]> gcc.gnu.org Git - gcc.git/blob - gcc/config/we32k/we32k.h
Added arg to RETURN_POPS_ARGS.
[gcc.git] / gcc / config / we32k / we32k.h
1 /* Definitions of target machine for GNU compiler. AT&T we32000 version.
2 Copyright (C) 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by John Wehle (john@feith1.uucp)
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 1, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21
22 /* Names to predefine in the preprocessor for this target machine. */
23
24 #define CPP_PREDEFINES "-Dwe32000 -Du3b2 -Dunix -Asystem(unix) -Acpu(we32000) -Amachine(we32000)"
25
26 /* Print subsidiary information on the compiler version in use. */
27
28 #define TARGET_VERSION fprintf (stderr, " (we32000)");
29
30 /* Run-time compilation parameters selecting different hardware subsets. */
31
32 extern int target_flags;
33
34 /* Macros used in the machine description to test the flags. */
35
36 /* Macro to define tables used to set the flags.
37 This is a list in braces of pairs in braces,
38 each pair being { "NAME", VALUE }
39 where VALUE is the bits to set or minus the bits to clear.
40 An empty string NAME is used to identify the default VALUE. */
41
42 #define TARGET_SWITCHES \
43 { { "", TARGET_DEFAULT}}
44
45 #define TARGET_DEFAULT 0
46
47 \f
48 /* target machine storage layout */
49
50 /* Define this if most significant bit is lowest numbered
51 in instructions that operate on numbered bit-fields. */
52 #define BITS_BIG_ENDIAN 0
53
54 /* Define this if most significant byte of a word is the lowest numbered. */
55 /* That is true on the we32000. */
56 #define BYTES_BIG_ENDIAN 1
57
58 /* Define this if most significant word of a multiword is lowest numbered. */
59 /* For we32000 we can decide arbitrarily
60 since there are no machine instructions for them. */
61 #define WORDS_BIG_ENDIAN 1
62
63 /* number of bits in an addressable storage unit */
64 #define BITS_PER_UNIT 8
65
66 /* Width in bits of a "word", which is the contents of a machine register.
67 Note that this is not necessarily the width of data type `int';
68 if using 16-bit ints on a we32000, this would still be 32.
69 But on a machine with 16-bit registers, this would be 16. */
70 #define BITS_PER_WORD 32
71
72 /* Width of a word, in units (bytes). */
73 #define UNITS_PER_WORD 4
74
75 /* Width in bits of a pointer.
76 See also the macro `Pmode' defined below. */
77 #define POINTER_SIZE 32
78
79 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
80 #define PARM_BOUNDARY 32
81
82 /* Boundary (in *bits*) on which stack pointer should be aligned. */
83 #define STACK_BOUNDARY 32
84
85 /* Allocation boundary (in *bits*) for the code of a function. */
86 #define FUNCTION_BOUNDARY 32
87
88 /* Alignment of field after `int : 0' in a structure. */
89 #define EMPTY_FIELD_BOUNDARY 32
90
91 /* No data type wants to be aligned rounder than this. */
92 #define BIGGEST_ALIGNMENT 32
93
94 /* Every structure's size must be a multiple of this. */
95 #define STRUCTURE_SIZE_BOUNDARY 32
96
97 /* Define this if move instructions will actually fail to work
98 when given unaligned data. */
99 #define STRICT_ALIGNMENT 1
100
101 /* Define number of bits in most basic integer type.
102 (If undefined, default is BITS_PER_WORD). */
103 #define INT_TYPE_SIZE 32
104
105 /* Integer bit fields should have the same size and alignment
106 as actual integers */
107 #define PCC_BITFIELD_TYPE_MATTERS 1
108
109 /* Specify the size_t type. */
110 #define SIZE_TYPE "unsigned int"
111 \f
112 /* Standard register usage. */
113
114 /* Number of actual hardware registers.
115 The hardware registers are assigned numbers for the compiler
116 from 0 to just below FIRST_PSEUDO_REGISTER.
117 All registers that the compiler knows about must be given numbers,
118 even those that are not normally considered general registers. */
119 #define FIRST_PSEUDO_REGISTER 16
120
121 /* 1 for registers that have pervasive standard uses
122 and are not available for the register allocator. */
123 #define FIXED_REGISTERS \
124 {0, 0, 0, 0, 0, 0, 0, 0, \
125 0, 1, 1, 1, 1, 1, 1, 1, }
126
127 /* 1 for registers not available across function calls.
128 These must include the FIXED_REGISTERS and also any
129 registers that can be used without being saved.
130 The latter must include the registers where values are returned
131 and the register where structure-value addresses are passed.
132 Aside from that, you can include as many other registers as you like. */
133 #define CALL_USED_REGISTERS \
134 {1, 1, 1, 0, 0, 0, 0, 0, \
135 0, 1, 1, 1, 1, 1, 1, 1, }
136
137 /* Make sure everything's fine if we *don't* have a given processor.
138 This assumes that putting a register in fixed_regs will keep the
139 compilers mitt's completely off it. We don't bother to zero it out
140 of register classes. */
141 /* #define CONDITIONAL_REGISTER_USAGE */
142
143 /* Return number of consecutive hard regs needed starting at reg REGNO
144 to hold something of mode MODE.
145 This is ordinarily the length in words of a value of mode MODE
146 but can be less for certain modes in special long registers. */
147 #define HARD_REGNO_NREGS(REGNO, MODE) \
148 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
149
150 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
151 #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
152
153 /* Value is 1 if it is a good idea to tie two pseudo registers
154 when one has mode MODE1 and one has mode MODE2.
155 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
156 for any hard reg, then this must be 0 for correct output. */
157 #define MODES_TIEABLE_P(MODE1, MODE2) 0
158
159 /* Specify the registers used for certain standard purposes.
160 The values of these macros are register numbers. */
161
162 /* Register used for the program counter */
163 #define PC_REGNUM 15
164
165 /* Register to use for pushing function arguments. */
166 #define STACK_POINTER_REGNUM 12
167
168 /* Base register for access to local variables of the function. */
169 #define FRAME_POINTER_REGNUM 9
170
171 /* Value should be nonzero if functions must have frame pointers.
172 Zero means the frame pointer need not be set up (and parms
173 may be accessed via the stack pointer) in functions that seem suitable.
174 This is computed in `reload', in reload1.c. */
175 #define FRAME_POINTER_REQUIRED 1
176
177 /* Base register for access to arguments of the function. */
178 #define ARG_POINTER_REGNUM 10
179
180 /* Register in which static-chain is passed to a function. */
181 #define STATIC_CHAIN_REGNUM 8
182
183 /* Register in which address to store a structure value
184 is passed to a function. */
185 #define STRUCT_VALUE_REGNUM 2
186
187 /* Order in which to allocate registers. */
188 #define REG_ALLOC_ORDER \
189 {0, 1, 8, 7, 6, 5, 4, 3}
190 \f
191 /* Define the classes of registers for register constraints in the
192 machine description. Also define ranges of constants.
193
194 One of the classes must always be named ALL_REGS and include all hard regs.
195 If there is more than one class, another class must be named NO_REGS
196 and contain no registers.
197
198 The name GENERAL_REGS must be the name of a class (or an alias for
199 another name such as ALL_REGS). This is the class of registers
200 that is allowed by "g" or "r" in a register constraint.
201 Also, registers outside this class are allocated only when
202 instructions express preferences for them.
203
204 The classes must be numbered in nondecreasing order; that is,
205 a larger-numbered class must never be contained completely
206 in a smaller-numbered class.
207
208 For any two classes, it is very desirable that there be another
209 class that represents their union. */
210
211 enum reg_class { NO_REGS, GENERAL_REGS,
212 ALL_REGS, LIM_REG_CLASSES };
213
214 #define N_REG_CLASSES (int) LIM_REG_CLASSES
215
216 /* Give names of register classes as strings for dump file. */
217
218 #define REG_CLASS_NAMES \
219 { "NO_REGS", "GENERAL_REGS", "ALL_REGS" }
220
221 /* Define which registers fit in which classes.
222 This is an initializer for a vector of HARD_REG_SET
223 of length N_REG_CLASSES. */
224
225 #define REG_CLASS_CONTENTS \
226 { \
227 0, /* NO_REGS */ \
228 0x000017ff, /* GENERAL_REGS */ \
229 0x0000ffff, /* ALL_REGS */ \
230 }
231
232 /* The same information, inverted:
233 Return the class number of the smallest class containing
234 reg number REGNO. This could be a conditional expression
235 or could index an array. */
236
237 #define REGNO_REG_CLASS(REGNO) \
238 (((REGNO) < 11 || (REGNO) == 12) ? GENERAL_REGS : ALL_REGS)
239
240 /* The class value for index registers, and the one for base regs. */
241
242 #define INDEX_REG_CLASS NO_REGS
243 #define BASE_REG_CLASS GENERAL_REGS
244
245 /* Get reg_class from a letter such as appears in the machine description.
246 We do a trick here to modify the effective constraints on the
247 machine description; we zorch the constraint letters that aren't
248 appropriate for a specific target. This allows us to guarantee
249 that a specific kind of register will not be used for a given target
250 without fiddling with the register classes above. */
251
252 #define REG_CLASS_FROM_LETTER(C) \
253 ((C) == 'r' ? GENERAL_REGS : NO_REGS)
254
255 /* The letters I, J, K, L and M in a register constraint string
256 can be used to stand for particular ranges of immediate operands.
257 This macro defines what the ranges are.
258 C is the letter, and VALUE is a constant value.
259 Return 1 if VALUE is in the range specified by C. */
260
261 #define CONST_OK_FOR_LETTER_P(VALUE, C) 0
262
263 /*
264 */
265
266 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0
267
268 /* Given an rtx X being reloaded into a reg required to be
269 in class CLASS, return the class of reg to actually use.
270 In general this is just CLASS; but on some machines
271 in some cases it is preferable to use a more restrictive class. */
272
273 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
274
275 /* Return the maximum number of consecutive registers
276 needed to represent mode MODE in a register of class CLASS. */
277 #define CLASS_MAX_NREGS(CLASS, MODE) \
278 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
279 \f
280 /* Stack layout; function entry, exit and calling. */
281
282 /* Define this if pushing a word on the stack
283 makes the stack pointer a smaller address. */
284 /* #define STACK_GROWS_DOWNWARD */
285
286 /* Define this if the nominal address of the stack frame
287 is at the high-address end of the local variables;
288 that is, each additional local variable allocated
289 goes at a more negative offset in the frame. */
290 /* #define FRAME_GROWS_DOWNWARD */
291
292 /* Offset within stack frame to start allocating local variables at.
293 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
294 first local allocated. Otherwise, it is the offset to the BEGINNING
295 of the first local allocated. */
296 #define STARTING_FRAME_OFFSET 0
297
298 /* If we generate an insn to push BYTES bytes,
299 this says how many the stack pointer really advances by. */
300 #define PUSH_ROUNDING(BYTES) (((BYTES) + 3) & ~3)
301
302 /* Offset of first parameter from the argument pointer register value. */
303 #define FIRST_PARM_OFFSET(FNDECL) 0
304
305 /* Value is 1 if returning from a function call automatically
306 pops the arguments described by the number-of-args field in the call.
307 FUNDECL is the declaration node of the function (as a tree),
308 FUNTYPE is the data type of the function (as a tree),
309 or for a library call it is an identifier node for the subroutine name. */
310
311 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) (SIZE)
312
313 /* Define how to find the value returned by a function.
314 VALTYPE is the data type of the value (as a tree).
315 If the precise function being called is known, FUNC is its FUNCTION_DECL;
316 otherwise, FUNC is 0. */
317
318 /* On the we32000 the return value is in r0 regardless. */
319
320 #define FUNCTION_VALUE(VALTYPE, FUNC) \
321 gen_rtx (REG, TYPE_MODE (VALTYPE), 0)
322
323 /* Define how to find the value returned by a library function
324 assuming the value has mode MODE. */
325
326 /* On the we32000 the return value is in r0 regardless. */
327
328 #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 0)
329
330 /* 1 if N is a possible register number for a function value.
331 On the we32000, r0 is the only register thus used. */
332
333 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
334
335 /* Define this if PCC uses the nonreentrant convention for returning
336 structure and union values. */
337
338 /* #define PCC_STATIC_STRUCT_RETURN */
339
340 /* 1 if N is a possible register number for function argument passing.
341 On the we32000, no registers are used in this way. */
342
343 #define FUNCTION_ARG_REGNO_P(N) 0
344 \f
345 /* Define a data type for recording info about an argument list
346 during the scan of that argument list. This data type should
347 hold all necessary information about the function itself
348 and about the args processed so far, enough to enable macros
349 such as FUNCTION_ARG to determine where the next arg should go.
350
351 On the we32k, this is a single integer, which is a number of bytes
352 of arguments scanned so far. */
353
354 #define CUMULATIVE_ARGS int
355
356 /* Initialize a variable CUM of type CUMULATIVE_ARGS
357 for a call to a function whose data type is FNTYPE.
358 For a library call, FNTYPE is 0.
359
360 On the we32k, the offset starts at 0. */
361
362 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
363 ((CUM) = 0)
364
365 /* Update the data in CUM to advance over an argument
366 of mode MODE and data type TYPE.
367 (TYPE is null for libcalls where that information may not be available.) */
368
369 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
370 ((CUM) += ((MODE) != BLKmode \
371 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
372 : (int_size_in_bytes (TYPE) + 3) & ~3))
373
374 /* Define where to put the arguments to a function.
375 Value is zero to push the argument on the stack,
376 or a hard register in which to store the argument.
377
378 MODE is the argument's machine mode.
379 TYPE is the data type of the argument (as a tree).
380 This is null for libcalls where that information may
381 not be available.
382 CUM is a variable of type CUMULATIVE_ARGS which gives info about
383 the preceding args and about the function being called.
384 NAMED is nonzero if this argument is a named parameter
385 (otherwise it is an extra parameter matching an ellipsis). */
386
387 /* On the we32000 all args are pushed */
388
389 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
390
391 /* For an arg passed partly in registers and partly in memory,
392 this is the number of registers used.
393 For args passed entirely in registers or entirely in memory, zero. */
394
395 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
396
397 /* This macro generates the assembly code for function entry.
398 FILE is a stdio stream to output the code to.
399 SIZE is an int: how many units of temporary storage to allocate.
400 Refer to the array `regs_ever_live' to determine which registers
401 to save; `regs_ever_live[I]' is nonzero if register number I
402 is ever used in the function. This macro is responsible for
403 knowing which registers should not be saved even if used. */
404
405 #define FUNCTION_PROLOGUE(FILE, SIZE) \
406 { register int nregs_to_save; \
407 register int regno; \
408 extern char call_used_regs[]; \
409 nregs_to_save = 0; \
410 for (regno = 8; regno > 2; regno--) \
411 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
412 nregs_to_save = (9 - regno); \
413 fprintf (FILE, "\tsave &%d\n", nregs_to_save); \
414 if (SIZE) \
415 fprintf (FILE, "\taddw2 &%d,%%sp\n", ((SIZE) + 3) & ~3); }
416
417 /* Output assembler code to FILE to increment profiler label # LABELNO
418 for profiling a function entry. */
419
420 #define FUNCTION_PROFILER(FILE, LABELNO) \
421 fprintf (FILE, "\tmovw &.LP%d,%%r0\n\tjsb _mcount\n", (LABELNO))
422
423 /* Output assembler code to FILE to initialize this source file's
424 basic block profiling info, if that has not already been done. */
425
426 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
427 fprintf (FILE, "\tcmpw .LPBX0,&0\n\tjne .LPI%d\n\tpushw &.LPBX0\n\tcall &1,__bb_init_func\n.LPI%d:\n", \
428 LABELNO, LABELNO);
429
430 /* Output assembler code to FILE to increment the entry-count for
431 the BLOCKNO'th basic block in this source file. */
432
433 #define BLOCK_PROFILER(FILE, BLOCKNO) \
434 fprintf (FILE, "\taddw2 &1,.LPBX2+%d\n", 4 * BLOCKNO)
435
436 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
437 the stack pointer does not matter. The value is tested only in
438 functions that have frame pointers.
439 No definition is equivalent to always zero. */
440
441 #define EXIT_IGNORE_STACK 0
442
443 /* This macro generates the assembly code for function exit,
444 on machines that need it. If FUNCTION_EPILOGUE is not defined
445 then individual return instructions are generated for each
446 return statement. Args are same as for FUNCTION_PROLOGUE.
447
448 The function epilogue should not depend on the current stack pointer!
449 It should use the frame pointer only. This is mandatory because
450 of alloca; we also take advantage of it to omit stack adjustments
451 before returning. */
452
453 #define FUNCTION_EPILOGUE(FILE, SIZE) \
454 { register int nregs_to_restore; \
455 register int regno; \
456 extern char call_used_regs[]; \
457 nregs_to_restore = 0; \
458 for (regno = 8; regno > 2; regno--) \
459 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
460 nregs_to_restore = (9 - regno); \
461 fprintf (FILE, "\tret &%d\n", nregs_to_restore); }
462
463 /* Store in the variable DEPTH the initial difference between the
464 frame pointer reg contents and the stack pointer reg contents,
465 as of the start of the function body. This depends on the layout
466 of the fixed parts of the stack frame and on how registers are saved.
467
468 On the we32k, FRAME_POINTER_REQUIRED is always 1, so the definition of this
469 macro doesn't matter. But it must be defined. */
470
471 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = 0;
472
473 /* Output assembler code for a block containing the constant parts
474 of a trampoline, leaving space for the variable parts. */
475
476 /* On the we32k, the trampoline contains two instructions:
477 mov #STATIC,%r8
478 jmp #FUNCTION */
479
480 #define TRAMPOLINE_TEMPLATE(FILE) \
481 { \
482 ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x844f)); \
483 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
484 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
485 ASM_OUTPUT_CHAR (FILE, gen_rtx (CONST_INT, VOIDmode, 0x48)); \
486 ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x247f)); \
487 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
488 ASM_OUTPUT_SHORT (FILE, const0_rtx); \
489 }
490
491 /* Length in units of the trampoline for entering a nested function. */
492
493 #define TRAMPOLINE_SIZE 13
494
495 /* Emit RTL insns to initialize the variable parts of a trampoline.
496 FNADDR is an RTX for the address of the function's pure code.
497 CXT is an RTX for the static chain value for the function. */
498
499 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
500 { \
501 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 2)), CXT); \
502 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 9)), FNADDR); \
503 }
504 \f
505 /* Generate calls to memcpy() and memset() rather
506 than bcopy() and bzero() */
507 #define TARGET_MEM_FUNCTIONS
508 \f
509 /* Addressing modes, and classification of registers for them. */
510
511 /* #define HAVE_POST_INCREMENT */
512 /* #define HAVE_POST_DECREMENT */
513
514 /* #define HAVE_PRE_DECREMENT */
515 /* #define HAVE_PRE_INCREMENT */
516
517 /* Macros to check register numbers against specific register classes. */
518
519 /* These assume that REGNO is a hard or pseudo reg number.
520 They give nonzero only if REGNO is a hard reg of the suitable class
521 or a pseudo reg currently allocated to a suitable hard reg.
522 Since they use reg_renumber, they are safe only once reg_renumber
523 has been allocated, which happens in local-alloc.c. */
524
525 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
526
527 #define REGNO_OK_FOR_BASE_P(REGNO) \
528 ((REGNO) < 11 || (REGNO) == 12 || \
529 (unsigned)reg_renumber[REGNO] < 11 || (unsigned)reg_renumber[REGNO] == 12)
530 \f
531 /* Maximum number of registers that can appear in a valid memory address. */
532
533 #define MAX_REGS_PER_ADDRESS 1
534
535 /* Recognize any constant value that is a valid address. */
536
537 #define CONSTANT_ADDRESS_P(X) \
538 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
539 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
540 || GET_CODE (X) == HIGH)
541
542 /* Nonzero if the constant value X is a legitimate general operand.
543 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
544
545 #define LEGITIMATE_CONSTANT_P(X) 1
546
547 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
548 and check its validity for a certain class.
549 We have two alternate definitions for each of them.
550 The usual definition accepts all pseudo regs; the other rejects
551 them unless they have been allocated suitable hard regs.
552 The symbol REG_OK_STRICT causes the latter definition to be used.
553
554 Most source files want to accept pseudo regs in the hope that
555 they will get allocated to the class that the insn wants them to be in.
556 Source files for reload pass need to be strict.
557 After reload, it makes no difference, since pseudo regs have
558 been eliminated by then. */
559
560 #ifndef REG_OK_STRICT
561
562 /* Nonzero if X is a hard reg that can be used as an index
563 or if it is a pseudo reg. */
564 #define REG_OK_FOR_INDEX_P(X) 0
565
566 /* Nonzero if X is a hard reg that can be used as a base reg
567 or if it is a pseudo reg. */
568 #define REG_OK_FOR_BASE_P(X) \
569 (REGNO(X) < 11 || REGNO(X) == 12 || REGNO(X) >= FIRST_PSEUDO_REGISTER)
570
571 #else
572
573 /* Nonzero if X is a hard reg that can be used as an index. */
574 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
575 /* Nonzero if X is a hard reg that can be used as a base reg. */
576 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
577
578 #endif
579 \f
580 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
581 that is a valid memory address for an instruction.
582 The MODE argument is the machine mode for the MEM expression
583 that wants to use this address. */
584
585 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
586 { register rtx Addr = X; \
587 if ((MODE) == QImode || (MODE) == HImode || \
588 (MODE) == PSImode || (MODE) == SImode || (MODE) == SFmode) \
589 if (GET_CODE(Addr) == MEM) \
590 Addr = XEXP(Addr, 0); \
591 if (CONSTANT_ADDRESS_P(Addr)) \
592 goto LABEL; \
593 if (REG_P(Addr) && REG_OK_FOR_BASE_P(Addr)) \
594 goto LABEL; \
595 if (GET_CODE(Addr) == PLUS && \
596 ((REG_P(XEXP(Addr, 0)) && REG_OK_FOR_BASE_P(XEXP(Addr, 0)) && \
597 CONSTANT_ADDRESS_P(XEXP(Addr, 1))) || \
598 (REG_P(XEXP(Addr, 1)) && REG_OK_FOR_BASE_P(XEXP(Addr, 1)) && \
599 CONSTANT_ADDRESS_P(XEXP(Addr, 0))))) \
600 goto LABEL; \
601 }
602 \f
603 /* Try machine-dependent ways of modifying an illegitimate address
604 to be legitimate. If we find one, return the new, valid address.
605 This macro is used in only one place: `memory_address' in explow.c.
606
607 OLDX is the address as it was before break_out_memory_refs was called.
608 In some cases it is useful to look at this to decide what needs to be done.
609
610 MODE and WIN are passed so that this macro can use
611 GO_IF_LEGITIMATE_ADDRESS.
612
613 It is always safe for this macro to do nothing. It exists to recognize
614 opportunities to optimize the output. */
615
616 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) { }
617
618 /* Go to LABEL if ADDR (a legitimate address expression)
619 has an effect that depends on the machine mode it is used for. */
620
621 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) { }
622 \f
623 /* Specify the machine mode that this machine uses
624 for the index in the tablejump instruction. */
625 #define CASE_VECTOR_MODE SImode
626
627 /* Define this if the tablejump instruction expects the table
628 to contain offsets from the address of the table.
629 Do not define this if the table should contain absolute addresses. */
630 /* #define CASE_VECTOR_PC_RELATIVE */
631
632 /* Specify the tree operation to be used to convert reals to integers. */
633 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
634
635 /* This is the kind of divide that is easiest to do in the general case. */
636 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
637
638 /* Define this as 1 if `char' should by default be signed; else as 0. */
639 #define DEFAULT_SIGNED_CHAR 0
640
641 /* Max number of bytes we can move from memory to memory
642 in one reasonably fast instruction. */
643 #define MOVE_MAX 4
644
645 /* Define this if zero-extension is slow (more than one real instruction). */
646 /* #define SLOW_ZERO_EXTEND */
647
648 /* Nonzero if access to memory by bytes is slow and undesirable. */
649 #define SLOW_BYTE_ACCESS 0
650
651 /* Define this to be nonzero if shift instructions ignore all but the low-order
652 few bits. */
653 #define SHIFT_COUNT_TRUNCATED 1
654
655 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
656 is done just by pretending it is already truncated. */
657 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
658
659 /* We assume that the store-condition-codes instructions store 0 for false
660 and some other value for true. This is the value stored for true. */
661
662 #define STORE_FLAG_VALUE -1
663
664 /* When a prototype says `char' or `short', really pass an `int'. */
665 #define PROMOTE_PROTOTYPES
666
667 /* Specify the machine mode that pointers have.
668 After generation of rtl, the compiler makes no further distinction
669 between pointers and any other objects of this machine mode. */
670 #define Pmode SImode
671
672 /* A function address in a call instruction
673 is a byte address (for indexing purposes)
674 so give the MEM rtx a byte's mode. */
675 #define FUNCTION_MODE QImode
676
677 /* Compute the cost of computing a constant rtl expression RTX
678 whose rtx-code is CODE. The body of this macro is a portion
679 of a switch statement. If the code is computed here,
680 return it with a return statement. Otherwise, break from the switch. */
681
682 #define CONST_COSTS(RTX,CODE, OUTER_CODE) \
683 case CONST_INT: \
684 if (INTVAL (RTX) >= -16 && INTVAL (RTX) <= 63) return 0; \
685 if (INTVAL (RTX) >= -128 && INTVAL (RTX) <= 127) return 1; \
686 if (INTVAL (RTX) >= -32768 && INTVAL (RTX) <= 32767) return 2; \
687 case CONST: \
688 case LABEL_REF: \
689 case SYMBOL_REF: \
690 return 3; \
691 case CONST_DOUBLE: \
692 return 5;
693 \f
694 /* Tell final.c how to eliminate redundant test instructions. */
695
696 /* Here we define machine-dependent flags and fields in cc_status
697 (see `conditions.h'). */
698
699 #define NOTICE_UPDATE_CC(EXP, INSN) \
700 { \
701 { CC_STATUS_INIT; } \
702 }
703 \f
704 /* Control the assembler format that we output. */
705
706 /* Use crt1.o as a startup file and crtn.o as a closing file. */
707
708 #define STARTFILE_SPEC "%{pg:gcrt1.o%s}%{!pg:%{p:mcrt1.o%s}%{!p:crt1.o%s}}"
709
710 #define ENDFILE_SPEC "crtn.o%s"
711
712 /* The .file command should always begin the output. */
713
714 #define ASM_FILE_START(FILE) output_file_directive ((FILE), main_input_filename)
715
716 /* Output to assembler file text saying following lines
717 may contain character constants, extra white space, comments, etc. */
718
719 #define ASM_APP_ON "#APP\n"
720
721 /* Output to assembler file text saying following lines
722 no longer contain unusual constructs. */
723
724 #define ASM_APP_OFF "#NO_APP\n"
725
726 /* Output before code. */
727
728 #define TEXT_SECTION_ASM_OP ".text"
729
730 /* Output before writable data. */
731
732 #define DATA_SECTION_ASM_OP ".data"
733
734 /* Read-only data goes in the data section because
735 AT&T's assembler doesn't guarantee the proper alignment
736 of data in the text section even if an align statement
737 is used. */
738
739 #define READONLY_DATA_SECTION() data_section()
740
741 /* How to refer to registers in assembler output.
742 This sequence is indexed by compiler's hard-register-number (see above). */
743
744 #define REGISTER_NAMES \
745 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
746 "r8", "fp", "ap", "psw", "sp", "pcbp", "isp", "pc" }
747
748 /* How to renumber registers for dbx and gdb. */
749
750 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
751
752 /* Output SDB debugging info in response to the -g option. */
753
754 #define SDB_DEBUGGING_INFO
755
756 /* This is how to output the definition of a user-level label named NAME,
757 such as the label on a static function or variable NAME. */
758
759 #define ASM_OUTPUT_LABEL(FILE,NAME) \
760 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
761
762 /* This is how to output a command to make the user-level label named NAME
763 defined for reference from other files. */
764
765 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
766 do { \
767 fputs (".globl ", FILE); \
768 assemble_name (FILE, NAME); \
769 fputs ("\n", FILE); \
770 } while (0)
771
772 /* This is how to output a reference to a user-level label named NAME.
773 `assemble_name' uses this. */
774
775 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
776 fprintf (FILE, "%s", NAME)
777
778 /* This is how to output an internal numbered label where
779 PREFIX is the class of label and NUM is the number within the class. */
780
781 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
782 fprintf (FILE, ".%s%d:\n", PREFIX, NUM)
783
784 /* This is how to store into the string LABEL
785 the symbol_ref name of an internal numbered label where
786 PREFIX is the class of label and NUM is the number within the class.
787 This is suitable for output with `assemble_name'. */
788
789 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
790 sprintf (LABEL, ".%s%d", PREFIX, NUM)
791
792 /* This is how to output an internal numbered label which
793 labels a jump table. */
794
795 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
796 do { \
797 ASM_OUTPUT_ALIGN (FILE, 2); \
798 ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); \
799 } while (0)
800
801 /* Assembler pseudo to introduce byte constants. */
802
803 #define ASM_BYTE_OP "\t.byte"
804
805 /* This is how to output an assembler line defining a `double' constant. */
806
807 /* This is how to output an assembler line defining a `float' constant. */
808
809 /* AT&T's assembler can't handle floating constants written as floating.
810 However, when cross-compiling, always use that in case format differs. */
811
812 #ifdef CROSS_COMPILER
813
814 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
815 fprintf (FILE, "\t.double 0r%.20g\n", (VALUE))
816
817 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
818 fprintf (FILE, "\t.float 0r%.10g\n", (VALUE))
819
820 #else
821
822 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
823 do { union { double d; long l[2];} tem; \
824 tem.d = (VALUE); \
825 fprintf (FILE, "\t.word 0x%x, 0x%x\n", tem.l[0], tem.l[1]);\
826 } while (0)
827
828 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
829 do { union { float f; long l;} tem; \
830 tem.f = (VALUE); \
831 fprintf (FILE, "\t.word 0x%x\n", tem.l); \
832 } while (0)
833
834 #endif /* not CROSS_COMPILER */
835
836 /* This is how to output an assembler line defining an `int' constant. */
837
838 #define ASM_OUTPUT_INT(FILE,VALUE) \
839 ( fprintf (FILE, "\t.word "), \
840 output_addr_const (FILE, (VALUE)), \
841 fprintf (FILE, "\n"))
842
843 /* Likewise for `char' and `short' constants. */
844
845 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
846 ( fprintf (FILE, "\t.half "), \
847 output_addr_const (FILE, (VALUE)), \
848 fprintf (FILE, "\n"))
849
850 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
851 ( fprintf (FILE, "\t.byte "), \
852 output_addr_const (FILE, (VALUE)), \
853 fprintf (FILE, "\n"))
854
855 /* This is how to output an assembler line for a numeric constant byte. */
856
857 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
858 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
859
860 #define ASM_OUTPUT_ASCII(FILE,PTR,LEN) \
861 do { \
862 unsigned char *s; \
863 int i; \
864 for (i = 0, s = (unsigned char *)(PTR); i < (LEN); s++, i++) \
865 { \
866 if ((i % 8) == 0) \
867 fprintf ((FILE),"%s\t.byte\t",(i?"\n":"")); \
868 fprintf ((FILE), "%s0x%x", (i%8?",":""), (unsigned)*s); \
869 } \
870 fputs ("\n", (FILE)); \
871 } while (0)
872
873 /* This is how to output an insn to push a register on the stack.
874 It need not be very fast code. */
875
876 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
877 fprintf (FILE, "\tpushw %s\n", reg_names[REGNO])
878
879 /* This is how to output an insn to pop a register from the stack.
880 It need not be very fast code. */
881
882 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
883 fprintf (FILE, "\tPOPW %s\n", reg_names[REGNO])
884
885 /* This is how to output an element of a case-vector that is absolute. */
886
887 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
888 fprintf (FILE, "\t.word .L%d\n", VALUE)
889
890 /* This is how to output an element of a case-vector that is relative. */
891
892 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
893 fprintf (FILE, "\t.word .L%d-.L%d\n", VALUE, REL)
894
895 /* This is how to output an assembler line
896 that says to advance the location counter
897 to a multiple of 2**LOG bytes. */
898
899 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
900 if ((LOG) != 0) \
901 fprintf (FILE, "\t.align %d\n", 1 << (LOG))
902
903 /* This is how to output an assembler line
904 that says to advance the location counter by SIZE bytes. */
905
906 /* The `space' pseudo in the text segment outputs nop insns rather than 0s,
907 so we must output 0s explicitly in the text segment. */
908
909 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
910 if (in_text_section ()) \
911 { \
912 int i; \
913 for (i = 0; i < (SIZE) - 20; i += 20) \
914 fprintf (FILE, "\t.byte 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\n"); \
915 if (i < (SIZE)) \
916 { \
917 fprintf (FILE, "\t.byte 0"); \
918 i++; \
919 for (; i < (SIZE); i++) \
920 fprintf (FILE, ",0"); \
921 fprintf (FILE, "\n"); \
922 } \
923 } \
924 else \
925 fprintf ((FILE), "\t.set .,.+%u\n", (SIZE))
926
927 /* This says how to output an assembler line
928 to define a global common symbol. */
929
930 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
931 do { \
932 data_section(); \
933 fputs ("\t.comm ", (FILE)); \
934 assemble_name ((FILE), (NAME)); \
935 fprintf ((FILE), ",%u\n", (SIZE)); \
936 } while (0)
937
938 /* This says how to output an assembler line
939 to define a local common symbol. */
940
941 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
942 do { \
943 data_section(); \
944 ASM_OUTPUT_ALIGN ((FILE), 2); \
945 ASM_OUTPUT_LABEL ((FILE), (NAME)); \
946 fprintf ((FILE), "\t.zero %u\n", (SIZE)); \
947 } while (0)
948
949 /* Store in OUTPUT a string (made with alloca) containing
950 an assembler-name for a local static variable named NAME.
951 LABELNO is an integer which is different for each call. */
952
953 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
954 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
955 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
956
957 /* Output #ident as a .ident. */
958
959 #define ASM_OUTPUT_IDENT(FILE, NAME) fprintf (FILE, "\t.ident \"%s\"\n", NAME)
960
961 /* Define the parentheses used to group arithmetic operations
962 in assembler code. */
963
964 #define ASM_OPEN_PAREN "("
965 #define ASM_CLOSE_PAREN ")"
966
967 /* Define results of standard character escape sequences. */
968 #define TARGET_BELL 007
969 #define TARGET_BS 010
970 #define TARGET_TAB 011
971 #define TARGET_NEWLINE 012
972 #define TARGET_VT 013
973 #define TARGET_FF 014
974 #define TARGET_CR 015
975
976 /* Print operand X (an rtx) in assembler syntax to file FILE.
977 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
978 For `%' followed by punctuation, CODE is the punctuation and X is null. */
979
980 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) 0
981
982 #define PRINT_OPERAND(FILE, X, CODE) \
983 { int i; \
984 if (GET_CODE (X) == REG) \
985 fprintf (FILE, "%%%s", reg_names[REGNO (X)]); \
986 else if (GET_CODE (X) == MEM) \
987 output_address (XEXP (X, 0)); \
988 else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == SFmode) \
989 { \
990 union { double d; long l[2]; } dtem; \
991 union { float f; long l; } ftem; \
992 \
993 dtem.l[0] = CONST_DOUBLE_LOW (X); \
994 dtem.l[1] = CONST_DOUBLE_HIGH (X); \
995 ftem.f = dtem.d; \
996 fprintf(FILE, "&0x%lx", ftem.l); \
997 } \
998 else { putc ('&', FILE); output_addr_const (FILE, X); }}
999 \f
1000 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1001 { register rtx Addr = ADDR; \
1002 rtx offset; \
1003 rtx reg; \
1004 if (GET_CODE (Addr) == MEM) { \
1005 putc ('*', FILE); \
1006 Addr = XEXP (Addr, 0); \
1007 if (GET_CODE (Addr) == REG) \
1008 putc ('0', FILE); \
1009 } \
1010 switch (GET_CODE (Addr)) \
1011 { \
1012 case REG: \
1013 fprintf (FILE, "(%%%s)", reg_names[REGNO (Addr)]); \
1014 break; \
1015 \
1016 case PLUS: \
1017 offset = NULL; \
1018 if (CONSTANT_ADDRESS_P (XEXP (Addr, 0))) \
1019 { \
1020 offset = XEXP (Addr, 0); \
1021 Addr = XEXP (Addr, 1); \
1022 } \
1023 else if (CONSTANT_ADDRESS_P (XEXP (Addr, 1))) \
1024 { \
1025 offset = XEXP (Addr, 1); \
1026 Addr = XEXP (Addr, 0); \
1027 } \
1028 else \
1029 abort(); \
1030 if (REG_P (Addr)) \
1031 reg = Addr; \
1032 else \
1033 abort(); \
1034 output_addr_const(FILE, offset); \
1035 fprintf(FILE, "(%%%s)", reg_names[REGNO(reg)]); \
1036 break; \
1037 \
1038 default: \
1039 if ( !CONSTANT_ADDRESS_P(Addr)) \
1040 abort(); \
1041 output_addr_const (FILE, Addr); \
1042 }}
1043 \f
1044 /*
1045 Local variables:
1046 version-control: t
1047 End:
1048 */
This page took 0.082088 seconds and 5 git commands to generate.