]> gcc.gnu.org Git - gcc.git/blob - gcc/config/sparc/sparc.h
e76da8ac6203516fd2768bcac5e20b7b1b2105ed
[gcc.git] / gcc / config / sparc / sparc.h
1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 88, 89, 92, 94, 1995 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com).
4 64 bit SPARC V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
5 at Cygnus Support.
6
7 This file is part of GNU CC.
8
9 GNU CC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13
14 GNU CC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GNU CC; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 /* Note that some other tm.h files include this one and then override
24 many of the definitions that relate to assembler syntax. */
25
26 /* Sparc64 support has been added by trying to allow for a day when one
27 compiler can handle both v8 and v9. There are a few cases where this
28 isn't doable, but keep them to a minimum! Two macros are used to help out:
29 TARGET_V9 is used to select (at runtime) !v9-ness or v9-ness.
30 SPARCV9 is defined when compiling for sparc64 only.
31 In places where it is possible to choose between the two at runtime, use
32 TARGET_V9. In places where it is currently not possible to select
33 between the two at runtime use SPARCV9. Again, keep uses of SPARCV9 to a
34 minimum. No attempt is made to support both v8 and v9 in the v9 compiler.
35
36 If a combination v8/v9 compiler is too slow, it should always be possible
37 to #define TARGET_V9 as 0 (and potentially other v9-only options), and
38 #undef SPARCV9. */
39
40 /* What architecture we're compiling for. This must coincide with the
41 `arch_type' attribute in the .md file. The names were chosen to avoid
42 potential misunderstandings with the various 32 bit flavors (v7, v8, etc.):
43 if we used ARCH_V9 then we'd want to use something like ARCH_V8 but that
44 could be misleading and ARCH_NOTV9 sounds klunky. */
45 enum arch_type { ARCH_32BIT, ARCH_64BIT };
46 extern enum arch_type sparc_arch_type;
47
48 /* Names to predefine in the preprocessor for this target machine. */
49
50 /* ??? The GCC_NEW_VARARGS macro is now obsolete, because gcc always uses
51 the right varags.h file when bootstrapping. */
52
53 #ifdef SPARCV9
54 #define CPP_PREDEFINES \
55 "-Dsparc -Dsun -Dunix -D__sparc_v9__ \
56 -Asystem(unix) -Asystem(bsd) -Acpu(sparc64) -Amachine(sparc64)"
57 #else
58 #define CPP_PREDEFINES \
59 "-Dsparc -Dsun -Dunix -D__GCC_NEW_VARARGS__ \
60 -Asystem(unix) -Asystem(bsd) -Acpu(sparc) -Amachine(sparc)"
61 #endif
62
63 #define LIB_SPEC "%{!shared:%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} %{g:-lg}}"
64
65 /* Provide required defaults for linker -e and -d switches. */
66
67 #define LINK_SPEC \
68 "%{!shared:%{!nostdlib:%{!r*:%{!e*:-e start}}} -dc -dp} %{static:-Bstatic} \
69 %{assert*} %{shared:-assert pure-text}"
70
71 /* Special flags to the Sun-4 assembler when using pipe for input. */
72
73 #define ASM_SPEC " %| %{!pg:%{!p:%{fpic:-k} %{fPIC:-k}}}"
74
75 /* Define macros to distinguish architectures. */
76
77 #ifdef SPARCV9
78 #define CPP_SPEC "\
79 %{mint64:-D__INT_MAX__=9223372036854775807LL -D__LONG_MAX__=9223372036854775807LL} \
80 %{mlong64:-D__LONG_MAX__=9223372036854775807LL} \
81 "
82 #else
83 #define CPP_SPEC "\
84 %{msparclite:-D__sparclite__} \
85 %{mf930:-D__sparclite__} %{mf934:-D__sparclite__} \
86 %{mv8:-D__sparc_v8__} \
87 %{msupersparc:-D__supersparc__ -D__sparc_v8__} \
88 "
89 #endif
90
91 /* Prevent error on `-sun4' and `-target sun4' options. */
92 /* This used to translate -dalign to -malign, but that is no good
93 because it can't turn off the usual meaning of making debugging dumps. */
94
95 #define CC1_SPEC "%{sun4:} %{target:}"
96
97 #ifdef SPARCV9
98 #define PTRDIFF_TYPE "long long int"
99 #define SIZE_TYPE "long long unsigned int"
100 #else
101 #define PTRDIFF_TYPE "int"
102 /* In 2.4 it should work to delete this.
103 #define SIZE_TYPE "int" */
104 #endif
105
106 /* ??? This should be 32 bits for v9 but what can we do? */
107 #define WCHAR_TYPE "short unsigned int"
108 #define WCHAR_TYPE_SIZE 16
109 #define MAX_WCHAR_TYPE_SIZE 16
110
111 /* Show we can debug even without a frame pointer. */
112 #define CAN_DEBUG_WITHOUT_FP
113
114 /* To make profiling work with -f{pic,PIC}, we need to emit the profiling
115 code into the rtl. Also, if we are profiling, we cannot eliminate
116 the frame pointer (because the return address will get smashed). */
117
118 void sparc_override_options ();
119
120 #define OVERRIDE_OPTIONS \
121 do { \
122 if (profile_flag || profile_block_flag) \
123 { \
124 if (flag_pic) \
125 { \
126 char *pic_string = (flag_pic == 1) ? "-fpic" : "-fPIC"; \
127 warning ("%s and profiling conflict: disabling %s", \
128 pic_string, pic_string); \
129 flag_pic = 0; \
130 } \
131 flag_omit_frame_pointer = 0; \
132 } \
133 SUBTARGET_OVERRIDE_OPTIONS; \
134 sparc_override_options (); \
135 } while (0)
136
137 /* This is meant to be redefined in the host dependent files. */
138 #define SUBTARGET_OVERRIDE_OPTIONS
139
140 /* These compiler options take an argument. We ignore -target for now. */
141
142 #define WORD_SWITCH_TAKES_ARG(STR) \
143 (DEFAULT_WORD_SWITCH_TAKES_ARG (STR) \
144 || !strcmp (STR, "target") || !strcmp (STR, "assert"))
145
146 /* Print subsidiary information on the compiler version in use. */
147
148 #define TARGET_VERSION fprintf (stderr, " (sparc)");
149
150 /* Generate DBX debugging information. */
151
152 #define DBX_DEBUGGING_INFO
153 \f
154 /* Run-time compilation parameters selecting different hardware subsets. */
155
156 extern int target_flags;
157
158 /* Nonzero if we should generate code to use the fpu. */
159 #define MASK_FPU 1
160 #define TARGET_FPU (target_flags & MASK_FPU)
161
162 /* Nonzero if we should use FUNCTION_EPILOGUE. Otherwise, we
163 use fast return insns, but lose some generality. */
164 #define MASK_EPILOGUE 2
165 #define TARGET_EPILOGUE (target_flags & MASK_EPILOGUE)
166
167 /* Nonzero if we should assume that double pointers might be unaligned.
168 This can happen when linking gcc compiled code with other compilers,
169 because the ABI only guarantees 4 byte alignment. */
170 #define MASK_UNALIGNED_DOUBLES 4
171 #define TARGET_UNALIGNED_DOUBLES (target_flags & MASK_UNALIGNED_DOUBLES)
172
173 /* ??? Bits 0x18 are currently unused. */
174
175 /* Nonzero means we should schedule code for the TMS390Z55 SuperSparc chip. */
176 #define MASK_SUPERSPARC 0x20
177 #define TARGET_SUPERSPARC (target_flags & MASK_SUPERSPARC)
178
179 /* Nonzero means that we should generate code for a v8 sparc. */
180 #define MASK_V8 0x40
181 #define TARGET_V8 (target_flags & MASK_V8)
182
183 /* Nonzero means that we should generate code for a sparclite.
184 This enables the sparclite specific instructions, but does not affect
185 whether FPU instructions are emitted. */
186 #define MASK_SPARCLITE 0x80
187 #define TARGET_SPARCLITE (target_flags & MASK_SPARCLITE)
188
189 /* Nonzero means that we should generate code using a flat register window
190 model, i.e. no save/restore instructions are generated, in the most
191 efficient manner. This code is not compatible with normal sparc code. */
192 /* This is not a user selectable option yet, because it requires changes
193 that are not yet switchable via command line arguments. */
194 /* ??? This flag is deprecated and may disappear at some point. */
195 #define MASK_FRW 0x100
196 #define TARGET_FRW (target_flags & MASK_FRW)
197
198 /* Nonzero means that we should generate code using a flat register window
199 model, i.e. no save/restore instructions are generated, but which is
200 compatible with normal sparc code. This is the same as above, except
201 that the frame pointer is %i7 instead of %fp. */
202 /* ??? This use to be named TARGET_FRW_COMPAT. At some point TARGET_FRW will
203 go away, but until that time only use this one when necessary.
204 -mflat sets both. */
205 #define MASK_FLAT 0x200
206 #define TARGET_FLAT (target_flags & MASK_FLAT)
207
208 /* Nonzero means use the registers that the Sparc ABI reserves for
209 application software. This is the default for v8, but not v9. */
210 #define MASK_APP_REGS 0x400
211 #define TARGET_APP_REGS (target_flags & MASK_APP_REGS)
212
213 /* Option to select how quad word floating point is implemented.
214 When TARGET_HARD_QUAD is true, we use the hardware quad instructions.
215 Otherwise, we use the SPARC ABI quad library functions. */
216 #define MASK_HARD_QUAD 0x800
217 #define TARGET_HARD_QUAD (target_flags & MASK_HARD_QUAD)
218
219 /* Nonzero if we're compiling for 64 bit sparc. */
220 #define MASK_V9 0x1000
221 #define TARGET_V9 (target_flags & MASK_V9)
222
223 /* Nonzero if ints are 64 bits.
224 This automatically implies longs are 64 bits too.
225 This option is for v9 only. */
226 #define MASK_INT64 0x2000
227 #define TARGET_INT64 (target_flags & MASK_INT64)
228
229 /* Nonzero if longs are 64 bits.
230 This option is for v9 only. */
231 #define MASK_LONG64 0x4000
232 #define TARGET_LONG64 (target_flags & MASK_LONG64)
233
234 /* Nonzero if pointers are 64 bits.
235 This is not a user selectable option, though it may be one day -
236 so it is used to determine pointer size instead of an architecture flag. */
237 #define MASK_PTR64 0x8000
238 #define TARGET_PTR64 (target_flags & MASK_PTR64)
239
240 /* Nonzero if we are generating code to be tested in a 32 bit environment.
241 Hence, we assume the upper 32 bits of symbolic addresses are zero, and
242 avoid generating %uhi and %ulo terms.
243 Pointers are still 64 bits though! This option is for v9 only. */
244 /* ??? This option is deprecated. Try to use -mmedlow. */
245 #define MASK_ENV32 0x10000
246 #define TARGET_ENV32 (target_flags & MASK_ENV32)
247
248 /* Memory models.
249 Two memory models are supported:
250 TARGET_MEDLOW: 32 bit address space, top 32 bits = 0
251 (pointers still 64 bits)
252 TARGET_MEDANY: 32 bit address space, data segment loaded anywhere
253 (use %g4 as offset).
254 TARGET_FULLANY: not supported yet.
255 These options are for v9 only. All mask values are nonzero so the v8
256 compiler can assume this stuff won't interfere. */
257 #define MASK_MEDLOW 0x20000
258 #define MASK_MEDANY 0x40000
259 #define MASK_FULLANY 0x60000
260 #define MASK_CODE_MODEL (MASK_MEDLOW + MASK_MEDANY)
261 #define TARGET_MEDLOW ((target_flags & MASK_CODE_MODEL) == MASK_MEDLOW)
262 #define TARGET_MEDANY ((target_flags & MASK_CODE_MODEL) == MASK_MEDANY)
263 #define TARGET_FULLANY ((target_flags & MASK_CODE_MODEL) == MASK_FULLANY)
264
265 /* ??? There are hardcoded references to this reg in the .md file. */
266 #define MEDANY_BASE_REG "%g4"
267
268 /* Non-zero means use a stack bias of 2047. Stack offsets are obtained by
269 adding 2047 to %sp. This option is for v9 only and is the default. */
270 #define MASK_STACK_BIAS 0x80000
271 #define TARGET_STACK_BIAS (target_flags & MASK_STACK_BIAS)
272
273 /* Macro to define tables used to set the flags.
274 This is a list in braces of pairs in braces,
275 each pair being { "NAME", VALUE }
276 where VALUE is the bits to set or minus the bits to clear.
277 An empty string NAME is used to identify the default VALUE. */
278
279 /* The Fujitsu MB86930 is the original sparclite chip, with no fpu.
280 The Fujitsu MB86934 is the recent sparclite chip, with an fpu.
281 We use -mf930 and -mf934 options to choose which.
282 ??? These should perhaps be -mcpu= options. */
283
284 #define TARGET_SWITCHES \
285 { {"fpu", MASK_FPU}, \
286 {"no-fpu", -MASK_FPU}, \
287 {"hard-float", MASK_FPU}, \
288 {"soft-float", -MASK_FPU}, \
289 {"epilogue", MASK_EPILOGUE}, \
290 {"no-epilogue", -MASK_EPILOGUE}, \
291 {"unaligned-doubles", MASK_UNALIGNED_DOUBLES}, \
292 {"no-unaligned-doubles", -MASK_UNALIGNED_DOUBLES}, \
293 {"supersparc", MASK_SUPERSPARC+MASK_V8}, \
294 {"cypress", -MASK_SUPERSPARC-MASK_V8}, \
295 {"v8", MASK_V8}, \
296 {"no-v8", -MASK_V8}, \
297 {"sparclite", MASK_SPARCLITE}, \
298 {"no-sparclite", -MASK_SPARCLITE}, \
299 {"f930", MASK_SPARCLITE}, \
300 {"f930", -MASK_FPU}, \
301 {"f934", MASK_SPARCLITE}, \
302 {"flat", MASK_FRW+MASK_FLAT}, \
303 {"no-flat", -(MASK_FRW+MASK_FLAT)}, \
304 {"app-regs", MASK_APP_REGS}, \
305 {"no-app-regs", -MASK_APP_REGS}, \
306 {"hard-quad-float", MASK_HARD_QUAD}, \
307 {"soft-quad-float", -MASK_HARD_QUAD}, \
308 SUBTARGET_SWITCHES \
309 V9_SWITCHES \
310 { "", TARGET_DEFAULT}}
311
312 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_EPILOGUE + MASK_FPU)
313
314 /* This is meant to be redefined in the host dependent files */
315 #define SUBTARGET_SWITCHES
316
317 /* ??? Until we support a combination v8/v9 compiler, the v9 specific options
318 are only defined for the v9 compiler. */
319 #ifdef SPARCV9
320 #define V9_SWITCHES \
321 /* {"v9", MASK_V9}, */ \
322 {"int64", MASK_INT64+MASK_LONG64}, \
323 {"int32", -MASK_INT64}, \
324 {"int32", MASK_LONG64}, \
325 {"long64", -MASK_INT64}, \
326 {"long64", MASK_LONG64}, \
327 {"long32", -(MASK_INT64+MASK_LONG64)}, \
328 /* {"ptr64", MASK_PTR64}, */ \
329 /* {"ptr32", -MASK_PTR64}, */ \
330 {"stack-bias", MASK_STACK_BIAS}, \
331 {"no-stack-bias", -MASK_STACK_BIAS}, \
332 {"medlow", -MASK_CODE_MODEL}, \
333 {"medlow", MASK_MEDLOW}, \
334 {"medany", -MASK_CODE_MODEL}, \
335 {"medany", MASK_MEDANY},
336 #else
337 #define V9_SWITCHES
338 #endif
339 \f
340 /* target machine storage layout */
341
342 /* Define for cross-compilation to a sparc target with no TFmode from a host
343 with a different float format (e.g. VAX). */
344 #define REAL_ARITHMETIC
345
346 /* Define this if most significant bit is lowest numbered
347 in instructions that operate on numbered bit-fields. */
348 #define BITS_BIG_ENDIAN 1
349
350 /* Define this if most significant byte of a word is the lowest numbered. */
351 /* This is true on the SPARC. */
352 #define BYTES_BIG_ENDIAN 1
353
354 /* Define this if most significant word of a multiword number is the lowest
355 numbered. */
356 /* Doubles are stored in memory with the high order word first. This
357 matters when cross-compiling. */
358 #define WORDS_BIG_ENDIAN 1
359
360 /* number of bits in an addressable storage unit */
361 #define BITS_PER_UNIT 8
362
363 /* Width in bits of a "word", which is the contents of a machine register.
364 Note that this is not necessarily the width of data type `int';
365 if using 16-bit ints on a 68000, this would still be 32.
366 But on a machine with 16-bit registers, this would be 16. */
367 #define BITS_PER_WORD (TARGET_V9 ? 64 : 32)
368 #define MAX_BITS_PER_WORD 64
369
370 /* Width of a word, in units (bytes). */
371 #define UNITS_PER_WORD (TARGET_V9 ? 8 : 4)
372 #define MIN_UNITS_PER_WORD 4
373
374 /* Now define the sizes of the C data types. */
375
376 #define SHORT_TYPE_SIZE 16
377 #define INT_TYPE_SIZE (TARGET_INT64 ? 64 : 32)
378 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
379 #define LONG_LONG_TYPE_SIZE 64
380 #define FLOAT_TYPE_SIZE 32
381 #define DOUBLE_TYPE_SIZE 64
382
383 #define MAX_INT_TYPE_SIZE 64
384 #define MAX_LONG_TYPE_SIZE 64
385
386 #ifdef SPARCV9
387 /* ??? This does not work in SunOS 4.x, so it is not enabled here.
388 Instead, it is enabled in sol2.h, because it does work under Solaris. */
389 /* Define for support of TFmode long double and REAL_ARITHMETIC.
390 Sparc ABI says that long double is 4 words. */
391 #define LONG_DOUBLE_TYPE_SIZE 128
392 #endif
393
394 /* Width in bits of a pointer.
395 See also the macro `Pmode' defined below. */
396 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
397
398 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
399 #define PARM_BOUNDARY (TARGET_V9 ? 64 : 32)
400
401 /* Boundary (in *bits*) on which stack pointer should be aligned. */
402 #define STACK_BOUNDARY (TARGET_V9 ? 128 : 64)
403
404 /* ALIGN FRAMES on double word boundaries */
405
406 #define SPARC_STACK_ALIGN(LOC) \
407 (TARGET_V9 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
408
409 /* Allocation boundary (in *bits*) for the code of a function. */
410 #define FUNCTION_BOUNDARY 32
411
412 /* Alignment of field after `int : 0' in a structure. */
413 /* ??? Should this be based on TARGET_INT64? */
414 #define EMPTY_FIELD_BOUNDARY (TARGET_V9 ? 64 : 32)
415
416 /* Every structure's size must be a multiple of this. */
417 #define STRUCTURE_SIZE_BOUNDARY 8
418
419 /* A bitfield declared as `int' forces `int' alignment for the struct. */
420 #define PCC_BITFIELD_TYPE_MATTERS 1
421
422 /* No data type wants to be aligned rounder than this. */
423 #define BIGGEST_ALIGNMENT (TARGET_V9 ? 128 : 64)
424
425 /* The best alignment to use in cases where we have a choice. */
426 #define FASTEST_ALIGNMENT 64
427
428 /* Make strings word-aligned so strcpy from constants will be faster. */
429 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
430 ((TREE_CODE (EXP) == STRING_CST \
431 && (ALIGN) < FASTEST_ALIGNMENT) \
432 ? FASTEST_ALIGNMENT : (ALIGN))
433
434 /* Make arrays of chars word-aligned for the same reasons. */
435 #define DATA_ALIGNMENT(TYPE, ALIGN) \
436 (TREE_CODE (TYPE) == ARRAY_TYPE \
437 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
438 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
439
440 /* Set this nonzero if move instructions will actually fail to work
441 when given unaligned data. */
442 #define STRICT_ALIGNMENT 1
443
444 /* Things that must be doubleword aligned cannot go in the text section,
445 because the linker fails to align the text section enough!
446 Put them in the data section. This macro is only used in this file. */
447 #define MAX_TEXT_ALIGN 32
448
449 /* This forces all variables and constants to the data section when PIC.
450 This is because the SunOS 4 shared library scheme thinks everything in
451 text is a function, and patches the address to point to a loader stub. */
452 /* This is defined to zero for every system which doesn't use the a.out object
453 file format. */
454 #ifndef SUNOS4_SHARED_LIBRARIES
455 #define SUNOS4_SHARED_LIBRARIES 0
456 #endif
457
458 /* This is defined differently for v9 in a cover file. */
459 #define SELECT_SECTION(T,RELOC) \
460 { \
461 if (TREE_CODE (T) == VAR_DECL) \
462 { \
463 if (TREE_READONLY (T) && ! TREE_SIDE_EFFECTS (T) \
464 && DECL_INITIAL (T) \
465 && (DECL_INITIAL (T) == error_mark_node \
466 || TREE_CONSTANT (DECL_INITIAL (T))) \
467 && DECL_ALIGN (T) <= MAX_TEXT_ALIGN \
468 && ! (flag_pic && ((RELOC) || SUNOS4_SHARED_LIBRARIES))) \
469 text_section (); \
470 else \
471 data_section (); \
472 } \
473 else if (TREE_CODE (T) == CONSTRUCTOR) \
474 { \
475 if (flag_pic && ((RELOC) || SUNOS4_SHARED_LIBRARIES)) \
476 data_section (); \
477 } \
478 else if (*tree_code_type[(int) TREE_CODE (T)] == 'c') \
479 { \
480 if ((TREE_CODE (T) == STRING_CST && flag_writable_strings) \
481 || TYPE_ALIGN (TREE_TYPE (T)) > MAX_TEXT_ALIGN \
482 || (flag_pic && ((RELOC) || SUNOS4_SHARED_LIBRARIES))) \
483 data_section (); \
484 else \
485 text_section (); \
486 } \
487 }
488
489 /* Use text section for a constant
490 unless we need more alignment than that offers. */
491 /* This is defined differently for v9 in a cover file. */
492 #define SELECT_RTX_SECTION(MODE, X) \
493 { \
494 if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
495 && ! (flag_pic && (symbolic_operand (X) || SUNOS4_SHARED_LIBRARIES))) \
496 text_section (); \
497 else \
498 data_section (); \
499 }
500 \f
501 /* Standard register usage. */
502
503 /* Number of actual hardware registers.
504 The hardware registers are assigned numbers for the compiler
505 from 0 to just below FIRST_PSEUDO_REGISTER.
506 All registers that the compiler knows about must be given numbers,
507 even those that are not normally considered general registers.
508
509 SPARC has 32 integer registers and 32 floating point registers.
510 64 bit SPARC has 32 additional fp regs, but the odd numbered ones are not
511 accessible. We still account for them to simplify register computations
512 (eg: in CLASS_MAX_NREGS). There are also 4 fp condition code registers, so
513 32+32+32+4 == 100.
514 Register 0 is used as the integer condition code register. */
515
516 #ifdef SPARCV9
517 #define FIRST_PSEUDO_REGISTER 100
518 #else
519 #define FIRST_PSEUDO_REGISTER 64
520 #endif
521
522 /* 1 for registers that have pervasive standard uses
523 and are not available for the register allocator.
524 g0 is used for the condition code and not to represent %g0, which is
525 hardwired to 0, so reg 0 is *not* fixed.
526 On non-v9 systems:
527 g1 is free to use as temporary.
528 g2-g4 are reserved for applications. Gcc normally uses them as
529 temporaries, but this can be disabled via the -mno-app-regs option.
530 g5 through g7 are reserved for the operating system.
531 On v9 systems:
532 g1 and g5 are free to use as temporaries.
533 g2-g4 are reserved for applications (the compiler will not normally use
534 them, but they can be used as temporaries with -mapp-regs).
535 g6-g7 are reserved for the operating system.
536 ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
537 currently be a fixed register until this pattern is rewritten.
538 Register 1 is also used when restoring call-preserved registers in large
539 stack frames. */
540
541 #ifdef SPARCV9
542 #define FIXED_REGISTERS \
543 {0, 1, 1, 1, 1, 0, 1, 1, \
544 0, 0, 0, 0, 0, 0, 1, 0, \
545 0, 0, 0, 0, 0, 0, 0, 0, \
546 0, 0, 0, 0, 0, 0, 1, 1, \
547 \
548 0, 0, 0, 0, 0, 0, 0, 0, \
549 0, 0, 0, 0, 0, 0, 0, 0, \
550 0, 0, 0, 0, 0, 0, 0, 0, \
551 0, 0, 0, 0, 0, 0, 0, 0, \
552 \
553 0, 0, 0, 0, 0, 0, 0, 0, \
554 0, 0, 0, 0, 0, 0, 0, 0, \
555 0, 0, 0, 0, 0, 0, 0, 0, \
556 0, 0, 0, 0, 0, 0, 0, 0, \
557 \
558 0, 0, 0, 0}
559 #else
560 #define FIXED_REGISTERS \
561 {0, 0, 0, 0, 0, 1, 1, 1, \
562 0, 0, 0, 0, 0, 0, 1, 0, \
563 0, 0, 0, 0, 0, 0, 0, 0, \
564 0, 0, 0, 0, 0, 0, 1, 1, \
565 \
566 0, 0, 0, 0, 0, 0, 0, 0, \
567 0, 0, 0, 0, 0, 0, 0, 0, \
568 0, 0, 0, 0, 0, 0, 0, 0, \
569 0, 0, 0, 0, 0, 0, 0, 0}
570 #endif
571
572 /* 1 for registers not available across function calls.
573 These must include the FIXED_REGISTERS and also any
574 registers that can be used without being saved.
575 The latter must include the registers where values are returned
576 and the register where structure-value addresses are passed.
577 Aside from that, you can include as many other registers as you like. */
578
579 #ifdef SPARCV9
580 #define CALL_USED_REGISTERS \
581 {1, 1, 1, 1, 1, 1, 1, 1, \
582 1, 1, 1, 1, 1, 1, 1, 1, \
583 0, 0, 0, 0, 0, 0, 0, 0, \
584 0, 0, 0, 0, 0, 0, 1, 1, \
585 \
586 1, 1, 1, 1, 1, 1, 1, 1, \
587 1, 1, 1, 1, 1, 1, 1, 1, \
588 0, 0, 0, 0, 0, 0, 0, 0, \
589 0, 0, 0, 0, 0, 0, 0, 0, \
590 \
591 0, 0, 0, 0, 0, 0, 0, 0, \
592 0, 0, 0, 0, 0, 0, 0, 0, \
593 1, 1, 1, 1, 1, 1, 1, 1, \
594 1, 1, 1, 1, 1, 1, 1, 1, \
595 \
596 1, 1, 1, 1}
597 #else
598 #define CALL_USED_REGISTERS \
599 {1, 1, 1, 1, 1, 1, 1, 1, \
600 1, 1, 1, 1, 1, 1, 1, 1, \
601 0, 0, 0, 0, 0, 0, 0, 0, \
602 0, 0, 0, 0, 0, 0, 1, 1, \
603 \
604 1, 1, 1, 1, 1, 1, 1, 1, \
605 1, 1, 1, 1, 1, 1, 1, 1, \
606 1, 1, 1, 1, 1, 1, 1, 1, \
607 1, 1, 1, 1, 1, 1, 1, 1}
608 #endif
609
610 /* If !TARGET_FPU, then make the fp registers fixed so that they won't
611 be allocated. On v9, also make the fp cc regs fixed. */
612
613 #define CONDITIONAL_REGISTER_USAGE \
614 do \
615 { \
616 if (! TARGET_FPU) \
617 { \
618 int regno; \
619 for (regno = 32; regno < FIRST_PSEUDO_REGISTER; regno++) \
620 fixed_regs[regno] = 1; \
621 } \
622 if (! TARGET_APP_REGS) \
623 { \
624 fixed_regs[2] = 1; \
625 fixed_regs[3] = 1; \
626 fixed_regs[4] = 1; \
627 } \
628 else \
629 { \
630 fixed_regs[2] = 0; \
631 fixed_regs[3] = 0; \
632 fixed_regs[4] = TARGET_MEDANY != 0; \
633 } \
634 if (TARGET_FLAT) \
635 { \
636 /* Let the compiler believe the frame pointer is still \
637 %fp, but output it as %i7. */ \
638 fixed_regs[31] = 1; \
639 reg_names[FRAME_POINTER_REGNUM] = "%i7"; \
640 /* ??? This is a hack to disable leaf functions. */ \
641 global_regs[7] = 1; \
642 } \
643 if (profile_block_flag) \
644 { \
645 /* %g1 and %g2 must be fixed, because BLOCK_PROFILER \
646 uses them. */ \
647 fixed_regs[1] = 1; \
648 fixed_regs[2] = 1; \
649 } \
650 } \
651 while (0)
652
653 /* Return number of consecutive hard regs needed starting at reg REGNO
654 to hold something of mode MODE.
655 This is ordinarily the length in words of a value of mode MODE
656 but can be less for certain modes in special long registers.
657
658 On SPARC, ordinary registers hold 32 bits worth;
659 this means both integer and floating point registers.
660 On v9, integer regs hold 64 bits worth; floating point regs hold
661 32 bits worth (this includes the new fp regs as even the odd ones are
662 included in the hard register count). */
663
664 #define HARD_REGNO_NREGS(REGNO, MODE) \
665 (TARGET_V9 \
666 ? ((REGNO) < 32 \
667 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD \
668 : (GET_MODE_SIZE (MODE) + 3) / 4) \
669 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
670
671 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
672 See sparc.c for how we initialize this. */
673 extern int *hard_regno_mode_classes;
674 extern int sparc_mode_class[];
675 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
676 ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
677
678 /* Value is 1 if it is a good idea to tie two pseudo registers
679 when one has mode MODE1 and one has mode MODE2.
680 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
681 for any hard reg, then this must be 0 for correct output.
682
683 For V9: SFmode can't be combined with other float modes, because they can't
684 be allocated to the %d registers. Also, DFmode won't fit in odd %f
685 registers, but SFmode will. */
686 #define MODES_TIEABLE_P(MODE1, MODE2) \
687 ((MODE1) == (MODE2) \
688 || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
689 && (! TARGET_V9 \
690 || (GET_MODE_CLASS (MODE1) != MODE_FLOAT \
691 || (MODE1 != SFmode && MODE2 != SFmode)))))
692
693 /* Specify the registers used for certain standard purposes.
694 The values of these macros are register numbers. */
695
696 /* SPARC pc isn't overloaded on a register that the compiler knows about. */
697 /* #define PC_REGNUM */
698
699 /* Register to use for pushing function arguments. */
700 #define STACK_POINTER_REGNUM 14
701
702 /* Actual top-of-stack address is 92/136 greater than the contents of the
703 stack pointer register for !v9/v9. That is:
704 - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
705 address, and 24 bytes for the 6 register parameters.
706 - v9: 128 bytes for the in and local registers + 8 bytes reserved. */
707 #define STACK_POINTER_OFFSET FIRST_PARM_OFFSET(0)
708
709 /* The stack bias (amount by which the hardware register is offset by). */
710 #define SPARC_STACK_BIAS (TARGET_STACK_BIAS ? 2047 : 0)
711
712 /* Base register for access to local variables of the function. */
713 #define FRAME_POINTER_REGNUM 30
714
715 #if 0
716 /* Register that is used for the return address. */
717 #define RETURN_ADDR_REGNUM 15
718 #endif
719
720 /* Value should be nonzero if functions must have frame pointers.
721 Zero means the frame pointer need not be set up (and parms
722 may be accessed via the stack pointer) in functions that seem suitable.
723 This is computed in `reload', in reload1.c.
724 Used in flow.c, global.c, and reload1.c.
725
726 Being a non-leaf function does not mean a frame pointer is needed in the
727 flat window model. However, the debugger won't be able to backtrace through
728 us with out it. */
729 #define FRAME_POINTER_REQUIRED \
730 (TARGET_FRW ? (current_function_calls_alloca || current_function_varargs \
731 || !leaf_function_p ()) \
732 : ! (leaf_function_p () && only_leaf_regs_used ()))
733
734 /* C statement to store the difference between the frame pointer
735 and the stack pointer values immediately after the function prologue.
736
737 Note, we always pretend that this is a leaf function because if
738 it's not, there's no point in trying to eliminate the
739 frame pointer. If it is a leaf function, we guessed right! */
740 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
741 ((VAR) = (TARGET_FRW ? sparc_flat_compute_frame_size (get_frame_size ()) \
742 : compute_frame_size (get_frame_size (), 1)))
743
744 /* Base register for access to arguments of the function. */
745 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
746
747 /* Register in which static-chain is passed to a function. This must
748 not be a register used by the prologue.
749 ??? v9: Since %g2 is reserved but %g5 is available, perhaps use %g5. */
750 #define STATIC_CHAIN_REGNUM 2
751
752 /* Register which holds offset table for position-independent
753 data references. */
754
755 #define PIC_OFFSET_TABLE_REGNUM 23
756
757 #define INITIALIZE_PIC initialize_pic ()
758 #define FINALIZE_PIC finalize_pic ()
759
760 /* Sparc ABI says that quad-precision floats and all structures are returned
761 in memory.
762 For v9, all aggregates are returned in memory. */
763 #define RETURN_IN_MEMORY(TYPE) \
764 (TYPE_MODE (TYPE) == BLKmode \
765 || (! TARGET_V9 && (TYPE_MODE (TYPE) == TFmode \
766 || TYPE_MODE (TYPE) == TCmode)))
767
768 /* Functions which return large structures get the address
769 to place the wanted value at offset 64 from the frame.
770 Must reserve 64 bytes for the in and local registers.
771 v9: Functions which return large structures get the address to place the
772 wanted value from an invisible first argument. */
773 /* Used only in other #defines in this file. */
774 #define STRUCT_VALUE_OFFSET 64
775
776 #define STRUCT_VALUE \
777 (TARGET_V9 \
778 ? 0 \
779 : gen_rtx (MEM, Pmode, \
780 gen_rtx (PLUS, Pmode, stack_pointer_rtx, \
781 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET))))
782 #define STRUCT_VALUE_INCOMING \
783 (TARGET_V9 \
784 ? 0 \
785 : gen_rtx (MEM, Pmode, \
786 gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
787 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET))))
788 \f
789 /* Define the classes of registers for register constraints in the
790 machine description. Also define ranges of constants.
791
792 One of the classes must always be named ALL_REGS and include all hard regs.
793 If there is more than one class, another class must be named NO_REGS
794 and contain no registers.
795
796 The name GENERAL_REGS must be the name of a class (or an alias for
797 another name such as ALL_REGS). This is the class of registers
798 that is allowed by "g" or "r" in a register constraint.
799 Also, registers outside this class are allocated only when
800 instructions express preferences for them.
801
802 The classes must be numbered in nondecreasing order; that is,
803 a larger-numbered class must never be contained completely
804 in a smaller-numbered class.
805
806 For any two classes, it is very desirable that there be another
807 class that represents their union. */
808
809 /* The SPARC has two kinds of registers, general and floating point.
810
811 For v9 we must distinguish between the upper and lower floating point
812 registers because the upper ones can't hold SFmode values.
813 HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
814 satisfying a group need for a class will also satisfy a single need for
815 that class. EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
816 regs.
817
818 It is important that one class contains all the general and all the standard
819 fp regs. Otherwise find_reg() won't properly allocate int regs for moves,
820 because reg_class_record() will bias the selection in favor of fp regs,
821 because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
822 because FP_REGS > GENERAL_REGS.
823
824 It is also important that one class contain all the general and all the
825 fp regs. Otherwise when spilling a DFmode reg, it may be from EXTRA_FP_REGS
826 but find_reloads() may use class GENERAL_OR_FP_REGS. This will cause
827 allocate_reload_reg() to bypass it causing an abort because the compiler
828 thinks it doesn't have a spill reg when in fact it does.
829
830 v9 also has 4 floating point condition code registers. Since we don't
831 have a class that is the union of FPCC_REGS with either of the others,
832 it is important that it appear first. Otherwise the compiler will die
833 trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
834 constraints. */
835
836 #ifdef SPARCV9
837 enum reg_class { NO_REGS, FPCC_REGS, GENERAL_REGS, FP_REGS, EXTRA_FP_REGS,
838 GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
839 ALL_REGS, LIM_REG_CLASSES };
840 #else
841 enum reg_class { NO_REGS, GENERAL_REGS, FP_REGS, ALL_REGS, LIM_REG_CLASSES };
842 #endif
843
844 #define N_REG_CLASSES (int) LIM_REG_CLASSES
845
846 /* Give names of register classes as strings for dump file. */
847
848 #ifdef SPARCV9
849 #define REG_CLASS_NAMES \
850 { "NO_REGS", "FPCC_REGS", "GENERAL_REGS", "FP_REGS", "EXTRA_FP_REGS", \
851 "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", "ALL_REGS" }
852 #else
853 #define REG_CLASS_NAMES \
854 { "NO_REGS", "GENERAL_REGS", "FP_REGS", "ALL_REGS" }
855 #endif
856
857 /* Define which registers fit in which classes.
858 This is an initializer for a vector of HARD_REG_SET
859 of length N_REG_CLASSES. */
860
861 #ifdef SPARCV9
862 #define REG_CLASS_CONTENTS \
863 {{0, 0, 0, 0}, {0, 0, 0, 0xf}, {-2, 0, 0, 0}, \
864 {0, -1, 0, 0}, {0, -1, -1, 0}, {-2, -1, 0, 0}, {-2, -1, -1, 0}, \
865 {-2, -1, -1, 0xf}}
866 #else
867 #if 0 && defined (__GNUC__)
868 #define REG_CLASS_CONTENTS {0LL, 0xfffffffeLL, 0xffffffff00000000LL, 0xfffffffffffffffeLL}
869 #else
870 #define REG_CLASS_CONTENTS {{0, 0}, {-2, 0}, {0, -1}, {-2, -1}}
871 #endif
872 #endif
873
874 /* The same information, inverted:
875 Return the class number of the smallest class containing
876 reg number REGNO. This could be a conditional expression
877 or could index an array. */
878
879 #ifdef SPARCV9
880 #define REGNO_REG_CLASS(REGNO) \
881 ((REGNO) == 0 ? NO_REGS \
882 : (REGNO) < 32 ? GENERAL_REGS \
883 : (REGNO) < 64 ? FP_REGS \
884 : (REGNO) < 96 ? EXTRA_FP_REGS \
885 : FPCC_REGS)
886 #else
887 #define REGNO_REG_CLASS(REGNO) \
888 ((REGNO) >= 32 ? FP_REGS : (REGNO) == 0 ? NO_REGS : GENERAL_REGS)
889 #endif
890
891 /* This is the order in which to allocate registers normally.
892
893 We put %f0/%f1 last among the float registers, so as to make it more
894 likely that a pseudo-register which dies in the float return register
895 will get allocated to the float return register, thus saving a move
896 instruction at the end of the function.
897
898 On v9, the float registers are ordered a little "funny" because some
899 of them (%f16-%f47) are call-preserved. */
900 #ifdef SPARCV9
901 #define REG_ALLOC_ORDER \
902 { 8, 9, 10, 11, 12, 13, \
903 15, 16, 17, 18, 19, 20, 21, 22, \
904 23, 24, 25, 26, 27, 28, 29, 31, \
905 34, 35, 36, 37, 38, 39, /* %f2-%f7 */ \
906 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
907 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
908 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
909 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
910 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
911 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
912 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
913 32, 33, /* %f0,%f1 */ \
914 96, 97, 98, 99, /* %fcc0-3 */ \
915 1, 5, 2, 3, 4, 6, 7, 0, 14, 30}
916 #else
917 #define REG_ALLOC_ORDER \
918 { 8, 9, 10, 11, 12, 13, 2, 3, \
919 15, 16, 17, 18, 19, 20, 21, 22, \
920 23, 24, 25, 26, 27, 28, 29, 31, \
921 34, 35, 36, 37, 38, 39, \
922 40, 41, 42, 43, 44, 45, 46, 47, \
923 48, 49, 50, 51, 52, 53, 54, 55, \
924 56, 57, 58, 59, 60, 61, 62, 63, \
925 32, 33, \
926 1, 4, 5, 6, 7, 0, 14, 30}
927 #endif
928
929 /* This is the order in which to allocate registers for
930 leaf functions. If all registers can fit in the "i" registers,
931 then we have the possibility of having a leaf function.
932 v9: The floating point registers are ordered a little "funny" because some
933 of them (%f16-%f47) are call-preserved. */
934 #ifdef SPARCV9
935 #define REG_LEAF_ALLOC_ORDER \
936 { 24, 25, 26, 27, 28, 29, \
937 15, 8, 9, 10, 11, 12, 13, \
938 16, 17, 18, 19, 20, 21, 22, 23, \
939 34, 35, 36, 37, 38, 39, \
940 40, 41, 42, 43, 44, 45, 46, 47, \
941 80, 81, 82, 83, 84, 85, 86, 87, \
942 88, 89, 90, 91, 92, 93, 94, 95, \
943 48, 49, 50, 51, 52, 53, 54, 55, \
944 56, 57, 58, 59, 60, 61, 62, 63, \
945 64, 65, 66, 67, 68, 69, 70, 71, \
946 72, 73, 74, 75, 76, 77, 78, 79, \
947 32, 33, \
948 96, 97, 98, 99, \
949 1, 5, 2, 3, 4, 6, 7, 0, 14, 30, 31}
950 #else
951 #define REG_LEAF_ALLOC_ORDER \
952 { 2, 3, 24, 25, 26, 27, 28, 29, \
953 15, 8, 9, 10, 11, 12, 13, \
954 16, 17, 18, 19, 20, 21, 22, 23, \
955 34, 35, 36, 37, 38, 39, \
956 40, 41, 42, 43, 44, 45, 46, 47, \
957 48, 49, 50, 51, 52, 53, 54, 55, \
958 56, 57, 58, 59, 60, 61, 62, 63, \
959 32, 33, \
960 1, 4, 5, 6, 7, 0, 14, 30, 31}
961 #endif
962
963 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
964
965 /* ??? %g7 is not a leaf register to effectively #undef LEAF_REGISTERS when
966 -mflat is used. Function only_leaf_regs_used will return 0 if a global
967 register is used and is not permitted in a leaf function. We make %g7
968 a global reg if -mflat and voila. Since %g7 is a system register and is
969 fixed it won't be used by gcc anyway. */
970 #ifdef SPARCV9
971 #define LEAF_REGISTERS \
972 { 1, 1, 1, 1, 1, 1, 1, 0, \
973 0, 0, 0, 0, 0, 0, 1, 0, \
974 0, 0, 0, 0, 0, 0, 0, 0, \
975 1, 1, 1, 1, 1, 1, 0, 1, \
976 1, 1, 1, 1, 1, 1, 1, 1, \
977 1, 1, 1, 1, 1, 1, 1, 1, \
978 1, 1, 1, 1, 1, 1, 1, 1, \
979 1, 1, 1, 1, 1, 1, 1, 1, \
980 1, 1, 1, 1, 1, 1, 1, 1, \
981 1, 1, 1, 1, 1, 1, 1, 1, \
982 1, 1, 1, 1, 1, 1, 1, 1, \
983 1, 1, 1, 1, 1, 1, 1, 1, \
984 1, 1, 1, 1}
985 #else
986 #define LEAF_REGISTERS \
987 { 1, 1, 1, 1, 1, 1, 1, 0, \
988 0, 0, 0, 0, 0, 0, 1, 0, \
989 0, 0, 0, 0, 0, 0, 0, 0, \
990 1, 1, 1, 1, 1, 1, 0, 1, \
991 1, 1, 1, 1, 1, 1, 1, 1, \
992 1, 1, 1, 1, 1, 1, 1, 1, \
993 1, 1, 1, 1, 1, 1, 1, 1, \
994 1, 1, 1, 1, 1, 1, 1, 1}
995 #endif
996
997 extern char leaf_reg_remap[];
998 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
999
1000 /* The class value for index registers, and the one for base regs. */
1001 #define INDEX_REG_CLASS GENERAL_REGS
1002 #define BASE_REG_CLASS GENERAL_REGS
1003
1004 /* Local macro to handle the two v9 classes of FP regs. */
1005 #ifdef SPARCV9
1006 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1007 #else
1008 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS)
1009 #endif
1010
1011 /* Get reg_class from a letter such as appears in the machine description. */
1012
1013 #ifdef SPARCV9
1014 #define REG_CLASS_FROM_LETTER(C) \
1015 ((C) == 'f' ? FP_REGS \
1016 : (C) == 'e' ? EXTRA_FP_REGS \
1017 : (C) == 'c' ? FPCC_REGS \
1018 : NO_REGS)
1019 #else
1020 /* Coerce v9's 'e' class to 'f', so we can use 'e' in the .md file for
1021 v8 and v9. */
1022 #define REG_CLASS_FROM_LETTER(C) \
1023 ((C) == 'f' ? FP_REGS : (C) == 'e' ? FP_REGS : NO_REGS)
1024 #endif
1025
1026 /* The letters I, J, K, L and M in a register constraint string
1027 can be used to stand for particular ranges of immediate operands.
1028 This macro defines what the ranges are.
1029 C is the letter, and VALUE is a constant value.
1030 Return 1 if VALUE is in the range specified by C.
1031
1032 For SPARC, `I' is used for the range of constants an insn
1033 can actually contain.
1034 `J' is used for the range which is just zero (since that is R0).
1035 `K' is used for constants which can be loaded with a single sethi insn. */
1036
1037 #define SMALL_INT(X) ((unsigned) (INTVAL (X) + 0x1000) < 0x2000)
1038
1039 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1040 ((C) == 'I' ? (unsigned) ((VALUE) + 0x1000) < 0x2000 \
1041 : (C) == 'J' ? (VALUE) == 0 \
1042 : (C) == 'K' ? ((VALUE) & 0x3ff) == 0 \
1043 : 0)
1044
1045 /* Similar, but for floating constants, and defining letters G and H.
1046 Here VALUE is the CONST_DOUBLE rtx itself. */
1047
1048 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1049 ((C) == 'G' ? fp_zero_operand (VALUE) \
1050 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
1051 : 0)
1052
1053 /* Given an rtx X being reloaded into a reg required to be
1054 in class CLASS, return the class of reg to actually use.
1055 In general this is just CLASS; but on some machines
1056 in some cases it is preferable to use a more restrictive class. */
1057 /* We can't load constants into FP registers. We can't load any FP constant
1058 if an 'E' constraint fails to match it. */
1059 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1060 (CONSTANT_P (X) \
1061 && (FP_REG_CLASS_P (CLASS) \
1062 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1063 && (HOST_FLOAT_FORMAT != IEEE_FLOAT_FORMAT \
1064 || HOST_BITS_PER_INT != BITS_PER_WORD))) \
1065 ? NO_REGS : (CLASS))
1066
1067 /* Return the register class of a scratch register needed to load IN into
1068 a register of class CLASS in MODE.
1069
1070 On the SPARC, when PIC, we need a temporary when loading some addresses
1071 into a register.
1072
1073 Also, we need a temporary when loading/storing a HImode/QImode value
1074 between memory and the FPU registers. This can happen when combine puts
1075 a paradoxical subreg in a float/fix conversion insn. */
1076
1077 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1078 ((FP_REG_CLASS_P (CLASS) && ((MODE) == HImode || (MODE) == QImode) \
1079 && (GET_CODE (IN) == MEM \
1080 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1081 && true_regnum (IN) == -1))) ? GENERAL_REGS : NO_REGS)
1082
1083 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1084 ((FP_REG_CLASS_P (CLASS) && ((MODE) == HImode || (MODE) == QImode) \
1085 && (GET_CODE (IN) == MEM \
1086 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1087 && true_regnum (IN) == -1))) ? GENERAL_REGS : NO_REGS)
1088
1089 /* On SPARC it is not possible to directly move data between
1090 GENERAL_REGS and FP_REGS. */
1091 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1092 (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
1093
1094 /* Return the stack location to use for secondary memory needed reloads.
1095 We want to use the reserved location just below the frame pointer.
1096 However, we must ensure that there is a frame, so use assign_stack_local
1097 if the frame size is zero. */
1098 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1099 (get_frame_size () == 0 \
1100 ? assign_stack_local (MODE, GET_MODE_SIZE (MODE), 0) \
1101 : gen_rtx (MEM, MODE, gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
1102 GEN_INT (STARTING_FRAME_OFFSET))))
1103
1104 /* Get_secondary_mem widens it's argument to BITS_PER_WORD which loses on v9
1105 because the movsi and movsf patterns don't handle r/f moves.
1106 For v8 we copy the default definition. */
1107 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1108 (TARGET_V9 \
1109 ? (GET_MODE_BITSIZE (MODE) < 32 \
1110 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1111 : MODE) \
1112 : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD \
1113 ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \
1114 : MODE))
1115
1116 /* Return the maximum number of consecutive registers
1117 needed to represent mode MODE in a register of class CLASS. */
1118 /* On SPARC, this is the size of MODE in words. */
1119 #define CLASS_MAX_NREGS(CLASS, MODE) \
1120 (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1121 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1122 \f
1123 /* Stack layout; function entry, exit and calling. */
1124
1125 /* Define the number of register that can hold parameters.
1126 These two macros are used only in other macro definitions below.
1127 MODE is the mode of the argument.
1128 !v9: All args are passed in %o0-%o5.
1129 v9: Non-float args are passed in %o0-5 and float args are passed in
1130 %f0-%f15. */
1131 #define NPARM_REGS(MODE) \
1132 (TARGET_V9 ? (GET_MODE_CLASS (MODE) == MODE_FLOAT ? 16 : 6) : 6)
1133
1134 /* Define this if pushing a word on the stack
1135 makes the stack pointer a smaller address. */
1136 #define STACK_GROWS_DOWNWARD
1137
1138 /* Define this if the nominal address of the stack frame
1139 is at the high-address end of the local variables;
1140 that is, each additional local variable allocated
1141 goes at a more negative offset in the frame. */
1142 #define FRAME_GROWS_DOWNWARD
1143
1144 /* Offset within stack frame to start allocating local variables at.
1145 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1146 first local allocated. Otherwise, it is the offset to the BEGINNING
1147 of the first local allocated. */
1148 /* This allows space for one TFmode floating point value. */
1149 #define STARTING_FRAME_OFFSET \
1150 (TARGET_V9 ? (SPARC_STACK_BIAS - 16) \
1151 : (-SPARC_STACK_ALIGN (LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)))
1152
1153 /* If we generate an insn to push BYTES bytes,
1154 this says how many the stack pointer really advances by.
1155 On SPARC, don't define this because there are no push insns. */
1156 /* #define PUSH_ROUNDING(BYTES) */
1157
1158 /* Offset of first parameter from the argument pointer register value.
1159 !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1160 even if this function isn't going to use it.
1161 v9: This is 128 for the ins and locals, plus a reserved space of 8. */
1162 #define FIRST_PARM_OFFSET(FNDECL) \
1163 (TARGET_V9 ? (SPARC_STACK_BIAS + 136) \
1164 : (STRUCT_VALUE_OFFSET + UNITS_PER_WORD))
1165
1166 /* When a parameter is passed in a register, stack space is still
1167 allocated for it. */
1168 #ifndef SPARCV9
1169 #define REG_PARM_STACK_SPACE(DECL) (NPARM_REGS (SImode) * UNITS_PER_WORD)
1170 #endif
1171
1172 /* Keep the stack pointer constant throughout the function.
1173 This is both an optimization and a necessity: longjmp
1174 doesn't behave itself when the stack pointer moves within
1175 the function! */
1176 #define ACCUMULATE_OUTGOING_ARGS
1177
1178 /* Value is the number of bytes of arguments automatically
1179 popped when returning from a subroutine call.
1180 FUNTYPE is the data type of the function (as a tree),
1181 or for a library call it is an identifier node for the subroutine name.
1182 SIZE is the number of bytes of arguments passed on the stack. */
1183
1184 #define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
1185
1186 /* Some subroutine macros specific to this machine.
1187 When !TARGET_FPU, put float return values in the general registers,
1188 since we don't have any fp registers. */
1189 #define BASE_RETURN_VALUE_REG(MODE) \
1190 (TARGET_V9 ? (TARGET_FPU && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 8) \
1191 : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 : 8))
1192 #define BASE_OUTGOING_VALUE_REG(MODE) \
1193 (TARGET_V9 ? (TARGET_FPU && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 \
1194 : TARGET_FRW ? 8 : 24) \
1195 : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 \
1196 : (TARGET_FRW ? 8 : 24)))
1197 #define BASE_PASSING_ARG_REG(MODE) \
1198 (TARGET_V9 ? (TARGET_FPU && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 8) \
1199 : (8))
1200 #define BASE_INCOMING_ARG_REG(MODE) \
1201 (TARGET_V9 ? (TARGET_FPU && GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 \
1202 : TARGET_FRW ? 8 : 24) \
1203 : (TARGET_FRW ? 8 : 24))
1204
1205 /* Define this macro if the target machine has "register windows". This
1206 C expression returns the register number as seen by the called function
1207 corresponding to register number OUT as seen by the calling function.
1208 Return OUT if register number OUT is not an outbound register. */
1209
1210 #define INCOMING_REGNO(OUT) \
1211 ((TARGET_FRW || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1212
1213 /* Define this macro if the target machine has "register windows". This
1214 C expression returns the register number as seen by the calling function
1215 corresponding to register number IN as seen by the called function.
1216 Return IN if register number IN is not an inbound register. */
1217
1218 #define OUTGOING_REGNO(IN) \
1219 ((TARGET_FRW || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1220
1221 /* Define how to find the value returned by a function.
1222 VALTYPE is the data type of the value (as a tree).
1223 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1224 otherwise, FUNC is 0. */
1225
1226 /* On SPARC the value is found in the first "output" register. */
1227
1228 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1229 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
1230
1231 /* But the called function leaves it in the first "input" register. */
1232
1233 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
1234 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_OUTGOING_VALUE_REG (TYPE_MODE (VALTYPE)))
1235
1236 /* Define how to find the value returned by a library function
1237 assuming the value has mode MODE. */
1238
1239 #define LIBCALL_VALUE(MODE) \
1240 gen_rtx (REG, MODE, BASE_RETURN_VALUE_REG (MODE))
1241
1242 /* 1 if N is a possible register number for a function value
1243 as seen by the caller.
1244 On SPARC, the first "output" reg is used for integer values,
1245 and the first floating point register is used for floating point values. */
1246
1247 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
1248
1249 /* Define the size of space to allocate for the return value of an
1250 untyped_call. */
1251
1252 #define APPLY_RESULT_SIZE 16
1253
1254 /* 1 if N is a possible register number for function argument passing.
1255 On SPARC, these are the "output" registers. v9 also uses %f0-%f15. */
1256
1257 #define FUNCTION_ARG_REGNO_P(N) \
1258 (TARGET_V9 ? (((N) < 14 && (N) > 7) || (N) > 31 && (N) < 48) \
1259 : ((N) < 14 && (N) > 7))
1260 \f
1261 /* Define a data type for recording info about an argument list
1262 during the scan of that argument list. This data type should
1263 hold all necessary information about the function itself
1264 and about the args processed so far, enough to enable macros
1265 such as FUNCTION_ARG to determine where the next arg should go.
1266
1267 On SPARC (!v9), this is a single integer, which is a number of words
1268 of arguments scanned so far (including the invisible argument,
1269 if any, which holds the structure-value-address).
1270 Thus 7 or more means all following args should go on the stack.
1271
1272 For v9, we record how many of each type has been passed. Different
1273 types get passed differently.
1274
1275 - Float args are passed in %f0-15, after which they go to the stack
1276 where floats and doubles are passed 8 byte aligned and long doubles
1277 are passed 16 byte aligned.
1278 - All aggregates are passed by reference. The callee copies
1279 the structure if necessary, except if stdarg/varargs and the struct
1280 matches the ellipse in which case the caller makes a copy.
1281 - Any non-float argument might be split between memory and reg %o5.
1282 ??? I don't think this can ever happen now that structs are no
1283 longer passed in regs.
1284
1285 For v9 return values:
1286
1287 - For all aggregates, the caller allocates space for the return value,
1288 and passes the pointer as an implicit first argument, which is
1289 allocated like all other arguments.
1290 - The unimp instruction stuff for structure returns is gone. */
1291
1292 #ifdef SPARCV9
1293 enum sparc_arg_class { SPARC_ARG_INT = 0, SPARC_ARG_FLOAT = 1 };
1294 struct sparc_args {
1295 int arg_count[2]; /* must be int! (for __builtin_args_info) */
1296 };
1297 #define CUMULATIVE_ARGS struct sparc_args
1298
1299 /* Return index into CUMULATIVE_ARGS. */
1300
1301 #define GET_SPARC_ARG_CLASS(MODE) \
1302 (GET_MODE_CLASS (MODE) == MODE_FLOAT ? SPARC_ARG_FLOAT : SPARC_ARG_INT)
1303
1304 /* Round a register number up to a proper boundary for an arg of mode MODE.
1305 This macro is only used in this file.
1306
1307 The "& (0x10000 - ...)" is used to round up to the next appropriate reg. */
1308
1309 #define ROUND_REG(CUM, MODE) \
1310 (GET_MODE_CLASS (MODE) != MODE_FLOAT \
1311 ? (CUM).arg_count[(int) GET_SPARC_ARG_CLASS (MODE)] \
1312 : ((CUM).arg_count[(int) GET_SPARC_ARG_CLASS (MODE)] \
1313 + GET_MODE_UNIT_SIZE (MODE) / 4 - 1) \
1314 & (0x10000 - GET_MODE_UNIT_SIZE (MODE) / 4))
1315
1316 #define ROUND_ADVANCE(SIZE) \
1317 (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1318
1319 #else /* ! SPARCV9 */
1320 #define CUMULATIVE_ARGS int
1321
1322 #define ROUND_REG(CUM, MODE) (CUM)
1323
1324 #define ROUND_ADVANCE(SIZE) \
1325 ((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1326 #endif /* ! SPARCV9 */
1327
1328 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1329 for a call to a function whose data type is FNTYPE.
1330 For a library call, FNTYPE is 0.
1331
1332 On SPARC, the offset always starts at 0: the first parm reg is always
1333 the same reg. */
1334
1335 #ifdef SPARCV9
1336 extern int sparc_arg_count,sparc_n_named_args;
1337 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
1338 do { \
1339 (CUM).arg_count[(int) SPARC_ARG_INT] = 0; \
1340 (CUM).arg_count[(int) SPARC_ARG_FLOAT] = 0; \
1341 sparc_arg_count = 0; \
1342 sparc_n_named_args = \
1343 ((FNTYPE) && TYPE_ARG_TYPES (FNTYPE) \
1344 ? (list_length (TYPE_ARG_TYPES (FNTYPE)) \
1345 + (TREE_CODE (TREE_TYPE (FNTYPE)) == RECORD_TYPE \
1346 || TREE_CODE (TREE_TYPE (FNTYPE)) == UNION_TYPE)) \
1347 /* Can't tell, treat 'em all as named. */ \
1348 : 10000); \
1349 } while (0)
1350 #else
1351 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) ((CUM) = 0)
1352 #endif
1353
1354 /* Update the data in CUM to advance over an argument
1355 of mode MODE and data type TYPE.
1356 (TYPE is null for libcalls where that information may not be available.) */
1357
1358 #ifdef SPARCV9
1359 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1360 do { \
1361 (CUM).arg_count[(int) GET_SPARC_ARG_CLASS (MODE)] = \
1362 ROUND_REG ((CUM), (MODE)) \
1363 + (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1364 ? GET_MODE_SIZE (MODE) / 4 \
1365 : ROUND_ADVANCE ((MODE) == BLKmode \
1366 ? GET_MODE_SIZE (Pmode) \
1367 : GET_MODE_SIZE (MODE))); \
1368 sparc_arg_count++; \
1369 } while (0)
1370 #else
1371 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1372 ((CUM) += ((MODE) != BLKmode \
1373 ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
1374 : ROUND_ADVANCE (int_size_in_bytes (TYPE))))
1375 #endif
1376
1377 /* Return boolean indicating arg of mode MODE will be passed in a reg.
1378 This macro is only used in this file. */
1379
1380 #ifdef SPARCV9
1381 #define PASS_IN_REG_P(CUM, MODE, TYPE) \
1382 (ROUND_REG ((CUM), (MODE)) < NPARM_REGS (MODE) \
1383 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
1384 && ((TYPE)==0 || (MODE) != BLKmode))
1385 #else
1386 #define PASS_IN_REG_P(CUM, MODE, TYPE) \
1387 ((CUM) < NPARM_REGS (SImode) \
1388 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
1389 && ((TYPE)==0 || (MODE) != BLKmode \
1390 || (TYPE_ALIGN (TYPE) % PARM_BOUNDARY == 0)))
1391 #endif
1392
1393 /* Determine where to put an argument to a function.
1394 Value is zero to push the argument on the stack,
1395 or a hard register in which to store the argument.
1396
1397 MODE is the argument's machine mode.
1398 TYPE is the data type of the argument (as a tree).
1399 This is null for libcalls where that information may
1400 not be available.
1401 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1402 the preceding args and about the function being called.
1403 NAMED is nonzero if this argument is a named parameter
1404 (otherwise it is an extra parameter matching an ellipsis). */
1405
1406 /* On SPARC the first six args are normally in registers
1407 and the rest are pushed. Any arg that starts within the first 6 words
1408 is at least partially passed in a register unless its data type forbids.
1409 For v9, the first 6 int args are passed in regs and the first N
1410 float args are passed in regs (where N is such that %f0-15 are filled).
1411 The rest are pushed. Any arg that starts within the first 6 words
1412 is at least partially passed in a register unless its data type forbids. */
1413
1414 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1415 (PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \
1416 ? gen_rtx (REG, (MODE), \
1417 (BASE_PASSING_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE))))\
1418 : 0)
1419
1420 /* Define where a function finds its arguments.
1421 This is different from FUNCTION_ARG because of register windows. */
1422
1423 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1424 (PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \
1425 ? gen_rtx (REG, (MODE), \
1426 (BASE_INCOMING_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE))))\
1427 : 0)
1428
1429 /* For an arg passed partly in registers and partly in memory,
1430 this is the number of registers used.
1431 For args passed entirely in registers or entirely in memory, zero.
1432 Any arg that starts in the first 6 regs but won't entirely fit in them
1433 needs partial registers on the Sparc (!v9). On v9, there are no arguments
1434 that are passed partially in registers (??? complex values?). */
1435
1436 #ifndef SPARCV9
1437 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1438 (PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \
1439 && ((CUM) + ((MODE) == BLKmode \
1440 ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
1441 : ROUND_ADVANCE (GET_MODE_SIZE (MODE))) - NPARM_REGS (SImode) > 0)\
1442 ? (NPARM_REGS (SImode) - (CUM)) \
1443 : 0)
1444 #endif
1445
1446 /* The SPARC ABI stipulates passing struct arguments (of any size) and
1447 (!v9) quad-precision floats by invisible reference.
1448 For Pascal, also pass arrays by reference. */
1449 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1450 ((TYPE && (TREE_CODE (TYPE) == RECORD_TYPE \
1451 || TREE_CODE (TYPE) == UNION_TYPE \
1452 || TREE_CODE (TYPE) == ARRAY_TYPE)) \
1453 || (!TARGET_V9 && MODE == TFmode))
1454
1455 /* A C expression that indicates when it is the called function's
1456 responsibility to make copies of arguments passed by reference.
1457 If the callee can determine that the argument won't be modified, it can
1458 avoid the copy. */
1459 /* ??? We'd love to be able to use NAMED here. Unfortunately, it doesn't
1460 include the last named argument so we keep track of the args ourselves. */
1461
1462 #ifdef SPARCV9
1463 #define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
1464 (sparc_arg_count < sparc_n_named_args)
1465 #endif
1466 \f
1467 /* Initialize data used by insn expanders. This is called from
1468 init_emit, once for each function, before code is generated.
1469 For v9, clear the temp slot used by float/int DImode conversions.
1470 ??? There is the 16 bytes at [%fp-16], however we'd like to delete this
1471 space at some point.
1472 ??? Use assign_stack_temp? */
1473
1474 extern void sparc64_init_expanders ();
1475 extern struct rtx_def *sparc64_fpconv_stack_temp ();
1476 #ifdef SPARCV9
1477 #define INIT_EXPANDERS sparc64_init_expanders ()
1478 #endif
1479
1480 /* Define the information needed to generate branch and scc insns. This is
1481 stored from the compare operation. Note that we can't use "rtx" here
1482 since it hasn't been defined! */
1483
1484 extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;
1485
1486 /* Define the function that build the compare insn for scc and bcc. */
1487
1488 extern struct rtx_def *gen_compare_reg ();
1489
1490 /* This function handles all v9 scc insns */
1491
1492 extern int gen_v9_scc ();
1493 \f
1494 /* Generate the special assembly code needed to tell the assembler whatever
1495 it might need to know about the return value of a function.
1496
1497 For Sparc assemblers, we need to output a .proc pseudo-op which conveys
1498 information to the assembler relating to peephole optimization (done in
1499 the assembler). */
1500
1501 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1502 fprintf ((FILE), "\t.proc\t0%o\n", sparc_type_code (TREE_TYPE (RESULT)))
1503
1504 /* Output the label for a function definition. */
1505
1506 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
1507 do { \
1508 ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
1509 ASM_OUTPUT_LABEL (FILE, NAME); \
1510 } while (0)
1511
1512 /* This macro generates the assembly code for function entry.
1513 FILE is a stdio stream to output the code to.
1514 SIZE is an int: how many units of temporary storage to allocate.
1515 Refer to the array `regs_ever_live' to determine which registers
1516 to save; `regs_ever_live[I]' is nonzero if register number I
1517 is ever used in the function. This macro is responsible for
1518 knowing which registers should not be saved even if used. */
1519
1520 /* On SPARC, move-double insns between fpu and cpu need an 8-byte block
1521 of memory. If any fpu reg is used in the function, we allocate
1522 such a block here, at the bottom of the frame, just in case it's needed.
1523
1524 If this function is a leaf procedure, then we may choose not
1525 to do a "save" insn. The decision about whether or not
1526 to do this is made in regclass.c. */
1527
1528 extern int leaf_function;
1529 #define FUNCTION_PROLOGUE(FILE, SIZE) \
1530 (TARGET_FRW ? sparc_flat_output_function_prologue (FILE, SIZE) \
1531 : output_function_prologue (FILE, SIZE, leaf_function))
1532
1533 /* Output assembler code to FILE to increment profiler label # LABELNO
1534 for profiling a function entry. */
1535
1536 #define FUNCTION_PROFILER(FILE, LABELNO) \
1537 do { \
1538 fputs ("\tsethi %hi(", (FILE)); \
1539 ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
1540 fputs ("),%o0\n", (FILE)); \
1541 if (TARGET_MEDANY) \
1542 fprintf (FILE, "\tadd %%o0,%s,%%o0\n", \
1543 MEDANY_BASE_REG); \
1544 fputs ("\tcall mcount\n\tadd %lo(", (FILE)); \
1545 ASM_OUTPUT_INTERNAL_LABELREF (FILE, "LP", LABELNO); \
1546 fputs ("),%o0,%o0\n", (FILE)); \
1547 } while (0)
1548
1549 /* Output assembler code to FILE to initialize this source file's
1550 basic block profiling info, if that has not already been done. */
1551
1552 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
1553 do { \
1554 if (TARGET_MEDANY) \
1555 fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tor %%0,%%lo(LPBX0),%%o0\n\tld [%s+%%o0],%%o1\n\ttst %%o1\n\tbne LPY%d\n\tadd %%o0,%s,%%o0\n\tcall ___bb_init_func\n\tnop\nLPY%d:\n", \
1556 MEDANY_BASE_REG, (LABELNO), MEDANY_BASE_REG, (LABELNO)); \
1557 else \
1558 fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tld [%%lo(LPBX0)+%%o0],%%o1\n\ttst %%o1\n\tbne LPY%d\n\tadd %%o0,%%lo(LPBX0),%%o0\n\tcall ___bb_init_func\n\tnop\nLPY%d:\n", \
1559 (LABELNO), (LABELNO)); \
1560 } while (0)
1561
1562 /* Output assembler code to FILE to increment the entry-count for
1563 the BLOCKNO'th basic block in this source file. */
1564
1565 #define BLOCK_PROFILER(FILE, BLOCKNO) \
1566 { \
1567 int blockn = (BLOCKNO); \
1568 if (TARGET_MEDANY) \
1569 fprintf (FILE, "\tsethi %%hi(LPBX2+%d),%%g1\n\tor %%g1,%%lo(LPBX2+%d),%%g1\n\tld [%%g1+%s],%%g2\n\tadd %%g2,1,%%g2\n\tst %%g2,[%%g1+%s]\n", \
1570 4 * blockn, 4 * blockn, MEDANY_BASE_REG, MEDANY_BASE_REG); \
1571 else \
1572 fprintf (FILE, "\tsethi %%hi(LPBX2+%d),%%g1\n\tld [%%lo(LPBX2+%d)+%%g1],%%g2\n\
1573 \tadd %%g2,1,%%g2\n\tst %%g2,[%%lo(LPBX2+%d)+%%g1]\n", \
1574 4 * blockn, 4 * blockn, 4 * blockn); \
1575 }
1576
1577 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1578 the stack pointer does not matter. The value is tested only in
1579 functions that have frame pointers.
1580 No definition is equivalent to always zero. */
1581
1582 extern int current_function_calls_alloca;
1583 extern int current_function_outgoing_args_size;
1584
1585 #define EXIT_IGNORE_STACK \
1586 (get_frame_size () != 0 \
1587 || current_function_calls_alloca || current_function_outgoing_args_size)
1588
1589 /* This macro generates the assembly code for function exit,
1590 on machines that need it. If FUNCTION_EPILOGUE is not defined
1591 then individual return instructions are generated for each
1592 return statement. Args are same as for FUNCTION_PROLOGUE.
1593
1594 The function epilogue should not depend on the current stack pointer!
1595 It should use the frame pointer only. This is mandatory because
1596 of alloca; we also take advantage of it to omit stack adjustments
1597 before returning. */
1598
1599 /* This declaration is needed due to traditional/ANSI
1600 incompatibilities which cannot be #ifdefed away
1601 because they occur inside of macros. Sigh. */
1602 extern union tree_node *current_function_decl;
1603
1604 #define FUNCTION_EPILOGUE(FILE, SIZE) \
1605 (TARGET_FRW ? sparc_flat_output_function_epilogue (FILE, SIZE) \
1606 : output_function_epilogue (FILE, SIZE, leaf_function))
1607
1608 #define DELAY_SLOTS_FOR_EPILOGUE \
1609 (TARGET_FRW ? sparc_flat_epilogue_delay_slots () : 1)
1610 #define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
1611 (TARGET_FRW ? sparc_flat_eligible_for_epilogue_delay (trial, slots_filled) \
1612 : eligible_for_epilogue_delay (trial, slots_filled))
1613 \f
1614 /* Output assembler code for a block containing the constant parts
1615 of a trampoline, leaving space for the variable parts. */
1616
1617 /* On the sparc, the trampoline contains five instructions:
1618 sethi #TOP_OF_FUNCTION,%g1
1619 or #BOTTOM_OF_FUNCTION,%g1,%g1
1620 sethi #TOP_OF_STATIC,%g2
1621 jmp g1
1622 or #BOTTOM_OF_STATIC,%g2,%g2 */
1623 #define TRAMPOLINE_TEMPLATE(FILE) \
1624 { \
1625 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
1626 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
1627 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
1628 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x81C04000)); \
1629 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
1630 }
1631
1632 /* Length in units of the trampoline for entering a nested function. */
1633
1634 #define TRAMPOLINE_SIZE 20
1635
1636 /* Emit RTL insns to initialize the variable parts of a trampoline.
1637 FNADDR is an RTX for the address of the function's pure code.
1638 CXT is an RTX for the static chain value for the function. */
1639
1640 void sparc_initialize_trampoline ();
1641 void sparc64_initialize_trampoline ();
1642 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1643 do { \
1644 if (TARGET_V9) \
1645 sparc64_initialize_trampoline (TRAMP, FNADDR, CXT); \
1646 else \
1647 sparc_initialize_trampoline (TRAMP, FNADDR, CXT); \
1648 } while (0)
1649 \f
1650 /* Generate necessary RTL for __builtin_saveregs().
1651 ARGLIST is the argument list; see expr.c. */
1652 extern struct rtx_def *sparc_builtin_saveregs ();
1653 #define EXPAND_BUILTIN_SAVEREGS(ARGLIST) sparc_builtin_saveregs (ARGLIST)
1654
1655 /* Generate RTL to flush the register windows so as to make arbitrary frames
1656 available. */
1657 #define SETUP_FRAME_ADDRESSES() \
1658 emit_insn (gen_flush_register_windows ())
1659
1660 /* Given an rtx for the address of a frame,
1661 return an rtx for the address of the word in the frame
1662 that holds the dynamic chain--the previous frame's address.
1663 ??? -mflat support? */
1664 #define DYNAMIC_CHAIN_ADDRESS(frame) \
1665 gen_rtx (PLUS, Pmode, frame, gen_rtx (CONST_INT, VOIDmode, 14 * UNITS_PER_WORD))
1666
1667 /* The return address isn't on the stack, it is in a register, so we can't
1668 access it from the current frame pointer. We can access it from the
1669 previous frame pointer though by reading a value from the register window
1670 save area. */
1671 #define RETURN_ADDR_IN_PREVIOUS_FRAME
1672
1673 /* The current return address is in %i7. The return address of anything
1674 farther back is in the register window save area at [%fp+60]. */
1675 /* ??? This ignores the fact that the actual return address is +8 for normal
1676 returns, and +12 for structure returns. */
1677 #define RETURN_ADDR_RTX(count, frame) \
1678 ((count == -1) \
1679 ? gen_rtx (REG, Pmode, 31) \
1680 : copy_to_reg (gen_rtx (MEM, Pmode, \
1681 memory_address (Pmode, plus_constant (frame, 15 * UNITS_PER_WORD)))))
1682 \f
1683 /* Addressing modes, and classification of registers for them. */
1684
1685 /* #define HAVE_POST_INCREMENT */
1686 /* #define HAVE_POST_DECREMENT */
1687
1688 /* #define HAVE_PRE_DECREMENT */
1689 /* #define HAVE_PRE_INCREMENT */
1690
1691 /* Macros to check register numbers against specific register classes. */
1692
1693 /* These assume that REGNO is a hard or pseudo reg number.
1694 They give nonzero only if REGNO is a hard reg of the suitable class
1695 or a pseudo reg currently allocated to a suitable hard reg.
1696 Since they use reg_renumber, they are safe only once reg_renumber
1697 has been allocated, which happens in local-alloc.c. */
1698
1699 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1700 (((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
1701 #define REGNO_OK_FOR_BASE_P(REGNO) \
1702 (((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
1703 #define REGNO_OK_FOR_FP_P(REGNO) \
1704 (((unsigned) (REGNO) - 32 < (TARGET_V9 ? 64 : 32)) \
1705 || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? 64 : 32)))
1706 #define REGNO_OK_FOR_CCFP_P(REGNO) \
1707 (TARGET_V9 \
1708 && ((unsigned) (REGNO) - 96 < 4) || ((unsigned) reg_renumber[REGNO] - 96 < 4))
1709
1710 /* Now macros that check whether X is a register and also,
1711 strictly, whether it is in a specified class.
1712
1713 These macros are specific to the SPARC, and may be used only
1714 in code for printing assembler insns and in conditions for
1715 define_optimization. */
1716
1717 /* 1 if X is an fp register. */
1718
1719 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1720 \f
1721 /* Maximum number of registers that can appear in a valid memory address. */
1722
1723 #define MAX_REGS_PER_ADDRESS 2
1724
1725 /* Recognize any constant value that is a valid address.
1726 When PIC, we do not accept an address that would require a scratch reg
1727 to load into a register. */
1728
1729 #define CONSTANT_ADDRESS_P(X) \
1730 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1731 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
1732 || (GET_CODE (X) == CONST \
1733 && ! (flag_pic && pic_address_needs_scratch (X))))
1734
1735 /* Define this, so that when PIC, reload won't try to reload invalid
1736 addresses which require two reload registers. */
1737
1738 #define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
1739
1740 /* Nonzero if the constant value X is a legitimate general operand.
1741 Anything can be made to work except floating point constants. */
1742
1743 #define LEGITIMATE_CONSTANT_P(X) \
1744 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode)
1745
1746 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1747 and check its validity for a certain class.
1748 We have two alternate definitions for each of them.
1749 The usual definition accepts all pseudo regs; the other rejects
1750 them unless they have been allocated suitable hard regs.
1751 The symbol REG_OK_STRICT causes the latter definition to be used.
1752
1753 Most source files want to accept pseudo regs in the hope that
1754 they will get allocated to the class that the insn wants them to be in.
1755 Source files for reload pass need to be strict.
1756 After reload, it makes no difference, since pseudo regs have
1757 been eliminated by then. */
1758
1759 /* Optional extra constraints for this machine. Borrowed from romp.h.
1760
1761 For the SPARC, `Q' means that this is a memory operand but not a
1762 symbolic memory operand. Note that an unassigned pseudo register
1763 is such a memory operand. Needed because reload will generate
1764 these things in insns and then not re-recognize the insns, causing
1765 constrain_operands to fail.
1766
1767 `S' handles constraints for calls. ??? So where is it? */
1768
1769 #ifndef REG_OK_STRICT
1770
1771 /* Nonzero if X is a hard reg that can be used as an index
1772 or if it is a pseudo reg. */
1773 #define REG_OK_FOR_INDEX_P(X) \
1774 (((unsigned) REGNO (X)) - 32 >= (FIRST_PSEUDO_REGISTER - 32) && REGNO (X) != 0)
1775 /* Nonzero if X is a hard reg that can be used as a base reg
1776 or if it is a pseudo reg. */
1777 #define REG_OK_FOR_BASE_P(X) \
1778 (((unsigned) REGNO (X)) - 32 >= (FIRST_PSEUDO_REGISTER - 32) && REGNO (X) != 0)
1779
1780 /* 'T', 'U' are for aligned memory loads which aren't needed for v9. */
1781
1782 #define EXTRA_CONSTRAINT(OP, C) \
1783 ((C) == 'Q' \
1784 ? ((GET_CODE (OP) == MEM \
1785 && memory_address_p (GET_MODE (OP), XEXP (OP, 0)) \
1786 && ! symbolic_memory_operand (OP, VOIDmode)) \
1787 || (reload_in_progress && GET_CODE (OP) == REG \
1788 && REGNO (OP) >= FIRST_PSEUDO_REGISTER)) \
1789 : ! TARGET_V9 && (C) == 'T' \
1790 ? (mem_aligned_8 (OP)) \
1791 : ! TARGET_V9 && (C) == 'U' \
1792 ? (register_ok_for_ldd (OP)) \
1793 : 0)
1794
1795 #else
1796
1797 /* Nonzero if X is a hard reg that can be used as an index. */
1798 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1799 /* Nonzero if X is a hard reg that can be used as a base reg. */
1800 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1801
1802 #define EXTRA_CONSTRAINT(OP, C) \
1803 ((C) == 'Q' \
1804 ? (GET_CODE (OP) == REG \
1805 ? (REGNO (OP) >= FIRST_PSEUDO_REGISTER \
1806 && reg_renumber[REGNO (OP)] < 0) \
1807 : GET_CODE (OP) == MEM) \
1808 : ! TARGET_V9 && (C) == 'T' \
1809 ? mem_aligned_8 (OP) && strict_memory_address_p (Pmode, XEXP (OP, 0)) \
1810 : ! TARGET_V9 && (C) == 'U' \
1811 ? (GET_CODE (OP) == REG \
1812 && (REGNO (OP) < FIRST_PSEUDO_REGISTER \
1813 || reg_renumber[REGNO (OP)] > 0) \
1814 && register_ok_for_ldd (OP)) : 0)
1815 #endif
1816 \f
1817 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1818 that is a valid memory address for an instruction.
1819 The MODE argument is the machine mode for the MEM expression
1820 that wants to use this address.
1821
1822 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
1823 ordinarily. This changes a bit when generating PIC.
1824
1825 If you change this, execute "rm explow.o recog.o reload.o". */
1826
1827 #define RTX_OK_FOR_BASE_P(X) \
1828 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1829 || (GET_CODE (X) == SUBREG \
1830 && GET_CODE (SUBREG_REG (X)) == REG \
1831 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1832
1833 #define RTX_OK_FOR_INDEX_P(X) \
1834 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
1835 || (GET_CODE (X) == SUBREG \
1836 && GET_CODE (SUBREG_REG (X)) == REG \
1837 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
1838
1839 #define RTX_OK_FOR_OFFSET_P(X) \
1840 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000)
1841
1842 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1843 { if (RTX_OK_FOR_BASE_P (X)) \
1844 goto ADDR; \
1845 else if (GET_CODE (X) == PLUS) \
1846 { \
1847 register rtx op0 = XEXP (X, 0); \
1848 register rtx op1 = XEXP (X, 1); \
1849 if (flag_pic && op0 == pic_offset_table_rtx) \
1850 { \
1851 if (RTX_OK_FOR_BASE_P (op1)) \
1852 goto ADDR; \
1853 else if (flag_pic == 1 \
1854 && GET_CODE (op1) != REG \
1855 && GET_CODE (op1) != LO_SUM \
1856 && GET_CODE (op1) != MEM \
1857 && (GET_CODE (op1) != CONST_INT \
1858 || SMALL_INT (op1))) \
1859 goto ADDR; \
1860 } \
1861 else if (RTX_OK_FOR_BASE_P (op0)) \
1862 { \
1863 if (RTX_OK_FOR_INDEX_P (op1) \
1864 || RTX_OK_FOR_OFFSET_P (op1)) \
1865 goto ADDR; \
1866 } \
1867 else if (RTX_OK_FOR_BASE_P (op1)) \
1868 { \
1869 if (RTX_OK_FOR_INDEX_P (op0) \
1870 || RTX_OK_FOR_OFFSET_P (op0)) \
1871 goto ADDR; \
1872 } \
1873 } \
1874 else if (GET_CODE (X) == LO_SUM) \
1875 { \
1876 register rtx op0 = XEXP (X, 0); \
1877 register rtx op1 = XEXP (X, 1); \
1878 if (RTX_OK_FOR_BASE_P (op0) \
1879 && CONSTANT_P (op1) \
1880 /* We can't allow TFmode, because an offset \
1881 greater than or equal to the alignment (8) \
1882 may cause the LO_SUM to overflow. */ \
1883 && MODE != TFmode) \
1884 goto ADDR; \
1885 } \
1886 else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
1887 goto ADDR; \
1888 }
1889 \f
1890 /* Try machine-dependent ways of modifying an illegitimate address
1891 to be legitimate. If we find one, return the new, valid address.
1892 This macro is used in only one place: `memory_address' in explow.c.
1893
1894 OLDX is the address as it was before break_out_memory_refs was called.
1895 In some cases it is useful to look at this to decide what needs to be done.
1896
1897 MODE and WIN are passed so that this macro can use
1898 GO_IF_LEGITIMATE_ADDRESS.
1899
1900 It is always safe for this macro to do nothing. It exists to recognize
1901 opportunities to optimize the output. */
1902
1903 /* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
1904 extern struct rtx_def *legitimize_pic_address ();
1905 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1906 { rtx sparc_x = (X); \
1907 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
1908 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
1909 force_operand (XEXP (X, 0), NULL_RTX)); \
1910 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
1911 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1912 force_operand (XEXP (X, 1), NULL_RTX)); \
1913 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
1914 (X) = gen_rtx (PLUS, Pmode, force_operand (XEXP (X, 0), NULL_RTX),\
1915 XEXP (X, 1)); \
1916 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
1917 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1918 force_operand (XEXP (X, 1), NULL_RTX)); \
1919 if (sparc_x != (X) && memory_address_p (MODE, X)) \
1920 goto WIN; \
1921 if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0); \
1922 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1923 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1924 copy_to_mode_reg (Pmode, XEXP (X, 1))); \
1925 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
1926 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
1927 copy_to_mode_reg (Pmode, XEXP (X, 0))); \
1928 else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
1929 || GET_CODE (X) == LABEL_REF) \
1930 (X) = gen_rtx (LO_SUM, Pmode, \
1931 copy_to_mode_reg (Pmode, gen_rtx (HIGH, Pmode, X)), X); \
1932 if (memory_address_p (MODE, X)) \
1933 goto WIN; }
1934
1935 /* Go to LABEL if ADDR (a legitimate address expression)
1936 has an effect that depends on the machine mode it is used for.
1937 On the SPARC this is never true. */
1938
1939 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1940
1941 /* If we are referencing a function make the SYMBOL_REF special.
1942 In the Medium/Anywhere code model, %g4 points to the data segment so we
1943 must not add it to function addresses. */
1944
1945 #define ENCODE_SECTION_INFO(DECL) \
1946 do { \
1947 if (TARGET_MEDANY && TREE_CODE (DECL) == FUNCTION_DECL) \
1948 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
1949 } while (0)
1950 \f
1951 /* Specify the machine mode that this machine uses
1952 for the index in the tablejump instruction. */
1953 #define CASE_VECTOR_MODE Pmode
1954
1955 /* Define this if the tablejump instruction expects the table
1956 to contain offsets from the address of the table.
1957 Do not define this if the table should contain absolute addresses. */
1958 /* #define CASE_VECTOR_PC_RELATIVE */
1959
1960 /* Specify the tree operation to be used to convert reals to integers. */
1961 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1962
1963 /* This is the kind of divide that is easiest to do in the general case. */
1964 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1965
1966 /* Define this as 1 if `char' should by default be signed; else as 0. */
1967 #define DEFAULT_SIGNED_CHAR 1
1968
1969 /* Max number of bytes we can move from memory to memory
1970 in one reasonably fast instruction. */
1971 #define MOVE_MAX 8
1972
1973 #if 0 /* Sun 4 has matherr, so this is no good. */
1974 /* This is the value of the error code EDOM for this machine,
1975 used by the sqrt instruction. */
1976 #define TARGET_EDOM 33
1977
1978 /* This is how to refer to the variable errno. */
1979 #define GEN_ERRNO_RTX \
1980 gen_rtx (MEM, SImode, gen_rtx (SYMBOL_REF, Pmode, "errno"))
1981 #endif /* 0 */
1982
1983 /* Define if operations between registers always perform the operation
1984 on the full register even if a narrower mode is specified. */
1985 #define WORD_REGISTER_OPERATIONS
1986
1987 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1988 will either zero-extend or sign-extend. The value of this macro should
1989 be the code that says which one of the two operations is implicitly
1990 done, NIL if none. */
1991 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1992
1993 /* Nonzero if access to memory by bytes is slow and undesirable.
1994 For RISC chips, it means that access to memory by bytes is no
1995 better than access by words when possible, so grab a whole word
1996 and maybe make use of that. */
1997 #define SLOW_BYTE_ACCESS 1
1998
1999 /* We assume that the store-condition-codes instructions store 0 for false
2000 and some other value for true. This is the value stored for true. */
2001
2002 #define STORE_FLAG_VALUE 1
2003
2004 /* When a prototype says `char' or `short', really pass an `int'. */
2005 #define PROMOTE_PROTOTYPES
2006
2007 /* Define this to be nonzero if shift instructions ignore all but the low-order
2008 few bits. */
2009 #define SHIFT_COUNT_TRUNCATED 1
2010
2011 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2012 is done just by pretending it is already truncated. */
2013 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2014
2015 /* Specify the machine mode that pointers have.
2016 After generation of rtl, the compiler makes no further distinction
2017 between pointers and any other objects of this machine mode. */
2018 #define Pmode (TARGET_PTR64 ? DImode : SImode)
2019
2020 /* Generate calls to memcpy, memcmp and memset. */
2021 #define TARGET_MEM_FUNCTIONS
2022
2023 /* Add any extra modes needed to represent the condition code.
2024
2025 On the Sparc, we have a "no-overflow" mode which is used when an add or
2026 subtract insn is used to set the condition code. Different branches are
2027 used in this case for some operations.
2028
2029 We also have two modes to indicate that the relevant condition code is
2030 in the floating-point condition code register. One for comparisons which
2031 will generate an exception if the result is unordered (CCFPEmode) and
2032 one for comparisons which will never trap (CCFPmode). This really should
2033 be a separate register, but we don't want to go to 65 registers.
2034
2035 CCXmode and CCX_NOOVmode are only used by v9. */
2036
2037 #define EXTRA_CC_MODES CCXmode, CC_NOOVmode, CCX_NOOVmode, CCFPmode, CCFPEmode
2038
2039 /* Define the names for the modes specified above. */
2040
2041 #define EXTRA_CC_NAMES "CCX", "CC_NOOV", "CCX_NOOV", "CCFP", "CCFPE"
2042
2043 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2044 return the mode to be used for the comparison. For floating-point,
2045 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand is a
2046 PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
2047 processing is needed. */
2048 #define SELECT_CC_MODE(OP,X,Y) \
2049 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
2050 ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
2051 : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \
2052 || GET_CODE (X) == NEG || GET_CODE (X) == ASHIFT) \
2053 ? (TARGET_V9 && GET_MODE (X) == DImode ? CCX_NOOVmode : CC_NOOVmode) \
2054 : (TARGET_V9 && GET_MODE (X) == DImode ? CCXmode : CCmode)))
2055
2056 /* Return non-zero if SELECT_CC_MODE will never return MODE for a
2057 floating point inequality comparison. */
2058
2059 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode)
2060
2061 /* A function address in a call instruction
2062 is a byte address (for indexing purposes)
2063 so give the MEM rtx a byte's mode. */
2064 #define FUNCTION_MODE SImode
2065
2066 /* Define this if addresses of constant functions
2067 shouldn't be put through pseudo regs where they can be cse'd.
2068 Desirable on machines where ordinary constants are expensive
2069 but a CALL with constant address is cheap. */
2070 #define NO_FUNCTION_CSE
2071
2072 /* alloca should avoid clobbering the old register save area. */
2073 #define SETJMP_VIA_SAVE_AREA
2074
2075 /* Define subroutines to call to handle multiply and divide.
2076 Use the subroutines that Sun's library provides.
2077 The `*' prevents an underscore from being prepended by the compiler. */
2078
2079 #define DIVSI3_LIBCALL "*.div"
2080 #define UDIVSI3_LIBCALL "*.udiv"
2081 #define MODSI3_LIBCALL "*.rem"
2082 #define UMODSI3_LIBCALL "*.urem"
2083 /* .umul is a little faster than .mul. */
2084 #define MULSI3_LIBCALL "*.umul"
2085
2086 /* Define library calls for quad FP operations. These are all part of the
2087 SPARC ABI. */
2088 #define ADDTF3_LIBCALL "_Q_add"
2089 #define SUBTF3_LIBCALL "_Q_sub"
2090 #define MULTF3_LIBCALL "_Q_mul"
2091 #define DIVTF3_LIBCALL "_Q_div"
2092 #define FLOATSITF2_LIBCALL "_Q_itoq"
2093 #define FIX_TRUNCTFSI2_LIBCALL "_Q_qtoi"
2094 #define FIXUNS_TRUNCTFSI2_LIBCALL "_Q_qtou"
2095 #define EXTENDSFTF2_LIBCALL "_Q_stoq"
2096 #define TRUNCTFSF2_LIBCALL "_Q_qtos"
2097 #define EXTENDDFTF2_LIBCALL "_Q_dtoq"
2098 #define TRUNCTFDF2_LIBCALL "_Q_qtod"
2099 #define EQTF2_LIBCALL "_Q_feq"
2100 #define NETF2_LIBCALL "_Q_fne"
2101 #define GTTF2_LIBCALL "_Q_fgt"
2102 #define GETF2_LIBCALL "_Q_fge"
2103 #define LTTF2_LIBCALL "_Q_flt"
2104 #define LETF2_LIBCALL "_Q_fle"
2105
2106 /* We can define the TFmode sqrt optab only if TARGET_FPU. This is because
2107 with soft-float, the SFmode and DFmode sqrt instructions will be absent,
2108 and the compiler will notice and try to use the TFmode sqrt instruction
2109 for calls to the builtin function sqrt, but this fails. */
2110 #define INIT_TARGET_OPTABS \
2111 do { \
2112 INIT_SUBTARGET_OPTABS; \
2113 if (TARGET_FPU) \
2114 sqrt_optab->handlers[(int) TFmode].libfunc = gen_rtx (SYMBOL_REF, Pmode, "_Q_sqrt"); \
2115 } while (0)
2116
2117 /* This is meant to be redefined in the host dependent files */
2118 #define INIT_SUBTARGET_OPTABS
2119
2120 /* Compute the cost of computing a constant rtl expression RTX
2121 whose rtx-code is CODE. The body of this macro is a portion
2122 of a switch statement. If the code is computed here,
2123 return it with a return statement. Otherwise, break from the switch. */
2124
2125 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
2126 case CONST_INT: \
2127 if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \
2128 return 0; \
2129 case HIGH: \
2130 return 2; \
2131 case CONST: \
2132 case LABEL_REF: \
2133 case SYMBOL_REF: \
2134 return 4; \
2135 case CONST_DOUBLE: \
2136 if (GET_MODE (RTX) == DImode) \
2137 if ((XINT (RTX, 3) == 0 \
2138 && (unsigned) XINT (RTX, 2) < 0x1000) \
2139 || (XINT (RTX, 3) == -1 \
2140 && XINT (RTX, 2) < 0 \
2141 && XINT (RTX, 2) >= -0x1000)) \
2142 return 0; \
2143 return 8;
2144
2145 /* Compute the cost of an address. For the sparc, all valid addresses are
2146 the same cost.
2147 ??? Is this true for v9? */
2148
2149 #define ADDRESS_COST(RTX) 1
2150
2151 /* Compute extra cost of moving data between one register class
2152 and another.
2153 ??? v9: We ignore FPCC_REGS on the assumption they'll never be seen. */
2154 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
2155 (((FP_REG_CLASS_P (CLASS1) && (CLASS2) == GENERAL_REGS) \
2156 || ((CLASS1) == GENERAL_REGS && FP_REG_CLASS_P (CLASS2))) ? 6 : 2)
2157
2158 /* Provide the costs of a rtl expression. This is in the body of a
2159 switch on CODE. The purpose for the cost of MULT is to encourage
2160 `synth_mult' to find a synthetic multiply when reasonable.
2161
2162 If we need more than 12 insns to do a multiply, then go out-of-line,
2163 since the call overhead will be < 10% of the cost of the multiply. */
2164
2165 #define RTX_COSTS(X,CODE,OUTER_CODE) \
2166 case MULT: \
2167 return (TARGET_V8 || TARGET_V9) ? COSTS_N_INSNS (5) : COSTS_N_INSNS (25); \
2168 case DIV: \
2169 case UDIV: \
2170 case MOD: \
2171 case UMOD: \
2172 return COSTS_N_INSNS (25); \
2173 /* Make FLOAT and FIX more expensive than CONST_DOUBLE,\
2174 so that cse will favor the latter. */ \
2175 case FLOAT: \
2176 case FIX: \
2177 return 19;
2178
2179 /* Adjust the cost of dependencies. */
2180 #define ADJUST_COST(INSN,LINK,DEP,COST) \
2181 if (TARGET_SUPERSPARC) \
2182 (COST) = supersparc_adjust_cost (INSN, LINK, DEP, COST)
2183
2184 /* Conditional branches with empty delay slots have a length of two. */
2185 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2186 if (GET_CODE (INSN) == CALL_INSN \
2187 || (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn))) \
2188 LENGTH += 1;
2189 \f
2190 /* Control the assembler format that we output. */
2191
2192 /* Output at beginning of assembler file. */
2193
2194 #define ASM_FILE_START(file)
2195
2196 /* Output to assembler file text saying following lines
2197 may contain character constants, extra white space, comments, etc. */
2198
2199 #define ASM_APP_ON ""
2200
2201 /* Output to assembler file text saying following lines
2202 no longer contain unusual constructs. */
2203
2204 #define ASM_APP_OFF ""
2205
2206 /* ??? Try to make the style consistent here (_OP?). */
2207
2208 #define ASM_LONGLONG ".xword"
2209 #define ASM_LONG ".word"
2210 #define ASM_SHORT ".half"
2211 #define ASM_BYTE_OP ".byte"
2212 #define ASM_FLOAT ".single"
2213 #define ASM_DOUBLE ".double"
2214 #define ASM_LONGDOUBLE ".xxx" /* ??? Not known (or used yet). */
2215
2216 /* Output before read-only data. */
2217
2218 #define TEXT_SECTION_ASM_OP ".text"
2219
2220 /* Output before writable data. */
2221
2222 #define DATA_SECTION_ASM_OP ".data"
2223
2224 /* How to refer to registers in assembler output.
2225 This sequence is indexed by compiler's hard-register-number (see above). */
2226
2227 #ifdef SPARCV9
2228 #define REGISTER_NAMES \
2229 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
2230 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
2231 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
2232 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
2233 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
2234 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
2235 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
2236 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", \
2237 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39", \
2238 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47", \
2239 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55", \
2240 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63", \
2241 "%fcc0", "%fcc1", "%fcc2", "%fcc3"}
2242 #else
2243 #define REGISTER_NAMES \
2244 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
2245 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
2246 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
2247 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
2248 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
2249 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
2250 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
2251 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31"}
2252 #endif
2253
2254 /* Define additional names for use in asm clobbers and asm declarations.
2255
2256 We define the fake Condition Code register as an alias for reg 0 (which
2257 is our `condition code' register), so that condition codes can easily
2258 be clobbered by an asm. No such register actually exists. Condition
2259 codes are partly stored in the PSR and partly in the FSR. */
2260
2261 #define ADDITIONAL_REGISTER_NAMES {"ccr", 0, "cc", 0}
2262
2263 /* How to renumber registers for dbx and gdb. */
2264
2265 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
2266
2267 /* On Sun 4, this limit is 2048. We use 1500 to be safe,
2268 since the length can run past this up to a continuation point. */
2269 #define DBX_CONTIN_LENGTH 1500
2270
2271 /* This is how to output a note to DBX telling it the line number
2272 to which the following sequence of instructions corresponds.
2273
2274 This is needed for SunOS 4.0, and should not hurt for 3.2
2275 versions either. */
2276 #define ASM_OUTPUT_SOURCE_LINE(file, line) \
2277 { static int sym_lineno = 1; \
2278 fprintf (file, ".stabn 68,0,%d,LM%d\nLM%d:\n", \
2279 line, sym_lineno, sym_lineno); \
2280 sym_lineno += 1; }
2281
2282 /* This is how to output the definition of a user-level label named NAME,
2283 such as the label on a static function or variable NAME. */
2284
2285 #define ASM_OUTPUT_LABEL(FILE,NAME) \
2286 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
2287
2288 /* This is how to output a command to make the user-level label named NAME
2289 defined for reference from other files. */
2290
2291 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
2292 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
2293
2294 /* This is how to output a reference to a user-level label named NAME.
2295 `assemble_name' uses this. */
2296
2297 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
2298 fprintf (FILE, "_%s", NAME)
2299
2300 /* This is how to output a definition of an internal numbered label where
2301 PREFIX is the class of label and NUM is the number within the class. */
2302
2303 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
2304 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
2305
2306 /* This is how to output a reference to an internal numbered label where
2307 PREFIX is the class of label and NUM is the number within the class. */
2308 /* FIXME: This should be used throughout gcc, and documented in the texinfo
2309 files. There is no reason you should have to allocate a buffer and
2310 `sprintf' to reference an internal label (as opposed to defining it). */
2311
2312 #define ASM_OUTPUT_INTERNAL_LABELREF(FILE,PREFIX,NUM) \
2313 fprintf (FILE, "%s%d", PREFIX, NUM)
2314
2315 /* This is how to store into the string LABEL
2316 the symbol_ref name of an internal numbered label where
2317 PREFIX is the class of label and NUM is the number within the class.
2318 This is suitable for output with `assemble_name'. */
2319
2320 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2321 sprintf (LABEL, "*%s%d", PREFIX, NUM)
2322
2323 /* This is how to output an assembler line defining a `double' constant. */
2324
2325 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
2326 { \
2327 long t[2]; \
2328 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
2329 fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n", \
2330 ASM_LONG, t[0], ASM_LONG, t[1]); \
2331 }
2332
2333 /* This is how to output an assembler line defining a `float' constant. */
2334
2335 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
2336 { \
2337 long t; \
2338 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
2339 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t); \
2340 } \
2341
2342 /* This is how to output an assembler line defining a `long double'
2343 constant. */
2344
2345 #define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
2346 { \
2347 long t[4]; \
2348 REAL_VALUE_TO_TARGET_LONG_DOUBLE ((VALUE), t); \
2349 fprintf (FILE, "\t%s\t0x%lx\n\t%s\t0x%lx\n\t%s\t0x%lx\n\t%s\t0x%lx\n", \
2350 ASM_LONG, t[0], ASM_LONG, t[1], ASM_LONG, t[2], ASM_LONG, t[3]); \
2351 }
2352
2353 /* This is how to output an assembler line defining an `int' constant. */
2354
2355 #define ASM_OUTPUT_INT(FILE,VALUE) \
2356 ( fprintf (FILE, "\t%s\t", ASM_LONG), \
2357 output_addr_const (FILE, (VALUE)), \
2358 fprintf (FILE, "\n"))
2359
2360 /* This is how to output an assembler line defining a DImode constant. */
2361 #define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
2362 output_double_int (FILE, VALUE)
2363
2364 /* Likewise for `char' and `short' constants. */
2365
2366 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
2367 ( fprintf (FILE, "\t%s\t", ASM_SHORT), \
2368 output_addr_const (FILE, (VALUE)), \
2369 fprintf (FILE, "\n"))
2370
2371 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
2372 ( fprintf (FILE, "\t%s\t", ASM_BYTE_OP), \
2373 output_addr_const (FILE, (VALUE)), \
2374 fprintf (FILE, "\n"))
2375
2376 /* This is how to output an assembler line for a numeric constant byte. */
2377
2378 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
2379 fprintf (FILE, "\t%s\t0x%x\n", ASM_BYTE_OP, (VALUE))
2380
2381 /* This is how to output an element of a case-vector that is absolute. */
2382
2383 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2384 do { \
2385 char label[30]; \
2386 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
2387 if (Pmode == SImode) \
2388 fprintf (FILE, "\t.word\t"); \
2389 else if (TARGET_ENV32) \
2390 fprintf (FILE, "\t.word\t0\n\t.word\t"); \
2391 else \
2392 fprintf (FILE, "\t.xword\t"); \
2393 assemble_name (FILE, label); \
2394 fprintf (FILE, "\n"); \
2395 } while (0)
2396
2397 /* This is how to output an element of a case-vector that is relative.
2398 (SPARC uses such vectors only when generating PIC.) */
2399
2400 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
2401 do { \
2402 char label[30]; \
2403 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
2404 if (Pmode == SImode) \
2405 fprintf (FILE, "\t.word\t"); \
2406 else if (TARGET_ENV32) \
2407 fprintf (FILE, "\t.word\t0\n\t.word\t"); \
2408 else \
2409 fprintf (FILE, "\t.xword\t"); \
2410 assemble_name (FILE, label); \
2411 fprintf (FILE, "-1b\n"); \
2412 } while (0)
2413
2414 /* This is how to output an assembler line
2415 that says to advance the location counter
2416 to a multiple of 2**LOG bytes. */
2417
2418 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2419 if ((LOG) != 0) \
2420 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
2421
2422 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
2423 fprintf (FILE, "\t.skip %u\n", (SIZE))
2424
2425 /* This says how to output an assembler line
2426 to define a global common symbol. */
2427
2428 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
2429 ( fputs ("\t.common ", (FILE)), \
2430 assemble_name ((FILE), (NAME)), \
2431 fprintf ((FILE), ",%u,\"bss\"\n", (SIZE)))
2432
2433 /* This says how to output an assembler line to define a local common
2434 symbol. */
2435
2436 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
2437 ( fputs ("\t.reserve ", (FILE)), \
2438 assemble_name ((FILE), (NAME)), \
2439 fprintf ((FILE), ",%u,\"bss\",%u\n", \
2440 (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
2441
2442 /* Store in OUTPUT a string (made with alloca) containing
2443 an assembler-name for a local static variable named NAME.
2444 LABELNO is an integer which is different for each call. */
2445
2446 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2447 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2448 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2449
2450 #define IDENT_ASM_OP ".ident"
2451
2452 /* Output #ident as a .ident. */
2453
2454 #define ASM_OUTPUT_IDENT(FILE, NAME) \
2455 fprintf (FILE, "\t%s\t\"%s\"\n", IDENT_ASM_OP, NAME);
2456
2457 /* Define the parentheses used to group arithmetic operations
2458 in assembler code. */
2459
2460 #define ASM_OPEN_PAREN "("
2461 #define ASM_CLOSE_PAREN ")"
2462
2463 /* Define results of standard character escape sequences. */
2464 #define TARGET_BELL 007
2465 #define TARGET_BS 010
2466 #define TARGET_TAB 011
2467 #define TARGET_NEWLINE 012
2468 #define TARGET_VT 013
2469 #define TARGET_FF 014
2470 #define TARGET_CR 015
2471
2472 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2473 ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '(')
2474
2475 /* Print operand X (an rtx) in assembler syntax to file FILE.
2476 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2477 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2478
2479 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2480
2481 /* Print a memory address as an operand to reference that memory location. */
2482
2483 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2484 { register rtx base, index = 0; \
2485 int offset = 0; \
2486 register rtx addr = ADDR; \
2487 if (GET_CODE (addr) == REG) \
2488 fputs (reg_names[REGNO (addr)], FILE); \
2489 else if (GET_CODE (addr) == PLUS) \
2490 { \
2491 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
2492 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
2493 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
2494 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
2495 else \
2496 base = XEXP (addr, 0), index = XEXP (addr, 1); \
2497 fputs (reg_names[REGNO (base)], FILE); \
2498 if (index == 0) \
2499 fprintf (FILE, "%+d", offset); \
2500 else if (GET_CODE (index) == REG) \
2501 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
2502 else if (GET_CODE (index) == SYMBOL_REF) \
2503 fputc ('+', FILE), output_addr_const (FILE, index); \
2504 else abort (); \
2505 } \
2506 else if (GET_CODE (addr) == MINUS \
2507 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
2508 { \
2509 output_addr_const (FILE, XEXP (addr, 0)); \
2510 fputs ("-(", FILE); \
2511 output_addr_const (FILE, XEXP (addr, 1)); \
2512 fputs ("-.)", FILE); \
2513 } \
2514 else if (GET_CODE (addr) == LO_SUM) \
2515 { \
2516 output_operand (XEXP (addr, 0), 0); \
2517 fputs ("+%lo(", FILE); \
2518 output_address (XEXP (addr, 1)); \
2519 fputc (')', FILE); \
2520 } \
2521 else if (flag_pic && GET_CODE (addr) == CONST \
2522 && GET_CODE (XEXP (addr, 0)) == MINUS \
2523 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
2524 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
2525 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
2526 { \
2527 addr = XEXP (addr, 0); \
2528 output_addr_const (FILE, XEXP (addr, 0)); \
2529 /* Group the args of the second CONST in parenthesis. */ \
2530 fputs ("-(", FILE); \
2531 /* Skip past the second CONST--it does nothing for us. */\
2532 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
2533 /* Close the parenthesis. */ \
2534 fputc (')', FILE); \
2535 } \
2536 else \
2537 { \
2538 output_addr_const (FILE, addr); \
2539 } \
2540 }
2541
2542 /* Declare functions defined in sparc.c and used in templates. */
2543
2544 extern char *singlemove_string ();
2545 extern char *output_move_double ();
2546 extern char *output_move_quad ();
2547 extern char *output_fp_move_double ();
2548 extern char *output_fp_move_quad ();
2549 extern char *output_block_move ();
2550 extern char *output_scc_insn ();
2551 extern char *output_cbranch ();
2552 extern char *output_v9branch ();
2553 extern char *output_return ();
2554
2555 /* Defined in flags.h, but insn-emit.c does not include flags.h. */
2556
2557 extern int flag_pic;
This page took 0.159023 seconds and 4 git commands to generate.