]> gcc.gnu.org Git - gcc.git/blob - gcc/config/sparc/sparc.h
*** empty log message ***
[gcc.git] / gcc / config / sparc / sparc.h
1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 1988, 1989, 1992 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com).
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Note that some other tm.h files include this one and then override
22 many of the definitions that relate to assembler syntax. */
23
24 #define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} %{g:-lg}"
25
26 /* Provide required defaults for linker -e and -d switches. */
27
28 #define LINK_SPEC \
29 "%{nostdlib:%{!e*:-e start}} -dc -dp %{static:-Bstatic} %{assert*}"
30
31 /* Special flags to the Sun-4 assembler when using pipe for input. */
32
33 #define ASM_SPEC " %{pipe:-} %{fpic:-k} %{fPIC:-k}"
34
35 /* Prevent error on `-sun4' and `-target sun4' options. */
36 /* This used to translate -dalign to -malign, but that is no good
37 because it can't turn off the usual meaning of making debugging dumps. */
38
39 #define CC1_SPEC "%{sun4:} %{target:}"
40
41 #define PTRDIFF_TYPE "int"
42 #define SIZE_TYPE "int"
43 #define WCHAR_TYPE "short unsigned int"
44 #define WCHAR_TYPE_SIZE 16
45
46 /* Omit frame pointer at high optimization levels. */
47
48 #define OPTIMIZATION_OPTIONS(OPTIMIZE) \
49 { \
50 if (OPTIMIZE >= 2) \
51 { \
52 flag_omit_frame_pointer = 1; \
53 } \
54 }
55
56 /* These compiler options take an argument. We ignore -target for now. */
57
58 #define WORD_SWITCH_TAKES_ARG(STR) \
59 (!strcmp (STR, "Tdata") || !strcmp (STR, "include") \
60 || !strcmp (STR, "imacros") || !strcmp (STR, "target") \
61 || !strcmp (STR, "assert") || !strcmp (STR, "aux-info"))
62
63 /* Names to predefine in the preprocessor for this target machine. */
64
65 #define CPP_PREDEFINES "-Dsparc -Dsun -Dunix"
66
67 /* Print subsidiary information on the compiler version in use. */
68
69 #define TARGET_VERSION fprintf (stderr, " (sparc)");
70
71 /* Generate DBX debugging information. */
72
73 #define DBX_DEBUGGING_INFO
74
75 /* Run-time compilation parameters selecting different hardware subsets. */
76
77 extern int target_flags;
78
79 /* Nonzero if we should generate code to use the fpu. */
80 #define TARGET_FPU (target_flags & 1)
81
82 /* Nonzero if we should use FUNCTION_EPILOGUE. Otherwise, we
83 use fast return insns, but lose some generality. */
84 #define TARGET_EPILOGUE (target_flags & 2)
85
86 /* Nonzero means that reference doublewords as if they were guaranteed
87 to be aligned...if they aren't, too bad for the user!
88 Like -dalign in Sun cc. */
89 #define TARGET_HOPE_ALIGN (target_flags & 16)
90
91 /* Nonzero means make sure all doubles are on 8-byte boundaries.
92 This option results in a calling convention that is incompatible with
93 every other sparc compiler in the world, and thus should only ever be
94 used for experimenting. Also, varargs won't work with it, but it doesn't
95 seem worth trying to fix. */
96 #define TARGET_FORCE_ALIGN (target_flags & 32)
97
98 /* Macro to define tables used to set the flags.
99 This is a list in braces of pairs in braces,
100 each pair being { "NAME", VALUE }
101 where VALUE is the bits to set or minus the bits to clear.
102 An empty string NAME is used to identify the default VALUE. */
103
104 #define TARGET_SWITCHES \
105 { {"fpu", 1}, \
106 {"soft-float", -1}, \
107 {"epilogue", 2}, \
108 {"no-epilogue", -2}, \
109 {"hope-align", 16}, \
110 {"force-align", 48}, \
111 { "", TARGET_DEFAULT}}
112
113 #define TARGET_DEFAULT 3
114 \f
115 /* target machine storage layout */
116
117 /* Define this if most significant bit is lowest numbered
118 in instructions that operate on numbered bit-fields. */
119 #define BITS_BIG_ENDIAN 1
120
121 /* Define this if most significant byte of a word is the lowest numbered. */
122 /* This is true on the SPARC. */
123 #define BYTES_BIG_ENDIAN 1
124
125 /* Define this if most significant word of a multiword number is the lowest
126 numbered. */
127 /* Doubles are stored in memory with the high order word first. This
128 matters when cross-compiling. */
129 #define WORDS_BIG_ENDIAN 1
130
131 /* number of bits in an addressable storage unit */
132 #define BITS_PER_UNIT 8
133
134 /* Width in bits of a "word", which is the contents of a machine register.
135 Note that this is not necessarily the width of data type `int';
136 if using 16-bit ints on a 68000, this would still be 32.
137 But on a machine with 16-bit registers, this would be 16. */
138 #define BITS_PER_WORD 32
139 #define MAX_BITS_PER_WORD 32
140
141 /* Width of a word, in units (bytes). */
142 #define UNITS_PER_WORD 4
143
144 /* Width in bits of a pointer.
145 See also the macro `Pmode' defined below. */
146 #define POINTER_SIZE 32
147
148 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
149 #define PARM_BOUNDARY 32
150
151 /* Boundary (in *bits*) on which stack pointer should be aligned. */
152 #define STACK_BOUNDARY 64
153
154 /* Allocation boundary (in *bits*) for the code of a function. */
155 #define FUNCTION_BOUNDARY 32
156
157 /* Alignment of field after `int : 0' in a structure. */
158 #define EMPTY_FIELD_BOUNDARY 32
159
160 /* Every structure's size must be a multiple of this. */
161 #define STRUCTURE_SIZE_BOUNDARY 8
162
163 /* A bitfield declared as `int' forces `int' alignment for the struct. */
164 #define PCC_BITFIELD_TYPE_MATTERS 1
165
166 /* No data type wants to be aligned rounder than this. */
167 #define BIGGEST_ALIGNMENT 64
168
169 /* Make strings word-aligned so strcpy from constants will be faster. */
170 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
171 (TREE_CODE (EXP) == STRING_CST \
172 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
173
174 /* Make arrays of chars word-aligned for the same reasons. */
175 #define DATA_ALIGNMENT(TYPE, ALIGN) \
176 (TREE_CODE (TYPE) == ARRAY_TYPE \
177 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
178 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
179
180 /* Set this nonzero if move instructions will actually fail to work
181 when given unaligned data. */
182 #define STRICT_ALIGNMENT 1
183
184 /* Things that must be doubleword aligned cannot go in the text section,
185 because the linker fails to align the text section enough!
186 Put them in the data section. */
187 #define MAX_TEXT_ALIGN 32
188
189 #define SELECT_SECTION(T,RELOC) \
190 { \
191 if (TREE_CODE (T) == VAR_DECL) \
192 { \
193 if (TREE_READONLY (T) && ! TREE_SIDE_EFFECTS (T) \
194 && DECL_ALIGN (T) <= MAX_TEXT_ALIGN \
195 && ! (flag_pic && (RELOC))) \
196 text_section (); \
197 else \
198 data_section (); \
199 } \
200 else if (TREE_CODE (T) == CONSTRUCTOR) \
201 { \
202 if (flag_pic != 0 && (RELOC) != 0) \
203 data_section (); \
204 } \
205 else if (*tree_code_type[(int) TREE_CODE (T)] == 'c') \
206 { \
207 if ((TREE_CODE (T) == STRING_CST && flag_writable_strings) \
208 || TYPE_ALIGN (TREE_TYPE (T)) > MAX_TEXT_ALIGN) \
209 data_section (); \
210 else \
211 text_section (); \
212 } \
213 }
214
215 /* Use text section for a constant
216 unless we need more alignment than that offers. */
217 #define SELECT_RTX_SECTION(MODE, X) \
218 { \
219 if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
220 && ! (flag_pic && symbolic_operand (X))) \
221 text_section (); \
222 else \
223 data_section (); \
224 }
225 \f
226 /* Standard register usage. */
227
228 /* Number of actual hardware registers.
229 The hardware registers are assigned numbers for the compiler
230 from 0 to just below FIRST_PSEUDO_REGISTER.
231 All registers that the compiler knows about must be given numbers,
232 even those that are not normally considered general registers.
233
234 SPARC has 32 integer registers and 32 floating point registers. */
235
236 #define FIRST_PSEUDO_REGISTER 64
237
238 /* 1 for registers that have pervasive standard uses
239 and are not available for the register allocator.
240 0 is used for the condition code and not to represent %g0, which is
241 hardwired to 0, so reg 0 is *not* fixed.
242 2 and 3 are free to use as temporaries.
243 4 through 7 are expected to become usefully defined in the future.
244 Your milage may vary. */
245 #define FIXED_REGISTERS \
246 {0, 0, 0, 0, 1, 1, 1, 1, \
247 0, 0, 0, 0, 0, 0, 1, 0, \
248 0, 0, 0, 0, 0, 0, 0, 0, \
249 0, 0, 0, 0, 0, 0, 1, 1, \
250 \
251 0, 0, 0, 0, 0, 0, 0, 0, \
252 0, 0, 0, 0, 0, 0, 0, 0, \
253 0, 0, 0, 0, 0, 0, 0, 0, \
254 0, 0, 0, 0, 0, 0, 0, 0}
255
256 /* 1 for registers not available across function calls.
257 These must include the FIXED_REGISTERS and also any
258 registers that can be used without being saved.
259 The latter must include the registers where values are returned
260 and the register where structure-value addresses are passed.
261 Aside from that, you can include as many other registers as you like. */
262 #define CALL_USED_REGISTERS \
263 {1, 1, 1, 1, 1, 1, 1, 1, \
264 1, 1, 1, 1, 1, 1, 1, 1, \
265 0, 0, 0, 0, 0, 0, 0, 0, \
266 0, 0, 0, 0, 0, 0, 1, 1, \
267 \
268 1, 1, 1, 1, 1, 1, 1, 1, \
269 1, 1, 1, 1, 1, 1, 1, 1, \
270 1, 1, 1, 1, 1, 1, 1, 1, \
271 1, 1, 1, 1, 1, 1, 1, 1}
272
273 /* Return number of consecutive hard regs needed starting at reg REGNO
274 to hold something of mode MODE.
275 This is ordinarily the length in words of a value of mode MODE
276 but can be less for certain modes in special long registers.
277
278 On SPARC, ordinary registers hold 32 bits worth;
279 this means both integer and floating point registers.
280
281 We use vectors to keep this information about registers. */
282
283 /* How many hard registers it takes to make a register of this mode. */
284 extern int hard_regno_nregs[];
285
286 #define HARD_REGNO_NREGS(REGNO, MODE) \
287 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
288
289 /* Value is 1 if register/mode pair is acceptable on sparc. */
290 extern int hard_regno_mode_ok[FIRST_PSEUDO_REGISTER];
291
292 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
293 On SPARC, the cpu registers can hold any mode but the float registers
294 can only hold SFmode or DFmode. See sparc.c for how we
295 initialize this. */
296 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
297 ((hard_regno_mode_ok[REGNO] & (1<<(int)(MODE))) != 0)
298
299 /* Value is 1 if it is a good idea to tie two pseudo registers
300 when one has mode MODE1 and one has mode MODE2.
301 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
302 for any hard reg, then this must be 0 for correct output. */
303 #define MODES_TIEABLE_P(MODE1, MODE2) \
304 ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
305
306 /* Specify the registers used for certain standard purposes.
307 The values of these macros are register numbers. */
308
309 /* SPARC pc isn't overloaded on a register that the compiler knows about. */
310 /* #define PC_REGNUM */
311
312 /* Register to use for pushing function arguments. */
313 #define STACK_POINTER_REGNUM 14
314
315 /* Actual top-of-stack address is 92 greater than the contents
316 of the stack pointer register. 92 = 68 + 24. 64 bytes reserving space
317 for the ins and local registers, 4 byte for structure return address, and
318 24 bytes for the 6 register parameters. */
319 #define STACK_POINTER_OFFSET FIRST_PARM_OFFSET(0)
320
321 /* Base register for access to local variables of the function. */
322 #define FRAME_POINTER_REGNUM 30
323
324 #if 0
325 /* Register that is used for the return address. */
326 #define RETURN_ADDR_REGNUM 15
327 #endif
328
329 /* Value should be nonzero if functions must have frame pointers.
330 Zero means the frame pointer need not be set up (and parms
331 may be accessed via the stack pointer) in functions that seem suitable.
332 This is computed in `reload', in reload1.c.
333
334 Used in flow.c, global-alloc.c, and reload1.c. */
335 extern int leaf_function;
336
337 #define FRAME_POINTER_REQUIRED \
338 (! (leaf_function_p () && only_leaf_regs_used ()))
339
340 /* C statement to store the difference between the frame pointer
341 and the stack pointer values immediately after the function prologue.
342
343 Note, we always pretend that this is a leaf function because if
344 it's not, there's no point in trying to eliminate the
345 frame pointer. If it is a leaf function, we guessed right! */
346 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
347 do { (VAR) = compute_frame_size (get_frame_size (), 1); } while (0)
348
349 /* Base register for access to arguments of the function. */
350 #define ARG_POINTER_REGNUM 30
351
352 /* Register in which static-chain is passed to a function. */
353 /* ??? */
354 #define STATIC_CHAIN_REGNUM 1
355
356 /* Register which holds offset table for position-independent
357 data references. */
358
359 #define PIC_OFFSET_TABLE_REGNUM 23
360
361 #define INITIALIZE_PIC initialize_pic ()
362 #define FINALIZE_PIC finalize_pic ()
363
364 /* Functions which return large structures get the address
365 to place the wanted value at offset 64 from the frame.
366 Must reserve 64 bytes for the in and local registers. */
367 /* Used only in other #defines in this file. */
368 #define STRUCT_VALUE_OFFSET 64
369
370 #define STRUCT_VALUE \
371 gen_rtx (MEM, Pmode, \
372 gen_rtx (PLUS, Pmode, stack_pointer_rtx, \
373 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
374 #define STRUCT_VALUE_INCOMING \
375 gen_rtx (MEM, Pmode, \
376 gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
377 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
378 \f
379 /* Define the classes of registers for register constraints in the
380 machine description. Also define ranges of constants.
381
382 One of the classes must always be named ALL_REGS and include all hard regs.
383 If there is more than one class, another class must be named NO_REGS
384 and contain no registers.
385
386 The name GENERAL_REGS must be the name of a class (or an alias for
387 another name such as ALL_REGS). This is the class of registers
388 that is allowed by "g" or "r" in a register constraint.
389 Also, registers outside this class are allocated only when
390 instructions express preferences for them.
391
392 The classes must be numbered in nondecreasing order; that is,
393 a larger-numbered class must never be contained completely
394 in a smaller-numbered class.
395
396 For any two classes, it is very desirable that there be another
397 class that represents their union. */
398
399 /* The SPARC has two kinds of registers, general and floating point. */
400
401 enum reg_class { NO_REGS, GENERAL_REGS, FP_REGS, ALL_REGS, LIM_REG_CLASSES };
402
403 #define N_REG_CLASSES (int) LIM_REG_CLASSES
404
405 /* Give names of register classes as strings for dump file. */
406
407 #define REG_CLASS_NAMES \
408 {"NO_REGS", "GENERAL_REGS", "FP_REGS", "ALL_REGS" }
409
410 /* Define which registers fit in which classes.
411 This is an initializer for a vector of HARD_REG_SET
412 of length N_REG_CLASSES. */
413
414 #if 0 && defined (__GNUC__)
415 #define REG_CLASS_CONTENTS {0LL, 0xfffffffeLL, 0xffffffff00000000LL, 0xfffffffffffffffeLL}
416 #else
417 #define REG_CLASS_CONTENTS {{0, 0}, {-2, 0}, {0, -1}, {-2, -1}}
418 #endif
419
420 /* The same information, inverted:
421 Return the class number of the smallest class containing
422 reg number REGNO. This could be a conditional expression
423 or could index an array. */
424
425 #define REGNO_REG_CLASS(REGNO) \
426 ((REGNO) >= 32 ? FP_REGS : (REGNO) == 0 ? NO_REGS : GENERAL_REGS)
427
428 /* This is the order in which to allocate registers
429 normally. */
430 #define REG_ALLOC_ORDER \
431 { 8, 9, 10, 11, 12, 13, 2, 3, \
432 15, 16, 17, 18, 19, 20, 21, 22, \
433 23, 24, 25, 26, 27, 28, 29, 31, \
434 32, 33, 34, 35, 36, 37, 38, 39, \
435 40, 41, 42, 43, 44, 45, 46, 47, \
436 48, 49, 50, 51, 52, 53, 54, 55, \
437 56, 57, 58, 59, 60, 61, 62, 63, \
438 1, 4, 5, 6, 7, 0, 14, 30}
439
440 /* This is the order in which to allocate registers for
441 leaf functions. If all registers can fit in the "i" registers,
442 then we have the possibility of having a leaf function. */
443 #define REG_LEAF_ALLOC_ORDER \
444 { 2, 3, 24, 25, 26, 27, 28, 29, \
445 15, 8, 9, 10, 11, 12, 13, \
446 16, 17, 18, 19, 20, 21, 22, 23, \
447 32, 33, 34, 35, 36, 37, 38, 39, \
448 40, 41, 42, 43, 44, 45, 46, 47, \
449 48, 49, 50, 51, 52, 53, 54, 55, \
450 56, 57, 58, 59, 60, 61, 62, 63, \
451 1, 4, 5, 6, 7, 0, 14, 30, 31}
452
453 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
454
455 #define LEAF_REGISTERS \
456 { 1, 1, 1, 1, 1, 1, 1, 1, \
457 0, 0, 0, 0, 0, 0, 1, 0, \
458 0, 0, 0, 0, 0, 0, 0, 0, \
459 1, 1, 1, 1, 1, 1, 0, 1, \
460 1, 1, 1, 1, 1, 1, 1, 1, \
461 1, 1, 1, 1, 1, 1, 1, 1, \
462 1, 1, 1, 1, 1, 1, 1, 1, \
463 1, 1, 1, 1, 1, 1, 1, 1}
464
465 extern char leaf_reg_remap[];
466 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
467 extern char leaf_reg_backmap[];
468 #define LEAF_REG_BACKMAP(REGNO) (leaf_reg_backmap[REGNO])
469
470 #define REG_USED_SO_FAR(REGNO) \
471 ((REGNO) >= 24 && (REGNO) < 30 \
472 ? (regs_ever_live[24] \
473 || regs_ever_live[25] \
474 || regs_ever_live[26] \
475 || regs_ever_live[27] \
476 || regs_ever_live[28] \
477 || regs_ever_live[29]) : 0)
478
479 /* The class value for index registers, and the one for base regs. */
480 #define INDEX_REG_CLASS GENERAL_REGS
481 #define BASE_REG_CLASS GENERAL_REGS
482
483 /* Get reg_class from a letter such as appears in the machine description. */
484
485 #define REG_CLASS_FROM_LETTER(C) \
486 ((C) == 'f' ? FP_REGS : (C) == 'r' ? GENERAL_REGS : NO_REGS)
487
488 /* The letters I, J, K, L and M in a register constraint string
489 can be used to stand for particular ranges of immediate operands.
490 This macro defines what the ranges are.
491 C is the letter, and VALUE is a constant value.
492 Return 1 if VALUE is in the range specified by C.
493
494 For SPARC, `I' is used for the range of constants an insn
495 can actually contain.
496 `J' is used for the range which is just zero (since that is R0).
497 `K' is used for the 5-bit operand of a compare insns. */
498
499 #define SMALL_INT(X) ((unsigned) (INTVAL (X) + 0x1000) < 0x2000)
500
501 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
502 ((C) == 'I' ? (unsigned) ((VALUE) + 0x1000) < 0x2000 \
503 : (C) == 'J' ? (VALUE) == 0 \
504 : (C) == 'K' ? ((VALUE) & 0x3ff) == 0 \
505 : 0)
506
507 /* Similar, but for floating constants, and defining letters G and H.
508 Here VALUE is the CONST_DOUBLE rtx itself. */
509
510 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
511 ((C) == 'G' ? CONST_DOUBLE_HIGH (VALUE) == 0 \
512 && CONST_DOUBLE_LOW (VALUE) == 0 \
513 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
514 : 0)
515
516 /* Given an rtx X being reloaded into a reg required to be
517 in class CLASS, return the class of reg to actually use.
518 In general this is just CLASS; but on some machines
519 in some cases it is preferable to use a more restrictive class. */
520 #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
521
522 /* Return the register class of a scratch register needed to load IN into
523 a register of class CLASS in MODE.
524
525 On the SPARC, when PIC, we need a temporary when loading some addresses
526 into a register. */
527
528 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
529 (flag_pic && pic_address_needs_scratch (IN) ? GENERAL_REGS : NO_REGS)
530
531 /* Return the maximum number of consecutive registers
532 needed to represent mode MODE in a register of class CLASS. */
533 /* On SPARC, this is the size of MODE in words. */
534 #define CLASS_MAX_NREGS(CLASS, MODE) \
535 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
536 \f
537 /* Stack layout; function entry, exit and calling. */
538
539 /* Define the number of register that can hold parameters.
540 These two macros are used only in other macro definitions below. */
541 #define NPARM_REGS 6
542
543 /* Define this if pushing a word on the stack
544 makes the stack pointer a smaller address. */
545 #define STACK_GROWS_DOWNWARD
546
547 /* Define this if the nominal address of the stack frame
548 is at the high-address end of the local variables;
549 that is, each additional local variable allocated
550 goes at a more negative offset in the frame. */
551 #define FRAME_GROWS_DOWNWARD
552
553 /* Offset within stack frame to start allocating local variables at.
554 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
555 first local allocated. Otherwise, it is the offset to the BEGINNING
556 of the first local allocated. */
557 #define STARTING_FRAME_OFFSET (-16)
558
559 /* If we generate an insn to push BYTES bytes,
560 this says how many the stack pointer really advances by.
561 On SPARC, don't define this because there are no push insns. */
562 /* #define PUSH_ROUNDING(BYTES) */
563
564 /* Offset of first parameter from the argument pointer register value.
565 This is 64 for the ins and locals, plus 4 for the struct-return reg
566 even if this function isn't going to use it.
567 If TARGET_FORCE_ALIGN, we must reserve 4 more bytes to ensure that the
568 stack remains aligned. */
569 #define FIRST_PARM_OFFSET(FNDECL) \
570 (STRUCT_VALUE_OFFSET + UNITS_PER_WORD + (TARGET_FORCE_ALIGN ? 4 : 0))
571
572 /* When a parameter is passed in a register, stack space is still
573 allocated for it. */
574 #define REG_PARM_STACK_SPACE(DECL) (NPARM_REGS * UNITS_PER_WORD)
575
576 /* Keep the stack pointer constant throughout the function.
577 This is both an optimization and a necessity: longjmp
578 doesn't behave itself when the stack pointer moves within
579 the function! */
580 #define ACCUMULATE_OUTGOING_ARGS
581
582 /* Value is the number of bytes of arguments automatically
583 popped when returning from a subroutine call.
584 FUNTYPE is the data type of the function (as a tree),
585 or for a library call it is an identifier node for the subroutine name.
586 SIZE is the number of bytes of arguments passed on the stack. */
587
588 #define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
589
590 /* Some subroutine macros specific to this machine. */
591 #define BASE_RETURN_VALUE_REG(MODE) \
592 ((MODE) == SFmode || (MODE) == DFmode ? 32 : 8)
593 #define BASE_OUTGOING_VALUE_REG(MODE) \
594 ((MODE) == SFmode || (MODE) == DFmode ? 32 : 24)
595 #define BASE_PASSING_ARG_REG(MODE) (8)
596 #define BASE_INCOMING_ARG_REG(MODE) (24)
597
598 /* Define how to find the value returned by a function.
599 VALTYPE is the data type of the value (as a tree).
600 If the precise function being called is known, FUNC is its FUNCTION_DECL;
601 otherwise, FUNC is 0. */
602
603 /* On SPARC the value is found in the first "output" register. */
604
605 #define FUNCTION_VALUE(VALTYPE, FUNC) \
606 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
607
608 /* But the called function leaves it in the first "input" register. */
609
610 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
611 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_OUTGOING_VALUE_REG (TYPE_MODE (VALTYPE)))
612
613 /* Define how to find the value returned by a library function
614 assuming the value has mode MODE. */
615
616 #define LIBCALL_VALUE(MODE) \
617 gen_rtx (REG, MODE, BASE_RETURN_VALUE_REG (MODE))
618
619 /* 1 if N is a possible register number for a function value
620 as seen by the caller.
621 On SPARC, the first "output" reg is used for integer values,
622 and the first floating point register is used for floating point values. */
623
624 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
625
626 /* 1 if N is a possible register number for function argument passing.
627 On SPARC, these are the "output" registers. */
628
629 #define FUNCTION_ARG_REGNO_P(N) ((N) < 14 && (N) > 7)
630 \f
631 /* Define a data type for recording info about an argument list
632 during the scan of that argument list. This data type should
633 hold all necessary information about the function itself
634 and about the args processed so far, enough to enable macros
635 such as FUNCTION_ARG to determine where the next arg should go.
636
637 On SPARC, this is a single integer, which is a number of words
638 of arguments scanned so far (including the invisible argument,
639 if any, which holds the structure-value-address).
640 Thus 7 or more means all following args should go on the stack. */
641
642 #define CUMULATIVE_ARGS int
643
644 #define ROUND_ADVANCE(SIZE) \
645 ((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
646
647 /* Round a register number up to a proper boundary for an arg of mode MODE.
648 Note that we need an odd/even pair for a two-word arg,
649 since that will become 8-byte aligned when stored in memory. */
650 #define ROUND_REG(X, MODE) \
651 (TARGET_FORCE_ALIGN && GET_MODE_UNIT_SIZE ((MODE)) > 4 \
652 ? ((X) + ! ((X) & 1)) : (X))
653
654 /* Initialize a variable CUM of type CUMULATIVE_ARGS
655 for a call to a function whose data type is FNTYPE.
656 For a library call, FNTYPE is 0.
657
658 On SPARC, the offset always starts at 0: the first parm reg is always
659 the same reg. */
660
661 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) ((CUM) = 0)
662
663 /* Update the data in CUM to advance over an argument
664 of mode MODE and data type TYPE.
665 (TYPE is null for libcalls where that information may not be available.) */
666
667 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
668 ((CUM) = (ROUND_REG ((CUM), (MODE)) \
669 + ((MODE) != BLKmode \
670 ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
671 : ROUND_ADVANCE (int_size_in_bytes (TYPE)))))
672
673 /* Determine where to put an argument to a function.
674 Value is zero to push the argument on the stack,
675 or a hard register in which to store the argument.
676
677 MODE is the argument's machine mode.
678 TYPE is the data type of the argument (as a tree).
679 This is null for libcalls where that information may
680 not be available.
681 CUM is a variable of type CUMULATIVE_ARGS which gives info about
682 the preceding args and about the function being called.
683 NAMED is nonzero if this argument is a named parameter
684 (otherwise it is an extra parameter matching an ellipsis). */
685
686 /* On SPARC the first six args are normally in registers
687 and the rest are pushed. Any arg that starts within the first 6 words
688 is at least partially passed in a register unless its data type forbids. */
689
690 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
691 (ROUND_REG ((CUM), (MODE)) < NPARM_REGS \
692 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
693 && ((TYPE)==0 || (MODE) != BLKmode \
694 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
695 ? gen_rtx (REG, (MODE), \
696 (BASE_PASSING_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE)))) \
697 : 0)
698
699 /* Define where a function finds its arguments.
700 This is different from FUNCTION_ARG because of register windows. */
701
702 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
703 (ROUND_REG ((CUM), (MODE)) < NPARM_REGS \
704 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
705 && ((TYPE)==0 || (MODE) != BLKmode \
706 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
707 ? gen_rtx (REG, (MODE), \
708 (BASE_INCOMING_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE)))) \
709 : 0)
710
711 /* For an arg passed partly in registers and partly in memory,
712 this is the number of registers used.
713 For args passed entirely in registers or entirely in memory, zero.
714 Any arg that starts in the first 6 regs but won't entirely fit in them
715 needs partial registers on the Sparc. */
716
717 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
718 ((ROUND_REG ((CUM), (MODE)) < NPARM_REGS \
719 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
720 && ((TYPE)==0 || (MODE) != BLKmode \
721 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
722 && (ROUND_REG ((CUM), (MODE)) \
723 + ((MODE) == BLKmode \
724 ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
725 : ROUND_ADVANCE (GET_MODE_SIZE (MODE)))) - NPARM_REGS > 0) \
726 ? (NPARM_REGS - ROUND_REG ((CUM), (MODE))) \
727 : 0)
728
729 /* The SPARC ABI stipulates passing struct arguments (of any size)
730 by invisible reference. */
731 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
732 (TYPE && (TREE_CODE (TYPE) == RECORD_TYPE || TREE_CODE (TYPE) == UNION_TYPE))
733
734 /* If defined, a C expression that gives the alignment boundary, in
735 bits, of an argument with the specified mode and type. If it is
736 not defined, `PARM_BOUNDARY' is used for all arguments.
737
738 This definition does nothing special unless TARGET_FORCE_ALIGN;
739 in that case, it aligns each arg to the natural boundary. */
740
741 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
742 (! TARGET_FORCE_ALIGN \
743 ? PARM_BOUNDARY \
744 : (((TYPE) != 0) \
745 ? (TYPE_ALIGN (TYPE) <= PARM_BOUNDARY \
746 ? PARM_BOUNDARY \
747 : TYPE_ALIGN (TYPE)) \
748 : (GET_MODE_ALIGNMENT (MODE) <= PARM_BOUNDARY \
749 ? PARM_BOUNDARY \
750 : GET_MODE_ALIGNMENT (MODE))))
751
752 /* Define the information needed to generate branch and scc insns. This is
753 stored from the compare operation. Note that we can't use "rtx" here
754 since it hasn't been defined! */
755
756 extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;
757
758 /* Define the function that build the compare insn for scc and bcc. */
759
760 extern struct rtx_def *gen_compare_reg ();
761 \f
762 /* Generate the special assembly code needed to tell the assembler whatever
763 it might need to know about the return value of a function.
764
765 For Sparc assemblers, we need to output a .proc pseudo-op which conveys
766 information to the assembler relating to peephole optimization (done in
767 the assembler). */
768
769 #define ASM_DECLARE_RESULT(FILE, RESULT) \
770 fprintf ((FILE), "\t.proc\t0%o\n", sparc_type_code (TREE_TYPE (RESULT)))
771
772 /* Output the label for a function definition. */
773
774 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
775 do { \
776 ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
777 ASM_OUTPUT_LABEL (FILE, NAME); \
778 } while (0)
779
780 /* Two views of the size of the current frame. */
781 extern int actual_fsize;
782 extern int apparent_fsize;
783
784 /* This macro generates the assembly code for function entry.
785 FILE is a stdio stream to output the code to.
786 SIZE is an int: how many units of temporary storage to allocate.
787 Refer to the array `regs_ever_live' to determine which registers
788 to save; `regs_ever_live[I]' is nonzero if register number I
789 is ever used in the function. This macro is responsible for
790 knowing which registers should not be saved even if used. */
791
792 /* On SPARC, move-double insns between fpu and cpu need an 8-byte block
793 of memory. If any fpu reg is used in the function, we allocate
794 such a block here, at the bottom of the frame, just in case it's needed.
795
796 If this function is a leaf procedure, then we may choose not
797 to do a "save" insn. The decision about whether or not
798 to do this is made in regclass.c. */
799
800 #define FUNCTION_PROLOGUE(FILE, SIZE) \
801 output_function_prologue (FILE, SIZE, leaf_function)
802
803 /* Output assembler code to FILE to increment profiler label # LABELNO
804 for profiling a function entry. */
805
806 #define FUNCTION_PROFILER(FILE, LABELNO) \
807 fprintf (FILE, "\tsethi %%hi(LP%d),%%o0\n\tcall mcount\n\tor %%lo(LP%d),%%o0,%%o0\n", \
808 (LABELNO), (LABELNO))
809
810 /* Output assembler code to FILE to initialize this source file's
811 basic block profiling info, if that has not already been done. */
812
813 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
814 fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tld [%%lo(LPBX0)+%%o0],%%o1\n\ttst %%o1\n\tbne LPY%d\n\tadd %%o0,%%lo(LPBX0),%%o0\n\tcall ___bb_init_func\n\tnop\nLPY%d:\n", \
815 (LABELNO), (LABELNO))
816
817 /* Output assembler code to FILE to increment the entry-count for
818 the BLOCKNO'th basic block in this source file. */
819
820 #define BLOCK_PROFILER(FILE, BLOCKNO) \
821 { \
822 int blockn = (BLOCKNO); \
823 fprintf (FILE, "\tsethi %%hi(LPBX2+%d),%%g1\n\tld [%%lo(LPBX2+%d)+%%g1],%%g2\n\
824 \tadd %%g2,1,%%g2\n\tst %%g2,[%%lo(LPBX2+%d)+%%g1]\n", \
825 4 * blockn, 4 * blockn, 4 * blockn); \
826 }
827
828 /* Output rtl to increment the entry-count for the LABELNO'th instrumented
829 arc in this source file. */
830
831 #define ARC_PROFILER(ARCNO, INSERT_AFTER) \
832 output_arc_profiler (ARCNO, INSERT_AFTER)
833
834 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
835 the stack pointer does not matter. The value is tested only in
836 functions that have frame pointers.
837 No definition is equivalent to always zero. */
838
839 extern int current_function_calls_alloca;
840 extern int current_function_outgoing_args_size;
841
842 #define EXIT_IGNORE_STACK \
843 (get_frame_size () != 0 \
844 || current_function_calls_alloca || current_function_outgoing_args_size)
845
846 /* This macro generates the assembly code for function exit,
847 on machines that need it. If FUNCTION_EPILOGUE is not defined
848 then individual return instructions are generated for each
849 return statement. Args are same as for FUNCTION_PROLOGUE.
850
851 The function epilogue should not depend on the current stack pointer!
852 It should use the frame pointer only. This is mandatory because
853 of alloca; we also take advantage of it to omit stack adjustments
854 before returning. */
855
856 /* This declaration is needed due to traditional/ANSI
857 incompatibilities which cannot be #ifdefed away
858 because they occur inside of macros. Sigh. */
859 extern union tree_node *current_function_decl;
860
861 #define FUNCTION_EPILOGUE(FILE, SIZE) \
862 output_function_epilogue (FILE, SIZE, leaf_function)
863
864 #define DELAY_SLOTS_FOR_EPILOGUE 1
865 #define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
866 eligible_for_epilogue_delay (trial, slots_filled)
867
868 /* Output assembler code for a block containing the constant parts
869 of a trampoline, leaving space for the variable parts. */
870
871 /* On the sparc, the trampoline contains five instructions:
872 sethi #TOP_OF_FUNCTION,%g2
873 or #BOTTOM_OF_FUNCTION,%g2,%g2
874 sethi #TOP_OF_STATIC,%g1
875 jmp g2
876 or #BOTTOM_OF_STATIC,%g1,%g1 */
877 #define TRAMPOLINE_TEMPLATE(FILE) \
878 { \
879 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
880 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
881 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
882 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x81C08000)); \
883 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
884 }
885
886 /* Length in units of the trampoline for entering a nested function. */
887
888 #define TRAMPOLINE_SIZE 20
889
890 /* Emit RTL insns to initialize the variable parts of a trampoline.
891 FNADDR is an RTX for the address of the function's pure code.
892 CXT is an RTX for the static chain value for the function.
893
894 This takes 16 insns: 2 shifts & 2 ands (to split up addresses), 4 sethi
895 (to load in opcodes), 4 iors (to merge address and opcodes), and 4 writes
896 (to store insns). This is a bit excessive. Perhaps a different
897 mechanism would be better here. */
898
899 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
900 { \
901 rtx high_cxt = expand_shift (RSHIFT_EXPR, SImode, CXT, \
902 size_int (10), 0, 1); \
903 rtx high_fn = expand_shift (RSHIFT_EXPR, SImode, FNADDR, \
904 size_int (10), 0, 1); \
905 rtx low_cxt = expand_and (CXT, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
906 rtx low_fn = expand_and (FNADDR, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
907 rtx g1_sethi = gen_rtx (HIGH, SImode, \
908 gen_rtx (CONST_INT, VOIDmode, 0x03000000)); \
909 rtx g2_sethi = gen_rtx (HIGH, SImode, \
910 gen_rtx (CONST_INT, VOIDmode, 0x05000000)); \
911 rtx g1_ori = gen_rtx (HIGH, SImode, \
912 gen_rtx (CONST_INT, VOIDmode, 0x82106000)); \
913 rtx g2_ori = gen_rtx (HIGH, SImode, \
914 gen_rtx (CONST_INT, VOIDmode, 0x8410A000)); \
915 rtx tem = gen_reg_rtx (SImode); \
916 emit_move_insn (tem, g2_sethi); \
917 emit_insn (gen_iorsi3 (high_fn, high_fn, tem)); \
918 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 0)), high_fn);\
919 emit_move_insn (tem, g2_ori); \
920 emit_insn (gen_iorsi3 (low_fn, low_fn, tem)); \
921 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 4)), low_fn);\
922 emit_move_insn (tem, g1_sethi); \
923 emit_insn (gen_iorsi3 (high_cxt, high_cxt, tem)); \
924 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 8)), high_cxt);\
925 emit_move_insn (tem, g1_ori); \
926 emit_insn (gen_iorsi3 (low_cxt, low_cxt, tem)); \
927 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 16)), low_cxt);\
928 }
929
930 /* Emit code for a call to builtin_saveregs. We must emit USE insns which
931 reference the 6 input registers. Ordinarily they are not call used
932 registers, but they are for _builtin_saveregs, so we must make this
933 explicit. */
934
935 #define EXPAND_BUILTIN_SAVEREGS(ARGLIST) \
936 (emit_insn (gen_rtx (USE, VOIDmode, gen_rtx (REG, TImode, 24))), \
937 emit_insn (gen_rtx (USE, VOIDmode, gen_rtx (REG, DImode, 28))), \
938 expand_call (exp, target, ignore))
939 \f
940 /* Addressing modes, and classification of registers for them. */
941
942 /* #define HAVE_POST_INCREMENT */
943 /* #define HAVE_POST_DECREMENT */
944
945 /* #define HAVE_PRE_DECREMENT */
946 /* #define HAVE_PRE_INCREMENT */
947
948 /* Macros to check register numbers against specific register classes. */
949
950 /* These assume that REGNO is a hard or pseudo reg number.
951 They give nonzero only if REGNO is a hard reg of the suitable class
952 or a pseudo reg currently allocated to a suitable hard reg.
953 Since they use reg_renumber, they are safe only once reg_renumber
954 has been allocated, which happens in local-alloc.c. */
955
956 #define REGNO_OK_FOR_INDEX_P(REGNO) \
957 (((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
958 #define REGNO_OK_FOR_BASE_P(REGNO) \
959 (((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
960 #define REGNO_OK_FOR_FP_P(REGNO) \
961 (((REGNO) ^ 0x20) < 32 \
962 || (((REGNO) != 0) && (unsigned) (reg_renumber[REGNO] ^ 0x20) < 32))
963
964 /* Now macros that check whether X is a register and also,
965 strictly, whether it is in a specified class.
966
967 These macros are specific to the SPARC, and may be used only
968 in code for printing assembler insns and in conditions for
969 define_optimization. */
970
971 /* 1 if X is an fp register. */
972
973 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
974 \f
975 /* Maximum number of registers that can appear in a valid memory address. */
976
977 #define MAX_REGS_PER_ADDRESS 2
978
979 /* Recognize any constant value that is a valid address. */
980
981 #define CONSTANT_ADDRESS_P(X) (CONSTANT_P (X))
982
983 /* Nonzero if the constant value X is a legitimate general operand.
984 Anything can be made to work except floating point constants. */
985
986 #define LEGITIMATE_CONSTANT_P(X) \
987 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode)
988
989 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
990 and check its validity for a certain class.
991 We have two alternate definitions for each of them.
992 The usual definition accepts all pseudo regs; the other rejects
993 them unless they have been allocated suitable hard regs.
994 The symbol REG_OK_STRICT causes the latter definition to be used.
995
996 Most source files want to accept pseudo regs in the hope that
997 they will get allocated to the class that the insn wants them to be in.
998 Source files for reload pass need to be strict.
999 After reload, it makes no difference, since pseudo regs have
1000 been eliminated by then. */
1001
1002 /* Optional extra constraints for this machine. Borrowed from romp.h.
1003
1004 For the SPARC, `Q' means that this is a memory operand but not a
1005 symbolic memory operand. Note that an unassigned pseudo register
1006 is such a memory operand. Needed because reload will generate
1007 these things in insns and then not re-recognize the insns, causing
1008 constrain_operands to fail.
1009
1010 `R' handles the LO_SUM which can be an address for `Q'.
1011
1012 `S' handles constraints for calls. */
1013
1014 #ifndef REG_OK_STRICT
1015
1016 /* Nonzero if X is a hard reg that can be used as an index
1017 or if it is a pseudo reg. */
1018 #define REG_OK_FOR_INDEX_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1019 /* Nonzero if X is a hard reg that can be used as a base reg
1020 or if it is a pseudo reg. */
1021 #define REG_OK_FOR_BASE_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1022
1023 #define EXTRA_CONSTRAINT(OP, C) \
1024 ((C) == 'Q' ? \
1025 ((GET_CODE (OP) == MEM \
1026 && memory_address_p (GET_MODE (OP), XEXP (OP, 0)) \
1027 && ! symbolic_memory_operand (OP, VOIDmode))) \
1028 : ((C) == 'R' ? \
1029 (GET_CODE (OP) == LO_SUM \
1030 && GET_CODE (XEXP (OP, 0)) == REG \
1031 && REG_OK_FOR_BASE_P (XEXP (OP, 0))) \
1032 : ((C) == 'S' \
1033 ? CONSTANT_P (OP) || memory_address_p (Pmode, OP) : 0)))
1034
1035 #else
1036
1037 /* Nonzero if X is a hard reg that can be used as an index. */
1038 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1039 /* Nonzero if X is a hard reg that can be used as a base reg. */
1040 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1041
1042 #define EXTRA_CONSTRAINT(OP, C) \
1043 ((C) == 'Q' ? \
1044 (GET_CODE (OP) == REG ? \
1045 (REGNO (OP) >= FIRST_PSEUDO_REGISTER \
1046 && reg_renumber[REGNO (OP)] < 0) \
1047 : GET_CODE (OP) == MEM) \
1048 : ((C) == 'R' ? \
1049 (GET_CODE (OP) == LO_SUM \
1050 && GET_CODE (XEXP (OP, 0)) == REG \
1051 && REG_OK_FOR_BASE_P (XEXP (OP, 0))) \
1052 : ((C) == 'S' \
1053 ? (CONSTANT_P (OP) \
1054 || (GET_CODE (OP) == REG && reg_renumber[REGNO (OP)] > 0)\
1055 || strict_memory_address_p (Pmode, OP)) : 0)))
1056 #endif
1057 \f
1058 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1059 that is a valid memory address for an instruction.
1060 The MODE argument is the machine mode for the MEM expression
1061 that wants to use this address.
1062
1063 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
1064 ordinarily. This changes a bit when generating PIC.
1065
1066 If you change this, execute "rm explow.o recog.o reload.o". */
1067
1068 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1069 { if (GET_CODE (X) == REG) \
1070 { if (REG_OK_FOR_BASE_P (X)) goto ADDR; } \
1071 else if (GET_CODE (X) == PLUS) \
1072 { \
1073 if (flag_pic && XEXP (X, 0) == pic_offset_table_rtx)\
1074 { \
1075 if (GET_CODE (XEXP (X, 1)) == REG \
1076 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
1077 goto ADDR; \
1078 else if (flag_pic == 1 \
1079 && GET_CODE (XEXP (X, 1)) != REG \
1080 && GET_CODE (XEXP (X, 1)) != LO_SUM \
1081 && GET_CODE (XEXP (X, 1)) != MEM) \
1082 goto ADDR; \
1083 } \
1084 else if (GET_CODE (XEXP (X, 0)) == REG \
1085 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
1086 { \
1087 if (GET_CODE (XEXP (X, 1)) == REG \
1088 && REG_OK_FOR_INDEX_P (XEXP (X, 1))) \
1089 goto ADDR; \
1090 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1091 && INTVAL (XEXP (X, 1)) >= -0x1000 \
1092 && INTVAL (XEXP (X, 1)) < 0x1000) \
1093 goto ADDR; \
1094 } \
1095 else if (GET_CODE (XEXP (X, 1)) == REG \
1096 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
1097 { \
1098 if (GET_CODE (XEXP (X, 0)) == REG \
1099 && REG_OK_FOR_INDEX_P (XEXP (X, 0))) \
1100 goto ADDR; \
1101 if (GET_CODE (XEXP (X, 0)) == CONST_INT \
1102 && INTVAL (XEXP (X, 0)) >= -0x1000 \
1103 && INTVAL (XEXP (X, 0)) < 0x1000) \
1104 goto ADDR; \
1105 } \
1106 } \
1107 else if (GET_CODE (X) == LO_SUM \
1108 && GET_CODE (XEXP (X, 0)) == REG \
1109 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1110 && CONSTANT_P (XEXP (X, 1))) \
1111 goto ADDR; \
1112 else if (GET_CODE (X) == LO_SUM \
1113 && GET_CODE (XEXP (X, 0)) == SUBREG \
1114 && GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG\
1115 && REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0)))\
1116 && CONSTANT_P (XEXP (X, 1))) \
1117 goto ADDR; \
1118 else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
1119 goto ADDR; \
1120 }
1121 \f
1122 /* Try machine-dependent ways of modifying an illegitimate address
1123 to be legitimate. If we find one, return the new, valid address.
1124 This macro is used in only one place: `memory_address' in explow.c.
1125
1126 OLDX is the address as it was before break_out_memory_refs was called.
1127 In some cases it is useful to look at this to decide what needs to be done.
1128
1129 MODE and WIN are passed so that this macro can use
1130 GO_IF_LEGITIMATE_ADDRESS.
1131
1132 It is always safe for this macro to do nothing. It exists to recognize
1133 opportunities to optimize the output. */
1134
1135 /* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
1136 extern struct rtx_def *legitimize_pic_address ();
1137 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1138 { rtx sparc_x = (X); \
1139 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
1140 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
1141 force_operand (XEXP (X, 0), 0)); \
1142 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
1143 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1144 force_operand (XEXP (X, 1), 0)); \
1145 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
1146 (X) = gen_rtx (PLUS, Pmode, force_operand (XEXP (X, 0), 0),\
1147 XEXP (X, 1)); \
1148 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
1149 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1150 force_operand (XEXP (X, 1), 0)); \
1151 if (sparc_x != (X) && memory_address_p (MODE, X)) \
1152 goto WIN; \
1153 if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0, 0); \
1154 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1155 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1156 copy_to_mode_reg (Pmode, XEXP (X, 1))); \
1157 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
1158 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
1159 copy_to_mode_reg (Pmode, XEXP (X, 0))); \
1160 else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
1161 || GET_CODE (X) == LABEL_REF) \
1162 (X) = gen_rtx (LO_SUM, Pmode, \
1163 copy_to_mode_reg (Pmode, gen_rtx (HIGH, Pmode, X)), X); \
1164 if (memory_address_p (MODE, X)) \
1165 goto WIN; }
1166
1167 /* Go to LABEL if ADDR (a legitimate address expression)
1168 has an effect that depends on the machine mode it is used for.
1169 On the SPARC this is never true. */
1170
1171 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1172 \f
1173 /* Specify the machine mode that this machine uses
1174 for the index in the tablejump instruction. */
1175 #define CASE_VECTOR_MODE SImode
1176
1177 /* Define this if the tablejump instruction expects the table
1178 to contain offsets from the address of the table.
1179 Do not define this if the table should contain absolute addresses. */
1180 /* #define CASE_VECTOR_PC_RELATIVE */
1181
1182 /* Specify the tree operation to be used to convert reals to integers. */
1183 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1184
1185 /* This is the kind of divide that is easiest to do in the general case. */
1186 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1187
1188 /* Define this as 1 if `char' should by default be signed; else as 0. */
1189 #define DEFAULT_SIGNED_CHAR 1
1190
1191 /* Max number of bytes we can move from memory to memory
1192 in one reasonably fast instruction. */
1193 #define MOVE_MAX 4
1194
1195 /* Define if normal loads of shorter-than-word items from memory clears
1196 the rest of the bigs in the register. */
1197 #define BYTE_LOADS_ZERO_EXTEND
1198
1199 /* Nonzero if access to memory by bytes is slow and undesirable.
1200 For RISC chips, it means that access to memory by bytes is no
1201 better than access by words when possible, so grab a whole word
1202 and maybe make use of that. */
1203 #define SLOW_BYTE_ACCESS 1
1204
1205 /* We assume that the store-condition-codes instructions store 0 for false
1206 and some other value for true. This is the value stored for true. */
1207
1208 #define STORE_FLAG_VALUE 1
1209
1210 /* When a prototype says `char' or `short', really pass an `int'. */
1211 #define PROMOTE_PROTOTYPES
1212
1213 /* Define if shifts truncate the shift count
1214 which implies one can omit a sign-extension or zero-extension
1215 of a shift count. */
1216 #define SHIFT_COUNT_TRUNCATED
1217
1218 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1219 is done just by pretending it is already truncated. */
1220 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1221
1222 /* Specify the machine mode that pointers have.
1223 After generation of rtl, the compiler makes no further distinction
1224 between pointers and any other objects of this machine mode. */
1225 #define Pmode SImode
1226
1227 /* Generate calls to memcpy, memcmp and memset. */
1228 #define TARGET_MEM_FUNCTIONS
1229
1230 /* Add any extra modes needed to represent the condition code.
1231
1232 On the Sparc, we have a "no-overflow" mode which is used when an add or
1233 subtract insn is used to set the condition code. Different branches are
1234 used in this case for some operations.
1235
1236 We also have a mode to indicate that the relevant condition code is
1237 in the floating-point condition code. This really should be a separate
1238 register, but we don't want to go to 65 registers. */
1239 #define EXTRA_CC_MODES CC_NOOVmode, CCFPmode
1240
1241 /* Define the names for the modes specified above. */
1242 #define EXTRA_CC_NAMES "CC_NOOV", "CCFP"
1243
1244 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1245 return the mode to be used for the comparison. For floating-point, CCFPmode
1246 should be used. CC_NOOVmode should be used when the first operand is a
1247 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1248 needed. */
1249 #define SELECT_CC_MODE(OP,X) \
1250 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
1251 : (GET_CODE (X) == PLUS || GET_CODE (X) == MINUS || GET_CODE (X) == NEG) \
1252 ? CC_NOOVmode : CCmode)
1253
1254 /* A function address in a call instruction
1255 is a byte address (for indexing purposes)
1256 so give the MEM rtx a byte's mode. */
1257 #define FUNCTION_MODE SImode
1258
1259 /* Define this if addresses of constant functions
1260 shouldn't be put through pseudo regs where they can be cse'd.
1261 Desirable on machines where ordinary constants are expensive
1262 but a CALL with constant address is cheap. */
1263 #define NO_FUNCTION_CSE
1264
1265 /* alloca should avoid clobbering the old register save area. */
1266 #define SETJMP_VIA_SAVE_AREA
1267
1268 /* Define subroutines to call to handle multiply and divide.
1269 Use the subroutines that Sun's library provides.
1270 The `*' prevents an underscore from being prepended by the compiler. */
1271
1272 #define DIVSI3_LIBCALL "*.div"
1273 #define UDIVSI3_LIBCALL "*.udiv"
1274 #define MODSI3_LIBCALL "*.rem"
1275 #define UMODSI3_LIBCALL "*.urem"
1276 /* .umul is a little faster than .mul. */
1277 #define MULSI3_LIBCALL "*.umul"
1278
1279 /* Compute the cost of computing a constant rtl expression RTX
1280 whose rtx-code is CODE. The body of this macro is a portion
1281 of a switch statement. If the code is computed here,
1282 return it with a return statement. Otherwise, break from the switch. */
1283
1284 #define CONST_COSTS(RTX,CODE) \
1285 case CONST_INT: \
1286 if (INTVAL (RTX) == 0) \
1287 return 0; \
1288 if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \
1289 return 1; \
1290 case HIGH: \
1291 return 2; \
1292 case CONST: \
1293 case LABEL_REF: \
1294 case SYMBOL_REF: \
1295 return 4; \
1296 case CONST_DOUBLE: \
1297 if (GET_MODE (RTX) == DImode) \
1298 if ((XINT (RTX, 3) == 0 \
1299 && (unsigned) XINT (RTX, 2) < 0x1000) \
1300 || (XINT (RTX, 3) == -1 \
1301 && XINT (RTX, 2) < 0 \
1302 && XINT (RTX, 2) >= -0x1000)) \
1303 return 1; \
1304 return 8;
1305
1306 /* SPARC offers addressing modes which are "as cheap as a register".
1307 See sparc.c (or gcc.texinfo) for details. */
1308
1309 #define ADDRESS_COST(RTX) \
1310 (GET_CODE (RTX) == REG ? 1 : sparc_address_cost (RTX))
1311
1312 /* Compute extra cost of moving data between one register class
1313 and another. */
1314 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
1315 (((CLASS1 == FP_REGS && CLASS2 == GENERAL_REGS) \
1316 || (CLASS1 == GENERAL_REGS && CLASS2 == FP_REGS)) ? 6 : 2)
1317
1318 /* Provide the costs of a rtl expression. This is in the body of a
1319 switch on CODE. The purpose for the cost of MULT is to encourage
1320 `synth_mult' to find a synthetic multiply when reasonable.
1321
1322 If we need more than 12 insns to do a multiply, then go out-of-line,
1323 since the call overhead will be < 10% of the cost of the multiply. */
1324
1325 #define RTX_COSTS(X,CODE) \
1326 case MULT: \
1327 return COSTS_N_INSNS (25); \
1328 case DIV: \
1329 case UDIV: \
1330 case MOD: \
1331 case UMOD: \
1332 return COSTS_N_INSNS (20); \
1333 /* Make FLOAT more expensive than CONST_DOUBLE, \
1334 so that cse will favor the latter. */ \
1335 case FLOAT: \
1336 return 19;
1337
1338 /* Conditional branches with empty delay slots have a length of two. */
1339 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1340 if (GET_CODE (INSN) == CALL_INSN \
1341 || (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn))) \
1342 LENGTH += 1;
1343 \f
1344 /* Control the assembler format that we output. */
1345
1346 /* Output at beginning of assembler file. */
1347
1348 #define ASM_FILE_START(file)
1349
1350 /* Output to assembler file text saying following lines
1351 may contain character constants, extra white space, comments, etc. */
1352
1353 #define ASM_APP_ON ""
1354
1355 /* Output to assembler file text saying following lines
1356 no longer contain unusual constructs. */
1357
1358 #define ASM_APP_OFF ""
1359
1360 /* Output before read-only data. */
1361
1362 #define TEXT_SECTION_ASM_OP ".text"
1363
1364 /* Output before writable data. */
1365
1366 #define DATA_SECTION_ASM_OP ".data"
1367
1368 /* How to refer to registers in assembler output.
1369 This sequence is indexed by compiler's hard-register-number (see above). */
1370
1371 #define REGISTER_NAMES \
1372 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
1373 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
1374 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
1375 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
1376 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
1377 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
1378 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
1379 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31"}
1380
1381 /* How to renumber registers for dbx and gdb. */
1382
1383 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1384
1385 /* On Sun 4, this limit is 2048. We use 1500 to be safe,
1386 since the length can run past this up to a continuation point. */
1387 #define DBX_CONTIN_LENGTH 1500
1388
1389 /* This is how to output a note to DBX telling it the line number
1390 to which the following sequence of instructions corresponds.
1391
1392 This is needed for SunOS 4.0, and should not hurt for 3.2
1393 versions either. */
1394 #define ASM_OUTPUT_SOURCE_LINE(file, line) \
1395 { static int sym_lineno = 1; \
1396 fprintf (file, ".stabn 68,0,%d,LM%d\nLM%d:\n", \
1397 line, sym_lineno, sym_lineno); \
1398 sym_lineno += 1; }
1399
1400 /* This is how to output the definition of a user-level label named NAME,
1401 such as the label on a static function or variable NAME. */
1402
1403 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1404 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1405
1406 /* This is how to output a command to make the user-level label named NAME
1407 defined for reference from other files. */
1408
1409 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1410 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1411
1412 /* This is how to output a reference to a user-level label named NAME.
1413 `assemble_name' uses this. */
1414
1415 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1416 fprintf (FILE, "_%s", NAME)
1417
1418 /* This is how to output an internal numbered label where
1419 PREFIX is the class of label and NUM is the number within the class. */
1420
1421 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1422 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1423
1424 /* This is how to store into the string LABEL
1425 the symbol_ref name of an internal numbered label where
1426 PREFIX is the class of label and NUM is the number within the class.
1427 This is suitable for output with `assemble_name'. */
1428
1429 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1430 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1431
1432 /* This is how to output an assembler line defining a `double' constant. */
1433
1434 /* Assemblers (both gas 1.35 and as in 4.0.3)
1435 seem to treat -0.0 as if it were 0.0.
1436 They reject 99e9999, but accept inf. */
1437 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1438 { \
1439 if (REAL_VALUE_ISINF (VALUE)) \
1440 fprintf (FILE, "\t.double 0r%sinf\n", (VALUE) > 0 ? "" : "-"); \
1441 else if (REAL_VALUE_ISNAN (VALUE) \
1442 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1443 { \
1444 union { double d; long l[2];} t; \
1445 t.d = (VALUE); \
1446 fprintf (FILE, "\t.word 0x%lx\n\t.word 0x%lx\n", t.l[0], t.l[1]); \
1447 } \
1448 else \
1449 fprintf (FILE, "\t.double 0r%.17g\n", VALUE); \
1450 }
1451
1452 /* This is how to output an assembler line defining a `float' constant. */
1453
1454 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1455 { \
1456 if (REAL_VALUE_ISINF (VALUE)) \
1457 fprintf (FILE, "\t.single 0r%sinf\n", (VALUE) > 0 ? "" : "-"); \
1458 else if (REAL_VALUE_ISNAN (VALUE) \
1459 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1460 { \
1461 union { float f; long l;} t; \
1462 t.f = (VALUE); \
1463 fprintf (FILE, "\t.word 0x%lx\n", t.l); \
1464 } \
1465 else \
1466 fprintf (FILE, "\t.single 0r%.9g\n", VALUE); \
1467 }
1468
1469 /* This is how to output an assembler line defining an `int' constant. */
1470
1471 #define ASM_OUTPUT_INT(FILE,VALUE) \
1472 ( fprintf (FILE, "\t.word "), \
1473 output_addr_const (FILE, (VALUE)), \
1474 fprintf (FILE, "\n"))
1475
1476 /* This is how to output an assembler line defining a DImode constant. */
1477 #define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1478 output_double_int (FILE, VALUE)
1479
1480 /* Likewise for `char' and `short' constants. */
1481
1482 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1483 ( fprintf (FILE, "\t.half "), \
1484 output_addr_const (FILE, (VALUE)), \
1485 fprintf (FILE, "\n"))
1486
1487 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1488 ( fprintf (FILE, "\t.byte "), \
1489 output_addr_const (FILE, (VALUE)), \
1490 fprintf (FILE, "\n"))
1491
1492 /* This is how to output an assembler line for a numeric constant byte. */
1493
1494 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1495 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1496
1497 /* This is how to output an element of a case-vector that is absolute. */
1498
1499 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1500 do { \
1501 char label[30]; \
1502 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1503 fprintf (FILE, "\t.word\t"); \
1504 assemble_name (FILE, label); \
1505 fprintf (FILE, "\n"); \
1506 } while (0)
1507
1508 /* This is how to output an element of a case-vector that is relative.
1509 (SPARC uses such vectors only when generating PIC.) */
1510
1511 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1512 do { \
1513 char label[30]; \
1514 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1515 fprintf (FILE, "\t.word\t"); \
1516 assemble_name (FILE, label); \
1517 fprintf (FILE, "-1b\n"); \
1518 } while (0)
1519
1520 /* This is how to output an assembler line
1521 that says to advance the location counter
1522 to a multiple of 2**LOG bytes. */
1523
1524 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1525 if ((LOG) != 0) \
1526 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1527
1528 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1529 fprintf (FILE, "\t.skip %u\n", (SIZE))
1530
1531 /* This says how to output an assembler line
1532 to define a global common symbol. */
1533
1534 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1535 ( fputs ("\t.global ", (FILE)), \
1536 assemble_name ((FILE), (NAME)), \
1537 fputs ("\n\t.common ", (FILE)), \
1538 assemble_name ((FILE), (NAME)), \
1539 fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
1540
1541 /* This says how to output an assembler line
1542 to define a local common symbol. */
1543
1544 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1545 ( fputs ("\n\t.reserve ", (FILE)), \
1546 assemble_name ((FILE), (NAME)), \
1547 fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
1548
1549 /* Store in OUTPUT a string (made with alloca) containing
1550 an assembler-name for a local static variable named NAME.
1551 LABELNO is an integer which is different for each call. */
1552
1553 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1554 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1555 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1556
1557 /* Define the parentheses used to group arithmetic operations
1558 in assembler code. */
1559
1560 #define ASM_OPEN_PAREN "("
1561 #define ASM_CLOSE_PAREN ")"
1562
1563 /* Define results of standard character escape sequences. */
1564 #define TARGET_BELL 007
1565 #define TARGET_BS 010
1566 #define TARGET_TAB 011
1567 #define TARGET_NEWLINE 012
1568 #define TARGET_VT 013
1569 #define TARGET_FF 014
1570 #define TARGET_CR 015
1571
1572 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1573 ((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^')
1574
1575 /* Print operand X (an rtx) in assembler syntax to file FILE.
1576 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1577 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1578
1579 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1580
1581 /* Print a memory address as an operand to reference that memory location. */
1582
1583 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1584 { register rtx base, index = 0; \
1585 int offset = 0; \
1586 register rtx addr = ADDR; \
1587 if (GET_CODE (addr) == REG) \
1588 fputs (reg_names[REGNO (addr)], FILE); \
1589 else if (GET_CODE (addr) == PLUS) \
1590 { \
1591 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
1592 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
1593 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1594 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
1595 else \
1596 base = XEXP (addr, 0), index = XEXP (addr, 1); \
1597 fputs (reg_names[REGNO (base)], FILE); \
1598 if (index == 0) \
1599 fprintf (FILE, "%+d", offset); \
1600 else if (GET_CODE (index) == REG) \
1601 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
1602 else if (GET_CODE (index) == SYMBOL_REF) \
1603 fputc ('+', FILE), output_addr_const (FILE, index); \
1604 else abort (); \
1605 } \
1606 else if (GET_CODE (addr) == MINUS \
1607 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
1608 { \
1609 output_addr_const (FILE, XEXP (addr, 0)); \
1610 fputs ("-(", FILE); \
1611 output_addr_const (FILE, XEXP (addr, 1)); \
1612 fputs ("-.)", FILE); \
1613 } \
1614 else if (GET_CODE (addr) == LO_SUM) \
1615 { \
1616 output_operand (XEXP (addr, 0), 0); \
1617 fputs ("+%lo(", FILE); \
1618 output_address (XEXP (addr, 1)); \
1619 fputc (')', FILE); \
1620 } \
1621 else if (flag_pic && GET_CODE (addr) == CONST \
1622 && GET_CODE (XEXP (addr, 0)) == MINUS \
1623 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
1624 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
1625 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
1626 { \
1627 addr = XEXP (addr, 0); \
1628 output_addr_const (FILE, XEXP (addr, 0)); \
1629 /* Group the args of the second CONST in parenthesis. */ \
1630 fputs ("-(", FILE); \
1631 /* Skip past the second CONST--it does nothing for us. */\
1632 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
1633 /* Close the parenthesis. */ \
1634 fputc (')', FILE); \
1635 } \
1636 else \
1637 { \
1638 output_addr_const (FILE, addr); \
1639 } \
1640 }
1641
1642 /* Declare functions defined in sparc.c and used in templates. */
1643
1644 extern char *singlemove_string ();
1645 extern char *output_move_double ();
1646 extern char *output_fp_move_double ();
1647 extern char *output_block_move ();
1648 extern char *output_scc_insn ();
1649 extern char *output_cbranch ();
1650 extern char *output_return ();
1651 extern char *output_floatsisf2 ();
1652 extern char *output_floatsidf2 ();
1653
1654 /* Defined in flags.h, but insn-emit.c does not include flags.h. */
1655
1656 extern int flag_pic;
This page took 0.121155 seconds and 6 git commands to generate.