]> gcc.gnu.org Git - gcc.git/blob - gcc/config/sparc/sparc.h
re PR target/6542 (Internal compiler error when building libgcc for sparc-elf)
[gcc.git] / gcc / config / sparc / sparc.h
1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 1988, 1989, 1992, 1994, 1995, 1996, 1997, 1998, 1999
3 2000, 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com).
5 64 bit SPARC V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
6 at Cygnus Support.
7
8 This file is part of GNU CC.
9
10 GNU CC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14
15 GNU CC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GNU CC; see the file COPYING. If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 /* Note that some other tm.h files include this one and then override
26 whatever definitions are necessary. */
27
28 /* Specify this in a cover file to provide bi-architecture (32/64) support. */
29 /* #define SPARC_BI_ARCH */
30
31 /* Macro used later in this file to determine default architecture. */
32 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
33
34 /* TARGET_ARCH{32,64} are the main macros to decide which of the two
35 architectures to compile for. We allow targets to choose compile time or
36 runtime selection. */
37 #ifdef IN_LIBGCC2
38 #if defined(__sparcv9) || defined(__arch64__)
39 #define TARGET_ARCH32 0
40 #else
41 #define TARGET_ARCH32 1
42 #endif /* sparc64 */
43 #else
44 #ifdef SPARC_BI_ARCH
45 #define TARGET_ARCH32 (! TARGET_64BIT)
46 #else
47 #define TARGET_ARCH32 (DEFAULT_ARCH32_P)
48 #endif /* SPARC_BI_ARCH */
49 #endif /* IN_LIBGCC2 */
50 #define TARGET_ARCH64 (! TARGET_ARCH32)
51
52 /* Code model selection.
53 -mcmodel is used to select the v9 code model.
54 Different code models aren't supported for v7/8 code.
55
56 TARGET_CM_32: 32 bit address space, top 32 bits = 0,
57 pointers are 32 bits. Note that this isn't intended
58 to imply a v7/8 abi.
59
60 TARGET_CM_MEDLOW: 32 bit address space, top 32 bits = 0,
61 avoid generating %uhi and %ulo terms,
62 pointers are 64 bits.
63
64 TARGET_CM_MEDMID: 64 bit address space.
65 The executable must be in the low 16 TB of memory.
66 This corresponds to the low 44 bits, and the %[hml]44
67 relocs are used. The text segment has a maximum size
68 of 31 bits.
69
70 TARGET_CM_MEDANY: 64 bit address space.
71 The text and data segments have a maximum size of 31
72 bits and may be located anywhere. The maximum offset
73 from any instruction to the label _GLOBAL_OFFSET_TABLE_
74 is 31 bits.
75
76 TARGET_CM_EMBMEDANY: 64 bit address space.
77 The text and data segments have a maximum size of 31 bits
78 and may be located anywhere. Register %g4 contains
79 the start address of the data segment.
80 */
81
82 enum cmodel {
83 CM_32,
84 CM_MEDLOW,
85 CM_MEDMID,
86 CM_MEDANY,
87 CM_EMBMEDANY
88 };
89
90 /* Value of -mcmodel specified by user. */
91 extern const char *sparc_cmodel_string;
92 /* One of CM_FOO. */
93 extern enum cmodel sparc_cmodel;
94
95 /* V9 code model selection. */
96 #define TARGET_CM_MEDLOW (sparc_cmodel == CM_MEDLOW)
97 #define TARGET_CM_MEDMID (sparc_cmodel == CM_MEDMID)
98 #define TARGET_CM_MEDANY (sparc_cmodel == CM_MEDANY)
99 #define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
100
101 #define SPARC_DEFAULT_CMODEL CM_32
102
103 /* This is call-clobbered in the normal ABI, but is reserved in the
104 home grown (aka upward compatible) embedded ABI. */
105 #define EMBMEDANY_BASE_REG "%g4"
106 \f
107 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
108 and specified by the user via --with-cpu=foo.
109 This specifies the cpu implementation, not the architecture size. */
110 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
111 capable cpu's. */
112 #define TARGET_CPU_sparc 0
113 #define TARGET_CPU_v7 0 /* alias for previous */
114 #define TARGET_CPU_sparclet 1
115 #define TARGET_CPU_sparclite 2
116 #define TARGET_CPU_v8 3 /* generic v8 implementation */
117 #define TARGET_CPU_supersparc 4
118 #define TARGET_CPU_hypersparc 5
119 #define TARGET_CPU_sparc86x 6
120 #define TARGET_CPU_sparclite86x 6
121 #define TARGET_CPU_v9 7 /* generic v9 implementation */
122 #define TARGET_CPU_sparcv9 7 /* alias */
123 #define TARGET_CPU_sparc64 7 /* alias */
124 #define TARGET_CPU_ultrasparc 8
125 #define TARGET_CPU_ultrasparc3 9
126
127 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
128 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
129 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
130
131 #define CPP_CPU32_DEFAULT_SPEC ""
132 #define ASM_CPU32_DEFAULT_SPEC ""
133
134 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9
135 /* ??? What does Sun's CC pass? */
136 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
137 /* ??? It's not clear how other assemblers will handle this, so by default
138 use GAS. Sun's Solaris assembler recognizes -xarch=v8plus, but this case
139 is handled in sol2.h. */
140 #define ASM_CPU64_DEFAULT_SPEC "-Av9"
141 #endif
142 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
143 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
144 #define ASM_CPU64_DEFAULT_SPEC "-Av9a"
145 #endif
146 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
147 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
148 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
149 #endif
150
151 #else
152
153 #define CPP_CPU64_DEFAULT_SPEC ""
154 #define ASM_CPU64_DEFAULT_SPEC ""
155
156 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
157 || TARGET_CPU_DEFAULT == TARGET_CPU_v8
158 #define CPP_CPU32_DEFAULT_SPEC ""
159 #define ASM_CPU32_DEFAULT_SPEC ""
160 #endif
161
162 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
163 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
164 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
165 #endif
166
167 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
168 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
169 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
170 #endif
171
172 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
173 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
174 #define ASM_CPU32_DEFAULT_SPEC ""
175 #endif
176
177 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
178 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
179 #define ASM_CPU32_DEFAULT_SPEC ""
180 #endif
181
182 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
183 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
184 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
185 #endif
186
187 #endif
188
189 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
190 Unrecognized value in TARGET_CPU_DEFAULT.
191 #endif
192
193 #ifdef SPARC_BI_ARCH
194
195 #define CPP_CPU_DEFAULT_SPEC \
196 (DEFAULT_ARCH32_P ? "\
197 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \
198 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
199 " : "\
200 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \
201 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
202 ")
203 #define ASM_CPU_DEFAULT_SPEC \
204 (DEFAULT_ARCH32_P ? "\
205 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \
206 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
207 " : "\
208 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \
209 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
210 ")
211
212 #else /* !SPARC_BI_ARCH */
213
214 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
215 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
216
217 #endif /* !SPARC_BI_ARCH */
218
219 /* Define macros to distinguish architectures. */
220
221 /* Common CPP definitions used by CPP_SPEC amongst the various targets
222 for handling -mcpu=xxx switches. */
223 #define CPP_CPU_SPEC "\
224 %{msoft-float:-D_SOFT_FLOAT} \
225 %{mcypress:} \
226 %{msparclite:-D__sparclite__} \
227 %{mf930:-D__sparclite__} %{mf934:-D__sparclite__} \
228 %{mv8:-D__sparc_v8__} \
229 %{msupersparc:-D__supersparc__ -D__sparc_v8__} \
230 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
231 %{mcpu=sparclite:-D__sparclite__} \
232 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
233 %{mcpu=v8:-D__sparc_v8__} \
234 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
235 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
236 %{mcpu=sparclite86x:-D__sparclite86x__} \
237 %{mcpu=v9:-D__sparc_v9__} \
238 %{mcpu=ultrasparc:-D__sparc_v9__} \
239 %{mcpu=ultrasparc3:-D__sparc_v9__} \
240 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(cpp_cpu_default)}}}}}}} \
241 "
242
243 /* ??? The GCC_NEW_VARARGS macro is now obsolete, because gcc always uses
244 the right varags.h file when bootstrapping. */
245 /* ??? It's not clear what value we want to use for -Acpu/machine for
246 sparc64 in 32 bit environments, so for now we only use `sparc64' in
247 64 bit environments. */
248
249 #ifdef SPARC_BI_ARCH
250
251 #define CPP_ARCH32_SPEC "-D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int \
252 -D__GCC_NEW_VARARGS__ -Acpu=sparc -Amachine=sparc"
253 #define CPP_ARCH64_SPEC "-D__SIZE_TYPE__=long\\ unsigned\\ int -D__PTRDIFF_TYPE__=long\\ int \
254 -D__arch64__ -Acpu=sparc64 -Amachine=sparc64"
255
256 #else
257
258 #define CPP_ARCH32_SPEC "-D__GCC_NEW_VARARGS__ -Acpu=sparc -Amachine=sparc"
259 #define CPP_ARCH64_SPEC "-D__arch64__ -Acpu=sparc64 -Amachine=sparc64"
260
261 #endif
262
263 #define CPP_ARCH_DEFAULT_SPEC \
264 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
265
266 #define CPP_ARCH_SPEC "\
267 %{m32:%(cpp_arch32)} \
268 %{m64:%(cpp_arch64)} \
269 %{!m32:%{!m64:%(cpp_arch_default)}} \
270 "
271
272 /* Macros to distinguish endianness. */
273 #define CPP_ENDIAN_SPEC "\
274 %{mlittle-endian:-D__LITTLE_ENDIAN__} \
275 %{mlittle-endian-data:-D__LITTLE_ENDIAN_DATA__}"
276
277 /* Macros to distinguish the particular subtarget. */
278 #define CPP_SUBTARGET_SPEC ""
279
280 #define CPP_SPEC "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_subtarget)"
281
282 /* Prevent error on `-sun4' and `-target sun4' options. */
283 /* This used to translate -dalign to -malign, but that is no good
284 because it can't turn off the usual meaning of making debugging dumps. */
285 /* Translate old style -m<cpu> into new style -mcpu=<cpu>.
286 ??? Delete support for -m<cpu> for 2.9. */
287
288 #define CC1_SPEC "\
289 %{sun4:} %{target:} \
290 %{mcypress:-mcpu=cypress} \
291 %{msparclite:-mcpu=sparclite} %{mf930:-mcpu=f930} %{mf934:-mcpu=f934} \
292 %{mv8:-mcpu=v8} %{msupersparc:-mcpu=supersparc} \
293 "
294
295 /* Override in target specific files. */
296 #define ASM_CPU_SPEC "\
297 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
298 %{msparclite:-Asparclite} \
299 %{mf930:-Asparclite} %{mf934:-Asparclite} \
300 %{mcpu=sparclite:-Asparclite} \
301 %{mcpu=sparclite86x:-Asparclite} \
302 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
303 %{mv8plus:-Av8plus} \
304 %{mcpu=v9:-Av9} \
305 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
306 %{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
307 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(asm_cpu_default)}}}}}}} \
308 "
309
310 /* Word size selection, among other things.
311 This is what GAS uses. Add %(asm_arch) to ASM_SPEC to enable. */
312
313 #define ASM_ARCH32_SPEC "-32"
314 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
315 #define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
316 #else
317 #define ASM_ARCH64_SPEC "-64"
318 #endif
319 #define ASM_ARCH_DEFAULT_SPEC \
320 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
321
322 #define ASM_ARCH_SPEC "\
323 %{m32:%(asm_arch32)} \
324 %{m64:%(asm_arch64)} \
325 %{!m32:%{!m64:%(asm_arch_default)}} \
326 "
327
328 #ifdef HAVE_AS_RELAX_OPTION
329 #define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
330 #else
331 #define ASM_RELAX_SPEC ""
332 #endif
333
334 /* Special flags to the Sun-4 assembler when using pipe for input. */
335
336 #define ASM_SPEC "\
337 %| %{R} %{!pg:%{!p:%{fpic:-k} %{fPIC:-k}}} %{keep-local-as-symbols:-L} \
338 %(asm_cpu) %(asm_relax)"
339
340 /* This macro defines names of additional specifications to put in the specs
341 that can be used in various specifications like CC1_SPEC. Its definition
342 is an initializer with a subgrouping for each command option.
343
344 Each subgrouping contains a string constant, that defines the
345 specification name, and a string constant that used by the GNU CC driver
346 program.
347
348 Do not define this macro if it does not need to do anything. */
349
350 #define EXTRA_SPECS \
351 { "cpp_cpu", CPP_CPU_SPEC }, \
352 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
353 { "cpp_arch32", CPP_ARCH32_SPEC }, \
354 { "cpp_arch64", CPP_ARCH64_SPEC }, \
355 { "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\
356 { "cpp_arch", CPP_ARCH_SPEC }, \
357 { "cpp_endian", CPP_ENDIAN_SPEC }, \
358 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
359 { "asm_cpu", ASM_CPU_SPEC }, \
360 { "asm_cpu_default", ASM_CPU_DEFAULT_SPEC }, \
361 { "asm_arch32", ASM_ARCH32_SPEC }, \
362 { "asm_arch64", ASM_ARCH64_SPEC }, \
363 { "asm_relax", ASM_RELAX_SPEC }, \
364 { "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\
365 { "asm_arch", ASM_ARCH_SPEC }, \
366 SUBTARGET_EXTRA_SPECS
367
368 #define SUBTARGET_EXTRA_SPECS
369
370 /* Because libgcc can generate references back to libc (via .umul etc.) we have
371 to list libc again after the second libgcc. */
372 #define LINK_GCC_C_SEQUENCE_SPEC "%G %L %G %L"
373
374 \f
375 #ifdef SPARC_BI_ARCH
376 #define NO_BUILTIN_PTRDIFF_TYPE
377 #define NO_BUILTIN_SIZE_TYPE
378 #endif
379 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
380 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
381
382 /* ??? This should be 32 bits for v9 but what can we do? */
383 #define WCHAR_TYPE "short unsigned int"
384 #define WCHAR_TYPE_SIZE 16
385
386 /* Show we can debug even without a frame pointer. */
387 #define CAN_DEBUG_WITHOUT_FP
388
389 #define OVERRIDE_OPTIONS sparc_override_options ()
390
391 /* Generate DBX debugging information. */
392
393 #define DBX_DEBUGGING_INFO
394 \f
395 /* Run-time compilation parameters selecting different hardware subsets. */
396
397 extern int target_flags;
398
399 /* Nonzero if we should generate code to use the fpu. */
400 #define MASK_FPU 1
401 #define TARGET_FPU (target_flags & MASK_FPU)
402
403 /* Nonzero if we should assume that double pointers might be unaligned.
404 This can happen when linking gcc compiled code with other compilers,
405 because the ABI only guarantees 4 byte alignment. */
406 #define MASK_UNALIGNED_DOUBLES 4
407 #define TARGET_UNALIGNED_DOUBLES (target_flags & MASK_UNALIGNED_DOUBLES)
408
409 /* Nonzero means that we should generate code for a v8 sparc. */
410 #define MASK_V8 0x8
411 #define TARGET_V8 (target_flags & MASK_V8)
412
413 /* Nonzero means that we should generate code for a sparclite.
414 This enables the sparclite specific instructions, but does not affect
415 whether FPU instructions are emitted. */
416 #define MASK_SPARCLITE 0x10
417 #define TARGET_SPARCLITE (target_flags & MASK_SPARCLITE)
418
419 /* Nonzero if we're compiling for the sparclet. */
420 #define MASK_SPARCLET 0x20
421 #define TARGET_SPARCLET (target_flags & MASK_SPARCLET)
422
423 /* Nonzero if we're compiling for v9 sparc.
424 Note that v9's can run in 32 bit mode so this doesn't necessarily mean
425 the word size is 64. */
426 #define MASK_V9 0x40
427 #define TARGET_V9 (target_flags & MASK_V9)
428
429 /* Non-zero to generate code that uses the instructions deprecated in
430 the v9 architecture. This option only applies to v9 systems. */
431 /* ??? This isn't user selectable yet. It's used to enable such insns
432 on 32 bit v9 systems and for the moment they're permanently disabled
433 on 64 bit v9 systems. */
434 #define MASK_DEPRECATED_V8_INSNS 0x80
435 #define TARGET_DEPRECATED_V8_INSNS (target_flags & MASK_DEPRECATED_V8_INSNS)
436
437 /* Mask of all CPU selection flags. */
438 #define MASK_ISA \
439 (MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
440
441 /* Non-zero means don't pass `-assert pure-text' to the linker. */
442 #define MASK_IMPURE_TEXT 0x100
443 #define TARGET_IMPURE_TEXT (target_flags & MASK_IMPURE_TEXT)
444
445 /* Nonzero means that we should generate code using a flat register window
446 model, i.e. no save/restore instructions are generated, which is
447 compatible with normal sparc code.
448 The frame pointer is %i7 instead of %fp. */
449 #define MASK_FLAT 0x200
450 #define TARGET_FLAT (target_flags & MASK_FLAT)
451
452 /* Nonzero means use the registers that the Sparc ABI reserves for
453 application software. This must be the default to coincide with the
454 setting in FIXED_REGISTERS. */
455 #define MASK_APP_REGS 0x400
456 #define TARGET_APP_REGS (target_flags & MASK_APP_REGS)
457
458 /* Option to select how quad word floating point is implemented.
459 When TARGET_HARD_QUAD is true, we use the hardware quad instructions.
460 Otherwise, we use the SPARC ABI quad library functions. */
461 #define MASK_HARD_QUAD 0x800
462 #define TARGET_HARD_QUAD (target_flags & MASK_HARD_QUAD)
463
464 /* Non-zero on little-endian machines. */
465 /* ??? Little endian support currently only exists for sparclet-aout and
466 sparc64-elf configurations. May eventually want to expand the support
467 to all targets, but for now it's kept local to only those two. */
468 #define MASK_LITTLE_ENDIAN 0x1000
469 #define TARGET_LITTLE_ENDIAN (target_flags & MASK_LITTLE_ENDIAN)
470
471 /* 0x2000, 0x4000 are unused */
472
473 /* Nonzero if pointers are 64 bits. */
474 #define MASK_PTR64 0x8000
475 #define TARGET_PTR64 (target_flags & MASK_PTR64)
476
477 /* Nonzero if generating code to run in a 64 bit environment.
478 This is intended to only be used by TARGET_ARCH{32,64} as they are the
479 mechanism used to control compile time or run time selection. */
480 #define MASK_64BIT 0x10000
481 #define TARGET_64BIT (target_flags & MASK_64BIT)
482
483 /* 0x20000,0x40000 unused */
484
485 /* Non-zero means use a stack bias of 2047. Stack offsets are obtained by
486 adding 2047 to %sp. This option is for v9 only and is the default. */
487 #define MASK_STACK_BIAS 0x80000
488 #define TARGET_STACK_BIAS (target_flags & MASK_STACK_BIAS)
489
490 /* 0x100000,0x200000 unused */
491
492 /* Non-zero means -m{,no-}fpu was passed on the command line. */
493 #define MASK_FPU_SET 0x400000
494 #define TARGET_FPU_SET (target_flags & MASK_FPU_SET)
495
496 /* Use the UltraSPARC Visual Instruction Set extensions. */
497 #define MASK_VIS 0x1000000
498 #define TARGET_VIS (target_flags & MASK_VIS)
499
500 /* Compile for Solaris V8+. 32 bit Solaris preserves the high bits of
501 the current out and global registers and Linux 2.2+ as well. */
502 #define MASK_V8PLUS 0x2000000
503 #define TARGET_V8PLUS (target_flags & MASK_V8PLUS)
504
505 /* Force a the fastest alignment on structures to take advantage of
506 faster copies. */
507 #define MASK_FASTER_STRUCTS 0x4000000
508 #define TARGET_FASTER_STRUCTS (target_flags & MASK_FASTER_STRUCTS)
509
510 /* Use IEEE quad long double. */
511 #define MASK_LONG_DOUBLE_128 0x8000000
512 #define TARGET_LONG_DOUBLE_128 (target_flags & MASK_LONG_DOUBLE_128)
513
514 /* TARGET_HARD_MUL: Use hardware multiply instructions but not %y.
515 TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y
516 to get high 32 bits. False in V8+ or V9 because multiply stores
517 a 64 bit result in a register. */
518
519 #define TARGET_HARD_MUL32 \
520 ((TARGET_V8 || TARGET_SPARCLITE \
521 || TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS) \
522 && ! TARGET_V8PLUS && TARGET_ARCH32)
523
524 #define TARGET_HARD_MUL \
525 (TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET \
526 || TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS)
527
528
529 /* Macro to define tables used to set the flags.
530 This is a list in braces of pairs in braces,
531 each pair being { "NAME", VALUE }
532 where VALUE is the bits to set or minus the bits to clear.
533 An empty string NAME is used to identify the default VALUE. */
534
535 #define TARGET_SWITCHES \
536 { {"fpu", MASK_FPU | MASK_FPU_SET, \
537 N_("Use hardware fp") }, \
538 {"no-fpu", -MASK_FPU, \
539 N_("Do not use hardware fp") }, \
540 {"no-fpu", MASK_FPU_SET, NULL, }, \
541 {"hard-float", MASK_FPU | MASK_FPU_SET, \
542 N_("Use hardware fp") }, \
543 {"soft-float", -MASK_FPU, \
544 N_("Do not use hardware fp") }, \
545 {"soft-float", MASK_FPU_SET, NULL }, \
546 {"unaligned-doubles", MASK_UNALIGNED_DOUBLES, \
547 N_("Assume possible double misalignment") }, \
548 {"no-unaligned-doubles", -MASK_UNALIGNED_DOUBLES, \
549 N_("Assume all doubles are aligned") }, \
550 {"impure-text", MASK_IMPURE_TEXT, \
551 N_("Pass -assert pure-text to linker") }, \
552 {"no-impure-text", -MASK_IMPURE_TEXT, \
553 N_("Do not pass -assert pure-text to linker") }, \
554 {"flat", MASK_FLAT, \
555 N_("Use flat register window model") }, \
556 {"no-flat", -MASK_FLAT, \
557 N_("Do not use flat register window model") }, \
558 {"app-regs", MASK_APP_REGS, \
559 N_("Use ABI reserved registers") }, \
560 {"no-app-regs", -MASK_APP_REGS, \
561 N_("Do not use ABI reserved registers") }, \
562 {"hard-quad-float", MASK_HARD_QUAD, \
563 N_("Use hardware quad fp instructions") }, \
564 {"soft-quad-float", -MASK_HARD_QUAD, \
565 N_("Do not use hardware quad fp instructions") }, \
566 {"v8plus", MASK_V8PLUS, \
567 N_("Compile for v8plus ABI") }, \
568 {"no-v8plus", -MASK_V8PLUS, \
569 N_("Do not compile for v8plus ABI") }, \
570 {"vis", MASK_VIS, \
571 N_("Utilize Visual Instruction Set") }, \
572 {"no-vis", -MASK_VIS, \
573 N_("Do not utilize Visual Instruction Set") }, \
574 /* ??? These are deprecated, coerced to -mcpu=. Delete in 2.9. */ \
575 {"cypress", 0, \
576 N_("Optimize for Cypress processors") }, \
577 {"sparclite", 0, \
578 N_("Optimize for SparcLite processors") }, \
579 {"f930", 0, \
580 N_("Optimize for F930 processors") }, \
581 {"f934", 0, \
582 N_("Optimize for F934 processors") }, \
583 {"v8", 0, \
584 N_("Use V8 Sparc ISA") }, \
585 {"supersparc", 0, \
586 N_("Optimize for SuperSparc processors") }, \
587 /* End of deprecated options. */ \
588 {"ptr64", MASK_PTR64, \
589 N_("Pointers are 64-bit") }, \
590 {"ptr32", -MASK_PTR64, \
591 N_("Pointers are 32-bit") }, \
592 {"32", -MASK_64BIT, \
593 N_("Use 32-bit ABI") }, \
594 {"64", MASK_64BIT, \
595 N_("Use 64-bit ABI") }, \
596 {"stack-bias", MASK_STACK_BIAS, \
597 N_("Use stack bias") }, \
598 {"no-stack-bias", -MASK_STACK_BIAS, \
599 N_("Do not use stack bias") }, \
600 {"faster-structs", MASK_FASTER_STRUCTS, \
601 N_("Use structs on stronger alignment for double-word copies") }, \
602 {"no-faster-structs", -MASK_FASTER_STRUCTS, \
603 N_("Do not use structs on stronger alignment for double-word copies") }, \
604 {"relax", 0, \
605 N_("Optimize tail call instructions in assembler and linker") }, \
606 {"no-relax", 0, \
607 N_("Do not optimize tail call instructions in assembler or linker") }, \
608 SUBTARGET_SWITCHES \
609 { "", TARGET_DEFAULT, ""}}
610
611 /* MASK_APP_REGS must always be the default because that's what
612 FIXED_REGISTERS is set to and -ffixed- is processed before
613 CONDITIONAL_REGISTER_USAGE is called (where we process -mno-app-regs). */
614 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
615
616 /* This is meant to be redefined in target specific files. */
617 #define SUBTARGET_SWITCHES
618
619 /* Processor type.
620 These must match the values for the cpu attribute in sparc.md. */
621 enum processor_type {
622 PROCESSOR_V7,
623 PROCESSOR_CYPRESS,
624 PROCESSOR_V8,
625 PROCESSOR_SUPERSPARC,
626 PROCESSOR_SPARCLITE,
627 PROCESSOR_F930,
628 PROCESSOR_F934,
629 PROCESSOR_HYPERSPARC,
630 PROCESSOR_SPARCLITE86X,
631 PROCESSOR_SPARCLET,
632 PROCESSOR_TSC701,
633 PROCESSOR_V9,
634 PROCESSOR_ULTRASPARC,
635 PROCESSOR_ULTRASPARC3
636 };
637
638 /* This is set from -m{cpu,tune}=xxx. */
639 extern enum processor_type sparc_cpu;
640
641 /* Recast the cpu class to be the cpu attribute.
642 Every file includes us, but not every file includes insn-attr.h. */
643 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
644
645 #define TARGET_OPTIONS \
646 { \
647 { "cpu=", &sparc_select[1].string, \
648 N_("Use features of and schedule code for given CPU") }, \
649 { "tune=", &sparc_select[2].string, \
650 N_("Schedule code for given CPU") }, \
651 { "cmodel=", &sparc_cmodel_string, \
652 N_("Use given Sparc code model") }, \
653 SUBTARGET_OPTIONS \
654 }
655
656 /* This is meant to be redefined in target specific files. */
657 #define SUBTARGET_OPTIONS
658
659 /* sparc_select[0] is reserved for the default cpu. */
660 struct sparc_cpu_select
661 {
662 const char *string;
663 const char *const name;
664 const int set_tune_p;
665 const int set_arch_p;
666 };
667
668 extern struct sparc_cpu_select sparc_select[];
669 \f
670 /* target machine storage layout */
671
672 /* Define this if most significant bit is lowest numbered
673 in instructions that operate on numbered bit-fields. */
674 #define BITS_BIG_ENDIAN 1
675
676 /* Define this if most significant byte of a word is the lowest numbered. */
677 #define BYTES_BIG_ENDIAN 1
678
679 /* Define this if most significant word of a multiword number is the lowest
680 numbered. */
681 #define WORDS_BIG_ENDIAN 1
682
683 /* Define this to set the endianness to use in libgcc2.c, which can
684 not depend on target_flags. */
685 #if defined (__LITTLE_ENDIAN__) || defined(__LITTLE_ENDIAN_DATA__)
686 #define LIBGCC2_WORDS_BIG_ENDIAN 0
687 #else
688 #define LIBGCC2_WORDS_BIG_ENDIAN 1
689 #endif
690
691 #define MAX_BITS_PER_WORD 64
692
693 /* Width of a word, in units (bytes). */
694 #define UNITS_PER_WORD (TARGET_ARCH64 ? 8 : 4)
695 #ifdef IN_LIBGCC2
696 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
697 #else
698 #define MIN_UNITS_PER_WORD 4
699 #endif
700
701 /* Now define the sizes of the C data types. */
702
703 #define SHORT_TYPE_SIZE 16
704 #define INT_TYPE_SIZE 32
705 #define LONG_TYPE_SIZE (TARGET_ARCH64 ? 64 : 32)
706 #define LONG_LONG_TYPE_SIZE 64
707 #define FLOAT_TYPE_SIZE 32
708 #define DOUBLE_TYPE_SIZE 64
709
710 #ifdef SPARC_BI_ARCH
711 #define MAX_LONG_TYPE_SIZE 64
712 #endif
713
714 #if 0
715 /* ??? This does not work in SunOS 4.x, so it is not enabled here.
716 Instead, it is enabled in sol2.h, because it does work under Solaris. */
717 /* Define for support of TFmode long double.
718 Sparc ABI says that long double is 4 words. */
719 #define LONG_DOUBLE_TYPE_SIZE 128
720 #endif
721
722 /* Width in bits of a pointer.
723 See also the macro `Pmode' defined below. */
724 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
725
726 /* If we have to extend pointers (only when TARGET_ARCH64 and not
727 TARGET_PTR64), we want to do it unsigned. This macro does nothing
728 if ptr_mode and Pmode are the same. */
729 #define POINTERS_EXTEND_UNSIGNED 1
730
731 /* A macro to update MODE and UNSIGNEDP when an object whose type
732 is TYPE and which has the specified mode and signedness is to be
733 stored in a register. This macro is only called when TYPE is a
734 scalar type. */
735 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
736 if (TARGET_ARCH64 \
737 && GET_MODE_CLASS (MODE) == MODE_INT \
738 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
739 (MODE) = DImode;
740
741 /* Define this macro if the promotion described by PROMOTE_MODE
742 should also be done for outgoing function arguments. */
743 /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
744 for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test
745 for this value. */
746 #define PROMOTE_FUNCTION_ARGS
747
748 /* Define this macro if the promotion described by PROMOTE_MODE
749 should also be done for the return value of functions.
750 If this macro is defined, FUNCTION_VALUE must perform the same
751 promotions done by PROMOTE_MODE. */
752 /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
753 for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test
754 for this value. */
755 #define PROMOTE_FUNCTION_RETURN
756
757 /* Define this macro if the promotion described by PROMOTE_MODE
758 should _only_ be performed for outgoing function arguments or
759 function return values, as specified by PROMOTE_FUNCTION_ARGS
760 and PROMOTE_FUNCTION_RETURN, respectively. */
761 /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
762 for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test
763 for this value. For TARGET_ARCH64 we need it, as we don't have instructions
764 for arithmetic operations which do zero/sign extension at the same time,
765 so without this we end up with a srl/sra after every assignment to an
766 user variable, which means very very bad code. */
767 #define PROMOTE_FOR_CALL_ONLY
768
769 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
770 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
771
772 /* Boundary (in *bits*) on which stack pointer should be aligned. */
773 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
774
775 /* ALIGN FRAMES on double word boundaries */
776
777 #define SPARC_STACK_ALIGN(LOC) \
778 (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
779
780 /* Allocation boundary (in *bits*) for the code of a function. */
781 #define FUNCTION_BOUNDARY 32
782
783 /* Alignment of field after `int : 0' in a structure. */
784 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
785
786 /* Every structure's size must be a multiple of this. */
787 #define STRUCTURE_SIZE_BOUNDARY 8
788
789 /* A bitfield declared as `int' forces `int' alignment for the struct. */
790 #define PCC_BITFIELD_TYPE_MATTERS 1
791
792 /* No data type wants to be aligned rounder than this. */
793 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
794
795 /* The best alignment to use in cases where we have a choice. */
796 #define FASTEST_ALIGNMENT 64
797
798 /* Define this macro as an expression for the alignment of a structure
799 (given by STRUCT as a tree node) if the alignment computed in the
800 usual way is COMPUTED and the alignment explicitly specified was
801 SPECIFIED.
802
803 The default is to use SPECIFIED if it is larger; otherwise, use
804 the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
805 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
806 (TARGET_FASTER_STRUCTS ? \
807 ((TREE_CODE (STRUCT) == RECORD_TYPE \
808 || TREE_CODE (STRUCT) == UNION_TYPE \
809 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
810 && TYPE_FIELDS (STRUCT) != 0 \
811 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
812 : MAX ((COMPUTED), (SPECIFIED))) \
813 : MAX ((COMPUTED), (SPECIFIED)))
814
815 /* Make strings word-aligned so strcpy from constants will be faster. */
816 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
817 ((TREE_CODE (EXP) == STRING_CST \
818 && (ALIGN) < FASTEST_ALIGNMENT) \
819 ? FASTEST_ALIGNMENT : (ALIGN))
820
821 /* Make arrays of chars word-aligned for the same reasons. */
822 #define DATA_ALIGNMENT(TYPE, ALIGN) \
823 (TREE_CODE (TYPE) == ARRAY_TYPE \
824 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
825 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
826
827 /* Set this nonzero if move instructions will actually fail to work
828 when given unaligned data. */
829 #define STRICT_ALIGNMENT 1
830
831 /* Things that must be doubleword aligned cannot go in the text section,
832 because the linker fails to align the text section enough!
833 Put them in the data section. This macro is only used in this file. */
834 #define MAX_TEXT_ALIGN 32
835
836 /* This forces all variables and constants to the data section when PIC.
837 This is because the SunOS 4 shared library scheme thinks everything in
838 text is a function, and patches the address to point to a loader stub. */
839 /* This is defined to zero for every system which doesn't use the a.out object
840 file format. */
841 #ifndef SUNOS4_SHARED_LIBRARIES
842 #define SUNOS4_SHARED_LIBRARIES 0
843 #endif
844
845
846 /* Use text section for a constant
847 unless we need more alignment than that offers. */
848 /* This is defined differently for v9 in a cover file. */
849 #define SELECT_RTX_SECTION(MODE, X, ALIGN) \
850 { \
851 if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
852 && ! (flag_pic && (symbolic_operand ((X), (MODE)) || SUNOS4_SHARED_LIBRARIES))) \
853 text_section (); \
854 else \
855 data_section (); \
856 }
857 \f
858 /* Standard register usage. */
859
860 /* Number of actual hardware registers.
861 The hardware registers are assigned numbers for the compiler
862 from 0 to just below FIRST_PSEUDO_REGISTER.
863 All registers that the compiler knows about must be given numbers,
864 even those that are not normally considered general registers.
865
866 SPARC has 32 integer registers and 32 floating point registers.
867 64 bit SPARC has 32 additional fp regs, but the odd numbered ones are not
868 accessible. We still account for them to simplify register computations
869 (eg: in CLASS_MAX_NREGS). There are also 4 fp condition code registers, so
870 32+32+32+4 == 100.
871 Register 100 is used as the integer condition code register.
872 Register 101 is used as the soft frame pointer register. */
873
874 #define FIRST_PSEUDO_REGISTER 102
875
876 #define SPARC_FIRST_FP_REG 32
877 /* Additional V9 fp regs. */
878 #define SPARC_FIRST_V9_FP_REG 64
879 #define SPARC_LAST_V9_FP_REG 95
880 /* V9 %fcc[0123]. V8 uses (figuratively) %fcc0. */
881 #define SPARC_FIRST_V9_FCC_REG 96
882 #define SPARC_LAST_V9_FCC_REG 99
883 /* V8 fcc reg. */
884 #define SPARC_FCC_REG 96
885 /* Integer CC reg. We don't distinguish %icc from %xcc. */
886 #define SPARC_ICC_REG 100
887
888 /* Nonzero if REGNO is an fp reg. */
889 #define SPARC_FP_REG_P(REGNO) \
890 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
891
892 /* Argument passing regs. */
893 #define SPARC_OUTGOING_INT_ARG_FIRST 8
894 #define SPARC_INCOMING_INT_ARG_FIRST (TARGET_FLAT ? 8 : 24)
895 #define SPARC_FP_ARG_FIRST 32
896
897 /* 1 for registers that have pervasive standard uses
898 and are not available for the register allocator.
899
900 On non-v9 systems:
901 g1 is free to use as temporary.
902 g2-g4 are reserved for applications. Gcc normally uses them as
903 temporaries, but this can be disabled via the -mno-app-regs option.
904 g5 through g7 are reserved for the operating system.
905
906 On v9 systems:
907 g1,g5 are free to use as temporaries, and are free to use between calls
908 if the call is to an external function via the PLT.
909 g4 is free to use as a temporary in the non-embedded case.
910 g4 is reserved in the embedded case.
911 g2-g3 are reserved for applications. Gcc normally uses them as
912 temporaries, but this can be disabled via the -mno-app-regs option.
913 g6-g7 are reserved for the operating system (or application in
914 embedded case).
915 ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
916 currently be a fixed register until this pattern is rewritten.
917 Register 1 is also used when restoring call-preserved registers in large
918 stack frames.
919
920 Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
921 CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
922 */
923
924 #define FIXED_REGISTERS \
925 {1, 0, 2, 2, 2, 2, 1, 1, \
926 0, 0, 0, 0, 0, 0, 1, 0, \
927 0, 0, 0, 0, 0, 0, 0, 0, \
928 0, 0, 0, 0, 0, 0, 1, 1, \
929 \
930 0, 0, 0, 0, 0, 0, 0, 0, \
931 0, 0, 0, 0, 0, 0, 0, 0, \
932 0, 0, 0, 0, 0, 0, 0, 0, \
933 0, 0, 0, 0, 0, 0, 0, 0, \
934 \
935 0, 0, 0, 0, 0, 0, 0, 0, \
936 0, 0, 0, 0, 0, 0, 0, 0, \
937 0, 0, 0, 0, 0, 0, 0, 0, \
938 0, 0, 0, 0, 0, 0, 0, 0, \
939 \
940 0, 0, 0, 0, 0, 1}
941
942 /* 1 for registers not available across function calls.
943 These must include the FIXED_REGISTERS and also any
944 registers that can be used without being saved.
945 The latter must include the registers where values are returned
946 and the register where structure-value addresses are passed.
947 Aside from that, you can include as many other registers as you like. */
948
949 #define CALL_USED_REGISTERS \
950 {1, 1, 1, 1, 1, 1, 1, 1, \
951 1, 1, 1, 1, 1, 1, 1, 1, \
952 0, 0, 0, 0, 0, 0, 0, 0, \
953 0, 0, 0, 0, 0, 0, 1, 1, \
954 \
955 1, 1, 1, 1, 1, 1, 1, 1, \
956 1, 1, 1, 1, 1, 1, 1, 1, \
957 1, 1, 1, 1, 1, 1, 1, 1, \
958 1, 1, 1, 1, 1, 1, 1, 1, \
959 \
960 1, 1, 1, 1, 1, 1, 1, 1, \
961 1, 1, 1, 1, 1, 1, 1, 1, \
962 1, 1, 1, 1, 1, 1, 1, 1, \
963 1, 1, 1, 1, 1, 1, 1, 1, \
964 \
965 1, 1, 1, 1, 1, 1}
966
967 /* If !TARGET_FPU, then make the fp registers and fp cc regs fixed so that
968 they won't be allocated. */
969
970 #define CONDITIONAL_REGISTER_USAGE \
971 do \
972 { \
973 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
974 { \
975 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
976 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
977 } \
978 /* If the user has passed -f{fixed,call-{used,saved}}-g5 */ \
979 /* then honour it. */ \
980 if (TARGET_ARCH32 && fixed_regs[5]) \
981 fixed_regs[5] = 1; \
982 else if (TARGET_ARCH64 && fixed_regs[5] == 2) \
983 fixed_regs[5] = 0; \
984 if (! TARGET_V9) \
985 { \
986 int regno; \
987 for (regno = SPARC_FIRST_V9_FP_REG; \
988 regno <= SPARC_LAST_V9_FP_REG; \
989 regno++) \
990 fixed_regs[regno] = 1; \
991 /* %fcc0 is used by v8 and v9. */ \
992 for (regno = SPARC_FIRST_V9_FCC_REG + 1; \
993 regno <= SPARC_LAST_V9_FCC_REG; \
994 regno++) \
995 fixed_regs[regno] = 1; \
996 } \
997 if (! TARGET_FPU) \
998 { \
999 int regno; \
1000 for (regno = 32; regno < SPARC_LAST_V9_FCC_REG; regno++) \
1001 fixed_regs[regno] = 1; \
1002 } \
1003 /* If the user has passed -f{fixed,call-{used,saved}}-g2 */ \
1004 /* then honour it. Likewise with g3 and g4. */ \
1005 if (fixed_regs[2] == 2) \
1006 fixed_regs[2] = ! TARGET_APP_REGS; \
1007 if (fixed_regs[3] == 2) \
1008 fixed_regs[3] = ! TARGET_APP_REGS; \
1009 if (TARGET_ARCH32 && fixed_regs[4] == 2) \
1010 fixed_regs[4] = ! TARGET_APP_REGS; \
1011 else if (TARGET_CM_EMBMEDANY) \
1012 fixed_regs[4] = 1; \
1013 else if (fixed_regs[4] == 2) \
1014 fixed_regs[4] = 0; \
1015 if (TARGET_FLAT) \
1016 { \
1017 int regno; \
1018 /* Let the compiler believe the frame pointer is still \
1019 %fp, but output it as %i7. */ \
1020 fixed_regs[31] = 1; \
1021 reg_names[HARD_FRAME_POINTER_REGNUM] = "%i7"; \
1022 /* Disable leaf functions */ \
1023 memset (sparc_leaf_regs, 0, FIRST_PSEUDO_REGISTER); \
1024 /* Make LEAF_REG_REMAP a noop. */ \
1025 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
1026 leaf_reg_remap [regno] = regno; \
1027 } \
1028 } \
1029 while (0)
1030
1031 /* Return number of consecutive hard regs needed starting at reg REGNO
1032 to hold something of mode MODE.
1033 This is ordinarily the length in words of a value of mode MODE
1034 but can be less for certain modes in special long registers.
1035
1036 On SPARC, ordinary registers hold 32 bits worth;
1037 this means both integer and floating point registers.
1038 On v9, integer regs hold 64 bits worth; floating point regs hold
1039 32 bits worth (this includes the new fp regs as even the odd ones are
1040 included in the hard register count). */
1041
1042 #define HARD_REGNO_NREGS(REGNO, MODE) \
1043 (TARGET_ARCH64 \
1044 ? ((REGNO) < 32 || (REGNO) == FRAME_POINTER_REGNUM \
1045 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD \
1046 : (GET_MODE_SIZE (MODE) + 3) / 4) \
1047 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1048
1049 /* Due to the ARCH64 descrepancy above we must override this next
1050 macro too. */
1051 #define REGMODE_NATURAL_SIZE(MODE) \
1052 ((TARGET_ARCH64 && FLOAT_MODE_P (MODE)) ? 4 : UNITS_PER_WORD)
1053
1054 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
1055 See sparc.c for how we initialize this. */
1056 extern const int *hard_regno_mode_classes;
1057 extern int sparc_mode_class[];
1058
1059 /* ??? Because of the funny way we pass parameters we should allow certain
1060 ??? types of float/complex values to be in integer registers during
1061 ??? RTL generation. This only matters on arch32. */
1062 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1063 ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
1064
1065 /* Value is 1 if it is a good idea to tie two pseudo registers
1066 when one has mode MODE1 and one has mode MODE2.
1067 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1068 for any hard reg, then this must be 0 for correct output.
1069
1070 For V9: SFmode can't be combined with other float modes, because they can't
1071 be allocated to the %d registers. Also, DFmode won't fit in odd %f
1072 registers, but SFmode will. */
1073 #define MODES_TIEABLE_P(MODE1, MODE2) \
1074 ((MODE1) == (MODE2) \
1075 || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
1076 && (! TARGET_V9 \
1077 || (GET_MODE_CLASS (MODE1) != MODE_FLOAT \
1078 || (MODE1 != SFmode && MODE2 != SFmode)))))
1079
1080 /* Specify the registers used for certain standard purposes.
1081 The values of these macros are register numbers. */
1082
1083 /* SPARC pc isn't overloaded on a register that the compiler knows about. */
1084 /* #define PC_REGNUM */
1085
1086 /* Register to use for pushing function arguments. */
1087 #define STACK_POINTER_REGNUM 14
1088
1089 /* The stack bias (amount by which the hardware register is offset by). */
1090 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
1091
1092 /* Actual top-of-stack address is 92/176 greater than the contents of the
1093 stack pointer register for !v9/v9. That is:
1094 - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
1095 address, and 6*4 bytes for the 6 register parameters.
1096 - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
1097 parameter regs. */
1098 #define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
1099
1100 /* Base register for access to local variables of the function. */
1101 #define HARD_FRAME_POINTER_REGNUM 30
1102
1103 /* The soft frame pointer does not have the stack bias applied. */
1104 #define FRAME_POINTER_REGNUM 101
1105
1106 /* Given the stack bias, the stack pointer isn't actually aligned. */
1107 #define INIT_EXPANDERS \
1108 do { \
1109 if (cfun && cfun->emit->regno_pointer_align && SPARC_STACK_BIAS) \
1110 { \
1111 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = BITS_PER_UNIT; \
1112 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT; \
1113 } \
1114 } while (0)
1115
1116 /* Value should be nonzero if functions must have frame pointers.
1117 Zero means the frame pointer need not be set up (and parms
1118 may be accessed via the stack pointer) in functions that seem suitable.
1119 This is computed in `reload', in reload1.c.
1120 Used in flow.c, global.c, and reload1.c.
1121
1122 Being a non-leaf function does not mean a frame pointer is needed in the
1123 flat window model. However, the debugger won't be able to backtrace through
1124 us with out it. */
1125 #define FRAME_POINTER_REQUIRED \
1126 (TARGET_FLAT \
1127 ? (current_function_calls_alloca \
1128 || current_function_varargs \
1129 || !leaf_function_p ()) \
1130 : ! (leaf_function_p () && only_leaf_regs_used ()))
1131
1132 /* Base register for access to arguments of the function. */
1133 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
1134
1135 /* Register in which static-chain is passed to a function. This must
1136 not be a register used by the prologue. */
1137 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
1138
1139 /* Register which holds offset table for position-independent
1140 data references. */
1141
1142 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 23 : INVALID_REGNUM)
1143
1144 /* Pick a default value we can notice from override_options:
1145 !v9: Default is on.
1146 v9: Default is off. */
1147
1148 #define DEFAULT_PCC_STRUCT_RETURN -1
1149
1150 /* Sparc ABI says that quad-precision floats and all structures are returned
1151 in memory.
1152 For v9: unions <= 32 bytes in size are returned in int regs,
1153 structures up to 32 bytes are returned in int and fp regs. */
1154
1155 #define RETURN_IN_MEMORY(TYPE) \
1156 (TARGET_ARCH32 \
1157 ? (TYPE_MODE (TYPE) == BLKmode \
1158 || TYPE_MODE (TYPE) == TFmode \
1159 || TYPE_MODE (TYPE) == TCmode) \
1160 : (TYPE_MODE (TYPE) == BLKmode \
1161 && (unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) > 32))
1162
1163 /* Functions which return large structures get the address
1164 to place the wanted value at offset 64 from the frame.
1165 Must reserve 64 bytes for the in and local registers.
1166 v9: Functions which return large structures get the address to place the
1167 wanted value from an invisible first argument. */
1168 /* Used only in other #defines in this file. */
1169 #define STRUCT_VALUE_OFFSET 64
1170
1171 #define STRUCT_VALUE \
1172 (TARGET_ARCH64 \
1173 ? 0 \
1174 : gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, \
1175 STRUCT_VALUE_OFFSET)))
1176
1177 #define STRUCT_VALUE_INCOMING \
1178 (TARGET_ARCH64 \
1179 ? 0 \
1180 : gen_rtx_MEM (Pmode, plus_constant (frame_pointer_rtx, \
1181 STRUCT_VALUE_OFFSET)))
1182 \f
1183 /* Define the classes of registers for register constraints in the
1184 machine description. Also define ranges of constants.
1185
1186 One of the classes must always be named ALL_REGS and include all hard regs.
1187 If there is more than one class, another class must be named NO_REGS
1188 and contain no registers.
1189
1190 The name GENERAL_REGS must be the name of a class (or an alias for
1191 another name such as ALL_REGS). This is the class of registers
1192 that is allowed by "g" or "r" in a register constraint.
1193 Also, registers outside this class are allocated only when
1194 instructions express preferences for them.
1195
1196 The classes must be numbered in nondecreasing order; that is,
1197 a larger-numbered class must never be contained completely
1198 in a smaller-numbered class.
1199
1200 For any two classes, it is very desirable that there be another
1201 class that represents their union. */
1202
1203 /* The SPARC has various kinds of registers: general, floating point,
1204 and condition codes [well, it has others as well, but none that we
1205 care directly about].
1206
1207 For v9 we must distinguish between the upper and lower floating point
1208 registers because the upper ones can't hold SFmode values.
1209 HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
1210 satisfying a group need for a class will also satisfy a single need for
1211 that class. EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
1212 regs.
1213
1214 It is important that one class contains all the general and all the standard
1215 fp regs. Otherwise find_reg() won't properly allocate int regs for moves,
1216 because reg_class_record() will bias the selection in favor of fp regs,
1217 because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
1218 because FP_REGS > GENERAL_REGS.
1219
1220 It is also important that one class contain all the general and all the
1221 fp regs. Otherwise when spilling a DFmode reg, it may be from EXTRA_FP_REGS
1222 but find_reloads() may use class GENERAL_OR_FP_REGS. This will cause
1223 allocate_reload_reg() to bypass it causing an abort because the compiler
1224 thinks it doesn't have a spill reg when in fact it does.
1225
1226 v9 also has 4 floating point condition code registers. Since we don't
1227 have a class that is the union of FPCC_REGS with either of the others,
1228 it is important that it appear first. Otherwise the compiler will die
1229 trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
1230 constraints.
1231
1232 It is important that SPARC_ICC_REG have class NO_REGS. Otherwise combine
1233 may try to use it to hold an SImode value. See register_operand.
1234 ??? Should %fcc[0123] be handled similarly?
1235 */
1236
1237 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
1238 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
1239 ALL_REGS, LIM_REG_CLASSES };
1240
1241 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1242
1243 /* Give names of register classes as strings for dump file. */
1244
1245 #define REG_CLASS_NAMES \
1246 { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS", \
1247 "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \
1248 "ALL_REGS" }
1249
1250 /* Define which registers fit in which classes.
1251 This is an initializer for a vector of HARD_REG_SET
1252 of length N_REG_CLASSES. */
1253
1254 #define REG_CLASS_CONTENTS \
1255 {{0, 0, 0, 0}, /* NO_REGS */ \
1256 {0, 0, 0, 0xf}, /* FPCC_REGS */ \
1257 {0xffff, 0, 0, 0}, /* I64_REGS */ \
1258 {-1, 0, 0, 0x20}, /* GENERAL_REGS */ \
1259 {0, -1, 0, 0}, /* FP_REGS */ \
1260 {0, -1, -1, 0}, /* EXTRA_FP_REGS */ \
1261 {-1, -1, 0, 0x20}, /* GENERAL_OR_FP_REGS */ \
1262 {-1, -1, -1, 0x20}, /* GENERAL_OR_EXTRA_FP_REGS */ \
1263 {-1, -1, -1, 0x3f}} /* ALL_REGS */
1264
1265 /* The same information, inverted:
1266 Return the class number of the smallest class containing
1267 reg number REGNO. This could be a conditional expression
1268 or could index an array. */
1269
1270 extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
1271
1272 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
1273
1274 /* This is the order in which to allocate registers normally.
1275
1276 We put %f0/%f1 last among the float registers, so as to make it more
1277 likely that a pseudo-register which dies in the float return register
1278 will get allocated to the float return register, thus saving a move
1279 instruction at the end of the function. */
1280
1281 #define REG_ALLOC_ORDER \
1282 { 8, 9, 10, 11, 12, 13, 2, 3, \
1283 15, 16, 17, 18, 19, 20, 21, 22, \
1284 23, 24, 25, 26, 27, 28, 29, 31, \
1285 34, 35, 36, 37, 38, 39, /* %f2-%f7 */ \
1286 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
1287 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
1288 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
1289 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
1290 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
1291 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
1292 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
1293 32, 33, /* %f0,%f1 */ \
1294 96, 97, 98, 99, 100, /* %fcc0-3, %icc */ \
1295 1, 4, 5, 6, 7, 0, 14, 30, 101}
1296
1297 /* This is the order in which to allocate registers for
1298 leaf functions. If all registers can fit in the "gi" registers,
1299 then we have the possibility of having a leaf function. */
1300
1301 #define REG_LEAF_ALLOC_ORDER \
1302 { 2, 3, 24, 25, 26, 27, 28, 29, \
1303 4, 5, 6, 7, 1, \
1304 15, 8, 9, 10, 11, 12, 13, \
1305 16, 17, 18, 19, 20, 21, 22, 23, \
1306 34, 35, 36, 37, 38, 39, \
1307 40, 41, 42, 43, 44, 45, 46, 47, \
1308 48, 49, 50, 51, 52, 53, 54, 55, \
1309 56, 57, 58, 59, 60, 61, 62, 63, \
1310 64, 65, 66, 67, 68, 69, 70, 71, \
1311 72, 73, 74, 75, 76, 77, 78, 79, \
1312 80, 81, 82, 83, 84, 85, 86, 87, \
1313 88, 89, 90, 91, 92, 93, 94, 95, \
1314 32, 33, \
1315 96, 97, 98, 99, 100, \
1316 0, 14, 30, 31, 101}
1317
1318 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
1319
1320 extern char sparc_leaf_regs[];
1321 #define LEAF_REGISTERS sparc_leaf_regs
1322
1323 extern char leaf_reg_remap[];
1324 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1325
1326 /* The class value for index registers, and the one for base regs. */
1327 #define INDEX_REG_CLASS GENERAL_REGS
1328 #define BASE_REG_CLASS GENERAL_REGS
1329
1330 /* Local macro to handle the two v9 classes of FP regs. */
1331 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1332
1333 /* Get reg_class from a letter such as appears in the machine description.
1334 In the not-v9 case, coerce v9's 'e' class to 'f', so we can use 'e' in the
1335 .md file for v8 and v9.
1336 'd' and 'b' are used for single and double precision VIS operations,
1337 if TARGET_VIS.
1338 'h' is used for V8+ 64 bit global and out registers. */
1339
1340 #define REG_CLASS_FROM_LETTER(C) \
1341 (TARGET_V9 \
1342 ? ((C) == 'f' ? FP_REGS \
1343 : (C) == 'e' ? EXTRA_FP_REGS \
1344 : (C) == 'c' ? FPCC_REGS \
1345 : ((C) == 'd' && TARGET_VIS) ? FP_REGS\
1346 : ((C) == 'b' && TARGET_VIS) ? EXTRA_FP_REGS\
1347 : ((C) == 'h' && TARGET_V8PLUS) ? I64_REGS\
1348 : NO_REGS) \
1349 : ((C) == 'f' ? FP_REGS \
1350 : (C) == 'e' ? FP_REGS \
1351 : (C) == 'c' ? FPCC_REGS \
1352 : NO_REGS))
1353
1354 /* The letters I, J, K, L and M in a register constraint string
1355 can be used to stand for particular ranges of immediate operands.
1356 This macro defines what the ranges are.
1357 C is the letter, and VALUE is a constant value.
1358 Return 1 if VALUE is in the range specified by C.
1359
1360 `I' is used for the range of constants an insn can actually contain.
1361 `J' is used for the range which is just zero (since that is R0).
1362 `K' is used for constants which can be loaded with a single sethi insn.
1363 `L' is used for the range of constants supported by the movcc insns.
1364 `M' is used for the range of constants supported by the movrcc insns.
1365 `N' is like K, but for constants wider than 32 bits. */
1366
1367 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1368 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1369 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1370 /* 10 and 11 bit immediates are only used for a few specific insns.
1371 SMALL_INT is used throughout the port so we continue to use it. */
1372 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1373 /* 13 bit immediate, considering only the low 32 bits */
1374 #define SMALL_INT32(X) (SPARC_SIMM13_P (trunc_int_for_mode \
1375 (INTVAL (X), SImode)))
1376 #define SPARC_SETHI_P(X) \
1377 (((unsigned HOST_WIDE_INT) (X) \
1378 & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
1379 #define SPARC_SETHI32_P(X) \
1380 (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1381
1382 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1383 ((C) == 'I' ? SPARC_SIMM13_P (VALUE) \
1384 : (C) == 'J' ? (VALUE) == 0 \
1385 : (C) == 'K' ? SPARC_SETHI32_P (VALUE) \
1386 : (C) == 'L' ? SPARC_SIMM11_P (VALUE) \
1387 : (C) == 'M' ? SPARC_SIMM10_P (VALUE) \
1388 : (C) == 'N' ? SPARC_SETHI_P (VALUE) \
1389 : 0)
1390
1391 /* Similar, but for floating constants, and defining letters G and H.
1392 Here VALUE is the CONST_DOUBLE rtx itself. */
1393
1394 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1395 ((C) == 'G' ? fp_zero_operand (VALUE, GET_MODE (VALUE)) \
1396 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
1397 : 0)
1398
1399 /* Given an rtx X being reloaded into a reg required to be
1400 in class CLASS, return the class of reg to actually use.
1401 In general this is just CLASS; but on some machines
1402 in some cases it is preferable to use a more restrictive class. */
1403 /* - We can't load constants into FP registers.
1404 - We can't load FP constants into integer registers when soft-float,
1405 because there is no soft-float pattern with a r/F constraint.
1406 - We can't load FP constants into integer registers for TFmode unless
1407 it is 0.0L, because there is no movtf pattern with a r/F constraint.
1408 - Try and reload integer constants (symbolic or otherwise) back into
1409 registers directly, rather than having them dumped to memory. */
1410
1411 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1412 (CONSTANT_P (X) \
1413 ? ((FP_REG_CLASS_P (CLASS) \
1414 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1415 && ! TARGET_FPU) \
1416 || (GET_MODE (X) == TFmode \
1417 && ! fp_zero_operand (X, TFmode))) \
1418 ? NO_REGS \
1419 : (!FP_REG_CLASS_P (CLASS) \
1420 && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT) \
1421 ? GENERAL_REGS \
1422 : (CLASS)) \
1423 : (CLASS))
1424
1425 /* Return the register class of a scratch register needed to load IN into
1426 a register of class CLASS in MODE.
1427
1428 We need a temporary when loading/storing a HImode/QImode value
1429 between memory and the FPU registers. This can happen when combine puts
1430 a paradoxical subreg in a float/fix conversion insn.
1431
1432 We need a temporary when loading/storing a DFmode value between
1433 unaligned memory and the upper FPU registers. */
1434
1435 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1436 ((FP_REG_CLASS_P (CLASS) \
1437 && ((MODE) == HImode || (MODE) == QImode) \
1438 && (GET_CODE (IN) == MEM \
1439 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1440 && true_regnum (IN) == -1))) \
1441 ? GENERAL_REGS \
1442 : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode \
1443 && GET_CODE (IN) == MEM && TARGET_ARCH32 \
1444 && ! mem_min_alignment ((IN), 8)) \
1445 ? FP_REGS \
1446 : (((TARGET_CM_MEDANY \
1447 && symbolic_operand ((IN), (MODE))) \
1448 || (TARGET_CM_EMBMEDANY \
1449 && text_segment_operand ((IN), (MODE)))) \
1450 && !flag_pic) \
1451 ? GENERAL_REGS \
1452 : NO_REGS)
1453
1454 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1455 ((FP_REG_CLASS_P (CLASS) \
1456 && ((MODE) == HImode || (MODE) == QImode) \
1457 && (GET_CODE (IN) == MEM \
1458 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1459 && true_regnum (IN) == -1))) \
1460 ? GENERAL_REGS \
1461 : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode \
1462 && GET_CODE (IN) == MEM && TARGET_ARCH32 \
1463 && ! mem_min_alignment ((IN), 8)) \
1464 ? FP_REGS \
1465 : (((TARGET_CM_MEDANY \
1466 && symbolic_operand ((IN), (MODE))) \
1467 || (TARGET_CM_EMBMEDANY \
1468 && text_segment_operand ((IN), (MODE)))) \
1469 && !flag_pic) \
1470 ? GENERAL_REGS \
1471 : NO_REGS)
1472
1473 /* On SPARC it is not possible to directly move data between
1474 GENERAL_REGS and FP_REGS. */
1475 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1476 (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
1477
1478 /* Return the stack location to use for secondary memory needed reloads.
1479 We want to use the reserved location just below the frame pointer.
1480 However, we must ensure that there is a frame, so use assign_stack_local
1481 if the frame size is zero. */
1482 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1483 (get_frame_size () == 0 \
1484 ? assign_stack_local (MODE, GET_MODE_SIZE (MODE), 0) \
1485 : gen_rtx_MEM (MODE, plus_constant (frame_pointer_rtx, \
1486 STARTING_FRAME_OFFSET)))
1487
1488 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
1489 because the movsi and movsf patterns don't handle r/f moves.
1490 For v8 we copy the default definition. */
1491 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1492 (TARGET_ARCH64 \
1493 ? (GET_MODE_BITSIZE (MODE) < 32 \
1494 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1495 : MODE) \
1496 : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD \
1497 ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \
1498 : MODE))
1499
1500 /* Return the maximum number of consecutive registers
1501 needed to represent mode MODE in a register of class CLASS. */
1502 /* On SPARC, this is the size of MODE in words. */
1503 #define CLASS_MAX_NREGS(CLASS, MODE) \
1504 (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1505 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1506 \f
1507 /* Stack layout; function entry, exit and calling. */
1508
1509 /* Define the number of register that can hold parameters.
1510 This macro is only used in other macro definitions below and in sparc.c.
1511 MODE is the mode of the argument.
1512 !v9: All args are passed in %o0-%o5.
1513 v9: %o0-%o5 and %f0-%f31 are cumulatively used to pass values.
1514 See the description in sparc.c. */
1515 #define NPARM_REGS(MODE) \
1516 (TARGET_ARCH64 \
1517 ? (GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 6) \
1518 : 6)
1519
1520 /* Define this if pushing a word on the stack
1521 makes the stack pointer a smaller address. */
1522 #define STACK_GROWS_DOWNWARD
1523
1524 /* Define this if the nominal address of the stack frame
1525 is at the high-address end of the local variables;
1526 that is, each additional local variable allocated
1527 goes at a more negative offset in the frame. */
1528 #define FRAME_GROWS_DOWNWARD
1529
1530 /* Offset within stack frame to start allocating local variables at.
1531 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1532 first local allocated. Otherwise, it is the offset to the BEGINNING
1533 of the first local allocated. */
1534 /* This allows space for one TFmode floating point value. */
1535 #define STARTING_FRAME_OFFSET \
1536 (TARGET_ARCH64 ? -16 \
1537 : (-SPARC_STACK_ALIGN (LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)))
1538
1539 /* If we generate an insn to push BYTES bytes,
1540 this says how many the stack pointer really advances by.
1541 On SPARC, don't define this because there are no push insns. */
1542 /* #define PUSH_ROUNDING(BYTES) */
1543
1544 /* Offset of first parameter from the argument pointer register value.
1545 !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1546 even if this function isn't going to use it.
1547 v9: This is 128 for the ins and locals. */
1548 #define FIRST_PARM_OFFSET(FNDECL) \
1549 (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1550
1551 /* Offset from the argument pointer register value to the CFA.
1552 This is different from FIRST_PARM_OFFSET because the register window
1553 comes between the CFA and the arguments. */
1554 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1555
1556 /* When a parameter is passed in a register, stack space is still
1557 allocated for it.
1558 !v9: All 6 possible integer registers have backing store allocated.
1559 v9: Only space for the arguments passed is allocated. */
1560 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1561 meaning to the backend. Further, we need to be able to detect if a
1562 varargs/unprototyped function is called, as they may want to spill more
1563 registers than we've provided space. Ugly, ugly. So for now we retain
1564 all 6 slots even for v9. */
1565 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1566
1567 /* Definitions for register elimination. */
1568 /* ??? In TARGET_FLAT mode we needn't have a hard frame pointer. */
1569
1570 #define ELIMINABLE_REGS \
1571 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1572 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
1573
1574 /* The way this is structured, we can't eliminate SFP in favor of SP
1575 if the frame pointer is required: we want to use the SFP->HFP elimination
1576 in that case. But the test in update_eliminables doesn't know we are
1577 assuming below that we only do the former elimination. */
1578 #define CAN_ELIMINATE(FROM, TO) \
1579 ((TO) == HARD_FRAME_POINTER_REGNUM || !FRAME_POINTER_REQUIRED)
1580
1581 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1582 do { \
1583 (OFFSET) = 0; \
1584 if ((TO) == STACK_POINTER_REGNUM) \
1585 { \
1586 /* Note, we always pretend that this is a leaf function \
1587 because if it's not, there's no point in trying to \
1588 eliminate the frame pointer. If it is a leaf \
1589 function, we guessed right! */ \
1590 if (TARGET_FLAT) \
1591 (OFFSET) = \
1592 sparc_flat_compute_frame_size (get_frame_size ()); \
1593 else \
1594 (OFFSET) = compute_frame_size (get_frame_size (), 1); \
1595 } \
1596 (OFFSET) += SPARC_STACK_BIAS; \
1597 } while (0)
1598
1599 /* Keep the stack pointer constant throughout the function.
1600 This is both an optimization and a necessity: longjmp
1601 doesn't behave itself when the stack pointer moves within
1602 the function! */
1603 #define ACCUMULATE_OUTGOING_ARGS 1
1604
1605 /* Value is the number of bytes of arguments automatically
1606 popped when returning from a subroutine call.
1607 FUNDECL is the declaration node of the function (as a tree),
1608 FUNTYPE is the data type of the function (as a tree),
1609 or for a library call it is an identifier node for the subroutine name.
1610 SIZE is the number of bytes of arguments passed on the stack. */
1611
1612 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1613
1614 /* Some subroutine macros specific to this machine.
1615 When !TARGET_FPU, put float return values in the general registers,
1616 since we don't have any fp registers. */
1617 #define BASE_RETURN_VALUE_REG(MODE) \
1618 (TARGET_ARCH64 \
1619 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 : 8) \
1620 : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 : 8))
1621
1622 #define BASE_OUTGOING_VALUE_REG(MODE) \
1623 (TARGET_ARCH64 \
1624 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 \
1625 : TARGET_FLAT ? 8 : 24) \
1626 : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 \
1627 : (TARGET_FLAT ? 8 : 24)))
1628
1629 #define BASE_PASSING_ARG_REG(MODE) \
1630 (TARGET_ARCH64 \
1631 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 : 8) \
1632 : 8)
1633
1634 /* ??? FIXME -- seems wrong for v9 structure passing... */
1635 #define BASE_INCOMING_ARG_REG(MODE) \
1636 (TARGET_ARCH64 \
1637 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 \
1638 : TARGET_FLAT ? 8 : 24) \
1639 : (TARGET_FLAT ? 8 : 24))
1640
1641 /* Define this macro if the target machine has "register windows". This
1642 C expression returns the register number as seen by the called function
1643 corresponding to register number OUT as seen by the calling function.
1644 Return OUT if register number OUT is not an outbound register. */
1645
1646 #define INCOMING_REGNO(OUT) \
1647 ((TARGET_FLAT || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1648
1649 /* Define this macro if the target machine has "register windows". This
1650 C expression returns the register number as seen by the calling function
1651 corresponding to register number IN as seen by the called function.
1652 Return IN if register number IN is not an inbound register. */
1653
1654 #define OUTGOING_REGNO(IN) \
1655 ((TARGET_FLAT || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1656
1657 /* Define this macro if the target machine has register windows. This
1658 C expression returns true if the register is call-saved but is in the
1659 register window. */
1660
1661 #define LOCAL_REGNO(REGNO) \
1662 (TARGET_FLAT ? 0 : (REGNO) >= 16 && (REGNO) <= 31)
1663
1664 /* Define how to find the value returned by a function.
1665 VALTYPE is the data type of the value (as a tree).
1666 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1667 otherwise, FUNC is 0. */
1668
1669 /* On SPARC the value is found in the first "output" register. */
1670
1671 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1672 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 1)
1673
1674 /* But the called function leaves it in the first "input" register. */
1675
1676 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
1677 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 0)
1678
1679 /* Define how to find the value returned by a library function
1680 assuming the value has mode MODE. */
1681
1682 #define LIBCALL_VALUE(MODE) \
1683 function_value (NULL_TREE, (MODE), 1)
1684
1685 /* 1 if N is a possible register number for a function value
1686 as seen by the caller.
1687 On SPARC, the first "output" reg is used for integer values,
1688 and the first floating point register is used for floating point values. */
1689
1690 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
1691
1692 /* Define the size of space to allocate for the return value of an
1693 untyped_call. */
1694
1695 #define APPLY_RESULT_SIZE 16
1696
1697 /* 1 if N is a possible register number for function argument passing.
1698 On SPARC, these are the "output" registers. v9 also uses %f0-%f31. */
1699
1700 #define FUNCTION_ARG_REGNO_P(N) \
1701 (TARGET_ARCH64 \
1702 ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
1703 : ((N) >= 8 && (N) <= 13))
1704 \f
1705 /* Define a data type for recording info about an argument list
1706 during the scan of that argument list. This data type should
1707 hold all necessary information about the function itself
1708 and about the args processed so far, enough to enable macros
1709 such as FUNCTION_ARG to determine where the next arg should go.
1710
1711 On SPARC (!v9), this is a single integer, which is a number of words
1712 of arguments scanned so far (including the invisible argument,
1713 if any, which holds the structure-value-address).
1714 Thus 7 or more means all following args should go on the stack.
1715
1716 For v9, we also need to know whether a prototype is present. */
1717
1718 struct sparc_args {
1719 int words; /* number of words passed so far */
1720 int prototype_p; /* non-zero if a prototype is present */
1721 int libcall_p; /* non-zero if a library call */
1722 };
1723 #define CUMULATIVE_ARGS struct sparc_args
1724
1725 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1726 for a call to a function whose data type is FNTYPE.
1727 For a library call, FNTYPE is 0. */
1728
1729 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1730 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (INDIRECT));
1731
1732 /* Update the data in CUM to advance over an argument
1733 of mode MODE and data type TYPE.
1734 TYPE is null for libcalls where that information may not be available. */
1735
1736 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1737 function_arg_advance (& (CUM), (MODE), (TYPE), (NAMED))
1738
1739 /* Nonzero if we do not know how to pass TYPE solely in registers. */
1740
1741 #define MUST_PASS_IN_STACK(MODE,TYPE) \
1742 ((TYPE) != 0 \
1743 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
1744 || TREE_ADDRESSABLE (TYPE)))
1745
1746 /* Determine where to put an argument to a function.
1747 Value is zero to push the argument on the stack,
1748 or a hard register in which to store the argument.
1749
1750 MODE is the argument's machine mode.
1751 TYPE is the data type of the argument (as a tree).
1752 This is null for libcalls where that information may
1753 not be available.
1754 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1755 the preceding args and about the function being called.
1756 NAMED is nonzero if this argument is a named parameter
1757 (otherwise it is an extra parameter matching an ellipsis). */
1758
1759 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1760 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 0)
1761
1762 /* Define where a function finds its arguments.
1763 This is different from FUNCTION_ARG because of register windows. */
1764
1765 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1766 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 1)
1767
1768 /* For an arg passed partly in registers and partly in memory,
1769 this is the number of registers used.
1770 For args passed entirely in registers or entirely in memory, zero. */
1771
1772 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1773 function_arg_partial_nregs (& (CUM), (MODE), (TYPE), (NAMED))
1774
1775 /* A C expression that indicates when an argument must be passed by reference.
1776 If nonzero for an argument, a copy of that argument is made in memory and a
1777 pointer to the argument is passed instead of the argument itself.
1778 The pointer is passed in whatever way is appropriate for passing a pointer
1779 to that type. */
1780
1781 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1782 function_arg_pass_by_reference (& (CUM), (MODE), (TYPE), (NAMED))
1783
1784 /* If defined, a C expression which determines whether, and in which direction,
1785 to pad out an argument with extra space. The value should be of type
1786 `enum direction': either `upward' to pad above the argument,
1787 `downward' to pad below, or `none' to inhibit padding. */
1788
1789 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1790 function_arg_padding ((MODE), (TYPE))
1791
1792 /* If defined, a C expression that gives the alignment boundary, in bits,
1793 of an argument with the specified mode and type. If it is not defined,
1794 PARM_BOUNDARY is used for all arguments.
1795 For sparc64, objects requiring 16 byte alignment are passed that way. */
1796
1797 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1798 ((TARGET_ARCH64 \
1799 && (GET_MODE_ALIGNMENT (MODE) == 128 \
1800 || ((TYPE) && TYPE_ALIGN (TYPE) == 128))) \
1801 ? 128 : PARM_BOUNDARY)
1802 \f
1803 /* Define the information needed to generate branch and scc insns. This is
1804 stored from the compare operation. Note that we can't use "rtx" here
1805 since it hasn't been defined! */
1806
1807 extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;
1808
1809 \f
1810 /* Generate the special assembly code needed to tell the assembler whatever
1811 it might need to know about the return value of a function.
1812
1813 For Sparc assemblers, we need to output a .proc pseudo-op which conveys
1814 information to the assembler relating to peephole optimization (done in
1815 the assembler). */
1816
1817 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1818 fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1819
1820 /* Output the special assembly code needed to tell the assembler some
1821 register is used as global register variable.
1822
1823 SPARC 64bit psABI declares registers %g2 and %g3 as application
1824 registers and %g6 and %g7 as OS registers. Any object using them
1825 should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1826 and how they are used (scratch or some global variable).
1827 Linker will then refuse to link together objects which use those
1828 registers incompatibly.
1829
1830 Unless the registers are used for scratch, two different global
1831 registers cannot be declared to the same name, so in the unlikely
1832 case of a global register variable occupying more than one register
1833 we prefix the second and following registers with .gnu.part1. etc. */
1834
1835 extern char sparc_hard_reg_printed[8];
1836
1837 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
1838 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME) \
1839 do { \
1840 if (TARGET_ARCH64) \
1841 { \
1842 int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
1843 int reg; \
1844 for (reg = (REGNO); reg < 8 && reg < end; reg++) \
1845 if ((reg & ~1) == 2 || (reg & ~1) == 6) \
1846 { \
1847 if (reg == (REGNO)) \
1848 fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1849 else \
1850 fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n", \
1851 reg, reg - (REGNO), (NAME)); \
1852 sparc_hard_reg_printed[reg] = 1; \
1853 } \
1854 } \
1855 } while (0)
1856 #endif
1857
1858 \f
1859 /* Emit rtl for profiling. */
1860 #define PROFILE_HOOK(LABEL) sparc_profile_hook (LABEL)
1861
1862 /* All the work done in PROFILE_HOOK, but still required. */
1863 #define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1864
1865 /* Set the name of the mcount function for the system. */
1866 #define MCOUNT_FUNCTION "*mcount"
1867 \f
1868 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1869 the stack pointer does not matter. The value is tested only in
1870 functions that have frame pointers.
1871 No definition is equivalent to always zero. */
1872
1873 #define EXIT_IGNORE_STACK \
1874 (get_frame_size () != 0 \
1875 || current_function_calls_alloca || current_function_outgoing_args_size)
1876
1877 #define DELAY_SLOTS_FOR_EPILOGUE \
1878 (TARGET_FLAT ? sparc_flat_epilogue_delay_slots () : 1)
1879 #define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
1880 (TARGET_FLAT ? sparc_flat_eligible_for_epilogue_delay (trial, slots_filled) \
1881 : eligible_for_epilogue_delay (trial, slots_filled))
1882
1883 /* Define registers used by the epilogue and return instruction. */
1884 #define EPILOGUE_USES(REGNO) \
1885 (!TARGET_FLAT && REGNO == 31)
1886 \f
1887 /* Length in units of the trampoline for entering a nested function. */
1888
1889 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1890
1891 #define TRAMPOLINE_ALIGNMENT 128 /* 16 bytes */
1892
1893 /* Emit RTL insns to initialize the variable parts of a trampoline.
1894 FNADDR is an RTX for the address of the function's pure code.
1895 CXT is an RTX for the static chain value for the function. */
1896
1897 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1898 if (TARGET_ARCH64) \
1899 sparc64_initialize_trampoline (TRAMP, FNADDR, CXT); \
1900 else \
1901 sparc_initialize_trampoline (TRAMP, FNADDR, CXT)
1902 \f
1903 /* Generate necessary RTL for __builtin_saveregs(). */
1904
1905 #define EXPAND_BUILTIN_SAVEREGS() sparc_builtin_saveregs ()
1906
1907 /* Implement `va_start' for varargs and stdarg. */
1908 #define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
1909 sparc_va_start (stdarg, valist, nextarg)
1910
1911 /* Implement `va_arg'. */
1912 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1913 sparc_va_arg (valist, type)
1914
1915 /* Define this macro if the location where a function argument is passed
1916 depends on whether or not it is a named argument.
1917
1918 This macro controls how the NAMED argument to FUNCTION_ARG
1919 is set for varargs and stdarg functions. With this macro defined,
1920 the NAMED argument is always true for named arguments, and false for
1921 unnamed arguments. If this is not defined, but SETUP_INCOMING_VARARGS
1922 is defined, then all arguments are treated as named. Otherwise, all named
1923 arguments except the last are treated as named.
1924 For the v9 we want NAMED to mean what it says it means. */
1925
1926 #define STRICT_ARGUMENT_NAMING TARGET_V9
1927
1928 /* We do not allow sibling calls if -mflat, nor
1929 we do not allow indirect calls to be optimized into sibling calls.
1930
1931 Also, on sparc 32-bit we cannot emit a sibling call when the
1932 current function returns a structure. This is because the "unimp
1933 after call" convention would cause the callee to return to the
1934 wrong place. The generic code already disallows cases where the
1935 function being called returns a structure.
1936
1937 It may seem strange how this last case could occur. Usually there
1938 is code after the call which jumps to epilogue code which dumps the
1939 return value into the struct return area. That ought to invalidate
1940 the sibling call right? Well, in the c++ case we can end up passing
1941 the pointer to the struct return area to a constructor (which returns
1942 void) and then nothing else happens. Such a sibling call would look
1943 valid without the added check here. */
1944 #define FUNCTION_OK_FOR_SIBCALL(DECL) \
1945 (DECL \
1946 && ! TARGET_FLAT \
1947 && (TARGET_ARCH64 || ! current_function_returns_struct))
1948
1949 /* Generate RTL to flush the register windows so as to make arbitrary frames
1950 available. */
1951 #define SETUP_FRAME_ADDRESSES() \
1952 emit_insn (gen_flush_register_windows ())
1953
1954 /* Given an rtx for the address of a frame,
1955 return an rtx for the address of the word in the frame
1956 that holds the dynamic chain--the previous frame's address.
1957 ??? -mflat support? */
1958 #define DYNAMIC_CHAIN_ADDRESS(frame) plus_constant (frame, 14 * UNITS_PER_WORD)
1959
1960 /* The return address isn't on the stack, it is in a register, so we can't
1961 access it from the current frame pointer. We can access it from the
1962 previous frame pointer though by reading a value from the register window
1963 save area. */
1964 #define RETURN_ADDR_IN_PREVIOUS_FRAME
1965
1966 /* This is the offset of the return address to the true next instruction to be
1967 executed for the current function. */
1968 #define RETURN_ADDR_OFFSET \
1969 (8 + 4 * (! TARGET_ARCH64 && current_function_returns_struct))
1970
1971 /* The current return address is in %i7. The return address of anything
1972 farther back is in the register window save area at [%fp+60]. */
1973 /* ??? This ignores the fact that the actual return address is +8 for normal
1974 returns, and +12 for structure returns. */
1975 #define RETURN_ADDR_RTX(count, frame) \
1976 ((count == -1) \
1977 ? gen_rtx_REG (Pmode, 31) \
1978 : gen_rtx_MEM (Pmode, \
1979 memory_address (Pmode, plus_constant (frame, \
1980 15 * UNITS_PER_WORD \
1981 + SPARC_STACK_BIAS))))
1982
1983 /* Before the prologue, the return address is %o7 + 8. OK, sometimes it's
1984 +12, but always using +8 is close enough for frame unwind purposes.
1985 Actually, just using %o7 is close enough for unwinding, but %o7+8
1986 is something you can return to. */
1987 #define INCOMING_RETURN_ADDR_RTX \
1988 plus_constant (gen_rtx_REG (word_mode, 15), 8)
1989 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (15)
1990
1991 /* The offset from the incoming value of %sp to the top of the stack frame
1992 for the current function. On sparc64, we have to account for the stack
1993 bias if present. */
1994 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
1995
1996 /* Describe how we implement __builtin_eh_return. */
1997 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
1998 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 1) /* %g1 */
1999 #define EH_RETURN_HANDLER_RTX gen_rtx_REG (Pmode, 31) /* %i7 */
2000
2001 /* Select a format to encode pointers in exception handling data. CODE
2002 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2003 true if the symbol may be affected by dynamic relocations.
2004
2005 If assembler and linker properly support .uaword %r_disp32(foo),
2006 then use PC relative 32-bit relocations instead of absolute relocs
2007 for shared libraries. On sparc64, use pc relative 32-bit relocs even
2008 for binaries, to save memory.
2009
2010 binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
2011 symbol %r_disp32() is against was not local, but .hidden. In that
2012 case, we have to use DW_EH_PE_absptr for pic personality. */
2013 #ifdef HAVE_AS_SPARC_UA_PCREL
2014 #ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
2015 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
2016 (flag_pic \
2017 ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
2018 : ((TARGET_ARCH64 && ! GLOBAL) \
2019 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
2020 : DW_EH_PE_absptr))
2021 #else
2022 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
2023 (flag_pic \
2024 ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4)) \
2025 : ((TARGET_ARCH64 && ! GLOBAL) \
2026 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
2027 : DW_EH_PE_absptr))
2028 #endif
2029
2030 /* Emit a PC-relative relocation. */
2031 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
2032 do { \
2033 fputs (integer_asm_op (SIZE, FALSE), FILE); \
2034 fprintf (FILE, "%%r_disp%d(", SIZE * 8); \
2035 assemble_name (FILE, LABEL); \
2036 fputc (')', FILE); \
2037 } while (0)
2038 #endif
2039 \f
2040 /* Addressing modes, and classification of registers for them. */
2041
2042 /* #define HAVE_POST_INCREMENT 0 */
2043 /* #define HAVE_POST_DECREMENT 0 */
2044
2045 /* #define HAVE_PRE_DECREMENT 0 */
2046 /* #define HAVE_PRE_INCREMENT 0 */
2047
2048 /* Macros to check register numbers against specific register classes. */
2049
2050 /* These assume that REGNO is a hard or pseudo reg number.
2051 They give nonzero only if REGNO is a hard reg of the suitable class
2052 or a pseudo reg currently allocated to a suitable hard reg.
2053 Since they use reg_renumber, they are safe only once reg_renumber
2054 has been allocated, which happens in local-alloc.c. */
2055
2056 #define REGNO_OK_FOR_INDEX_P(REGNO) \
2057 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32 \
2058 || (REGNO) == FRAME_POINTER_REGNUM \
2059 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
2060
2061 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
2062
2063 #define REGNO_OK_FOR_FP_P(REGNO) \
2064 (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
2065 || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
2066 #define REGNO_OK_FOR_CCFP_P(REGNO) \
2067 (TARGET_V9 \
2068 && (((unsigned) (REGNO) - 96 < (unsigned)4) \
2069 || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
2070
2071 /* Now macros that check whether X is a register and also,
2072 strictly, whether it is in a specified class.
2073
2074 These macros are specific to the SPARC, and may be used only
2075 in code for printing assembler insns and in conditions for
2076 define_optimization. */
2077
2078 /* 1 if X is an fp register. */
2079
2080 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
2081
2082 /* Is X, a REG, an in or global register? i.e. is regno 0..7 or 24..31 */
2083 #define IN_OR_GLOBAL_P(X) (REGNO (X) < 8 || (REGNO (X) >= 24 && REGNO (X) <= 31))
2084 \f
2085 /* Maximum number of registers that can appear in a valid memory address. */
2086
2087 #define MAX_REGS_PER_ADDRESS 2
2088
2089 /* Recognize any constant value that is a valid address.
2090 When PIC, we do not accept an address that would require a scratch reg
2091 to load into a register. */
2092
2093 #define CONSTANT_ADDRESS_P(X) \
2094 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
2095 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
2096 || (GET_CODE (X) == CONST \
2097 && ! (flag_pic && pic_address_needs_scratch (X))))
2098
2099 /* Define this, so that when PIC, reload won't try to reload invalid
2100 addresses which require two reload registers. */
2101
2102 #define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
2103
2104 /* Nonzero if the constant value X is a legitimate general operand.
2105 Anything can be made to work except floating point constants.
2106 If TARGET_VIS, 0.0 can be made to work as well. */
2107
2108 #define LEGITIMATE_CONSTANT_P(X) \
2109 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode || \
2110 (TARGET_VIS && \
2111 (GET_MODE (X) == SFmode || GET_MODE (X) == DFmode || \
2112 GET_MODE (X) == TFmode) && \
2113 fp_zero_operand (X, GET_MODE (X))))
2114
2115 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2116 and check its validity for a certain class.
2117 We have two alternate definitions for each of them.
2118 The usual definition accepts all pseudo regs; the other rejects
2119 them unless they have been allocated suitable hard regs.
2120 The symbol REG_OK_STRICT causes the latter definition to be used.
2121
2122 Most source files want to accept pseudo regs in the hope that
2123 they will get allocated to the class that the insn wants them to be in.
2124 Source files for reload pass need to be strict.
2125 After reload, it makes no difference, since pseudo regs have
2126 been eliminated by then. */
2127
2128 /* Optional extra constraints for this machine.
2129
2130 'Q' handles floating point constants which can be moved into
2131 an integer register with a single sethi instruction.
2132
2133 'R' handles floating point constants which can be moved into
2134 an integer register with a single mov instruction.
2135
2136 'S' handles floating point constants which can be moved into
2137 an integer register using a high/lo_sum sequence.
2138
2139 'T' handles memory addresses where the alignment is known to
2140 be at least 8 bytes.
2141
2142 `U' handles all pseudo registers or a hard even numbered
2143 integer register, needed for ldd/std instructions.
2144
2145 'W' handles the memory operand when moving operands in/out
2146 of 'e' constraint floating point registers. */
2147
2148 #ifndef REG_OK_STRICT
2149
2150 /* Nonzero if X is a hard reg that can be used as an index
2151 or if it is a pseudo reg. */
2152 #define REG_OK_FOR_INDEX_P(X) \
2153 (REGNO (X) < 32 \
2154 || REGNO (X) == FRAME_POINTER_REGNUM \
2155 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
2156
2157 /* Nonzero if X is a hard reg that can be used as a base reg
2158 or if it is a pseudo reg. */
2159 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_INDEX_P (X)
2160
2161 /* 'T', 'U' are for aligned memory loads which aren't needed for arch64.
2162 'W' is like 'T' but is assumed true on arch64.
2163
2164 Remember to accept pseudo-registers for memory constraints if reload is
2165 in progress. */
2166
2167 #define EXTRA_CONSTRAINT(OP, C) \
2168 sparc_extra_constraint_check(OP, C, 0)
2169
2170 #else
2171
2172 /* Nonzero if X is a hard reg that can be used as an index. */
2173 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
2174 /* Nonzero if X is a hard reg that can be used as a base reg. */
2175 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
2176
2177 #define EXTRA_CONSTRAINT(OP, C) \
2178 sparc_extra_constraint_check(OP, C, 1)
2179
2180 #endif
2181 \f
2182 /* Should gcc use [%reg+%lo(xx)+offset] addresses? */
2183
2184 #ifdef HAVE_AS_OFFSETABLE_LO10
2185 #define USE_AS_OFFSETABLE_LO10 1
2186 #else
2187 #define USE_AS_OFFSETABLE_LO10 0
2188 #endif
2189 \f
2190 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2191 that is a valid memory address for an instruction.
2192 The MODE argument is the machine mode for the MEM expression
2193 that wants to use this address.
2194
2195 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
2196 ordinarily. This changes a bit when generating PIC.
2197
2198 If you change this, execute "rm explow.o recog.o reload.o". */
2199
2200 #define RTX_OK_FOR_BASE_P(X) \
2201 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
2202 || (GET_CODE (X) == SUBREG \
2203 && GET_CODE (SUBREG_REG (X)) == REG \
2204 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
2205
2206 #define RTX_OK_FOR_INDEX_P(X) \
2207 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
2208 || (GET_CODE (X) == SUBREG \
2209 && GET_CODE (SUBREG_REG (X)) == REG \
2210 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
2211
2212 #define RTX_OK_FOR_OFFSET_P(X) \
2213 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000 - 8)
2214
2215 #define RTX_OK_FOR_OLO10_P(X) \
2216 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0xc00 - 8)
2217
2218 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2219 { if (RTX_OK_FOR_BASE_P (X)) \
2220 goto ADDR; \
2221 else if (GET_CODE (X) == PLUS) \
2222 { \
2223 register rtx op0 = XEXP (X, 0); \
2224 register rtx op1 = XEXP (X, 1); \
2225 if (flag_pic && op0 == pic_offset_table_rtx) \
2226 { \
2227 if (RTX_OK_FOR_BASE_P (op1)) \
2228 goto ADDR; \
2229 else if (flag_pic == 1 \
2230 && GET_CODE (op1) != REG \
2231 && GET_CODE (op1) != LO_SUM \
2232 && GET_CODE (op1) != MEM \
2233 && (GET_CODE (op1) != CONST_INT \
2234 || SMALL_INT (op1))) \
2235 goto ADDR; \
2236 } \
2237 else if (RTX_OK_FOR_BASE_P (op0)) \
2238 { \
2239 if ((RTX_OK_FOR_INDEX_P (op1) \
2240 /* We prohibit REG + REG for TFmode when \
2241 there are no instructions which accept \
2242 REG+REG instructions. We do this \
2243 because REG+REG is not an offsetable \
2244 address. If we get the situation \
2245 in reload where source and destination \
2246 of a movtf pattern are both MEMs with \
2247 REG+REG address, then only one of them \
2248 gets converted to an offsetable \
2249 address. */ \
2250 && (MODE != TFmode \
2251 || (TARGET_FPU && TARGET_ARCH64 \
2252 && TARGET_V9 \
2253 && TARGET_HARD_QUAD)) \
2254 /* We prohibit REG + REG on ARCH32 if \
2255 not optimizing for DFmode/DImode \
2256 because then mem_min_alignment is \
2257 likely to be zero after reload and the \
2258 forced split would lack a matching \
2259 splitter pattern. */ \
2260 && (TARGET_ARCH64 || optimize \
2261 || (MODE != DFmode \
2262 && MODE != DImode))) \
2263 || RTX_OK_FOR_OFFSET_P (op1)) \
2264 goto ADDR; \
2265 } \
2266 else if (RTX_OK_FOR_BASE_P (op1)) \
2267 { \
2268 if ((RTX_OK_FOR_INDEX_P (op0) \
2269 /* See the previous comment. */ \
2270 && (MODE != TFmode \
2271 || (TARGET_FPU && TARGET_ARCH64 \
2272 && TARGET_V9 \
2273 && TARGET_HARD_QUAD)) \
2274 && (TARGET_ARCH64 || optimize \
2275 || (MODE != DFmode \
2276 && MODE != DImode))) \
2277 || RTX_OK_FOR_OFFSET_P (op0)) \
2278 goto ADDR; \
2279 } \
2280 else if (USE_AS_OFFSETABLE_LO10 \
2281 && GET_CODE (op0) == LO_SUM \
2282 && TARGET_ARCH64 \
2283 && ! TARGET_CM_MEDMID \
2284 && RTX_OK_FOR_OLO10_P (op1)) \
2285 { \
2286 register rtx op00 = XEXP (op0, 0); \
2287 register rtx op01 = XEXP (op0, 1); \
2288 if (RTX_OK_FOR_BASE_P (op00) \
2289 && CONSTANT_P (op01)) \
2290 goto ADDR; \
2291 } \
2292 else if (USE_AS_OFFSETABLE_LO10 \
2293 && GET_CODE (op1) == LO_SUM \
2294 && TARGET_ARCH64 \
2295 && ! TARGET_CM_MEDMID \
2296 && RTX_OK_FOR_OLO10_P (op0)) \
2297 { \
2298 register rtx op10 = XEXP (op1, 0); \
2299 register rtx op11 = XEXP (op1, 1); \
2300 if (RTX_OK_FOR_BASE_P (op10) \
2301 && CONSTANT_P (op11)) \
2302 goto ADDR; \
2303 } \
2304 } \
2305 else if (GET_CODE (X) == LO_SUM) \
2306 { \
2307 register rtx op0 = XEXP (X, 0); \
2308 register rtx op1 = XEXP (X, 1); \
2309 if (RTX_OK_FOR_BASE_P (op0) \
2310 && CONSTANT_P (op1) \
2311 /* We can't allow TFmode, because an offset \
2312 greater than or equal to the alignment (8) \
2313 may cause the LO_SUM to overflow if !v9. */\
2314 && (MODE != TFmode || TARGET_V9)) \
2315 goto ADDR; \
2316 } \
2317 else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
2318 goto ADDR; \
2319 }
2320 \f
2321 /* Try machine-dependent ways of modifying an illegitimate address
2322 to be legitimate. If we find one, return the new, valid address.
2323 This macro is used in only one place: `memory_address' in explow.c.
2324
2325 OLDX is the address as it was before break_out_memory_refs was called.
2326 In some cases it is useful to look at this to decide what needs to be done.
2327
2328 MODE and WIN are passed so that this macro can use
2329 GO_IF_LEGITIMATE_ADDRESS.
2330
2331 It is always safe for this macro to do nothing. It exists to recognize
2332 opportunities to optimize the output. */
2333
2334 /* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
2335 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2336 { rtx sparc_x = (X); \
2337 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
2338 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 1), \
2339 force_operand (XEXP (X, 0), NULL_RTX)); \
2340 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
2341 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2342 force_operand (XEXP (X, 1), NULL_RTX)); \
2343 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
2344 (X) = gen_rtx_PLUS (Pmode, force_operand (XEXP (X, 0), NULL_RTX),\
2345 XEXP (X, 1)); \
2346 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
2347 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2348 force_operand (XEXP (X, 1), NULL_RTX)); \
2349 if (sparc_x != (X) && memory_address_p (MODE, X)) \
2350 goto WIN; \
2351 if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0); \
2352 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
2353 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2354 copy_to_mode_reg (Pmode, XEXP (X, 1))); \
2355 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
2356 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 1), \
2357 copy_to_mode_reg (Pmode, XEXP (X, 0))); \
2358 else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
2359 || GET_CODE (X) == LABEL_REF) \
2360 (X) = copy_to_suggested_reg (X, NULL_RTX, Pmode); \
2361 if (memory_address_p (MODE, X)) \
2362 goto WIN; }
2363
2364 /* Try a machine-dependent way of reloading an illegitimate address
2365 operand. If we find one, push the reload and jump to WIN. This
2366 macro is used in only one place: `find_reloads_address' in reload.c.
2367
2368 For Sparc 32, we wish to handle addresses by splitting them into
2369 HIGH+LO_SUM pairs, retaining the LO_SUM in the memory reference.
2370 This cuts the number of extra insns by one.
2371
2372 Do nothing when generating PIC code and the address is a
2373 symbolic operand or requires a scratch register. */
2374
2375 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2376 do { \
2377 /* Decompose SImode constants into hi+lo_sum. We do have to \
2378 rerecognize what we produce, so be careful. */ \
2379 if (CONSTANT_P (X) \
2380 && (MODE != TFmode || TARGET_ARCH64) \
2381 && GET_MODE (X) == SImode \
2382 && GET_CODE (X) != LO_SUM && GET_CODE (X) != HIGH \
2383 && ! (flag_pic \
2384 && (symbolic_operand (X, Pmode) \
2385 || pic_address_needs_scratch (X))) \
2386 && sparc_cmodel <= CM_MEDLOW) \
2387 { \
2388 X = gen_rtx_LO_SUM (GET_MODE (X), \
2389 gen_rtx_HIGH (GET_MODE (X), X), X); \
2390 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL, \
2391 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
2392 OPNUM, TYPE); \
2393 goto WIN; \
2394 } \
2395 /* ??? 64-bit reloads. */ \
2396 } while (0)
2397
2398 /* Go to LABEL if ADDR (a legitimate address expression)
2399 has an effect that depends on the machine mode it is used for.
2400 On the SPARC this is never true. */
2401
2402 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
2403
2404 /* If we are referencing a function make the SYMBOL_REF special.
2405 In the Embedded Medium/Anywhere code model, %g4 points to the data segment
2406 so we must not add it to function addresses. */
2407
2408 #define ENCODE_SECTION_INFO(DECL, FIRST) \
2409 do { \
2410 if (TARGET_CM_EMBMEDANY && TREE_CODE (DECL) == FUNCTION_DECL) \
2411 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
2412 } while (0)
2413 \f
2414 /* Specify the machine mode that this machine uses
2415 for the index in the tablejump instruction. */
2416 /* If we ever implement any of the full models (such as CM_FULLANY),
2417 this has to be DImode in that case */
2418 #ifdef HAVE_GAS_SUBSECTION_ORDERING
2419 #define CASE_VECTOR_MODE \
2420 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
2421 #else
2422 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
2423 we have to sign extend which slows things down. */
2424 #define CASE_VECTOR_MODE \
2425 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
2426 #endif
2427
2428 /* Define as C expression which evaluates to nonzero if the tablejump
2429 instruction expects the table to contain offsets from the address of the
2430 table.
2431 Do not define this if the table should contain absolute addresses. */
2432 /* #define CASE_VECTOR_PC_RELATIVE 1 */
2433
2434 /* Define this as 1 if `char' should by default be signed; else as 0. */
2435 #define DEFAULT_SIGNED_CHAR 1
2436
2437 /* Max number of bytes we can move from memory to memory
2438 in one reasonably fast instruction. */
2439 #define MOVE_MAX 8
2440
2441 #if 0 /* Sun 4 has matherr, so this is no good. */
2442 /* This is the value of the error code EDOM for this machine,
2443 used by the sqrt instruction. */
2444 #define TARGET_EDOM 33
2445
2446 /* This is how to refer to the variable errno. */
2447 #define GEN_ERRNO_RTX \
2448 gen_rtx_MEM (SImode, gen_rtx_SYMBOL_REF (Pmode, "errno"))
2449 #endif /* 0 */
2450
2451 /* Define if operations between registers always perform the operation
2452 on the full register even if a narrower mode is specified. */
2453 #define WORD_REGISTER_OPERATIONS
2454
2455 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2456 will either zero-extend or sign-extend. The value of this macro should
2457 be the code that says which one of the two operations is implicitly
2458 done, NIL if none. */
2459 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2460
2461 /* Nonzero if access to memory by bytes is slow and undesirable.
2462 For RISC chips, it means that access to memory by bytes is no
2463 better than access by words when possible, so grab a whole word
2464 and maybe make use of that. */
2465 #define SLOW_BYTE_ACCESS 1
2466
2467 /* We assume that the store-condition-codes instructions store 0 for false
2468 and some other value for true. This is the value stored for true. */
2469
2470 #define STORE_FLAG_VALUE 1
2471
2472 /* When a prototype says `char' or `short', really pass an `int'. */
2473 #define PROMOTE_PROTOTYPES (TARGET_ARCH32)
2474
2475 /* Define this to be nonzero if shift instructions ignore all but the low-order
2476 few bits. */
2477 #define SHIFT_COUNT_TRUNCATED 1
2478
2479 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2480 is done just by pretending it is already truncated. */
2481 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2482
2483 /* Specify the machine mode that pointers have.
2484 After generation of rtl, the compiler makes no further distinction
2485 between pointers and any other objects of this machine mode. */
2486 #define Pmode (TARGET_ARCH64 ? DImode : SImode)
2487
2488 /* Generate calls to memcpy, memcmp and memset. */
2489 #define TARGET_MEM_FUNCTIONS
2490
2491 /* Add any extra modes needed to represent the condition code.
2492
2493 On the Sparc, we have a "no-overflow" mode which is used when an add or
2494 subtract insn is used to set the condition code. Different branches are
2495 used in this case for some operations.
2496
2497 We also have two modes to indicate that the relevant condition code is
2498 in the floating-point condition code register. One for comparisons which
2499 will generate an exception if the result is unordered (CCFPEmode) and
2500 one for comparisons which will never trap (CCFPmode).
2501
2502 CCXmode and CCX_NOOVmode are only used by v9. */
2503
2504 #define EXTRA_CC_MODES \
2505 CC(CCXmode, "CCX") \
2506 CC(CC_NOOVmode, "CC_NOOV") \
2507 CC(CCX_NOOVmode, "CCX_NOOV") \
2508 CC(CCFPmode, "CCFP") \
2509 CC(CCFPEmode, "CCFPE")
2510
2511 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2512 return the mode to be used for the comparison. For floating-point,
2513 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand
2514 is a PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
2515 processing is needed. */
2516 #define SELECT_CC_MODE(OP,X,Y) select_cc_mode ((OP), (X), (Y))
2517
2518 /* Return non-zero if MODE implies a floating point inequality can be
2519 reversed. For Sparc this is always true because we have a full
2520 compliment of ordered and unordered comparisons, but until generic
2521 code knows how to reverse it correctly we keep the old definition. */
2522 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
2523
2524 /* A function address in a call instruction for indexing purposes. */
2525 #define FUNCTION_MODE Pmode
2526
2527 /* Define this if addresses of constant functions
2528 shouldn't be put through pseudo regs where they can be cse'd.
2529 Desirable on machines where ordinary constants are expensive
2530 but a CALL with constant address is cheap. */
2531 #define NO_FUNCTION_CSE
2532
2533 /* alloca should avoid clobbering the old register save area. */
2534 #define SETJMP_VIA_SAVE_AREA
2535
2536 /* Define subroutines to call to handle multiply and divide.
2537 Use the subroutines that Sun's library provides.
2538 The `*' prevents an underscore from being prepended by the compiler. */
2539
2540 #define DIVSI3_LIBCALL "*.div"
2541 #define UDIVSI3_LIBCALL "*.udiv"
2542 #define MODSI3_LIBCALL "*.rem"
2543 #define UMODSI3_LIBCALL "*.urem"
2544 /* .umul is a little faster than .mul. */
2545 #define MULSI3_LIBCALL "*.umul"
2546
2547 /* Define library calls for quad FP operations. These are all part of the
2548 SPARC 32bit ABI. */
2549 #define ADDTF3_LIBCALL "_Q_add"
2550 #define SUBTF3_LIBCALL "_Q_sub"
2551 #define NEGTF2_LIBCALL "_Q_neg"
2552 #define MULTF3_LIBCALL "_Q_mul"
2553 #define DIVTF3_LIBCALL "_Q_div"
2554 #define FLOATSITF2_LIBCALL "_Q_itoq"
2555 #define FIX_TRUNCTFSI2_LIBCALL "_Q_qtoi"
2556 #define FIXUNS_TRUNCTFSI2_LIBCALL "_Q_qtou"
2557 #define EXTENDSFTF2_LIBCALL "_Q_stoq"
2558 #define TRUNCTFSF2_LIBCALL "_Q_qtos"
2559 #define EXTENDDFTF2_LIBCALL "_Q_dtoq"
2560 #define TRUNCTFDF2_LIBCALL "_Q_qtod"
2561 #define EQTF2_LIBCALL "_Q_feq"
2562 #define NETF2_LIBCALL "_Q_fne"
2563 #define GTTF2_LIBCALL "_Q_fgt"
2564 #define GETF2_LIBCALL "_Q_fge"
2565 #define LTTF2_LIBCALL "_Q_flt"
2566 #define LETF2_LIBCALL "_Q_fle"
2567
2568 /* We can define the TFmode sqrt optab only if TARGET_FPU. This is because
2569 with soft-float, the SFmode and DFmode sqrt instructions will be absent,
2570 and the compiler will notice and try to use the TFmode sqrt instruction
2571 for calls to the builtin function sqrt, but this fails. */
2572 #define INIT_TARGET_OPTABS \
2573 do { \
2574 if (TARGET_ARCH32) \
2575 { \
2576 add_optab->handlers[(int) TFmode].libfunc \
2577 = init_one_libfunc (ADDTF3_LIBCALL); \
2578 sub_optab->handlers[(int) TFmode].libfunc \
2579 = init_one_libfunc (SUBTF3_LIBCALL); \
2580 neg_optab->handlers[(int) TFmode].libfunc \
2581 = init_one_libfunc (NEGTF2_LIBCALL); \
2582 smul_optab->handlers[(int) TFmode].libfunc \
2583 = init_one_libfunc (MULTF3_LIBCALL); \
2584 sdiv_optab->handlers[(int) TFmode].libfunc \
2585 = init_one_libfunc (DIVTF3_LIBCALL); \
2586 eqtf2_libfunc = init_one_libfunc (EQTF2_LIBCALL); \
2587 netf2_libfunc = init_one_libfunc (NETF2_LIBCALL); \
2588 gttf2_libfunc = init_one_libfunc (GTTF2_LIBCALL); \
2589 getf2_libfunc = init_one_libfunc (GETF2_LIBCALL); \
2590 lttf2_libfunc = init_one_libfunc (LTTF2_LIBCALL); \
2591 letf2_libfunc = init_one_libfunc (LETF2_LIBCALL); \
2592 trunctfsf2_libfunc = init_one_libfunc (TRUNCTFSF2_LIBCALL); \
2593 trunctfdf2_libfunc = init_one_libfunc (TRUNCTFDF2_LIBCALL); \
2594 extendsftf2_libfunc = init_one_libfunc (EXTENDSFTF2_LIBCALL); \
2595 extenddftf2_libfunc = init_one_libfunc (EXTENDDFTF2_LIBCALL); \
2596 floatsitf_libfunc = init_one_libfunc (FLOATSITF2_LIBCALL); \
2597 fixtfsi_libfunc = init_one_libfunc (FIX_TRUNCTFSI2_LIBCALL); \
2598 fixunstfsi_libfunc \
2599 = init_one_libfunc (FIXUNS_TRUNCTFSI2_LIBCALL); \
2600 if (TARGET_FPU) \
2601 sqrt_optab->handlers[(int) TFmode].libfunc \
2602 = init_one_libfunc ("_Q_sqrt"); \
2603 } \
2604 INIT_SUBTARGET_OPTABS; \
2605 } while (0)
2606
2607 /* This is meant to be redefined in the host dependent files */
2608 #define INIT_SUBTARGET_OPTABS
2609
2610 /* Nonzero if a floating point comparison library call for
2611 mode MODE that will return a boolean value. Zero if one
2612 of the libgcc2 functions is used. */
2613 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
2614
2615 /* Compute the cost of computing a constant rtl expression RTX
2616 whose rtx-code is CODE. The body of this macro is a portion
2617 of a switch statement. If the code is computed here,
2618 return it with a return statement. Otherwise, break from the switch. */
2619
2620 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
2621 case CONST_INT: \
2622 if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \
2623 return 0; \
2624 case HIGH: \
2625 return 2; \
2626 case CONST: \
2627 case LABEL_REF: \
2628 case SYMBOL_REF: \
2629 return 4; \
2630 case CONST_DOUBLE: \
2631 if (GET_MODE (RTX) == DImode) \
2632 if ((XINT (RTX, 3) == 0 \
2633 && (unsigned) XINT (RTX, 2) < 0x1000) \
2634 || (XINT (RTX, 3) == -1 \
2635 && XINT (RTX, 2) < 0 \
2636 && XINT (RTX, 2) >= -0x1000)) \
2637 return 0; \
2638 return 8;
2639
2640 #define ADDRESS_COST(RTX) 1
2641
2642 /* Compute extra cost of moving data between one register class
2643 and another. */
2644 #define GENERAL_OR_I64(C) ((C) == GENERAL_REGS || (C) == I64_REGS)
2645 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2646 (((FP_REG_CLASS_P (CLASS1) && GENERAL_OR_I64 (CLASS2)) \
2647 || (GENERAL_OR_I64 (CLASS1) && FP_REG_CLASS_P (CLASS2)) \
2648 || (CLASS1) == FPCC_REGS || (CLASS2) == FPCC_REGS) \
2649 ? ((sparc_cpu == PROCESSOR_ULTRASPARC \
2650 || sparc_cpu == PROCESSOR_ULTRASPARC3) ? 12 : 6) : 2)
2651
2652 /* Provide the cost of a branch. For pre-v9 processors we use
2653 a value of 3 to take into account the potential annulling of
2654 the delay slot (which ends up being a bubble in the pipeline slot)
2655 plus a cycle to take into consideration the instruction cache
2656 effects.
2657
2658 On v9 and later, which have branch prediction facilities, we set
2659 it to the depth of the pipeline as that is the cost of a
2660 mispredicted branch. */
2661
2662 #define BRANCH_COST \
2663 ((sparc_cpu == PROCESSOR_V9 \
2664 || sparc_cpu == PROCESSOR_ULTRASPARC) \
2665 ? 7 \
2666 : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
2667 ? 9 : 3))
2668
2669 /* Provide the costs of a rtl expression. This is in the body of a
2670 switch on CODE. The purpose for the cost of MULT is to encourage
2671 `synth_mult' to find a synthetic multiply when reasonable.
2672
2673 If we need more than 12 insns to do a multiply, then go out-of-line,
2674 since the call overhead will be < 10% of the cost of the multiply. */
2675
2676 #define RTX_COSTS(X,CODE,OUTER_CODE) \
2677 case MULT: \
2678 if (sparc_cpu == PROCESSOR_ULTRASPARC) \
2679 return (GET_MODE (X) == DImode ? \
2680 COSTS_N_INSNS (34) : COSTS_N_INSNS (19)); \
2681 if (sparc_cpu == PROCESSOR_ULTRASPARC3) \
2682 return COSTS_N_INSNS (6); \
2683 return TARGET_HARD_MUL ? COSTS_N_INSNS (5) : COSTS_N_INSNS (25); \
2684 case DIV: \
2685 case UDIV: \
2686 case MOD: \
2687 case UMOD: \
2688 if (sparc_cpu == PROCESSOR_ULTRASPARC) \
2689 return (GET_MODE (X) == DImode ? \
2690 COSTS_N_INSNS (68) : COSTS_N_INSNS (37)); \
2691 if (sparc_cpu == PROCESSOR_ULTRASPARC3) \
2692 return (GET_MODE (X) == DImode ? \
2693 COSTS_N_INSNS (71) : COSTS_N_INSNS (40)); \
2694 return COSTS_N_INSNS (25); \
2695 /* Make FLOAT and FIX more expensive than CONST_DOUBLE,\
2696 so that cse will favor the latter. */ \
2697 case FLOAT: \
2698 case FIX: \
2699 return 19;
2700
2701 #define PREFETCH_BLOCK \
2702 ((sparc_cpu == PROCESSOR_ULTRASPARC \
2703 || sparc_cpu == PROCESSOR_ULTRASPARC3) \
2704 ? 64 : 32)
2705
2706 #define SIMULTANEOUS_PREFETCHES \
2707 ((sparc_cpu == PROCESSOR_ULTRASPARC) \
2708 ? 2 \
2709 : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
2710 ? 8 : 3))
2711 \f
2712 /* Control the assembler format that we output. */
2713
2714 /* Output at beginning of assembler file. */
2715
2716 #define ASM_FILE_START(file)
2717
2718 /* A C string constant describing how to begin a comment in the target
2719 assembler language. The compiler assumes that the comment will end at
2720 the end of the line. */
2721
2722 #define ASM_COMMENT_START "!"
2723
2724 /* Output to assembler file text saying following lines
2725 may contain character constants, extra white space, comments, etc. */
2726
2727 #define ASM_APP_ON ""
2728
2729 /* Output to assembler file text saying following lines
2730 no longer contain unusual constructs. */
2731
2732 #define ASM_APP_OFF ""
2733
2734 /* ??? Try to make the style consistent here (_OP?). */
2735
2736 #define ASM_FLOAT ".single"
2737 #define ASM_DOUBLE ".double"
2738 #define ASM_LONGDOUBLE ".xxx" /* ??? Not known (or used yet). */
2739
2740 /* How to refer to registers in assembler output.
2741 This sequence is indexed by compiler's hard-register-number (see above). */
2742
2743 #define REGISTER_NAMES \
2744 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
2745 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
2746 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
2747 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
2748 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
2749 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
2750 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
2751 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", \
2752 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39", \
2753 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47", \
2754 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55", \
2755 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63", \
2756 "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp" }
2757
2758 /* Define additional names for use in asm clobbers and asm declarations. */
2759
2760 #define ADDITIONAL_REGISTER_NAMES \
2761 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
2762
2763 /* On Sun 4, this limit is 2048. We use 1000 to be safe, since the length
2764 can run past this up to a continuation point. Once we used 1500, but
2765 a single entry in C++ can run more than 500 bytes, due to the length of
2766 mangled symbol names. dbxout.c should really be fixed to do
2767 continuations when they are actually needed instead of trying to
2768 guess... */
2769 #define DBX_CONTIN_LENGTH 1000
2770
2771 /* This is how to output the definition of a user-level label named NAME,
2772 such as the label on a static function or variable NAME. */
2773
2774 #define ASM_OUTPUT_LABEL(FILE,NAME) \
2775 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
2776
2777 /* This is how to output a command to make the user-level label named NAME
2778 defined for reference from other files. */
2779
2780 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
2781 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
2782
2783 /* The prefix to add to user-visible assembler symbols. */
2784
2785 #define USER_LABEL_PREFIX "_"
2786
2787 /* This is how to output a definition of an internal numbered label where
2788 PREFIX is the class of label and NUM is the number within the class. */
2789
2790 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
2791 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
2792
2793 /* This is how to store into the string LABEL
2794 the symbol_ref name of an internal numbered label where
2795 PREFIX is the class of label and NUM is the number within the class.
2796 This is suitable for output with `assemble_name'. */
2797
2798 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2799 sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
2800
2801 /* This is how we hook in and defer the case-vector until the end of
2802 the function. */
2803 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
2804 sparc_defer_case_vector ((LAB),(VEC), 0)
2805
2806 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
2807 sparc_defer_case_vector ((LAB),(VEC), 1)
2808
2809 /* This is how to output an element of a case-vector that is absolute. */
2810
2811 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2812 do { \
2813 char label[30]; \
2814 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
2815 if (CASE_VECTOR_MODE == SImode) \
2816 fprintf (FILE, "\t.word\t"); \
2817 else \
2818 fprintf (FILE, "\t.xword\t"); \
2819 assemble_name (FILE, label); \
2820 fputc ('\n', FILE); \
2821 } while (0)
2822
2823 /* This is how to output an element of a case-vector that is relative.
2824 (SPARC uses such vectors only when generating PIC.) */
2825
2826 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2827 do { \
2828 char label[30]; \
2829 ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE)); \
2830 if (CASE_VECTOR_MODE == SImode) \
2831 fprintf (FILE, "\t.word\t"); \
2832 else \
2833 fprintf (FILE, "\t.xword\t"); \
2834 assemble_name (FILE, label); \
2835 ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL)); \
2836 fputc ('-', FILE); \
2837 assemble_name (FILE, label); \
2838 fputc ('\n', FILE); \
2839 } while (0)
2840
2841 /* This is what to output before and after case-vector (both
2842 relative and absolute). If .subsection -1 works, we put case-vectors
2843 at the beginning of the current section. */
2844
2845 #ifdef HAVE_GAS_SUBSECTION_ORDERING
2846
2847 #define ASM_OUTPUT_ADDR_VEC_START(FILE) \
2848 fprintf(FILE, "\t.subsection\t-1\n")
2849
2850 #define ASM_OUTPUT_ADDR_VEC_END(FILE) \
2851 fprintf(FILE, "\t.previous\n")
2852
2853 #endif
2854
2855 /* This is how to output an assembler line
2856 that says to advance the location counter
2857 to a multiple of 2**LOG bytes. */
2858
2859 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2860 if ((LOG) != 0) \
2861 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
2862
2863 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
2864 fprintf (FILE, "\t.skip %u\n", (SIZE))
2865
2866 /* This says how to output an assembler line
2867 to define a global common symbol. */
2868
2869 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
2870 ( fputs ("\t.common ", (FILE)), \
2871 assemble_name ((FILE), (NAME)), \
2872 fprintf ((FILE), ",%u,\"bss\"\n", (SIZE)))
2873
2874 /* This says how to output an assembler line to define a local common
2875 symbol. */
2876
2877 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
2878 ( fputs ("\t.reserve ", (FILE)), \
2879 assemble_name ((FILE), (NAME)), \
2880 fprintf ((FILE), ",%u,\"bss\",%u\n", \
2881 (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
2882
2883 /* A C statement (sans semicolon) to output to the stdio stream
2884 FILE the assembler definition of uninitialized global DECL named
2885 NAME whose size is SIZE bytes and alignment is ALIGN bytes.
2886 Try to use asm_output_aligned_bss to implement this macro. */
2887
2888 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
2889 do { \
2890 fputs (".globl ", (FILE)); \
2891 assemble_name ((FILE), (NAME)); \
2892 fputs ("\n", (FILE)); \
2893 ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \
2894 } while (0)
2895
2896 /* Store in OUTPUT a string (made with alloca) containing
2897 an assembler-name for a local static variable named NAME.
2898 LABELNO is an integer which is different for each call. */
2899
2900 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2901 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2902 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2903
2904 #define IDENT_ASM_OP "\t.ident\t"
2905
2906 /* Output #ident as a .ident. */
2907
2908 #define ASM_OUTPUT_IDENT(FILE, NAME) \
2909 fprintf (FILE, "%s\"%s\"\n", IDENT_ASM_OP, NAME);
2910
2911 /* Output code to add DELTA to the first argument, and then jump to FUNCTION.
2912 Used for C++ multiple inheritance. */
2913 #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
2914 do { \
2915 int reg = 0; \
2916 \
2917 if (TARGET_ARCH64 \
2918 && aggregate_value_p (TREE_TYPE (TREE_TYPE (FUNCTION)))) \
2919 reg = 1; \
2920 if ((DELTA) >= 4096 || (DELTA) < -4096) \
2921 fprintf (FILE, "\tset\t%d, %%g1\n\tadd\t%%o%d, %%g1, %%o%d\n", \
2922 (int)(DELTA), reg, reg); \
2923 else \
2924 fprintf (FILE, "\tadd\t%%o%d, %d, %%o%d\n", reg, (int)(DELTA), reg);\
2925 fprintf (FILE, "\tor\t%%o7, %%g0, %%g1\n"); \
2926 fprintf (FILE, "\tcall\t"); \
2927 assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
2928 fprintf (FILE, ", 0\n"); \
2929 fprintf (FILE, "\t or\t%%g1, %%g0, %%o7\n"); \
2930 } while (0)
2931
2932 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2933 ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '(' || (CHAR) == '_')
2934
2935 /* Print operand X (an rtx) in assembler syntax to file FILE.
2936 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2937 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2938
2939 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2940
2941 /* Print a memory address as an operand to reference that memory location. */
2942
2943 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2944 { register rtx base, index = 0; \
2945 int offset = 0; \
2946 register rtx addr = ADDR; \
2947 if (GET_CODE (addr) == REG) \
2948 fputs (reg_names[REGNO (addr)], FILE); \
2949 else if (GET_CODE (addr) == PLUS) \
2950 { \
2951 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
2952 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
2953 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
2954 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
2955 else \
2956 base = XEXP (addr, 0), index = XEXP (addr, 1); \
2957 if (GET_CODE (base) == LO_SUM) \
2958 { \
2959 if (! USE_AS_OFFSETABLE_LO10 \
2960 || TARGET_ARCH32 \
2961 || TARGET_CM_MEDMID) \
2962 abort (); \
2963 output_operand (XEXP (base, 0), 0); \
2964 fputs ("+%lo(", FILE); \
2965 output_address (XEXP (base, 1)); \
2966 fprintf (FILE, ")+%d", offset); \
2967 } \
2968 else \
2969 { \
2970 fputs (reg_names[REGNO (base)], FILE); \
2971 if (index == 0) \
2972 fprintf (FILE, "%+d", offset); \
2973 else if (GET_CODE (index) == REG) \
2974 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
2975 else if (GET_CODE (index) == SYMBOL_REF \
2976 || GET_CODE (index) == CONST) \
2977 fputc ('+', FILE), output_addr_const (FILE, index); \
2978 else abort (); \
2979 } \
2980 } \
2981 else if (GET_CODE (addr) == MINUS \
2982 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
2983 { \
2984 output_addr_const (FILE, XEXP (addr, 0)); \
2985 fputs ("-(", FILE); \
2986 output_addr_const (FILE, XEXP (addr, 1)); \
2987 fputs ("-.)", FILE); \
2988 } \
2989 else if (GET_CODE (addr) == LO_SUM) \
2990 { \
2991 output_operand (XEXP (addr, 0), 0); \
2992 if (TARGET_CM_MEDMID) \
2993 fputs ("+%l44(", FILE); \
2994 else \
2995 fputs ("+%lo(", FILE); \
2996 output_address (XEXP (addr, 1)); \
2997 fputc (')', FILE); \
2998 } \
2999 else if (flag_pic && GET_CODE (addr) == CONST \
3000 && GET_CODE (XEXP (addr, 0)) == MINUS \
3001 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
3002 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
3003 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
3004 { \
3005 addr = XEXP (addr, 0); \
3006 output_addr_const (FILE, XEXP (addr, 0)); \
3007 /* Group the args of the second CONST in parenthesis. */ \
3008 fputs ("-(", FILE); \
3009 /* Skip past the second CONST--it does nothing for us. */\
3010 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
3011 /* Close the parenthesis. */ \
3012 fputc (')', FILE); \
3013 } \
3014 else \
3015 { \
3016 output_addr_const (FILE, addr); \
3017 } \
3018 }
3019
3020 /* Define the codes that are matched by predicates in sparc.c. */
3021
3022 #define PREDICATE_CODES \
3023 {"reg_or_0_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3024 {"fp_zero_operand", {CONST_DOUBLE}}, \
3025 {"fp_register_operand", {SUBREG, REG}}, \
3026 {"intreg_operand", {SUBREG, REG}}, \
3027 {"fcc_reg_operand", {REG}}, \
3028 {"fcc0_reg_operand", {REG}}, \
3029 {"icc_or_fcc_reg_operand", {REG}}, \
3030 {"restore_operand", {REG}}, \
3031 {"call_operand", {MEM}}, \
3032 {"call_operand_address", {SYMBOL_REF, LABEL_REF, CONST, CONST_DOUBLE, \
3033 ADDRESSOF, SUBREG, REG, PLUS, LO_SUM, CONST_INT}}, \
3034 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
3035 {"symbolic_memory_operand", {SUBREG, MEM}}, \
3036 {"label_ref_operand", {LABEL_REF}}, \
3037 {"sp64_medium_pic_operand", {CONST}}, \
3038 {"data_segment_operand", {SYMBOL_REF, PLUS, CONST}}, \
3039 {"text_segment_operand", {LABEL_REF, SYMBOL_REF, PLUS, CONST}}, \
3040 {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \
3041 {"splittable_symbolic_memory_operand", {MEM}}, \
3042 {"splittable_immediate_memory_operand", {MEM}}, \
3043 {"eq_or_neq", {EQ, NE}}, \
3044 {"normal_comp_operator", {GE, GT, LE, LT, GTU, LEU}}, \
3045 {"noov_compare_op", {NE, EQ, GE, GT, LE, LT, GEU, GTU, LEU, LTU}}, \
3046 {"noov_compare64_op", {NE, EQ, GE, GT, LE, LT, GEU, GTU, LEU, LTU}}, \
3047 {"v9_regcmp_op", {EQ, NE, GE, LT, LE, GT}}, \
3048 {"extend_op", {SIGN_EXTEND, ZERO_EXTEND}}, \
3049 {"cc_arithop", {AND, IOR, XOR}}, \
3050 {"cc_arithopn", {AND, IOR}}, \
3051 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
3052 {"arith_add_operand", {SUBREG, REG, CONST_INT}}, \
3053 {"arith11_operand", {SUBREG, REG, CONST_INT}}, \
3054 {"arith10_operand", {SUBREG, REG, CONST_INT}}, \
3055 {"arith_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3056 {"arith_double_add_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3057 {"arith11_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3058 {"arith10_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3059 {"small_int", {CONST_INT}}, \
3060 {"small_int_or_double", {CONST_INT, CONST_DOUBLE}}, \
3061 {"uns_small_int", {CONST_INT}}, \
3062 {"uns_arith_operand", {SUBREG, REG, CONST_INT}}, \
3063 {"clobbered_register", {REG}}, \
3064 {"input_operand", {SUBREG, REG, CONST_INT, MEM, CONST}}, \
3065 {"const64_operand", {CONST_INT, CONST_DOUBLE}}, \
3066 {"const64_high_operand", {CONST_INT, CONST_DOUBLE}},
3067
3068 /* The number of Pmode words for the setjmp buffer. */
3069 #define JMP_BUF_SIZE 12
3070
3071 #define DONT_ACCESS_GBLS_AFTER_EPILOGUE (flag_pic)
3072
This page took 0.207318 seconds and 5 git commands to generate.