* The `this' pointer needs to be adjusted from the declaration to
2171 the nearest virtual base. */
2172 delta = size_diffop (convert (ssizetype, BINFO_OFFSET (virtual_base)),
2173 convert (ssizetype, BINFO_OFFSET (first_defn)));
2174 else if (lost)
2175 /* If the nearest definition is in a lost primary, we don't need an
2176 entry in our vtable. Except possibly in a constructor vtable,
2177 if we happen to get our primary back. In that case, the offset
2178 will be zero, as it will be a primary base. */
2179 delta = size_zero_node;
2180 else
2181 /* The `this' pointer needs to be adjusted from pointing to
2182 BINFO to pointing at the base where the final overrider
2183 appears. */
2184 virtual_covariant:
2185 delta = size_diffop (convert (ssizetype,
2186 BINFO_OFFSET (TREE_VALUE (overrider))),
2187 convert (ssizetype, BINFO_OFFSET (binfo)));
2188
2189 modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
2190
2191 if (virtual_base)
2192 BV_VCALL_INDEX (*virtuals)
2193 = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
2194 else
2195 BV_VCALL_INDEX (*virtuals) = NULL_TREE;
2196 }
2197
2198 /* Called from modify_all_vtables via dfs_walk. */
2199
2200 static tree
2201 dfs_modify_vtables (tree binfo, void* data)
2202 {
2203 tree t = (tree) data;
2204 tree virtuals;
2205 tree old_virtuals;
2206 unsigned ix;
2207
2208 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2209 /* A base without a vtable needs no modification, and its bases
2210 are uninteresting. */
2211 return dfs_skip_bases;
2212
2213 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
2214 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
2215 /* Don't do the primary vtable, if it's new. */
2216 return NULL_TREE;
2217
2218 if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
2219 /* There's no need to modify the vtable for a non-virtual primary
2220 base; we're not going to use that vtable anyhow. We do still
2221 need to do this for virtual primary bases, as they could become
2222 non-primary in a construction vtable. */
2223 return NULL_TREE;
2224
2225 make_new_vtable (t, binfo);
2226
2227 /* Now, go through each of the virtual functions in the virtual
2228 function table for BINFO. Find the final overrider, and update
2229 the BINFO_VIRTUALS list appropriately. */
2230 for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
2231 old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
2232 virtuals;
2233 ix++, virtuals = TREE_CHAIN (virtuals),
2234 old_virtuals = TREE_CHAIN (old_virtuals))
2235 update_vtable_entry_for_fn (t,
2236 binfo,
2237 BV_FN (old_virtuals),
2238 &virtuals, ix);
2239
2240 return NULL_TREE;
2241 }
2242
2243 /* Update all of the primary and secondary vtables for T. Create new
2244 vtables as required, and initialize their RTTI information. Each
2245 of the functions in VIRTUALS is declared in T and may override a
2246 virtual function from a base class; find and modify the appropriate
2247 entries to point to the overriding functions. Returns a list, in
2248 declaration order, of the virtual functions that are declared in T,
2249 but do not appear in the primary base class vtable, and which
2250 should therefore be appended to the end of the vtable for T. */
2251
2252 static tree
2253 modify_all_vtables (tree t, tree virtuals)
2254 {
2255 tree binfo = TYPE_BINFO (t);
2256 tree *fnsp;
2257
2258 /* Update all of the vtables. */
2259 dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);
2260
2261 /* Add virtual functions not already in our primary vtable. These
2262 will be both those introduced by this class, and those overridden
2263 from secondary bases. It does not include virtuals merely
2264 inherited from secondary bases. */
2265 for (fnsp = &virtuals; *fnsp; )
2266 {
2267 tree fn = TREE_VALUE (*fnsp);
2268
2269 if (!value_member (fn, BINFO_VIRTUALS (binfo))
2270 || DECL_VINDEX (fn) == error_mark_node)
2271 {
2272 /* We don't need to adjust the `this' pointer when
2273 calling this function. */
2274 BV_DELTA (*fnsp) = integer_zero_node;
2275 BV_VCALL_INDEX (*fnsp) = NULL_TREE;
2276
2277 /* This is a function not already in our vtable. Keep it. */
2278 fnsp = &TREE_CHAIN (*fnsp);
2279 }
2280 else
2281 /* We've already got an entry for this function. Skip it. */
2282 *fnsp = TREE_CHAIN (*fnsp);
2283 }
2284
2285 return virtuals;
2286 }
2287
2288 /* Get the base virtual function declarations in T that have the
2289 indicated NAME. */
2290
2291 static tree
2292 get_basefndecls (tree name, tree t)
2293 {
2294 tree methods;
2295 tree base_fndecls = NULL_TREE;
2296 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
2297 int i;
2298
2299 /* Find virtual functions in T with the indicated NAME. */
2300 i = lookup_fnfields_1 (t, name);
2301 if (i != -1)
2302 for (methods = VEC_index (tree, CLASSTYPE_METHOD_VEC (t), i);
2303 methods;
2304 methods = OVL_NEXT (methods))
2305 {
2306 tree method = OVL_CURRENT (methods);
2307
2308 if (TREE_CODE (method) == FUNCTION_DECL
2309 && DECL_VINDEX (method))
2310 base_fndecls = tree_cons (NULL_TREE, method, base_fndecls);
2311 }
2312
2313 if (base_fndecls)
2314 return base_fndecls;
2315
2316 for (i = 0; i < n_baseclasses; i++)
2317 {
2318 tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
2319 base_fndecls = chainon (get_basefndecls (name, basetype),
2320 base_fndecls);
2321 }
2322
2323 return base_fndecls;
2324 }
2325
2326 /* If this declaration supersedes the declaration of
2327 a method declared virtual in the base class, then
2328 mark this field as being virtual as well. */
2329
2330 void
2331 check_for_override (tree decl, tree ctype)
2332 {
2333 if (TREE_CODE (decl) == TEMPLATE_DECL)
2334 /* In [temp.mem] we have:
2335
2336 A specialization of a member function template does not
2337 override a virtual function from a base class. */
2338 return;
2339 if ((DECL_DESTRUCTOR_P (decl)
2340 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
2341 || DECL_CONV_FN_P (decl))
2342 && look_for_overrides (ctype, decl)
2343 && !DECL_STATIC_FUNCTION_P (decl))
2344 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2345 the error_mark_node so that we know it is an overriding
2346 function. */
2347 DECL_VINDEX (decl) = decl;
2348
2349 if (DECL_VIRTUAL_P (decl))
2350 {
2351 if (!DECL_VINDEX (decl))
2352 DECL_VINDEX (decl) = error_mark_node;
2353 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
2354 }
2355 }
2356
2357 /* Warn about hidden virtual functions that are not overridden in t.
2358 We know that constructors and destructors don't apply. */
2359
2360 void
2361 warn_hidden (tree t)
2362 {
2363 VEC(tree) *method_vec = CLASSTYPE_METHOD_VEC (t);
2364 tree fns;
2365 size_t i;
2366
2367 /* We go through each separately named virtual function. */
2368 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2369 VEC_iterate (tree, method_vec, i, fns);
2370 ++i)
2371 {
2372 tree fn;
2373 tree name;
2374 tree fndecl;
2375 tree base_fndecls;
2376 tree base_binfo;
2377 tree binfo;
2378 int j;
2379
2380 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2381 have the same name. Figure out what name that is. */
2382 name = DECL_NAME (OVL_CURRENT (fns));
2383 /* There are no possibly hidden functions yet. */
2384 base_fndecls = NULL_TREE;
2385 /* Iterate through all of the base classes looking for possibly
2386 hidden functions. */
2387 for (binfo = TYPE_BINFO (t), j = 0;
2388 BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
2389 {
2390 tree basetype = BINFO_TYPE (base_binfo);
2391 base_fndecls = chainon (get_basefndecls (name, basetype),
2392 base_fndecls);
2393 }
2394
2395 /* If there are no functions to hide, continue. */
2396 if (!base_fndecls)
2397 continue;
2398
2399 /* Remove any overridden functions. */
2400 for (fn = fns; fn; fn = OVL_NEXT (fn))
2401 {
2402 fndecl = OVL_CURRENT (fn);
2403 if (DECL_VINDEX (fndecl))
2404 {
2405 tree *prev = &base_fndecls;
2406
2407 while (*prev)
2408 /* If the method from the base class has the same
2409 signature as the method from the derived class, it
2410 has been overridden. */
2411 if (same_signature_p (fndecl, TREE_VALUE (*prev)))
2412 *prev = TREE_CHAIN (*prev);
2413 else
2414 prev = &TREE_CHAIN (*prev);
2415 }
2416 }
2417
2418 /* Now give a warning for all base functions without overriders,
2419 as they are hidden. */
2420 while (base_fndecls)
2421 {
2422 /* Here we know it is a hider, and no overrider exists. */
2423 cp_warning_at ("%qD was hidden", TREE_VALUE (base_fndecls));
2424 cp_warning_at (" by %qD", fns);
2425 base_fndecls = TREE_CHAIN (base_fndecls);
2426 }
2427 }
2428 }
2429
2430 /* Check for things that are invalid. There are probably plenty of other
2431 things we should check for also. */
2432
2433 static void
2434 finish_struct_anon (tree t)
2435 {
2436 tree field;
2437
2438 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
2439 {
2440 if (TREE_STATIC (field))
2441 continue;
2442 if (TREE_CODE (field) != FIELD_DECL)
2443 continue;
2444
2445 if (DECL_NAME (field) == NULL_TREE
2446 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
2447 {
2448 tree elt = TYPE_FIELDS (TREE_TYPE (field));
2449 for (; elt; elt = TREE_CHAIN (elt))
2450 {
2451 /* We're generally only interested in entities the user
2452 declared, but we also find nested classes by noticing
2453 the TYPE_DECL that we create implicitly. You're
2454 allowed to put one anonymous union inside another,
2455 though, so we explicitly tolerate that. We use
2456 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
2457 we also allow unnamed types used for defining fields. */
2458 if (DECL_ARTIFICIAL (elt)
2459 && (!DECL_IMPLICIT_TYPEDEF_P (elt)
2460 || TYPE_ANONYMOUS_P (TREE_TYPE (elt))))
2461 continue;
2462
2463 if (TREE_CODE (elt) != FIELD_DECL)
2464 {
2465 cp_pedwarn_at ("%q#D invalid; an anonymous union can "
2466 "only have non-static data members",
2467 elt);
2468 continue;
2469 }
2470
2471 if (TREE_PRIVATE (elt))
2472 cp_pedwarn_at ("private member %q#D in anonymous union",
2473 elt);
2474 else if (TREE_PROTECTED (elt))
2475 cp_pedwarn_at ("protected member %q#D in anonymous union",
2476 elt);
2477
2478 TREE_PRIVATE (elt) = TREE_PRIVATE (field);
2479 TREE_PROTECTED (elt) = TREE_PROTECTED (field);
2480 }
2481 }
2482 }
2483 }
2484
2485 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
2486 will be used later during class template instantiation.
2487 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
2488 a non-static member data (FIELD_DECL), a member function
2489 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
2490 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
2491 When FRIEND_P is nonzero, T is either a friend class
2492 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
2493 (FUNCTION_DECL, TEMPLATE_DECL). */
2494
2495 void
2496 maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
2497 {
2498 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
2499 if (CLASSTYPE_TEMPLATE_INFO (type))
2500 CLASSTYPE_DECL_LIST (type)
2501 = tree_cons (friend_p ? NULL_TREE : type,
2502 t, CLASSTYPE_DECL_LIST (type));
2503 }
2504
2505 /* Create default constructors, assignment operators, and so forth for
2506 the type indicated by T, if they are needed.
2507 CANT_HAVE_DEFAULT_CTOR, CANT_HAVE_CONST_CTOR, and
2508 CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason, the
2509 class cannot have a default constructor, copy constructor taking a
2510 const reference argument, or an assignment operator taking a const
2511 reference, respectively. */
2512
2513 static void
2514 add_implicitly_declared_members (tree t,
2515 int cant_have_default_ctor,
2516 int cant_have_const_cctor,
2517 int cant_have_const_assignment)
2518 {
2519 /* Destructor. */
2520 if (!CLASSTYPE_DESTRUCTORS (t))
2521 {
2522 /* In general, we create destructors lazily. */
2523 CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
2524 /* However, if the implicit destructor is non-trivial
2525 destructor, we sometimes have to create it at this point. */
2526 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
2527 {
2528 bool lazy_p = true;
2529
2530 if (TYPE_FOR_JAVA (t))
2531 /* If this a Java class, any non-trivial destructor is
2532 invalid, even if compiler-generated. Therefore, if the
2533 destructor is non-trivial we create it now. */
2534 lazy_p = false;
2535 else
2536 {
2537 tree binfo;
2538 tree base_binfo;
2539 int ix;
2540
2541 /* If the implicit destructor will be virtual, then we must
2542 generate it now because (unfortunately) we do not
2543 generate virtual tables lazily. */
2544 binfo = TYPE_BINFO (t);
2545 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
2546 {
2547 tree base_type;
2548 tree dtor;
2549
2550 base_type = BINFO_TYPE (base_binfo);
2551 dtor = CLASSTYPE_DESTRUCTORS (base_type);
2552 if (dtor && DECL_VIRTUAL_P (dtor))
2553 {
2554 lazy_p = false;
2555 break;
2556 }
2557 }
2558 }
2559
2560 /* If we can't get away with being lazy, generate the destructor
2561 now. */
2562 if (!lazy_p)
2563 lazily_declare_fn (sfk_destructor, t);
2564 }
2565 }
2566
2567 /* Default constructor. */
2568 if (! TYPE_HAS_CONSTRUCTOR (t) && ! cant_have_default_ctor)
2569 {
2570 TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
2571 CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
2572 }
2573
2574 /* Copy constructor. */
2575 if (! TYPE_HAS_INIT_REF (t) && ! TYPE_FOR_JAVA (t))
2576 {
2577 TYPE_HAS_INIT_REF (t) = 1;
2578 TYPE_HAS_CONST_INIT_REF (t) = !cant_have_const_cctor;
2579 CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
2580 TYPE_HAS_CONSTRUCTOR (t) = 1;
2581 }
2582
2583 /* If there is no assignment operator, one will be created if and
2584 when it is needed. For now, just record whether or not the type
2585 of the parameter to the assignment operator will be a const or
2586 non-const reference. */
2587 if (!TYPE_HAS_ASSIGN_REF (t) && !TYPE_FOR_JAVA (t))
2588 {
2589 TYPE_HAS_ASSIGN_REF (t) = 1;
2590 TYPE_HAS_CONST_ASSIGN_REF (t) = !cant_have_const_assignment;
2591 CLASSTYPE_LAZY_ASSIGNMENT_OP (t) = 1;
2592 }
2593 }
2594
2595 /* Subroutine of finish_struct_1. Recursively count the number of fields
2596 in TYPE, including anonymous union members. */
2597
2598 static int
2599 count_fields (tree fields)
2600 {
2601 tree x;
2602 int n_fields = 0;
2603 for (x = fields; x; x = TREE_CHAIN (x))
2604 {
2605 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
2606 n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
2607 else
2608 n_fields += 1;
2609 }
2610 return n_fields;
2611 }
2612
2613 /* Subroutine of finish_struct_1. Recursively add all the fields in the
2614 TREE_LIST FIELDS to the SORTED_FIELDS_TYPE elts, starting at offset IDX. */
2615
2616 static int
2617 add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
2618 {
2619 tree x;
2620 for (x = fields; x; x = TREE_CHAIN (x))
2621 {
2622 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
2623 idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
2624 else
2625 field_vec->elts[idx++] = x;
2626 }
2627 return idx;
2628 }
2629
2630 /* FIELD is a bit-field. We are finishing the processing for its
2631 enclosing type. Issue any appropriate messages and set appropriate
2632 flags. */
2633
2634 static void
2635 check_bitfield_decl (tree field)
2636 {
2637 tree type = TREE_TYPE (field);
2638 tree w = NULL_TREE;
2639
2640 /* Detect invalid bit-field type. */
2641 if (DECL_INITIAL (field)
2642 && ! INTEGRAL_TYPE_P (TREE_TYPE (field)))
2643 {
2644 cp_error_at ("bit-field %q#D with non-integral type", field);
2645 w = error_mark_node;
2646 }
2647
2648 /* Detect and ignore out of range field width. */
2649 if (DECL_INITIAL (field))
2650 {
2651 w = DECL_INITIAL (field);
2652
2653 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
2654 STRIP_NOPS (w);
2655
2656 /* detect invalid field size. */
2657 w = integral_constant_value (w);
2658
2659 if (TREE_CODE (w) != INTEGER_CST)
2660 {
2661 cp_error_at ("bit-field %qD width not an integer constant",
2662 field);
2663 w = error_mark_node;
2664 }
2665 else if (tree_int_cst_sgn (w) < 0)
2666 {
2667 cp_error_at ("negative width in bit-field %qD", field);
2668 w = error_mark_node;
2669 }
2670 else if (integer_zerop (w) && DECL_NAME (field) != 0)
2671 {
2672 cp_error_at ("zero width for bit-field %qD", field);
2673 w = error_mark_node;
2674 }
2675 else if (compare_tree_int (w, TYPE_PRECISION (type)) > 0
2676 && TREE_CODE (type) != ENUMERAL_TYPE
2677 && TREE_CODE (type) != BOOLEAN_TYPE)
2678 cp_warning_at ("width of %qD exceeds its type", field);
2679 else if (TREE_CODE (type) == ENUMERAL_TYPE
2680 && (0 > compare_tree_int (w,
2681 min_precision (TYPE_MIN_VALUE (type),
2682 TYPE_UNSIGNED (type)))
2683 || 0 > compare_tree_int (w,
2684 min_precision
2685 (TYPE_MAX_VALUE (type),
2686 TYPE_UNSIGNED (type)))))
2687 cp_warning_at ("%qD is too small to hold all values of %q#T",
2688 field, type);
2689 }
2690
2691 /* Remove the bit-field width indicator so that the rest of the
2692 compiler does not treat that value as an initializer. */
2693 DECL_INITIAL (field) = NULL_TREE;
2694
2695 if (w != error_mark_node)
2696 {
2697 DECL_SIZE (field) = convert (bitsizetype, w);
2698 DECL_BIT_FIELD (field) = 1;
2699 }
2700 else
2701 {
2702 /* Non-bit-fields are aligned for their type. */
2703 DECL_BIT_FIELD (field) = 0;
2704 CLEAR_DECL_C_BIT_FIELD (field);
2705 }
2706 }
2707
2708 /* FIELD is a non bit-field. We are finishing the processing for its
2709 enclosing type T. Issue any appropriate messages and set appropriate
2710 flags. */
2711
2712 static void
2713 check_field_decl (tree field,
2714 tree t,
2715 int* cant_have_const_ctor,
2716 int* cant_have_default_ctor,
2717 int* no_const_asn_ref,
2718 int* any_default_members)
2719 {
2720 tree type = strip_array_types (TREE_TYPE (field));
2721
2722 /* An anonymous union cannot contain any fields which would change
2723 the settings of CANT_HAVE_CONST_CTOR and friends. */
2724 if (ANON_UNION_TYPE_P (type))
2725 ;
2726 /* And, we don't set TYPE_HAS_CONST_INIT_REF, etc., for anonymous
2727 structs. So, we recurse through their fields here. */
2728 else if (ANON_AGGR_TYPE_P (type))
2729 {
2730 tree fields;
2731
2732 for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
2733 if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
2734 check_field_decl (fields, t, cant_have_const_ctor,
2735 cant_have_default_ctor, no_const_asn_ref,
2736 any_default_members);
2737 }
2738 /* Check members with class type for constructors, destructors,
2739 etc. */
2740 else if (CLASS_TYPE_P (type))
2741 {
2742 /* Never let anything with uninheritable virtuals
2743 make it through without complaint. */
2744 abstract_virtuals_error (field, type);
2745
2746 if (TREE_CODE (t) == UNION_TYPE)
2747 {
2748 if (TYPE_NEEDS_CONSTRUCTING (type))
2749 cp_error_at ("member %q#D with constructor not allowed in union",
2750 field);
2751 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
2752 cp_error_at ("member %q#D with destructor not allowed in union",
2753 field);
2754 if (TYPE_HAS_COMPLEX_ASSIGN_REF (type))
2755 cp_error_at ("member %q#D with copy assignment operator not allowed in union",
2756 field);
2757 }
2758 else
2759 {
2760 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
2761 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
2762 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
2763 TYPE_HAS_COMPLEX_ASSIGN_REF (t) |= TYPE_HAS_COMPLEX_ASSIGN_REF (type);
2764 TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_HAS_COMPLEX_INIT_REF (type);
2765 }
2766
2767 if (!TYPE_HAS_CONST_INIT_REF (type))
2768 *cant_have_const_ctor = 1;
2769
2770 if (!TYPE_HAS_CONST_ASSIGN_REF (type))
2771 *no_const_asn_ref = 1;
2772
2773 if (TYPE_HAS_CONSTRUCTOR (type)
2774 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2775 *cant_have_default_ctor = 1;
2776 }
2777 if (DECL_INITIAL (field) != NULL_TREE)
2778 {
2779 /* `build_class_init_list' does not recognize
2780 non-FIELD_DECLs. */
2781 if (TREE_CODE (t) == UNION_TYPE && any_default_members != 0)
2782 error ("multiple fields in union %qT initialized", t);
2783 *any_default_members = 1;
2784 }
2785 }
2786
2787 /* Check the data members (both static and non-static), class-scoped
2788 typedefs, etc., appearing in the declaration of T. Issue
2789 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
2790 declaration order) of access declarations; each TREE_VALUE in this
2791 list is a USING_DECL.
2792
2793 In addition, set the following flags:
2794
2795 EMPTY_P
2796 The class is empty, i.e., contains no non-static data members.
2797
2798 CANT_HAVE_DEFAULT_CTOR_P
2799 This class cannot have an implicitly generated default
2800 constructor.
2801
2802 CANT_HAVE_CONST_CTOR_P
2803 This class cannot have an implicitly generated copy constructor
2804 taking a const reference.
2805
2806 CANT_HAVE_CONST_ASN_REF
2807 This class cannot have an implicitly generated assignment
2808 operator taking a const reference.
2809
2810 All of these flags should be initialized before calling this
2811 function.
2812
2813 Returns a pointer to the end of the TYPE_FIELDs chain; additional
2814 fields can be added by adding to this chain. */
2815
2816 static void
2817 check_field_decls (tree t, tree *access_decls,
2818 int *cant_have_default_ctor_p,
2819 int *cant_have_const_ctor_p,
2820 int *no_const_asn_ref_p)
2821 {
2822 tree *field;
2823 tree *next;
2824 bool has_pointers;
2825 int any_default_members;
2826
2827 /* Assume there are no access declarations. */
2828 *access_decls = NULL_TREE;
2829 /* Assume this class has no pointer members. */
2830 has_pointers = false;
2831 /* Assume none of the members of this class have default
2832 initializations. */
2833 any_default_members = 0;
2834
2835 for (field = &TYPE_FIELDS (t); *field; field = next)
2836 {
2837 tree x = *field;
2838 tree type = TREE_TYPE (x);
2839
2840 next = &TREE_CHAIN (x);
2841
2842 if (TREE_CODE (x) == FIELD_DECL)
2843 {
2844 if (TYPE_PACKED (t))
2845 {
2846 if (!pod_type_p (TREE_TYPE (x)) && !TYPE_PACKED (TREE_TYPE (x)))
2847 cp_warning_at
2848 ("ignoring packed attribute on unpacked non-POD field %q#D",
2849 x);
2850 else
2851 DECL_PACKED (x) = 1;
2852 }
2853
2854 if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
2855 /* We don't treat zero-width bitfields as making a class
2856 non-empty. */
2857 ;
2858 else
2859 {
2860 tree element_type;
2861
2862 /* The class is non-empty. */
2863 CLASSTYPE_EMPTY_P (t) = 0;
2864 /* The class is not even nearly empty. */
2865 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
2866 /* If one of the data members contains an empty class,
2867 so does T. */
2868 element_type = strip_array_types (type);
2869 if (CLASS_TYPE_P (element_type)
2870 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
2871 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
2872 }
2873 }
2874
2875 if (TREE_CODE (x) == USING_DECL)
2876 {
2877 /* Prune the access declaration from the list of fields. */
2878 *field = TREE_CHAIN (x);
2879
2880 /* Save the access declarations for our caller. */
2881 *access_decls = tree_cons (NULL_TREE, x, *access_decls);
2882
2883 /* Since we've reset *FIELD there's no reason to skip to the
2884 next field. */
2885 next = field;
2886 continue;
2887 }
2888
2889 if (TREE_CODE (x) == TYPE_DECL
2890 || TREE_CODE (x) == TEMPLATE_DECL)
2891 continue;
2892
2893 /* If we've gotten this far, it's a data member, possibly static,
2894 or an enumerator. */
2895 DECL_CONTEXT (x) = t;
2896
2897 /* When this goes into scope, it will be a non-local reference. */
2898 DECL_NONLOCAL (x) = 1;
2899
2900 if (TREE_CODE (t) == UNION_TYPE)
2901 {
2902 /* [class.union]
2903
2904 If a union contains a static data member, or a member of
2905 reference type, the program is ill-formed. */
2906 if (TREE_CODE (x) == VAR_DECL)
2907 {
2908 cp_error_at ("%qD may not be static because it is a member of a union", x);
2909 continue;
2910 }
2911 if (TREE_CODE (type) == REFERENCE_TYPE)
2912 {
2913 cp_error_at ("%qD may not have reference type %qT because"
2914 " it is a member of a union",
2915 x, type);
2916 continue;
2917 }
2918 }
2919
2920 /* ``A local class cannot have static data members.'' ARM 9.4 */
2921 if (current_function_decl && TREE_STATIC (x))
2922 cp_error_at ("field %qD in local class cannot be static", x);
2923
2924 /* Perform error checking that did not get done in
2925 grokdeclarator. */
2926 if (TREE_CODE (type) == FUNCTION_TYPE)
2927 {
2928 cp_error_at ("field %qD invalidly declared function type", x);
2929 type = build_pointer_type (type);
2930 TREE_TYPE (x) = type;
2931 }
2932 else if (TREE_CODE (type) == METHOD_TYPE)
2933 {
2934 cp_error_at ("field %qD invalidly declared method type", x);
2935 type = build_pointer_type (type);
2936 TREE_TYPE (x) = type;
2937 }
2938
2939 if (type == error_mark_node)
2940 continue;
2941
2942 if (TREE_CODE (x) == CONST_DECL || TREE_CODE (x) == VAR_DECL)
2943 continue;
2944
2945 /* Now it can only be a FIELD_DECL. */
2946
2947 if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
2948 CLASSTYPE_NON_AGGREGATE (t) = 1;
2949
2950 /* If this is of reference type, check if it needs an init.
2951 Also do a little ANSI jig if necessary. */
2952 if (TREE_CODE (type) == REFERENCE_TYPE)
2953 {
2954 CLASSTYPE_NON_POD_P (t) = 1;
2955 if (DECL_INITIAL (x) == NULL_TREE)
2956 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
2957
2958 /* ARM $12.6.2: [A member initializer list] (or, for an
2959 aggregate, initialization by a brace-enclosed list) is the
2960 only way to initialize nonstatic const and reference
2961 members. */
2962 *cant_have_default_ctor_p = 1;
2963 TYPE_HAS_COMPLEX_ASSIGN_REF (t) = 1;
2964
2965 if (! TYPE_HAS_CONSTRUCTOR (t) && CLASSTYPE_NON_AGGREGATE (t)
2966 && extra_warnings)
2967 cp_warning_at ("non-static reference %q#D in class without a constructor", x);
2968 }
2969
2970 type = strip_array_types (type);
2971
2972 /* This is used by -Weffc++ (see below). Warn only for pointers
2973 to members which might hold dynamic memory. So do not warn
2974 for pointers to functions or pointers to members. */
2975 if (TYPE_PTR_P (type)
2976 && !TYPE_PTRFN_P (type)
2977 && !TYPE_PTR_TO_MEMBER_P (type))
2978 has_pointers = true;
2979
2980 if (CLASS_TYPE_P (type))
2981 {
2982 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
2983 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
2984 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
2985 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
2986 }
2987
2988 if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
2989 CLASSTYPE_HAS_MUTABLE (t) = 1;
2990
2991 if (! pod_type_p (type))
2992 /* DR 148 now allows pointers to members (which are POD themselves),
2993 to be allowed in POD structs. */
2994 CLASSTYPE_NON_POD_P (t) = 1;
2995
2996 if (! zero_init_p (type))
2997 CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
2998
2999 /* If any field is const, the structure type is pseudo-const. */
3000 if (CP_TYPE_CONST_P (type))
3001 {
3002 C_TYPE_FIELDS_READONLY (t) = 1;
3003 if (DECL_INITIAL (x) == NULL_TREE)
3004 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3005
3006 /* ARM $12.6.2: [A member initializer list] (or, for an
3007 aggregate, initialization by a brace-enclosed list) is the
3008 only way to initialize nonstatic const and reference
3009 members. */
3010 *cant_have_default_ctor_p = 1;
3011 TYPE_HAS_COMPLEX_ASSIGN_REF (t) = 1;
3012
3013 if (! TYPE_HAS_CONSTRUCTOR (t) && CLASSTYPE_NON_AGGREGATE (t)
3014 && extra_warnings)
3015 cp_warning_at ("non-static const member %q#D in class without a constructor", x);
3016 }
3017 /* A field that is pseudo-const makes the structure likewise. */
3018 else if (CLASS_TYPE_P (type))
3019 {
3020 C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
3021 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
3022 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
3023 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
3024 }
3025
3026 /* Core issue 80: A nonstatic data member is required to have a
3027 different name from the class iff the class has a
3028 user-defined constructor. */
3029 if (constructor_name_p (DECL_NAME (x), t) && TYPE_HAS_CONSTRUCTOR (t))
3030 cp_pedwarn_at ("field %q#D with same name as class", x);
3031
3032 /* We set DECL_C_BIT_FIELD in grokbitfield.
3033 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3034 if (DECL_C_BIT_FIELD (x))
3035 check_bitfield_decl (x);
3036 else
3037 check_field_decl (x, t,
3038 cant_have_const_ctor_p,
3039 cant_have_default_ctor_p,
3040 no_const_asn_ref_p,
3041 &any_default_members);
3042 }
3043
3044 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3045 it should also define a copy constructor and an assignment operator to
3046 implement the correct copy semantic (deep vs shallow, etc.). As it is
3047 not feasible to check whether the constructors do allocate dynamic memory
3048 and store it within members, we approximate the warning like this:
3049
3050 -- Warn only if there are members which are pointers
3051 -- Warn only if there is a non-trivial constructor (otherwise,
3052 there cannot be memory allocated).
3053 -- Warn only if there is a non-trivial destructor. We assume that the
3054 user at least implemented the cleanup correctly, and a destructor
3055 is needed to free dynamic memory.
3056
3057 This seems enough for practical purposes. */
3058 if (warn_ecpp
3059 && has_pointers
3060 && TYPE_HAS_CONSTRUCTOR (t)
3061 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3062 && !(TYPE_HAS_INIT_REF (t) && TYPE_HAS_ASSIGN_REF (t)))
3063 {
3064 warning ("%q#T has pointer data members", t);
3065
3066 if (! TYPE_HAS_INIT_REF (t))
3067 {
3068 warning (" but does not override %<%T(const %T&)%>", t, t);
3069 if (! TYPE_HAS_ASSIGN_REF (t))
3070 warning (" or %<operator=(const %T&)%>", t);
3071 }
3072 else if (! TYPE_HAS_ASSIGN_REF (t))
3073 warning (" but does not override %<operator=(const %T&)%>", t);
3074 }
3075
3076
3077 /* Check anonymous struct/anonymous union fields. */
3078 finish_struct_anon (t);
3079
3080 /* We've built up the list of access declarations in reverse order.
3081 Fix that now. */
3082 *access_decls = nreverse (*access_decls);
3083 }
3084
3085 /* If TYPE is an empty class type, records its OFFSET in the table of
3086 OFFSETS. */
3087
3088 static int
3089 record_subobject_offset (tree type, tree offset, splay_tree offsets)
3090 {
3091 splay_tree_node n;
3092
3093 if (!is_empty_class (type))
3094 return 0;
3095
3096 /* Record the location of this empty object in OFFSETS. */
3097 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3098 if (!n)
3099 n = splay_tree_insert (offsets,
3100 (splay_tree_key) offset,
3101 (splay_tree_value) NULL_TREE);
3102 n->value = ((splay_tree_value)
3103 tree_cons (NULL_TREE,
3104 type,
3105 (tree) n->value));
3106
3107 return 0;
3108 }
3109
3110 /* Returns nonzero if TYPE is an empty class type and there is
3111 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3112
3113 static int
3114 check_subobject_offset (tree type, tree offset, splay_tree offsets)
3115 {
3116 splay_tree_node n;
3117 tree t;
3118
3119 if (!is_empty_class (type))
3120 return 0;
3121
3122 /* Record the location of this empty object in OFFSETS. */
3123 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3124 if (!n)
3125 return 0;
3126
3127 for (t = (tree) n->value; t; t = TREE_CHAIN (t))
3128 if (same_type_p (TREE_VALUE (t), type))
3129 return 1;
3130
3131 return 0;
3132 }
3133
3134 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3135 F for every subobject, passing it the type, offset, and table of
3136 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3137 be traversed.
3138
3139 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3140 than MAX_OFFSET will not be walked.
3141
3142 If F returns a nonzero value, the traversal ceases, and that value
3143 is returned. Otherwise, returns zero. */
3144
3145 static int
3146 walk_subobject_offsets (tree type,
3147 subobject_offset_fn f,
3148 tree offset,
3149 splay_tree offsets,
3150 tree max_offset,
3151 int vbases_p)
3152 {
3153 int r = 0;
3154 tree type_binfo = NULL_TREE;
3155
3156 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3157 stop. */
3158 if (max_offset && INT_CST_LT (max_offset, offset))
3159 return 0;
3160
3161 if (!TYPE_P (type))
3162 {
3163 if (abi_version_at_least (2))
3164 type_binfo = type;
3165 type = BINFO_TYPE (type);
3166 }
3167
3168 if (CLASS_TYPE_P (type))
3169 {
3170 tree field;
3171 tree binfo;
3172 int i;
3173
3174 /* Avoid recursing into objects that are not interesting. */
3175 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3176 return 0;
3177
3178 /* Record the location of TYPE. */
3179 r = (*f) (type, offset, offsets);
3180 if (r)
3181 return r;
3182
3183 /* Iterate through the direct base classes of TYPE. */
3184 if (!type_binfo)
3185 type_binfo = TYPE_BINFO (type);
3186 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
3187 {
3188 tree binfo_offset;
3189
3190 if (abi_version_at_least (2)
3191 && BINFO_VIRTUAL_P (binfo))
3192 continue;
3193
3194 if (!vbases_p
3195 && BINFO_VIRTUAL_P (binfo)
3196 && !BINFO_PRIMARY_P (binfo))
3197 continue;
3198
3199 if (!abi_version_at_least (2))
3200 binfo_offset = size_binop (PLUS_EXPR,
3201 offset,
3202 BINFO_OFFSET (binfo));
3203 else
3204 {
3205 tree orig_binfo;
3206 /* We cannot rely on BINFO_OFFSET being set for the base
3207 class yet, but the offsets for direct non-virtual
3208 bases can be calculated by going back to the TYPE. */
3209 orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
3210 binfo_offset = size_binop (PLUS_EXPR,
3211 offset,
3212 BINFO_OFFSET (orig_binfo));
3213 }
3214
3215 r = walk_subobject_offsets (binfo,
3216 f,
3217 binfo_offset,
3218 offsets,
3219 max_offset,
3220 (abi_version_at_least (2)
3221 ? /*vbases_p=*/0 : vbases_p));
3222 if (r)
3223 return r;
3224 }
3225
3226 if (abi_version_at_least (2) && CLASSTYPE_VBASECLASSES (type))
3227 {
3228 unsigned ix;
3229 VEC (tree) *vbases;
3230
3231 /* Iterate through the virtual base classes of TYPE. In G++
3232 3.2, we included virtual bases in the direct base class
3233 loop above, which results in incorrect results; the
3234 correct offsets for virtual bases are only known when
3235 working with the most derived type. */
3236 if (vbases_p)
3237 for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
3238 VEC_iterate (tree, vbases, ix, binfo); ix++)
3239 {
3240 r = walk_subobject_offsets (binfo,
3241 f,
3242 size_binop (PLUS_EXPR,
3243 offset,
3244 BINFO_OFFSET (binfo)),
3245 offsets,
3246 max_offset,
3247 /*vbases_p=*/0);
3248 if (r)
3249 return r;
3250 }
3251 else
3252 {
3253 /* We still have to walk the primary base, if it is
3254 virtual. (If it is non-virtual, then it was walked
3255 above.) */
3256 tree vbase = get_primary_binfo (type_binfo);
3257
3258 if (vbase && BINFO_VIRTUAL_P (vbase)
3259 && BINFO_PRIMARY_P (vbase)
3260 && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
3261 {
3262 r = (walk_subobject_offsets
3263 (vbase, f, offset,
3264 offsets, max_offset, /*vbases_p=*/0));
3265 if (r)
3266 return r;
3267 }
3268 }
3269 }
3270
3271 /* Iterate through the fields of TYPE. */
3272 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3273 if (TREE_CODE (field) == FIELD_DECL && !DECL_ARTIFICIAL (field))
3274 {
3275 tree field_offset;
3276
3277 if (abi_version_at_least (2))
3278 field_offset = byte_position (field);
3279 else
3280 /* In G++ 3.2, DECL_FIELD_OFFSET was used. */
3281 field_offset = DECL_FIELD_OFFSET (field);
3282
3283 r = walk_subobject_offsets (TREE_TYPE (field),
3284 f,
3285 size_binop (PLUS_EXPR,
3286 offset,
3287 field_offset),
3288 offsets,
3289 max_offset,
3290 /*vbases_p=*/1);
3291 if (r)
3292 return r;
3293 }
3294 }
3295 else if (TREE_CODE (type) == ARRAY_TYPE)
3296 {
3297 tree element_type = strip_array_types (type);
3298 tree domain = TYPE_DOMAIN (type);
3299 tree index;
3300
3301 /* Avoid recursing into objects that are not interesting. */
3302 if (!CLASS_TYPE_P (element_type)
3303 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
3304 return 0;
3305
3306 /* Step through each of the elements in the array. */
3307 for (index = size_zero_node;
3308 /* G++ 3.2 had an off-by-one error here. */
3309 (abi_version_at_least (2)
3310 ? !INT_CST_LT (TYPE_MAX_VALUE (domain), index)
3311 : INT_CST_LT (index, TYPE_MAX_VALUE (domain)));
3312 index = size_binop (PLUS_EXPR, index, size_one_node))
3313 {
3314 r = walk_subobject_offsets (TREE_TYPE (type),
3315 f,
3316 offset,
3317 offsets,
3318 max_offset,
3319 /*vbases_p=*/1);
3320 if (r)
3321 return r;
3322 offset = size_binop (PLUS_EXPR, offset,
3323 TYPE_SIZE_UNIT (TREE_TYPE (type)));
3324 /* If this new OFFSET is bigger than the MAX_OFFSET, then
3325 there's no point in iterating through the remaining
3326 elements of the array. */
3327 if (max_offset && INT_CST_LT (max_offset, offset))
3328 break;
3329 }
3330 }
3331
3332 return 0;
3333 }
3334
3335 /* Record all of the empty subobjects of TYPE (located at OFFSET) in
3336 OFFSETS. If VBASES_P is nonzero, virtual bases of TYPE are
3337 examined. */
3338
3339 static void
3340 record_subobject_offsets (tree type,
3341 tree offset,
3342 splay_tree offsets,
3343 int vbases_p)
3344 {
3345 walk_subobject_offsets (type, record_subobject_offset, offset,
3346 offsets, /*max_offset=*/NULL_TREE, vbases_p);
3347 }
3348
3349 /* Returns nonzero if any of the empty subobjects of TYPE (located at
3350 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
3351 virtual bases of TYPE are examined. */
3352
3353 static int
3354 layout_conflict_p (tree type,
3355 tree offset,
3356 splay_tree offsets,
3357 int vbases_p)
3358 {
3359 splay_tree_node max_node;
3360
3361 /* Get the node in OFFSETS that indicates the maximum offset where
3362 an empty subobject is located. */
3363 max_node = splay_tree_max (offsets);
3364 /* If there aren't any empty subobjects, then there's no point in
3365 performing this check. */
3366 if (!max_node)
3367 return 0;
3368
3369 return walk_subobject_offsets (type, check_subobject_offset, offset,
3370 offsets, (tree) (max_node->key),
3371 vbases_p);
3372 }
3373
3374 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
3375 non-static data member of the type indicated by RLI. BINFO is the
3376 binfo corresponding to the base subobject, OFFSETS maps offsets to
3377 types already located at those offsets. This function determines
3378 the position of the DECL. */
3379
3380 static void
3381 layout_nonempty_base_or_field (record_layout_info rli,
3382 tree decl,
3383 tree binfo,
3384 splay_tree offsets)
3385 {
3386 tree offset = NULL_TREE;
3387 bool field_p;
3388 tree type;
3389
3390 if (binfo)
3391 {
3392 /* For the purposes of determining layout conflicts, we want to
3393 use the class type of BINFO; TREE_TYPE (DECL) will be the
3394 CLASSTYPE_AS_BASE version, which does not contain entries for
3395 zero-sized bases. */
3396 type = TREE_TYPE (binfo);
3397 field_p = false;
3398 }
3399 else
3400 {
3401 type = TREE_TYPE (decl);
3402 field_p = true;
3403 }
3404
3405 /* Try to place the field. It may take more than one try if we have
3406 a hard time placing the field without putting two objects of the
3407 same type at the same address. */
3408 while (1)
3409 {
3410 struct record_layout_info_s old_rli = *rli;
3411
3412 /* Place this field. */
3413 place_field (rli, decl);
3414 offset = byte_position (decl);
3415
3416 /* We have to check to see whether or not there is already
3417 something of the same type at the offset we're about to use.
3418 For example, consider:
3419
3420 struct S {};
3421 struct T : public S { int i; };
3422 struct U : public S, public T {};
3423
3424 Here, we put S at offset zero in U. Then, we can't put T at
3425 offset zero -- its S component would be at the same address
3426 as the S we already allocated. So, we have to skip ahead.
3427 Since all data members, including those whose type is an
3428 empty class, have nonzero size, any overlap can happen only
3429 with a direct or indirect base-class -- it can't happen with
3430 a data member. */
3431 /* In a union, overlap is permitted; all members are placed at
3432 offset zero. */
3433 if (TREE_CODE (rli->t) == UNION_TYPE)
3434 break;
3435 /* G++ 3.2 did not check for overlaps when placing a non-empty
3436 virtual base. */
3437 if (!abi_version_at_least (2) && binfo && BINFO_VIRTUAL_P (binfo))
3438 break;
3439 if (layout_conflict_p (field_p ? type : binfo, offset,
3440 offsets, field_p))
3441 {
3442 /* Strip off the size allocated to this field. That puts us
3443 at the first place we could have put the field with
3444 proper alignment. */
3445 *rli = old_rli;
3446
3447 /* Bump up by the alignment required for the type. */
3448 rli->bitpos
3449 = size_binop (PLUS_EXPR, rli->bitpos,
3450 bitsize_int (binfo
3451 ? CLASSTYPE_ALIGN (type)
3452 : TYPE_ALIGN (type)));
3453 normalize_rli (rli);
3454 }
3455 else
3456 /* There was no conflict. We're done laying out this field. */
3457 break;
3458 }
3459
3460 /* Now that we know where it will be placed, update its
3461 BINFO_OFFSET. */
3462 if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
3463 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
3464 this point because their BINFO_OFFSET is copied from another
3465 hierarchy. Therefore, we may not need to add the entire
3466 OFFSET. */
3467 propagate_binfo_offsets (binfo,
3468 size_diffop (convert (ssizetype, offset),
3469 convert (ssizetype,
3470 BINFO_OFFSET (binfo))));
3471 }
3472
3473 /* Returns true if TYPE is empty and OFFSET is nonzero. */
3474
3475 static int
3476 empty_base_at_nonzero_offset_p (tree type,
3477 tree offset,
3478 splay_tree offsets ATTRIBUTE_UNUSED)
3479 {
3480 return is_empty_class (type) && !integer_zerop (offset);
3481 }
3482
3483 /* Layout the empty base BINFO. EOC indicates the byte currently just
3484 past the end of the class, and should be correctly aligned for a
3485 class of the type indicated by BINFO; OFFSETS gives the offsets of
3486 the empty bases allocated so far. T is the most derived
3487 type. Return nonzero iff we added it at the end. */
3488
3489 static bool
3490 layout_empty_base (tree binfo, tree eoc, splay_tree offsets)
3491 {
3492 tree alignment;
3493 tree basetype = BINFO_TYPE (binfo);
3494 bool atend = false;
3495
3496 /* This routine should only be used for empty classes. */
3497 gcc_assert (is_empty_class (basetype));
3498 alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));
3499
3500 if (!integer_zerop (BINFO_OFFSET (binfo)))
3501 {
3502 if (abi_version_at_least (2))
3503 propagate_binfo_offsets
3504 (binfo, size_diffop (size_zero_node, BINFO_OFFSET (binfo)));
3505 else if (warn_abi)
3506 warning ("offset of empty base %qT may not be ABI-compliant and may"
3507 "change in a future version of GCC",
3508 BINFO_TYPE (binfo));
3509 }
3510
3511 /* This is an empty base class. We first try to put it at offset
3512 zero. */
3513 if (layout_conflict_p (binfo,
3514 BINFO_OFFSET (binfo),
3515 offsets,
3516 /*vbases_p=*/0))
3517 {
3518 /* That didn't work. Now, we move forward from the next
3519 available spot in the class. */
3520 atend = true;
3521 propagate_binfo_offsets (binfo, convert (ssizetype, eoc));
3522 while (1)
3523 {
3524 if (!layout_conflict_p (binfo,
3525 BINFO_OFFSET (binfo),
3526 offsets,
3527 /*vbases_p=*/0))
3528 /* We finally found a spot where there's no overlap. */
3529 break;
3530
3531 /* There's overlap here, too. Bump along to the next spot. */
3532 propagate_binfo_offsets (binfo, alignment);
3533 }
3534 }
3535 return atend;
3536 }
3537
3538 /* Layout the the base given by BINFO in the class indicated by RLI.
3539 *BASE_ALIGN is a running maximum of the alignments of
3540 any base class. OFFSETS gives the location of empty base
3541 subobjects. T is the most derived type. Return nonzero if the new
3542 object cannot be nearly-empty. A new FIELD_DECL is inserted at
3543 *NEXT_FIELD, unless BINFO is for an empty base class.
3544
3545 Returns the location at which the next field should be inserted. */
3546
3547 static tree *
3548 build_base_field (record_layout_info rli, tree binfo,
3549 splay_tree offsets, tree *next_field)
3550 {
3551 tree t = rli->t;
3552 tree basetype = BINFO_TYPE (binfo);
3553
3554 if (!COMPLETE_TYPE_P (basetype))
3555 /* This error is now reported in xref_tag, thus giving better
3556 location information. */
3557 return next_field;
3558
3559 /* Place the base class. */
3560 if (!is_empty_class (basetype))
3561 {
3562 tree decl;
3563
3564 /* The containing class is non-empty because it has a non-empty
3565 base class. */
3566 CLASSTYPE_EMPTY_P (t) = 0;
3567
3568 /* Create the FIELD_DECL. */
3569 decl = build_decl (FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
3570 DECL_ARTIFICIAL (decl) = 1;
3571 DECL_IGNORED_P (decl) = 1;
3572 DECL_FIELD_CONTEXT (decl) = t;
3573 DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
3574 DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
3575 DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype);
3576 DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
3577 DECL_MODE (decl) = TYPE_MODE (basetype);
3578 DECL_FIELD_IS_BASE (decl) = 1;
3579
3580 /* Try to place the field. It may take more than one try if we
3581 have a hard time placing the field without putting two
3582 objects of the same type at the same address. */
3583 layout_nonempty_base_or_field (rli, decl, binfo, offsets);
3584 /* Add the new FIELD_DECL to the list of fields for T. */
3585 TREE_CHAIN (decl) = *next_field;
3586 *next_field = decl;
3587 next_field = &TREE_CHAIN (decl);
3588 }
3589 else
3590 {
3591 tree eoc;
3592 bool atend;
3593
3594 /* On some platforms (ARM), even empty classes will not be
3595 byte-aligned. */
3596 eoc = round_up (rli_size_unit_so_far (rli),
3597 CLASSTYPE_ALIGN_UNIT (basetype));
3598 atend = layout_empty_base (binfo, eoc, offsets);
3599 /* A nearly-empty class "has no proper base class that is empty,
3600 not morally virtual, and at an offset other than zero." */
3601 if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
3602 {
3603 if (atend)
3604 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3605 /* The check above (used in G++ 3.2) is insufficient because
3606 an empty class placed at offset zero might itself have an
3607 empty base at a nonzero offset. */
3608 else if (walk_subobject_offsets (basetype,
3609 empty_base_at_nonzero_offset_p,
3610 size_zero_node,
3611 /*offsets=*/NULL,
3612 /*max_offset=*/NULL_TREE,
3613 /*vbases_p=*/true))
3614 {
3615 if (abi_version_at_least (2))
3616 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3617 else if (warn_abi)
3618 warning ("class %qT will be considered nearly empty in a "
3619 "future version of GCC", t);
3620 }
3621 }
3622
3623 /* We do not create a FIELD_DECL for empty base classes because
3624 it might overlap some other field. We want to be able to
3625 create CONSTRUCTORs for the class by iterating over the
3626 FIELD_DECLs, and the back end does not handle overlapping
3627 FIELD_DECLs. */
3628
3629 /* An empty virtual base causes a class to be non-empty
3630 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
3631 here because that was already done when the virtual table
3632 pointer was created. */
3633 }
3634
3635 /* Record the offsets of BINFO and its base subobjects. */
3636 record_subobject_offsets (binfo,
3637 BINFO_OFFSET (binfo),
3638 offsets,
3639 /*vbases_p=*/0);
3640
3641 return next_field;
3642 }
3643
3644 /* Layout all of the non-virtual base classes. Record empty
3645 subobjects in OFFSETS. T is the most derived type. Return nonzero
3646 if the type cannot be nearly empty. The fields created
3647 corresponding to the base classes will be inserted at
3648 *NEXT_FIELD. */
3649
3650 static void
3651 build_base_fields (record_layout_info rli,
3652 splay_tree offsets, tree *next_field)
3653 {
3654 /* Chain to hold all the new FIELD_DECLs which stand in for base class
3655 subobjects. */
3656 tree t = rli->t;
3657 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
3658 int i;
3659
3660 /* The primary base class is always allocated first. */
3661 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
3662 next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
3663 offsets, next_field);
3664
3665 /* Now allocate the rest of the bases. */
3666 for (i = 0; i < n_baseclasses; ++i)
3667 {
3668 tree base_binfo;
3669
3670 base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
3671
3672 /* The primary base was already allocated above, so we don't
3673 need to allocate it again here. */
3674 if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
3675 continue;
3676
3677 /* Virtual bases are added at the end (a primary virtual base
3678 will have already been added). */
3679 if (BINFO_VIRTUAL_P (base_binfo))
3680 continue;
3681
3682 next_field = build_base_field (rli, base_binfo,
3683 offsets, next_field);
3684 }
3685 }
3686
3687 /* Go through the TYPE_METHODS of T issuing any appropriate
3688 diagnostics, figuring out which methods override which other
3689 methods, and so forth. */
3690
3691 static void
3692 check_methods (tree t)
3693 {
3694 tree x;
3695
3696 for (x = TYPE_METHODS (t); x; x = TREE_CHAIN (x))
3697 {
3698 check_for_override (x, t);
3699 if (DECL_PURE_VIRTUAL_P (x) && ! DECL_VINDEX (x))
3700 cp_error_at ("initializer specified for non-virtual method %qD", x);
3701 /* The name of the field is the original field name
3702 Save this in auxiliary field for later overloading. */
3703 if (DECL_VINDEX (x))
3704 {
3705 TYPE_POLYMORPHIC_P (t) = 1;
3706 if (DECL_PURE_VIRTUAL_P (x))
3707 VEC_safe_push (tree, CLASSTYPE_PURE_VIRTUALS (t), x);
3708 }
3709 /* All user-declared destructors are non-trivial. */
3710 if (DECL_DESTRUCTOR_P (x))
3711 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
3712 }
3713 }
3714
3715 /* FN is a constructor or destructor. Clone the declaration to create
3716 a specialized in-charge or not-in-charge version, as indicated by
3717 NAME. */
3718
3719 static tree
3720 build_clone (tree fn, tree name)
3721 {
3722 tree parms;
3723 tree clone;
3724
3725 /* Copy the function. */
3726 clone = copy_decl (fn);
3727 /* Remember where this function came from. */
3728 DECL_CLONED_FUNCTION (clone) = fn;
3729 DECL_ABSTRACT_ORIGIN (clone) = fn;
3730 /* Reset the function name. */
3731 DECL_NAME (clone) = name;
3732 SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
3733 /* There's no pending inline data for this function. */
3734 DECL_PENDING_INLINE_INFO (clone) = NULL;
3735 DECL_PENDING_INLINE_P (clone) = 0;
3736 /* And it hasn't yet been deferred. */
3737 DECL_DEFERRED_FN (clone) = 0;
3738
3739 /* The base-class destructor is not virtual. */
3740 if (name == base_dtor_identifier)
3741 {
3742 DECL_VIRTUAL_P (clone) = 0;
3743 if (TREE_CODE (clone) != TEMPLATE_DECL)
3744 DECL_VINDEX (clone) = NULL_TREE;
3745 }
3746
3747 /* If there was an in-charge parameter, drop it from the function
3748 type. */
3749 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
3750 {
3751 tree basetype;
3752 tree parmtypes;
3753 tree exceptions;
3754
3755 exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
3756 basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
3757 parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
3758 /* Skip the `this' parameter. */
3759 parmtypes = TREE_CHAIN (parmtypes);
3760 /* Skip the in-charge parameter. */
3761 parmtypes = TREE_CHAIN (parmtypes);
3762 /* And the VTT parm, in a complete [cd]tor. */
3763 if (DECL_HAS_VTT_PARM_P (fn)
3764 && ! DECL_NEEDS_VTT_PARM_P (clone))
3765 parmtypes = TREE_CHAIN (parmtypes);
3766 /* If this is subobject constructor or destructor, add the vtt
3767 parameter. */
3768 TREE_TYPE (clone)
3769 = build_method_type_directly (basetype,
3770 TREE_TYPE (TREE_TYPE (clone)),
3771 parmtypes);
3772 if (exceptions)
3773 TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
3774 exceptions);
3775 TREE_TYPE (clone)
3776 = cp_build_type_attribute_variant (TREE_TYPE (clone),
3777 TYPE_ATTRIBUTES (TREE_TYPE (fn)));
3778 }
3779
3780 /* Copy the function parameters. But, DECL_ARGUMENTS on a TEMPLATE_DECL
3781 aren't function parameters; those are the template parameters. */
3782 if (TREE_CODE (clone) != TEMPLATE_DECL)
3783 {
3784 DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
3785 /* Remove the in-charge parameter. */
3786 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
3787 {
3788 TREE_CHAIN (DECL_ARGUMENTS (clone))
3789 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone)));
3790 DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
3791 }
3792 /* And the VTT parm, in a complete [cd]tor. */
3793 if (DECL_HAS_VTT_PARM_P (fn))
3794 {
3795 if (DECL_NEEDS_VTT_PARM_P (clone))
3796 DECL_HAS_VTT_PARM_P (clone) = 1;
3797 else
3798 {
3799 TREE_CHAIN (DECL_ARGUMENTS (clone))
3800 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone)));
3801 DECL_HAS_VTT_PARM_P (clone) = 0;
3802 }
3803 }
3804
3805 for (parms = DECL_ARGUMENTS (clone); parms; parms = TREE_CHAIN (parms))
3806 {
3807 DECL_CONTEXT (parms) = clone;
3808 cxx_dup_lang_specific_decl (parms);
3809 }
3810 }
3811
3812 /* Create the RTL for this function. */
3813 SET_DECL_RTL (clone, NULL_RTX);
3814 rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);
3815
3816 /* Make it easy to find the CLONE given the FN. */
3817 TREE_CHAIN (clone) = TREE_CHAIN (fn);
3818 TREE_CHAIN (fn) = clone;
3819
3820 /* If this is a template, handle the DECL_TEMPLATE_RESULT as well. */
3821 if (TREE_CODE (clone) == TEMPLATE_DECL)
3822 {
3823 tree result;
3824
3825 DECL_TEMPLATE_RESULT (clone)
3826 = build_clone (DECL_TEMPLATE_RESULT (clone), name);
3827 result = DECL_TEMPLATE_RESULT (clone);
3828 DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
3829 DECL_TI_TEMPLATE (result) = clone;
3830 }
3831 else if (pch_file)
3832 note_decl_for_pch (clone);
3833
3834 return clone;
3835 }
3836
3837 /* Produce declarations for all appropriate clones of FN. If
3838 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
3839 CLASTYPE_METHOD_VEC as well. */
3840
3841 void
3842 clone_function_decl (tree fn, int update_method_vec_p)
3843 {
3844 tree clone;
3845
3846 /* Avoid inappropriate cloning. */
3847 if (TREE_CHAIN (fn)
3848 && DECL_CLONED_FUNCTION (TREE_CHAIN (fn)))
3849 return;
3850
3851 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
3852 {
3853 /* For each constructor, we need two variants: an in-charge version
3854 and a not-in-charge version. */
3855 clone = build_clone (fn, complete_ctor_identifier);
3856 if (update_method_vec_p)
3857 add_method (DECL_CONTEXT (clone), clone);
3858 clone = build_clone (fn, base_ctor_identifier);
3859 if (update_method_vec_p)
3860 add_method (DECL_CONTEXT (clone), clone);
3861 }
3862 else
3863 {
3864 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));
3865
3866 /* For each destructor, we need three variants: an in-charge
3867 version, a not-in-charge version, and an in-charge deleting
3868 version. We clone the deleting version first because that
3869 means it will go second on the TYPE_METHODS list -- and that
3870 corresponds to the correct layout order in the virtual
3871 function table.
3872
3873 For a non-virtual destructor, we do not build a deleting
3874 destructor. */
3875 if (DECL_VIRTUAL_P (fn))
3876 {
3877 clone = build_clone (fn, deleting_dtor_identifier);
3878 if (update_method_vec_p)
3879 add_method (DECL_CONTEXT (clone), clone);
3880 }
3881 clone = build_clone (fn, complete_dtor_identifier);
3882 if (update_method_vec_p)
3883 add_method (DECL_CONTEXT (clone), clone);
3884 clone = build_clone (fn, base_dtor_identifier);
3885 if (update_method_vec_p)
3886 add_method (DECL_CONTEXT (clone), clone);
3887 }
3888
3889 /* Note that this is an abstract function that is never emitted. */
3890 DECL_ABSTRACT (fn) = 1;
3891 }
3892
3893 /* DECL is an in charge constructor, which is being defined. This will
3894 have had an in class declaration, from whence clones were
3895 declared. An out-of-class definition can specify additional default
3896 arguments. As it is the clones that are involved in overload
3897 resolution, we must propagate the information from the DECL to its
3898 clones. */
3899
3900 void
3901 adjust_clone_args (tree decl)
3902 {
3903 tree clone;
3904
3905 for (clone = TREE_CHAIN (decl); clone && DECL_CLONED_FUNCTION (clone);
3906 clone = TREE_CHAIN (clone))
3907 {
3908 tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
3909 tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
3910 tree decl_parms, clone_parms;
3911
3912 clone_parms = orig_clone_parms;
3913
3914 /* Skip the 'this' parameter. */
3915 orig_clone_parms = TREE_CHAIN (orig_clone_parms);
3916 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3917
3918 if (DECL_HAS_IN_CHARGE_PARM_P (decl))
3919 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3920 if (DECL_HAS_VTT_PARM_P (decl))
3921 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3922
3923 clone_parms = orig_clone_parms;
3924 if (DECL_HAS_VTT_PARM_P (clone))
3925 clone_parms = TREE_CHAIN (clone_parms);
3926
3927 for (decl_parms = orig_decl_parms; decl_parms;
3928 decl_parms = TREE_CHAIN (decl_parms),
3929 clone_parms = TREE_CHAIN (clone_parms))
3930 {
3931 gcc_assert (same_type_p (TREE_TYPE (decl_parms),
3932 TREE_TYPE (clone_parms)));
3933
3934 if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
3935 {
3936 /* A default parameter has been added. Adjust the
3937 clone's parameters. */
3938 tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
3939 tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
3940 tree type;
3941
3942 clone_parms = orig_decl_parms;
3943
3944 if (DECL_HAS_VTT_PARM_P (clone))
3945 {
3946 clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
3947 TREE_VALUE (orig_clone_parms),
3948 clone_parms);
3949 TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
3950 }
3951 type = build_method_type_directly (basetype,
3952 TREE_TYPE (TREE_TYPE (clone)),
3953 clone_parms);
3954 if (exceptions)
3955 type = build_exception_variant (type, exceptions);
3956 TREE_TYPE (clone) = type;
3957
3958 clone_parms = NULL_TREE;
3959 break;
3960 }
3961 }
3962 gcc_assert (!clone_parms);
3963 }
3964 }
3965
3966 /* For each of the constructors and destructors in T, create an
3967 in-charge and not-in-charge variant. */
3968
3969 static void
3970 clone_constructors_and_destructors (tree t)
3971 {
3972 tree fns;
3973
3974 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
3975 out now. */
3976 if (!CLASSTYPE_METHOD_VEC (t))
3977 return;
3978
3979 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
3980 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
3981 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
3982 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
3983 }
3984
3985 /* Remove all zero-width bit-fields from T. */
3986
3987 static void
3988 remove_zero_width_bit_fields (tree t)
3989 {
3990 tree *fieldsp;
3991
3992 fieldsp = &TYPE_FIELDS (t);
3993 while (*fieldsp)
3994 {
3995 if (TREE_CODE (*fieldsp) == FIELD_DECL
3996 && DECL_C_BIT_FIELD (*fieldsp)
3997 && DECL_INITIAL (*fieldsp))
3998 *fieldsp = TREE_CHAIN (*fieldsp);
3999 else
4000 fieldsp = &TREE_CHAIN (*fieldsp);
4001 }
4002 }
4003
4004 /* Returns TRUE iff we need a cookie when dynamically allocating an
4005 array whose elements have the indicated class TYPE. */
4006
4007 static bool
4008 type_requires_array_cookie (tree type)
4009 {
4010 tree fns;
4011 bool has_two_argument_delete_p = false;
4012
4013 gcc_assert (CLASS_TYPE_P (type));
4014
4015 /* If there's a non-trivial destructor, we need a cookie. In order
4016 to iterate through the array calling the destructor for each
4017 element, we'll have to know how many elements there are. */
4018 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
4019 return true;
4020
4021 /* If the usual deallocation function is a two-argument whose second
4022 argument is of type `size_t', then we have to pass the size of
4023 the array to the deallocation function, so we will need to store
4024 a cookie. */
4025 fns = lookup_fnfields (TYPE_BINFO (type),
4026 ansi_opname (VEC_DELETE_EXPR),
4027 /*protect=*/0);
4028 /* If there are no `operator []' members, or the lookup is
4029 ambiguous, then we don't need a cookie. */
4030 if (!fns || fns == error_mark_node)
4031 return false;
4032 /* Loop through all of the functions. */
4033 for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
4034 {
4035 tree fn;
4036 tree second_parm;
4037
4038 /* Select the current function. */
4039 fn = OVL_CURRENT (fns);
4040 /* See if this function is a one-argument delete function. If
4041 it is, then it will be the usual deallocation function. */
4042 second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
4043 if (second_parm == void_list_node)
4044 return false;
4045 /* Otherwise, if we have a two-argument function and the second
4046 argument is `size_t', it will be the usual deallocation
4047 function -- unless there is one-argument function, too. */
4048 if (TREE_CHAIN (second_parm) == void_list_node
4049 && same_type_p (TREE_VALUE (second_parm), sizetype))
4050 has_two_argument_delete_p = true;
4051 }
4052
4053 return has_two_argument_delete_p;
4054 }
4055
4056 /* Check the validity of the bases and members declared in T. Add any
4057 implicitly-generated functions (like copy-constructors and
4058 assignment operators). Compute various flag bits (like
4059 CLASSTYPE_NON_POD_T) for T. This routine works purely at the C++
4060 level: i.e., independently of the ABI in use. */
4061
4062 static void
4063 check_bases_and_members (tree t)
4064 {
4065 /* Nonzero if we are not allowed to generate a default constructor
4066 for this case. */
4067 int cant_have_default_ctor;
4068 /* Nonzero if the implicitly generated copy constructor should take
4069 a non-const reference argument. */
4070 int cant_have_const_ctor;
4071 /* Nonzero if the the implicitly generated assignment operator
4072 should take a non-const reference argument. */
4073 int no_const_asn_ref;
4074 tree access_decls;
4075
4076 /* By default, we use const reference arguments and generate default
4077 constructors. */
4078 cant_have_default_ctor = 0;
4079 cant_have_const_ctor = 0;
4080 no_const_asn_ref = 0;
4081
4082 /* Check all the base-classes. */
4083 check_bases (t, &cant_have_default_ctor, &cant_have_const_ctor,
4084 &no_const_asn_ref);
4085
4086 /* Check all the method declarations. */
4087 check_methods (t);
4088
4089 /* Check all the data member declarations. We cannot call
4090 check_field_decls until we have called check_bases check_methods,
4091 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
4092 being set appropriately. */
4093 check_field_decls (t, &access_decls,
4094 &cant_have_default_ctor,
4095 &cant_have_const_ctor,
4096 &no_const_asn_ref);
4097
4098 /* A nearly-empty class has to be vptr-containing; a nearly empty
4099 class contains just a vptr. */
4100 if (!TYPE_CONTAINS_VPTR_P (t))
4101 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4102
4103 /* Do some bookkeeping that will guide the generation of implicitly
4104 declared member functions. */
4105 TYPE_HAS_COMPLEX_INIT_REF (t)
4106 |= (TYPE_HAS_INIT_REF (t) || TYPE_CONTAINS_VPTR_P (t));
4107 TYPE_NEEDS_CONSTRUCTING (t)
4108 |= (TYPE_HAS_CONSTRUCTOR (t) || TYPE_CONTAINS_VPTR_P (t));
4109 CLASSTYPE_NON_AGGREGATE (t)
4110 |= (TYPE_HAS_CONSTRUCTOR (t) || TYPE_POLYMORPHIC_P (t));
4111 CLASSTYPE_NON_POD_P (t)
4112 |= (CLASSTYPE_NON_AGGREGATE (t)
4113 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
4114 || TYPE_HAS_ASSIGN_REF (t));
4115 TYPE_HAS_COMPLEX_ASSIGN_REF (t)
4116 |= TYPE_HAS_ASSIGN_REF (t) || TYPE_CONTAINS_VPTR_P (t);
4117
4118 /* Synthesize any needed methods. */
4119 add_implicitly_declared_members (t, cant_have_default_ctor,
4120 cant_have_const_ctor,
4121 no_const_asn_ref);
4122
4123 /* Create the in-charge and not-in-charge variants of constructors
4124 and destructors. */
4125 clone_constructors_and_destructors (t);
4126
4127 /* Process the using-declarations. */
4128 for (; access_decls; access_decls = TREE_CHAIN (access_decls))
4129 handle_using_decl (TREE_VALUE (access_decls), t);
4130
4131 /* Build and sort the CLASSTYPE_METHOD_VEC. */
4132 finish_struct_methods (t);
4133
4134 /* Figure out whether or not we will need a cookie when dynamically
4135 allocating an array of this type. */
4136 TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
4137 = type_requires_array_cookie (t);
4138 }
4139
4140 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
4141 accordingly. If a new vfield was created (because T doesn't have a
4142 primary base class), then the newly created field is returned. It
4143 is not added to the TYPE_FIELDS list; it is the caller's
4144 responsibility to do that. Accumulate declared virtual functions
4145 on VIRTUALS_P. */
4146
4147 static tree
4148 create_vtable_ptr (tree t, tree* virtuals_p)
4149 {
4150 tree fn;
4151
4152 /* Collect the virtual functions declared in T. */
4153 for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn))
4154 if (DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
4155 && TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
4156 {
4157 tree new_virtual = make_node (TREE_LIST);
4158
4159 BV_FN (new_virtual) = fn;
4160 BV_DELTA (new_virtual) = integer_zero_node;
4161 BV_VCALL_INDEX (new_virtual) = NULL_TREE;
4162
4163 TREE_CHAIN (new_virtual) = *virtuals_p;
4164 *virtuals_p = new_virtual;
4165 }
4166
4167 /* If we couldn't find an appropriate base class, create a new field
4168 here. Even if there weren't any new virtual functions, we might need a
4169 new virtual function table if we're supposed to include vptrs in
4170 all classes that need them. */
4171 if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
4172 {
4173 /* We build this decl with vtbl_ptr_type_node, which is a
4174 `vtable_entry_type*'. It might seem more precise to use
4175 `vtable_entry_type (*)[N]' where N is the number of virtual
4176 functions. However, that would require the vtable pointer in
4177 base classes to have a different type than the vtable pointer
4178 in derived classes. We could make that happen, but that
4179 still wouldn't solve all the problems. In particular, the
4180 type-based alias analysis code would decide that assignments
4181 to the base class vtable pointer can't alias assignments to
4182 the derived class vtable pointer, since they have different
4183 types. Thus, in a derived class destructor, where the base
4184 class constructor was inlined, we could generate bad code for
4185 setting up the vtable pointer.
4186
4187 Therefore, we use one type for all vtable pointers. We still
4188 use a type-correct type; it's just doesn't indicate the array
4189 bounds. That's better than using `void*' or some such; it's
4190 cleaner, and it let's the alias analysis code know that these
4191 stores cannot alias stores to void*! */
4192 tree field;
4193
4194 field = build_decl (FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
4195 SET_DECL_ASSEMBLER_NAME (field, get_identifier (VFIELD_BASE));
4196 DECL_VIRTUAL_P (field) = 1;
4197 DECL_ARTIFICIAL (field) = 1;
4198 DECL_FIELD_CONTEXT (field) = t;
4199 DECL_FCONTEXT (field) = t;
4200
4201 TYPE_VFIELD (t) = field;
4202
4203 /* This class is non-empty. */
4204 CLASSTYPE_EMPTY_P (t) = 0;
4205
4206 return field;
4207 }
4208
4209 return NULL_TREE;
4210 }
4211
4212 /* Fixup the inline function given by INFO now that the class is
4213 complete. */
4214
4215 static void
4216 fixup_pending_inline (tree fn)
4217 {
4218 if (DECL_PENDING_INLINE_INFO (fn))
4219 {
4220 tree args = DECL_ARGUMENTS (fn);
4221 while (args)
4222 {
4223 DECL_CONTEXT (args) = fn;
4224 args = TREE_CHAIN (args);
4225 }
4226 }
4227 }
4228
4229 /* Fixup the inline methods and friends in TYPE now that TYPE is
4230 complete. */
4231
4232 static void
4233 fixup_inline_methods (tree type)
4234 {
4235 tree method = TYPE_METHODS (type);
4236 VEC (tree) *friends;
4237 unsigned ix;
4238
4239 if (method && TREE_CODE (method) == TREE_VEC)
4240 {
4241 if (TREE_VEC_ELT (method, 1))
4242 method = TREE_VEC_ELT (method, 1);
4243 else if (TREE_VEC_ELT (method, 0))
4244 method = TREE_VEC_ELT (method, 0);
4245 else
4246 method = TREE_VEC_ELT (method, 2);
4247 }
4248
4249 /* Do inline member functions. */
4250 for (; method; method = TREE_CHAIN (method))
4251 fixup_pending_inline (method);
4252
4253 /* Do friends. */
4254 for (friends = CLASSTYPE_INLINE_FRIENDS (type), ix = 0;
4255 VEC_iterate (tree, friends, ix, method); ix++)
4256 fixup_pending_inline (method);
4257 CLASSTYPE_INLINE_FRIENDS (type) = NULL;
4258 }
4259
4260 /* Add OFFSET to all base types of BINFO which is a base in the
4261 hierarchy dominated by T.
4262
4263 OFFSET, which is a type offset, is number of bytes. */
4264
4265 static void
4266 propagate_binfo_offsets (tree binfo, tree offset)
4267 {
4268 int i;
4269 tree primary_binfo;
4270 tree base_binfo;
4271
4272 /* Update BINFO's offset. */
4273 BINFO_OFFSET (binfo)
4274 = convert (sizetype,
4275 size_binop (PLUS_EXPR,
4276 convert (ssizetype, BINFO_OFFSET (binfo)),
4277 offset));
4278
4279 /* Find the primary base class. */
4280 primary_binfo = get_primary_binfo (binfo);
4281
4282 if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
4283 propagate_binfo_offsets (primary_binfo, offset);
4284
4285 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
4286 downwards. */
4287 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4288 {
4289 /* Don't do the primary base twice. */
4290 if (base_binfo == primary_binfo)
4291 continue;
4292
4293 if (BINFO_VIRTUAL_P (base_binfo))
4294 continue;
4295
4296 propagate_binfo_offsets (base_binfo, offset);
4297 }
4298 }
4299
4300 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
4301 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
4302 empty subobjects of T. */
4303
4304 static void
4305 layout_virtual_bases (record_layout_info rli, splay_tree offsets)
4306 {
4307 tree vbase;
4308 tree t = rli->t;
4309 bool first_vbase = true;
4310 tree *next_field;
4311
4312 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
4313 return;
4314
4315 if (!abi_version_at_least(2))
4316 {
4317 /* In G++ 3.2, we incorrectly rounded the size before laying out
4318 the virtual bases. */
4319 finish_record_layout (rli, /*free_p=*/false);
4320 #ifdef STRUCTURE_SIZE_BOUNDARY
4321 /* Packed structures don't need to have minimum size. */
4322 if (! TYPE_PACKED (t))
4323 TYPE_ALIGN (t) = MAX (TYPE_ALIGN (t), (unsigned) STRUCTURE_SIZE_BOUNDARY);
4324 #endif
4325 rli->offset = TYPE_SIZE_UNIT (t);
4326 rli->bitpos = bitsize_zero_node;
4327 rli->record_align = TYPE_ALIGN (t);
4328 }
4329
4330 /* Find the last field. The artificial fields created for virtual
4331 bases will go after the last extant field to date. */
4332 next_field = &TYPE_FIELDS (t);
4333 while (*next_field)
4334 next_field = &TREE_CHAIN (*next_field);
4335
4336 /* Go through the virtual bases, allocating space for each virtual
4337 base that is not already a primary base class. These are
4338 allocated in inheritance graph order. */
4339 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
4340 {
4341 if (!BINFO_VIRTUAL_P (vbase))
4342 continue;
4343
4344 if (!BINFO_PRIMARY_P (vbase))
4345 {
4346 tree basetype = TREE_TYPE (vbase);
4347
4348 /* This virtual base is not a primary base of any class in the
4349 hierarchy, so we have to add space for it. */
4350 next_field = build_base_field (rli, vbase,
4351 offsets, next_field);
4352
4353 /* If the first virtual base might have been placed at a
4354 lower address, had we started from CLASSTYPE_SIZE, rather
4355 than TYPE_SIZE, issue a warning. There can be both false
4356 positives and false negatives from this warning in rare
4357 cases; to deal with all the possibilities would probably
4358 require performing both layout algorithms and comparing
4359 the results which is not particularly tractable. */
4360 if (warn_abi
4361 && first_vbase
4362 && (tree_int_cst_lt
4363 (size_binop (CEIL_DIV_EXPR,
4364 round_up (CLASSTYPE_SIZE (t),
4365 CLASSTYPE_ALIGN (basetype)),
4366 bitsize_unit_node),
4367 BINFO_OFFSET (vbase))))
4368 warning ("offset of virtual base %qT is not ABI-compliant and "
4369 "may change in a future version of GCC",
4370 basetype);
4371
4372 first_vbase = false;
4373 }
4374 }
4375 }
4376
4377 /* Returns the offset of the byte just past the end of the base class
4378 BINFO. */
4379
4380 static tree
4381 end_of_base (tree binfo)
4382 {
4383 tree size;
4384
4385 if (is_empty_class (BINFO_TYPE (binfo)))
4386 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
4387 allocate some space for it. It cannot have virtual bases, so
4388 TYPE_SIZE_UNIT is fine. */
4389 size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
4390 else
4391 size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
4392
4393 return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
4394 }
4395
4396 /* Returns the offset of the byte just past the end of the base class
4397 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
4398 only non-virtual bases are included. */
4399
4400 static tree
4401 end_of_class (tree t, int include_virtuals_p)
4402 {
4403 tree result = size_zero_node;
4404 VEC (tree) *vbases;
4405 tree binfo;
4406 tree base_binfo;
4407 tree offset;
4408 int i;
4409
4410 for (binfo = TYPE_BINFO (t), i = 0;
4411 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4412 {
4413 if (!include_virtuals_p
4414 && BINFO_VIRTUAL_P (base_binfo)
4415 && (!BINFO_PRIMARY_P (base_binfo)
4416 || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
4417 continue;
4418
4419 offset = end_of_base (base_binfo);
4420 if (INT_CST_LT_UNSIGNED (result, offset))
4421 result = offset;
4422 }
4423
4424 /* G++ 3.2 did not check indirect virtual bases. */
4425 if (abi_version_at_least (2) && include_virtuals_p)
4426 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
4427 VEC_iterate (tree, vbases, i, base_binfo); i++)
4428 {
4429 offset = end_of_base (base_binfo);
4430 if (INT_CST_LT_UNSIGNED (result, offset))
4431 result = offset;
4432 }
4433
4434 return result;
4435 }
4436
4437 /* Warn about bases of T that are inaccessible because they are
4438 ambiguous. For example:
4439
4440 struct S {};
4441 struct T : public S {};
4442 struct U : public S, public T {};
4443
4444 Here, `(S*) new U' is not allowed because there are two `S'
4445 subobjects of U. */
4446
4447 static void
4448 warn_about_ambiguous_bases (tree t)
4449 {
4450 int i;
4451 VEC (tree) *vbases;
4452 tree basetype;
4453 tree binfo;
4454 tree base_binfo;
4455
4456 /* If there are no repeated bases, nothing can be ambiguous. */
4457 if (!CLASSTYPE_REPEATED_BASE_P (t))
4458 return;
4459
4460 /* Check direct bases. */
4461 for (binfo = TYPE_BINFO (t), i = 0;
4462 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4463 {
4464 basetype = BINFO_TYPE (base_binfo);
4465
4466 if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
4467 warning ("direct base %qT inaccessible in %qT due to ambiguity",
4468 basetype, t);
4469 }
4470
4471 /* Check for ambiguous virtual bases. */
4472 if (extra_warnings)
4473 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
4474 VEC_iterate (tree, vbases, i, binfo); i++)
4475 {
4476 basetype = BINFO_TYPE (binfo);
4477
4478 if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
4479 warning ("virtual base %qT inaccessible in %qT due to ambiguity",
4480 basetype, t);
4481 }
4482 }
4483
4484 /* Compare two INTEGER_CSTs K1 and K2. */
4485
4486 static int
4487 splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
4488 {
4489 return tree_int_cst_compare ((tree) k1, (tree) k2);
4490 }
4491
4492 /* Increase the size indicated in RLI to account for empty classes
4493 that are "off the end" of the class. */
4494
4495 static void
4496 include_empty_classes (record_layout_info rli)
4497 {
4498 tree eoc;
4499 tree rli_size;
4500
4501 /* It might be the case that we grew the class to allocate a
4502 zero-sized base class. That won't be reflected in RLI, yet,
4503 because we are willing to overlay multiple bases at the same
4504 offset. However, now we need to make sure that RLI is big enough
4505 to reflect the entire class. */
4506 eoc = end_of_class (rli->t,
4507 CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
4508 rli_size = rli_size_unit_so_far (rli);
4509 if (TREE_CODE (rli_size) == INTEGER_CST
4510 && INT_CST_LT_UNSIGNED (rli_size, eoc))
4511 {
4512 if (!abi_version_at_least (2))
4513 /* In version 1 of the ABI, the size of a class that ends with
4514 a bitfield was not rounded up to a whole multiple of a
4515 byte. Because rli_size_unit_so_far returns only the number
4516 of fully allocated bytes, any extra bits were not included
4517 in the size. */
4518 rli->bitpos = round_down (rli->bitpos, BITS_PER_UNIT);
4519 else
4520 /* The size should have been rounded to a whole byte. */
4521 gcc_assert (tree_int_cst_equal
4522 (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
4523 rli->bitpos
4524 = size_binop (PLUS_EXPR,
4525 rli->bitpos,
4526 size_binop (MULT_EXPR,
4527 convert (bitsizetype,
4528 size_binop (MINUS_EXPR,
4529 eoc, rli_size)),
4530 bitsize_int (BITS_PER_UNIT)));
4531 normalize_rli (rli);
4532 }
4533 }
4534
4535 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
4536 BINFO_OFFSETs for all of the base-classes. Position the vtable
4537 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
4538
4539 static void
4540 layout_class_type (tree t, tree *virtuals_p)
4541 {
4542 tree non_static_data_members;
4543 tree field;
4544 tree vptr;
4545 record_layout_info rli;
4546 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
4547 types that appear at that offset. */
4548 splay_tree empty_base_offsets;
4549 /* True if the last field layed out was a bit-field. */
4550 bool last_field_was_bitfield = false;
4551 /* The location at which the next field should be inserted. */
4552 tree *next_field;
4553 /* T, as a base class. */
4554 tree base_t;
4555
4556 /* Keep track of the first non-static data member. */
4557 non_static_data_members = TYPE_FIELDS (t);
4558
4559 /* Start laying out the record. */
4560 rli = start_record_layout (t);
4561
4562 /* Mark all the primary bases in the hierarchy. */
4563 determine_primary_bases (t);
4564
4565 /* Create a pointer to our virtual function table. */
4566 vptr = create_vtable_ptr (t, virtuals_p);
4567
4568 /* The vptr is always the first thing in the class. */
4569 if (vptr)
4570 {
4571 TREE_CHAIN (vptr) = TYPE_FIELDS (t);
4572 TYPE_FIELDS (t) = vptr;
4573 next_field = &TREE_CHAIN (vptr);
4574 place_field (rli, vptr);
4575 }
4576 else
4577 next_field = &TYPE_FIELDS (t);
4578
4579 /* Build FIELD_DECLs for all of the non-virtual base-types. */
4580 empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
4581 NULL, NULL);
4582 build_base_fields (rli, empty_base_offsets, next_field);
4583
4584 /* Layout the non-static data members. */
4585 for (field = non_static_data_members; field; field = TREE_CHAIN (field))
4586 {
4587 tree type;
4588 tree padding;
4589
4590 /* We still pass things that aren't non-static data members to
4591 the back-end, in case it wants to do something with them. */
4592 if (TREE_CODE (field) != FIELD_DECL)
4593 {
4594 place_field (rli, field);
4595 /* If the static data member has incomplete type, keep track
4596 of it so that it can be completed later. (The handling
4597 of pending statics in finish_record_layout is
4598 insufficient; consider:
4599
4600 struct S1;
4601 struct S2 { static S1 s1; };
4602
4603 At this point, finish_record_layout will be called, but
4604 S1 is still incomplete.) */
4605 if (TREE_CODE (field) == VAR_DECL)
4606 {
4607 maybe_register_incomplete_var (field);
4608 /* The visibility of static data members is determined
4609 at their point of declaration, not their point of
4610 definition. */
4611 determine_visibility (field);
4612 }
4613 continue;
4614 }
4615
4616 type = TREE_TYPE (field);
4617
4618 padding = NULL_TREE;
4619
4620 /* If this field is a bit-field whose width is greater than its
4621 type, then there are some special rules for allocating
4622 it. */
4623 if (DECL_C_BIT_FIELD (field)
4624 && INT_CST_LT (TYPE_SIZE (type), DECL_SIZE (field)))
4625 {
4626 integer_type_kind itk;
4627 tree integer_type;
4628 bool was_unnamed_p = false;
4629 /* We must allocate the bits as if suitably aligned for the
4630 longest integer type that fits in this many bits. type
4631 of the field. Then, we are supposed to use the left over
4632 bits as additional padding. */
4633 for (itk = itk_char; itk != itk_none; ++itk)
4634 if (INT_CST_LT (DECL_SIZE (field),
4635 TYPE_SIZE (integer_types[itk])))
4636 break;
4637
4638 /* ITK now indicates a type that is too large for the
4639 field. We have to back up by one to find the largest
4640 type that fits. */
4641 integer_type = integer_types[itk - 1];
4642
4643 /* Figure out how much additional padding is required. GCC
4644 3.2 always created a padding field, even if it had zero
4645 width. */
4646 if (!abi_version_at_least (2)
4647 || INT_CST_LT (TYPE_SIZE (integer_type), DECL_SIZE (field)))
4648 {
4649 if (abi_version_at_least (2) && TREE_CODE (t) == UNION_TYPE)
4650 /* In a union, the padding field must have the full width
4651 of the bit-field; all fields start at offset zero. */
4652 padding = DECL_SIZE (field);
4653 else
4654 {
4655 if (warn_abi && TREE_CODE (t) == UNION_TYPE)
4656 warning ("size assigned to %qT may not be "
4657 "ABI-compliant and may change in a future "
4658 "version of GCC",
4659 t);
4660 padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
4661 TYPE_SIZE (integer_type));
4662 }
4663 }
4664 #ifdef PCC_BITFIELD_TYPE_MATTERS
4665 /* An unnamed bitfield does not normally affect the
4666 alignment of the containing class on a target where
4667 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
4668 make any exceptions for unnamed bitfields when the
4669 bitfields are longer than their types. Therefore, we
4670 temporarily give the field a name. */
4671 if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
4672 {
4673 was_unnamed_p = true;
4674 DECL_NAME (field) = make_anon_name ();
4675 }
4676 #endif
4677 DECL_SIZE (field) = TYPE_SIZE (integer_type);
4678 DECL_ALIGN (field) = TYPE_ALIGN (integer_type);
4679 DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
4680 layout_nonempty_base_or_field (rli, field, NULL_TREE,
4681 empty_base_offsets);
4682 if (was_unnamed_p)
4683 DECL_NAME (field) = NULL_TREE;
4684 /* Now that layout has been performed, set the size of the
4685 field to the size of its declared type; the rest of the
4686 field is effectively invisible. */
4687 DECL_SIZE (field) = TYPE_SIZE (type);
4688 /* We must also reset the DECL_MODE of the field. */
4689 if (abi_version_at_least (2))
4690 DECL_MODE (field) = TYPE_MODE (type);
4691 else if (warn_abi
4692 && DECL_MODE (field) != TYPE_MODE (type))
4693 /* Versions of G++ before G++ 3.4 did not reset the
4694 DECL_MODE. */
4695 warning ("the offset of %qD may not be ABI-compliant and may "
4696 "change in a future version of GCC", field);
4697 }
4698 else
4699 layout_nonempty_base_or_field (rli, field, NULL_TREE,
4700 empty_base_offsets);
4701
4702 /* Remember the location of any empty classes in FIELD. */
4703 if (abi_version_at_least (2))
4704 record_subobject_offsets (TREE_TYPE (field),
4705 byte_position(field),
4706 empty_base_offsets,
4707 /*vbases_p=*/1);
4708
4709 /* If a bit-field does not immediately follow another bit-field,
4710 and yet it starts in the middle of a byte, we have failed to
4711 comply with the ABI. */
4712 if (warn_abi
4713 && DECL_C_BIT_FIELD (field)
4714 && !last_field_was_bitfield
4715 && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
4716 DECL_FIELD_BIT_OFFSET (field),
4717 bitsize_unit_node)))
4718 cp_warning_at ("offset of %qD is not ABI-compliant and may "
4719 "change in a future version of GCC",
4720 field);
4721
4722 /* G++ used to use DECL_FIELD_OFFSET as if it were the byte
4723 offset of the field. */
4724 if (warn_abi
4725 && !tree_int_cst_equal (DECL_FIELD_OFFSET (field),
4726 byte_position (field))
4727 && contains_empty_class_p (TREE_TYPE (field)))
4728 cp_warning_at ("%qD contains empty classes which may cause base "
4729 "classes to be placed at different locations in a "
4730 "future version of GCC",
4731 field);
4732
4733 /* If we needed additional padding after this field, add it
4734 now. */
4735 if (padding)
4736 {
4737 tree padding_field;
4738
4739 padding_field = build_decl (FIELD_DECL,
4740 NULL_TREE,
4741 char_type_node);
4742 DECL_BIT_FIELD (padding_field) = 1;
4743 DECL_SIZE (padding_field) = padding;
4744 DECL_CONTEXT (padding_field) = t;
4745 DECL_ARTIFICIAL (padding_field) = 1;
4746 DECL_IGNORED_P (padding_field) = 1;
4747 layout_nonempty_base_or_field (rli, padding_field,
4748 NULL_TREE,
4749 empty_base_offsets);
4750 }
4751
4752 last_field_was_bitfield = DECL_C_BIT_FIELD (field);
4753 }
4754
4755 if (abi_version_at_least (2) && !integer_zerop (rli->bitpos))
4756 {
4757 /* Make sure that we are on a byte boundary so that the size of
4758 the class without virtual bases will always be a round number
4759 of bytes. */
4760 rli->bitpos = round_up (rli->bitpos, BITS_PER_UNIT);
4761 normalize_rli (rli);
4762 }
4763
4764 /* G++ 3.2 does not allow virtual bases to be overlaid with tail
4765 padding. */
4766 if (!abi_version_at_least (2))
4767 include_empty_classes(rli);
4768
4769 /* Delete all zero-width bit-fields from the list of fields. Now
4770 that the type is laid out they are no longer important. */
4771 remove_zero_width_bit_fields (t);
4772
4773 /* Create the version of T used for virtual bases. We do not use
4774 make_aggr_type for this version; this is an artificial type. For
4775 a POD type, we just reuse T. */
4776 if (CLASSTYPE_NON_POD_P (t) || CLASSTYPE_EMPTY_P (t))
4777 {
4778 base_t = make_node (TREE_CODE (t));
4779
4780 /* Set the size and alignment for the new type. In G++ 3.2, all
4781 empty classes were considered to have size zero when used as
4782 base classes. */
4783 if (!abi_version_at_least (2) && CLASSTYPE_EMPTY_P (t))
4784 {
4785 TYPE_SIZE (base_t) = bitsize_zero_node;
4786 TYPE_SIZE_UNIT (base_t) = size_zero_node;
4787 if (warn_abi && !integer_zerop (rli_size_unit_so_far (rli)))
4788 warning ("layout of classes derived from empty class %qT "
4789 "may change in a future version of GCC",
4790 t);
4791 }
4792 else
4793 {
4794 tree eoc;
4795
4796 /* If the ABI version is not at least two, and the last
4797 field was a bit-field, RLI may not be on a byte
4798 boundary. In particular, rli_size_unit_so_far might
4799 indicate the last complete byte, while rli_size_so_far
4800 indicates the total number of bits used. Therefore,
4801 rli_size_so_far, rather than rli_size_unit_so_far, is
4802 used to compute TYPE_SIZE_UNIT. */
4803 eoc = end_of_class (t, /*include_virtuals_p=*/0);
4804 TYPE_SIZE_UNIT (base_t)
4805 = size_binop (MAX_EXPR,
4806 convert (sizetype,
4807 size_binop (CEIL_DIV_EXPR,
4808 rli_size_so_far (rli),
4809 bitsize_int (BITS_PER_UNIT))),
4810 eoc);
4811 TYPE_SIZE (base_t)
4812 = size_binop (MAX_EXPR,
4813 rli_size_so_far (rli),
4814 size_binop (MULT_EXPR,
4815 convert (bitsizetype, eoc),
4816 bitsize_int (BITS_PER_UNIT)));
4817 }
4818 TYPE_ALIGN (base_t) = rli->record_align;
4819 TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
4820
4821 /* Copy the fields from T. */
4822 next_field = &TYPE_FIELDS (base_t);
4823 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
4824 if (TREE_CODE (field) == FIELD_DECL)
4825 {
4826 *next_field = build_decl (FIELD_DECL,
4827 DECL_NAME (field),
4828 TREE_TYPE (field));
4829 DECL_CONTEXT (*next_field) = base_t;
4830 DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field);
4831 DECL_FIELD_BIT_OFFSET (*next_field)
4832 = DECL_FIELD_BIT_OFFSET (field);
4833 DECL_SIZE (*next_field) = DECL_SIZE (field);
4834 DECL_MODE (*next_field) = DECL_MODE (field);
4835 next_field = &TREE_CHAIN (*next_field);
4836 }
4837
4838 /* Record the base version of the type. */
4839 CLASSTYPE_AS_BASE (t) = base_t;
4840 TYPE_CONTEXT (base_t) = t;
4841 }
4842 else
4843 CLASSTYPE_AS_BASE (t) = t;
4844
4845 /* Every empty class contains an empty class. */
4846 if (CLASSTYPE_EMPTY_P (t))
4847 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
4848
4849 /* Set the TYPE_DECL for this type to contain the right
4850 value for DECL_OFFSET, so that we can use it as part
4851 of a COMPONENT_REF for multiple inheritance. */
4852 layout_decl (TYPE_MAIN_DECL (t), 0);
4853
4854 /* Now fix up any virtual base class types that we left lying
4855 around. We must get these done before we try to lay out the
4856 virtual function table. As a side-effect, this will remove the
4857 base subobject fields. */
4858 layout_virtual_bases (rli, empty_base_offsets);
4859
4860 /* Make sure that empty classes are reflected in RLI at this
4861 point. */
4862 include_empty_classes(rli);
4863
4864 /* Make sure not to create any structures with zero size. */
4865 if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
4866 place_field (rli,
4867 build_decl (FIELD_DECL, NULL_TREE, char_type_node));
4868
4869 /* Let the back-end lay out the type. */
4870 finish_record_layout (rli, /*free_p=*/true);
4871
4872 /* Warn about bases that can't be talked about due to ambiguity. */
4873 warn_about_ambiguous_bases (t);
4874
4875 /* Now that we're done with layout, give the base fields the real types. */
4876 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
4877 if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
4878 TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
4879
4880 /* Clean up. */
4881 splay_tree_delete (empty_base_offsets);
4882 }
4883
4884 /* Determine the "key method" for the class type indicated by TYPE,
4885 and set CLASSTYPE_KEY_METHOD accordingly. */
4886
4887 void
4888 determine_key_method (tree type)
4889 {
4890 tree method;
4891
4892 if (TYPE_FOR_JAVA (type)
4893 || processing_template_decl
4894 || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
4895 || CLASSTYPE_INTERFACE_KNOWN (type))
4896 return;
4897
4898 /* The key method is the first non-pure virtual function that is not
4899 inline at the point of class definition. On some targets the
4900 key function may not be inline; those targets should not call
4901 this function until the end of the translation unit. */
4902 for (method = TYPE_METHODS (type); method != NULL_TREE;
4903 method = TREE_CHAIN (method))
4904 if (DECL_VINDEX (method) != NULL_TREE
4905 && ! DECL_DECLARED_INLINE_P (method)
4906 && ! DECL_PURE_VIRTUAL_P (method))
4907 {
4908 CLASSTYPE_KEY_METHOD (type) = method;
4909 break;
4910 }
4911
4912 return;
4913 }
4914
4915 /* Perform processing required when the definition of T (a class type)
4916 is complete. */
4917
4918 void
4919 finish_struct_1 (tree t)
4920 {
4921 tree x;
4922 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
4923 tree virtuals = NULL_TREE;
4924 int n_fields = 0;
4925
4926 if (COMPLETE_TYPE_P (t))
4927 {
4928 gcc_assert (IS_AGGR_TYPE (t));
4929 error ("redefinition of %q#T", t);
4930 popclass ();
4931 return;
4932 }
4933
4934 /* If this type was previously laid out as a forward reference,
4935 make sure we lay it out again. */
4936 TYPE_SIZE (t) = NULL_TREE;
4937 CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
4938
4939 fixup_inline_methods (t);
4940
4941 /* Make assumptions about the class; we'll reset the flags if
4942 necessary. */
4943 CLASSTYPE_EMPTY_P (t) = 1;
4944 CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
4945 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
4946
4947 /* Do end-of-class semantic processing: checking the validity of the
4948 bases and members and add implicitly generated methods. */
4949 check_bases_and_members (t);
4950
4951 /* Find the key method. */
4952 if (TYPE_CONTAINS_VPTR_P (t))
4953 {
4954 /* The Itanium C++ ABI permits the key method to be chosen when
4955 the class is defined -- even though the key method so
4956 selected may later turn out to be an inline function. On
4957 some systems (such as ARM Symbian OS) the key method cannot
4958 be determined until the end of the translation unit. On such
4959 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
4960 will cause the class to be added to KEYED_CLASSES. Then, in
4961 finish_file we will determine the key method. */
4962 if (targetm.cxx.key_method_may_be_inline ())
4963 determine_key_method (t);
4964
4965 /* If a polymorphic class has no key method, we may emit the vtable
4966 in every translation unit where the class definition appears. */
4967 if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE)
4968 keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
4969 }
4970
4971 /* Layout the class itself. */
4972 layout_class_type (t, &virtuals);
4973 if (CLASSTYPE_AS_BASE (t) != t)
4974 /* We use the base type for trivial assignments, and hence it
4975 needs a mode. */
4976 compute_record_mode (CLASSTYPE_AS_BASE (t));
4977
4978 virtuals = modify_all_vtables (t, nreverse (virtuals));
4979
4980 /* If necessary, create the primary vtable for this class. */
4981 if (virtuals || TYPE_CONTAINS_VPTR_P (t))
4982 {
4983 /* We must enter these virtuals into the table. */
4984 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
4985 build_primary_vtable (NULL_TREE, t);
4986 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
4987 /* Here we know enough to change the type of our virtual
4988 function table, but we will wait until later this function. */
4989 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
4990 }
4991
4992 if (TYPE_CONTAINS_VPTR_P (t))
4993 {
4994 int vindex;
4995 tree fn;
4996
4997 if (BINFO_VTABLE (TYPE_BINFO (t)))
4998 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
4999 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
5000 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);
5001
5002 /* Add entries for virtual functions introduced by this class. */
5003 BINFO_VIRTUALS (TYPE_BINFO (t))
5004 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);
5005
5006 /* Set DECL_VINDEX for all functions declared in this class. */
5007 for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
5008 fn;
5009 fn = TREE_CHAIN (fn),
5010 vindex += (TARGET_VTABLE_USES_DESCRIPTORS
5011 ? TARGET_VTABLE_USES_DESCRIPTORS : 1))
5012 {
5013 tree fndecl = BV_FN (fn);
5014
5015 if (DECL_THUNK_P (fndecl))
5016 /* A thunk. We should never be calling this entry directly
5017 from this vtable -- we'd use the entry for the non
5018 thunk base function. */
5019 DECL_VINDEX (fndecl) = NULL_TREE;
5020 else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
5021 DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
5022 }
5023 }
5024
5025 finish_struct_bits (t);
5026
5027 /* Complete the rtl for any static member objects of the type we're
5028 working on. */
5029 for (x = TYPE_FIELDS (t); x; x = TREE_CHAIN (x))
5030 if (TREE_CODE (x) == VAR_DECL && TREE_STATIC (x)
5031 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
5032 DECL_MODE (x) = TYPE_MODE (t);
5033
5034 /* Done with FIELDS...now decide whether to sort these for
5035 faster lookups later.
5036
5037 We use a small number because most searches fail (succeeding
5038 ultimately as the search bores through the inheritance
5039 hierarchy), and we want this failure to occur quickly. */
5040
5041 n_fields = count_fields (TYPE_FIELDS (t));
5042 if (n_fields > 7)
5043 {
5044 struct sorted_fields_type *field_vec = GGC_NEWVAR
5045 (struct sorted_fields_type,
5046 sizeof (struct sorted_fields_type) + n_fields * sizeof (tree));
5047 field_vec->len = n_fields;
5048 add_fields_to_record_type (TYPE_FIELDS (t), field_vec, 0);
5049 qsort (field_vec->elts, n_fields, sizeof (tree),
5050 field_decl_cmp);
5051 if (! DECL_LANG_SPECIFIC (TYPE_MAIN_DECL (t)))
5052 retrofit_lang_decl (TYPE_MAIN_DECL (t));
5053 DECL_SORTED_FIELDS (TYPE_MAIN_DECL (t)) = field_vec;
5054 }
5055
5056 /* Make the rtl for any new vtables we have created, and unmark
5057 the base types we marked. */
5058 finish_vtbls (t);
5059
5060 /* Build the VTT for T. */
5061 build_vtt (t);
5062
5063 if (warn_nonvdtor && TYPE_POLYMORPHIC_P (t))
5064 {
5065 tree dtor;
5066
5067 dtor = CLASSTYPE_DESTRUCTORS (t);
5068 /* Warn only if the dtor is non-private or the class has
5069 friends. */
5070 if (/* An implicitly declared destructor is always public. And,
5071 if it were virtual, we would have created it by now. */
5072 !dtor
5073 || (!DECL_VINDEX (dtor)
5074 && (!TREE_PRIVATE (dtor)
5075 || CLASSTYPE_FRIEND_CLASSES (t)
5076 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))))
5077 warning ("%q#T has virtual functions but non-virtual destructor",
5078 t);
5079 }
5080
5081 complete_vars (t);
5082
5083 if (warn_overloaded_virtual)
5084 warn_hidden (t);
5085
5086 maybe_suppress_debug_info (t);
5087
5088 dump_class_hierarchy (t);
5089
5090 /* Finish debugging output for this type. */
5091 rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
5092 }
5093
5094 /* When T was built up, the member declarations were added in reverse
5095 order. Rearrange them to declaration order. */
5096
5097 void
5098 unreverse_member_declarations (tree t)
5099 {
5100 tree next;
5101 tree prev;
5102 tree x;
5103
5104 /* The following lists are all in reverse order. Put them in
5105 declaration order now. */
5106 TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
5107 CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
5108
5109 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
5110 reverse order, so we can't just use nreverse. */
5111 prev = NULL_TREE;
5112 for (x = TYPE_FIELDS (t);
5113 x && TREE_CODE (x) != TYPE_DECL;
5114 x = next)
5115 {
5116 next = TREE_CHAIN (x);
5117 TREE_CHAIN (x) = prev;
5118 prev = x;
5119 }
5120 if (prev)
5121 {
5122 TREE_CHAIN (TYPE_FIELDS (t)) = x;
5123 if (prev)
5124 TYPE_FIELDS (t) = prev;
5125 }
5126 }
5127
5128 tree
5129 finish_struct (tree t, tree attributes)
5130 {
5131 location_t saved_loc = input_location;
5132
5133 /* Now that we've got all the field declarations, reverse everything
5134 as necessary. */
5135 unreverse_member_declarations (t);
5136
5137 cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
5138
5139 /* Nadger the current location so that diagnostics point to the start of
5140 the struct, not the end. */
5141 input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
5142
5143 if (processing_template_decl)
5144 {
5145 tree x;
5146
5147 finish_struct_methods (t);
5148 TYPE_SIZE (t) = bitsize_zero_node;
5149
5150 /* We need to emit an error message if this type was used as a parameter
5151 and it is an abstract type, even if it is a template. We construct
5152 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
5153 account and we call complete_vars with this type, which will check
5154 the PARM_DECLS. Note that while the type is being defined,
5155 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
5156 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
5157 CLASSTYPE_PURE_VIRTUALS (t) = NULL;
5158 for (x = TYPE_METHODS (t); x; x = TREE_CHAIN (x))
5159 if (DECL_PURE_VIRTUAL_P (x))
5160 VEC_safe_push (tree, CLASSTYPE_PURE_VIRTUALS (t), x);
5161 complete_vars (t);
5162 }
5163 else
5164 finish_struct_1 (t);
5165
5166 input_location = saved_loc;
5167
5168 TYPE_BEING_DEFINED (t) = 0;
5169
5170 if (current_class_type)
5171 popclass ();
5172 else
5173 error ("trying to finish struct, but kicked out due to previous parse errors");
5174
5175 if (processing_template_decl && at_function_scope_p ())
5176 add_stmt (build_min (TAG_DEFN, t));
5177
5178 return t;
5179 }
5180 \f
5181 /* Return the dynamic type of INSTANCE, if known.
5182 Used to determine whether the virtual function table is needed
5183 or not.
5184
5185 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5186 of our knowledge of its type. *NONNULL should be initialized
5187 before this function is called. */
5188
5189 static tree
5190 fixed_type_or_null (tree instance, int* nonnull, int* cdtorp)
5191 {
5192 switch (TREE_CODE (instance))
5193 {
5194 case INDIRECT_REF:
5195 if (POINTER_TYPE_P (TREE_TYPE (instance)))
5196 return NULL_TREE;
5197 else
5198 return fixed_type_or_null (TREE_OPERAND (instance, 0),
5199 nonnull, cdtorp);
5200
5201 case CALL_EXPR:
5202 /* This is a call to a constructor, hence it's never zero. */
5203 if (TREE_HAS_CONSTRUCTOR (instance))
5204 {
5205 if (nonnull)
5206 *nonnull = 1;
5207 return TREE_TYPE (instance);
5208 }
5209 return NULL_TREE;
5210
5211 case SAVE_EXPR:
5212 /* This is a call to a constructor, hence it's never zero. */
5213 if (TREE_HAS_CONSTRUCTOR (instance))
5214 {
5215 if (nonnull)
5216 *nonnull = 1;
5217 return TREE_TYPE (instance);
5218 }
5219 return fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull, cdtorp);
5220
5221 case PLUS_EXPR:
5222 case MINUS_EXPR:
5223 if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
5224 return fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull, cdtorp);
5225 if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
5226 /* Propagate nonnull. */
5227 return fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull, cdtorp);
5228 return NULL_TREE;
5229
5230 case NOP_EXPR:
5231 case CONVERT_EXPR:
5232 return fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull, cdtorp);
5233
5234 case ADDR_EXPR:
5235 instance = TREE_OPERAND (instance, 0);
5236 if (nonnull)
5237 {
5238 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
5239 with a real object -- given &p->f, p can still be null. */
5240 tree t = get_base_address (instance);
5241 /* ??? Probably should check DECL_WEAK here. */
5242 if (t && DECL_P (t))
5243 *nonnull = 1;
5244 }
5245 return fixed_type_or_null (instance, nonnull, cdtorp);
5246
5247 case COMPONENT_REF:
5248 /* If this component is really a base class reference, then the field
5249 itself isn't definitive. */
5250 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
5251 return fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull, cdtorp);
5252 return fixed_type_or_null (TREE_OPERAND (instance, 1), nonnull, cdtorp);
5253
5254 case VAR_DECL:
5255 case FIELD_DECL:
5256 if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
5257 && IS_AGGR_TYPE (TREE_TYPE (TREE_TYPE (instance))))
5258 {
5259 if (nonnull)
5260 *nonnull = 1;
5261 return TREE_TYPE (TREE_TYPE (instance));
5262 }
5263 /* fall through... */
5264 case TARGET_EXPR:
5265 case PARM_DECL:
5266 case RESULT_DECL:
5267 if (IS_AGGR_TYPE (TREE_TYPE (instance)))
5268 {
5269 if (nonnull)
5270 *nonnull = 1;
5271 return TREE_TYPE (instance);
5272 }
5273 else if (instance == current_class_ptr)
5274 {
5275 if (nonnull)
5276 *nonnull = 1;
5277
5278 /* if we're in a ctor or dtor, we know our type. */
5279 if (DECL_LANG_SPECIFIC (current_function_decl)
5280 && (DECL_CONSTRUCTOR_P (current_function_decl)
5281 || DECL_DESTRUCTOR_P (current_function_decl)))
5282 {
5283 if (cdtorp)
5284 *cdtorp = 1;
5285 return TREE_TYPE (TREE_TYPE (instance));
5286 }
5287 }
5288 else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
5289 {
5290 /* Reference variables should be references to objects. */
5291 if (nonnull)
5292 *nonnull = 1;
5293
5294 /* DECL_VAR_MARKED_P is used to prevent recursion; a
5295 variable's initializer may refer to the variable
5296 itself. */
5297 if (TREE_CODE (instance) == VAR_DECL
5298 && DECL_INITIAL (instance)
5299 && !DECL_VAR_MARKED_P (instance))
5300 {
5301 tree type;
5302 DECL_VAR_MARKED_P (instance) = 1;
5303 type = fixed_type_or_null (DECL_INITIAL (instance),
5304 nonnull, cdtorp);
5305 DECL_VAR_MARKED_P (instance) = 0;
5306 return type;
5307 }
5308 }
5309 return NULL_TREE;
5310
5311 default:
5312 return NULL_TREE;
5313 }
5314 }
5315
5316 /* Return nonzero if the dynamic type of INSTANCE is known, and
5317 equivalent to the static type. We also handle the case where
5318 INSTANCE is really a pointer. Return negative if this is a
5319 ctor/dtor. There the dynamic type is known, but this might not be
5320 the most derived base of the original object, and hence virtual
5321 bases may not be layed out according to this type.
5322
5323 Used to determine whether the virtual function table is needed
5324 or not.
5325
5326 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5327 of our knowledge of its type. *NONNULL should be initialized
5328 before this function is called. */
5329
5330 int
5331 resolves_to_fixed_type_p (tree instance, int* nonnull)
5332 {
5333 tree t = TREE_TYPE (instance);
5334 int cdtorp = 0;
5335
5336 tree fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
5337 if (fixed == NULL_TREE)
5338 return 0;
5339 if (POINTER_TYPE_P (t))
5340 t = TREE_TYPE (t);
5341 if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
5342 return 0;
5343 return cdtorp ? -1 : 1;
5344 }
5345
5346 \f
5347 void
5348 init_class_processing (void)
5349 {
5350 current_class_depth = 0;
5351 current_class_stack_size = 10;
5352 current_class_stack
5353 = xmalloc (current_class_stack_size * sizeof (struct class_stack_node));
5354 VARRAY_TREE_INIT (local_classes, 8, "local_classes");
5355
5356 ridpointers[(int) RID_PUBLIC] = access_public_node;
5357 ridpointers[(int) RID_PRIVATE] = access_private_node;
5358 ridpointers[(int) RID_PROTECTED] = access_protected_node;
5359 }
5360
5361 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
5362
5363 static void
5364 restore_class_cache (void)
5365 {
5366 tree type;
5367
5368 /* We are re-entering the same class we just left, so we don't
5369 have to search the whole inheritance matrix to find all the
5370 decls to bind again. Instead, we install the cached
5371 class_shadowed list and walk through it binding names. */
5372 push_binding_level (previous_class_level);
5373 class_binding_level = previous_class_level;
5374 /* Restore IDENTIFIER_TYPE_VALUE. */
5375 for (type = class_binding_level->type_shadowed;
5376 type;
5377 type = TREE_CHAIN (type))
5378 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
5379 }
5380
5381 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
5382 appropriate for TYPE.
5383
5384 So that we may avoid calls to lookup_name, we cache the _TYPE
5385 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
5386
5387 For multiple inheritance, we perform a two-pass depth-first search
5388 of the type lattice. */
5389
5390 void
5391 pushclass (tree type)
5392 {
5393 type = TYPE_MAIN_VARIANT (type);
5394
5395 /* Make sure there is enough room for the new entry on the stack. */
5396 if (current_class_depth + 1 >= current_class_stack_size)
5397 {
5398 current_class_stack_size *= 2;
5399 current_class_stack
5400 = xrealloc (current_class_stack,
5401 current_class_stack_size
5402 * sizeof (struct class_stack_node));
5403 }
5404
5405 /* Insert a new entry on the class stack. */
5406 current_class_stack[current_class_depth].name = current_class_name;
5407 current_class_stack[current_class_depth].type = current_class_type;
5408 current_class_stack[current_class_depth].access = current_access_specifier;
5409 current_class_stack[current_class_depth].names_used = 0;
5410 current_class_depth++;
5411
5412 /* Now set up the new type. */
5413 current_class_name = TYPE_NAME (type);
5414 if (TREE_CODE (current_class_name) == TYPE_DECL)
5415 current_class_name = DECL_NAME (current_class_name);
5416 current_class_type = type;
5417
5418 /* By default, things in classes are private, while things in
5419 structures or unions are public. */
5420 current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
5421 ? access_private_node
5422 : access_public_node);
5423
5424 if (previous_class_level
5425 && type != previous_class_level->this_entity
5426 && current_class_depth == 1)
5427 {
5428 /* Forcibly remove any old class remnants. */
5429 invalidate_class_lookup_cache ();
5430 }
5431
5432 if (!previous_class_level
5433 || type != previous_class_level->this_entity
5434 || current_class_depth > 1)
5435 pushlevel_class ();
5436 else
5437 restore_class_cache ();
5438 }
5439
5440 /* When we exit a toplevel class scope, we save its binding level so
5441 that we can restore it quickly. Here, we've entered some other
5442 class, so we must invalidate our cache. */
5443
5444 void
5445 invalidate_class_lookup_cache (void)
5446 {
5447 previous_class_level = NULL;
5448 }
5449
5450 /* Get out of the current class scope. If we were in a class scope
5451 previously, that is the one popped to. */
5452
5453 void
5454 popclass (void)
5455 {
5456 poplevel_class ();
5457
5458 current_class_depth--;
5459 current_class_name = current_class_stack[current_class_depth].name;
5460 current_class_type = current_class_stack[current_class_depth].type;
5461 current_access_specifier = current_class_stack[current_class_depth].access;
5462 if (current_class_stack[current_class_depth].names_used)
5463 splay_tree_delete (current_class_stack[current_class_depth].names_used);
5464 }
5465
5466 /* Returns 1 if current_class_type is either T or a nested type of T.
5467 We start looking from 1 because entry 0 is from global scope, and has
5468 no type. */
5469
5470 int
5471 currently_open_class (tree t)
5472 {
5473 int i;
5474 if (current_class_type && same_type_p (t, current_class_type))
5475 return 1;
5476 for (i = 1; i < current_class_depth; ++i)
5477 if (current_class_stack[i].type
5478 && same_type_p (current_class_stack [i].type, t))
5479 return 1;
5480 return 0;
5481 }
5482
5483 /* If either current_class_type or one of its enclosing classes are derived
5484 from T, return the appropriate type. Used to determine how we found
5485 something via unqualified lookup. */
5486
5487 tree
5488 currently_open_derived_class (tree t)
5489 {
5490 int i;
5491
5492 /* The bases of a dependent type are unknown. */
5493 if (dependent_type_p (t))
5494 return NULL_TREE;
5495
5496 if (!current_class_type)
5497 return NULL_TREE;
5498
5499 if (DERIVED_FROM_P (t, current_class_type))
5500 return current_class_type;
5501
5502 for (i = current_class_depth - 1; i > 0; --i)
5503 if (DERIVED_FROM_P (t, current_class_stack[i].type))
5504 return current_class_stack[i].type;
5505
5506 return NULL_TREE;
5507 }
5508
5509 /* When entering a class scope, all enclosing class scopes' names with
5510 static meaning (static variables, static functions, types and
5511 enumerators) have to be visible. This recursive function calls
5512 pushclass for all enclosing class contexts until global or a local
5513 scope is reached. TYPE is the enclosed class. */
5514
5515 void
5516 push_nested_class (tree type)
5517 {
5518 tree context;
5519
5520 /* A namespace might be passed in error cases, like A::B:C. */
5521 if (type == NULL_TREE
5522 || type == error_mark_node
5523 || TREE_CODE (type) == NAMESPACE_DECL
5524 || ! IS_AGGR_TYPE (type)
5525 || TREE_CODE (type) == TEMPLATE_TYPE_PARM
5526 || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM)
5527 return;
5528
5529 context = DECL_CONTEXT (TYPE_MAIN_DECL (type));
5530
5531 if (context && CLASS_TYPE_P (context))
5532 push_nested_class (context);
5533 pushclass (type);
5534 }
5535
5536 /* Undoes a push_nested_class call. */
5537
5538 void
5539 pop_nested_class (void)
5540 {
5541 tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
5542
5543 popclass ();
5544 if (context && CLASS_TYPE_P (context))
5545 pop_nested_class ();
5546 }
5547
5548 /* Returns the number of extern "LANG" blocks we are nested within. */
5549
5550 int
5551 current_lang_depth (void)
5552 {
5553 return VARRAY_ACTIVE_SIZE (current_lang_base);
5554 }
5555
5556 /* Set global variables CURRENT_LANG_NAME to appropriate value
5557 so that behavior of name-mangling machinery is correct. */
5558
5559 void
5560 push_lang_context (tree name)
5561 {
5562 VARRAY_PUSH_TREE (current_lang_base, current_lang_name);
5563
5564 if (name == lang_name_cplusplus)
5565 {
5566 current_lang_name = name;
5567 }
5568 else if (name == lang_name_java)
5569 {
5570 current_lang_name = name;
5571 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
5572 (See record_builtin_java_type in decl.c.) However, that causes
5573 incorrect debug entries if these types are actually used.
5574 So we re-enable debug output after extern "Java". */
5575 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
5576 DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
5577 DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
5578 DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
5579 DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
5580 DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
5581 DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
5582 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
5583 }
5584 else if (name == lang_name_c)
5585 {
5586 current_lang_name = name;
5587 }
5588 else
5589 error ("language string %<\"%E\"%> not recognized", name);
5590 }
5591
5592 /* Get out of the current language scope. */
5593
5594 void
5595 pop_lang_context (void)
5596 {
5597 current_lang_name = VARRAY_TOP_TREE (current_lang_base);
5598 VARRAY_POP (current_lang_base);
5599 }
5600 \f
5601 /* Type instantiation routines. */
5602
5603 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
5604 matches the TARGET_TYPE. If there is no satisfactory match, return
5605 error_mark_node, and issue a error & warning messages under control
5606 of FLAGS. Permit pointers to member function if FLAGS permits. If
5607 TEMPLATE_ONLY, the name of the overloaded function was a
5608 template-id, and EXPLICIT_TARGS are the explicitly provided
5609 template arguments. */
5610
5611 static tree
5612 resolve_address_of_overloaded_function (tree target_type,
5613 tree overload,
5614 tsubst_flags_t flags,
5615 bool template_only,
5616 tree explicit_targs)
5617 {
5618 /* Here's what the standard says:
5619
5620 [over.over]
5621
5622 If the name is a function template, template argument deduction
5623 is done, and if the argument deduction succeeds, the deduced
5624 arguments are used to generate a single template function, which
5625 is added to the set of overloaded functions considered.
5626
5627 Non-member functions and static member functions match targets of
5628 type "pointer-to-function" or "reference-to-function." Nonstatic
5629 member functions match targets of type "pointer-to-member
5630 function;" the function type of the pointer to member is used to
5631 select the member function from the set of overloaded member
5632 functions. If a nonstatic member function is selected, the
5633 reference to the overloaded function name is required to have the
5634 form of a pointer to member as described in 5.3.1.
5635
5636 If more than one function is selected, any template functions in
5637 the set are eliminated if the set also contains a non-template
5638 function, and any given template function is eliminated if the
5639 set contains a second template function that is more specialized
5640 than the first according to the partial ordering rules 14.5.5.2.
5641 After such eliminations, if any, there shall remain exactly one
5642 selected function. */
5643
5644 int is_ptrmem = 0;
5645 int is_reference = 0;
5646 /* We store the matches in a TREE_LIST rooted here. The functions
5647 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
5648 interoperability with most_specialized_instantiation. */
5649 tree matches = NULL_TREE;
5650 tree fn;
5651
5652 /* By the time we get here, we should be seeing only real
5653 pointer-to-member types, not the internal POINTER_TYPE to
5654 METHOD_TYPE representation. */
5655 gcc_assert (TREE_CODE (target_type) != POINTER_TYPE
5656 || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);
5657
5658 gcc_assert (is_overloaded_fn (overload));
5659
5660 /* Check that the TARGET_TYPE is reasonable. */
5661 if (TYPE_PTRFN_P (target_type))
5662 /* This is OK. */;
5663 else if (TYPE_PTRMEMFUNC_P (target_type))
5664 /* This is OK, too. */
5665 is_ptrmem = 1;
5666 else if (TREE_CODE (target_type) == FUNCTION_TYPE)
5667 {
5668 /* This is OK, too. This comes from a conversion to reference
5669 type. */
5670 target_type = build_reference_type (target_type);
5671 is_reference = 1;
5672 }
5673 else
5674 {
5675 if (flags & tf_error)
5676 error ("cannot resolve overloaded function %qD based on"
5677 " conversion to type %qT",
5678 DECL_NAME (OVL_FUNCTION (overload)), target_type);
5679 return error_mark_node;
5680 }
5681
5682 /* If we can find a non-template function that matches, we can just
5683 use it. There's no point in generating template instantiations
5684 if we're just going to throw them out anyhow. But, of course, we
5685 can only do this when we don't *need* a template function. */
5686 if (!template_only)
5687 {
5688 tree fns;
5689
5690 for (fns = overload; fns; fns = OVL_NEXT (fns))
5691 {
5692 tree fn = OVL_CURRENT (fns);
5693 tree fntype;
5694
5695 if (TREE_CODE (fn) == TEMPLATE_DECL)
5696 /* We're not looking for templates just yet. */
5697 continue;
5698
5699 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
5700 != is_ptrmem)
5701 /* We're looking for a non-static member, and this isn't
5702 one, or vice versa. */
5703 continue;
5704
5705 /* Ignore anticipated decls of undeclared builtins. */
5706 if (DECL_ANTICIPATED (fn))
5707 continue;
5708
5709 /* See if there's a match. */
5710 fntype = TREE_TYPE (fn);
5711 if (is_ptrmem)
5712 fntype = build_ptrmemfunc_type (build_pointer_type (fntype));
5713 else if (!is_reference)
5714 fntype = build_pointer_type (fntype);
5715
5716 if (can_convert_arg (target_type, fntype, fn))
5717 matches = tree_cons (fn, NULL_TREE, matches);
5718 }
5719 }
5720
5721 /* Now, if we've already got a match (or matches), there's no need
5722 to proceed to the template functions. But, if we don't have a
5723 match we need to look at them, too. */
5724 if (!matches)
5725 {
5726 tree target_fn_type;
5727 tree target_arg_types;
5728 tree target_ret_type;
5729 tree fns;
5730
5731 if (is_ptrmem)
5732 target_fn_type
5733 = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (target_type));
5734 else
5735 target_fn_type = TREE_TYPE (target_type);
5736 target_arg_types = TYPE_ARG_TYPES (target_fn_type);
5737 target_ret_type = TREE_TYPE (target_fn_type);
5738
5739 /* Never do unification on the 'this' parameter. */
5740 if (TREE_CODE (target_fn_type) == METHOD_TYPE)
5741 target_arg_types = TREE_CHAIN (target_arg_types);
5742
5743 for (fns = overload; fns; fns = OVL_NEXT (fns))
5744 {
5745 tree fn = OVL_CURRENT (fns);
5746 tree instantiation;
5747 tree instantiation_type;
5748 tree targs;
5749
5750 if (TREE_CODE (fn) != TEMPLATE_DECL)
5751 /* We're only looking for templates. */
5752 continue;
5753
5754 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
5755 != is_ptrmem)
5756 /* We're not looking for a non-static member, and this is
5757 one, or vice versa. */
5758 continue;
5759
5760 /* Try to do argument deduction. */
5761 targs = make_tree_vec (DECL_NTPARMS (fn));
5762 if (fn_type_unification (fn, explicit_targs, targs,
5763 target_arg_types, target_ret_type,
5764 DEDUCE_EXACT, -1) != 0)
5765 /* Argument deduction failed. */
5766 continue;
5767
5768 /* Instantiate the template. */
5769 instantiation = instantiate_template (fn, targs, flags);
5770 if (instantiation == error_mark_node)
5771 /* Instantiation failed. */
5772 continue;
5773
5774 /* See if there's a match. */
5775 instantiation_type = TREE_TYPE (instantiation);
5776 if (is_ptrmem)
5777 instantiation_type =
5778 build_ptrmemfunc_type (build_pointer_type (instantiation_type));
5779 else if (!is_reference)
5780 instantiation_type = build_pointer_type (instantiation_type);
5781 if (can_convert_arg (target_type, instantiation_type, instantiation))
5782 matches = tree_cons (instantiation, fn, matches);
5783 }
5784
5785 /* Now, remove all but the most specialized of the matches. */
5786 if (matches)
5787 {
5788 tree match = most_specialized_instantiation (matches);
5789
5790 if (match != error_mark_node)
5791 matches = tree_cons (match, NULL_TREE, NULL_TREE);
5792 }
5793 }
5794
5795 /* Now we should have exactly one function in MATCHES. */
5796 if (matches == NULL_TREE)
5797 {
5798 /* There were *no* matches. */
5799 if (flags & tf_error)
5800 {
5801 error ("no matches converting function %qD to type %q#T",
5802 DECL_NAME (OVL_FUNCTION (overload)),
5803 target_type);
5804
5805 /* print_candidates expects a chain with the functions in
5806 TREE_VALUE slots, so we cons one up here (we're losing anyway,
5807 so why be clever?). */
5808 for (; overload; overload = OVL_NEXT (overload))
5809 matches = tree_cons (NULL_TREE, OVL_CURRENT (overload),
5810 matches);
5811
5812 print_candidates (matches);
5813 }
5814 return error_mark_node;
5815 }
5816 else if (TREE_CHAIN (matches))
5817 {
5818 /* There were too many matches. */
5819
5820 if (flags & tf_error)
5821 {
5822 tree match;
5823
5824 error ("converting overloaded function %qD to type %q#T is ambiguous",
5825 DECL_NAME (OVL_FUNCTION (overload)),
5826 target_type);
5827
5828 /* Since print_candidates expects the functions in the
5829 TREE_VALUE slot, we flip them here. */
5830 for (match = matches; match; match = TREE_CHAIN (match))
5831 TREE_VALUE (match) = TREE_PURPOSE (match);
5832
5833 print_candidates (matches);
5834 }
5835
5836 return error_mark_node;
5837 }
5838
5839 /* Good, exactly one match. Now, convert it to the correct type. */
5840 fn = TREE_PURPOSE (matches);
5841
5842 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
5843 && !(flags & tf_ptrmem_ok) && !flag_ms_extensions)
5844 {
5845 static int explained;
5846
5847 if (!(flags & tf_error))
5848 return error_mark_node;
5849
5850 pedwarn ("assuming pointer to member %qD", fn);
5851 if (!explained)
5852 {
5853 pedwarn ("(a pointer to member can only be formed with %<&%E%>)", fn);
5854 explained = 1;
5855 }
5856 }
5857
5858 /* If we're doing overload resolution purely for the purpose of
5859 determining conversion sequences, we should not consider the
5860 function used. If this conversion sequence is selected, the
5861 function will be marked as used at this point. */
5862 if (!(flags & tf_conv))
5863 mark_used (fn);
5864
5865 if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
5866 return build_unary_op (ADDR_EXPR, fn, 0);
5867 else
5868 {
5869 /* The target must be a REFERENCE_TYPE. Above, build_unary_op
5870 will mark the function as addressed, but here we must do it
5871 explicitly. */
5872 cxx_mark_addressable (fn);
5873
5874 return fn;
5875 }
5876 }
5877
5878 /* This function will instantiate the type of the expression given in
5879 RHS to match the type of LHSTYPE. If errors exist, then return
5880 error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
5881 we complain on errors. If we are not complaining, never modify rhs,
5882 as overload resolution wants to try many possible instantiations, in
5883 the hope that at least one will work.
5884
5885 For non-recursive calls, LHSTYPE should be a function, pointer to
5886 function, or a pointer to member function. */
5887
5888 tree
5889 instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags)
5890 {
5891 tsubst_flags_t flags_in = flags;
5892
5893 flags &= ~tf_ptrmem_ok;
5894
5895 if (TREE_CODE (lhstype) == UNKNOWN_TYPE)
5896 {
5897 if (flags & tf_error)
5898 error ("not enough type information");
5899 return error_mark_node;
5900 }
5901
5902 if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
5903 {
5904 if (same_type_p (lhstype, TREE_TYPE (rhs)))
5905 return rhs;
5906 if (flag_ms_extensions
5907 && TYPE_PTRMEMFUNC_P (lhstype)
5908 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
5909 /* Microsoft allows `A::f' to be resolved to a
5910 pointer-to-member. */
5911 ;
5912 else
5913 {
5914 if (flags & tf_error)
5915 error ("argument of type %qT does not match %qT",
5916 TREE_TYPE (rhs), lhstype);
5917 return error_mark_node;
5918 }
5919 }
5920
5921 if (TREE_CODE (rhs) == BASELINK)
5922 rhs = BASELINK_FUNCTIONS (rhs);
5923
5924 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
5925 deduce any type information. */
5926 if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
5927 {
5928 if (flags & tf_error)
5929 error ("not enough type information");
5930 return error_mark_node;
5931 }
5932
5933 /* We don't overwrite rhs if it is an overloaded function.
5934 Copying it would destroy the tree link. */
5935 if (TREE_CODE (rhs) != OVERLOAD)
5936 rhs = copy_node (rhs);
5937
5938 /* This should really only be used when attempting to distinguish
5939 what sort of a pointer to function we have. For now, any
5940 arithmetic operation which is not supported on pointers
5941 is rejected as an error. */
5942
5943 switch (TREE_CODE (rhs))
5944 {
5945 case TYPE_EXPR:
5946 case CONVERT_EXPR:
5947 case SAVE_EXPR:
5948 case CONSTRUCTOR:
5949 gcc_unreachable ();
5950
5951 case INDIRECT_REF:
5952 case ARRAY_REF:
5953 {
5954 tree new_rhs;
5955
5956 new_rhs = instantiate_type (build_pointer_type (lhstype),
5957 TREE_OPERAND (rhs, 0), flags);
5958 if (new_rhs == error_mark_node)
5959 return error_mark_node;
5960
5961 TREE_TYPE (rhs) = lhstype;
5962 TREE_OPERAND (rhs, 0) = new_rhs;
5963 return rhs;
5964 }
5965
5966 case NOP_EXPR:
5967 rhs = copy_node (TREE_OPERAND (rhs, 0));
5968 TREE_TYPE (rhs) = unknown_type_node;
5969 return instantiate_type (lhstype, rhs, flags);
5970
5971 case COMPONENT_REF:
5972 {
5973 tree member = TREE_OPERAND (rhs, 1);
5974
5975 member = instantiate_type (lhstype, member, flags);
5976 if (member != error_mark_node
5977 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
5978 /* Do not lose object's side effects. */
5979 return build2 (COMPOUND_EXPR, TREE_TYPE (member),
5980 TREE_OPERAND (rhs, 0), member);
5981 return member;
5982 }
5983
5984 case OFFSET_REF:
5985 rhs = TREE_OPERAND (rhs, 1);
5986 if (BASELINK_P (rhs))
5987 return instantiate_type (lhstype, BASELINK_FUNCTIONS (rhs), flags_in);
5988
5989 /* This can happen if we are forming a pointer-to-member for a
5990 member template. */
5991 gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);
5992
5993 /* Fall through. */
5994
5995 case TEMPLATE_ID_EXPR:
5996 {
5997 tree fns = TREE_OPERAND (rhs, 0);
5998 tree args = TREE_OPERAND (rhs, 1);
5999
6000 return
6001 resolve_address_of_overloaded_function (lhstype, fns, flags_in,
6002 /*template_only=*/true,
6003 args);
6004 }
6005
6006 case OVERLOAD:
6007 case FUNCTION_DECL:
6008 return
6009 resolve_address_of_overloaded_function (lhstype, rhs, flags_in,
6010 /*template_only=*/false,
6011 /*explicit_targs=*/NULL_TREE);
6012
6013 case CALL_EXPR:
6014 /* This is too hard for now. */
6015 gcc_unreachable ();
6016
6017 case PLUS_EXPR:
6018 case MINUS_EXPR:
6019 case COMPOUND_EXPR:
6020 TREE_OPERAND (rhs, 0)
6021 = instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
6022 if (TREE_OPERAND (rhs, 0) == error_mark_node)
6023 return error_mark_node;
6024 TREE_OPERAND (rhs, 1)
6025 = instantiate_type (lhstype, TREE_OPERAND (rhs, 1), flags);
6026 if (TREE_OPERAND (rhs, 1) == error_mark_node)
6027 return error_mark_node;
6028
6029 TREE_TYPE (rhs) = lhstype;
6030 return rhs;
6031
6032 case MULT_EXPR:
6033 case TRUNC_DIV_EXPR:
6034 case FLOOR_DIV_EXPR:
6035 case CEIL_DIV_EXPR:
6036 case ROUND_DIV_EXPR:
6037 case RDIV_EXPR:
6038 case TRUNC_MOD_EXPR:
6039 case FLOOR_MOD_EXPR:
6040 case CEIL_MOD_EXPR:
6041 case ROUND_MOD_EXPR:
6042 case FIX_ROUND_EXPR:
6043 case FIX_FLOOR_EXPR:
6044 case FIX_CEIL_EXPR:
6045 case FIX_TRUNC_EXPR:
6046 case FLOAT_EXPR:
6047 case NEGATE_EXPR:
6048 case ABS_EXPR:
6049 case MAX_EXPR:
6050 case MIN_EXPR:
6051
6052 case BIT_AND_EXPR:
6053 case BIT_IOR_EXPR:
6054 case BIT_XOR_EXPR:
6055 case LSHIFT_EXPR:
6056 case RSHIFT_EXPR:
6057 case LROTATE_EXPR:
6058 case RROTATE_EXPR:
6059
6060 case PREINCREMENT_EXPR:
6061 case PREDECREMENT_EXPR:
6062 case POSTINCREMENT_EXPR:
6063 case POSTDECREMENT_EXPR:
6064 if (flags & tf_error)
6065 error ("invalid operation on uninstantiated type");
6066 return error_mark_node;
6067
6068 case TRUTH_AND_EXPR:
6069 case TRUTH_OR_EXPR:
6070 case TRUTH_XOR_EXPR:
6071 case LT_EXPR:
6072 case LE_EXPR:
6073 case GT_EXPR:
6074 case GE_EXPR:
6075 case EQ_EXPR:
6076 case NE_EXPR:
6077 case TRUTH_ANDIF_EXPR:
6078 case TRUTH_ORIF_EXPR:
6079 case TRUTH_NOT_EXPR:
6080 if (flags & tf_error)
6081 error ("not enough type information");
6082 return error_mark_node;
6083
6084 case COND_EXPR:
6085 if (type_unknown_p (TREE_OPERAND (rhs, 0)))
6086 {
6087 if (flags & tf_error)
6088 error ("not enough type information");
6089 return error_mark_node;
6090 }
6091 TREE_OPERAND (rhs, 1)
6092 = instantiate_type (lhstype, TREE_OPERAND (rhs, 1), flags);
6093 if (TREE_OPERAND (rhs, 1) == error_mark_node)
6094 return error_mark_node;
6095 TREE_OPERAND (rhs, 2)
6096 = instantiate_type (lhstype, TREE_OPERAND (rhs, 2), flags);
6097 if (TREE_OPERAND (rhs, 2) == error_mark_node)
6098 return error_mark_node;
6099
6100 TREE_TYPE (rhs) = lhstype;
6101 return rhs;
6102
6103 case MODIFY_EXPR:
6104 TREE_OPERAND (rhs, 1)
6105 = instantiate_type (lhstype, TREE_OPERAND (rhs, 1), flags);
6106 if (TREE_OPERAND (rhs, 1) == error_mark_node)
6107 return error_mark_node;
6108
6109 TREE_TYPE (rhs) = lhstype;
6110 return rhs;
6111
6112 case ADDR_EXPR:
6113 {
6114 if (PTRMEM_OK_P (rhs))
6115 flags |= tf_ptrmem_ok;
6116
6117 return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
6118 }
6119
6120 case ERROR_MARK:
6121 return error_mark_node;
6122
6123 default:
6124 gcc_unreachable ();
6125 }
6126 return error_mark_node;
6127 }
6128 \f
6129 /* Return the name of the virtual function pointer field
6130 (as an IDENTIFIER_NODE) for the given TYPE. Note that
6131 this may have to look back through base types to find the
6132 ultimate field name. (For single inheritance, these could
6133 all be the same name. Who knows for multiple inheritance). */
6134
6135 static tree
6136 get_vfield_name (tree type)
6137 {
6138 tree binfo, base_binfo;
6139 char *buf;
6140
6141 for (binfo = TYPE_BINFO (type);
6142 BINFO_N_BASE_BINFOS (binfo);
6143 binfo = base_binfo)
6144 {
6145 base_binfo = BINFO_BASE_BINFO (binfo, 0);
6146
6147 if (BINFO_VIRTUAL_P (base_binfo)
6148 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
6149 break;
6150 }
6151
6152 type = BINFO_TYPE (binfo);
6153 buf = alloca (sizeof (VFIELD_NAME_FORMAT) + TYPE_NAME_LENGTH (type) + 2);
6154 sprintf (buf, VFIELD_NAME_FORMAT,
6155 IDENTIFIER_POINTER (constructor_name (type)));
6156 return get_identifier (buf);
6157 }
6158
6159 void
6160 print_class_statistics (void)
6161 {
6162 #ifdef GATHER_STATISTICS
6163 fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
6164 fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
6165 if (n_vtables)
6166 {
6167 fprintf (stderr, "vtables = %d; vtable searches = %d\n",
6168 n_vtables, n_vtable_searches);
6169 fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
6170 n_vtable_entries, n_vtable_elems);
6171 }
6172 #endif
6173 }
6174
6175 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
6176 according to [class]:
6177 The class-name is also inserted
6178 into the scope of the class itself. For purposes of access checking,
6179 the inserted class name is treated as if it were a public member name. */
6180
6181 void
6182 build_self_reference (void)
6183 {
6184 tree name = constructor_name (current_class_type);
6185 tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
6186 tree saved_cas;
6187
6188 DECL_NONLOCAL (value) = 1;
6189 DECL_CONTEXT (value) = current_class_type;
6190 DECL_ARTIFICIAL (value) = 1;
6191 SET_DECL_SELF_REFERENCE_P (value);
6192
6193 if (processing_template_decl)
6194 value = push_template_decl (value);
6195
6196 saved_cas = current_access_specifier;
6197 current_access_specifier = access_public_node;
6198 finish_member_declaration (value);
6199 current_access_specifier = saved_cas;
6200 }
6201
6202 /* Returns 1 if TYPE contains only padding bytes. */
6203
6204 int
6205 is_empty_class (tree type)
6206 {
6207 if (type == error_mark_node)
6208 return 0;
6209
6210 if (! IS_AGGR_TYPE (type))
6211 return 0;
6212
6213 /* In G++ 3.2, whether or not a class was empty was determined by
6214 looking at its size. */
6215 if (abi_version_at_least (2))
6216 return CLASSTYPE_EMPTY_P (type);
6217 else
6218 return integer_zerop (CLASSTYPE_SIZE (type));
6219 }
6220
6221 /* Returns true if TYPE contains an empty class. */
6222
6223 static bool
6224 contains_empty_class_p (tree type)
6225 {
6226 if (is_empty_class (type))
6227 return true;
6228 if (CLASS_TYPE_P (type))
6229 {
6230 tree field;
6231 tree binfo;
6232 tree base_binfo;
6233 int i;
6234
6235 for (binfo = TYPE_BINFO (type), i = 0;
6236 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
6237 if (contains_empty_class_p (BINFO_TYPE (base_binfo)))
6238 return true;
6239 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
6240 if (TREE_CODE (field) == FIELD_DECL
6241 && !DECL_ARTIFICIAL (field)
6242 && is_empty_class (TREE_TYPE (field)))
6243 return true;
6244 }
6245 else if (TREE_CODE (type) == ARRAY_TYPE)
6246 return contains_empty_class_p (TREE_TYPE (type));
6247 return false;
6248 }
6249
6250 /* Note that NAME was looked up while the current class was being
6251 defined and that the result of that lookup was DECL. */
6252
6253 void
6254 maybe_note_name_used_in_class (tree name, tree decl)
6255 {
6256 splay_tree names_used;
6257
6258 /* If we're not defining a class, there's nothing to do. */
6259 if (!(innermost_scope_kind() == sk_class
6260 && TYPE_BEING_DEFINED (current_class_type)))
6261 return;
6262
6263 /* If there's already a binding for this NAME, then we don't have
6264 anything to worry about. */
6265 if (lookup_member (current_class_type, name,
6266 /*protect=*/0, /*want_type=*/false))
6267 return;
6268
6269 if (!current_class_stack[current_class_depth - 1].names_used)
6270 current_class_stack[current_class_depth - 1].names_used
6271 = splay_tree_new (splay_tree_compare_pointers, 0, 0);
6272 names_used = current_class_stack[current_class_depth - 1].names_used;
6273
6274 splay_tree_insert (names_used,
6275 (splay_tree_key) name,
6276 (splay_tree_value) decl);
6277 }
6278
6279 /* Note that NAME was declared (as DECL) in the current class. Check
6280 to see that the declaration is valid. */
6281
6282 void
6283 note_name_declared_in_class (tree name, tree decl)
6284 {
6285 splay_tree names_used;
6286 splay_tree_node n;
6287
6288 /* Look to see if we ever used this name. */
6289 names_used
6290 = current_class_stack[current_class_depth - 1].names_used;
6291 if (!names_used)
6292 return;
6293
6294 n = splay_tree_lookup (names_used, (splay_tree_key) name);
6295 if (n)
6296 {
6297 /* [basic.scope.class]
6298
6299 A name N used in a class S shall refer to the same declaration
6300 in its context and when re-evaluated in the completed scope of
6301 S. */
6302 error ("declaration of %q#D", decl);
6303 cp_error_at ("changes meaning of %qD from %q+#D",
6304 DECL_NAME (OVL_CURRENT (decl)),
6305 (tree) n->value);
6306 }
6307 }
6308
6309 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
6310 Secondary vtables are merged with primary vtables; this function
6311 will return the VAR_DECL for the primary vtable. */
6312
6313 tree
6314 get_vtbl_decl_for_binfo (tree binfo)
6315 {
6316 tree decl;
6317
6318 decl = BINFO_VTABLE (binfo);
6319 if (decl && TREE_CODE (decl) == PLUS_EXPR)
6320 {
6321 gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
6322 decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
6323 }
6324 if (decl)
6325 gcc_assert (TREE_CODE (decl) == VAR_DECL);
6326 return decl;
6327 }
6328
6329
6330 /* Returns the binfo for the primary base of BINFO. If the resulting
6331 BINFO is a virtual base, and it is inherited elsewhere in the
6332 hierarchy, then the returned binfo might not be the primary base of
6333 BINFO in the complete object. Check BINFO_PRIMARY_P or
6334 BINFO_LOST_PRIMARY_P to be sure. */
6335
6336 tree
6337 get_primary_binfo (tree binfo)
6338 {
6339 tree primary_base;
6340 tree result;
6341
6342 primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
6343 if (!primary_base)
6344 return NULL_TREE;
6345
6346 result = copied_binfo (primary_base, binfo);
6347 return result;
6348 }
6349
6350 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
6351
6352 static int
6353 maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
6354 {
6355 if (!indented_p)
6356 fprintf (stream, "%*s", indent, "");
6357 return 1;
6358 }
6359
6360 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
6361 INDENT should be zero when called from the top level; it is
6362 incremented recursively. IGO indicates the next expected BINFO in
6363 inheritance graph ordering. */
6364
6365 static tree
6366 dump_class_hierarchy_r (FILE *stream,
6367 int flags,
6368 tree binfo,
6369 tree igo,
6370 int indent)
6371 {
6372 int indented = 0;
6373 tree base_binfo;
6374 int i;
6375
6376 indented = maybe_indent_hierarchy (stream, indent, 0);
6377 fprintf (stream, "%s (0x%lx) ",
6378 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
6379 (unsigned long) binfo);
6380 if (binfo != igo)
6381 {
6382 fprintf (stream, "alternative-path\n");
6383 return igo;
6384 }
6385 igo = TREE_CHAIN (binfo);
6386
6387 fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
6388 tree_low_cst (BINFO_OFFSET (binfo), 0));
6389 if (is_empty_class (BINFO_TYPE (binfo)))
6390 fprintf (stream, " empty");
6391 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
6392 fprintf (stream, " nearly-empty");
6393 if (BINFO_VIRTUAL_P (binfo))
6394 fprintf (stream, " virtual");
6395 fprintf (stream, "\n");
6396
6397 indented = 0;
6398 if (BINFO_PRIMARY_P (binfo))
6399 {
6400 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6401 fprintf (stream, " primary-for %s (0x%lx)",
6402 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
6403 TFF_PLAIN_IDENTIFIER),
6404 (unsigned long)BINFO_INHERITANCE_CHAIN (binfo));
6405 }
6406 if (BINFO_LOST_PRIMARY_P (binfo))
6407 {
6408 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6409 fprintf (stream, " lost-primary");
6410 }
6411 if (indented)
6412 fprintf (stream, "\n");
6413
6414 if (!(flags & TDF_SLIM))
6415 {
6416 int indented = 0;
6417
6418 if (BINFO_SUBVTT_INDEX (binfo))
6419 {
6420 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6421 fprintf (stream, " subvttidx=%s",
6422 expr_as_string (BINFO_SUBVTT_INDEX (binfo),
6423 TFF_PLAIN_IDENTIFIER));
6424 }
6425 if (BINFO_VPTR_INDEX (binfo))
6426 {
6427 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6428 fprintf (stream, " vptridx=%s",
6429 expr_as_string (BINFO_VPTR_INDEX (binfo),
6430 TFF_PLAIN_IDENTIFIER));
6431 }
6432 if (BINFO_VPTR_FIELD (binfo))
6433 {
6434 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6435 fprintf (stream, " vbaseoffset=%s",
6436 expr_as_string (BINFO_VPTR_FIELD (binfo),
6437 TFF_PLAIN_IDENTIFIER));
6438 }
6439 if (BINFO_VTABLE (binfo))
6440 {
6441 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6442 fprintf (stream, " vptr=%s",
6443 expr_as_string (BINFO_VTABLE (binfo),
6444 TFF_PLAIN_IDENTIFIER));
6445 }
6446
6447 if (indented)
6448 fprintf (stream, "\n");
6449 }
6450
6451 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
6452 igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);
6453
6454 return igo;
6455 }
6456
6457 /* Dump the BINFO hierarchy for T. */
6458
6459 static void
6460 dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
6461 {
6462 fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
6463 fprintf (stream, " size=%lu align=%lu\n",
6464 (unsigned long)(tree_low_cst (TYPE_SIZE (t), 0) / BITS_PER_UNIT),
6465 (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
6466 fprintf (stream, " base size=%lu base align=%lu\n",
6467 (unsigned long)(tree_low_cst (TYPE_SIZE (CLASSTYPE_AS_BASE (t)), 0)
6468 / BITS_PER_UNIT),
6469 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
6470 / BITS_PER_UNIT));
6471 dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
6472 fprintf (stream, "\n");
6473 }
6474
6475 /* Debug interface to hierarchy dumping. */
6476
6477 extern void
6478 debug_class (tree t)
6479 {
6480 dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
6481 }
6482
6483 static void
6484 dump_class_hierarchy (tree t)
6485 {
6486 int flags;
6487 FILE *stream = dump_begin (TDI_class, &flags);
6488
6489 if (stream)
6490 {
6491 dump_class_hierarchy_1 (stream, flags, t);
6492 dump_end (TDI_class, stream);
6493 }
6494 }
6495
6496 static void
6497 dump_array (FILE * stream, tree decl)
6498 {
6499 tree inits;
6500 int ix;
6501 HOST_WIDE_INT elt;
6502 tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
6503
6504 elt = (tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))), 0)
6505 / BITS_PER_UNIT);
6506 fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
6507 fprintf (stream, " %s entries",
6508 expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
6509 TFF_PLAIN_IDENTIFIER));
6510 fprintf (stream, "\n");
6511
6512 for (ix = 0, inits = CONSTRUCTOR_ELTS (DECL_INITIAL (decl));
6513 inits; ix++, inits = TREE_CHAIN (inits))
6514 fprintf (stream, "%-4ld %s\n", (long)(ix * elt),
6515 expr_as_string (TREE_VALUE (inits), TFF_PLAIN_IDENTIFIER));
6516 }
6517
6518 static void
6519 dump_vtable (tree t, tree binfo, tree vtable)
6520 {
6521 int flags;
6522 FILE *stream = dump_begin (TDI_class, &flags);
6523
6524 if (!stream)
6525 return;
6526
6527 if (!(flags & TDF_SLIM))
6528 {
6529 int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
6530
6531 fprintf (stream, "%s for %s",
6532 ctor_vtbl_p ? "Construction vtable" : "Vtable",
6533 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
6534 if (ctor_vtbl_p)
6535 {
6536 if (!BINFO_VIRTUAL_P (binfo))
6537 fprintf (stream, " (0x%lx instance)", (unsigned long)binfo);
6538 fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
6539 }
6540 fprintf (stream, "\n");
6541 dump_array (stream, vtable);
6542 fprintf (stream, "\n");
6543 }
6544
6545 dump_end (TDI_class, stream);
6546 }
6547
6548 static void
6549 dump_vtt (tree t, tree vtt)
6550 {
6551 int flags;
6552 FILE *stream = dump_begin (TDI_class, &flags);
6553
6554 if (!stream)
6555 return;
6556
6557 if (!(flags & TDF_SLIM))
6558 {
6559 fprintf (stream, "VTT for %s\n",
6560 type_as_string (t, TFF_PLAIN_IDENTIFIER));
6561 dump_array (stream, vtt);
6562 fprintf (stream, "\n");
6563 }
6564
6565 dump_end (TDI_class, stream);
6566 }
6567
6568 /* Dump a function or thunk and its thunkees. */
6569
6570 static void
6571 dump_thunk (FILE *stream, int indent, tree thunk)
6572 {
6573 static const char spaces[] = " ";
6574 tree name = DECL_NAME (thunk);
6575 tree thunks;
6576
6577 fprintf (stream, "%.*s%p %s %s", indent, spaces,
6578 (void *)thunk,
6579 !DECL_THUNK_P (thunk) ? "function"
6580 : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
6581 name ? IDENTIFIER_POINTER (name) : "<unset>");
6582 if (DECL_THUNK_P (thunk))
6583 {
6584 HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
6585 tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
6586
6587 fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
6588 if (!virtual_adjust)
6589 /*NOP*/;
6590 else if (DECL_THIS_THUNK_P (thunk))
6591 fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC,
6592 tree_low_cst (virtual_adjust, 0));
6593 else
6594 fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
6595 tree_low_cst (BINFO_VPTR_FIELD (virtual_adjust), 0),
6596 type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
6597 if (THUNK_ALIAS (thunk))
6598 fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
6599 }
6600 fprintf (stream, "\n");
6601 for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
6602 dump_thunk (stream, indent + 2, thunks);
6603 }
6604
6605 /* Dump the thunks for FN. */
6606
6607 extern void
6608 debug_thunks (tree fn)
6609 {
6610 dump_thunk (stderr, 0, fn);
6611 }
6612
6613 /* Virtual function table initialization. */
6614
6615 /* Create all the necessary vtables for T and its base classes. */
6616
6617 static void
6618 finish_vtbls (tree t)
6619 {
6620 tree list;
6621 tree vbase;
6622
6623 /* We lay out the primary and secondary vtables in one contiguous
6624 vtable. The primary vtable is first, followed by the non-virtual
6625 secondary vtables in inheritance graph order. */
6626 list = build_tree_list (BINFO_VTABLE (TYPE_BINFO (t)), NULL_TREE);
6627 accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t),
6628 TYPE_BINFO (t), t, list);
6629
6630 /* Then come the virtual bases, also in inheritance graph order. */
6631 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
6632 {
6633 if (!BINFO_VIRTUAL_P (vbase))
6634 continue;
6635 accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), t, list);
6636 }
6637
6638 if (BINFO_VTABLE (TYPE_BINFO (t)))
6639 initialize_vtable (TYPE_BINFO (t), TREE_VALUE (list));
6640 }
6641
6642 /* Initialize the vtable for BINFO with the INITS. */
6643
6644 static void
6645 initialize_vtable (tree binfo, tree inits)
6646 {
6647 tree decl;
6648
6649 layout_vtable_decl (binfo, list_length (inits));
6650 decl = get_vtbl_decl_for_binfo (binfo);
6651 initialize_artificial_var (decl, inits);
6652 dump_vtable (BINFO_TYPE (binfo), binfo, decl);
6653 }
6654
6655 /* Build the VTT (virtual table table) for T.
6656 A class requires a VTT if it has virtual bases.
6657
6658 This holds
6659 1 - primary virtual pointer for complete object T
6660 2 - secondary VTTs for each direct non-virtual base of T which requires a
6661 VTT
6662 3 - secondary virtual pointers for each direct or indirect base of T which
6663 has virtual bases or is reachable via a virtual path from T.
6664 4 - secondary VTTs for each direct or indirect virtual base of T.
6665
6666 Secondary VTTs look like complete object VTTs without part 4. */
6667
6668 static void
6669 build_vtt (tree t)
6670 {
6671 tree inits;
6672 tree type;
6673 tree vtt;
6674 tree index;
6675
6676 /* Build up the initializers for the VTT. */
6677 inits = NULL_TREE;
6678 index = size_zero_node;
6679 build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
6680
6681 /* If we didn't need a VTT, we're done. */
6682 if (!inits)
6683 return;
6684
6685 /* Figure out the type of the VTT. */
6686 type = build_index_type (size_int (list_length (inits) - 1));
6687 type = build_cplus_array_type (const_ptr_type_node, type);
6688
6689 /* Now, build the VTT object itself. */
6690 vtt = build_vtable (t, get_vtt_name (t), type);
6691 initialize_artificial_var (vtt, inits);
6692 /* Add the VTT to the vtables list. */
6693 TREE_CHAIN (vtt) = TREE_CHAIN (CLASSTYPE_VTABLES (t));
6694 TREE_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
6695
6696 dump_vtt (t, vtt);
6697 }
6698
6699 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
6700 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
6701 and CHAIN the vtable pointer for this binfo after construction is
6702 complete. VALUE can also be another BINFO, in which case we recurse. */
6703
6704 static tree
6705 binfo_ctor_vtable (tree binfo)
6706 {
6707 tree vt;
6708
6709 while (1)
6710 {
6711 vt = BINFO_VTABLE (binfo);
6712 if (TREE_CODE (vt) == TREE_LIST)
6713 vt = TREE_VALUE (vt);
6714 if (TREE_CODE (vt) == TREE_BINFO)
6715 binfo = vt;
6716 else
6717 break;
6718 }
6719
6720 return vt;
6721 }
6722
6723 /* Data for secondary VTT initialization. */
6724 typedef struct secondary_vptr_vtt_init_data_s
6725 {
6726 /* Is this the primary VTT? */
6727 bool top_level_p;
6728
6729 /* Current index into the VTT. */
6730 tree index;
6731
6732 /* TREE_LIST of initializers built up. */
6733 tree inits;
6734
6735 /* The type being constructed by this secondary VTT. */
6736 tree type_being_constructed;
6737 } secondary_vptr_vtt_init_data;
6738
6739 /* Recursively build the VTT-initializer for BINFO (which is in the
6740 hierarchy dominated by T). INITS points to the end of the initializer
6741 list to date. INDEX is the VTT index where the next element will be
6742 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
6743 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
6744 for virtual bases of T. When it is not so, we build the constructor
6745 vtables for the BINFO-in-T variant. */
6746
6747 static tree *
6748 build_vtt_inits (tree binfo, tree t, tree *inits, tree *index)
6749 {
6750 int i;
6751 tree b;
6752 tree init;
6753 tree secondary_vptrs;
6754 secondary_vptr_vtt_init_data data;
6755 int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
6756
6757 /* We only need VTTs for subobjects with virtual bases. */
6758 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
6759 return inits;
6760
6761 /* We need to use a construction vtable if this is not the primary
6762 VTT. */
6763 if (!top_level_p)
6764 {
6765 build_ctor_vtbl_group (binfo, t);
6766
6767 /* Record the offset in the VTT where this sub-VTT can be found. */
6768 BINFO_SUBVTT_INDEX (binfo) = *index;
6769 }
6770
6771 /* Add the address of the primary vtable for the complete object. */
6772 init = binfo_ctor_vtable (binfo);
6773 *inits = build_tree_list (NULL_TREE, init);
6774 inits = &TREE_CHAIN (*inits);
6775 if (top_level_p)
6776 {
6777 gcc_assert (!BINFO_VPTR_INDEX (binfo));
6778 BINFO_VPTR_INDEX (binfo) = *index;
6779 }
6780 *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
6781
6782 /* Recursively add the secondary VTTs for non-virtual bases. */
6783 for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
6784 if (!BINFO_VIRTUAL_P (b))
6785 inits = build_vtt_inits (b, t, inits, index);
6786
6787 /* Add secondary virtual pointers for all subobjects of BINFO with
6788 either virtual bases or reachable along a virtual path, except
6789 subobjects that are non-virtual primary bases. */
6790 data.top_level_p = top_level_p;
6791 data.index = *index;
6792 data.inits = NULL;
6793 data.type_being_constructed = BINFO_TYPE (binfo);
6794
6795 dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);
6796
6797 *index = data.index;
6798
6799 /* The secondary vptrs come back in reverse order. After we reverse
6800 them, and add the INITS, the last init will be the first element
6801 of the chain. */
6802 secondary_vptrs = data.inits;
6803 if (secondary_vptrs)
6804 {
6805 *inits = nreverse (secondary_vptrs);
6806 inits = &TREE_CHAIN (secondary_vptrs);
6807 gcc_assert (*inits == NULL_TREE);
6808 }
6809
6810 if (top_level_p)
6811 /* Add the secondary VTTs for virtual bases in inheritance graph
6812 order. */
6813 for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
6814 {
6815 if (!BINFO_VIRTUAL_P (b))
6816 continue;
6817
6818 inits = build_vtt_inits (b, t, inits, index);
6819 }
6820 else
6821 /* Remove the ctor vtables we created. */
6822 dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
6823
6824 return inits;
6825 }
6826
6827 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
6828 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
6829
6830 static tree
6831 dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
6832 {
6833 secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;
6834
6835 /* We don't care about bases that don't have vtables. */
6836 if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
6837 return dfs_skip_bases;
6838
6839 /* We're only interested in proper subobjects of the type being
6840 constructed. */
6841 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
6842 return NULL_TREE;
6843
6844 /* We're only interested in bases with virtual bases or reachable
6845 via a virtual path from the type being constructed. */
6846 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
6847 || binfo_via_virtual (binfo, data->type_being_constructed)))
6848 return dfs_skip_bases;
6849
6850 /* We're not interested in non-virtual primary bases. */
6851 if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
6852 return NULL_TREE;
6853
6854 /* Record the index where this secondary vptr can be found. */
6855 if (data->top_level_p)
6856 {
6857 gcc_assert (!BINFO_VPTR_INDEX (binfo));
6858 BINFO_VPTR_INDEX (binfo) = data->index;
6859
6860 if (BINFO_VIRTUAL_P (binfo))
6861 {
6862 /* It's a primary virtual base, and this is not a
6863 construction vtable. Find the base this is primary of in
6864 the inheritance graph, and use that base's vtable
6865 now. */
6866 while (BINFO_PRIMARY_P (binfo))
6867 binfo = BINFO_INHERITANCE_CHAIN (binfo);
6868 }
6869 }
6870
6871 /* Add the initializer for the secondary vptr itself. */
6872 data->inits = tree_cons (NULL_TREE, binfo_ctor_vtable (binfo), data->inits);
6873
6874 /* Advance the vtt index. */
6875 data->index = size_binop (PLUS_EXPR, data->index,
6876 TYPE_SIZE_UNIT (ptr_type_node));
6877
6878 return NULL_TREE;
6879 }
6880
6881 /* Called from build_vtt_inits via dfs_walk. After building
6882 constructor vtables and generating the sub-vtt from them, we need
6883 to restore the BINFO_VTABLES that were scribbled on. DATA is the
6884 binfo of the base whose sub vtt was generated. */
6885
6886 static tree
6887 dfs_fixup_binfo_vtbls (tree binfo, void* data)
6888 {
6889 tree vtable = BINFO_VTABLE (binfo);
6890
6891 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
6892 /* If this class has no vtable, none of its bases do. */
6893 return dfs_skip_bases;
6894
6895 if (!vtable)
6896 /* This might be a primary base, so have no vtable in this
6897 hierarchy. */
6898 return NULL_TREE;
6899
6900 /* If we scribbled the construction vtable vptr into BINFO, clear it
6901 out now. */
6902 if (TREE_CODE (vtable) == TREE_LIST
6903 && (TREE_PURPOSE (vtable) == (tree) data))
6904 BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);
6905
6906 return NULL_TREE;
6907 }
6908
6909 /* Build the construction vtable group for BINFO which is in the
6910 hierarchy dominated by T. */
6911
6912 static void
6913 build_ctor_vtbl_group (tree binfo, tree t)
6914 {
6915 tree list;
6916 tree type;
6917 tree vtbl;
6918 tree inits;
6919 tree id;
6920 tree vbase;
6921
6922 /* See if we've already created this construction vtable group. */
6923 id = mangle_ctor_vtbl_for_type (t, binfo);
6924 if (IDENTIFIER_GLOBAL_VALUE (id))
6925 return;
6926
6927 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
6928 /* Build a version of VTBL (with the wrong type) for use in
6929 constructing the addresses of secondary vtables in the
6930 construction vtable group. */
6931 vtbl = build_vtable (t, id, ptr_type_node);
6932 DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
6933 list = build_tree_list (vtbl, NULL_TREE);
6934 accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
6935 binfo, t, list);
6936
6937 /* Add the vtables for each of our virtual bases using the vbase in T
6938 binfo. */
6939 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
6940 vbase;
6941 vbase = TREE_CHAIN (vbase))
6942 {
6943 tree b;
6944
6945 if (!BINFO_VIRTUAL_P (vbase))
6946 continue;
6947 b = copied_binfo (vbase, binfo);
6948
6949 accumulate_vtbl_inits (b, vbase, binfo, t, list);
6950 }
6951 inits = TREE_VALUE (list);
6952
6953 /* Figure out the type of the construction vtable. */
6954 type = build_index_type (size_int (list_length (inits) - 1));
6955 type = build_cplus_array_type (vtable_entry_type, type);
6956 TREE_TYPE (vtbl) = type;
6957
6958 /* Initialize the construction vtable. */
6959 CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
6960 initialize_artificial_var (vtbl, inits);
6961 dump_vtable (t, binfo, vtbl);
6962 }
6963
6964 /* Add the vtbl initializers for BINFO (and its bases other than
6965 non-virtual primaries) to the list of INITS. BINFO is in the
6966 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
6967 the constructor the vtbl inits should be accumulated for. (If this
6968 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
6969 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
6970 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
6971 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
6972 but are not necessarily the same in terms of layout. */
6973
6974 static void
6975 accumulate_vtbl_inits (tree binfo,
6976 tree orig_binfo,
6977 tree rtti_binfo,
6978 tree t,
6979 tree inits)
6980 {
6981 int i;
6982 tree base_binfo;
6983 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
6984
6985 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));
6986
6987 /* If it doesn't have a vptr, we don't do anything. */
6988 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
6989 return;
6990
6991 /* If we're building a construction vtable, we're not interested in
6992 subobjects that don't require construction vtables. */
6993 if (ctor_vtbl_p
6994 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
6995 && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
6996 return;
6997
6998 /* Build the initializers for the BINFO-in-T vtable. */
6999 TREE_VALUE (inits)
7000 = chainon (TREE_VALUE (inits),
7001 dfs_accumulate_vtbl_inits (binfo, orig_binfo,
7002 rtti_binfo, t, inits));
7003
7004 /* Walk the BINFO and its bases. We walk in preorder so that as we
7005 initialize each vtable we can figure out at what offset the
7006 secondary vtable lies from the primary vtable. We can't use
7007 dfs_walk here because we need to iterate through bases of BINFO
7008 and RTTI_BINFO simultaneously. */
7009 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7010 {
7011 /* Skip virtual bases. */
7012 if (BINFO_VIRTUAL_P (base_binfo))
7013 continue;
7014 accumulate_vtbl_inits (base_binfo,
7015 BINFO_BASE_BINFO (orig_binfo, i),
7016 rtti_binfo, t,
7017 inits);
7018 }
7019 }
7020
7021 /* Called from accumulate_vtbl_inits. Returns the initializers for
7022 the BINFO vtable. */
7023
7024 static tree
7025 dfs_accumulate_vtbl_inits (tree binfo,
7026 tree orig_binfo,
7027 tree rtti_binfo,
7028 tree t,
7029 tree l)
7030 {
7031 tree inits = NULL_TREE;
7032 tree vtbl = NULL_TREE;
7033 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7034
7035 if (ctor_vtbl_p
7036 && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
7037 {
7038 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
7039 primary virtual base. If it is not the same primary in
7040 the hierarchy of T, we'll need to generate a ctor vtable
7041 for it, to place at its location in T. If it is the same
7042 primary, we still need a VTT entry for the vtable, but it
7043 should point to the ctor vtable for the base it is a
7044 primary for within the sub-hierarchy of RTTI_BINFO.
7045
7046 There are three possible cases:
7047
7048 1) We are in the same place.
7049 2) We are a primary base within a lost primary virtual base of
7050 RTTI_BINFO.
7051 3) We are primary to something not a base of RTTI_BINFO. */
7052
7053 tree b;
7054 tree last = NULL_TREE;
7055
7056 /* First, look through the bases we are primary to for RTTI_BINFO
7057 or a virtual base. */
7058 b = binfo;
7059 while (BINFO_PRIMARY_P (b))
7060 {
7061 b = BINFO_INHERITANCE_CHAIN (b);
7062 last = b;
7063 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
7064 goto found;
7065 }
7066 /* If we run out of primary links, keep looking down our
7067 inheritance chain; we might be an indirect primary. */
7068 for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
7069 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
7070 break;
7071 found:
7072
7073 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
7074 base B and it is a base of RTTI_BINFO, this is case 2. In
7075 either case, we share our vtable with LAST, i.e. the
7076 derived-most base within B of which we are a primary. */
7077 if (b == rtti_binfo
7078 || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
7079 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
7080 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
7081 binfo_ctor_vtable after everything's been set up. */
7082 vtbl = last;
7083
7084 /* Otherwise, this is case 3 and we get our own. */
7085 }
7086 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
7087 return inits;
7088
7089 if (!vtbl)
7090 {
7091 tree index;
7092 int non_fn_entries;
7093
7094 /* Compute the initializer for this vtable. */
7095 inits = build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
7096 &non_fn_entries);
7097
7098 /* Figure out the position to which the VPTR should point. */
7099 vtbl = TREE_PURPOSE (l);
7100 vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, vtbl);
7101 index = size_binop (PLUS_EXPR,
7102 size_int (non_fn_entries),
7103 size_int (list_length (TREE_VALUE (l))));
7104 index = size_binop (MULT_EXPR,
7105 TYPE_SIZE_UNIT (vtable_entry_type),
7106 index);
7107 vtbl = build2 (PLUS_EXPR, TREE_TYPE (vtbl), vtbl, index);
7108 }
7109
7110 if (ctor_vtbl_p)
7111 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
7112 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
7113 straighten this out. */
7114 BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
7115 else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
7116 inits = NULL_TREE;
7117 else
7118 /* For an ordinary vtable, set BINFO_VTABLE. */
7119 BINFO_VTABLE (binfo) = vtbl;
7120
7121 return inits;
7122 }
7123
7124 static GTY(()) tree abort_fndecl_addr;
7125
7126 /* Construct the initializer for BINFO's virtual function table. BINFO
7127 is part of the hierarchy dominated by T. If we're building a
7128 construction vtable, the ORIG_BINFO is the binfo we should use to
7129 find the actual function pointers to put in the vtable - but they
7130 can be overridden on the path to most-derived in the graph that
7131 ORIG_BINFO belongs. Otherwise,
7132 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
7133 BINFO that should be indicated by the RTTI information in the
7134 vtable; it will be a base class of T, rather than T itself, if we
7135 are building a construction vtable.
7136
7137 The value returned is a TREE_LIST suitable for wrapping in a
7138 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
7139 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
7140 number of non-function entries in the vtable.
7141
7142 It might seem that this function should never be called with a
7143 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
7144 base is always subsumed by a derived class vtable. However, when
7145 we are building construction vtables, we do build vtables for
7146 primary bases; we need these while the primary base is being
7147 constructed. */
7148
7149 static tree
7150 build_vtbl_initializer (tree binfo,
7151 tree orig_binfo,
7152 tree t,
7153 tree rtti_binfo,
7154 int* non_fn_entries_p)
7155 {
7156 tree v, b;
7157 tree vfun_inits;
7158 vtbl_init_data vid;
7159 unsigned ix;
7160 tree vbinfo;
7161 VEC (tree) *vbases;
7162
7163 /* Initialize VID. */
7164 memset (&vid, 0, sizeof (vid));
7165 vid.binfo = binfo;
7166 vid.derived = t;
7167 vid.rtti_binfo = rtti_binfo;
7168 vid.last_init = &vid.inits;
7169 vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
7170 vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7171 vid.generate_vcall_entries = true;
7172 /* The first vbase or vcall offset is at index -3 in the vtable. */
7173 vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
7174
7175 /* Add entries to the vtable for RTTI. */
7176 build_rtti_vtbl_entries (binfo, &vid);
7177
7178 /* Create an array for keeping track of the functions we've
7179 processed. When we see multiple functions with the same
7180 signature, we share the vcall offsets. */
7181 VARRAY_TREE_INIT (vid.fns, 32, "fns");
7182 /* Add the vcall and vbase offset entries. */
7183 build_vcall_and_vbase_vtbl_entries (binfo, &vid);
7184
7185 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
7186 build_vbase_offset_vtbl_entries. */
7187 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
7188 VEC_iterate (tree, vbases, ix, vbinfo); ix++)
7189 BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;
7190
7191 /* If the target requires padding between data entries, add that now. */
7192 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
7193 {
7194 tree cur, *prev;
7195
7196 for (prev = &vid.inits; (cur = *prev); prev = &TREE_CHAIN (cur))
7197 {
7198 tree add = cur;
7199 int i;
7200
7201 for (i = 1; i < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++i)
7202 add = tree_cons (NULL_TREE,
7203 build1 (NOP_EXPR, vtable_entry_type,
7204 null_pointer_node),
7205 add);
7206 *prev = add;
7207 }
7208 }
7209
7210 if (non_fn_entries_p)
7211 *non_fn_entries_p = list_length (vid.inits);
7212
7213 /* Go through all the ordinary virtual functions, building up
7214 initializers. */
7215 vfun_inits = NULL_TREE;
7216 for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
7217 {
7218 tree delta;
7219 tree vcall_index;
7220 tree fn, fn_original;
7221 tree init = NULL_TREE;
7222
7223 fn = BV_FN (v);
7224 fn_original = fn;
7225 if (DECL_THUNK_P (fn))
7226 {
7227 if (!DECL_NAME (fn))
7228 finish_thunk (fn);
7229 if (THUNK_ALIAS (fn))
7230 {
7231 fn = THUNK_ALIAS (fn);
7232 BV_FN (v) = fn;
7233 }
7234 fn_original = THUNK_TARGET (fn);
7235 }
7236
7237 /* If the only definition of this function signature along our
7238 primary base chain is from a lost primary, this vtable slot will
7239 never be used, so just zero it out. This is important to avoid
7240 requiring extra thunks which cannot be generated with the function.
7241
7242 We first check this in update_vtable_entry_for_fn, so we handle
7243 restored primary bases properly; we also need to do it here so we
7244 zero out unused slots in ctor vtables, rather than filling themff
7245 with erroneous values (though harmless, apart from relocation
7246 costs). */
7247 for (b = binfo; ; b = get_primary_binfo (b))
7248 {
7249 /* We found a defn before a lost primary; go ahead as normal. */
7250 if (look_for_overrides_here (BINFO_TYPE (b), fn_original))
7251 break;
7252
7253 /* The nearest definition is from a lost primary; clear the
7254 slot. */
7255 if (BINFO_LOST_PRIMARY_P (b))
7256 {
7257 init = size_zero_node;
7258 break;
7259 }
7260 }
7261
7262 if (! init)
7263 {
7264 /* Pull the offset for `this', and the function to call, out of
7265 the list. */
7266 delta = BV_DELTA (v);
7267 vcall_index = BV_VCALL_INDEX (v);
7268
7269 gcc_assert (TREE_CODE (delta) == INTEGER_CST);
7270 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
7271
7272 /* You can't call an abstract virtual function; it's abstract.
7273 So, we replace these functions with __pure_virtual. */
7274 if (DECL_PURE_VIRTUAL_P (fn_original))
7275 {
7276 fn = abort_fndecl;
7277 if (abort_fndecl_addr == NULL)
7278 abort_fndecl_addr = build1 (ADDR_EXPR, vfunc_ptr_type_node, fn);
7279 init = abort_fndecl_addr;
7280 }
7281 else
7282 {
7283 if (!integer_zerop (delta) || vcall_index)
7284 {
7285 fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
7286 if (!DECL_NAME (fn))
7287 finish_thunk (fn);
7288 }
7289 /* Take the address of the function, considering it to be of an
7290 appropriate generic type. */
7291 init = build1 (ADDR_EXPR, vfunc_ptr_type_node, fn);
7292 }
7293 }
7294
7295 /* And add it to the chain of initializers. */
7296 if (TARGET_VTABLE_USES_DESCRIPTORS)
7297 {
7298 int i;
7299 if (init == size_zero_node)
7300 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
7301 vfun_inits = tree_cons (NULL_TREE, init, vfun_inits);
7302 else
7303 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
7304 {
7305 tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
7306 TREE_OPERAND (init, 0),
7307 build_int_cst (NULL_TREE, i));
7308 TREE_CONSTANT (fdesc) = 1;
7309 TREE_INVARIANT (fdesc) = 1;
7310
7311 vfun_inits = tree_cons (NULL_TREE, fdesc, vfun_inits);
7312 }
7313 }
7314 else
7315 vfun_inits = tree_cons (NULL_TREE, init, vfun_inits);
7316 }
7317
7318 /* The initializers for virtual functions were built up in reverse
7319 order; straighten them out now. */
7320 vfun_inits = nreverse (vfun_inits);
7321
7322 /* The negative offset initializers are also in reverse order. */
7323 vid.inits = nreverse (vid.inits);
7324
7325 /* Chain the two together. */
7326 return chainon (vid.inits, vfun_inits);
7327 }
7328
7329 /* Adds to vid->inits the initializers for the vbase and vcall
7330 offsets in BINFO, which is in the hierarchy dominated by T. */
7331
7332 static void
7333 build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
7334 {
7335 tree b;
7336
7337 /* If this is a derived class, we must first create entries
7338 corresponding to the primary base class. */
7339 b = get_primary_binfo (binfo);
7340 if (b)
7341 build_vcall_and_vbase_vtbl_entries (b, vid);
7342
7343 /* Add the vbase entries for this base. */
7344 build_vbase_offset_vtbl_entries (binfo, vid);
7345 /* Add the vcall entries for this base. */
7346 build_vcall_offset_vtbl_entries (binfo, vid);
7347 }
7348
7349 /* Returns the initializers for the vbase offset entries in the vtable
7350 for BINFO (which is part of the class hierarchy dominated by T), in
7351 reverse order. VBASE_OFFSET_INDEX gives the vtable index
7352 where the next vbase offset will go. */
7353
7354 static void
7355 build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
7356 {
7357 tree vbase;
7358 tree t;
7359 tree non_primary_binfo;
7360
7361 /* If there are no virtual baseclasses, then there is nothing to
7362 do. */
7363 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
7364 return;
7365
7366 t = vid->derived;
7367
7368 /* We might be a primary base class. Go up the inheritance hierarchy
7369 until we find the most derived class of which we are a primary base:
7370 it is the offset of that which we need to use. */
7371 non_primary_binfo = binfo;
7372 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
7373 {
7374 tree b;
7375
7376 /* If we have reached a virtual base, then it must be a primary
7377 base (possibly multi-level) of vid->binfo, or we wouldn't
7378 have called build_vcall_and_vbase_vtbl_entries for it. But it
7379 might be a lost primary, so just skip down to vid->binfo. */
7380 if (BINFO_VIRTUAL_P (non_primary_binfo))
7381 {
7382 non_primary_binfo = vid->binfo;
7383 break;
7384 }
7385
7386 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
7387 if (get_primary_binfo (b) != non_primary_binfo)
7388 break;
7389 non_primary_binfo = b;
7390 }
7391
7392 /* Go through the virtual bases, adding the offsets. */
7393 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
7394 vbase;
7395 vbase = TREE_CHAIN (vbase))
7396 {
7397 tree b;
7398 tree delta;
7399
7400 if (!BINFO_VIRTUAL_P (vbase))
7401 continue;
7402
7403 /* Find the instance of this virtual base in the complete
7404 object. */
7405 b = copied_binfo (vbase, binfo);
7406
7407 /* If we've already got an offset for this virtual base, we
7408 don't need another one. */
7409 if (BINFO_VTABLE_PATH_MARKED (b))
7410 continue;
7411 BINFO_VTABLE_PATH_MARKED (b) = 1;
7412
7413 /* Figure out where we can find this vbase offset. */
7414 delta = size_binop (MULT_EXPR,
7415 vid->index,
7416 convert (ssizetype,
7417 TYPE_SIZE_UNIT (vtable_entry_type)));
7418 if (vid->primary_vtbl_p)
7419 BINFO_VPTR_FIELD (b) = delta;
7420
7421 if (binfo != TYPE_BINFO (t))
7422 /* The vbase offset had better be the same. */
7423 gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));
7424
7425 /* The next vbase will come at a more negative offset. */
7426 vid->index = size_binop (MINUS_EXPR, vid->index,
7427 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
7428
7429 /* The initializer is the delta from BINFO to this virtual base.
7430 The vbase offsets go in reverse inheritance-graph order, and
7431 we are walking in inheritance graph order so these end up in
7432 the right order. */
7433 delta = size_diffop (BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
7434
7435 *vid->last_init
7436 = build_tree_list (NULL_TREE,
7437 fold (build1 (NOP_EXPR,
7438 vtable_entry_type,
7439 delta)));
7440 vid->last_init = &TREE_CHAIN (*vid->last_init);
7441 }
7442 }
7443
7444 /* Adds the initializers for the vcall offset entries in the vtable
7445 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
7446 to VID->INITS. */
7447
7448 static void
7449 build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
7450 {
7451 /* We only need these entries if this base is a virtual base. We
7452 compute the indices -- but do not add to the vtable -- when
7453 building the main vtable for a class. */
7454 if (BINFO_VIRTUAL_P (binfo) || binfo == TYPE_BINFO (vid->derived))
7455 {
7456 /* We need a vcall offset for each of the virtual functions in this
7457 vtable. For example:
7458
7459 class A { virtual void f (); };
7460 class B1 : virtual public A { virtual void f (); };
7461 class B2 : virtual public A { virtual void f (); };
7462 class C: public B1, public B2 { virtual void f (); };
7463
7464 A C object has a primary base of B1, which has a primary base of A. A
7465 C also has a secondary base of B2, which no longer has a primary base
7466 of A. So the B2-in-C construction vtable needs a secondary vtable for
7467 A, which will adjust the A* to a B2* to call f. We have no way of
7468 knowing what (or even whether) this offset will be when we define B2,
7469 so we store this "vcall offset" in the A sub-vtable and look it up in
7470 a "virtual thunk" for B2::f.
7471
7472 We need entries for all the functions in our primary vtable and
7473 in our non-virtual bases' secondary vtables. */
7474 vid->vbase = binfo;
7475 /* If we are just computing the vcall indices -- but do not need
7476 the actual entries -- not that. */
7477 if (!BINFO_VIRTUAL_P (binfo))
7478 vid->generate_vcall_entries = false;
7479 /* Now, walk through the non-virtual bases, adding vcall offsets. */
7480 add_vcall_offset_vtbl_entries_r (binfo, vid);
7481 }
7482 }
7483
7484 /* Build vcall offsets, starting with those for BINFO. */
7485
7486 static void
7487 add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
7488 {
7489 int i;
7490 tree primary_binfo;
7491 tree base_binfo;
7492
7493 /* Don't walk into virtual bases -- except, of course, for the
7494 virtual base for which we are building vcall offsets. Any
7495 primary virtual base will have already had its offsets generated
7496 through the recursion in build_vcall_and_vbase_vtbl_entries. */
7497 if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
7498 return;
7499
7500 /* If BINFO has a primary base, process it first. */
7501 primary_binfo = get_primary_binfo (binfo);
7502 if (primary_binfo)
7503 add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
7504
7505 /* Add BINFO itself to the list. */
7506 add_vcall_offset_vtbl_entries_1 (binfo, vid);
7507
7508 /* Scan the non-primary bases of BINFO. */
7509 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7510 if (base_binfo != primary_binfo)
7511 add_vcall_offset_vtbl_entries_r (base_binfo, vid);
7512 }
7513
7514 /* Called from build_vcall_offset_vtbl_entries_r. */
7515
7516 static void
7517 add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
7518 {
7519 /* Make entries for the rest of the virtuals. */
7520 if (abi_version_at_least (2))
7521 {
7522 tree orig_fn;
7523
7524 /* The ABI requires that the methods be processed in declaration
7525 order. G++ 3.2 used the order in the vtable. */
7526 for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
7527 orig_fn;
7528 orig_fn = TREE_CHAIN (orig_fn))
7529 if (DECL_VINDEX (orig_fn))
7530 add_vcall_offset (orig_fn, binfo, vid);
7531 }
7532 else
7533 {
7534 tree derived_virtuals;
7535 tree base_virtuals;
7536 tree orig_virtuals;
7537 /* If BINFO is a primary base, the most derived class which has
7538 BINFO as a primary base; otherwise, just BINFO. */
7539 tree non_primary_binfo;
7540
7541 /* We might be a primary base class. Go up the inheritance hierarchy
7542 until we find the most derived class of which we are a primary base:
7543 it is the BINFO_VIRTUALS there that we need to consider. */
7544 non_primary_binfo = binfo;
7545 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
7546 {
7547 tree b;
7548
7549 /* If we have reached a virtual base, then it must be vid->vbase,
7550 because we ignore other virtual bases in
7551 add_vcall_offset_vtbl_entries_r. In turn, it must be a primary
7552 base (possibly multi-level) of vid->binfo, or we wouldn't
7553 have called build_vcall_and_vbase_vtbl_entries for it. But it
7554 might be a lost primary, so just skip down to vid->binfo. */
7555 if (BINFO_VIRTUAL_P (non_primary_binfo))
7556 {
7557 gcc_assert (non_primary_binfo == vid->vbase);
7558 non_primary_binfo = vid->binfo;
7559 break;
7560 }
7561
7562 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
7563 if (get_primary_binfo (b) != non_primary_binfo)
7564 break;
7565 non_primary_binfo = b;
7566 }
7567
7568 if (vid->ctor_vtbl_p)
7569 /* For a ctor vtable we need the equivalent binfo within the hierarchy
7570 where rtti_binfo is the most derived type. */
7571 non_primary_binfo
7572 = original_binfo (non_primary_binfo, vid->rtti_binfo);
7573
7574 for (base_virtuals = BINFO_VIRTUALS (binfo),
7575 derived_virtuals = BINFO_VIRTUALS (non_primary_binfo),
7576 orig_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
7577 base_virtuals;
7578 base_virtuals = TREE_CHAIN (base_virtuals),
7579 derived_virtuals = TREE_CHAIN (derived_virtuals),
7580 orig_virtuals = TREE_CHAIN (orig_virtuals))
7581 {
7582 tree orig_fn;
7583
7584 /* Find the declaration that originally caused this function to
7585 be present in BINFO_TYPE (binfo). */
7586 orig_fn = BV_FN (orig_virtuals);
7587
7588 /* When processing BINFO, we only want to generate vcall slots for
7589 function slots introduced in BINFO. So don't try to generate
7590 one if the function isn't even defined in BINFO. */
7591 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), DECL_CONTEXT (orig_fn)))
7592 continue;
7593
7594 add_vcall_offset (orig_fn, binfo, vid);
7595 }
7596 }
7597 }
7598
7599 /* Add a vcall offset entry for ORIG_FN to the vtable. */
7600
7601 static void
7602 add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
7603 {
7604 size_t i;
7605 tree vcall_offset;
7606
7607 /* If there is already an entry for a function with the same
7608 signature as FN, then we do not need a second vcall offset.
7609 Check the list of functions already present in the derived
7610 class vtable. */
7611 for (i = 0; i < VARRAY_ACTIVE_SIZE (vid->fns); ++i)
7612 {
7613 tree derived_entry;
7614
7615 derived_entry = VARRAY_TREE (vid->fns, i);
7616 if (same_signature_p (derived_entry, orig_fn)
7617 /* We only use one vcall offset for virtual destructors,
7618 even though there are two virtual table entries. */
7619 || (DECL_DESTRUCTOR_P (derived_entry)
7620 && DECL_DESTRUCTOR_P (orig_fn)))
7621 return;
7622 }
7623
7624 /* If we are building these vcall offsets as part of building
7625 the vtable for the most derived class, remember the vcall
7626 offset. */
7627 if (vid->binfo == TYPE_BINFO (vid->derived))
7628 {
7629 tree_pair_p elt = VEC_safe_push (tree_pair_s,
7630 CLASSTYPE_VCALL_INDICES (vid->derived),
7631 NULL);
7632 elt->purpose = orig_fn;
7633 elt->value = vid->index;
7634 }
7635
7636 /* The next vcall offset will be found at a more negative
7637 offset. */
7638 vid->index = size_binop (MINUS_EXPR, vid->index,
7639 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
7640
7641 /* Keep track of this function. */
7642 VARRAY_PUSH_TREE (vid->fns, orig_fn);
7643
7644 if (vid->generate_vcall_entries)
7645 {
7646 tree base;
7647 tree fn;
7648
7649 /* Find the overriding function. */
7650 fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
7651 if (fn == error_mark_node)
7652 vcall_offset = build1 (NOP_EXPR, vtable_entry_type,
7653 integer_zero_node);
7654 else
7655 {
7656 base = TREE_VALUE (fn);
7657
7658 /* The vbase we're working on is a primary base of
7659 vid->binfo. But it might be a lost primary, so its
7660 BINFO_OFFSET might be wrong, so we just use the
7661 BINFO_OFFSET from vid->binfo. */
7662 vcall_offset = size_diffop (BINFO_OFFSET (base),
7663 BINFO_OFFSET (vid->binfo));
7664 vcall_offset = fold (build1 (NOP_EXPR, vtable_entry_type,
7665 vcall_offset));
7666 }
7667 /* Add the initializer to the vtable. */
7668 *vid->last_init = build_tree_list (NULL_TREE, vcall_offset);
7669 vid->last_init = &TREE_CHAIN (*vid->last_init);
7670 }
7671 }
7672
7673 /* Return vtbl initializers for the RTTI entries corresponding to the
7674 BINFO's vtable. The RTTI entries should indicate the object given
7675 by VID->rtti_binfo. */
7676
7677 static void
7678 build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
7679 {
7680 tree b;
7681 tree t;
7682 tree basetype;
7683 tree offset;
7684 tree decl;
7685 tree init;
7686
7687 basetype = BINFO_TYPE (binfo);
7688 t = BINFO_TYPE (vid->rtti_binfo);
7689
7690 /* To find the complete object, we will first convert to our most
7691 primary base, and then add the offset in the vtbl to that value. */
7692 b = binfo;
7693 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
7694 && !BINFO_LOST_PRIMARY_P (b))
7695 {
7696 tree primary_base;
7697
7698 primary_base = get_primary_binfo (b);
7699 gcc_assert (BINFO_PRIMARY_P (primary_base)
7700 && BINFO_INHERITANCE_CHAIN (primary_base) == b);
7701 b = primary_base;
7702 }
7703 offset = size_diffop (BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
7704
7705 /* The second entry is the address of the typeinfo object. */
7706 if (flag_rtti)
7707 decl = build_address (get_tinfo_decl (t));
7708 else
7709 decl = integer_zero_node;
7710
7711 /* Convert the declaration to a type that can be stored in the
7712 vtable. */
7713 init = build_nop (vfunc_ptr_type_node, decl);
7714 *vid->last_init = build_tree_list (NULL_TREE, init);
7715 vid->last_init = &TREE_CHAIN (*vid->last_init);
7716
7717 /* Add the offset-to-top entry. It comes earlier in the vtable that
7718 the the typeinfo entry. Convert the offset to look like a
7719 function pointer, so that we can put it in the vtable. */
7720 init = build_nop (vfunc_ptr_type_node, offset);
7721 *vid->last_init = build_tree_list (NULL_TREE, init);
7722 vid->last_init = &TREE_CHAIN (*vid->last_init);
7723 }
7724
7725 /* Fold a OBJ_TYPE_REF expression to the address of a function.
7726 KNOWN_TYPE carries the true type of OBJ_TYPE_REF_OBJECT(REF). */
7727
7728 tree
7729 cp_fold_obj_type_ref (tree ref, tree known_type)
7730 {
7731 HOST_WIDE_INT index = tree_low_cst (OBJ_TYPE_REF_TOKEN (ref), 1);
7732 HOST_WIDE_INT i = 0;
7733 tree v = BINFO_VIRTUALS (TYPE_BINFO (known_type));
7734 tree fndecl;
7735
7736 while (i != index)
7737 {
7738 i += (TARGET_VTABLE_USES_DESCRIPTORS
7739 ? TARGET_VTABLE_USES_DESCRIPTORS : 1);
7740 v = TREE_CHAIN (v);
7741 }
7742
7743 fndecl = BV_FN (v);
7744
7745 #ifdef ENABLE_CHECKING
7746 gcc_assert (tree_int_cst_equal (OBJ_TYPE_REF_TOKEN (ref),
7747 DECL_VINDEX (fndecl)));
7748 #endif
7749
7750 return build_address (fndecl);
7751 }
7752
7753 #include "gt-cp-class.h"
This page took 0.504986 seconds and 6 git commands to generate.