]> gcc.gnu.org Git - gcc.git/blob - gcc/config/sparc/sparc.h
chorus.h: Consistently define *_DEBUGGING_INFO with the value 1.
[gcc.git] / gcc / config / sparc / sparc.h
1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 1988, 1989, 1992, 1994, 1995, 1996, 1997, 1998, 1999
3 2000, 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com).
5 64 bit SPARC V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
6 at Cygnus Support.
7
8 This file is part of GNU CC.
9
10 GNU CC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14
15 GNU CC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GNU CC; see the file COPYING. If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 /* Note that some other tm.h files include this one and then override
26 whatever definitions are necessary. */
27
28 /* Specify this in a cover file to provide bi-architecture (32/64) support. */
29 /* #define SPARC_BI_ARCH */
30
31 /* Macro used later in this file to determine default architecture. */
32 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
33
34 /* TARGET_ARCH{32,64} are the main macros to decide which of the two
35 architectures to compile for. We allow targets to choose compile time or
36 runtime selection. */
37 #ifdef IN_LIBGCC2
38 #if defined(__sparcv9) || defined(__arch64__)
39 #define TARGET_ARCH32 0
40 #else
41 #define TARGET_ARCH32 1
42 #endif /* sparc64 */
43 #else
44 #ifdef SPARC_BI_ARCH
45 #define TARGET_ARCH32 (! TARGET_64BIT)
46 #else
47 #define TARGET_ARCH32 (DEFAULT_ARCH32_P)
48 #endif /* SPARC_BI_ARCH */
49 #endif /* IN_LIBGCC2 */
50 #define TARGET_ARCH64 (! TARGET_ARCH32)
51
52 /* Code model selection.
53 -mcmodel is used to select the v9 code model.
54 Different code models aren't supported for v7/8 code.
55
56 TARGET_CM_32: 32 bit address space, top 32 bits = 0,
57 pointers are 32 bits. Note that this isn't intended
58 to imply a v7/8 abi.
59
60 TARGET_CM_MEDLOW: 32 bit address space, top 32 bits = 0,
61 avoid generating %uhi and %ulo terms,
62 pointers are 64 bits.
63
64 TARGET_CM_MEDMID: 64 bit address space.
65 The executable must be in the low 16 TB of memory.
66 This corresponds to the low 44 bits, and the %[hml]44
67 relocs are used. The text segment has a maximum size
68 of 31 bits.
69
70 TARGET_CM_MEDANY: 64 bit address space.
71 The text and data segments have a maximum size of 31
72 bits and may be located anywhere. The maximum offset
73 from any instruction to the label _GLOBAL_OFFSET_TABLE_
74 is 31 bits.
75
76 TARGET_CM_EMBMEDANY: 64 bit address space.
77 The text and data segments have a maximum size of 31 bits
78 and may be located anywhere. Register %g4 contains
79 the start address of the data segment.
80 */
81
82 enum cmodel {
83 CM_32,
84 CM_MEDLOW,
85 CM_MEDMID,
86 CM_MEDANY,
87 CM_EMBMEDANY
88 };
89
90 /* Value of -mcmodel specified by user. */
91 extern const char *sparc_cmodel_string;
92 /* One of CM_FOO. */
93 extern enum cmodel sparc_cmodel;
94
95 /* V9 code model selection. */
96 #define TARGET_CM_MEDLOW (sparc_cmodel == CM_MEDLOW)
97 #define TARGET_CM_MEDMID (sparc_cmodel == CM_MEDMID)
98 #define TARGET_CM_MEDANY (sparc_cmodel == CM_MEDANY)
99 #define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
100
101 #define SPARC_DEFAULT_CMODEL CM_32
102
103 /* This is call-clobbered in the normal ABI, but is reserved in the
104 home grown (aka upward compatible) embedded ABI. */
105 #define EMBMEDANY_BASE_REG "%g4"
106 \f
107 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
108 and specified by the user via --with-cpu=foo.
109 This specifies the cpu implementation, not the architecture size. */
110 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
111 capable cpu's. */
112 #define TARGET_CPU_sparc 0
113 #define TARGET_CPU_v7 0 /* alias for previous */
114 #define TARGET_CPU_sparclet 1
115 #define TARGET_CPU_sparclite 2
116 #define TARGET_CPU_v8 3 /* generic v8 implementation */
117 #define TARGET_CPU_supersparc 4
118 #define TARGET_CPU_hypersparc 5
119 #define TARGET_CPU_sparc86x 6
120 #define TARGET_CPU_sparclite86x 6
121 #define TARGET_CPU_v9 7 /* generic v9 implementation */
122 #define TARGET_CPU_sparcv9 7 /* alias */
123 #define TARGET_CPU_sparc64 7 /* alias */
124 #define TARGET_CPU_ultrasparc 8
125 #define TARGET_CPU_ultrasparc3 9
126
127 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
128 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc \
129 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
130
131 #define CPP_CPU32_DEFAULT_SPEC ""
132 #define ASM_CPU32_DEFAULT_SPEC ""
133
134 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9
135 /* ??? What does Sun's CC pass? */
136 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
137 /* ??? It's not clear how other assemblers will handle this, so by default
138 use GAS. Sun's Solaris assembler recognizes -xarch=v8plus, but this case
139 is handled in sol2.h. */
140 #define ASM_CPU64_DEFAULT_SPEC "-Av9"
141 #endif
142 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
143 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
144 #define ASM_CPU64_DEFAULT_SPEC "-Av9a"
145 #endif
146 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc3
147 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
148 #define ASM_CPU64_DEFAULT_SPEC "-Av9b"
149 #endif
150
151 #else
152
153 #define CPP_CPU64_DEFAULT_SPEC ""
154 #define ASM_CPU64_DEFAULT_SPEC ""
155
156 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
157 || TARGET_CPU_DEFAULT == TARGET_CPU_v8
158 #define CPP_CPU32_DEFAULT_SPEC ""
159 #define ASM_CPU32_DEFAULT_SPEC ""
160 #endif
161
162 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
163 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
164 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
165 #endif
166
167 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
168 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
169 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
170 #endif
171
172 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
173 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
174 #define ASM_CPU32_DEFAULT_SPEC ""
175 #endif
176
177 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
178 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
179 #define ASM_CPU32_DEFAULT_SPEC ""
180 #endif
181
182 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
183 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
184 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
185 #endif
186
187 #endif
188
189 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
190 Unrecognized value in TARGET_CPU_DEFAULT.
191 #endif
192
193 #ifdef SPARC_BI_ARCH
194
195 #define CPP_CPU_DEFAULT_SPEC \
196 (DEFAULT_ARCH32_P ? "\
197 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \
198 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
199 " : "\
200 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \
201 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
202 ")
203 #define ASM_CPU_DEFAULT_SPEC \
204 (DEFAULT_ARCH32_P ? "\
205 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \
206 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
207 " : "\
208 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \
209 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
210 ")
211
212 #else /* !SPARC_BI_ARCH */
213
214 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
215 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
216
217 #endif /* !SPARC_BI_ARCH */
218
219 /* Define macros to distinguish architectures. */
220
221 /* Common CPP definitions used by CPP_SPEC amongst the various targets
222 for handling -mcpu=xxx switches. */
223 #define CPP_CPU_SPEC "\
224 %{msoft-float:-D_SOFT_FLOAT} \
225 %{mcypress:} \
226 %{msparclite:-D__sparclite__} \
227 %{mf930:-D__sparclite__} %{mf934:-D__sparclite__} \
228 %{mv8:-D__sparc_v8__} \
229 %{msupersparc:-D__supersparc__ -D__sparc_v8__} \
230 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
231 %{mcpu=sparclite:-D__sparclite__} \
232 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
233 %{mcpu=v8:-D__sparc_v8__} \
234 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
235 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
236 %{mcpu=sparclite86x:-D__sparclite86x__} \
237 %{mcpu=v9:-D__sparc_v9__} \
238 %{mcpu=ultrasparc:-D__sparc_v9__} \
239 %{mcpu=ultrasparc3:-D__sparc_v9__} \
240 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(cpp_cpu_default)}}}}}}} \
241 "
242
243 /* ??? The GCC_NEW_VARARGS macro is now obsolete, because gcc always uses
244 the right varags.h file when bootstrapping. */
245 /* ??? It's not clear what value we want to use for -Acpu/machine for
246 sparc64 in 32 bit environments, so for now we only use `sparc64' in
247 64 bit environments. */
248
249 #define CPP_ARCH32_SPEC "-D__GCC_NEW_VARARGS__ -Acpu=sparc -Amachine=sparc"
250 #define CPP_ARCH64_SPEC "-D__arch64__ -Acpu=sparc64 -Amachine=sparc64"
251
252 #define CPP_ARCH_DEFAULT_SPEC \
253 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
254
255 #define CPP_ARCH_SPEC "\
256 %{m32:%(cpp_arch32)} \
257 %{m64:%(cpp_arch64)} \
258 %{!m32:%{!m64:%(cpp_arch_default)}} \
259 "
260
261 /* Macros to distinguish endianness. */
262 #define CPP_ENDIAN_SPEC "\
263 %{mlittle-endian:-D__LITTLE_ENDIAN__} \
264 %{mlittle-endian-data:-D__LITTLE_ENDIAN_DATA__}"
265
266 /* Macros to distinguish the particular subtarget. */
267 #define CPP_SUBTARGET_SPEC ""
268
269 #define CPP_SPEC "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_subtarget)"
270
271 /* Prevent error on `-sun4' and `-target sun4' options. */
272 /* This used to translate -dalign to -malign, but that is no good
273 because it can't turn off the usual meaning of making debugging dumps. */
274 /* Translate old style -m<cpu> into new style -mcpu=<cpu>.
275 ??? Delete support for -m<cpu> for 2.9. */
276
277 #define CC1_SPEC "\
278 %{sun4:} %{target:} \
279 %{mcypress:-mcpu=cypress} \
280 %{msparclite:-mcpu=sparclite} %{mf930:-mcpu=f930} %{mf934:-mcpu=f934} \
281 %{mv8:-mcpu=v8} %{msupersparc:-mcpu=supersparc} \
282 "
283
284 /* Override in target specific files. */
285 #define ASM_CPU_SPEC "\
286 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
287 %{msparclite:-Asparclite} \
288 %{mf930:-Asparclite} %{mf934:-Asparclite} \
289 %{mcpu=sparclite:-Asparclite} \
290 %{mcpu=sparclite86x:-Asparclite} \
291 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
292 %{mv8plus:-Av8plus} \
293 %{mcpu=v9:-Av9} \
294 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
295 %{mcpu=ultrasparc3:%{!mv8plus:-Av9b}} \
296 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(asm_cpu_default)}}}}}}} \
297 "
298
299 /* Word size selection, among other things.
300 This is what GAS uses. Add %(asm_arch) to ASM_SPEC to enable. */
301
302 #define ASM_ARCH32_SPEC "-32"
303 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
304 #define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
305 #else
306 #define ASM_ARCH64_SPEC "-64"
307 #endif
308 #define ASM_ARCH_DEFAULT_SPEC \
309 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
310
311 #define ASM_ARCH_SPEC "\
312 %{m32:%(asm_arch32)} \
313 %{m64:%(asm_arch64)} \
314 %{!m32:%{!m64:%(asm_arch_default)}} \
315 "
316
317 #ifdef HAVE_AS_RELAX_OPTION
318 #define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
319 #else
320 #define ASM_RELAX_SPEC ""
321 #endif
322
323 /* Special flags to the Sun-4 assembler when using pipe for input. */
324
325 #define ASM_SPEC "\
326 %| %{R} %{!pg:%{!p:%{fpic:-k} %{fPIC:-k}}} %{keep-local-as-symbols:-L} \
327 %(asm_cpu) %(asm_relax)"
328
329 /* This macro defines names of additional specifications to put in the specs
330 that can be used in various specifications like CC1_SPEC. Its definition
331 is an initializer with a subgrouping for each command option.
332
333 Each subgrouping contains a string constant, that defines the
334 specification name, and a string constant that used by the GNU CC driver
335 program.
336
337 Do not define this macro if it does not need to do anything. */
338
339 #define EXTRA_SPECS \
340 { "cpp_cpu", CPP_CPU_SPEC }, \
341 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
342 { "cpp_arch32", CPP_ARCH32_SPEC }, \
343 { "cpp_arch64", CPP_ARCH64_SPEC }, \
344 { "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\
345 { "cpp_arch", CPP_ARCH_SPEC }, \
346 { "cpp_endian", CPP_ENDIAN_SPEC }, \
347 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
348 { "asm_cpu", ASM_CPU_SPEC }, \
349 { "asm_cpu_default", ASM_CPU_DEFAULT_SPEC }, \
350 { "asm_arch32", ASM_ARCH32_SPEC }, \
351 { "asm_arch64", ASM_ARCH64_SPEC }, \
352 { "asm_relax", ASM_RELAX_SPEC }, \
353 { "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\
354 { "asm_arch", ASM_ARCH_SPEC }, \
355 SUBTARGET_EXTRA_SPECS
356
357 #define SUBTARGET_EXTRA_SPECS
358
359 /* Because libgcc can generate references back to libc (via .umul etc.) we have
360 to list libc again after the second libgcc. */
361 #define LINK_GCC_C_SEQUENCE_SPEC "%G %L %G %L"
362
363 \f
364 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
365 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
366
367 /* ??? This should be 32 bits for v9 but what can we do? */
368 #define WCHAR_TYPE "short unsigned int"
369 #define WCHAR_TYPE_SIZE 16
370
371 /* Show we can debug even without a frame pointer. */
372 #define CAN_DEBUG_WITHOUT_FP
373
374 #define OVERRIDE_OPTIONS sparc_override_options ()
375
376 /* Generate DBX debugging information. */
377
378 #define DBX_DEBUGGING_INFO 1
379 \f
380 /* Run-time compilation parameters selecting different hardware subsets. */
381
382 extern int target_flags;
383
384 /* Nonzero if we should generate code to use the fpu. */
385 #define MASK_FPU 1
386 #define TARGET_FPU (target_flags & MASK_FPU)
387
388 /* Nonzero if we should assume that double pointers might be unaligned.
389 This can happen when linking gcc compiled code with other compilers,
390 because the ABI only guarantees 4 byte alignment. */
391 #define MASK_UNALIGNED_DOUBLES 4
392 #define TARGET_UNALIGNED_DOUBLES (target_flags & MASK_UNALIGNED_DOUBLES)
393
394 /* Nonzero means that we should generate code for a v8 sparc. */
395 #define MASK_V8 0x8
396 #define TARGET_V8 (target_flags & MASK_V8)
397
398 /* Nonzero means that we should generate code for a sparclite.
399 This enables the sparclite specific instructions, but does not affect
400 whether FPU instructions are emitted. */
401 #define MASK_SPARCLITE 0x10
402 #define TARGET_SPARCLITE (target_flags & MASK_SPARCLITE)
403
404 /* Nonzero if we're compiling for the sparclet. */
405 #define MASK_SPARCLET 0x20
406 #define TARGET_SPARCLET (target_flags & MASK_SPARCLET)
407
408 /* Nonzero if we're compiling for v9 sparc.
409 Note that v9's can run in 32 bit mode so this doesn't necessarily mean
410 the word size is 64. */
411 #define MASK_V9 0x40
412 #define TARGET_V9 (target_flags & MASK_V9)
413
414 /* Non-zero to generate code that uses the instructions deprecated in
415 the v9 architecture. This option only applies to v9 systems. */
416 /* ??? This isn't user selectable yet. It's used to enable such insns
417 on 32 bit v9 systems and for the moment they're permanently disabled
418 on 64 bit v9 systems. */
419 #define MASK_DEPRECATED_V8_INSNS 0x80
420 #define TARGET_DEPRECATED_V8_INSNS (target_flags & MASK_DEPRECATED_V8_INSNS)
421
422 /* Mask of all CPU selection flags. */
423 #define MASK_ISA \
424 (MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
425
426 /* Non-zero means don't pass `-assert pure-text' to the linker. */
427 #define MASK_IMPURE_TEXT 0x100
428 #define TARGET_IMPURE_TEXT (target_flags & MASK_IMPURE_TEXT)
429
430 /* Nonzero means that we should generate code using a flat register window
431 model, i.e. no save/restore instructions are generated, which is
432 compatible with normal sparc code.
433 The frame pointer is %i7 instead of %fp. */
434 #define MASK_FLAT 0x200
435 #define TARGET_FLAT (target_flags & MASK_FLAT)
436
437 /* Nonzero means use the registers that the Sparc ABI reserves for
438 application software. This must be the default to coincide with the
439 setting in FIXED_REGISTERS. */
440 #define MASK_APP_REGS 0x400
441 #define TARGET_APP_REGS (target_flags & MASK_APP_REGS)
442
443 /* Option to select how quad word floating point is implemented.
444 When TARGET_HARD_QUAD is true, we use the hardware quad instructions.
445 Otherwise, we use the SPARC ABI quad library functions. */
446 #define MASK_HARD_QUAD 0x800
447 #define TARGET_HARD_QUAD (target_flags & MASK_HARD_QUAD)
448
449 /* Non-zero on little-endian machines. */
450 /* ??? Little endian support currently only exists for sparclet-aout and
451 sparc64-elf configurations. May eventually want to expand the support
452 to all targets, but for now it's kept local to only those two. */
453 #define MASK_LITTLE_ENDIAN 0x1000
454 #define TARGET_LITTLE_ENDIAN (target_flags & MASK_LITTLE_ENDIAN)
455
456 /* 0x2000, 0x4000 are unused */
457
458 /* Nonzero if pointers are 64 bits. */
459 #define MASK_PTR64 0x8000
460 #define TARGET_PTR64 (target_flags & MASK_PTR64)
461
462 /* Nonzero if generating code to run in a 64 bit environment.
463 This is intended to only be used by TARGET_ARCH{32,64} as they are the
464 mechanism used to control compile time or run time selection. */
465 #define MASK_64BIT 0x10000
466 #define TARGET_64BIT (target_flags & MASK_64BIT)
467
468 /* 0x20000,0x40000 unused */
469
470 /* Non-zero means use a stack bias of 2047. Stack offsets are obtained by
471 adding 2047 to %sp. This option is for v9 only and is the default. */
472 #define MASK_STACK_BIAS 0x80000
473 #define TARGET_STACK_BIAS (target_flags & MASK_STACK_BIAS)
474
475 /* 0x100000,0x200000 unused */
476
477 /* Non-zero means -m{,no-}fpu was passed on the command line. */
478 #define MASK_FPU_SET 0x400000
479 #define TARGET_FPU_SET (target_flags & MASK_FPU_SET)
480
481 /* Use the UltraSPARC Visual Instruction Set extensions. */
482 #define MASK_VIS 0x1000000
483 #define TARGET_VIS (target_flags & MASK_VIS)
484
485 /* Compile for Solaris V8+. 32 bit Solaris preserves the high bits of
486 the current out and global registers and Linux 2.2+ as well. */
487 #define MASK_V8PLUS 0x2000000
488 #define TARGET_V8PLUS (target_flags & MASK_V8PLUS)
489
490 /* Force a the fastest alignment on structures to take advantage of
491 faster copies. */
492 #define MASK_FASTER_STRUCTS 0x4000000
493 #define TARGET_FASTER_STRUCTS (target_flags & MASK_FASTER_STRUCTS)
494
495 /* Use IEEE quad long double. */
496 #define MASK_LONG_DOUBLE_128 0x8000000
497 #define TARGET_LONG_DOUBLE_128 (target_flags & MASK_LONG_DOUBLE_128)
498
499 /* TARGET_HARD_MUL: Use hardware multiply instructions but not %y.
500 TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y
501 to get high 32 bits. False in V8+ or V9 because multiply stores
502 a 64 bit result in a register. */
503
504 #define TARGET_HARD_MUL32 \
505 ((TARGET_V8 || TARGET_SPARCLITE \
506 || TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS) \
507 && ! TARGET_V8PLUS && TARGET_ARCH32)
508
509 #define TARGET_HARD_MUL \
510 (TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET \
511 || TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS)
512
513
514 /* Macro to define tables used to set the flags.
515 This is a list in braces of pairs in braces,
516 each pair being { "NAME", VALUE }
517 where VALUE is the bits to set or minus the bits to clear.
518 An empty string NAME is used to identify the default VALUE. */
519
520 #define TARGET_SWITCHES \
521 { {"fpu", MASK_FPU | MASK_FPU_SET, \
522 N_("Use hardware fp") }, \
523 {"no-fpu", -MASK_FPU, \
524 N_("Do not use hardware fp") }, \
525 {"no-fpu", MASK_FPU_SET, NULL, }, \
526 {"hard-float", MASK_FPU | MASK_FPU_SET, \
527 N_("Use hardware fp") }, \
528 {"soft-float", -MASK_FPU, \
529 N_("Do not use hardware fp") }, \
530 {"soft-float", MASK_FPU_SET, NULL }, \
531 {"unaligned-doubles", MASK_UNALIGNED_DOUBLES, \
532 N_("Assume possible double misalignment") }, \
533 {"no-unaligned-doubles", -MASK_UNALIGNED_DOUBLES, \
534 N_("Assume all doubles are aligned") }, \
535 {"impure-text", MASK_IMPURE_TEXT, \
536 N_("Pass -assert pure-text to linker") }, \
537 {"no-impure-text", -MASK_IMPURE_TEXT, \
538 N_("Do not pass -assert pure-text to linker") }, \
539 {"flat", MASK_FLAT, \
540 N_("Use flat register window model") }, \
541 {"no-flat", -MASK_FLAT, \
542 N_("Do not use flat register window model") }, \
543 {"app-regs", MASK_APP_REGS, \
544 N_("Use ABI reserved registers") }, \
545 {"no-app-regs", -MASK_APP_REGS, \
546 N_("Do not use ABI reserved registers") }, \
547 {"hard-quad-float", MASK_HARD_QUAD, \
548 N_("Use hardware quad fp instructions") }, \
549 {"soft-quad-float", -MASK_HARD_QUAD, \
550 N_("Do not use hardware quad fp instructions") }, \
551 {"v8plus", MASK_V8PLUS, \
552 N_("Compile for v8plus ABI") }, \
553 {"no-v8plus", -MASK_V8PLUS, \
554 N_("Do not compile for v8plus ABI") }, \
555 {"vis", MASK_VIS, \
556 N_("Utilize Visual Instruction Set") }, \
557 {"no-vis", -MASK_VIS, \
558 N_("Do not utilize Visual Instruction Set") }, \
559 /* ??? These are deprecated, coerced to -mcpu=. Delete in 2.9. */ \
560 {"cypress", 0, \
561 N_("Optimize for Cypress processors") }, \
562 {"sparclite", 0, \
563 N_("Optimize for SparcLite processors") }, \
564 {"f930", 0, \
565 N_("Optimize for F930 processors") }, \
566 {"f934", 0, \
567 N_("Optimize for F934 processors") }, \
568 {"v8", 0, \
569 N_("Use V8 Sparc ISA") }, \
570 {"supersparc", 0, \
571 N_("Optimize for SuperSparc processors") }, \
572 /* End of deprecated options. */ \
573 {"ptr64", MASK_PTR64, \
574 N_("Pointers are 64-bit") }, \
575 {"ptr32", -MASK_PTR64, \
576 N_("Pointers are 32-bit") }, \
577 {"32", -MASK_64BIT, \
578 N_("Use 32-bit ABI") }, \
579 {"64", MASK_64BIT, \
580 N_("Use 64-bit ABI") }, \
581 {"stack-bias", MASK_STACK_BIAS, \
582 N_("Use stack bias") }, \
583 {"no-stack-bias", -MASK_STACK_BIAS, \
584 N_("Do not use stack bias") }, \
585 {"faster-structs", MASK_FASTER_STRUCTS, \
586 N_("Use structs on stronger alignment for double-word copies") }, \
587 {"no-faster-structs", -MASK_FASTER_STRUCTS, \
588 N_("Do not use structs on stronger alignment for double-word copies") }, \
589 {"relax", 0, \
590 N_("Optimize tail call instructions in assembler and linker") }, \
591 {"no-relax", 0, \
592 N_("Do not optimize tail call instructions in assembler or linker") }, \
593 SUBTARGET_SWITCHES \
594 { "", TARGET_DEFAULT, ""}}
595
596 /* MASK_APP_REGS must always be the default because that's what
597 FIXED_REGISTERS is set to and -ffixed- is processed before
598 CONDITIONAL_REGISTER_USAGE is called (where we process -mno-app-regs). */
599 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_FPU)
600
601 /* This is meant to be redefined in target specific files. */
602 #define SUBTARGET_SWITCHES
603
604 /* Processor type.
605 These must match the values for the cpu attribute in sparc.md. */
606 enum processor_type {
607 PROCESSOR_V7,
608 PROCESSOR_CYPRESS,
609 PROCESSOR_V8,
610 PROCESSOR_SUPERSPARC,
611 PROCESSOR_SPARCLITE,
612 PROCESSOR_F930,
613 PROCESSOR_F934,
614 PROCESSOR_HYPERSPARC,
615 PROCESSOR_SPARCLITE86X,
616 PROCESSOR_SPARCLET,
617 PROCESSOR_TSC701,
618 PROCESSOR_V9,
619 PROCESSOR_ULTRASPARC,
620 PROCESSOR_ULTRASPARC3
621 };
622
623 /* This is set from -m{cpu,tune}=xxx. */
624 extern enum processor_type sparc_cpu;
625
626 /* Recast the cpu class to be the cpu attribute.
627 Every file includes us, but not every file includes insn-attr.h. */
628 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
629
630 #define TARGET_OPTIONS \
631 { \
632 { "cpu=", &sparc_select[1].string, \
633 N_("Use features of and schedule code for given CPU") }, \
634 { "tune=", &sparc_select[2].string, \
635 N_("Schedule code for given CPU") }, \
636 { "cmodel=", &sparc_cmodel_string, \
637 N_("Use given Sparc code model") }, \
638 SUBTARGET_OPTIONS \
639 }
640
641 /* This is meant to be redefined in target specific files. */
642 #define SUBTARGET_OPTIONS
643
644 /* sparc_select[0] is reserved for the default cpu. */
645 struct sparc_cpu_select
646 {
647 const char *string;
648 const char *const name;
649 const int set_tune_p;
650 const int set_arch_p;
651 };
652
653 extern struct sparc_cpu_select sparc_select[];
654 \f
655 /* target machine storage layout */
656
657 /* Define this if most significant bit is lowest numbered
658 in instructions that operate on numbered bit-fields. */
659 #define BITS_BIG_ENDIAN 1
660
661 /* Define this if most significant byte of a word is the lowest numbered. */
662 #define BYTES_BIG_ENDIAN 1
663
664 /* Define this if most significant word of a multiword number is the lowest
665 numbered. */
666 #define WORDS_BIG_ENDIAN 1
667
668 /* Define this to set the endianness to use in libgcc2.c, which can
669 not depend on target_flags. */
670 #if defined (__LITTLE_ENDIAN__) || defined(__LITTLE_ENDIAN_DATA__)
671 #define LIBGCC2_WORDS_BIG_ENDIAN 0
672 #else
673 #define LIBGCC2_WORDS_BIG_ENDIAN 1
674 #endif
675
676 #define MAX_BITS_PER_WORD 64
677
678 /* Width of a word, in units (bytes). */
679 #define UNITS_PER_WORD (TARGET_ARCH64 ? 8 : 4)
680 #ifdef IN_LIBGCC2
681 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
682 #else
683 #define MIN_UNITS_PER_WORD 4
684 #endif
685
686 /* Now define the sizes of the C data types. */
687
688 #define SHORT_TYPE_SIZE 16
689 #define INT_TYPE_SIZE 32
690 #define LONG_TYPE_SIZE (TARGET_ARCH64 ? 64 : 32)
691 #define LONG_LONG_TYPE_SIZE 64
692 #define FLOAT_TYPE_SIZE 32
693 #define DOUBLE_TYPE_SIZE 64
694
695 #ifdef SPARC_BI_ARCH
696 #define MAX_LONG_TYPE_SIZE 64
697 #endif
698
699 #if 0
700 /* ??? This does not work in SunOS 4.x, so it is not enabled here.
701 Instead, it is enabled in sol2.h, because it does work under Solaris. */
702 /* Define for support of TFmode long double.
703 Sparc ABI says that long double is 4 words. */
704 #define LONG_DOUBLE_TYPE_SIZE 128
705 #endif
706
707 /* Width in bits of a pointer.
708 See also the macro `Pmode' defined below. */
709 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
710
711 /* If we have to extend pointers (only when TARGET_ARCH64 and not
712 TARGET_PTR64), we want to do it unsigned. This macro does nothing
713 if ptr_mode and Pmode are the same. */
714 #define POINTERS_EXTEND_UNSIGNED 1
715
716 /* A macro to update MODE and UNSIGNEDP when an object whose type
717 is TYPE and which has the specified mode and signedness is to be
718 stored in a register. This macro is only called when TYPE is a
719 scalar type. */
720 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
721 if (TARGET_ARCH64 \
722 && GET_MODE_CLASS (MODE) == MODE_INT \
723 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
724 (MODE) = DImode;
725
726 /* Define this macro if the promotion described by PROMOTE_MODE
727 should also be done for outgoing function arguments. */
728 /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
729 for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test
730 for this value. */
731 #define PROMOTE_FUNCTION_ARGS
732
733 /* Define this macro if the promotion described by PROMOTE_MODE
734 should also be done for the return value of functions.
735 If this macro is defined, FUNCTION_VALUE must perform the same
736 promotions done by PROMOTE_MODE. */
737 /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
738 for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test
739 for this value. */
740 #define PROMOTE_FUNCTION_RETURN
741
742 /* Define this macro if the promotion described by PROMOTE_MODE
743 should _only_ be performed for outgoing function arguments or
744 function return values, as specified by PROMOTE_FUNCTION_ARGS
745 and PROMOTE_FUNCTION_RETURN, respectively. */
746 /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
747 for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test
748 for this value. For TARGET_ARCH64 we need it, as we don't have instructions
749 for arithmetic operations which do zero/sign extension at the same time,
750 so without this we end up with a srl/sra after every assignment to an
751 user variable, which means very very bad code. */
752 #define PROMOTE_FOR_CALL_ONLY
753
754 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
755 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
756
757 /* Boundary (in *bits*) on which stack pointer should be aligned. */
758 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
759
760 /* ALIGN FRAMES on double word boundaries */
761
762 #define SPARC_STACK_ALIGN(LOC) \
763 (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
764
765 /* Allocation boundary (in *bits*) for the code of a function. */
766 #define FUNCTION_BOUNDARY 32
767
768 /* Alignment of field after `int : 0' in a structure. */
769 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
770
771 /* Every structure's size must be a multiple of this. */
772 #define STRUCTURE_SIZE_BOUNDARY 8
773
774 /* A bitfield declared as `int' forces `int' alignment for the struct. */
775 #define PCC_BITFIELD_TYPE_MATTERS 1
776
777 /* No data type wants to be aligned rounder than this. */
778 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
779
780 /* The best alignment to use in cases where we have a choice. */
781 #define FASTEST_ALIGNMENT 64
782
783 /* Define this macro as an expression for the alignment of a structure
784 (given by STRUCT as a tree node) if the alignment computed in the
785 usual way is COMPUTED and the alignment explicitly specified was
786 SPECIFIED.
787
788 The default is to use SPECIFIED if it is larger; otherwise, use
789 the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
790 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
791 (TARGET_FASTER_STRUCTS ? \
792 ((TREE_CODE (STRUCT) == RECORD_TYPE \
793 || TREE_CODE (STRUCT) == UNION_TYPE \
794 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
795 && TYPE_FIELDS (STRUCT) != 0 \
796 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
797 : MAX ((COMPUTED), (SPECIFIED))) \
798 : MAX ((COMPUTED), (SPECIFIED)))
799
800 /* Make strings word-aligned so strcpy from constants will be faster. */
801 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
802 ((TREE_CODE (EXP) == STRING_CST \
803 && (ALIGN) < FASTEST_ALIGNMENT) \
804 ? FASTEST_ALIGNMENT : (ALIGN))
805
806 /* Make arrays of chars word-aligned for the same reasons. */
807 #define DATA_ALIGNMENT(TYPE, ALIGN) \
808 (TREE_CODE (TYPE) == ARRAY_TYPE \
809 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
810 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
811
812 /* Set this nonzero if move instructions will actually fail to work
813 when given unaligned data. */
814 #define STRICT_ALIGNMENT 1
815
816 /* Things that must be doubleword aligned cannot go in the text section,
817 because the linker fails to align the text section enough!
818 Put them in the data section. This macro is only used in this file. */
819 #define MAX_TEXT_ALIGN 32
820
821 /* This forces all variables and constants to the data section when PIC.
822 This is because the SunOS 4 shared library scheme thinks everything in
823 text is a function, and patches the address to point to a loader stub. */
824 /* This is defined to zero for every system which doesn't use the a.out object
825 file format. */
826 #ifndef SUNOS4_SHARED_LIBRARIES
827 #define SUNOS4_SHARED_LIBRARIES 0
828 #endif
829 \f
830 /* Standard register usage. */
831
832 /* Number of actual hardware registers.
833 The hardware registers are assigned numbers for the compiler
834 from 0 to just below FIRST_PSEUDO_REGISTER.
835 All registers that the compiler knows about must be given numbers,
836 even those that are not normally considered general registers.
837
838 SPARC has 32 integer registers and 32 floating point registers.
839 64 bit SPARC has 32 additional fp regs, but the odd numbered ones are not
840 accessible. We still account for them to simplify register computations
841 (eg: in CLASS_MAX_NREGS). There are also 4 fp condition code registers, so
842 32+32+32+4 == 100.
843 Register 100 is used as the integer condition code register.
844 Register 101 is used as the soft frame pointer register. */
845
846 #define FIRST_PSEUDO_REGISTER 102
847
848 #define SPARC_FIRST_FP_REG 32
849 /* Additional V9 fp regs. */
850 #define SPARC_FIRST_V9_FP_REG 64
851 #define SPARC_LAST_V9_FP_REG 95
852 /* V9 %fcc[0123]. V8 uses (figuratively) %fcc0. */
853 #define SPARC_FIRST_V9_FCC_REG 96
854 #define SPARC_LAST_V9_FCC_REG 99
855 /* V8 fcc reg. */
856 #define SPARC_FCC_REG 96
857 /* Integer CC reg. We don't distinguish %icc from %xcc. */
858 #define SPARC_ICC_REG 100
859
860 /* Nonzero if REGNO is an fp reg. */
861 #define SPARC_FP_REG_P(REGNO) \
862 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
863
864 /* Argument passing regs. */
865 #define SPARC_OUTGOING_INT_ARG_FIRST 8
866 #define SPARC_INCOMING_INT_ARG_FIRST (TARGET_FLAT ? 8 : 24)
867 #define SPARC_FP_ARG_FIRST 32
868
869 /* 1 for registers that have pervasive standard uses
870 and are not available for the register allocator.
871
872 On non-v9 systems:
873 g1 is free to use as temporary.
874 g2-g4 are reserved for applications. Gcc normally uses them as
875 temporaries, but this can be disabled via the -mno-app-regs option.
876 g5 through g7 are reserved for the operating system.
877
878 On v9 systems:
879 g1,g5 are free to use as temporaries, and are free to use between calls
880 if the call is to an external function via the PLT.
881 g4 is free to use as a temporary in the non-embedded case.
882 g4 is reserved in the embedded case.
883 g2-g3 are reserved for applications. Gcc normally uses them as
884 temporaries, but this can be disabled via the -mno-app-regs option.
885 g6-g7 are reserved for the operating system (or application in
886 embedded case).
887 ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
888 currently be a fixed register until this pattern is rewritten.
889 Register 1 is also used when restoring call-preserved registers in large
890 stack frames.
891
892 Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
893 CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
894 */
895
896 #define FIXED_REGISTERS \
897 {1, 0, 2, 2, 2, 2, 1, 1, \
898 0, 0, 0, 0, 0, 0, 1, 0, \
899 0, 0, 0, 0, 0, 0, 0, 0, \
900 0, 0, 0, 0, 0, 0, 1, 1, \
901 \
902 0, 0, 0, 0, 0, 0, 0, 0, \
903 0, 0, 0, 0, 0, 0, 0, 0, \
904 0, 0, 0, 0, 0, 0, 0, 0, \
905 0, 0, 0, 0, 0, 0, 0, 0, \
906 \
907 0, 0, 0, 0, 0, 0, 0, 0, \
908 0, 0, 0, 0, 0, 0, 0, 0, \
909 0, 0, 0, 0, 0, 0, 0, 0, \
910 0, 0, 0, 0, 0, 0, 0, 0, \
911 \
912 0, 0, 0, 0, 0, 1}
913
914 /* 1 for registers not available across function calls.
915 These must include the FIXED_REGISTERS and also any
916 registers that can be used without being saved.
917 The latter must include the registers where values are returned
918 and the register where structure-value addresses are passed.
919 Aside from that, you can include as many other registers as you like. */
920
921 #define CALL_USED_REGISTERS \
922 {1, 1, 1, 1, 1, 1, 1, 1, \
923 1, 1, 1, 1, 1, 1, 1, 1, \
924 0, 0, 0, 0, 0, 0, 0, 0, \
925 0, 0, 0, 0, 0, 0, 1, 1, \
926 \
927 1, 1, 1, 1, 1, 1, 1, 1, \
928 1, 1, 1, 1, 1, 1, 1, 1, \
929 1, 1, 1, 1, 1, 1, 1, 1, \
930 1, 1, 1, 1, 1, 1, 1, 1, \
931 \
932 1, 1, 1, 1, 1, 1, 1, 1, \
933 1, 1, 1, 1, 1, 1, 1, 1, \
934 1, 1, 1, 1, 1, 1, 1, 1, \
935 1, 1, 1, 1, 1, 1, 1, 1, \
936 \
937 1, 1, 1, 1, 1, 1}
938
939 /* If !TARGET_FPU, then make the fp registers and fp cc regs fixed so that
940 they won't be allocated. */
941
942 #define CONDITIONAL_REGISTER_USAGE \
943 do \
944 { \
945 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
946 { \
947 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
948 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
949 } \
950 /* If the user has passed -f{fixed,call-{used,saved}}-g5 */ \
951 /* then honour it. */ \
952 if (TARGET_ARCH32 && fixed_regs[5]) \
953 fixed_regs[5] = 1; \
954 else if (TARGET_ARCH64 && fixed_regs[5] == 2) \
955 fixed_regs[5] = 0; \
956 if (! TARGET_V9) \
957 { \
958 int regno; \
959 for (regno = SPARC_FIRST_V9_FP_REG; \
960 regno <= SPARC_LAST_V9_FP_REG; \
961 regno++) \
962 fixed_regs[regno] = 1; \
963 /* %fcc0 is used by v8 and v9. */ \
964 for (regno = SPARC_FIRST_V9_FCC_REG + 1; \
965 regno <= SPARC_LAST_V9_FCC_REG; \
966 regno++) \
967 fixed_regs[regno] = 1; \
968 } \
969 if (! TARGET_FPU) \
970 { \
971 int regno; \
972 for (regno = 32; regno < SPARC_LAST_V9_FCC_REG; regno++) \
973 fixed_regs[regno] = 1; \
974 } \
975 /* If the user has passed -f{fixed,call-{used,saved}}-g2 */ \
976 /* then honour it. Likewise with g3 and g4. */ \
977 if (fixed_regs[2] == 2) \
978 fixed_regs[2] = ! TARGET_APP_REGS; \
979 if (fixed_regs[3] == 2) \
980 fixed_regs[3] = ! TARGET_APP_REGS; \
981 if (TARGET_ARCH32 && fixed_regs[4] == 2) \
982 fixed_regs[4] = ! TARGET_APP_REGS; \
983 else if (TARGET_CM_EMBMEDANY) \
984 fixed_regs[4] = 1; \
985 else if (fixed_regs[4] == 2) \
986 fixed_regs[4] = 0; \
987 if (TARGET_FLAT) \
988 { \
989 int regno; \
990 /* Let the compiler believe the frame pointer is still \
991 %fp, but output it as %i7. */ \
992 fixed_regs[31] = 1; \
993 reg_names[HARD_FRAME_POINTER_REGNUM] = "%i7"; \
994 /* Disable leaf functions */ \
995 memset (sparc_leaf_regs, 0, FIRST_PSEUDO_REGISTER); \
996 /* Make LEAF_REG_REMAP a noop. */ \
997 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
998 leaf_reg_remap [regno] = regno; \
999 } \
1000 } \
1001 while (0)
1002
1003 /* Return number of consecutive hard regs needed starting at reg REGNO
1004 to hold something of mode MODE.
1005 This is ordinarily the length in words of a value of mode MODE
1006 but can be less for certain modes in special long registers.
1007
1008 On SPARC, ordinary registers hold 32 bits worth;
1009 this means both integer and floating point registers.
1010 On v9, integer regs hold 64 bits worth; floating point regs hold
1011 32 bits worth (this includes the new fp regs as even the odd ones are
1012 included in the hard register count). */
1013
1014 #define HARD_REGNO_NREGS(REGNO, MODE) \
1015 (TARGET_ARCH64 \
1016 ? ((REGNO) < 32 || (REGNO) == FRAME_POINTER_REGNUM \
1017 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD \
1018 : (GET_MODE_SIZE (MODE) + 3) / 4) \
1019 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1020
1021 /* Due to the ARCH64 descrepancy above we must override this next
1022 macro too. */
1023 #define REGMODE_NATURAL_SIZE(MODE) \
1024 ((TARGET_ARCH64 && FLOAT_MODE_P (MODE)) ? 4 : UNITS_PER_WORD)
1025
1026 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
1027 See sparc.c for how we initialize this. */
1028 extern const int *hard_regno_mode_classes;
1029 extern int sparc_mode_class[];
1030
1031 /* ??? Because of the funny way we pass parameters we should allow certain
1032 ??? types of float/complex values to be in integer registers during
1033 ??? RTL generation. This only matters on arch32. */
1034 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1035 ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
1036
1037 /* Value is 1 if it is a good idea to tie two pseudo registers
1038 when one has mode MODE1 and one has mode MODE2.
1039 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1040 for any hard reg, then this must be 0 for correct output.
1041
1042 For V9: SFmode can't be combined with other float modes, because they can't
1043 be allocated to the %d registers. Also, DFmode won't fit in odd %f
1044 registers, but SFmode will. */
1045 #define MODES_TIEABLE_P(MODE1, MODE2) \
1046 ((MODE1) == (MODE2) \
1047 || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
1048 && (! TARGET_V9 \
1049 || (GET_MODE_CLASS (MODE1) != MODE_FLOAT \
1050 || (MODE1 != SFmode && MODE2 != SFmode)))))
1051
1052 /* Specify the registers used for certain standard purposes.
1053 The values of these macros are register numbers. */
1054
1055 /* SPARC pc isn't overloaded on a register that the compiler knows about. */
1056 /* #define PC_REGNUM */
1057
1058 /* Register to use for pushing function arguments. */
1059 #define STACK_POINTER_REGNUM 14
1060
1061 /* The stack bias (amount by which the hardware register is offset by). */
1062 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
1063
1064 /* Actual top-of-stack address is 92/176 greater than the contents of the
1065 stack pointer register for !v9/v9. That is:
1066 - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
1067 address, and 6*4 bytes for the 6 register parameters.
1068 - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
1069 parameter regs. */
1070 #define STACK_POINTER_OFFSET (FIRST_PARM_OFFSET(0) + SPARC_STACK_BIAS)
1071
1072 /* Base register for access to local variables of the function. */
1073 #define HARD_FRAME_POINTER_REGNUM 30
1074
1075 /* The soft frame pointer does not have the stack bias applied. */
1076 #define FRAME_POINTER_REGNUM 101
1077
1078 /* Given the stack bias, the stack pointer isn't actually aligned. */
1079 #define INIT_EXPANDERS \
1080 do { \
1081 if (cfun && cfun->emit->regno_pointer_align && SPARC_STACK_BIAS) \
1082 { \
1083 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = BITS_PER_UNIT; \
1084 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT; \
1085 } \
1086 } while (0)
1087
1088 /* Value should be nonzero if functions must have frame pointers.
1089 Zero means the frame pointer need not be set up (and parms
1090 may be accessed via the stack pointer) in functions that seem suitable.
1091 This is computed in `reload', in reload1.c.
1092 Used in flow.c, global.c, and reload1.c.
1093
1094 Being a non-leaf function does not mean a frame pointer is needed in the
1095 flat window model. However, the debugger won't be able to backtrace through
1096 us with out it. */
1097 #define FRAME_POINTER_REQUIRED \
1098 (TARGET_FLAT \
1099 ? (current_function_calls_alloca \
1100 || !leaf_function_p ()) \
1101 : ! (leaf_function_p () && only_leaf_regs_used ()))
1102
1103 /* Base register for access to arguments of the function. */
1104 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
1105
1106 /* Register in which static-chain is passed to a function. This must
1107 not be a register used by the prologue. */
1108 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
1109
1110 /* Register which holds offset table for position-independent
1111 data references. */
1112
1113 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 23 : INVALID_REGNUM)
1114
1115 /* Pick a default value we can notice from override_options:
1116 !v9: Default is on.
1117 v9: Default is off. */
1118
1119 #define DEFAULT_PCC_STRUCT_RETURN -1
1120
1121 /* Sparc ABI says that quad-precision floats and all structures are returned
1122 in memory.
1123 For v9: unions <= 32 bytes in size are returned in int regs,
1124 structures up to 32 bytes are returned in int and fp regs. */
1125
1126 #define RETURN_IN_MEMORY(TYPE) \
1127 (TARGET_ARCH32 \
1128 ? (TYPE_MODE (TYPE) == BLKmode \
1129 || TYPE_MODE (TYPE) == TFmode \
1130 || TYPE_MODE (TYPE) == TCmode) \
1131 : (TYPE_MODE (TYPE) == BLKmode \
1132 && (unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) > 32))
1133
1134 /* Functions which return large structures get the address
1135 to place the wanted value at offset 64 from the frame.
1136 Must reserve 64 bytes for the in and local registers.
1137 v9: Functions which return large structures get the address to place the
1138 wanted value from an invisible first argument. */
1139 /* Used only in other #defines in this file. */
1140 #define STRUCT_VALUE_OFFSET 64
1141
1142 #define STRUCT_VALUE \
1143 (TARGET_ARCH64 \
1144 ? 0 \
1145 : gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, \
1146 STRUCT_VALUE_OFFSET)))
1147
1148 #define STRUCT_VALUE_INCOMING \
1149 (TARGET_ARCH64 \
1150 ? 0 \
1151 : gen_rtx_MEM (Pmode, plus_constant (frame_pointer_rtx, \
1152 STRUCT_VALUE_OFFSET)))
1153 \f
1154 /* Define the classes of registers for register constraints in the
1155 machine description. Also define ranges of constants.
1156
1157 One of the classes must always be named ALL_REGS and include all hard regs.
1158 If there is more than one class, another class must be named NO_REGS
1159 and contain no registers.
1160
1161 The name GENERAL_REGS must be the name of a class (or an alias for
1162 another name such as ALL_REGS). This is the class of registers
1163 that is allowed by "g" or "r" in a register constraint.
1164 Also, registers outside this class are allocated only when
1165 instructions express preferences for them.
1166
1167 The classes must be numbered in nondecreasing order; that is,
1168 a larger-numbered class must never be contained completely
1169 in a smaller-numbered class.
1170
1171 For any two classes, it is very desirable that there be another
1172 class that represents their union. */
1173
1174 /* The SPARC has various kinds of registers: general, floating point,
1175 and condition codes [well, it has others as well, but none that we
1176 care directly about].
1177
1178 For v9 we must distinguish between the upper and lower floating point
1179 registers because the upper ones can't hold SFmode values.
1180 HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
1181 satisfying a group need for a class will also satisfy a single need for
1182 that class. EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
1183 regs.
1184
1185 It is important that one class contains all the general and all the standard
1186 fp regs. Otherwise find_reg() won't properly allocate int regs for moves,
1187 because reg_class_record() will bias the selection in favor of fp regs,
1188 because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
1189 because FP_REGS > GENERAL_REGS.
1190
1191 It is also important that one class contain all the general and all the
1192 fp regs. Otherwise when spilling a DFmode reg, it may be from EXTRA_FP_REGS
1193 but find_reloads() may use class GENERAL_OR_FP_REGS. This will cause
1194 allocate_reload_reg() to bypass it causing an abort because the compiler
1195 thinks it doesn't have a spill reg when in fact it does.
1196
1197 v9 also has 4 floating point condition code registers. Since we don't
1198 have a class that is the union of FPCC_REGS with either of the others,
1199 it is important that it appear first. Otherwise the compiler will die
1200 trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
1201 constraints.
1202
1203 It is important that SPARC_ICC_REG have class NO_REGS. Otherwise combine
1204 may try to use it to hold an SImode value. See register_operand.
1205 ??? Should %fcc[0123] be handled similarly?
1206 */
1207
1208 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
1209 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
1210 ALL_REGS, LIM_REG_CLASSES };
1211
1212 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1213
1214 /* Give names of register classes as strings for dump file. */
1215
1216 #define REG_CLASS_NAMES \
1217 { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS", \
1218 "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \
1219 "ALL_REGS" }
1220
1221 /* Define which registers fit in which classes.
1222 This is an initializer for a vector of HARD_REG_SET
1223 of length N_REG_CLASSES. */
1224
1225 #define REG_CLASS_CONTENTS \
1226 {{0, 0, 0, 0}, /* NO_REGS */ \
1227 {0, 0, 0, 0xf}, /* FPCC_REGS */ \
1228 {0xffff, 0, 0, 0}, /* I64_REGS */ \
1229 {-1, 0, 0, 0x20}, /* GENERAL_REGS */ \
1230 {0, -1, 0, 0}, /* FP_REGS */ \
1231 {0, -1, -1, 0}, /* EXTRA_FP_REGS */ \
1232 {-1, -1, 0, 0x20}, /* GENERAL_OR_FP_REGS */ \
1233 {-1, -1, -1, 0x20}, /* GENERAL_OR_EXTRA_FP_REGS */ \
1234 {-1, -1, -1, 0x3f}} /* ALL_REGS */
1235
1236 /* The same information, inverted:
1237 Return the class number of the smallest class containing
1238 reg number REGNO. This could be a conditional expression
1239 or could index an array. */
1240
1241 extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
1242
1243 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
1244
1245 /* This is the order in which to allocate registers normally.
1246
1247 We put %f0-%f7 last among the float registers, so as to make it more
1248 likely that a pseudo-register which dies in the float return register
1249 area will get allocated to the float return register, thus saving a move
1250 instruction at the end of the function.
1251
1252 Similarly for integer return value registers.
1253
1254 We know in this case that we will not end up with a leaf function.
1255
1256 The register allocater is given the global and out registers first
1257 because these registers are call clobbered and thus less useful to
1258 global register allocation.
1259
1260 Next we list the local and in registers. They are not call clobbered
1261 and thus very useful for global register allocation. We list the input
1262 registers before the locals so that it is more likely the incoming
1263 arguments received in those registers can just stay there and not be
1264 reloaded. */
1265
1266 #define REG_ALLOC_ORDER \
1267 { 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
1268 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
1269 15, /* %o7 */ \
1270 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
1271 29, 28, 27, 26, 25, 24, 31, /* %i5-%i0,%i7 */\
1272 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
1273 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
1274 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
1275 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
1276 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
1277 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
1278 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
1279 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
1280 96, 97, 98, 99, /* %fcc0-3 */ \
1281 100, 0, 14, 30, 101} /* %icc, %g0, %o6, %i6, %sfp */
1282
1283 /* This is the order in which to allocate registers for
1284 leaf functions. If all registers can fit in the global and
1285 output registers, then we have the possibility of having a leaf
1286 function.
1287
1288 The macro actually mentioned the input registers first,
1289 because they get renumbered into the output registers once
1290 we know really do have a leaf function.
1291
1292 To be more precise, this register allocation order is used
1293 when %o7 is found to not be clobbered right before register
1294 allocation. Normally, the reason %o7 would be clobbered is
1295 due to a call which could not be transformed into a sibling
1296 call.
1297
1298 As a consequence, it is possible to use the leaf register
1299 allocation order and not end up with a leaf function. We will
1300 not get suboptimal register allocation in that case because by
1301 definition of being potentially leaf, there were no function
1302 calls. Therefore, allocation order within the local register
1303 window is not critical like it is when we do have function calls. */
1304
1305 #define REG_LEAF_ALLOC_ORDER \
1306 { 1, 2, 3, 4, 5, 6, 7, /* %g1-%g7 */ \
1307 29, 28, 27, 26, 25, 24, /* %i5-%i0 */ \
1308 15, /* %o7 */ \
1309 13, 12, 11, 10, 9, 8, /* %o5-%o0 */ \
1310 16, 17, 18, 19, 20, 21, 22, 23, /* %l0-%l7 */ \
1311 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
1312 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
1313 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
1314 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
1315 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
1316 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
1317 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
1318 39, 38, 37, 36, 35, 34, 33, 32, /* %f7-%f0 */ \
1319 96, 97, 98, 99, /* %fcc0-3 */ \
1320 100, 0, 14, 30, 31, 101} /* %icc, %g0, %o6, %i6, %i7, %sfp */
1321
1322 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
1323
1324 extern char sparc_leaf_regs[];
1325 #define LEAF_REGISTERS sparc_leaf_regs
1326
1327 extern char leaf_reg_remap[];
1328 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1329
1330 /* The class value for index registers, and the one for base regs. */
1331 #define INDEX_REG_CLASS GENERAL_REGS
1332 #define BASE_REG_CLASS GENERAL_REGS
1333
1334 /* Local macro to handle the two v9 classes of FP regs. */
1335 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1336
1337 /* Get reg_class from a letter such as appears in the machine description.
1338 In the not-v9 case, coerce v9's 'e' class to 'f', so we can use 'e' in the
1339 .md file for v8 and v9.
1340 'd' and 'b' are used for single and double precision VIS operations,
1341 if TARGET_VIS.
1342 'h' is used for V8+ 64 bit global and out registers. */
1343
1344 #define REG_CLASS_FROM_LETTER(C) \
1345 (TARGET_V9 \
1346 ? ((C) == 'f' ? FP_REGS \
1347 : (C) == 'e' ? EXTRA_FP_REGS \
1348 : (C) == 'c' ? FPCC_REGS \
1349 : ((C) == 'd' && TARGET_VIS) ? FP_REGS\
1350 : ((C) == 'b' && TARGET_VIS) ? EXTRA_FP_REGS\
1351 : ((C) == 'h' && TARGET_V8PLUS) ? I64_REGS\
1352 : NO_REGS) \
1353 : ((C) == 'f' ? FP_REGS \
1354 : (C) == 'e' ? FP_REGS \
1355 : (C) == 'c' ? FPCC_REGS \
1356 : NO_REGS))
1357
1358 /* The letters I, J, K, L and M in a register constraint string
1359 can be used to stand for particular ranges of immediate operands.
1360 This macro defines what the ranges are.
1361 C is the letter, and VALUE is a constant value.
1362 Return 1 if VALUE is in the range specified by C.
1363
1364 `I' is used for the range of constants an insn can actually contain.
1365 `J' is used for the range which is just zero (since that is R0).
1366 `K' is used for constants which can be loaded with a single sethi insn.
1367 `L' is used for the range of constants supported by the movcc insns.
1368 `M' is used for the range of constants supported by the movrcc insns.
1369 `N' is like K, but for constants wider than 32 bits. */
1370
1371 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1372 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1373 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1374 /* 10 and 11 bit immediates are only used for a few specific insns.
1375 SMALL_INT is used throughout the port so we continue to use it. */
1376 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1377 /* 13 bit immediate, considering only the low 32 bits */
1378 #define SMALL_INT32(X) (SPARC_SIMM13_P (trunc_int_for_mode \
1379 (INTVAL (X), SImode)))
1380 #define SPARC_SETHI_P(X) \
1381 (((unsigned HOST_WIDE_INT) (X) \
1382 & ((unsigned HOST_WIDE_INT) 0x3ff - GET_MODE_MASK (SImode) - 1)) == 0)
1383 #define SPARC_SETHI32_P(X) \
1384 (SPARC_SETHI_P ((unsigned HOST_WIDE_INT) (X) & GET_MODE_MASK (SImode)))
1385
1386 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1387 ((C) == 'I' ? SPARC_SIMM13_P (VALUE) \
1388 : (C) == 'J' ? (VALUE) == 0 \
1389 : (C) == 'K' ? SPARC_SETHI32_P (VALUE) \
1390 : (C) == 'L' ? SPARC_SIMM11_P (VALUE) \
1391 : (C) == 'M' ? SPARC_SIMM10_P (VALUE) \
1392 : (C) == 'N' ? SPARC_SETHI_P (VALUE) \
1393 : 0)
1394
1395 /* Similar, but for floating constants, and defining letters G and H.
1396 Here VALUE is the CONST_DOUBLE rtx itself. */
1397
1398 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1399 ((C) == 'G' ? fp_zero_operand (VALUE, GET_MODE (VALUE)) \
1400 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
1401 : 0)
1402
1403 /* Given an rtx X being reloaded into a reg required to be
1404 in class CLASS, return the class of reg to actually use.
1405 In general this is just CLASS; but on some machines
1406 in some cases it is preferable to use a more restrictive class. */
1407 /* - We can't load constants into FP registers.
1408 - We can't load FP constants into integer registers when soft-float,
1409 because there is no soft-float pattern with a r/F constraint.
1410 - We can't load FP constants into integer registers for TFmode unless
1411 it is 0.0L, because there is no movtf pattern with a r/F constraint.
1412 - Try and reload integer constants (symbolic or otherwise) back into
1413 registers directly, rather than having them dumped to memory. */
1414
1415 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1416 (CONSTANT_P (X) \
1417 ? ((FP_REG_CLASS_P (CLASS) \
1418 || (CLASS) == GENERAL_OR_FP_REGS \
1419 || (CLASS) == GENERAL_OR_EXTRA_FP_REGS \
1420 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1421 && ! TARGET_FPU) \
1422 || (GET_MODE (X) == TFmode \
1423 && ! fp_zero_operand (X, TFmode))) \
1424 ? NO_REGS \
1425 : (!FP_REG_CLASS_P (CLASS) \
1426 && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT) \
1427 ? GENERAL_REGS \
1428 : (CLASS)) \
1429 : (CLASS))
1430
1431 /* Return the register class of a scratch register needed to load IN into
1432 a register of class CLASS in MODE.
1433
1434 We need a temporary when loading/storing a HImode/QImode value
1435 between memory and the FPU registers. This can happen when combine puts
1436 a paradoxical subreg in a float/fix conversion insn.
1437
1438 We need a temporary when loading/storing a DFmode value between
1439 unaligned memory and the upper FPU registers. */
1440
1441 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1442 ((FP_REG_CLASS_P (CLASS) \
1443 && ((MODE) == HImode || (MODE) == QImode) \
1444 && (GET_CODE (IN) == MEM \
1445 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1446 && true_regnum (IN) == -1))) \
1447 ? GENERAL_REGS \
1448 : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode \
1449 && GET_CODE (IN) == MEM && TARGET_ARCH32 \
1450 && ! mem_min_alignment ((IN), 8)) \
1451 ? FP_REGS \
1452 : (((TARGET_CM_MEDANY \
1453 && symbolic_operand ((IN), (MODE))) \
1454 || (TARGET_CM_EMBMEDANY \
1455 && text_segment_operand ((IN), (MODE)))) \
1456 && !flag_pic) \
1457 ? GENERAL_REGS \
1458 : NO_REGS)
1459
1460 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1461 ((FP_REG_CLASS_P (CLASS) \
1462 && ((MODE) == HImode || (MODE) == QImode) \
1463 && (GET_CODE (IN) == MEM \
1464 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1465 && true_regnum (IN) == -1))) \
1466 ? GENERAL_REGS \
1467 : ((CLASS) == EXTRA_FP_REGS && (MODE) == DFmode \
1468 && GET_CODE (IN) == MEM && TARGET_ARCH32 \
1469 && ! mem_min_alignment ((IN), 8)) \
1470 ? FP_REGS \
1471 : (((TARGET_CM_MEDANY \
1472 && symbolic_operand ((IN), (MODE))) \
1473 || (TARGET_CM_EMBMEDANY \
1474 && text_segment_operand ((IN), (MODE)))) \
1475 && !flag_pic) \
1476 ? GENERAL_REGS \
1477 : NO_REGS)
1478
1479 /* On SPARC it is not possible to directly move data between
1480 GENERAL_REGS and FP_REGS. */
1481 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1482 (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
1483
1484 /* Return the stack location to use for secondary memory needed reloads.
1485 We want to use the reserved location just below the frame pointer.
1486 However, we must ensure that there is a frame, so use assign_stack_local
1487 if the frame size is zero. */
1488 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1489 (get_frame_size () == 0 \
1490 ? assign_stack_local (MODE, GET_MODE_SIZE (MODE), 0) \
1491 : gen_rtx_MEM (MODE, plus_constant (frame_pointer_rtx, \
1492 STARTING_FRAME_OFFSET)))
1493
1494 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
1495 because the movsi and movsf patterns don't handle r/f moves.
1496 For v8 we copy the default definition. */
1497 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1498 (TARGET_ARCH64 \
1499 ? (GET_MODE_BITSIZE (MODE) < 32 \
1500 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1501 : MODE) \
1502 : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD \
1503 ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \
1504 : MODE))
1505
1506 /* Return the maximum number of consecutive registers
1507 needed to represent mode MODE in a register of class CLASS. */
1508 /* On SPARC, this is the size of MODE in words. */
1509 #define CLASS_MAX_NREGS(CLASS, MODE) \
1510 (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1511 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1512 \f
1513 /* Stack layout; function entry, exit and calling. */
1514
1515 /* Define the number of register that can hold parameters.
1516 This macro is only used in other macro definitions below and in sparc.c.
1517 MODE is the mode of the argument.
1518 !v9: All args are passed in %o0-%o5.
1519 v9: %o0-%o5 and %f0-%f31 are cumulatively used to pass values.
1520 See the description in sparc.c. */
1521 #define NPARM_REGS(MODE) \
1522 (TARGET_ARCH64 \
1523 ? (GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 6) \
1524 : 6)
1525
1526 /* Define this if pushing a word on the stack
1527 makes the stack pointer a smaller address. */
1528 #define STACK_GROWS_DOWNWARD
1529
1530 /* Define this if the nominal address of the stack frame
1531 is at the high-address end of the local variables;
1532 that is, each additional local variable allocated
1533 goes at a more negative offset in the frame. */
1534 #define FRAME_GROWS_DOWNWARD
1535
1536 /* Offset within stack frame to start allocating local variables at.
1537 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1538 first local allocated. Otherwise, it is the offset to the BEGINNING
1539 of the first local allocated. */
1540 /* This allows space for one TFmode floating point value. */
1541 #define STARTING_FRAME_OFFSET \
1542 (TARGET_ARCH64 ? -16 \
1543 : (-SPARC_STACK_ALIGN (LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)))
1544
1545 /* If we generate an insn to push BYTES bytes,
1546 this says how many the stack pointer really advances by.
1547 On SPARC, don't define this because there are no push insns. */
1548 /* #define PUSH_ROUNDING(BYTES) */
1549
1550 /* Offset of first parameter from the argument pointer register value.
1551 !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1552 even if this function isn't going to use it.
1553 v9: This is 128 for the ins and locals. */
1554 #define FIRST_PARM_OFFSET(FNDECL) \
1555 (TARGET_ARCH64 ? 16 * UNITS_PER_WORD : STRUCT_VALUE_OFFSET + UNITS_PER_WORD)
1556
1557 /* Offset from the argument pointer register value to the CFA.
1558 This is different from FIRST_PARM_OFFSET because the register window
1559 comes between the CFA and the arguments. */
1560 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1561
1562 /* When a parameter is passed in a register, stack space is still
1563 allocated for it.
1564 !v9: All 6 possible integer registers have backing store allocated.
1565 v9: Only space for the arguments passed is allocated. */
1566 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1567 meaning to the backend. Further, we need to be able to detect if a
1568 varargs/unprototyped function is called, as they may want to spill more
1569 registers than we've provided space. Ugly, ugly. So for now we retain
1570 all 6 slots even for v9. */
1571 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1572
1573 /* Definitions for register elimination. */
1574 /* ??? In TARGET_FLAT mode we needn't have a hard frame pointer. */
1575
1576 #define ELIMINABLE_REGS \
1577 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1578 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
1579
1580 /* The way this is structured, we can't eliminate SFP in favor of SP
1581 if the frame pointer is required: we want to use the SFP->HFP elimination
1582 in that case. But the test in update_eliminables doesn't know we are
1583 assuming below that we only do the former elimination. */
1584 #define CAN_ELIMINATE(FROM, TO) \
1585 ((TO) == HARD_FRAME_POINTER_REGNUM || !FRAME_POINTER_REQUIRED)
1586
1587 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1588 do { \
1589 (OFFSET) = 0; \
1590 if ((TO) == STACK_POINTER_REGNUM) \
1591 { \
1592 /* Note, we always pretend that this is a leaf function \
1593 because if it's not, there's no point in trying to \
1594 eliminate the frame pointer. If it is a leaf \
1595 function, we guessed right! */ \
1596 if (TARGET_FLAT) \
1597 (OFFSET) = \
1598 sparc_flat_compute_frame_size (get_frame_size ()); \
1599 else \
1600 (OFFSET) = compute_frame_size (get_frame_size (), 1); \
1601 } \
1602 (OFFSET) += SPARC_STACK_BIAS; \
1603 } while (0)
1604
1605 /* Keep the stack pointer constant throughout the function.
1606 This is both an optimization and a necessity: longjmp
1607 doesn't behave itself when the stack pointer moves within
1608 the function! */
1609 #define ACCUMULATE_OUTGOING_ARGS 1
1610
1611 /* Value is the number of bytes of arguments automatically
1612 popped when returning from a subroutine call.
1613 FUNDECL is the declaration node of the function (as a tree),
1614 FUNTYPE is the data type of the function (as a tree),
1615 or for a library call it is an identifier node for the subroutine name.
1616 SIZE is the number of bytes of arguments passed on the stack. */
1617
1618 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1619
1620 /* Some subroutine macros specific to this machine.
1621 When !TARGET_FPU, put float return values in the general registers,
1622 since we don't have any fp registers. */
1623 #define BASE_RETURN_VALUE_REG(MODE) \
1624 (TARGET_ARCH64 \
1625 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 : 8) \
1626 : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 : 8))
1627
1628 #define BASE_OUTGOING_VALUE_REG(MODE) \
1629 (TARGET_ARCH64 \
1630 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 \
1631 : TARGET_FLAT ? 8 : 24) \
1632 : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 \
1633 : (TARGET_FLAT ? 8 : 24)))
1634
1635 #define BASE_PASSING_ARG_REG(MODE) \
1636 (TARGET_ARCH64 \
1637 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 : 8) \
1638 : 8)
1639
1640 /* ??? FIXME -- seems wrong for v9 structure passing... */
1641 #define BASE_INCOMING_ARG_REG(MODE) \
1642 (TARGET_ARCH64 \
1643 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 \
1644 : TARGET_FLAT ? 8 : 24) \
1645 : (TARGET_FLAT ? 8 : 24))
1646
1647 /* Define this macro if the target machine has "register windows". This
1648 C expression returns the register number as seen by the called function
1649 corresponding to register number OUT as seen by the calling function.
1650 Return OUT if register number OUT is not an outbound register. */
1651
1652 #define INCOMING_REGNO(OUT) \
1653 ((TARGET_FLAT || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1654
1655 /* Define this macro if the target machine has "register windows". This
1656 C expression returns the register number as seen by the calling function
1657 corresponding to register number IN as seen by the called function.
1658 Return IN if register number IN is not an inbound register. */
1659
1660 #define OUTGOING_REGNO(IN) \
1661 ((TARGET_FLAT || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1662
1663 /* Define this macro if the target machine has register windows. This
1664 C expression returns true if the register is call-saved but is in the
1665 register window. */
1666
1667 #define LOCAL_REGNO(REGNO) \
1668 (TARGET_FLAT ? 0 : (REGNO) >= 16 && (REGNO) <= 31)
1669
1670 /* Define how to find the value returned by a function.
1671 VALTYPE is the data type of the value (as a tree).
1672 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1673 otherwise, FUNC is 0. */
1674
1675 /* On SPARC the value is found in the first "output" register. */
1676
1677 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1678 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 1)
1679
1680 /* But the called function leaves it in the first "input" register. */
1681
1682 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
1683 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 0)
1684
1685 /* Define how to find the value returned by a library function
1686 assuming the value has mode MODE. */
1687
1688 #define LIBCALL_VALUE(MODE) \
1689 function_value (NULL_TREE, (MODE), 1)
1690
1691 /* 1 if N is a possible register number for a function value
1692 as seen by the caller.
1693 On SPARC, the first "output" reg is used for integer values,
1694 and the first floating point register is used for floating point values. */
1695
1696 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
1697
1698 /* Define the size of space to allocate for the return value of an
1699 untyped_call. */
1700
1701 #define APPLY_RESULT_SIZE 16
1702
1703 /* 1 if N is a possible register number for function argument passing.
1704 On SPARC, these are the "output" registers. v9 also uses %f0-%f31. */
1705
1706 #define FUNCTION_ARG_REGNO_P(N) \
1707 (TARGET_ARCH64 \
1708 ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
1709 : ((N) >= 8 && (N) <= 13))
1710 \f
1711 /* Define a data type for recording info about an argument list
1712 during the scan of that argument list. This data type should
1713 hold all necessary information about the function itself
1714 and about the args processed so far, enough to enable macros
1715 such as FUNCTION_ARG to determine where the next arg should go.
1716
1717 On SPARC (!v9), this is a single integer, which is a number of words
1718 of arguments scanned so far (including the invisible argument,
1719 if any, which holds the structure-value-address).
1720 Thus 7 or more means all following args should go on the stack.
1721
1722 For v9, we also need to know whether a prototype is present. */
1723
1724 struct sparc_args {
1725 int words; /* number of words passed so far */
1726 int prototype_p; /* non-zero if a prototype is present */
1727 int libcall_p; /* non-zero if a library call */
1728 };
1729 #define CUMULATIVE_ARGS struct sparc_args
1730
1731 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1732 for a call to a function whose data type is FNTYPE.
1733 For a library call, FNTYPE is 0. */
1734
1735 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1736 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (INDIRECT));
1737
1738 /* Update the data in CUM to advance over an argument
1739 of mode MODE and data type TYPE.
1740 TYPE is null for libcalls where that information may not be available. */
1741
1742 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1743 function_arg_advance (& (CUM), (MODE), (TYPE), (NAMED))
1744
1745 /* Nonzero if we do not know how to pass TYPE solely in registers. */
1746
1747 #define MUST_PASS_IN_STACK(MODE,TYPE) \
1748 ((TYPE) != 0 \
1749 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
1750 || TREE_ADDRESSABLE (TYPE)))
1751
1752 /* Determine where to put an argument to a function.
1753 Value is zero to push the argument on the stack,
1754 or a hard register in which to store the argument.
1755
1756 MODE is the argument's machine mode.
1757 TYPE is the data type of the argument (as a tree).
1758 This is null for libcalls where that information may
1759 not be available.
1760 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1761 the preceding args and about the function being called.
1762 NAMED is nonzero if this argument is a named parameter
1763 (otherwise it is an extra parameter matching an ellipsis). */
1764
1765 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1766 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 0)
1767
1768 /* Define where a function finds its arguments.
1769 This is different from FUNCTION_ARG because of register windows. */
1770
1771 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1772 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 1)
1773
1774 /* For an arg passed partly in registers and partly in memory,
1775 this is the number of registers used.
1776 For args passed entirely in registers or entirely in memory, zero. */
1777
1778 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1779 function_arg_partial_nregs (& (CUM), (MODE), (TYPE), (NAMED))
1780
1781 /* A C expression that indicates when an argument must be passed by reference.
1782 If nonzero for an argument, a copy of that argument is made in memory and a
1783 pointer to the argument is passed instead of the argument itself.
1784 The pointer is passed in whatever way is appropriate for passing a pointer
1785 to that type. */
1786
1787 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1788 function_arg_pass_by_reference (& (CUM), (MODE), (TYPE), (NAMED))
1789
1790 /* If defined, a C expression which determines whether, and in which direction,
1791 to pad out an argument with extra space. The value should be of type
1792 `enum direction': either `upward' to pad above the argument,
1793 `downward' to pad below, or `none' to inhibit padding. */
1794
1795 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1796 function_arg_padding ((MODE), (TYPE))
1797
1798 /* If defined, a C expression that gives the alignment boundary, in bits,
1799 of an argument with the specified mode and type. If it is not defined,
1800 PARM_BOUNDARY is used for all arguments.
1801 For sparc64, objects requiring 16 byte alignment are passed that way. */
1802
1803 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1804 ((TARGET_ARCH64 \
1805 && (GET_MODE_ALIGNMENT (MODE) == 128 \
1806 || ((TYPE) && TYPE_ALIGN (TYPE) == 128))) \
1807 ? 128 : PARM_BOUNDARY)
1808 \f
1809 /* Define the information needed to generate branch and scc insns. This is
1810 stored from the compare operation. Note that we can't use "rtx" here
1811 since it hasn't been defined! */
1812
1813 extern GTY(()) rtx sparc_compare_op0;
1814 extern GTY(()) rtx sparc_compare_op1;
1815
1816 \f
1817 /* Generate the special assembly code needed to tell the assembler whatever
1818 it might need to know about the return value of a function.
1819
1820 For Sparc assemblers, we need to output a .proc pseudo-op which conveys
1821 information to the assembler relating to peephole optimization (done in
1822 the assembler). */
1823
1824 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1825 fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1826
1827 /* Output the special assembly code needed to tell the assembler some
1828 register is used as global register variable.
1829
1830 SPARC 64bit psABI declares registers %g2 and %g3 as application
1831 registers and %g6 and %g7 as OS registers. Any object using them
1832 should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1833 and how they are used (scratch or some global variable).
1834 Linker will then refuse to link together objects which use those
1835 registers incompatibly.
1836
1837 Unless the registers are used for scratch, two different global
1838 registers cannot be declared to the same name, so in the unlikely
1839 case of a global register variable occupying more than one register
1840 we prefix the second and following registers with .gnu.part1. etc. */
1841
1842 extern char sparc_hard_reg_printed[8];
1843
1844 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
1845 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME) \
1846 do { \
1847 if (TARGET_ARCH64) \
1848 { \
1849 int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
1850 int reg; \
1851 for (reg = (REGNO); reg < 8 && reg < end; reg++) \
1852 if ((reg & ~1) == 2 || (reg & ~1) == 6) \
1853 { \
1854 if (reg == (REGNO)) \
1855 fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1856 else \
1857 fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n", \
1858 reg, reg - (REGNO), (NAME)); \
1859 sparc_hard_reg_printed[reg] = 1; \
1860 } \
1861 } \
1862 } while (0)
1863 #endif
1864
1865 \f
1866 /* Emit rtl for profiling. */
1867 #define PROFILE_HOOK(LABEL) sparc_profile_hook (LABEL)
1868
1869 /* All the work done in PROFILE_HOOK, but still required. */
1870 #define FUNCTION_PROFILER(FILE, LABELNO) do { } while (0)
1871
1872 /* Set the name of the mcount function for the system. */
1873 #define MCOUNT_FUNCTION "*mcount"
1874 \f
1875 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1876 the stack pointer does not matter. The value is tested only in
1877 functions that have frame pointers.
1878 No definition is equivalent to always zero. */
1879
1880 #define EXIT_IGNORE_STACK \
1881 (get_frame_size () != 0 \
1882 || current_function_calls_alloca || current_function_outgoing_args_size)
1883
1884 #define DELAY_SLOTS_FOR_EPILOGUE \
1885 (TARGET_FLAT ? sparc_flat_epilogue_delay_slots () : 1)
1886 #define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
1887 (TARGET_FLAT ? sparc_flat_eligible_for_epilogue_delay (trial, slots_filled) \
1888 : eligible_for_epilogue_delay (trial, slots_filled))
1889
1890 /* Define registers used by the epilogue and return instruction. */
1891 #define EPILOGUE_USES(REGNO) \
1892 (!TARGET_FLAT && REGNO == 31)
1893 \f
1894 /* Length in units of the trampoline for entering a nested function. */
1895
1896 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1897
1898 #define TRAMPOLINE_ALIGNMENT 128 /* 16 bytes */
1899
1900 /* Emit RTL insns to initialize the variable parts of a trampoline.
1901 FNADDR is an RTX for the address of the function's pure code.
1902 CXT is an RTX for the static chain value for the function. */
1903
1904 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1905 if (TARGET_ARCH64) \
1906 sparc64_initialize_trampoline (TRAMP, FNADDR, CXT); \
1907 else \
1908 sparc_initialize_trampoline (TRAMP, FNADDR, CXT)
1909 \f
1910 /* Generate necessary RTL for __builtin_saveregs(). */
1911
1912 #define EXPAND_BUILTIN_SAVEREGS() sparc_builtin_saveregs ()
1913
1914 /* Implement `va_start' for varargs and stdarg. */
1915 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1916 sparc_va_start (valist, nextarg)
1917
1918 /* Implement `va_arg'. */
1919 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1920 sparc_va_arg (valist, type)
1921
1922 /* Define this macro if the location where a function argument is passed
1923 depends on whether or not it is a named argument.
1924
1925 This macro controls how the NAMED argument to FUNCTION_ARG
1926 is set for varargs and stdarg functions. With this macro defined,
1927 the NAMED argument is always true for named arguments, and false for
1928 unnamed arguments. If this is not defined, but SETUP_INCOMING_VARARGS
1929 is defined, then all arguments are treated as named. Otherwise, all named
1930 arguments except the last are treated as named.
1931 For the v9 we want NAMED to mean what it says it means. */
1932
1933 #define STRICT_ARGUMENT_NAMING TARGET_V9
1934
1935 /* We do not allow sibling calls if -mflat, nor
1936 we do not allow indirect calls to be optimized into sibling calls.
1937
1938 Also, on sparc 32-bit we cannot emit a sibling call when the
1939 current function returns a structure. This is because the "unimp
1940 after call" convention would cause the callee to return to the
1941 wrong place. The generic code already disallows cases where the
1942 function being called returns a structure.
1943
1944 It may seem strange how this last case could occur. Usually there
1945 is code after the call which jumps to epilogue code which dumps the
1946 return value into the struct return area. That ought to invalidate
1947 the sibling call right? Well, in the c++ case we can end up passing
1948 the pointer to the struct return area to a constructor (which returns
1949 void) and then nothing else happens. Such a sibling call would look
1950 valid without the added check here. */
1951 #define FUNCTION_OK_FOR_SIBCALL(DECL) \
1952 (DECL \
1953 && ! TARGET_FLAT \
1954 && (TARGET_ARCH64 || ! current_function_returns_struct))
1955
1956 /* Generate RTL to flush the register windows so as to make arbitrary frames
1957 available. */
1958 #define SETUP_FRAME_ADDRESSES() \
1959 emit_insn (gen_flush_register_windows ())
1960
1961 /* Given an rtx for the address of a frame,
1962 return an rtx for the address of the word in the frame
1963 that holds the dynamic chain--the previous frame's address.
1964 ??? -mflat support? */
1965 #define DYNAMIC_CHAIN_ADDRESS(frame) \
1966 plus_constant (frame, 14 * UNITS_PER_WORD + SPARC_STACK_BIAS)
1967
1968 /* The return address isn't on the stack, it is in a register, so we can't
1969 access it from the current frame pointer. We can access it from the
1970 previous frame pointer though by reading a value from the register window
1971 save area. */
1972 #define RETURN_ADDR_IN_PREVIOUS_FRAME
1973
1974 /* This is the offset of the return address to the true next instruction to be
1975 executed for the current function. */
1976 #define RETURN_ADDR_OFFSET \
1977 (8 + 4 * (! TARGET_ARCH64 && current_function_returns_struct))
1978
1979 /* The current return address is in %i7. The return address of anything
1980 farther back is in the register window save area at [%fp+60]. */
1981 /* ??? This ignores the fact that the actual return address is +8 for normal
1982 returns, and +12 for structure returns. */
1983 #define RETURN_ADDR_RTX(count, frame) \
1984 ((count == -1) \
1985 ? gen_rtx_REG (Pmode, 31) \
1986 : gen_rtx_MEM (Pmode, \
1987 memory_address (Pmode, plus_constant (frame, \
1988 15 * UNITS_PER_WORD \
1989 + SPARC_STACK_BIAS))))
1990
1991 /* Before the prologue, the return address is %o7 + 8. OK, sometimes it's
1992 +12, but always using +8 is close enough for frame unwind purposes.
1993 Actually, just using %o7 is close enough for unwinding, but %o7+8
1994 is something you can return to. */
1995 #define INCOMING_RETURN_ADDR_RTX \
1996 plus_constant (gen_rtx_REG (word_mode, 15), 8)
1997 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (15)
1998
1999 /* The offset from the incoming value of %sp to the top of the stack frame
2000 for the current function. On sparc64, we have to account for the stack
2001 bias if present. */
2002 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
2003
2004 /* Describe how we implement __builtin_eh_return. */
2005 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
2006 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 1) /* %g1 */
2007 #define EH_RETURN_HANDLER_RTX gen_rtx_REG (Pmode, 31) /* %i7 */
2008
2009 /* Select a format to encode pointers in exception handling data. CODE
2010 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2011 true if the symbol may be affected by dynamic relocations.
2012
2013 If assembler and linker properly support .uaword %r_disp32(foo),
2014 then use PC relative 32-bit relocations instead of absolute relocs
2015 for shared libraries. On sparc64, use pc relative 32-bit relocs even
2016 for binaries, to save memory.
2017
2018 binutils 2.12 would emit a R_SPARC_DISP32 dynamic relocation if the
2019 symbol %r_disp32() is against was not local, but .hidden. In that
2020 case, we have to use DW_EH_PE_absptr for pic personality. */
2021 #ifdef HAVE_AS_SPARC_UA_PCREL
2022 #ifdef HAVE_AS_SPARC_UA_PCREL_HIDDEN
2023 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
2024 (flag_pic \
2025 ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
2026 : ((TARGET_ARCH64 && ! GLOBAL) \
2027 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
2028 : DW_EH_PE_absptr))
2029 #else
2030 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
2031 (flag_pic \
2032 ? (GLOBAL ? DW_EH_PE_absptr : (DW_EH_PE_pcrel | DW_EH_PE_sdata4)) \
2033 : ((TARGET_ARCH64 && ! GLOBAL) \
2034 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
2035 : DW_EH_PE_absptr))
2036 #endif
2037
2038 /* Emit a PC-relative relocation. */
2039 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
2040 do { \
2041 fputs (integer_asm_op (SIZE, FALSE), FILE); \
2042 fprintf (FILE, "%%r_disp%d(", SIZE * 8); \
2043 assemble_name (FILE, LABEL); \
2044 fputc (')', FILE); \
2045 } while (0)
2046 #endif
2047 \f
2048 /* Addressing modes, and classification of registers for them. */
2049
2050 /* #define HAVE_POST_INCREMENT 0 */
2051 /* #define HAVE_POST_DECREMENT 0 */
2052
2053 /* #define HAVE_PRE_DECREMENT 0 */
2054 /* #define HAVE_PRE_INCREMENT 0 */
2055
2056 /* Macros to check register numbers against specific register classes. */
2057
2058 /* These assume that REGNO is a hard or pseudo reg number.
2059 They give nonzero only if REGNO is a hard reg of the suitable class
2060 or a pseudo reg currently allocated to a suitable hard reg.
2061 Since they use reg_renumber, they are safe only once reg_renumber
2062 has been allocated, which happens in local-alloc.c. */
2063
2064 #define REGNO_OK_FOR_INDEX_P(REGNO) \
2065 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32 \
2066 || (REGNO) == FRAME_POINTER_REGNUM \
2067 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)
2068
2069 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
2070
2071 #define REGNO_OK_FOR_FP_P(REGNO) \
2072 (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
2073 || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
2074 #define REGNO_OK_FOR_CCFP_P(REGNO) \
2075 (TARGET_V9 \
2076 && (((unsigned) (REGNO) - 96 < (unsigned)4) \
2077 || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
2078
2079 /* Now macros that check whether X is a register and also,
2080 strictly, whether it is in a specified class.
2081
2082 These macros are specific to the SPARC, and may be used only
2083 in code for printing assembler insns and in conditions for
2084 define_optimization. */
2085
2086 /* 1 if X is an fp register. */
2087
2088 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
2089
2090 /* Is X, a REG, an in or global register? i.e. is regno 0..7 or 24..31 */
2091 #define IN_OR_GLOBAL_P(X) (REGNO (X) < 8 || (REGNO (X) >= 24 && REGNO (X) <= 31))
2092 \f
2093 /* Maximum number of registers that can appear in a valid memory address. */
2094
2095 #define MAX_REGS_PER_ADDRESS 2
2096
2097 /* Recognize any constant value that is a valid address.
2098 When PIC, we do not accept an address that would require a scratch reg
2099 to load into a register. */
2100
2101 #define CONSTANT_ADDRESS_P(X) \
2102 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
2103 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
2104 || (GET_CODE (X) == CONST \
2105 && ! (flag_pic && pic_address_needs_scratch (X))))
2106
2107 /* Define this, so that when PIC, reload won't try to reload invalid
2108 addresses which require two reload registers. */
2109
2110 #define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
2111
2112 /* Nonzero if the constant value X is a legitimate general operand.
2113 Anything can be made to work except floating point constants.
2114 If TARGET_VIS, 0.0 can be made to work as well. */
2115
2116 #define LEGITIMATE_CONSTANT_P(X) \
2117 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode || \
2118 (TARGET_VIS && \
2119 (GET_MODE (X) == SFmode || GET_MODE (X) == DFmode || \
2120 GET_MODE (X) == TFmode) && \
2121 fp_zero_operand (X, GET_MODE (X))))
2122
2123 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2124 and check its validity for a certain class.
2125 We have two alternate definitions for each of them.
2126 The usual definition accepts all pseudo regs; the other rejects
2127 them unless they have been allocated suitable hard regs.
2128 The symbol REG_OK_STRICT causes the latter definition to be used.
2129
2130 Most source files want to accept pseudo regs in the hope that
2131 they will get allocated to the class that the insn wants them to be in.
2132 Source files for reload pass need to be strict.
2133 After reload, it makes no difference, since pseudo regs have
2134 been eliminated by then. */
2135
2136 /* Optional extra constraints for this machine.
2137
2138 'Q' handles floating point constants which can be moved into
2139 an integer register with a single sethi instruction.
2140
2141 'R' handles floating point constants which can be moved into
2142 an integer register with a single mov instruction.
2143
2144 'S' handles floating point constants which can be moved into
2145 an integer register using a high/lo_sum sequence.
2146
2147 'T' handles memory addresses where the alignment is known to
2148 be at least 8 bytes.
2149
2150 `U' handles all pseudo registers or a hard even numbered
2151 integer register, needed for ldd/std instructions.
2152
2153 'W' handles the memory operand when moving operands in/out
2154 of 'e' constraint floating point registers. */
2155
2156 #ifndef REG_OK_STRICT
2157
2158 /* Nonzero if X is a hard reg that can be used as an index
2159 or if it is a pseudo reg. */
2160 #define REG_OK_FOR_INDEX_P(X) \
2161 (REGNO (X) < 32 \
2162 || REGNO (X) == FRAME_POINTER_REGNUM \
2163 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
2164
2165 /* Nonzero if X is a hard reg that can be used as a base reg
2166 or if it is a pseudo reg. */
2167 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_INDEX_P (X)
2168
2169 /* 'T', 'U' are for aligned memory loads which aren't needed for arch64.
2170 'W' is like 'T' but is assumed true on arch64.
2171
2172 Remember to accept pseudo-registers for memory constraints if reload is
2173 in progress. */
2174
2175 #define EXTRA_CONSTRAINT(OP, C) \
2176 sparc_extra_constraint_check(OP, C, 0)
2177
2178 #else
2179
2180 /* Nonzero if X is a hard reg that can be used as an index. */
2181 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
2182 /* Nonzero if X is a hard reg that can be used as a base reg. */
2183 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
2184
2185 #define EXTRA_CONSTRAINT(OP, C) \
2186 sparc_extra_constraint_check(OP, C, 1)
2187
2188 #endif
2189 \f
2190 /* Should gcc use [%reg+%lo(xx)+offset] addresses? */
2191
2192 #ifdef HAVE_AS_OFFSETABLE_LO10
2193 #define USE_AS_OFFSETABLE_LO10 1
2194 #else
2195 #define USE_AS_OFFSETABLE_LO10 0
2196 #endif
2197 \f
2198 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2199 that is a valid memory address for an instruction.
2200 The MODE argument is the machine mode for the MEM expression
2201 that wants to use this address.
2202
2203 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
2204 ordinarily. This changes a bit when generating PIC.
2205
2206 If you change this, execute "rm explow.o recog.o reload.o". */
2207
2208 #define RTX_OK_FOR_BASE_P(X) \
2209 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
2210 || (GET_CODE (X) == SUBREG \
2211 && GET_CODE (SUBREG_REG (X)) == REG \
2212 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
2213
2214 #define RTX_OK_FOR_INDEX_P(X) \
2215 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
2216 || (GET_CODE (X) == SUBREG \
2217 && GET_CODE (SUBREG_REG (X)) == REG \
2218 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
2219
2220 #define RTX_OK_FOR_OFFSET_P(X) \
2221 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000 - 8)
2222
2223 #define RTX_OK_FOR_OLO10_P(X) \
2224 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0xc00 - 8)
2225
2226 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2227 { if (RTX_OK_FOR_BASE_P (X)) \
2228 goto ADDR; \
2229 else if (GET_CODE (X) == PLUS) \
2230 { \
2231 register rtx op0 = XEXP (X, 0); \
2232 register rtx op1 = XEXP (X, 1); \
2233 if (flag_pic && op0 == pic_offset_table_rtx) \
2234 { \
2235 if (RTX_OK_FOR_BASE_P (op1)) \
2236 goto ADDR; \
2237 else if (flag_pic == 1 \
2238 && GET_CODE (op1) != REG \
2239 && GET_CODE (op1) != LO_SUM \
2240 && GET_CODE (op1) != MEM \
2241 && (GET_CODE (op1) != CONST_INT \
2242 || SMALL_INT (op1))) \
2243 goto ADDR; \
2244 } \
2245 else if (RTX_OK_FOR_BASE_P (op0)) \
2246 { \
2247 if ((RTX_OK_FOR_INDEX_P (op1) \
2248 /* We prohibit REG + REG for TFmode when \
2249 there are no instructions which accept \
2250 REG+REG instructions. We do this \
2251 because REG+REG is not an offsetable \
2252 address. If we get the situation \
2253 in reload where source and destination \
2254 of a movtf pattern are both MEMs with \
2255 REG+REG address, then only one of them \
2256 gets converted to an offsetable \
2257 address. */ \
2258 && (MODE != TFmode \
2259 || (TARGET_FPU && TARGET_ARCH64 \
2260 && TARGET_V9 \
2261 && TARGET_HARD_QUAD)) \
2262 /* We prohibit REG + REG on ARCH32 if \
2263 not optimizing for DFmode/DImode \
2264 because then mem_min_alignment is \
2265 likely to be zero after reload and the \
2266 forced split would lack a matching \
2267 splitter pattern. */ \
2268 && (TARGET_ARCH64 || optimize \
2269 || (MODE != DFmode \
2270 && MODE != DImode))) \
2271 || RTX_OK_FOR_OFFSET_P (op1)) \
2272 goto ADDR; \
2273 } \
2274 else if (RTX_OK_FOR_BASE_P (op1)) \
2275 { \
2276 if ((RTX_OK_FOR_INDEX_P (op0) \
2277 /* See the previous comment. */ \
2278 && (MODE != TFmode \
2279 || (TARGET_FPU && TARGET_ARCH64 \
2280 && TARGET_V9 \
2281 && TARGET_HARD_QUAD)) \
2282 && (TARGET_ARCH64 || optimize \
2283 || (MODE != DFmode \
2284 && MODE != DImode))) \
2285 || RTX_OK_FOR_OFFSET_P (op0)) \
2286 goto ADDR; \
2287 } \
2288 else if (USE_AS_OFFSETABLE_LO10 \
2289 && GET_CODE (op0) == LO_SUM \
2290 && TARGET_ARCH64 \
2291 && ! TARGET_CM_MEDMID \
2292 && RTX_OK_FOR_OLO10_P (op1)) \
2293 { \
2294 register rtx op00 = XEXP (op0, 0); \
2295 register rtx op01 = XEXP (op0, 1); \
2296 if (RTX_OK_FOR_BASE_P (op00) \
2297 && CONSTANT_P (op01)) \
2298 goto ADDR; \
2299 } \
2300 else if (USE_AS_OFFSETABLE_LO10 \
2301 && GET_CODE (op1) == LO_SUM \
2302 && TARGET_ARCH64 \
2303 && ! TARGET_CM_MEDMID \
2304 && RTX_OK_FOR_OLO10_P (op0)) \
2305 { \
2306 register rtx op10 = XEXP (op1, 0); \
2307 register rtx op11 = XEXP (op1, 1); \
2308 if (RTX_OK_FOR_BASE_P (op10) \
2309 && CONSTANT_P (op11)) \
2310 goto ADDR; \
2311 } \
2312 } \
2313 else if (GET_CODE (X) == LO_SUM) \
2314 { \
2315 register rtx op0 = XEXP (X, 0); \
2316 register rtx op1 = XEXP (X, 1); \
2317 if (RTX_OK_FOR_BASE_P (op0) \
2318 && CONSTANT_P (op1) \
2319 /* We can't allow TFmode, because an offset \
2320 greater than or equal to the alignment (8) \
2321 may cause the LO_SUM to overflow if !v9. */\
2322 && (MODE != TFmode || TARGET_V9)) \
2323 goto ADDR; \
2324 } \
2325 else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
2326 goto ADDR; \
2327 }
2328 \f
2329 /* Try machine-dependent ways of modifying an illegitimate address
2330 to be legitimate. If we find one, return the new, valid address.
2331 This macro is used in only one place: `memory_address' in explow.c.
2332
2333 OLDX is the address as it was before break_out_memory_refs was called.
2334 In some cases it is useful to look at this to decide what needs to be done.
2335
2336 MODE and WIN are passed so that this macro can use
2337 GO_IF_LEGITIMATE_ADDRESS.
2338
2339 It is always safe for this macro to do nothing. It exists to recognize
2340 opportunities to optimize the output. */
2341
2342 /* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
2343 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2344 { rtx sparc_x = (X); \
2345 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
2346 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 1), \
2347 force_operand (XEXP (X, 0), NULL_RTX)); \
2348 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
2349 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2350 force_operand (XEXP (X, 1), NULL_RTX)); \
2351 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
2352 (X) = gen_rtx_PLUS (Pmode, force_operand (XEXP (X, 0), NULL_RTX),\
2353 XEXP (X, 1)); \
2354 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
2355 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2356 force_operand (XEXP (X, 1), NULL_RTX)); \
2357 if (sparc_x != (X) && memory_address_p (MODE, X)) \
2358 goto WIN; \
2359 if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0); \
2360 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
2361 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2362 copy_to_mode_reg (Pmode, XEXP (X, 1))); \
2363 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
2364 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 1), \
2365 copy_to_mode_reg (Pmode, XEXP (X, 0))); \
2366 else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
2367 || GET_CODE (X) == LABEL_REF) \
2368 (X) = copy_to_suggested_reg (X, NULL_RTX, Pmode); \
2369 if (memory_address_p (MODE, X)) \
2370 goto WIN; }
2371
2372 /* Try a machine-dependent way of reloading an illegitimate address
2373 operand. If we find one, push the reload and jump to WIN. This
2374 macro is used in only one place: `find_reloads_address' in reload.c.
2375
2376 For Sparc 32, we wish to handle addresses by splitting them into
2377 HIGH+LO_SUM pairs, retaining the LO_SUM in the memory reference.
2378 This cuts the number of extra insns by one.
2379
2380 Do nothing when generating PIC code and the address is a
2381 symbolic operand or requires a scratch register. */
2382
2383 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2384 do { \
2385 /* Decompose SImode constants into hi+lo_sum. We do have to \
2386 rerecognize what we produce, so be careful. */ \
2387 if (CONSTANT_P (X) \
2388 && (MODE != TFmode || TARGET_ARCH64) \
2389 && GET_MODE (X) == SImode \
2390 && GET_CODE (X) != LO_SUM && GET_CODE (X) != HIGH \
2391 && ! (flag_pic \
2392 && (symbolic_operand (X, Pmode) \
2393 || pic_address_needs_scratch (X))) \
2394 && sparc_cmodel <= CM_MEDLOW) \
2395 { \
2396 X = gen_rtx_LO_SUM (GET_MODE (X), \
2397 gen_rtx_HIGH (GET_MODE (X), X), X); \
2398 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL, \
2399 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
2400 OPNUM, TYPE); \
2401 goto WIN; \
2402 } \
2403 /* ??? 64-bit reloads. */ \
2404 } while (0)
2405
2406 /* Go to LABEL if ADDR (a legitimate address expression)
2407 has an effect that depends on the machine mode it is used for.
2408 On the SPARC this is never true. */
2409
2410 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
2411 \f
2412 /* Specify the machine mode that this machine uses
2413 for the index in the tablejump instruction. */
2414 /* If we ever implement any of the full models (such as CM_FULLANY),
2415 this has to be DImode in that case */
2416 #ifdef HAVE_GAS_SUBSECTION_ORDERING
2417 #define CASE_VECTOR_MODE \
2418 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
2419 #else
2420 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
2421 we have to sign extend which slows things down. */
2422 #define CASE_VECTOR_MODE \
2423 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
2424 #endif
2425
2426 /* Define as C expression which evaluates to nonzero if the tablejump
2427 instruction expects the table to contain offsets from the address of the
2428 table.
2429 Do not define this if the table should contain absolute addresses. */
2430 /* #define CASE_VECTOR_PC_RELATIVE 1 */
2431
2432 /* Define this as 1 if `char' should by default be signed; else as 0. */
2433 #define DEFAULT_SIGNED_CHAR 1
2434
2435 /* Max number of bytes we can move from memory to memory
2436 in one reasonably fast instruction. */
2437 #define MOVE_MAX 8
2438
2439 #if 0 /* Sun 4 has matherr, so this is no good. */
2440 /* This is the value of the error code EDOM for this machine,
2441 used by the sqrt instruction. */
2442 #define TARGET_EDOM 33
2443
2444 /* This is how to refer to the variable errno. */
2445 #define GEN_ERRNO_RTX \
2446 gen_rtx_MEM (SImode, gen_rtx_SYMBOL_REF (Pmode, "errno"))
2447 #endif /* 0 */
2448
2449 /* Define if operations between registers always perform the operation
2450 on the full register even if a narrower mode is specified. */
2451 #define WORD_REGISTER_OPERATIONS
2452
2453 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2454 will either zero-extend or sign-extend. The value of this macro should
2455 be the code that says which one of the two operations is implicitly
2456 done, NIL if none. */
2457 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2458
2459 /* Nonzero if access to memory by bytes is slow and undesirable.
2460 For RISC chips, it means that access to memory by bytes is no
2461 better than access by words when possible, so grab a whole word
2462 and maybe make use of that. */
2463 #define SLOW_BYTE_ACCESS 1
2464
2465 /* We assume that the store-condition-codes instructions store 0 for false
2466 and some other value for true. This is the value stored for true. */
2467
2468 #define STORE_FLAG_VALUE 1
2469
2470 /* When a prototype says `char' or `short', really pass an `int'. */
2471 #define PROMOTE_PROTOTYPES (TARGET_ARCH32)
2472
2473 /* Define this to be nonzero if shift instructions ignore all but the low-order
2474 few bits. */
2475 #define SHIFT_COUNT_TRUNCATED 1
2476
2477 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2478 is done just by pretending it is already truncated. */
2479 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2480
2481 /* Specify the machine mode that pointers have.
2482 After generation of rtl, the compiler makes no further distinction
2483 between pointers and any other objects of this machine mode. */
2484 #define Pmode (TARGET_ARCH64 ? DImode : SImode)
2485
2486 /* Generate calls to memcpy, memcmp and memset. */
2487 #define TARGET_MEM_FUNCTIONS
2488
2489 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2490 return the mode to be used for the comparison. For floating-point,
2491 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand
2492 is a PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
2493 processing is needed. */
2494 #define SELECT_CC_MODE(OP,X,Y) select_cc_mode ((OP), (X), (Y))
2495
2496 /* Return non-zero if MODE implies a floating point inequality can be
2497 reversed. For Sparc this is always true because we have a full
2498 compliment of ordered and unordered comparisons, but until generic
2499 code knows how to reverse it correctly we keep the old definition. */
2500 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
2501
2502 /* A function address in a call instruction for indexing purposes. */
2503 #define FUNCTION_MODE Pmode
2504
2505 /* Define this if addresses of constant functions
2506 shouldn't be put through pseudo regs where they can be cse'd.
2507 Desirable on machines where ordinary constants are expensive
2508 but a CALL with constant address is cheap. */
2509 #define NO_FUNCTION_CSE
2510
2511 /* alloca should avoid clobbering the old register save area. */
2512 #define SETJMP_VIA_SAVE_AREA
2513
2514 /* Define subroutines to call to handle multiply and divide.
2515 Use the subroutines that Sun's library provides.
2516 The `*' prevents an underscore from being prepended by the compiler. */
2517
2518 #define DIVSI3_LIBCALL "*.div"
2519 #define UDIVSI3_LIBCALL "*.udiv"
2520 #define MODSI3_LIBCALL "*.rem"
2521 #define UMODSI3_LIBCALL "*.urem"
2522 /* .umul is a little faster than .mul. */
2523 #define MULSI3_LIBCALL "*.umul"
2524
2525 /* Define library calls for quad FP operations. These are all part of the
2526 SPARC 32bit ABI. */
2527 #define ADDTF3_LIBCALL "_Q_add"
2528 #define SUBTF3_LIBCALL "_Q_sub"
2529 #define NEGTF2_LIBCALL "_Q_neg"
2530 #define MULTF3_LIBCALL "_Q_mul"
2531 #define DIVTF3_LIBCALL "_Q_div"
2532 #define FLOATSITF2_LIBCALL "_Q_itoq"
2533 #define FIX_TRUNCTFSI2_LIBCALL "_Q_qtoi"
2534 #define FIXUNS_TRUNCTFSI2_LIBCALL "_Q_qtou"
2535 #define EXTENDSFTF2_LIBCALL "_Q_stoq"
2536 #define TRUNCTFSF2_LIBCALL "_Q_qtos"
2537 #define EXTENDDFTF2_LIBCALL "_Q_dtoq"
2538 #define TRUNCTFDF2_LIBCALL "_Q_qtod"
2539 #define EQTF2_LIBCALL "_Q_feq"
2540 #define NETF2_LIBCALL "_Q_fne"
2541 #define GTTF2_LIBCALL "_Q_fgt"
2542 #define GETF2_LIBCALL "_Q_fge"
2543 #define LTTF2_LIBCALL "_Q_flt"
2544 #define LETF2_LIBCALL "_Q_fle"
2545
2546 /* Assume by default that the _Qp_* 64-bit libcalls are implemented such
2547 that the inputs are fully consumed before the output memory is clobbered. */
2548
2549 #define TARGET_BUGGY_QP_LIB 0
2550
2551 /* We can define the TFmode sqrt optab only if TARGET_FPU. This is because
2552 with soft-float, the SFmode and DFmode sqrt instructions will be absent,
2553 and the compiler will notice and try to use the TFmode sqrt instruction
2554 for calls to the builtin function sqrt, but this fails. */
2555 #define INIT_TARGET_OPTABS \
2556 do { \
2557 if (TARGET_ARCH32) \
2558 { \
2559 add_optab->handlers[(int) TFmode].libfunc \
2560 = init_one_libfunc (ADDTF3_LIBCALL); \
2561 sub_optab->handlers[(int) TFmode].libfunc \
2562 = init_one_libfunc (SUBTF3_LIBCALL); \
2563 neg_optab->handlers[(int) TFmode].libfunc \
2564 = init_one_libfunc (NEGTF2_LIBCALL); \
2565 smul_optab->handlers[(int) TFmode].libfunc \
2566 = init_one_libfunc (MULTF3_LIBCALL); \
2567 sdiv_optab->handlers[(int) TFmode].libfunc \
2568 = init_one_libfunc (DIVTF3_LIBCALL); \
2569 eqtf2_libfunc = init_one_libfunc (EQTF2_LIBCALL); \
2570 netf2_libfunc = init_one_libfunc (NETF2_LIBCALL); \
2571 gttf2_libfunc = init_one_libfunc (GTTF2_LIBCALL); \
2572 getf2_libfunc = init_one_libfunc (GETF2_LIBCALL); \
2573 lttf2_libfunc = init_one_libfunc (LTTF2_LIBCALL); \
2574 letf2_libfunc = init_one_libfunc (LETF2_LIBCALL); \
2575 trunctfsf2_libfunc = init_one_libfunc (TRUNCTFSF2_LIBCALL); \
2576 trunctfdf2_libfunc = init_one_libfunc (TRUNCTFDF2_LIBCALL); \
2577 extendsftf2_libfunc = init_one_libfunc (EXTENDSFTF2_LIBCALL); \
2578 extenddftf2_libfunc = init_one_libfunc (EXTENDDFTF2_LIBCALL); \
2579 floatsitf_libfunc = init_one_libfunc (FLOATSITF2_LIBCALL); \
2580 fixtfsi_libfunc = init_one_libfunc (FIX_TRUNCTFSI2_LIBCALL); \
2581 fixunstfsi_libfunc \
2582 = init_one_libfunc (FIXUNS_TRUNCTFSI2_LIBCALL); \
2583 if (TARGET_FPU) \
2584 sqrt_optab->handlers[(int) TFmode].libfunc \
2585 = init_one_libfunc ("_Q_sqrt"); \
2586 } \
2587 if (TARGET_ARCH64) \
2588 { \
2589 /* In the SPARC 64bit ABI, these libfuncs do not exist in the \
2590 library. Make sure the compiler does not emit calls to them \
2591 by accident. */ \
2592 sdiv_optab->handlers[(int) SImode].libfunc = NULL; \
2593 udiv_optab->handlers[(int) SImode].libfunc = NULL; \
2594 smod_optab->handlers[(int) SImode].libfunc = NULL; \
2595 umod_optab->handlers[(int) SImode].libfunc = NULL; \
2596 smul_optab->handlers[(int) SImode].libfunc = NULL; \
2597 } \
2598 INIT_SUBTARGET_OPTABS; \
2599 } while (0)
2600
2601 /* This is meant to be redefined in the host dependent files */
2602 #define INIT_SUBTARGET_OPTABS
2603
2604 /* Nonzero if a floating point comparison library call for
2605 mode MODE that will return a boolean value. Zero if one
2606 of the libgcc2 functions is used. */
2607 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
2608
2609 /* Compute extra cost of moving data between one register class
2610 and another. */
2611 #define GENERAL_OR_I64(C) ((C) == GENERAL_REGS || (C) == I64_REGS)
2612 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2613 (((FP_REG_CLASS_P (CLASS1) && GENERAL_OR_I64 (CLASS2)) \
2614 || (GENERAL_OR_I64 (CLASS1) && FP_REG_CLASS_P (CLASS2)) \
2615 || (CLASS1) == FPCC_REGS || (CLASS2) == FPCC_REGS) \
2616 ? ((sparc_cpu == PROCESSOR_ULTRASPARC \
2617 || sparc_cpu == PROCESSOR_ULTRASPARC3) ? 12 : 6) : 2)
2618
2619 /* Provide the cost of a branch. For pre-v9 processors we use
2620 a value of 3 to take into account the potential annulling of
2621 the delay slot (which ends up being a bubble in the pipeline slot)
2622 plus a cycle to take into consideration the instruction cache
2623 effects.
2624
2625 On v9 and later, which have branch prediction facilities, we set
2626 it to the depth of the pipeline as that is the cost of a
2627 mispredicted branch. */
2628
2629 #define BRANCH_COST \
2630 ((sparc_cpu == PROCESSOR_V9 \
2631 || sparc_cpu == PROCESSOR_ULTRASPARC) \
2632 ? 7 \
2633 : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
2634 ? 9 : 3))
2635
2636 /* The cases that RTX_COSTS handles. */
2637
2638 #define RTX_COSTS_CASES \
2639 case PLUS: case MINUS: case ABS: case NEG: \
2640 case FLOAT: case UNSIGNED_FLOAT: \
2641 case FIX: case UNSIGNED_FIX: \
2642 case FLOAT_EXTEND: case FLOAT_TRUNCATE: \
2643 case SQRT: \
2644 case COMPARE: case IF_THEN_ELSE: \
2645 case MEM: \
2646 case MULT: case DIV: case UDIV: case MOD: case UMOD: \
2647 case CONST_INT: case HIGH: case CONST: \
2648 case LABEL_REF: case SYMBOL_REF: case CONST_DOUBLE:
2649
2650 /* Provide the costs of a rtl expression. This is in the body of a
2651 switch on CODE. */
2652
2653 #define RTX_COSTS(X,CODE,OUTER_CODE) \
2654 RTX_COSTS_CASES \
2655 return sparc_rtx_costs(X,CODE,OUTER_CODE);
2656
2657 #define ADDRESS_COST(RTX) 1
2658
2659 #define PREFETCH_BLOCK \
2660 ((sparc_cpu == PROCESSOR_ULTRASPARC \
2661 || sparc_cpu == PROCESSOR_ULTRASPARC3) \
2662 ? 64 : 32)
2663
2664 #define SIMULTANEOUS_PREFETCHES \
2665 ((sparc_cpu == PROCESSOR_ULTRASPARC) \
2666 ? 2 \
2667 : (sparc_cpu == PROCESSOR_ULTRASPARC3 \
2668 ? 8 : 3))
2669 \f
2670 /* Control the assembler format that we output. */
2671
2672 /* Output at beginning of assembler file. */
2673
2674 #define ASM_FILE_START(file)
2675
2676 /* A C string constant describing how to begin a comment in the target
2677 assembler language. The compiler assumes that the comment will end at
2678 the end of the line. */
2679
2680 #define ASM_COMMENT_START "!"
2681
2682 /* Output to assembler file text saying following lines
2683 may contain character constants, extra white space, comments, etc. */
2684
2685 #define ASM_APP_ON ""
2686
2687 /* Output to assembler file text saying following lines
2688 no longer contain unusual constructs. */
2689
2690 #define ASM_APP_OFF ""
2691
2692 /* ??? Try to make the style consistent here (_OP?). */
2693
2694 #define ASM_FLOAT ".single"
2695 #define ASM_DOUBLE ".double"
2696 #define ASM_LONGDOUBLE ".xxx" /* ??? Not known (or used yet). */
2697
2698 /* How to refer to registers in assembler output.
2699 This sequence is indexed by compiler's hard-register-number (see above). */
2700
2701 #define REGISTER_NAMES \
2702 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
2703 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
2704 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
2705 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
2706 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
2707 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
2708 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
2709 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", \
2710 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39", \
2711 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47", \
2712 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55", \
2713 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63", \
2714 "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc", "%sfp" }
2715
2716 /* Define additional names for use in asm clobbers and asm declarations. */
2717
2718 #define ADDITIONAL_REGISTER_NAMES \
2719 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
2720
2721 /* On Sun 4, this limit is 2048. We use 1000 to be safe, since the length
2722 can run past this up to a continuation point. Once we used 1500, but
2723 a single entry in C++ can run more than 500 bytes, due to the length of
2724 mangled symbol names. dbxout.c should really be fixed to do
2725 continuations when they are actually needed instead of trying to
2726 guess... */
2727 #define DBX_CONTIN_LENGTH 1000
2728
2729 /* This is how to output a command to make the user-level label named NAME
2730 defined for reference from other files. */
2731
2732 /* Globalizing directive for a label. */
2733 #define GLOBAL_ASM_OP "\t.global "
2734
2735 /* The prefix to add to user-visible assembler symbols. */
2736
2737 #define USER_LABEL_PREFIX "_"
2738
2739 /* This is how to output a definition of an internal numbered label where
2740 PREFIX is the class of label and NUM is the number within the class. */
2741
2742 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
2743 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
2744
2745 /* This is how to store into the string LABEL
2746 the symbol_ref name of an internal numbered label where
2747 PREFIX is the class of label and NUM is the number within the class.
2748 This is suitable for output with `assemble_name'. */
2749
2750 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2751 sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
2752
2753 /* This is how we hook in and defer the case-vector until the end of
2754 the function. */
2755 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
2756 sparc_defer_case_vector ((LAB),(VEC), 0)
2757
2758 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
2759 sparc_defer_case_vector ((LAB),(VEC), 1)
2760
2761 /* This is how to output an element of a case-vector that is absolute. */
2762
2763 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2764 do { \
2765 char label[30]; \
2766 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
2767 if (CASE_VECTOR_MODE == SImode) \
2768 fprintf (FILE, "\t.word\t"); \
2769 else \
2770 fprintf (FILE, "\t.xword\t"); \
2771 assemble_name (FILE, label); \
2772 fputc ('\n', FILE); \
2773 } while (0)
2774
2775 /* This is how to output an element of a case-vector that is relative.
2776 (SPARC uses such vectors only when generating PIC.) */
2777
2778 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2779 do { \
2780 char label[30]; \
2781 ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE)); \
2782 if (CASE_VECTOR_MODE == SImode) \
2783 fprintf (FILE, "\t.word\t"); \
2784 else \
2785 fprintf (FILE, "\t.xword\t"); \
2786 assemble_name (FILE, label); \
2787 ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL)); \
2788 fputc ('-', FILE); \
2789 assemble_name (FILE, label); \
2790 fputc ('\n', FILE); \
2791 } while (0)
2792
2793 /* This is what to output before and after case-vector (both
2794 relative and absolute). If .subsection -1 works, we put case-vectors
2795 at the beginning of the current section. */
2796
2797 #ifdef HAVE_GAS_SUBSECTION_ORDERING
2798
2799 #define ASM_OUTPUT_ADDR_VEC_START(FILE) \
2800 fprintf(FILE, "\t.subsection\t-1\n")
2801
2802 #define ASM_OUTPUT_ADDR_VEC_END(FILE) \
2803 fprintf(FILE, "\t.previous\n")
2804
2805 #endif
2806
2807 /* This is how to output an assembler line
2808 that says to advance the location counter
2809 to a multiple of 2**LOG bytes. */
2810
2811 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2812 if ((LOG) != 0) \
2813 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
2814
2815 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
2816 fprintf (FILE, "\t.skip %u\n", (SIZE))
2817
2818 /* This says how to output an assembler line
2819 to define a global common symbol. */
2820
2821 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
2822 ( fputs ("\t.common ", (FILE)), \
2823 assemble_name ((FILE), (NAME)), \
2824 fprintf ((FILE), ",%u,\"bss\"\n", (SIZE)))
2825
2826 /* This says how to output an assembler line to define a local common
2827 symbol. */
2828
2829 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
2830 ( fputs ("\t.reserve ", (FILE)), \
2831 assemble_name ((FILE), (NAME)), \
2832 fprintf ((FILE), ",%u,\"bss\",%u\n", \
2833 (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
2834
2835 /* A C statement (sans semicolon) to output to the stdio stream
2836 FILE the assembler definition of uninitialized global DECL named
2837 NAME whose size is SIZE bytes and alignment is ALIGN bytes.
2838 Try to use asm_output_aligned_bss to implement this macro. */
2839
2840 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
2841 do { \
2842 fputs (".globl ", (FILE)); \
2843 assemble_name ((FILE), (NAME)); \
2844 fputs ("\n", (FILE)); \
2845 ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \
2846 } while (0)
2847
2848 /* Store in OUTPUT a string (made with alloca) containing
2849 an assembler-name for a local static variable named NAME.
2850 LABELNO is an integer which is different for each call. */
2851
2852 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2853 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2854 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2855
2856 #define IDENT_ASM_OP "\t.ident\t"
2857
2858 /* Output #ident as a .ident. */
2859
2860 #define ASM_OUTPUT_IDENT(FILE, NAME) \
2861 fprintf (FILE, "%s\"%s\"\n", IDENT_ASM_OP, NAME);
2862
2863 /* Output code to add DELTA to the first argument, and then jump to FUNCTION.
2864 Used for C++ multiple inheritance. */
2865 #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
2866 sparc_output_mi_thunk (FILE, THUNK_FNDECL, DELTA, FUNCTION)
2867
2868 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2869 ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '(' || (CHAR) == '_')
2870
2871 /* Print operand X (an rtx) in assembler syntax to file FILE.
2872 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2873 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2874
2875 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2876
2877 /* Print a memory address as an operand to reference that memory location. */
2878
2879 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2880 { register rtx base, index = 0; \
2881 int offset = 0; \
2882 register rtx addr = ADDR; \
2883 if (GET_CODE (addr) == REG) \
2884 fputs (reg_names[REGNO (addr)], FILE); \
2885 else if (GET_CODE (addr) == PLUS) \
2886 { \
2887 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
2888 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
2889 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
2890 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
2891 else \
2892 base = XEXP (addr, 0), index = XEXP (addr, 1); \
2893 if (GET_CODE (base) == LO_SUM) \
2894 { \
2895 if (! USE_AS_OFFSETABLE_LO10 \
2896 || TARGET_ARCH32 \
2897 || TARGET_CM_MEDMID) \
2898 abort (); \
2899 output_operand (XEXP (base, 0), 0); \
2900 fputs ("+%lo(", FILE); \
2901 output_address (XEXP (base, 1)); \
2902 fprintf (FILE, ")+%d", offset); \
2903 } \
2904 else \
2905 { \
2906 fputs (reg_names[REGNO (base)], FILE); \
2907 if (index == 0) \
2908 fprintf (FILE, "%+d", offset); \
2909 else if (GET_CODE (index) == REG) \
2910 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
2911 else if (GET_CODE (index) == SYMBOL_REF \
2912 || GET_CODE (index) == CONST) \
2913 fputc ('+', FILE), output_addr_const (FILE, index); \
2914 else abort (); \
2915 } \
2916 } \
2917 else if (GET_CODE (addr) == MINUS \
2918 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
2919 { \
2920 output_addr_const (FILE, XEXP (addr, 0)); \
2921 fputs ("-(", FILE); \
2922 output_addr_const (FILE, XEXP (addr, 1)); \
2923 fputs ("-.)", FILE); \
2924 } \
2925 else if (GET_CODE (addr) == LO_SUM) \
2926 { \
2927 output_operand (XEXP (addr, 0), 0); \
2928 if (TARGET_CM_MEDMID) \
2929 fputs ("+%l44(", FILE); \
2930 else \
2931 fputs ("+%lo(", FILE); \
2932 output_address (XEXP (addr, 1)); \
2933 fputc (')', FILE); \
2934 } \
2935 else if (flag_pic && GET_CODE (addr) == CONST \
2936 && GET_CODE (XEXP (addr, 0)) == MINUS \
2937 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
2938 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
2939 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
2940 { \
2941 addr = XEXP (addr, 0); \
2942 output_addr_const (FILE, XEXP (addr, 0)); \
2943 /* Group the args of the second CONST in parenthesis. */ \
2944 fputs ("-(", FILE); \
2945 /* Skip past the second CONST--it does nothing for us. */\
2946 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
2947 /* Close the parenthesis. */ \
2948 fputc (')', FILE); \
2949 } \
2950 else \
2951 { \
2952 output_addr_const (FILE, addr); \
2953 } \
2954 }
2955
2956 /* Define the codes that are matched by predicates in sparc.c. */
2957
2958 #define PREDICATE_CODES \
2959 {"reg_or_0_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2960 {"const1_operand", {CONST_INT}}, \
2961 {"fp_zero_operand", {CONST_DOUBLE}}, \
2962 {"fp_register_operand", {SUBREG, REG}}, \
2963 {"intreg_operand", {SUBREG, REG}}, \
2964 {"fcc_reg_operand", {REG}}, \
2965 {"fcc0_reg_operand", {REG}}, \
2966 {"icc_or_fcc_reg_operand", {REG}}, \
2967 {"restore_operand", {REG}}, \
2968 {"call_operand", {MEM}}, \
2969 {"call_operand_address", {SYMBOL_REF, LABEL_REF, CONST, CONST_DOUBLE, \
2970 ADDRESSOF, SUBREG, REG, PLUS, LO_SUM, CONST_INT}}, \
2971 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
2972 {"symbolic_memory_operand", {SUBREG, MEM}}, \
2973 {"label_ref_operand", {LABEL_REF}}, \
2974 {"sp64_medium_pic_operand", {CONST}}, \
2975 {"data_segment_operand", {SYMBOL_REF, PLUS, CONST}}, \
2976 {"text_segment_operand", {LABEL_REF, SYMBOL_REF, PLUS, CONST}}, \
2977 {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \
2978 {"splittable_symbolic_memory_operand", {MEM}}, \
2979 {"splittable_immediate_memory_operand", {MEM}}, \
2980 {"eq_or_neq", {EQ, NE}}, \
2981 {"normal_comp_operator", {GE, GT, LE, LT, GTU, LEU}}, \
2982 {"noov_compare_op", {NE, EQ, GE, GT, LE, LT, GEU, GTU, LEU, LTU}}, \
2983 {"noov_compare64_op", {NE, EQ, GE, GT, LE, LT, GEU, GTU, LEU, LTU}}, \
2984 {"v9_regcmp_op", {EQ, NE, GE, LT, LE, GT}}, \
2985 {"extend_op", {SIGN_EXTEND, ZERO_EXTEND}}, \
2986 {"cc_arithop", {AND, IOR, XOR}}, \
2987 {"cc_arithopn", {AND, IOR}}, \
2988 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
2989 {"arith_add_operand", {SUBREG, REG, CONST_INT}}, \
2990 {"arith11_operand", {SUBREG, REG, CONST_INT}}, \
2991 {"arith10_operand", {SUBREG, REG, CONST_INT}}, \
2992 {"arith_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2993 {"arith_double_add_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2994 {"arith11_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2995 {"arith10_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2996 {"small_int", {CONST_INT}}, \
2997 {"small_int_or_double", {CONST_INT, CONST_DOUBLE}}, \
2998 {"uns_small_int", {CONST_INT}}, \
2999 {"uns_arith_operand", {SUBREG, REG, CONST_INT}}, \
3000 {"clobbered_register", {REG}}, \
3001 {"input_operand", {SUBREG, REG, CONST_INT, MEM, CONST}}, \
3002 {"const64_operand", {CONST_INT, CONST_DOUBLE}}, \
3003 {"const64_high_operand", {CONST_INT, CONST_DOUBLE}},
3004
3005 /* The number of Pmode words for the setjmp buffer. */
3006 #define JMP_BUF_SIZE 12
3007
3008 #define DONT_ACCESS_GBLS_AFTER_EPILOGUE (flag_pic)
3009
This page took 0.293217 seconds and 5 git commands to generate.