]> gcc.gnu.org Git - gcc.git/blob - gcc/config/tahoe/tahoe.h
# Fix misspellings in comments.
[gcc.git] / gcc / config / tahoe / tahoe.h
1 /* Definitions of target machine for GNU compiler. Tahoe version.
2 Copyright (C) 1989 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /*
21 * File: tahoe.h
22 *
23 * Original port made at the University of Buffalo by Devon Bowen,
24 * Dale Wiles and Kevin Zachmann.
25 *
26 * HCX/UX version by Piet van Oostrum (piet@cs.ruu.nl)
27 *
28 * Performance hacking by Michael Tiemann (tiemann@lurch.stanford.edu)
29 *
30 * Mail bugs reports or fixes to: gcc@cs.buffalo.edu
31 */
32
33 /* define this for the HCX/UX version */
34
35 /* #define HCX_UX */
36
37 /*
38 * Run-time Target Specification
39 */
40
41 #ifdef HCX_UX
42 /* no predefines, see Makefile and hcx-universe.c */
43 /* have cc1 print that this is the hcx version */
44 #define TARGET_VERSION printf (" (hcx)");
45 #else
46 /* we want "tahoe" and "unix" defined for all future compilations */
47 #define CPP_PREDEFINES "-Dtahoe -Dunix"
48 /* have cc1 print that this is the tahoe version */
49 #define TARGET_VERSION printf (" (tahoe)");
50 #endif
51
52 /* this is required in all tm files to hold flags */
53
54 extern int target_flags;
55
56 /* Zero if it is safe to output .dfloat and .float pseudos. */
57 #define TARGET_HEX_FLOAT (target_flags & 1)
58
59 #define TARGET_DEFAULT 1
60
61 #define TARGET_SWITCHES \
62 { {"hex-float", 1}, \
63 {"no-hex-float", -1}, \
64 { "", TARGET_DEFAULT} }
65 \f
66
67 /*
68 * Storage Layout
69 */
70
71 /* This symbol was previously not mentioned, so apparently the tahoe
72 is little-endian for bits, or else doesn't care. */
73 #define BITS_BIG_ENDIAN 0
74
75 /* tahoe uses a big endian byte order */
76
77 #define BYTES_BIG_ENDIAN 1
78
79 /* tahoe uses a big endian word order */
80
81 #define WORDS_BIG_ENDIAN 1
82
83 /* standard byte size is usable on tahoe */
84
85 #define BITS_PER_UNIT 8
86
87 /* longs on the tahoe are 4 byte groups */
88
89 #define BITS_PER_WORD 32
90
91 /* from the last two params we get 4 bytes per word */
92
93 #define UNITS_PER_WORD 4
94
95 /* addresses are 32 bits (one word) */
96
97 #define POINTER_SIZE 32
98
99 /* all parameters line up on 32 boundaries */
100
101 #define PARM_BOUNDARY 32
102
103 /* stack should line up on 32 boundaries */
104
105 #define STACK_BOUNDARY 32
106
107 /* line functions up on 32 bits */
108
109 #define FUNCTION_BOUNDARY 32
110
111 /* the biggest alignment the tahoe needs in 32 bits */
112
113 #define BIGGEST_ALIGNMENT 32
114
115 /* we have to align after an 'int : 0' in a structure */
116
117 #define EMPTY_FIELD_BOUNDARY 32
118
119 #ifdef HCX_UX
120 /* structures must be made of full words */
121
122 #define STRUCTURE_SIZE_BOUNDARY 32
123 #else
124 /* structures must be made of full bytes */
125
126 #define STRUCTURE_SIZE_BOUNDARY 8
127 #endif
128
129 /* tahoe is picky about data alignment */
130
131 #define STRICT_ALIGNMENT 1
132
133 /* keep things standard with pcc */
134
135 #define PCC_BITFIELD_TYPE_MATTERS 1
136
137 /* this section is borrowed from the vax version since the */
138 /* formats are the same in both of the architectures */
139
140 #define CHECK_FLOAT_VALUE(mode, d) \
141 if ((mode) == SFmode) \
142 { \
143 if ((d) > 1.7014117331926443e+38) \
144 { error ("magnitude of constant too large for `float'"); \
145 (d) = 1.7014117331926443e+38; } \
146 else if ((d) < -1.7014117331926443e+38) \
147 { error ("magnitude of constant too large for `float'"); \
148 (d) = -1.7014117331926443e+38; } \
149 else if (((d) > 0) && ((d) < 2.9387358770557188e-39)) \
150 { warning ("`float' constant truncated to zero"); \
151 (d) = 0.0; } \
152 else if (((d) < 0) && ((d) > -2.9387358770557188e-39)) \
153 { warning ("`float' constant truncated to zero"); \
154 (d) = 0.0; } \
155 }
156
157
158 /*
159 * Register Usage
160 */
161
162 /* define 15 general regs plus one for the floating point reg (FPP) */
163
164 #define FIRST_PSEUDO_REGISTER 17
165
166 /* let the compiler know what the fp, sp and pc are */
167
168 #define FIXED_REGISTERS {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0}
169
170 /* lots of regs aren't guaranteed to return from a call. The FPP reg */
171 /* must be included in these since it can't be saved by the reg mask */
172
173 #define CALL_USED_REGISTERS {1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
174
175 /* A single fp reg can handle any type of float.
176 CPU regs hold just 32 bits. */
177
178 #define HARD_REGNO_NREGS(REGNO, MODE) \
179 (REGNO != 16 ? ((GET_MODE_SIZE(MODE)+UNITS_PER_WORD-1) / UNITS_PER_WORD) \
180 : GET_MODE_NUNITS ((MODE)))
181
182 /* any mode greater than 4 bytes (doubles) can only go in an even regs */
183 /* and the FPP can only hold SFmode and DFmode */
184
185 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
186 (REGNO != 16 \
187 ? (GET_MODE_UNIT_SIZE (MODE) <= 4 ? 1 : (REGNO % 2 - 1)) \
188 : ((MODE) == SFmode || (MODE) == DFmode \
189 || (MODE) == SCmode || (MODE) == DCmode))
190
191 /* if mode1 or mode2, but not both, are doubles then modes cannot be tied */
192
193 #define MODES_TIEABLE_P(MODE1, MODE2) \
194 (((MODE1) == DFmode || (MODE1) == DCmode) \
195 == ((MODE2) == DFmode || (MODE2) == DCmode))
196
197 /* return nonzero if register variable of mode MODE is not
198 a priori a bad idea. Used only if defined. */
199 #define MODE_OK_FOR_USERVAR(MODE) \
200 ((MODE) == SImode)
201
202 /* the program counter is reg 15 */
203
204 #define PC_REGNUM 15
205
206 /* the stack pointer is reg 14 */
207
208 #define STACK_POINTER_REGNUM 14
209
210 /* the frame pointer is reg 13 */
211
212 #define FRAME_POINTER_REGNUM 13
213
214 /* tahoe does require an fp */
215
216 #define FRAME_POINTER_REQUIRED 1
217
218 /* since tahoe doesn't have a argument pointer, make it the fp */
219
220 #define ARG_POINTER_REGNUM 13
221
222 /* this isn't currently used since C doesn't support this feature */
223
224 #define STATIC_CHAIN_REGNUM 0
225
226 /* we'll use reg 1 for structure passing cause the destination */
227 /* of the eventual movblk requires it to be there anyway. */
228
229 #define STRUCT_VALUE_REGNUM 1
230
231
232 /*
233 * Register Classes
234 */
235
236 /* tahoe has two types of regs. GENERAL_REGS are all the regs up */
237 /* to number 15. FPP_REG is the special floating point processor */
238 /* register class (only one reg). */
239
240 enum reg_class {NO_REGS,GENERAL_REGS,FPP_REG,ALL_REGS,LIM_REG_CLASSES};
241
242 /* defines the number of reg classes. */
243
244 #define N_REG_CLASSES (int) LIM_REG_CLASSES
245
246 /* this defines what the classes are officially named for debugging */
247
248 #define REG_CLASS_NAMES \
249 {"NO_REGS","GENERAL_REGS","FPP_REG","ALL_REGS"}
250
251 /* set general regs to be the first 16 regs and the fpp reg to be 17th */
252
253 #define REG_CLASS_CONTENTS {0,0xffff,0x10000,0x1ffff}
254
255 /* register class for the fpp reg is FPP_REG, all others are GENERAL_REGS */
256
257 #define REGNO_REG_CLASS(REGNO) (REGNO == 16 ? FPP_REG : GENERAL_REGS)
258
259 /* only general registers can be used as a base reg */
260
261 #define BASE_REG_CLASS GENERAL_REGS
262
263 /* only general registers can be used to index */
264
265 #define INDEX_REG_CLASS GENERAL_REGS
266
267 /* 'a' as a constraint in the md file means the FFP_REG class */
268
269 #define REG_CLASS_FROM_LETTER(C) (C == 'a' ? FPP_REG : NO_REGS)
270
271 /* any general reg but the fpp can be a base reg */
272
273 #define REGNO_OK_FOR_BASE_P(regno) \
274 ((regno) < FIRST_PSEUDO_REGISTER - 1 || reg_renumber[regno] >= 0)
275
276 /* any general reg except the pc and fpp can be an index reg */
277
278 #define REGNO_OK_FOR_INDEX_P(regno) \
279 ((regno) < FIRST_PSEUDO_REGISTER - 2 || reg_renumber[regno] >= 0)
280
281 /* if your loading a floating point constant, it can't be done */
282 /* through a register. Force it to be a memory constant. */
283
284 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
285 ((GET_CODE (X) == CONST_DOUBLE) ? NO_REGS : CLASS)
286
287 /* for the fpp reg, all modes fit; for any others, you need two for doubles */
288
289 #define CLASS_MAX_NREGS(CLASS, MODE) \
290 (CLASS != FPP_REG ? ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) : 1)
291
292 /* we don't define any special constant sizes so all should fail */
293
294 #define CONST_OK_FOR_LETTER_P(VALUE, C) 0
295
296 /* we don't define any special double sizes so all should fail */
297
298 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0
299
300
301 /*
302 * Describing Stack Layout
303 */
304
305 /* tahoe stack grows from high to low memory */
306
307 #define STACK_GROWS_DOWNWARD
308
309 /* Define this if longjmp restores from saved registers
310 rather than from what setjmp saved. */
311 #define LONGJMP_RESTORE_FROM_STACK
312
313 /* tahoe call frames grow from high to low memory on the stack */
314
315 #define FRAME_GROWS_DOWNWARD
316
317 /* the tahoe fp points to the *top* of the frame instead of the */
318 /* bottom, so we have to make this offset a constant large enough */
319 /* to jump over the biggest frame possible. */
320
321 #define STARTING_FRAME_OFFSET -52
322
323 /* tahoe always pushes 4 bytes unless it's a double in which case */
324 /* it pushes a full 8 bytes. */
325
326 #define PUSH_ROUNDING(BYTES) (BYTES <= 4 ? 4 : 8)
327
328 /* the first parameter in a function is at the fp + 4 */
329
330 #define FIRST_PARM_OFFSET(FNDECL) 4
331
332 /* the tahoe return function takes care of everything on the stack */
333
334 #define RETURN_POPS_ARGS(FUNTYPE,SIZE) (SIZE)
335
336 /* function values for all types are returned in register 0 */
337
338 #define FUNCTION_VALUE(VALTYPE, FUNC) \
339 gen_rtx (REG, TYPE_MODE (VALTYPE), 0)
340
341 /* library routines also return things in reg 0 */
342
343 #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 0)
344
345 /* Tahoe doesn't return structures in a reentrant way */
346
347 #define PCC_STATIC_STRUCT_RETURN
348
349 /* we only return values from a function in reg 0 */
350
351 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
352
353 /* we never pass args through a register */
354
355 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
356
357 /* int is fine to hold the argument summary in FUNCTION_ARG */
358
359 #define CUMULATIVE_ARGS int
360
361 /* we just set CUM to 0 before the FUNCTION_ARG call. No matter what */
362 /* we make it, FUNCTION_ARG will return 0 anyway */
363
364 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
365 ((CUM) = 0)
366
367 /* all modes push their size rounded to the nearest word boundary */
368 /* except block which is the size of the block rounded up */
369
370 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
371 ((CUM) += ((MODE) != BLKmode \
372 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
373 : (int_size_in_bytes (TYPE) + 3) & ~3))
374
375 /* this is always false since we never pass params in regs */
376
377 #define FUNCTION_ARG_REGNO_P(N) 0
378
379 /* this code calculates the register entry mask and sets up */
380 /* the stack pointer for the function. The stack is set down */
381 /* far enough from the fp to jump over any push regs and local */
382 /* vars. This is a problem since the tahoe has the fp pointing */
383 /* to the top of the frame and the compiler must know the off- */
384 /* set off the fp to the local vars. */
385
386 #define FUNCTION_PROLOGUE(FILE, SIZE) \
387 { register int regno; \
388 register int mask = 0; \
389 extern char call_used_regs[]; \
390 for (regno = 0; regno < FIRST_PSEUDO_REGISTER-1; regno++) \
391 if (regs_ever_live[regno] && !call_used_regs[regno]) \
392 mask |= 1 << regno; \
393 fprintf (FILE, "\t.word 0x%x\n", mask); \
394 if (SIZE != 0) fprintf (FILE, "\tsubl3 $%d,fp,sp\n", (SIZE) - STARTING_FRAME_OFFSET); }
395
396 /* Zero out global variable in case it was used in this function. */
397 #define FUNCTION_EPILOGUE(FILE, SIZE) \
398 { extern rtx tahoe_reg_conversion_loc; \
399 tahoe_reg_conversion_loc = 0; \
400 }
401
402 #ifdef HCX_UX
403
404 /* to call the profiler, the address of the counter var is placed */
405 /* on the stack and then passed into mcount this way */
406
407 #define FUNCTION_PROFILER(FILE, LABELNO) \
408 fprintf (FILE, "\tpushal LP%d\n\tcallf $8,mcount\n", (LABELNO));
409
410 #else
411
412 /* to call the profiler, push the variable value onto the stack */
413 /* and call mcount like a regular function. */
414
415 #define FUNCTION_PROFILER(FILE, LABELNO) \
416 fprintf (FILE, "\tpushl $LP%d\n\tcallf $8,mcount\n", (LABELNO));
417
418 #endif
419
420 /* all stack handling at the end of a function is handled by the */
421 /* return command. */
422
423 #define EXIT_IGNORE_STACK 1
424
425 /*
426 * Library Subroutine Names
427 */
428
429 /* udiv is a valid C library routine in libc.a, so we call that */
430
431 #define UDIVSI3_LIBCALL "*udiv"
432
433 /* urem is a valid C library routine in libc.a, so we call that */
434 /* but not so on hcx/ux */
435
436 #ifdef HCX_UX
437 #undef UMODSI3_LIBCALL
438 #else
439 #define UMODSI3_LIBCALL "*urem"
440 #endif
441
442
443 /*
444 * Addressing Modes
445 */
446
447 /* constant addresses can be treated exactly the same as normal constants */
448
449 #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
450
451 /* we can have as many as two regs in any given address */
452
453 #define MAX_REGS_PER_ADDRESS 2
454
455 /* The following is all the code for GO_IF_LEGITIMATE_ADDRESS */
456 /* most of this taken directly from the vax tm file since the */
457 /* tahoe and vax addressing modes are nearly identical. */
458
459 /* Is x an indirectable address? */
460
461 #define INDIRECTABLE_ADDRESS_P(X) \
462 (CONSTANT_ADDRESS_P (X) \
463 || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
464 || (GET_CODE (X) == PLUS \
465 && GET_CODE (XEXP (X, 0)) == REG \
466 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
467 && CONSTANT_ADDRESS_P (XEXP (X, 1))))
468
469 /* If x is a non-indexed-address, go to ADDR. */
470
471 #define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
472 { register rtx xfoob = (X); \
473 if (GET_CODE (xfoob) == REG) goto ADDR; \
474 if (INDIRECTABLE_ADDRESS_P (xfoob)) goto ADDR; \
475 xfoob = XEXP (X, 0); \
476 if (GET_CODE (X) == MEM && INDIRECTABLE_ADDRESS_P (xfoob)) \
477 goto ADDR; \
478 if ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \
479 && GET_CODE (xfoob) == REG && REGNO (xfoob) == 14) \
480 goto ADDR; }
481
482 /* Is PROD an index term in mode MODE. */
483
484 #define INDEX_TERM_P(PROD, MODE) \
485 (GET_MODE_SIZE (MODE) == 1 \
486 ? (GET_CODE (PROD) == REG && REG_OK_FOR_BASE_P (PROD)) \
487 : (GET_CODE (PROD) == MULT \
488 && \
489 (xfoo0 = XEXP (PROD, 0), xfoo1 = XEXP (PROD, 1), \
490 ((GET_CODE (xfoo0) == CONST_INT \
491 && INTVAL (xfoo0) == GET_MODE_SIZE (MODE) \
492 && GET_CODE (xfoo1) == REG \
493 && REG_OK_FOR_INDEX_P (xfoo1)) \
494 || \
495 (GET_CODE (xfoo1) == CONST_INT \
496 && INTVAL (xfoo1) == GET_MODE_SIZE (MODE) \
497 && GET_CODE (xfoo0) == REG \
498 && REG_OK_FOR_INDEX_P (xfoo0))))))
499
500 /* Is the addition to the index a reg? */
501
502 #define GO_IF_REG_PLUS_INDEX(X, MODE, ADDR) \
503 { register rtx xfooa; \
504 if (GET_CODE (X) == PLUS) \
505 { if (GET_CODE (XEXP (X, 0)) == REG \
506 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
507 && (xfooa = XEXP (X, 1), \
508 INDEX_TERM_P (xfooa, MODE))) \
509 goto ADDR; \
510 if (GET_CODE (XEXP (X, 1)) == REG \
511 && REG_OK_FOR_BASE_P (XEXP (X, 1)) \
512 && (xfooa = XEXP (X, 0), \
513 INDEX_TERM_P (xfooa, MODE))) \
514 goto ADDR; } }
515
516 /* Is the rtx X a valid memory address for operand of mode MODE? */
517 /* If it is, go to ADDR */
518
519 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
520 { register rtx xfoo, xfoo0, xfoo1; \
521 GO_IF_NONINDEXED_ADDRESS (X, ADDR); \
522 if (GET_CODE (X) == PLUS) \
523 { xfoo = XEXP (X, 0); \
524 if (INDEX_TERM_P (xfoo, MODE)) \
525 { GO_IF_NONINDEXED_ADDRESS (XEXP (X, 1), ADDR); } \
526 xfoo = XEXP (X, 1); \
527 if (INDEX_TERM_P (xfoo, MODE)) \
528 { GO_IF_NONINDEXED_ADDRESS (XEXP (X, 0), ADDR); } \
529 if (CONSTANT_ADDRESS_P (XEXP (X, 0))) \
530 { if (GET_CODE (XEXP (X, 1)) == REG \
531 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
532 goto ADDR; \
533 GO_IF_REG_PLUS_INDEX (XEXP (X, 1), MODE, ADDR); } \
534 if (CONSTANT_ADDRESS_P (XEXP (X, 1))) \
535 { if (GET_CODE (XEXP (X, 0)) == REG \
536 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
537 goto ADDR; \
538 GO_IF_REG_PLUS_INDEX (XEXP (X, 0), MODE, ADDR); } } }
539
540 /* Register 16 can never be used for index or base */
541
542 #ifndef REG_OK_STRICT
543 #define REG_OK_FOR_INDEX_P(X) (REGNO(X) != 16)
544 #define REG_OK_FOR_BASE_P(X) (REGNO(X) != 16)
545 #else
546 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
547 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
548 #endif
549
550 /* Addressing is too simple to allow optimizing here */
551
552 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
553
554 /* Post_inc and pre_dec always adds 4 */
555
556 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
557 { if (GET_CODE(ADDR) == POST_INC || GET_CODE(ADDR) == PRE_DEC) \
558 goto LABEL; \
559 if (GET_CODE (ADDR) == PLUS) \
560 { if (CONSTANT_ADDRESS_P (XEXP (ADDR, 0)) \
561 && GET_CODE (XEXP (ADDR, 1)) == REG); \
562 else if (CONSTANT_ADDRESS_P (XEXP (ADDR, 1)) \
563 && GET_CODE (XEXP (ADDR, 0)) == REG); \
564 else goto LABEL; }}
565
566 /* Double's are not legitimate as immediate operands */
567
568 #define LEGITIMATE_CONSTANT_P(X) \
569 (GET_CODE (X) != CONST_DOUBLE)
570
571
572 /*
573 * Miscellaneous Parameters
574 */
575
576 /* the elements in the case jump table are all words */
577
578 #define CASE_VECTOR_MODE HImode
579
580 /* each of the table elements in a case are relative to the jump address */
581
582 #define CASE_VECTOR_PC_RELATIVE
583
584 /* tahoe case instructions just fall through to the next instruction */
585 /* if not satisfied. It doesn't support a default action */
586
587 #define CASE_DROPS_THROUGH
588
589 /* the standard answer is given here and work ok */
590
591 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
592
593 /* in a general div case, it's easiest to use TRUNC_DIV_EXPR */
594
595 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
596
597 /* the standard seems to be leaving char's as signed so we left it */
598 /* this way even though we think they should be unsigned! */
599
600 #define DEFAULT_SIGNED_CHAR 1
601
602 /* the most we can move without cutting down speed is 4 bytes */
603
604 #define MOVE_MAX 4
605
606 /* our int is 32 bits */
607
608 #define INT_TYPE_SIZE 32
609
610 /* byte access isn't really slower than anything else */
611
612 #define SLOW_BYTE_ACCESS 0
613
614 /* zero extension is more than one instruction so try to avoid it */
615
616 #define SLOW_ZERO_EXTEND
617
618 /* any bits higher than the low 4 are ignored in the shift count */
619 /* so don't bother zero extending or sign extending them */
620
621 #define SHIFT_COUNT_TRUNCATED
622
623 /* we don't need to officially convert from one fixed type to another */
624 /* in order to use it as that type. We can just assume it's the same */
625
626 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
627
628 /* pass chars as ints */
629
630 #define PROMOTE_PROTOTYPES
631
632 /* pointers can be represented by an si mode expression */
633
634 #define Pmode SImode
635
636 /* function addresses are made by specifying a byte address */
637
638 #define FUNCTION_MODE QImode
639
640 /* Define this if addresses of constant functions
641 shouldn't be put through pseudo regs where they can be cse'd.
642 On the tahoe a call with a constant address is much faster than one with a
643 register. */
644
645 #define NO_FUNCTION_CSE
646
647 /* specify the costs of various sorts of constants,
648 and also indicate that multiplication is cheap on this machine. */
649
650 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
651 case CONST_INT: \
652 /* Constant zero is super cheap due to clr instruction. */ \
653 if (RTX == const0_rtx) return 0; \
654 if ((unsigned) INTVAL (RTX) < 077) return 1; \
655 if (INTVAL (RTX) <= 127 && INTVAL (RTX) >= -128) return 2; \
656 case CONST: \
657 case LABEL_REF: \
658 case SYMBOL_REF: \
659 return 3; \
660 case CONST_DOUBLE: \
661 return 5; \
662 case MULT: \
663 total = 2;
664
665
666 /*
667 * Condition Code Information
668 */
669
670 /* Nonzero if the results of the previous comparison are
671 in the floating point condition code register. */
672
673 #define CC_UNCHANGED 04000
674
675
676 #define NOTICE_UPDATE_CC(EXP, INSN) \
677 { if (cc_status.flags & CC_UNCHANGED) \
678 /* Happens for cvtld and a few other insns. */ \
679 cc_status.flags &= ~CC_UNCHANGED; \
680 else if (GET_CODE (EXP) == SET) \
681 { if (GET_CODE (SET_SRC (EXP)) == CALL) \
682 CC_STATUS_INIT; \
683 else if (GET_CODE (SET_DEST (EXP)) != PC) \
684 { cc_status.flags = 0; \
685 cc_status.value1 = SET_DEST (EXP); \
686 cc_status.value2 = SET_SRC (EXP); } } \
687 else if (GET_CODE (EXP) == PARALLEL \
688 && GET_CODE (XVECEXP (EXP, 0, 0)) == SET \
689 && GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) != PC) \
690 { cc_status.flags = 0; \
691 cc_status.value1 = SET_DEST (XVECEXP (EXP, 0, 0)); \
692 cc_status.value2 = SET_SRC (XVECEXP (EXP, 0, 0)); } \
693 /* PARALLELs whose first element sets the PC are aob, sob insns. \
694 They do change the cc's. So drop through and forget the cc's. */ \
695 else CC_STATUS_INIT; \
696 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
697 && cc_status.value2 \
698 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
699 cc_status.value2 = 0; \
700 if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM \
701 && cc_status.value2 \
702 && GET_CODE (cc_status.value2) == MEM) \
703 cc_status.value2 = 0; }
704 /* Actual condition, one line up, should be that value2's address
705 depends on value1, but that is too much of a pain. */
706
707
708 /*
709 * Output of Assembler Code
710 */
711
712 /* print which tahoe version compiled this code and print a directive */
713 /* to the gnu assembler to say that the following is normal assembly */
714
715 #ifdef HCX_UX
716 #define ASM_FILE_START(FILE) \
717 { fprintf (FILE, "#gcc hcx 1.0\n\n"); \
718 output_file_directive ((FILE), main_input_filename);} while (0)
719 #else
720 #define ASM_FILE_START(FILE) fprintf (FILE, "#gcc tahoe 1.0\n#NO_APP\n");
721 #endif
722
723 /* the instruction that turns on the APP for the gnu assembler */
724
725 #define ASM_APP_ON "#APP\n"
726
727 /* the instruction that turns off the APP for the gnu assembler */
728
729 #define ASM_APP_OFF "#NO_APP\n"
730
731 /* what to output before read-only data. */
732
733 #define TEXT_SECTION_ASM_OP ".text"
734
735 /* what to output before writable data. */
736
737 #define DATA_SECTION_ASM_OP ".data"
738
739 /* this is what we call each of the regs. notice that the FPP reg is */
740 /* called "ac". This should never get used due to the way we've set */
741 /* up FPP instructions in the md file. But we call it "ac" here to */
742 /* fill the list. */
743
744 #define REGISTER_NAMES \
745 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", \
746 "r9", "r10", "r11", "r12", "fp", "sp", "pc", "ac"}
747
748 #ifdef HCX_UX
749 /* allow generation of sdb info in the assembly */
750 #define SDB_DEBUGGING_INFO
751 #else
752 /* allow generation of dbx info in the assembly */
753
754 #define DBX_DEBUGGING_INFO
755
756 /* our dbx doesn't support this */
757
758 #define DBX_NO_XREFS
759
760 /* we don't want symbols broken up */
761
762 #define DBX_CONTIN_LENGTH 0
763
764 /* this'll really never be used, but we'll leave it at this */
765
766 #define DBX_CONTIN_CHAR '?'
767
768 #endif /* HCX_UX */
769
770 /* registers are called the same thing in dbx anything else */
771 /* This is necessary even if we generate SDB output */
772
773 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
774
775 /* labels are the label followed by a colon and a newline */
776 /* must be a statement, so surround it in a null loop */
777
778 #define ASM_OUTPUT_LABEL(FILE,NAME) \
779 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
780
781 /* use the .globl directive to make labels global for the linker */
782
783 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
784 do { fputs (".globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
785
786 /* output a label by appending an underscore to it */
787
788 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
789 fprintf (FILE, "_%s", NAME)
790
791 /* use the standard format for printing internal labels */
792
793 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
794 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
795
796 /* a * is used for label indirection in unix assembly */
797
798 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
799 sprintf (LABEL, "*%s%d", PREFIX, NUM)
800
801 /* outputting a double is easy cause we only have one kind */
802
803 #ifdef HCX_UX
804 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
805 fprintf (FILE, "\t.double 0d%.20e\n", (VALUE))
806 #else
807 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
808 { \
809 union { int i[2]; double d;} temp; \
810 temp.d = (VALUE); \
811 if (TARGET_HEX_FLOAT) \
812 fprintf ((FILE), "\t.long 0x%x,0x%x # %.20e\n", \
813 temp.i[0], temp.i[1], temp.d); \
814 else \
815 fprintf (FILE, "\t.dfloat 0d%.20e\n", temp.d); \
816 }
817 #endif
818
819 /* This is how to output an assembler line defining a `float' constant. */
820
821 #ifdef HCX_UX
822 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
823 fprintf (FILE, "\t.float 0f%.20e\n", (VALUE))
824 #else
825 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
826 { \
827 union { int i; float f;} temp; \
828 temp.f = (float) (VALUE); \
829 if (TARGET_HEX_FLOAT) \
830 fprintf ((FILE), "\t.long 0x%x # %.20e\n", \
831 temp.i, temp.f); \
832 else \
833 fprintf (FILE, "\t.float 0f%.20e\n", temp.f); \
834 }
835 #endif
836
837 /* This is how to output an assembler line defining an `int' constant. */
838
839 #define ASM_OUTPUT_INT(FILE,VALUE) \
840 ( fprintf (FILE, "\t.long "), \
841 output_addr_const (FILE, (VALUE)), \
842 fprintf (FILE, "\n"))
843
844 /* Likewise for `char' and `short' constants. */
845
846 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
847 ( fprintf (FILE, "\t.word "), \
848 output_addr_const (FILE, (VALUE)), \
849 fprintf (FILE, "\n"))
850
851 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
852 ( fprintf (FILE, "\t.byte "), \
853 output_addr_const (FILE, (VALUE)), \
854 fprintf (FILE, "\n"))
855
856 #ifdef HCX_UX
857 /* This is how to output an assembler line for an ASCII string. */
858
859 #define ASM_OUTPUT_ASCII(FILE, p, size) \
860 { register int i; \
861 fprintf ((FILE), "\t.ascii \""); \
862 for (i = 0; i < (size); i++) \
863 { \
864 register int c = (p)[i]; \
865 if (c == '\'' || c == '\\') \
866 putc ('\\', (FILE)); \
867 if (c >= ' ' && c < 0177 && c != '\"') \
868 putc (c, (FILE)); \
869 else \
870 { \
871 fprintf ((FILE), "\\%03o", c); \
872 } \
873 } \
874 fprintf ((FILE), "\"\n"); }
875 #endif
876
877 /* This is how to output an assembler line for a numeric constant byte. */
878
879 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
880 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
881
882 /* this is the insn to push a register onto the stack */
883
884 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
885 fprintf (FILE, "\tpushl %s\n", reg_names[REGNO])
886
887 /* this is the insn to pop a register from the stack */
888
889 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
890 fprintf (FILE, "\tmovl (sp)+,%s\n", reg_names[REGNO])
891
892 /* this is required even thought tahoe doesn't support it */
893 /* cause the C code expects it to be defined */
894
895 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
896 fprintf (FILE, "\t.long L%d\n", VALUE)
897
898 /* This is how to output an element of a case-vector that is relative. */
899
900 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
901 fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)
902
903 /* This is how to output an assembler line
904 that says to advance the location counter
905 to a multiple of 2**LOG bytes. */
906
907 #ifdef HCX_UX
908 #define CASE_ALIGNMENT 2
909 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
910 if ((LOG)!=0) fprintf ((FILE), "\t.align %d\n", 1<<(LOG))
911 #else
912 #define CASE_ALIGNMENT 1
913 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
914 LOG ? fprintf (FILE, "\t.align %d\n", (LOG)) : 0
915 #endif
916
917 /* This is how to skip over some space */
918
919 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
920 fprintf (FILE, "\t.space %u\n", (SIZE))
921
922 /* This defines common variables across files */
923
924 #ifdef HCX_UX
925 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
926 ( fputs (".comm ", (FILE)), \
927 assemble_name ((FILE), (NAME)), \
928 fprintf ((FILE), ",%u\n", (SIZE)))
929 #else
930 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
931 ( fputs (".comm ", (FILE)), \
932 assemble_name ((FILE), (NAME)), \
933 fprintf ((FILE), ",%u\n", (ROUNDED)))
934 #endif
935
936 /* This says how to output an assembler line
937 to define a local common symbol. */
938
939 #ifdef HCX_UX
940 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
941 ( fputs ("\t.bss ", (FILE)), \
942 assemble_name ((FILE), (NAME)), \
943 fprintf ((FILE), ",%u,4\n", (SIZE),(ROUNDED)))
944 #else
945 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
946 ( fputs (".lcomm ", (FILE)), \
947 assemble_name ((FILE), (NAME)), \
948 fprintf ((FILE), ",%u\n", (ROUNDED)))
949 #endif
950
951 /* code to generate a label */
952
953 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
954 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
955 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
956
957 /* Define the parentheses used to group arithmetic operations
958 in assembler code. */
959
960 #define ASM_OPEN_PAREN "("
961 #define ASM_CLOSE_PAREN ")"
962
963 /* Define results of standard character escape sequences. */
964
965 #define TARGET_BELL 007
966 #define TARGET_BS 010
967 #define TARGET_TAB 011
968 #define TARGET_NEWLINE 012
969 #define TARGET_VT 013
970 #define TARGET_FF 014
971 #define TARGET_CR 015
972
973 /* Print an instruction operand X on file FILE.
974 CODE is the code from the %-spec that requested printing this operand;
975 if `%z3' was used to print operand 3, then CODE is 'z'.
976 On the Vax, the only code used is `#', indicating that either
977 `d' or `g' should be printed, depending on whether we're using dfloat
978 or gfloat. */
979 /* Print an operand. Some difference from the vax code,
980 since the tahoe can't support immediate floats and doubles.
981
982 %@ means print the proper alignment operand for aligning after a casesi.
983 This depends on the assembler syntax.
984 This is 1 for our assembler, since .align is logarithmic.
985
986 %s means the number given is supposed to be a shift value, but on
987 the tahoe it should be converted to a number that can be used as a
988 multiplicative constant (cause multiplication is a whole lot faster
989 than shifting). So make the number 2^n instead. */
990
991 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
992 ((CODE) == '@')
993
994 #define PRINT_OPERAND(FILE, X, CODE) \
995 { if (CODE == '@') \
996 putc ('0' + CASE_ALIGNMENT, FILE); \
997 else if (CODE == 's') \
998 fprintf (FILE, "$%d", 1 << INTVAL(X)); \
999 else if (GET_CODE (X) == REG) \
1000 fprintf (FILE, "%s", reg_names[REGNO (X)]); \
1001 else if (GET_CODE (X) == MEM) \
1002 output_address (XEXP (X, 0)); \
1003 else { putc ('$', FILE); output_addr_const (FILE, X); }}
1004
1005 /* When the operand is an address, call print_operand_address to */
1006 /* do the work from output-tahoe.c. */
1007
1008 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1009 print_operand_address (FILE, ADDR)
1010
1011 /* This is for G++ */
1012
1013 #define CRT0_DUMMIES
1014 #define DOT_GLOBAL_START
1015 #ifdef HCX_UX
1016 #define NO_GNU_LD /* because of COFF format */
1017 #define LINK_SPEC "-L/usr/staff/lib"
1018 #endif
This page took 0.081877 seconds and 5 git commands to generate.