]> gcc.gnu.org Git - gcc.git/blob - gcc/config/sparc/sparc.h
[multiple changes]
[gcc.git] / gcc / config / sparc / sparc.h
1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 1988, 1989, 1992, 1994, 1995, 1996, 1997, 1998, 1999
3 2000, 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com).
5 64 bit SPARC V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
6 at Cygnus Support.
7
8 This file is part of GNU CC.
9
10 GNU CC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14
15 GNU CC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GNU CC; see the file COPYING. If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 /* Note that some other tm.h files include this one and then override
26 whatever definitions are necessary. */
27
28 /* Specify this in a cover file to provide bi-architecture (32/64) support. */
29 /* #define SPARC_BI_ARCH */
30
31 /* Macro used later in this file to determine default architecture. */
32 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
33
34 /* TARGET_ARCH{32,64} are the main macros to decide which of the two
35 architectures to compile for. We allow targets to choose compile time or
36 runtime selection. */
37 #ifdef IN_LIBGCC2
38 #if defined(__sparcv9) || defined(__arch64__)
39 #define TARGET_ARCH32 0
40 #else
41 #define TARGET_ARCH32 1
42 #endif /* sparc64 */
43 #else
44 #ifdef SPARC_BI_ARCH
45 #define TARGET_ARCH32 (! TARGET_64BIT)
46 #else
47 #define TARGET_ARCH32 (DEFAULT_ARCH32_P)
48 #endif /* SPARC_BI_ARCH */
49 #endif /* IN_LIBGCC2 */
50 #define TARGET_ARCH64 (! TARGET_ARCH32)
51
52 /* Code model selection.
53 -mcmodel is used to select the v9 code model.
54 Different code models aren't supported for v7/8 code.
55
56 TARGET_CM_32: 32 bit address space, top 32 bits = 0,
57 pointers are 32 bits. Note that this isn't intended
58 to imply a v7/8 abi.
59
60 TARGET_CM_MEDLOW: 32 bit address space, top 32 bits = 0,
61 avoid generating %uhi and %ulo terms,
62 pointers are 64 bits.
63
64 TARGET_CM_MEDMID: 64 bit address space.
65 The executable must be in the low 16 TB of memory.
66 This corresponds to the low 44 bits, and the %[hml]44
67 relocs are used. The text segment has a maximum size
68 of 31 bits.
69
70 TARGET_CM_MEDANY: 64 bit address space.
71 The text and data segments have a maximum size of 31
72 bits and may be located anywhere. The maximum offset
73 from any instruction to the label _GLOBAL_OFFSET_TABLE_
74 is 31 bits.
75
76 TARGET_CM_EMBMEDANY: 64 bit address space.
77 The text and data segments have a maximum size of 31 bits
78 and may be located anywhere. Register %g4 contains
79 the start address of the data segment.
80 */
81
82 enum cmodel {
83 CM_32,
84 CM_MEDLOW,
85 CM_MEDMID,
86 CM_MEDANY,
87 CM_EMBMEDANY
88 };
89
90 /* Value of -mcmodel specified by user. */
91 extern const char *sparc_cmodel_string;
92 /* One of CM_FOO. */
93 extern enum cmodel sparc_cmodel;
94
95 /* V9 code model selection. */
96 #define TARGET_CM_MEDLOW (sparc_cmodel == CM_MEDLOW)
97 #define TARGET_CM_MEDMID (sparc_cmodel == CM_MEDMID)
98 #define TARGET_CM_MEDANY (sparc_cmodel == CM_MEDANY)
99 #define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
100
101 #define SPARC_DEFAULT_CMODEL CM_32
102
103 /* This is call-clobbered in the normal ABI, but is reserved in the
104 home grown (aka upward compatible) embedded ABI. */
105 #define EMBMEDANY_BASE_REG "%g4"
106 \f
107 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
108 and specified by the user via --with-cpu=foo.
109 This specifies the cpu implementation, not the architecture size. */
110 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
111 capable cpu's. */
112 #define TARGET_CPU_sparc 0
113 #define TARGET_CPU_v7 0 /* alias for previous */
114 #define TARGET_CPU_sparclet 1
115 #define TARGET_CPU_sparclite 2
116 #define TARGET_CPU_v8 3 /* generic v8 implementation */
117 #define TARGET_CPU_supersparc 4
118 #define TARGET_CPU_hypersparc 5
119 #define TARGET_CPU_sparc86x 6
120 #define TARGET_CPU_sparclite86x 6
121 #define TARGET_CPU_v9 7 /* generic v9 implementation */
122 #define TARGET_CPU_sparcv9 7 /* alias */
123 #define TARGET_CPU_sparc64 7 /* alias */
124 #define TARGET_CPU_ultrasparc 8
125
126 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
127 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
128
129 #define CPP_CPU32_DEFAULT_SPEC ""
130 #define ASM_CPU32_DEFAULT_SPEC ""
131
132 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9
133 /* ??? What does Sun's CC pass? */
134 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
135 /* ??? It's not clear how other assemblers will handle this, so by default
136 use GAS. Sun's Solaris assembler recognizes -xarch=v8plus, but this case
137 is handled in sol2.h. */
138 #define ASM_CPU64_DEFAULT_SPEC "-Av9"
139 #endif
140 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
141 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
142 #define ASM_CPU64_DEFAULT_SPEC "-Av9a"
143 #endif
144
145 #else
146
147 #define CPP_CPU64_DEFAULT_SPEC ""
148 #define ASM_CPU64_DEFAULT_SPEC ""
149
150 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
151 || TARGET_CPU_DEFAULT == TARGET_CPU_v8
152 #define CPP_CPU32_DEFAULT_SPEC ""
153 #define ASM_CPU32_DEFAULT_SPEC ""
154 #endif
155
156 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
157 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
158 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
159 #endif
160
161 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
162 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
163 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
164 #endif
165
166 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
167 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
168 #define ASM_CPU32_DEFAULT_SPEC ""
169 #endif
170
171 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
172 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
173 #define ASM_CPU32_DEFAULT_SPEC ""
174 #endif
175
176 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
177 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
178 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
179 #endif
180
181 #endif
182
183 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
184 Unrecognized value in TARGET_CPU_DEFAULT.
185 #endif
186
187 #ifdef SPARC_BI_ARCH
188
189 #define CPP_CPU_DEFAULT_SPEC \
190 (DEFAULT_ARCH32_P ? "\
191 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \
192 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
193 " : "\
194 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \
195 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
196 ")
197 #define ASM_CPU_DEFAULT_SPEC \
198 (DEFAULT_ARCH32_P ? "\
199 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \
200 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
201 " : "\
202 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \
203 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
204 ")
205
206 #else /* !SPARC_BI_ARCH */
207
208 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
209 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
210
211 #endif /* !SPARC_BI_ARCH */
212
213 /* Define macros to distinguish architectures. */
214
215 /* Common CPP definitions used by CPP_SPEC amongst the various targets
216 for handling -mcpu=xxx switches. */
217 #define CPP_CPU_SPEC "\
218 %{msoft-float:-D_SOFT_FLOAT} \
219 %{mcypress:} \
220 %{msparclite:-D__sparclite__} \
221 %{mf930:-D__sparclite__} %{mf934:-D__sparclite__} \
222 %{mv8:-D__sparc_v8__} \
223 %{msupersparc:-D__supersparc__ -D__sparc_v8__} \
224 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
225 %{mcpu=sparclite:-D__sparclite__} \
226 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
227 %{mcpu=v8:-D__sparc_v8__} \
228 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
229 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
230 %{mcpu=sparclite86x:-D__sparclite86x__} \
231 %{mcpu=v9:-D__sparc_v9__} \
232 %{mcpu=ultrasparc:-D__sparc_v9__} \
233 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(cpp_cpu_default)}}}}}}} \
234 "
235
236 /* ??? The GCC_NEW_VARARGS macro is now obsolete, because gcc always uses
237 the right varags.h file when bootstrapping. */
238 /* ??? It's not clear what value we want to use for -Acpu/machine for
239 sparc64 in 32 bit environments, so for now we only use `sparc64' in
240 64 bit environments. */
241
242 #ifdef SPARC_BI_ARCH
243
244 #define CPP_ARCH32_SPEC "-D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int \
245 -D__GCC_NEW_VARARGS__ -Acpu=sparc -Amachine=sparc"
246 #define CPP_ARCH64_SPEC "-D__SIZE_TYPE__=long\\ unsigned\\ int -D__PTRDIFF_TYPE__=long\\ int \
247 -D__arch64__ -Acpu=sparc64 -Amachine=sparc64"
248
249 #else
250
251 #define CPP_ARCH32_SPEC "-D__GCC_NEW_VARARGS__ -Acpu=sparc -Amachine=sparc"
252 #define CPP_ARCH64_SPEC "-D__arch64__ -Acpu=sparc64 -Amachine=sparc64"
253
254 #endif
255
256 #define CPP_ARCH_DEFAULT_SPEC \
257 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
258
259 #define CPP_ARCH_SPEC "\
260 %{m32:%(cpp_arch32)} \
261 %{m64:%(cpp_arch64)} \
262 %{!m32:%{!m64:%(cpp_arch_default)}} \
263 "
264
265 /* Macros to distinguish endianness. */
266 #define CPP_ENDIAN_SPEC "\
267 %{mlittle-endian:-D__LITTLE_ENDIAN__} \
268 %{mlittle-endian-data:-D__LITTLE_ENDIAN_DATA__}"
269
270 /* Macros to distinguish the particular subtarget. */
271 #define CPP_SUBTARGET_SPEC ""
272
273 #define CPP_SPEC "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_subtarget)"
274
275 /* Prevent error on `-sun4' and `-target sun4' options. */
276 /* This used to translate -dalign to -malign, but that is no good
277 because it can't turn off the usual meaning of making debugging dumps. */
278 /* Translate old style -m<cpu> into new style -mcpu=<cpu>.
279 ??? Delete support for -m<cpu> for 2.9. */
280
281 #define CC1_SPEC "\
282 %{sun4:} %{target:} \
283 %{mcypress:-mcpu=cypress} \
284 %{msparclite:-mcpu=sparclite} %{mf930:-mcpu=f930} %{mf934:-mcpu=f934} \
285 %{mv8:-mcpu=v8} %{msupersparc:-mcpu=supersparc} \
286 "
287
288 /* Override in target specific files. */
289 #define ASM_CPU_SPEC "\
290 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
291 %{msparclite:-Asparclite} \
292 %{mf930:-Asparclite} %{mf934:-Asparclite} \
293 %{mcpu=sparclite:-Asparclite} \
294 %{mcpu=sparclite86x:-Asparclite} \
295 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
296 %{mv8plus:-Av8plus} \
297 %{mcpu=v9:-Av9} \
298 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
299 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(asm_cpu_default)}}}}}}} \
300 "
301
302 /* Word size selection, among other things.
303 This is what GAS uses. Add %(asm_arch) to ASM_SPEC to enable. */
304
305 #define ASM_ARCH32_SPEC "-32"
306 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
307 #define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
308 #else
309 #define ASM_ARCH64_SPEC "-64"
310 #endif
311 #define ASM_ARCH_DEFAULT_SPEC \
312 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
313
314 #define ASM_ARCH_SPEC "\
315 %{m32:%(asm_arch32)} \
316 %{m64:%(asm_arch64)} \
317 %{!m32:%{!m64:%(asm_arch_default)}} \
318 "
319
320 #ifdef HAVE_AS_RELAX_OPTION
321 #define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
322 #else
323 #define ASM_RELAX_SPEC ""
324 #endif
325
326 /* Special flags to the Sun-4 assembler when using pipe for input. */
327
328 #define ASM_SPEC "\
329 %| %{R} %{!pg:%{!p:%{fpic:-k} %{fPIC:-k}}} %{keep-local-as-symbols:-L} \
330 %(asm_cpu) %(asm_relax)"
331
332 /* This macro defines names of additional specifications to put in the specs
333 that can be used in various specifications like CC1_SPEC. Its definition
334 is an initializer with a subgrouping for each command option.
335
336 Each subgrouping contains a string constant, that defines the
337 specification name, and a string constant that used by the GNU CC driver
338 program.
339
340 Do not define this macro if it does not need to do anything. */
341
342 #define EXTRA_SPECS \
343 { "cpp_cpu", CPP_CPU_SPEC }, \
344 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
345 { "cpp_arch32", CPP_ARCH32_SPEC }, \
346 { "cpp_arch64", CPP_ARCH64_SPEC }, \
347 { "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\
348 { "cpp_arch", CPP_ARCH_SPEC }, \
349 { "cpp_endian", CPP_ENDIAN_SPEC }, \
350 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
351 { "asm_cpu", ASM_CPU_SPEC }, \
352 { "asm_cpu_default", ASM_CPU_DEFAULT_SPEC }, \
353 { "asm_arch32", ASM_ARCH32_SPEC }, \
354 { "asm_arch64", ASM_ARCH64_SPEC }, \
355 { "asm_relax", ASM_RELAX_SPEC }, \
356 { "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\
357 { "asm_arch", ASM_ARCH_SPEC }, \
358 SUBTARGET_EXTRA_SPECS
359
360 #define SUBTARGET_EXTRA_SPECS
361 \f
362 #ifdef SPARC_BI_ARCH
363 #define NO_BUILTIN_PTRDIFF_TYPE
364 #define NO_BUILTIN_SIZE_TYPE
365 #endif
366 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
367 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
368
369 /* ??? This should be 32 bits for v9 but what can we do? */
370 #define WCHAR_TYPE "short unsigned int"
371 #define WCHAR_TYPE_SIZE 16
372 #define MAX_WCHAR_TYPE_SIZE 16
373
374 /* Show we can debug even without a frame pointer. */
375 #define CAN_DEBUG_WITHOUT_FP
376
377 /* To make profiling work with -f{pic,PIC}, we need to emit the profiling
378 code into the rtl. Also, if we are profiling, we cannot eliminate
379 the frame pointer (because the return address will get smashed). */
380
381 #define OVERRIDE_OPTIONS \
382 do { \
383 if (profile_flag || profile_arc_flag) \
384 { \
385 if (flag_pic) \
386 { \
387 const char *const pic_string = (flag_pic == 1) ? "-fpic" : "-fPIC";\
388 warning ("%s and profiling conflict: disabling %s", \
389 pic_string, pic_string); \
390 flag_pic = 0; \
391 } \
392 flag_omit_frame_pointer = 0; \
393 } \
394 sparc_override_options (); \
395 SUBTARGET_OVERRIDE_OPTIONS; \
396 } while (0)
397
398 /* This is meant to be redefined in the host dependent files. */
399 #define SUBTARGET_OVERRIDE_OPTIONS
400
401 /* Generate DBX debugging information. */
402
403 #define DBX_DEBUGGING_INFO
404 \f
405 /* Run-time compilation parameters selecting different hardware subsets. */
406
407 extern int target_flags;
408
409 /* Nonzero if we should generate code to use the fpu. */
410 #define MASK_FPU 1
411 #define TARGET_FPU (target_flags & MASK_FPU)
412
413 /* Nonzero if we should use function_epilogue(). Otherwise, we
414 use fast return insns, but lose some generality. */
415 #define MASK_EPILOGUE 2
416 #define TARGET_EPILOGUE (target_flags & MASK_EPILOGUE)
417
418 /* Nonzero if we should assume that double pointers might be unaligned.
419 This can happen when linking gcc compiled code with other compilers,
420 because the ABI only guarantees 4 byte alignment. */
421 #define MASK_UNALIGNED_DOUBLES 4
422 #define TARGET_UNALIGNED_DOUBLES (target_flags & MASK_UNALIGNED_DOUBLES)
423
424 /* Nonzero means that we should generate code for a v8 sparc. */
425 #define MASK_V8 0x8
426 #define TARGET_V8 (target_flags & MASK_V8)
427
428 /* Nonzero means that we should generate code for a sparclite.
429 This enables the sparclite specific instructions, but does not affect
430 whether FPU instructions are emitted. */
431 #define MASK_SPARCLITE 0x10
432 #define TARGET_SPARCLITE (target_flags & MASK_SPARCLITE)
433
434 /* Nonzero if we're compiling for the sparclet. */
435 #define MASK_SPARCLET 0x20
436 #define TARGET_SPARCLET (target_flags & MASK_SPARCLET)
437
438 /* Nonzero if we're compiling for v9 sparc.
439 Note that v9's can run in 32 bit mode so this doesn't necessarily mean
440 the word size is 64. */
441 #define MASK_V9 0x40
442 #define TARGET_V9 (target_flags & MASK_V9)
443
444 /* Non-zero to generate code that uses the instructions deprecated in
445 the v9 architecture. This option only applies to v9 systems. */
446 /* ??? This isn't user selectable yet. It's used to enable such insns
447 on 32 bit v9 systems and for the moment they're permanently disabled
448 on 64 bit v9 systems. */
449 #define MASK_DEPRECATED_V8_INSNS 0x80
450 #define TARGET_DEPRECATED_V8_INSNS (target_flags & MASK_DEPRECATED_V8_INSNS)
451
452 /* Mask of all CPU selection flags. */
453 #define MASK_ISA \
454 (MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
455
456 /* Non-zero means don't pass `-assert pure-text' to the linker. */
457 #define MASK_IMPURE_TEXT 0x100
458 #define TARGET_IMPURE_TEXT (target_flags & MASK_IMPURE_TEXT)
459
460 /* Nonzero means that we should generate code using a flat register window
461 model, i.e. no save/restore instructions are generated, which is
462 compatible with normal sparc code.
463 The frame pointer is %i7 instead of %fp. */
464 #define MASK_FLAT 0x200
465 #define TARGET_FLAT (target_flags & MASK_FLAT)
466
467 /* Nonzero means use the registers that the Sparc ABI reserves for
468 application software. This must be the default to coincide with the
469 setting in FIXED_REGISTERS. */
470 #define MASK_APP_REGS 0x400
471 #define TARGET_APP_REGS (target_flags & MASK_APP_REGS)
472
473 /* Option to select how quad word floating point is implemented.
474 When TARGET_HARD_QUAD is true, we use the hardware quad instructions.
475 Otherwise, we use the SPARC ABI quad library functions. */
476 #define MASK_HARD_QUAD 0x800
477 #define TARGET_HARD_QUAD (target_flags & MASK_HARD_QUAD)
478
479 /* Non-zero on little-endian machines. */
480 /* ??? Little endian support currently only exists for sparclet-aout and
481 sparc64-elf configurations. May eventually want to expand the support
482 to all targets, but for now it's kept local to only those two. */
483 #define MASK_LITTLE_ENDIAN 0x1000
484 #define TARGET_LITTLE_ENDIAN (target_flags & MASK_LITTLE_ENDIAN)
485
486 /* 0x2000, 0x4000 are unused */
487
488 /* Nonzero if pointers are 64 bits. */
489 #define MASK_PTR64 0x8000
490 #define TARGET_PTR64 (target_flags & MASK_PTR64)
491
492 /* Nonzero if generating code to run in a 64 bit environment.
493 This is intended to only be used by TARGET_ARCH{32,64} as they are the
494 mechanism used to control compile time or run time selection. */
495 #define MASK_64BIT 0x10000
496 #define TARGET_64BIT (target_flags & MASK_64BIT)
497
498 /* 0x20000,0x40000 unused */
499
500 /* Non-zero means use a stack bias of 2047. Stack offsets are obtained by
501 adding 2047 to %sp. This option is for v9 only and is the default. */
502 #define MASK_STACK_BIAS 0x80000
503 #define TARGET_STACK_BIAS (target_flags & MASK_STACK_BIAS)
504
505 /* 0x100000,0x200000 unused */
506
507 /* Non-zero means -m{,no-}fpu was passed on the command line. */
508 #define MASK_FPU_SET 0x400000
509 #define TARGET_FPU_SET (target_flags & MASK_FPU_SET)
510
511 /* Use the UltraSPARC Visual Instruction Set extensions. */
512 #define MASK_VIS 0x1000000
513 #define TARGET_VIS (target_flags & MASK_VIS)
514
515 /* Compile for Solaris V8+. 32 bit Solaris preserves the high bits of
516 the current out and global registers and Linux 2.2+ as well. */
517 #define MASK_V8PLUS 0x2000000
518 #define TARGET_V8PLUS (target_flags & MASK_V8PLUS)
519
520 /* Force a the fastest alignment on structures to take advantage of
521 faster copies. */
522 #define MASK_FASTER_STRUCTS 0x4000000
523 #define TARGET_FASTER_STRUCTS (target_flags & MASK_FASTER_STRUCTS)
524
525 /* Use IEEE quad long double. */
526 #define MASK_LONG_DOUBLE_128 0x8000000
527 #define TARGET_LONG_DOUBLE_128 (target_flags & MASK_LONG_DOUBLE_128)
528
529 /* TARGET_HARD_MUL: Use hardware multiply instructions but not %y.
530 TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y
531 to get high 32 bits. False in V8+ or V9 because multiply stores
532 a 64 bit result in a register. */
533
534 #define TARGET_HARD_MUL32 \
535 ((TARGET_V8 || TARGET_SPARCLITE \
536 || TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS) \
537 && ! TARGET_V8PLUS && TARGET_ARCH32)
538
539 #define TARGET_HARD_MUL \
540 (TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET \
541 || TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS)
542
543
544 /* Macro to define tables used to set the flags.
545 This is a list in braces of pairs in braces,
546 each pair being { "NAME", VALUE }
547 where VALUE is the bits to set or minus the bits to clear.
548 An empty string NAME is used to identify the default VALUE. */
549
550 #define TARGET_SWITCHES \
551 { {"fpu", MASK_FPU | MASK_FPU_SET, \
552 N_("Use hardware fp") }, \
553 {"no-fpu", -MASK_FPU, \
554 N_("Do not use hardware fp") }, \
555 {"no-fpu", MASK_FPU_SET, NULL, }, \
556 {"hard-float", MASK_FPU | MASK_FPU_SET, \
557 N_("Use hardware fp") }, \
558 {"soft-float", -MASK_FPU, \
559 N_("Do not use hardware fp") }, \
560 {"soft-float", MASK_FPU_SET, NULL }, \
561 {"epilogue", MASK_EPILOGUE, \
562 N_("Use function_epilogue()") }, \
563 {"no-epilogue", -MASK_EPILOGUE, \
564 N_("Do not use function_epilogue()") }, \
565 {"unaligned-doubles", MASK_UNALIGNED_DOUBLES, \
566 N_("Assume possible double misalignment") }, \
567 {"no-unaligned-doubles", -MASK_UNALIGNED_DOUBLES, \
568 N_("Assume all doubles are aligned") }, \
569 {"impure-text", MASK_IMPURE_TEXT, \
570 N_("Pass -assert pure-text to linker") }, \
571 {"no-impure-text", -MASK_IMPURE_TEXT, \
572 N_("Do not pass -assert pure-text to linker") }, \
573 {"flat", MASK_FLAT, \
574 N_("Use flat register window model") }, \
575 {"no-flat", -MASK_FLAT, \
576 N_("Do not use flat register window model") }, \
577 {"app-regs", MASK_APP_REGS, \
578 N_("Use ABI reserved registers") }, \
579 {"no-app-regs", -MASK_APP_REGS, \
580 N_("Do not use ABI reserved registers") }, \
581 {"hard-quad-float", MASK_HARD_QUAD, \
582 N_("Use hardware quad fp instructions") }, \
583 {"soft-quad-float", -MASK_HARD_QUAD, \
584 N_("Do not use hardware quad fp instructions") }, \
585 {"v8plus", MASK_V8PLUS, \
586 N_("Compile for v8plus ABI") }, \
587 {"no-v8plus", -MASK_V8PLUS, \
588 N_("Do not compile for v8plus ABI") }, \
589 {"vis", MASK_VIS, \
590 N_("Utilize Visual Instruction Set") }, \
591 {"no-vis", -MASK_VIS, \
592 N_("Do not utilize Visual Instruction Set") }, \
593 /* ??? These are deprecated, coerced to -mcpu=. Delete in 2.9. */ \
594 {"cypress", 0, \
595 N_("Optimize for Cypress processors") }, \
596 {"sparclite", 0, \
597 N_("Optimize for SparcLite processors") }, \
598 {"f930", 0, \
599 N_("Optimize for F930 processors") }, \
600 {"f934", 0, \
601 N_("Optimize for F934 processors") }, \
602 {"v8", 0, \
603 N_("Use V8 Sparc ISA") }, \
604 {"supersparc", 0, \
605 N_("Optimize for SuperSparc processors") }, \
606 /* End of deprecated options. */ \
607 {"ptr64", MASK_PTR64, \
608 N_("Pointers are 64-bit") }, \
609 {"ptr32", -MASK_PTR64, \
610 N_("Pointers are 32-bit") }, \
611 {"32", -MASK_64BIT, \
612 N_("Use 32-bit ABI") }, \
613 {"64", MASK_64BIT, \
614 N_("Use 64-bit ABI") }, \
615 {"stack-bias", MASK_STACK_BIAS, \
616 N_("Use stack bias") }, \
617 {"no-stack-bias", -MASK_STACK_BIAS, \
618 N_("Do not use stack bias") }, \
619 {"faster-structs", MASK_FASTER_STRUCTS, \
620 N_("Use structs on stronger alignment for double-word copies") }, \
621 {"no-faster-structs", -MASK_FASTER_STRUCTS, \
622 N_("Do not use structs on stronger alignment for double-word copies") }, \
623 {"relax", 0, \
624 N_("Optimize tail call instructions in assembler and linker") }, \
625 {"no-relax", 0, \
626 N_("Do not optimize tail call instructions in assembler or linker") }, \
627 SUBTARGET_SWITCHES \
628 { "", TARGET_DEFAULT, ""}}
629
630 /* MASK_APP_REGS must always be the default because that's what
631 FIXED_REGISTERS is set to and -ffixed- is processed before
632 CONDITIONAL_REGISTER_USAGE is called (where we process -mno-app-regs). */
633 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_EPILOGUE + MASK_FPU)
634
635 /* This is meant to be redefined in target specific files. */
636 #define SUBTARGET_SWITCHES
637
638 /* Processor type.
639 These must match the values for the cpu attribute in sparc.md. */
640 enum processor_type {
641 PROCESSOR_V7,
642 PROCESSOR_CYPRESS,
643 PROCESSOR_V8,
644 PROCESSOR_SUPERSPARC,
645 PROCESSOR_SPARCLITE,
646 PROCESSOR_F930,
647 PROCESSOR_F934,
648 PROCESSOR_HYPERSPARC,
649 PROCESSOR_SPARCLITE86X,
650 PROCESSOR_SPARCLET,
651 PROCESSOR_TSC701,
652 PROCESSOR_V9,
653 PROCESSOR_ULTRASPARC
654 };
655
656 /* This is set from -m{cpu,tune}=xxx. */
657 extern enum processor_type sparc_cpu;
658
659 /* Recast the cpu class to be the cpu attribute.
660 Every file includes us, but not every file includes insn-attr.h. */
661 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
662
663 /* This macro is similar to `TARGET_SWITCHES' but defines names of
664 command options that have values. Its definition is an
665 initializer with a subgrouping for each command option.
666
667 Each subgrouping contains a string constant, that defines the
668 fixed part of the option name, and the address of a variable.
669 The variable, type `char *', is set to the variable part of the
670 given option if the fixed part matches. The actual option name
671 is made by appending `-m' to the specified name.
672
673 Here is an example which defines `-mshort-data-NUMBER'. If the
674 given option is `-mshort-data-512', the variable `m88k_short_data'
675 will be set to the string `"512"'.
676
677 extern char *m88k_short_data;
678 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
679
680 #define TARGET_OPTIONS \
681 { \
682 { "cpu=", &sparc_select[1].string, \
683 N_("Use features of and schedule code for given CPU") }, \
684 { "tune=", &sparc_select[2].string, \
685 N_("Schedule code for given CPU") }, \
686 { "cmodel=", &sparc_cmodel_string, \
687 N_("Use given Sparc code model") }, \
688 SUBTARGET_OPTIONS \
689 }
690
691 /* This is meant to be redefined in target specific files. */
692 #define SUBTARGET_OPTIONS
693
694 /* sparc_select[0] is reserved for the default cpu. */
695 struct sparc_cpu_select
696 {
697 const char *string;
698 const char *const name;
699 const int set_tune_p;
700 const int set_arch_p;
701 };
702
703 extern struct sparc_cpu_select sparc_select[];
704 \f
705 /* target machine storage layout */
706
707 /* Define for cross-compilation to a sparc target with no TFmode from a host
708 with a different float format (e.g. VAX). */
709 #define REAL_ARITHMETIC
710
711 /* Define this if most significant bit is lowest numbered
712 in instructions that operate on numbered bit-fields. */
713 #define BITS_BIG_ENDIAN 1
714
715 /* Define this if most significant byte of a word is the lowest numbered. */
716 #define BYTES_BIG_ENDIAN 1
717
718 /* Define this if most significant word of a multiword number is the lowest
719 numbered. */
720 #define WORDS_BIG_ENDIAN 1
721
722 /* Define this to set the endianness to use in libgcc2.c, which can
723 not depend on target_flags. */
724 #if defined (__LITTLE_ENDIAN__) || defined(__LITTLE_ENDIAN_DATA__)
725 #define LIBGCC2_WORDS_BIG_ENDIAN 0
726 #else
727 #define LIBGCC2_WORDS_BIG_ENDIAN 1
728 #endif
729
730 /* number of bits in an addressable storage unit */
731 #define BITS_PER_UNIT 8
732
733 /* Width in bits of a "word", which is the contents of a machine register.
734 Note that this is not necessarily the width of data type `int';
735 if using 16-bit ints on a 68000, this would still be 32.
736 But on a machine with 16-bit registers, this would be 16. */
737 #define BITS_PER_WORD (TARGET_ARCH64 ? 64 : 32)
738 #define MAX_BITS_PER_WORD 64
739
740 /* Width of a word, in units (bytes). */
741 #define UNITS_PER_WORD (TARGET_ARCH64 ? 8 : 4)
742 #define MIN_UNITS_PER_WORD 4
743
744 /* Now define the sizes of the C data types. */
745
746 #define SHORT_TYPE_SIZE 16
747 #define INT_TYPE_SIZE 32
748 #define LONG_TYPE_SIZE (TARGET_ARCH64 ? 64 : 32)
749 #define LONG_LONG_TYPE_SIZE 64
750 #define FLOAT_TYPE_SIZE 32
751 #define DOUBLE_TYPE_SIZE 64
752
753 #ifdef SPARC_BI_ARCH
754 #define MAX_LONG_TYPE_SIZE 64
755 #endif
756
757 #if 0
758 /* ??? This does not work in SunOS 4.x, so it is not enabled here.
759 Instead, it is enabled in sol2.h, because it does work under Solaris. */
760 /* Define for support of TFmode long double and REAL_ARITHMETIC.
761 Sparc ABI says that long double is 4 words. */
762 #define LONG_DOUBLE_TYPE_SIZE 128
763 #endif
764
765 /* Width in bits of a pointer.
766 See also the macro `Pmode' defined below. */
767 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
768
769 /* If we have to extend pointers (only when TARGET_ARCH64 and not
770 TARGET_PTR64), we want to do it unsigned. This macro does nothing
771 if ptr_mode and Pmode are the same. */
772 #define POINTERS_EXTEND_UNSIGNED 1
773
774 /* A macro to update MODE and UNSIGNEDP when an object whose type
775 is TYPE and which has the specified mode and signedness is to be
776 stored in a register. This macro is only called when TYPE is a
777 scalar type. */
778 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
779 if (TARGET_ARCH64 \
780 && GET_MODE_CLASS (MODE) == MODE_INT \
781 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
782 (MODE) = DImode;
783
784 /* Define this macro if the promotion described by PROMOTE_MODE
785 should also be done for outgoing function arguments. */
786 /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
787 for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test
788 for this value. */
789 #define PROMOTE_FUNCTION_ARGS
790
791 /* Define this macro if the promotion described by PROMOTE_MODE
792 should also be done for the return value of functions.
793 If this macro is defined, FUNCTION_VALUE must perform the same
794 promotions done by PROMOTE_MODE. */
795 /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
796 for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test
797 for this value. */
798 #define PROMOTE_FUNCTION_RETURN
799
800 /* Define this macro if the promotion described by PROMOTE_MODE
801 should _only_ be performed for outgoing function arguments or
802 function return values, as specified by PROMOTE_FUNCTION_ARGS
803 and PROMOTE_FUNCTION_RETURN, respectively. */
804 /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
805 for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test
806 for this value. For TARGET_ARCH64 we need it, as we don't have instructions
807 for arithmetic operations which do zero/sign extension at the same time,
808 so without this we end up with a srl/sra after every assignment to an
809 user variable, which means very very bad code. */
810 #define PROMOTE_FOR_CALL_ONLY
811
812 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
813 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
814
815 /* Boundary (in *bits*) on which stack pointer should be aligned. */
816 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
817
818 /* ALIGN FRAMES on double word boundaries */
819
820 #define SPARC_STACK_ALIGN(LOC) \
821 (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
822
823 /* Allocation boundary (in *bits*) for the code of a function. */
824 #define FUNCTION_BOUNDARY 32
825
826 /* Alignment of field after `int : 0' in a structure. */
827 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
828
829 /* Every structure's size must be a multiple of this. */
830 #define STRUCTURE_SIZE_BOUNDARY 8
831
832 /* A bitfield declared as `int' forces `int' alignment for the struct. */
833 #define PCC_BITFIELD_TYPE_MATTERS 1
834
835 /* No data type wants to be aligned rounder than this. */
836 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
837
838 /* The best alignment to use in cases where we have a choice. */
839 #define FASTEST_ALIGNMENT 64
840
841 /* Define this macro as an expression for the alignment of a structure
842 (given by STRUCT as a tree node) if the alignment computed in the
843 usual way is COMPUTED and the alignment explicitly specified was
844 SPECIFIED.
845
846 The default is to use SPECIFIED if it is larger; otherwise, use
847 the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
848 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
849 (TARGET_FASTER_STRUCTS ? \
850 ((TREE_CODE (STRUCT) == RECORD_TYPE \
851 || TREE_CODE (STRUCT) == UNION_TYPE \
852 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
853 && TYPE_FIELDS (STRUCT) != 0 \
854 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
855 : MAX ((COMPUTED), (SPECIFIED))) \
856 : MAX ((COMPUTED), (SPECIFIED)))
857
858 /* Make strings word-aligned so strcpy from constants will be faster. */
859 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
860 ((TREE_CODE (EXP) == STRING_CST \
861 && (ALIGN) < FASTEST_ALIGNMENT) \
862 ? FASTEST_ALIGNMENT : (ALIGN))
863
864 /* Make arrays of chars word-aligned for the same reasons. */
865 #define DATA_ALIGNMENT(TYPE, ALIGN) \
866 (TREE_CODE (TYPE) == ARRAY_TYPE \
867 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
868 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
869
870 /* Set this nonzero if move instructions will actually fail to work
871 when given unaligned data. */
872 #define STRICT_ALIGNMENT 1
873
874 /* Things that must be doubleword aligned cannot go in the text section,
875 because the linker fails to align the text section enough!
876 Put them in the data section. This macro is only used in this file. */
877 #define MAX_TEXT_ALIGN 32
878
879 /* This forces all variables and constants to the data section when PIC.
880 This is because the SunOS 4 shared library scheme thinks everything in
881 text is a function, and patches the address to point to a loader stub. */
882 /* This is defined to zero for every system which doesn't use the a.out object
883 file format. */
884 #ifndef SUNOS4_SHARED_LIBRARIES
885 #define SUNOS4_SHARED_LIBRARIES 0
886 #endif
887
888
889 /* Use text section for a constant
890 unless we need more alignment than that offers. */
891 /* This is defined differently for v9 in a cover file. */
892 #define SELECT_RTX_SECTION(MODE, X, ALIGN) \
893 { \
894 if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
895 && ! (flag_pic && (symbolic_operand ((X), (MODE)) || SUNOS4_SHARED_LIBRARIES))) \
896 text_section (); \
897 else \
898 data_section (); \
899 }
900 \f
901 /* Standard register usage. */
902
903 /* Number of actual hardware registers.
904 The hardware registers are assigned numbers for the compiler
905 from 0 to just below FIRST_PSEUDO_REGISTER.
906 All registers that the compiler knows about must be given numbers,
907 even those that are not normally considered general registers.
908
909 SPARC has 32 integer registers and 32 floating point registers.
910 64 bit SPARC has 32 additional fp regs, but the odd numbered ones are not
911 accessible. We still account for them to simplify register computations
912 (eg: in CLASS_MAX_NREGS). There are also 4 fp condition code registers, so
913 32+32+32+4 == 100.
914 Register 100 is used as the integer condition code register. */
915
916 #define FIRST_PSEUDO_REGISTER 101
917
918 #define SPARC_FIRST_FP_REG 32
919 /* Additional V9 fp regs. */
920 #define SPARC_FIRST_V9_FP_REG 64
921 #define SPARC_LAST_V9_FP_REG 95
922 /* V9 %fcc[0123]. V8 uses (figuratively) %fcc0. */
923 #define SPARC_FIRST_V9_FCC_REG 96
924 #define SPARC_LAST_V9_FCC_REG 99
925 /* V8 fcc reg. */
926 #define SPARC_FCC_REG 96
927 /* Integer CC reg. We don't distinguish %icc from %xcc. */
928 #define SPARC_ICC_REG 100
929
930 /* Nonzero if REGNO is an fp reg. */
931 #define SPARC_FP_REG_P(REGNO) \
932 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
933
934 /* Argument passing regs. */
935 #define SPARC_OUTGOING_INT_ARG_FIRST 8
936 #define SPARC_INCOMING_INT_ARG_FIRST (TARGET_FLAT ? 8 : 24)
937 #define SPARC_FP_ARG_FIRST 32
938
939 /* 1 for registers that have pervasive standard uses
940 and are not available for the register allocator.
941
942 On non-v9 systems:
943 g1 is free to use as temporary.
944 g2-g4 are reserved for applications. Gcc normally uses them as
945 temporaries, but this can be disabled via the -mno-app-regs option.
946 g5 through g7 are reserved for the operating system.
947
948 On v9 systems:
949 g1,g5 are free to use as temporaries, and are free to use between calls
950 if the call is to an external function via the PLT.
951 g4 is free to use as a temporary in the non-embedded case.
952 g4 is reserved in the embedded case.
953 g2-g3 are reserved for applications. Gcc normally uses them as
954 temporaries, but this can be disabled via the -mno-app-regs option.
955 g6-g7 are reserved for the operating system (or application in
956 embedded case).
957 ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
958 currently be a fixed register until this pattern is rewritten.
959 Register 1 is also used when restoring call-preserved registers in large
960 stack frames.
961
962 Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
963 CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
964 */
965
966 #define FIXED_REGISTERS \
967 {1, 0, 2, 2, 2, 2, 1, 1, \
968 0, 0, 0, 0, 0, 0, 1, 0, \
969 0, 0, 0, 0, 0, 0, 0, 0, \
970 0, 0, 0, 0, 0, 0, 1, 1, \
971 \
972 0, 0, 0, 0, 0, 0, 0, 0, \
973 0, 0, 0, 0, 0, 0, 0, 0, \
974 0, 0, 0, 0, 0, 0, 0, 0, \
975 0, 0, 0, 0, 0, 0, 0, 0, \
976 \
977 0, 0, 0, 0, 0, 0, 0, 0, \
978 0, 0, 0, 0, 0, 0, 0, 0, \
979 0, 0, 0, 0, 0, 0, 0, 0, \
980 0, 0, 0, 0, 0, 0, 0, 0, \
981 \
982 0, 0, 0, 0, 0}
983
984 /* 1 for registers not available across function calls.
985 These must include the FIXED_REGISTERS and also any
986 registers that can be used without being saved.
987 The latter must include the registers where values are returned
988 and the register where structure-value addresses are passed.
989 Aside from that, you can include as many other registers as you like. */
990
991 #define CALL_USED_REGISTERS \
992 {1, 1, 1, 1, 1, 1, 1, 1, \
993 1, 1, 1, 1, 1, 1, 1, 1, \
994 0, 0, 0, 0, 0, 0, 0, 0, \
995 0, 0, 0, 0, 0, 0, 1, 1, \
996 \
997 1, 1, 1, 1, 1, 1, 1, 1, \
998 1, 1, 1, 1, 1, 1, 1, 1, \
999 1, 1, 1, 1, 1, 1, 1, 1, \
1000 1, 1, 1, 1, 1, 1, 1, 1, \
1001 \
1002 1, 1, 1, 1, 1, 1, 1, 1, \
1003 1, 1, 1, 1, 1, 1, 1, 1, \
1004 1, 1, 1, 1, 1, 1, 1, 1, \
1005 1, 1, 1, 1, 1, 1, 1, 1, \
1006 \
1007 1, 1, 1, 1, 1}
1008
1009 /* If !TARGET_FPU, then make the fp registers and fp cc regs fixed so that
1010 they won't be allocated. */
1011
1012 #define CONDITIONAL_REGISTER_USAGE \
1013 do \
1014 { \
1015 if (flag_pic) \
1016 { \
1017 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
1018 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
1019 } \
1020 /* If the user has passed -f{fixed,call-{used,saved}}-g5 */ \
1021 /* then honour it. */ \
1022 if (TARGET_ARCH32 && fixed_regs[5]) \
1023 fixed_regs[5] = 1; \
1024 else if (TARGET_ARCH64 && fixed_regs[5] == 2) \
1025 fixed_regs[5] = 0; \
1026 if (! TARGET_V9) \
1027 { \
1028 int regno; \
1029 for (regno = SPARC_FIRST_V9_FP_REG; \
1030 regno <= SPARC_LAST_V9_FP_REG; \
1031 regno++) \
1032 fixed_regs[regno] = 1; \
1033 /* %fcc0 is used by v8 and v9. */ \
1034 for (regno = SPARC_FIRST_V9_FCC_REG + 1; \
1035 regno <= SPARC_LAST_V9_FCC_REG; \
1036 regno++) \
1037 fixed_regs[regno] = 1; \
1038 } \
1039 if (! TARGET_FPU) \
1040 { \
1041 int regno; \
1042 for (regno = 32; regno < SPARC_LAST_V9_FCC_REG; regno++) \
1043 fixed_regs[regno] = 1; \
1044 } \
1045 /* If the user has passed -f{fixed,call-{used,saved}}-g2 */ \
1046 /* then honour it. Likewise with g3 and g4. */ \
1047 if (fixed_regs[2] == 2) \
1048 fixed_regs[2] = ! TARGET_APP_REGS; \
1049 if (fixed_regs[3] == 2) \
1050 fixed_regs[3] = ! TARGET_APP_REGS; \
1051 if (TARGET_ARCH32 && fixed_regs[4] == 2) \
1052 fixed_regs[4] = ! TARGET_APP_REGS; \
1053 else if (TARGET_CM_EMBMEDANY) \
1054 fixed_regs[4] = 1; \
1055 else if (fixed_regs[4] == 2) \
1056 fixed_regs[4] = 0; \
1057 if (TARGET_FLAT) \
1058 { \
1059 /* Let the compiler believe the frame pointer is still \
1060 %fp, but output it as %i7. */ \
1061 fixed_regs[31] = 1; \
1062 reg_names[FRAME_POINTER_REGNUM] = "%i7"; \
1063 /* Disable leaf functions */ \
1064 memset (sparc_leaf_regs, 0, FIRST_PSEUDO_REGISTER); \
1065 } \
1066 } \
1067 while (0)
1068
1069 /* Return number of consecutive hard regs needed starting at reg REGNO
1070 to hold something of mode MODE.
1071 This is ordinarily the length in words of a value of mode MODE
1072 but can be less for certain modes in special long registers.
1073
1074 On SPARC, ordinary registers hold 32 bits worth;
1075 this means both integer and floating point registers.
1076 On v9, integer regs hold 64 bits worth; floating point regs hold
1077 32 bits worth (this includes the new fp regs as even the odd ones are
1078 included in the hard register count). */
1079
1080 #define HARD_REGNO_NREGS(REGNO, MODE) \
1081 (TARGET_ARCH64 \
1082 ? ((REGNO) < 32 \
1083 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD \
1084 : (GET_MODE_SIZE (MODE) + 3) / 4) \
1085 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1086
1087 /* Due to the ARCH64 descrepancy above we must override this next
1088 macro too. */
1089 #define REGMODE_NATURAL_SIZE(MODE) \
1090 ((TARGET_ARCH64 && FLOAT_MODE_P (MODE)) ? 4 : UNITS_PER_WORD)
1091
1092 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
1093 See sparc.c for how we initialize this. */
1094 extern const int *hard_regno_mode_classes;
1095 extern int sparc_mode_class[];
1096
1097 /* ??? Because of the funny way we pass parameters we should allow certain
1098 ??? types of float/complex values to be in integer registers during
1099 ??? RTL generation. This only matters on arch32. */
1100 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1101 ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
1102
1103 /* Value is 1 if it is a good idea to tie two pseudo registers
1104 when one has mode MODE1 and one has mode MODE2.
1105 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1106 for any hard reg, then this must be 0 for correct output.
1107
1108 For V9: SFmode can't be combined with other float modes, because they can't
1109 be allocated to the %d registers. Also, DFmode won't fit in odd %f
1110 registers, but SFmode will. */
1111 #define MODES_TIEABLE_P(MODE1, MODE2) \
1112 ((MODE1) == (MODE2) \
1113 || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
1114 && (! TARGET_V9 \
1115 || (GET_MODE_CLASS (MODE1) != MODE_FLOAT \
1116 || (MODE1 != SFmode && MODE2 != SFmode)))))
1117
1118 /* Specify the registers used for certain standard purposes.
1119 The values of these macros are register numbers. */
1120
1121 /* SPARC pc isn't overloaded on a register that the compiler knows about. */
1122 /* #define PC_REGNUM */
1123
1124 /* Register to use for pushing function arguments. */
1125 #define STACK_POINTER_REGNUM 14
1126
1127 /* Actual top-of-stack address is 92/176 greater than the contents of the
1128 stack pointer register for !v9/v9. That is:
1129 - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
1130 address, and 6*4 bytes for the 6 register parameters.
1131 - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
1132 parameter regs. */
1133 #define STACK_POINTER_OFFSET FIRST_PARM_OFFSET(0)
1134
1135 /* The stack bias (amount by which the hardware register is offset by). */
1136 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
1137
1138 /* Is stack biased? */
1139 #define STACK_BIAS SPARC_STACK_BIAS
1140
1141 /* Base register for access to local variables of the function. */
1142 #define FRAME_POINTER_REGNUM 30
1143
1144 #if 0
1145 /* Register that is used for the return address for the flat model. */
1146 #define RETURN_ADDR_REGNUM 15
1147 #endif
1148
1149 /* Value should be nonzero if functions must have frame pointers.
1150 Zero means the frame pointer need not be set up (and parms
1151 may be accessed via the stack pointer) in functions that seem suitable.
1152 This is computed in `reload', in reload1.c.
1153 Used in flow.c, global.c, and reload1.c.
1154
1155 Being a non-leaf function does not mean a frame pointer is needed in the
1156 flat window model. However, the debugger won't be able to backtrace through
1157 us with out it. */
1158 #define FRAME_POINTER_REQUIRED \
1159 (TARGET_FLAT ? (current_function_calls_alloca || current_function_varargs \
1160 || !leaf_function_p ()) \
1161 : ! (leaf_function_p () && only_leaf_regs_used ()))
1162
1163 /* C statement to store the difference between the frame pointer
1164 and the stack pointer values immediately after the function prologue.
1165
1166 Note, we always pretend that this is a leaf function because if
1167 it's not, there's no point in trying to eliminate the
1168 frame pointer. If it is a leaf function, we guessed right! */
1169 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
1170 ((VAR) = (TARGET_FLAT ? sparc_flat_compute_frame_size (get_frame_size ()) \
1171 : compute_frame_size (get_frame_size (), 1)))
1172
1173 /* Base register for access to arguments of the function. */
1174 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
1175
1176 /* Register in which static-chain is passed to a function. This must
1177 not be a register used by the prologue. */
1178 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
1179
1180 /* Register which holds offset table for position-independent
1181 data references. */
1182
1183 #define PIC_OFFSET_TABLE_REGNUM 23
1184
1185 /* Pick a default value we can notice from override_options:
1186 !v9: Default is on.
1187 v9: Default is off. */
1188
1189 #define DEFAULT_PCC_STRUCT_RETURN -1
1190
1191 /* Sparc ABI says that quad-precision floats and all structures are returned
1192 in memory.
1193 For v9: unions <= 32 bytes in size are returned in int regs,
1194 structures up to 32 bytes are returned in int and fp regs. */
1195
1196 #define RETURN_IN_MEMORY(TYPE) \
1197 (TARGET_ARCH32 \
1198 ? (TYPE_MODE (TYPE) == BLKmode \
1199 || TYPE_MODE (TYPE) == TFmode \
1200 || TYPE_MODE (TYPE) == TCmode) \
1201 : (TYPE_MODE (TYPE) == BLKmode \
1202 && (unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) > 32))
1203
1204 /* Functions which return large structures get the address
1205 to place the wanted value at offset 64 from the frame.
1206 Must reserve 64 bytes for the in and local registers.
1207 v9: Functions which return large structures get the address to place the
1208 wanted value from an invisible first argument. */
1209 /* Used only in other #defines in this file. */
1210 #define STRUCT_VALUE_OFFSET 64
1211
1212 #define STRUCT_VALUE \
1213 (TARGET_ARCH64 \
1214 ? 0 \
1215 : gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, \
1216 STRUCT_VALUE_OFFSET)))
1217
1218 #define STRUCT_VALUE_INCOMING \
1219 (TARGET_ARCH64 \
1220 ? 0 \
1221 : gen_rtx_MEM (Pmode, plus_constant (frame_pointer_rtx, \
1222 STRUCT_VALUE_OFFSET)))
1223 \f
1224 /* Define the classes of registers for register constraints in the
1225 machine description. Also define ranges of constants.
1226
1227 One of the classes must always be named ALL_REGS and include all hard regs.
1228 If there is more than one class, another class must be named NO_REGS
1229 and contain no registers.
1230
1231 The name GENERAL_REGS must be the name of a class (or an alias for
1232 another name such as ALL_REGS). This is the class of registers
1233 that is allowed by "g" or "r" in a register constraint.
1234 Also, registers outside this class are allocated only when
1235 instructions express preferences for them.
1236
1237 The classes must be numbered in nondecreasing order; that is,
1238 a larger-numbered class must never be contained completely
1239 in a smaller-numbered class.
1240
1241 For any two classes, it is very desirable that there be another
1242 class that represents their union. */
1243
1244 /* The SPARC has various kinds of registers: general, floating point,
1245 and condition codes [well, it has others as well, but none that we
1246 care directly about].
1247
1248 For v9 we must distinguish between the upper and lower floating point
1249 registers because the upper ones can't hold SFmode values.
1250 HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
1251 satisfying a group need for a class will also satisfy a single need for
1252 that class. EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
1253 regs.
1254
1255 It is important that one class contains all the general and all the standard
1256 fp regs. Otherwise find_reg() won't properly allocate int regs for moves,
1257 because reg_class_record() will bias the selection in favor of fp regs,
1258 because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
1259 because FP_REGS > GENERAL_REGS.
1260
1261 It is also important that one class contain all the general and all the
1262 fp regs. Otherwise when spilling a DFmode reg, it may be from EXTRA_FP_REGS
1263 but find_reloads() may use class GENERAL_OR_FP_REGS. This will cause
1264 allocate_reload_reg() to bypass it causing an abort because the compiler
1265 thinks it doesn't have a spill reg when in fact it does.
1266
1267 v9 also has 4 floating point condition code registers. Since we don't
1268 have a class that is the union of FPCC_REGS with either of the others,
1269 it is important that it appear first. Otherwise the compiler will die
1270 trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
1271 constraints.
1272
1273 It is important that SPARC_ICC_REG have class NO_REGS. Otherwise combine
1274 may try to use it to hold an SImode value. See register_operand.
1275 ??? Should %fcc[0123] be handled similarly?
1276 */
1277
1278 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
1279 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
1280 ALL_REGS, LIM_REG_CLASSES };
1281
1282 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1283
1284 /* Give names of register classes as strings for dump file. */
1285
1286 #define REG_CLASS_NAMES \
1287 { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS", \
1288 "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \
1289 "ALL_REGS" }
1290
1291 /* Define which registers fit in which classes.
1292 This is an initializer for a vector of HARD_REG_SET
1293 of length N_REG_CLASSES. */
1294
1295 #define REG_CLASS_CONTENTS \
1296 {{0, 0, 0, 0}, {0, 0, 0, 0xf}, {0xffff, 0, 0, 0}, \
1297 {-1, 0, 0, 0}, {0, -1, 0, 0}, {0, -1, -1, 0}, \
1298 {-1, -1, 0, 0}, {-1, -1, -1, 0}, {-1, -1, -1, 0x1f}}
1299
1300 /* The same information, inverted:
1301 Return the class number of the smallest class containing
1302 reg number REGNO. This could be a conditional expression
1303 or could index an array. */
1304
1305 extern enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
1306
1307 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
1308
1309 /* This is the order in which to allocate registers normally.
1310
1311 We put %f0/%f1 last among the float registers, so as to make it more
1312 likely that a pseudo-register which dies in the float return register
1313 will get allocated to the float return register, thus saving a move
1314 instruction at the end of the function. */
1315
1316 #define REG_ALLOC_ORDER \
1317 { 8, 9, 10, 11, 12, 13, 2, 3, \
1318 15, 16, 17, 18, 19, 20, 21, 22, \
1319 23, 24, 25, 26, 27, 28, 29, 31, \
1320 34, 35, 36, 37, 38, 39, /* %f2-%f7 */ \
1321 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
1322 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
1323 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
1324 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
1325 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
1326 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
1327 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
1328 32, 33, /* %f0,%f1 */ \
1329 96, 97, 98, 99, 100, /* %fcc0-3, %icc */ \
1330 1, 4, 5, 6, 7, 0, 14, 30}
1331
1332 /* This is the order in which to allocate registers for
1333 leaf functions. If all registers can fit in the "gi" registers,
1334 then we have the possibility of having a leaf function. */
1335
1336 #define REG_LEAF_ALLOC_ORDER \
1337 { 2, 3, 24, 25, 26, 27, 28, 29, \
1338 4, 5, 6, 7, 1, \
1339 15, 8, 9, 10, 11, 12, 13, \
1340 16, 17, 18, 19, 20, 21, 22, 23, \
1341 34, 35, 36, 37, 38, 39, \
1342 40, 41, 42, 43, 44, 45, 46, 47, \
1343 48, 49, 50, 51, 52, 53, 54, 55, \
1344 56, 57, 58, 59, 60, 61, 62, 63, \
1345 64, 65, 66, 67, 68, 69, 70, 71, \
1346 72, 73, 74, 75, 76, 77, 78, 79, \
1347 80, 81, 82, 83, 84, 85, 86, 87, \
1348 88, 89, 90, 91, 92, 93, 94, 95, \
1349 32, 33, \
1350 96, 97, 98, 99, 100, \
1351 0, 14, 30, 31}
1352
1353 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
1354
1355 extern char sparc_leaf_regs[];
1356 #define LEAF_REGISTERS sparc_leaf_regs
1357
1358 extern const char leaf_reg_remap[];
1359 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1360
1361 /* The class value for index registers, and the one for base regs. */
1362 #define INDEX_REG_CLASS GENERAL_REGS
1363 #define BASE_REG_CLASS GENERAL_REGS
1364
1365 /* Local macro to handle the two v9 classes of FP regs. */
1366 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1367
1368 /* Get reg_class from a letter such as appears in the machine description.
1369 In the not-v9 case, coerce v9's 'e' class to 'f', so we can use 'e' in the
1370 .md file for v8 and v9.
1371 'd' and 'b' are used for single and double precision VIS operations,
1372 if TARGET_VIS.
1373 'h' is used for V8+ 64 bit global and out registers. */
1374
1375 #define REG_CLASS_FROM_LETTER(C) \
1376 (TARGET_V9 \
1377 ? ((C) == 'f' ? FP_REGS \
1378 : (C) == 'e' ? EXTRA_FP_REGS \
1379 : (C) == 'c' ? FPCC_REGS \
1380 : ((C) == 'd' && TARGET_VIS) ? FP_REGS\
1381 : ((C) == 'b' && TARGET_VIS) ? EXTRA_FP_REGS\
1382 : ((C) == 'h' && TARGET_V8PLUS) ? I64_REGS\
1383 : NO_REGS) \
1384 : ((C) == 'f' ? FP_REGS \
1385 : (C) == 'e' ? FP_REGS \
1386 : (C) == 'c' ? FPCC_REGS \
1387 : NO_REGS))
1388
1389 /* The letters I, J, K, L and M in a register constraint string
1390 can be used to stand for particular ranges of immediate operands.
1391 This macro defines what the ranges are.
1392 C is the letter, and VALUE is a constant value.
1393 Return 1 if VALUE is in the range specified by C.
1394
1395 `I' is used for the range of constants an insn can actually contain.
1396 `J' is used for the range which is just zero (since that is R0).
1397 `K' is used for constants which can be loaded with a single sethi insn.
1398 `L' is used for the range of constants supported by the movcc insns.
1399 `M' is used for the range of constants supported by the movrcc insns. */
1400
1401 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1402 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1403 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1404 /* 10 and 11 bit immediates are only used for a few specific insns.
1405 SMALL_INT is used throughout the port so we continue to use it. */
1406 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1407 /* 13 bit immediate, considering only the low 32 bits */
1408 #define SMALL_INT32(X) (SPARC_SIMM13_P ((int)INTVAL (X) & 0xffffffff))
1409 #define SPARC_SETHI_P(X) \
1410 (((unsigned HOST_WIDE_INT) (X) & \
1411 (TARGET_ARCH64 ? ~(unsigned HOST_WIDE_INT) 0xfffffc00 : 0x3ff)) == 0)
1412
1413 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1414 ((C) == 'I' ? SPARC_SIMM13_P (VALUE) \
1415 : (C) == 'J' ? (VALUE) == 0 \
1416 : (C) == 'K' ? SPARC_SETHI_P (VALUE) \
1417 : (C) == 'L' ? SPARC_SIMM11_P (VALUE) \
1418 : (C) == 'M' ? SPARC_SIMM10_P (VALUE) \
1419 : 0)
1420
1421 /* Similar, but for floating constants, and defining letters G and H.
1422 Here VALUE is the CONST_DOUBLE rtx itself. */
1423
1424 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1425 ((C) == 'G' ? fp_zero_operand (VALUE, GET_MODE (VALUE)) \
1426 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
1427 : 0)
1428
1429 /* Given an rtx X being reloaded into a reg required to be
1430 in class CLASS, return the class of reg to actually use.
1431 In general this is just CLASS; but on some machines
1432 in some cases it is preferable to use a more restrictive class. */
1433 /* - We can't load constants into FP registers.
1434 - We can't load FP constants into integer registers when soft-float,
1435 because there is no soft-float pattern with a r/F constraint.
1436 - We can't load FP constants into integer registers for TFmode unless
1437 it is 0.0L, because there is no movtf pattern with a r/F constraint.
1438 - Try and reload integer constants (symbolic or otherwise) back into
1439 registers directly, rather than having them dumped to memory. */
1440
1441 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1442 (CONSTANT_P (X) \
1443 ? ((FP_REG_CLASS_P (CLASS) \
1444 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1445 && ! TARGET_FPU) \
1446 || (GET_MODE (X) == TFmode \
1447 && ! fp_zero_operand (X, TFmode))) \
1448 ? NO_REGS \
1449 : (!FP_REG_CLASS_P (CLASS) \
1450 && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT) \
1451 ? GENERAL_REGS \
1452 : (CLASS)) \
1453 : (CLASS))
1454
1455 /* Return the register class of a scratch register needed to load IN into
1456 a register of class CLASS in MODE.
1457
1458 We need a temporary when loading/storing a HImode/QImode value
1459 between memory and the FPU registers. This can happen when combine puts
1460 a paradoxical subreg in a float/fix conversion insn. */
1461
1462 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1463 ((FP_REG_CLASS_P (CLASS) \
1464 && ((MODE) == HImode || (MODE) == QImode) \
1465 && (GET_CODE (IN) == MEM \
1466 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1467 && true_regnum (IN) == -1))) \
1468 ? GENERAL_REGS \
1469 : (((TARGET_CM_MEDANY \
1470 && symbolic_operand ((IN), (MODE))) \
1471 || (TARGET_CM_EMBMEDANY \
1472 && text_segment_operand ((IN), (MODE)))) \
1473 && !flag_pic) \
1474 ? GENERAL_REGS \
1475 : NO_REGS)
1476
1477 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1478 ((FP_REG_CLASS_P (CLASS) \
1479 && ((MODE) == HImode || (MODE) == QImode) \
1480 && (GET_CODE (IN) == MEM \
1481 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1482 && true_regnum (IN) == -1))) \
1483 ? GENERAL_REGS \
1484 : (((TARGET_CM_MEDANY \
1485 && symbolic_operand ((IN), (MODE))) \
1486 || (TARGET_CM_EMBMEDANY \
1487 && text_segment_operand ((IN), (MODE)))) \
1488 && !flag_pic) \
1489 ? GENERAL_REGS \
1490 : NO_REGS)
1491
1492 /* On SPARC it is not possible to directly move data between
1493 GENERAL_REGS and FP_REGS. */
1494 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1495 (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
1496
1497 /* Return the stack location to use for secondary memory needed reloads.
1498 We want to use the reserved location just below the frame pointer.
1499 However, we must ensure that there is a frame, so use assign_stack_local
1500 if the frame size is zero. */
1501 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1502 (get_frame_size () == 0 \
1503 ? assign_stack_local (MODE, GET_MODE_SIZE (MODE), 0) \
1504 : gen_rtx_MEM (MODE, plus_constant (frame_pointer_rtx, \
1505 STARTING_FRAME_OFFSET)))
1506
1507 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
1508 because the movsi and movsf patterns don't handle r/f moves.
1509 For v8 we copy the default definition. */
1510 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1511 (TARGET_ARCH64 \
1512 ? (GET_MODE_BITSIZE (MODE) < 32 \
1513 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1514 : MODE) \
1515 : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD \
1516 ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \
1517 : MODE))
1518
1519 /* Return the maximum number of consecutive registers
1520 needed to represent mode MODE in a register of class CLASS. */
1521 /* On SPARC, this is the size of MODE in words. */
1522 #define CLASS_MAX_NREGS(CLASS, MODE) \
1523 (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1524 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1525 \f
1526 /* Stack layout; function entry, exit and calling. */
1527
1528 /* Define the number of register that can hold parameters.
1529 This macro is only used in other macro definitions below and in sparc.c.
1530 MODE is the mode of the argument.
1531 !v9: All args are passed in %o0-%o5.
1532 v9: %o0-%o5 and %f0-%f31 are cumulatively used to pass values.
1533 See the description in sparc.c. */
1534 #define NPARM_REGS(MODE) \
1535 (TARGET_ARCH64 \
1536 ? (GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 6) \
1537 : 6)
1538
1539 /* Define this if pushing a word on the stack
1540 makes the stack pointer a smaller address. */
1541 #define STACK_GROWS_DOWNWARD
1542
1543 /* Define this if the nominal address of the stack frame
1544 is at the high-address end of the local variables;
1545 that is, each additional local variable allocated
1546 goes at a more negative offset in the frame. */
1547 #define FRAME_GROWS_DOWNWARD
1548
1549 /* Offset within stack frame to start allocating local variables at.
1550 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1551 first local allocated. Otherwise, it is the offset to the BEGINNING
1552 of the first local allocated. */
1553 /* This allows space for one TFmode floating point value. */
1554 #define STARTING_FRAME_OFFSET \
1555 (TARGET_ARCH64 ? (SPARC_STACK_BIAS - 16) \
1556 : (-SPARC_STACK_ALIGN (LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)))
1557
1558 /* If we generate an insn to push BYTES bytes,
1559 this says how many the stack pointer really advances by.
1560 On SPARC, don't define this because there are no push insns. */
1561 /* #define PUSH_ROUNDING(BYTES) */
1562
1563 /* Offset of first parameter from the argument pointer register value.
1564 !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1565 even if this function isn't going to use it.
1566 v9: This is 128 for the ins and locals. */
1567 #define FIRST_PARM_OFFSET(FNDECL) \
1568 (TARGET_ARCH64 ? (SPARC_STACK_BIAS + 16 * UNITS_PER_WORD) \
1569 : (STRUCT_VALUE_OFFSET + UNITS_PER_WORD))
1570
1571 /* Offset from the argument pointer register value to the CFA.
1572 This is different from FIRST_PARM_OFFSET because the register window
1573 comes between the CFA and the arguments. */
1574
1575 #define ARG_POINTER_CFA_OFFSET(FNDECL) SPARC_STACK_BIAS
1576
1577 /* When a parameter is passed in a register, stack space is still
1578 allocated for it.
1579 !v9: All 6 possible integer registers have backing store allocated.
1580 v9: Only space for the arguments passed is allocated. */
1581 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1582 meaning to the backend. Further, we need to be able to detect if a
1583 varargs/unprototyped function is called, as they may want to spill more
1584 registers than we've provided space. Ugly, ugly. So for now we retain
1585 all 6 slots even for v9. */
1586 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1587
1588 /* Keep the stack pointer constant throughout the function.
1589 This is both an optimization and a necessity: longjmp
1590 doesn't behave itself when the stack pointer moves within
1591 the function! */
1592 #define ACCUMULATE_OUTGOING_ARGS 1
1593
1594 /* Value is the number of bytes of arguments automatically
1595 popped when returning from a subroutine call.
1596 FUNDECL is the declaration node of the function (as a tree),
1597 FUNTYPE is the data type of the function (as a tree),
1598 or for a library call it is an identifier node for the subroutine name.
1599 SIZE is the number of bytes of arguments passed on the stack. */
1600
1601 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1602
1603 /* Some subroutine macros specific to this machine.
1604 When !TARGET_FPU, put float return values in the general registers,
1605 since we don't have any fp registers. */
1606 #define BASE_RETURN_VALUE_REG(MODE) \
1607 (TARGET_ARCH64 \
1608 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 : 8) \
1609 : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 : 8))
1610
1611 #define BASE_OUTGOING_VALUE_REG(MODE) \
1612 (TARGET_ARCH64 \
1613 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 \
1614 : TARGET_FLAT ? 8 : 24) \
1615 : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 \
1616 : (TARGET_FLAT ? 8 : 24)))
1617
1618 #define BASE_PASSING_ARG_REG(MODE) \
1619 (TARGET_ARCH64 \
1620 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 : 8) \
1621 : 8)
1622
1623 /* ??? FIXME -- seems wrong for v9 structure passing... */
1624 #define BASE_INCOMING_ARG_REG(MODE) \
1625 (TARGET_ARCH64 \
1626 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 \
1627 : TARGET_FLAT ? 8 : 24) \
1628 : (TARGET_FLAT ? 8 : 24))
1629
1630 /* Define this macro if the target machine has "register windows". This
1631 C expression returns the register number as seen by the called function
1632 corresponding to register number OUT as seen by the calling function.
1633 Return OUT if register number OUT is not an outbound register. */
1634
1635 #define INCOMING_REGNO(OUT) \
1636 ((TARGET_FLAT || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1637
1638 /* Define this macro if the target machine has "register windows". This
1639 C expression returns the register number as seen by the calling function
1640 corresponding to register number IN as seen by the called function.
1641 Return IN if register number IN is not an inbound register. */
1642
1643 #define OUTGOING_REGNO(IN) \
1644 ((TARGET_FLAT || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1645
1646 /* Define this macro if the target machine has register windows. This
1647 C expression returns true if the register is call-saved but is in the
1648 register window. */
1649
1650 #define LOCAL_REGNO(REGNO) \
1651 (TARGET_FLAT ? 0 : (REGNO) >= 16 && (REGNO) <= 31)
1652
1653 /* Define how to find the value returned by a function.
1654 VALTYPE is the data type of the value (as a tree).
1655 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1656 otherwise, FUNC is 0. */
1657
1658 /* On SPARC the value is found in the first "output" register. */
1659
1660 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1661 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 1)
1662
1663 /* But the called function leaves it in the first "input" register. */
1664
1665 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
1666 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 0)
1667
1668 /* Define how to find the value returned by a library function
1669 assuming the value has mode MODE. */
1670
1671 #define LIBCALL_VALUE(MODE) \
1672 function_value (NULL_TREE, (MODE), 1)
1673
1674 /* 1 if N is a possible register number for a function value
1675 as seen by the caller.
1676 On SPARC, the first "output" reg is used for integer values,
1677 and the first floating point register is used for floating point values. */
1678
1679 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
1680
1681 /* Define the size of space to allocate for the return value of an
1682 untyped_call. */
1683
1684 #define APPLY_RESULT_SIZE 16
1685
1686 /* 1 if N is a possible register number for function argument passing.
1687 On SPARC, these are the "output" registers. v9 also uses %f0-%f31. */
1688
1689 #define FUNCTION_ARG_REGNO_P(N) \
1690 (TARGET_ARCH64 \
1691 ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
1692 : ((N) >= 8 && (N) <= 13))
1693 \f
1694 /* Define a data type for recording info about an argument list
1695 during the scan of that argument list. This data type should
1696 hold all necessary information about the function itself
1697 and about the args processed so far, enough to enable macros
1698 such as FUNCTION_ARG to determine where the next arg should go.
1699
1700 On SPARC (!v9), this is a single integer, which is a number of words
1701 of arguments scanned so far (including the invisible argument,
1702 if any, which holds the structure-value-address).
1703 Thus 7 or more means all following args should go on the stack.
1704
1705 For v9, we also need to know whether a prototype is present. */
1706
1707 struct sparc_args {
1708 int words; /* number of words passed so far */
1709 int prototype_p; /* non-zero if a prototype is present */
1710 int libcall_p; /* non-zero if a library call */
1711 };
1712 #define CUMULATIVE_ARGS struct sparc_args
1713
1714 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1715 for a call to a function whose data type is FNTYPE.
1716 For a library call, FNTYPE is 0. */
1717
1718 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1719 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (INDIRECT));
1720
1721 /* Update the data in CUM to advance over an argument
1722 of mode MODE and data type TYPE.
1723 TYPE is null for libcalls where that information may not be available. */
1724
1725 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1726 function_arg_advance (& (CUM), (MODE), (TYPE), (NAMED))
1727
1728 /* Nonzero if we do not know how to pass TYPE solely in registers. */
1729
1730 #define MUST_PASS_IN_STACK(MODE,TYPE) \
1731 ((TYPE) != 0 \
1732 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
1733 || TREE_ADDRESSABLE (TYPE)))
1734
1735 /* Determine where to put an argument to a function.
1736 Value is zero to push the argument on the stack,
1737 or a hard register in which to store the argument.
1738
1739 MODE is the argument's machine mode.
1740 TYPE is the data type of the argument (as a tree).
1741 This is null for libcalls where that information may
1742 not be available.
1743 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1744 the preceding args and about the function being called.
1745 NAMED is nonzero if this argument is a named parameter
1746 (otherwise it is an extra parameter matching an ellipsis). */
1747
1748 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1749 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 0)
1750
1751 /* Define where a function finds its arguments.
1752 This is different from FUNCTION_ARG because of register windows. */
1753
1754 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1755 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 1)
1756
1757 /* For an arg passed partly in registers and partly in memory,
1758 this is the number of registers used.
1759 For args passed entirely in registers or entirely in memory, zero. */
1760
1761 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1762 function_arg_partial_nregs (& (CUM), (MODE), (TYPE), (NAMED))
1763
1764 /* A C expression that indicates when an argument must be passed by reference.
1765 If nonzero for an argument, a copy of that argument is made in memory and a
1766 pointer to the argument is passed instead of the argument itself.
1767 The pointer is passed in whatever way is appropriate for passing a pointer
1768 to that type. */
1769
1770 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1771 function_arg_pass_by_reference (& (CUM), (MODE), (TYPE), (NAMED))
1772
1773 /* If defined, a C expression which determines whether, and in which direction,
1774 to pad out an argument with extra space. The value should be of type
1775 `enum direction': either `upward' to pad above the argument,
1776 `downward' to pad below, or `none' to inhibit padding. */
1777
1778 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1779 function_arg_padding ((MODE), (TYPE))
1780
1781 /* If defined, a C expression that gives the alignment boundary, in bits,
1782 of an argument with the specified mode and type. If it is not defined,
1783 PARM_BOUNDARY is used for all arguments.
1784 For sparc64, objects requiring 16 byte alignment are passed that way. */
1785
1786 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1787 ((TARGET_ARCH64 \
1788 && (GET_MODE_ALIGNMENT (MODE) == 128 \
1789 || ((TYPE) && TYPE_ALIGN (TYPE) == 128))) \
1790 ? 128 : PARM_BOUNDARY)
1791 \f
1792 /* Define the information needed to generate branch and scc insns. This is
1793 stored from the compare operation. Note that we can't use "rtx" here
1794 since it hasn't been defined! */
1795
1796 extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;
1797
1798 \f
1799 /* Generate the special assembly code needed to tell the assembler whatever
1800 it might need to know about the return value of a function.
1801
1802 For Sparc assemblers, we need to output a .proc pseudo-op which conveys
1803 information to the assembler relating to peephole optimization (done in
1804 the assembler). */
1805
1806 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1807 fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1808
1809 /* Output the special assembly code needed to tell the assembler some
1810 register is used as global register variable.
1811
1812 SPARC 64bit psABI declares registers %g2 and %g3 as application
1813 registers and %g6 and %g7 as OS registers. Any object using them
1814 should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1815 and how they are used (scratch or some global variable).
1816 Linker will then refuse to link together objects which use those
1817 registers incompatibly.
1818
1819 Unless the registers are used for scratch, two different global
1820 registers cannot be declared to the same name, so in the unlikely
1821 case of a global register variable occupying more than one register
1822 we prefix the second and following registers with .gnu.part1. etc. */
1823
1824 extern char sparc_hard_reg_printed[8];
1825
1826 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
1827 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME) \
1828 do { \
1829 if (TARGET_ARCH64) \
1830 { \
1831 int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
1832 int reg; \
1833 for (reg = (REGNO); reg < 8 && reg < end; reg++) \
1834 if ((reg & ~1) == 2 || (reg & ~1) == 6) \
1835 { \
1836 if (reg == (REGNO)) \
1837 fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1838 else \
1839 fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n", \
1840 reg, reg - (REGNO), (NAME)); \
1841 sparc_hard_reg_printed[reg] = 1; \
1842 } \
1843 } \
1844 } while (0)
1845 #endif
1846
1847 \f
1848 /* Output assembler code to FILE to increment profiler label # LABELNO
1849 for profiling a function entry. */
1850
1851 #define FUNCTION_PROFILER(FILE, LABELNO) \
1852 sparc_function_profiler(FILE, LABELNO)
1853
1854 /* Set the name of the mcount function for the system. */
1855
1856 #define MCOUNT_FUNCTION "*mcount"
1857 \f
1858 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1859 the stack pointer does not matter. The value is tested only in
1860 functions that have frame pointers.
1861 No definition is equivalent to always zero. */
1862
1863 #define EXIT_IGNORE_STACK \
1864 (get_frame_size () != 0 \
1865 || current_function_calls_alloca || current_function_outgoing_args_size)
1866
1867 #define DELAY_SLOTS_FOR_EPILOGUE \
1868 (TARGET_FLAT ? sparc_flat_epilogue_delay_slots () : 1)
1869 #define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
1870 (TARGET_FLAT ? sparc_flat_eligible_for_epilogue_delay (trial, slots_filled) \
1871 : eligible_for_epilogue_delay (trial, slots_filled))
1872
1873 /* Define registers used by the epilogue and return instruction. */
1874 #define EPILOGUE_USES(REGNO) \
1875 (!TARGET_FLAT && REGNO == 31)
1876 \f
1877 /* Length in units of the trampoline for entering a nested function. */
1878
1879 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
1880
1881 #define TRAMPOLINE_ALIGNMENT 128 /* 16 bytes */
1882
1883 /* Emit RTL insns to initialize the variable parts of a trampoline.
1884 FNADDR is an RTX for the address of the function's pure code.
1885 CXT is an RTX for the static chain value for the function. */
1886
1887 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1888 if (TARGET_ARCH64) \
1889 sparc64_initialize_trampoline (TRAMP, FNADDR, CXT); \
1890 else \
1891 sparc_initialize_trampoline (TRAMP, FNADDR, CXT)
1892 \f
1893 /* Generate necessary RTL for __builtin_saveregs(). */
1894
1895 #define EXPAND_BUILTIN_SAVEREGS() sparc_builtin_saveregs ()
1896
1897 /* Implement `va_start' for varargs and stdarg. */
1898 #define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
1899 sparc_va_start (stdarg, valist, nextarg)
1900
1901 /* Implement `va_arg'. */
1902 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1903 sparc_va_arg (valist, type)
1904
1905 /* Define this macro if the location where a function argument is passed
1906 depends on whether or not it is a named argument.
1907
1908 This macro controls how the NAMED argument to FUNCTION_ARG
1909 is set for varargs and stdarg functions. With this macro defined,
1910 the NAMED argument is always true for named arguments, and false for
1911 unnamed arguments. If this is not defined, but SETUP_INCOMING_VARARGS
1912 is defined, then all arguments are treated as named. Otherwise, all named
1913 arguments except the last are treated as named.
1914 For the v9 we want NAMED to mean what it says it means. */
1915
1916 #define STRICT_ARGUMENT_NAMING TARGET_V9
1917
1918 /* We do not allow sibling calls if -mflat, nor
1919 we do not allow indirect calls to be optimized into sibling calls. */
1920 #define FUNCTION_OK_FOR_SIBCALL(DECL) (DECL && ! TARGET_FLAT)
1921
1922 /* Generate RTL to flush the register windows so as to make arbitrary frames
1923 available. */
1924 #define SETUP_FRAME_ADDRESSES() \
1925 emit_insn (gen_flush_register_windows ())
1926
1927 /* Given an rtx for the address of a frame,
1928 return an rtx for the address of the word in the frame
1929 that holds the dynamic chain--the previous frame's address.
1930 ??? -mflat support? */
1931 #define DYNAMIC_CHAIN_ADDRESS(frame) plus_constant (frame, 14 * UNITS_PER_WORD)
1932
1933 /* The return address isn't on the stack, it is in a register, so we can't
1934 access it from the current frame pointer. We can access it from the
1935 previous frame pointer though by reading a value from the register window
1936 save area. */
1937 #define RETURN_ADDR_IN_PREVIOUS_FRAME
1938
1939 /* This is the offset of the return address to the true next instruction to be
1940 executed for the current function. */
1941 #define RETURN_ADDR_OFFSET \
1942 (8 + 4 * (! TARGET_ARCH64 && current_function_returns_struct))
1943
1944 /* The current return address is in %i7. The return address of anything
1945 farther back is in the register window save area at [%fp+60]. */
1946 /* ??? This ignores the fact that the actual return address is +8 for normal
1947 returns, and +12 for structure returns. */
1948 #define RETURN_ADDR_RTX(count, frame) \
1949 ((count == -1) \
1950 ? gen_rtx_REG (Pmode, 31) \
1951 : gen_rtx_MEM (Pmode, \
1952 memory_address (Pmode, plus_constant (frame, \
1953 15 * UNITS_PER_WORD))))
1954
1955 /* Before the prologue, the return address is %o7 + 8. OK, sometimes it's
1956 +12, but always using +8 is close enough for frame unwind purposes.
1957 Actually, just using %o7 is close enough for unwinding, but %o7+8
1958 is something you can return to. */
1959 #define INCOMING_RETURN_ADDR_RTX \
1960 plus_constant (gen_rtx_REG (word_mode, 15), 8)
1961 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (15)
1962
1963 /* The offset from the incoming value of %sp to the top of the stack frame
1964 for the current function. On sparc64, we have to account for the stack
1965 bias if present. */
1966 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
1967
1968 /* Describe how we implement __builtin_eh_return. */
1969 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
1970 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 1) /* %g1 */
1971 #define EH_RETURN_HANDLER_RTX gen_rtx_REG (Pmode, 31) /* %i7 */
1972
1973 /* Select a format to encode pointers in exception handling data. CODE
1974 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1975 true if the symbol may be affected by dynamic relocations.
1976
1977 If assembler and linker properly support .uaword %r_disp32(foo),
1978 then use PC relative 32-bit relocations instead of absolute relocs
1979 for shared libraries. On sparc64, use pc relative 32-bit relocs even
1980 for binaries, to save memory. */
1981 #ifdef HAVE_AS_SPARC_UA_PCREL
1982 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1983 (flag_pic \
1984 ? (GLOBAL ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
1985 : ((TARGET_ARCH64 && ! GLOBAL) \
1986 ? (DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
1987 : DW_EH_PE_absptr))
1988
1989 /* Emit a PC-relative relocation. */
1990 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
1991 do { \
1992 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1993 fprintf (FILE, "%%r_disp%d(", SIZE * 8); \
1994 assemble_name (FILE, LABEL); \
1995 fputc (')', FILE); \
1996 } while (0)
1997 #endif
1998 \f
1999 /* Addressing modes, and classification of registers for them. */
2000
2001 /* #define HAVE_POST_INCREMENT 0 */
2002 /* #define HAVE_POST_DECREMENT 0 */
2003
2004 /* #define HAVE_PRE_DECREMENT 0 */
2005 /* #define HAVE_PRE_INCREMENT 0 */
2006
2007 /* Macros to check register numbers against specific register classes. */
2008
2009 /* These assume that REGNO is a hard or pseudo reg number.
2010 They give nonzero only if REGNO is a hard reg of the suitable class
2011 or a pseudo reg currently allocated to a suitable hard reg.
2012 Since they use reg_renumber, they are safe only once reg_renumber
2013 has been allocated, which happens in local-alloc.c. */
2014
2015 #define REGNO_OK_FOR_INDEX_P(REGNO) \
2016 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32)
2017 #define REGNO_OK_FOR_BASE_P(REGNO) \
2018 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32)
2019 #define REGNO_OK_FOR_FP_P(REGNO) \
2020 (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
2021 || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
2022 #define REGNO_OK_FOR_CCFP_P(REGNO) \
2023 (TARGET_V9 \
2024 && (((unsigned) (REGNO) - 96 < (unsigned)4) \
2025 || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
2026
2027 /* Now macros that check whether X is a register and also,
2028 strictly, whether it is in a specified class.
2029
2030 These macros are specific to the SPARC, and may be used only
2031 in code for printing assembler insns and in conditions for
2032 define_optimization. */
2033
2034 /* 1 if X is an fp register. */
2035
2036 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
2037
2038 /* Is X, a REG, an in or global register? i.e. is regno 0..7 or 24..31 */
2039 #define IN_OR_GLOBAL_P(X) (REGNO (X) < 8 || (REGNO (X) >= 24 && REGNO (X) <= 31))
2040 \f
2041 /* Maximum number of registers that can appear in a valid memory address. */
2042
2043 #define MAX_REGS_PER_ADDRESS 2
2044
2045 /* Recognize any constant value that is a valid address.
2046 When PIC, we do not accept an address that would require a scratch reg
2047 to load into a register. */
2048
2049 #define CONSTANT_ADDRESS_P(X) \
2050 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
2051 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
2052 || (GET_CODE (X) == CONST \
2053 && ! (flag_pic && pic_address_needs_scratch (X))))
2054
2055 /* Define this, so that when PIC, reload won't try to reload invalid
2056 addresses which require two reload registers. */
2057
2058 #define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
2059
2060 /* Nonzero if the constant value X is a legitimate general operand.
2061 Anything can be made to work except floating point constants.
2062 If TARGET_VIS, 0.0 can be made to work as well. */
2063
2064 #define LEGITIMATE_CONSTANT_P(X) \
2065 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode || \
2066 (TARGET_VIS && \
2067 (GET_MODE (X) == SFmode || GET_MODE (X) == DFmode || \
2068 GET_MODE (X) == TFmode) && \
2069 fp_zero_operand (X, GET_MODE (X))))
2070
2071 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2072 and check its validity for a certain class.
2073 We have two alternate definitions for each of them.
2074 The usual definition accepts all pseudo regs; the other rejects
2075 them unless they have been allocated suitable hard regs.
2076 The symbol REG_OK_STRICT causes the latter definition to be used.
2077
2078 Most source files want to accept pseudo regs in the hope that
2079 they will get allocated to the class that the insn wants them to be in.
2080 Source files for reload pass need to be strict.
2081 After reload, it makes no difference, since pseudo regs have
2082 been eliminated by then. */
2083
2084 /* Optional extra constraints for this machine.
2085
2086 'Q' handles floating point constants which can be moved into
2087 an integer register with a single sethi instruction.
2088
2089 'R' handles floating point constants which can be moved into
2090 an integer register with a single mov instruction.
2091
2092 'S' handles floating point constants which can be moved into
2093 an integer register using a high/lo_sum sequence.
2094
2095 'T' handles memory addresses where the alignment is known to
2096 be at least 8 bytes.
2097
2098 `U' handles all pseudo registers or a hard even numbered
2099 integer register, needed for ldd/std instructions. */
2100
2101 #define EXTRA_CONSTRAINT_BASE(OP, C) \
2102 ((C) == 'Q' ? fp_sethi_p(OP) \
2103 : (C) == 'R' ? fp_mov_p(OP) \
2104 : (C) == 'S' ? fp_high_losum_p(OP) \
2105 : 0)
2106
2107 #ifndef REG_OK_STRICT
2108
2109 /* Nonzero if X is a hard reg that can be used as an index
2110 or if it is a pseudo reg. */
2111 #define REG_OK_FOR_INDEX_P(X) \
2112 (((unsigned) REGNO (X)) - 32 >= (FIRST_PSEUDO_REGISTER - 32))
2113 /* Nonzero if X is a hard reg that can be used as a base reg
2114 or if it is a pseudo reg. */
2115 #define REG_OK_FOR_BASE_P(X) \
2116 (((unsigned) REGNO (X)) - 32 >= (FIRST_PSEUDO_REGISTER - 32))
2117
2118 /* 'T', 'U' are for aligned memory loads which aren't needed for arch64. */
2119
2120 #define EXTRA_CONSTRAINT(OP, C) \
2121 (EXTRA_CONSTRAINT_BASE(OP, C) \
2122 || ((! TARGET_ARCH64 && (C) == 'T') \
2123 ? (mem_min_alignment (OP, 8)) \
2124 : ((! TARGET_ARCH64 && (C) == 'U') \
2125 ? (register_ok_for_ldd (OP)) \
2126 : 0)))
2127
2128 #else
2129
2130 /* Nonzero if X is a hard reg that can be used as an index. */
2131 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
2132 /* Nonzero if X is a hard reg that can be used as a base reg. */
2133 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
2134
2135 #define EXTRA_CONSTRAINT(OP, C) \
2136 (EXTRA_CONSTRAINT_BASE(OP, C) \
2137 || ((! TARGET_ARCH64 && (C) == 'T') \
2138 ? mem_min_alignment (OP, 8) && strict_memory_address_p (Pmode, XEXP (OP, 0)) \
2139 : ((! TARGET_ARCH64 && (C) == 'U') \
2140 ? (GET_CODE (OP) == REG \
2141 && (REGNO (OP) < FIRST_PSEUDO_REGISTER \
2142 || reg_renumber[REGNO (OP)] >= 0) \
2143 && register_ok_for_ldd (OP)) \
2144 : 0)))
2145
2146 #endif
2147 \f
2148 /* Should gcc use [%reg+%lo(xx)+offset] addresses? */
2149
2150 #ifdef HAVE_AS_OFFSETABLE_LO10
2151 #define USE_AS_OFFSETABLE_LO10 1
2152 #else
2153 #define USE_AS_OFFSETABLE_LO10 0
2154 #endif
2155 \f
2156 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2157 that is a valid memory address for an instruction.
2158 The MODE argument is the machine mode for the MEM expression
2159 that wants to use this address.
2160
2161 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
2162 ordinarily. This changes a bit when generating PIC.
2163
2164 If you change this, execute "rm explow.o recog.o reload.o". */
2165
2166 #define RTX_OK_FOR_BASE_P(X) \
2167 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
2168 || (GET_CODE (X) == SUBREG \
2169 && GET_CODE (SUBREG_REG (X)) == REG \
2170 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
2171
2172 #define RTX_OK_FOR_INDEX_P(X) \
2173 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
2174 || (GET_CODE (X) == SUBREG \
2175 && GET_CODE (SUBREG_REG (X)) == REG \
2176 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
2177
2178 #define RTX_OK_FOR_OFFSET_P(X) \
2179 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000 - 8)
2180
2181 #define RTX_OK_FOR_OLO10_P(X) \
2182 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0xc00 - 8)
2183
2184 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2185 { if (RTX_OK_FOR_BASE_P (X)) \
2186 goto ADDR; \
2187 else if (GET_CODE (X) == PLUS) \
2188 { \
2189 register rtx op0 = XEXP (X, 0); \
2190 register rtx op1 = XEXP (X, 1); \
2191 if (flag_pic && op0 == pic_offset_table_rtx) \
2192 { \
2193 if (RTX_OK_FOR_BASE_P (op1)) \
2194 goto ADDR; \
2195 else if (flag_pic == 1 \
2196 && GET_CODE (op1) != REG \
2197 && GET_CODE (op1) != LO_SUM \
2198 && GET_CODE (op1) != MEM \
2199 && (GET_CODE (op1) != CONST_INT \
2200 || SMALL_INT (op1))) \
2201 goto ADDR; \
2202 } \
2203 else if (RTX_OK_FOR_BASE_P (op0)) \
2204 { \
2205 if ((RTX_OK_FOR_INDEX_P (op1) \
2206 /* We prohibit REG + REG for TFmode when \
2207 there are no instructions which accept \
2208 REG+REG instructions. We do this \
2209 because REG+REG is not an offsetable \
2210 address. If we get the situation \
2211 in reload where source and destination \
2212 of a movtf pattern are both MEMs with \
2213 REG+REG address, then only one of them \
2214 gets converted to an offsetable \
2215 address. */ \
2216 && (MODE != TFmode \
2217 || (TARGET_FPU && TARGET_ARCH64 \
2218 && TARGET_V9 \
2219 && TARGET_HARD_QUAD)) \
2220 /* We prohibit REG + REG on ARCH32 if \
2221 not optimizing for DFmode/DImode \
2222 because then mem_min_alignment is \
2223 likely to be zero after reload and the \
2224 forced split would lack a matching \
2225 splitter pattern. */ \
2226 && (TARGET_ARCH64 || optimize \
2227 || (MODE != DFmode \
2228 && MODE != DImode))) \
2229 || RTX_OK_FOR_OFFSET_P (op1)) \
2230 goto ADDR; \
2231 } \
2232 else if (RTX_OK_FOR_BASE_P (op1)) \
2233 { \
2234 if ((RTX_OK_FOR_INDEX_P (op0) \
2235 /* See the previous comment. */ \
2236 && (MODE != TFmode \
2237 || (TARGET_FPU && TARGET_ARCH64 \
2238 && TARGET_V9 \
2239 && TARGET_HARD_QUAD)) \
2240 && (TARGET_ARCH64 || optimize \
2241 || (MODE != DFmode \
2242 && MODE != DImode))) \
2243 || RTX_OK_FOR_OFFSET_P (op0)) \
2244 goto ADDR; \
2245 } \
2246 else if (USE_AS_OFFSETABLE_LO10 \
2247 && GET_CODE (op0) == LO_SUM \
2248 && TARGET_ARCH64 \
2249 && ! TARGET_CM_MEDMID \
2250 && RTX_OK_FOR_OLO10_P (op1)) \
2251 { \
2252 register rtx op00 = XEXP (op0, 0); \
2253 register rtx op01 = XEXP (op0, 1); \
2254 if (RTX_OK_FOR_BASE_P (op00) \
2255 && CONSTANT_P (op01)) \
2256 goto ADDR; \
2257 } \
2258 else if (USE_AS_OFFSETABLE_LO10 \
2259 && GET_CODE (op1) == LO_SUM \
2260 && TARGET_ARCH64 \
2261 && ! TARGET_CM_MEDMID \
2262 && RTX_OK_FOR_OLO10_P (op0)) \
2263 { \
2264 register rtx op10 = XEXP (op1, 0); \
2265 register rtx op11 = XEXP (op1, 1); \
2266 if (RTX_OK_FOR_BASE_P (op10) \
2267 && CONSTANT_P (op11)) \
2268 goto ADDR; \
2269 } \
2270 } \
2271 else if (GET_CODE (X) == LO_SUM) \
2272 { \
2273 register rtx op0 = XEXP (X, 0); \
2274 register rtx op1 = XEXP (X, 1); \
2275 if (RTX_OK_FOR_BASE_P (op0) \
2276 && CONSTANT_P (op1) \
2277 /* We can't allow TFmode, because an offset \
2278 greater than or equal to the alignment (8) \
2279 may cause the LO_SUM to overflow if !v9. */\
2280 && (MODE != TFmode || TARGET_V9)) \
2281 goto ADDR; \
2282 } \
2283 else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
2284 goto ADDR; \
2285 }
2286 \f
2287 /* Try machine-dependent ways of modifying an illegitimate address
2288 to be legitimate. If we find one, return the new, valid address.
2289 This macro is used in only one place: `memory_address' in explow.c.
2290
2291 OLDX is the address as it was before break_out_memory_refs was called.
2292 In some cases it is useful to look at this to decide what needs to be done.
2293
2294 MODE and WIN are passed so that this macro can use
2295 GO_IF_LEGITIMATE_ADDRESS.
2296
2297 It is always safe for this macro to do nothing. It exists to recognize
2298 opportunities to optimize the output. */
2299
2300 /* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
2301 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2302 { rtx sparc_x = (X); \
2303 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
2304 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 1), \
2305 force_operand (XEXP (X, 0), NULL_RTX)); \
2306 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
2307 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2308 force_operand (XEXP (X, 1), NULL_RTX)); \
2309 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
2310 (X) = gen_rtx_PLUS (Pmode, force_operand (XEXP (X, 0), NULL_RTX),\
2311 XEXP (X, 1)); \
2312 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
2313 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2314 force_operand (XEXP (X, 1), NULL_RTX)); \
2315 if (sparc_x != (X) && memory_address_p (MODE, X)) \
2316 goto WIN; \
2317 if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0); \
2318 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
2319 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2320 copy_to_mode_reg (Pmode, XEXP (X, 1))); \
2321 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
2322 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 1), \
2323 copy_to_mode_reg (Pmode, XEXP (X, 0))); \
2324 else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
2325 || GET_CODE (X) == LABEL_REF) \
2326 (X) = copy_to_suggested_reg (X, NULL_RTX, Pmode); \
2327 if (memory_address_p (MODE, X)) \
2328 goto WIN; }
2329
2330 /* Try a machine-dependent way of reloading an illegitimate address
2331 operand. If we find one, push the reload and jump to WIN. This
2332 macro is used in only one place: `find_reloads_address' in reload.c.
2333
2334 For Sparc 32, we wish to handle addresses by splitting them into
2335 HIGH+LO_SUM pairs, retaining the LO_SUM in the memory reference.
2336 This cuts the number of extra insns by one.
2337
2338 Do nothing when generating PIC code and the address is a
2339 symbolic operand or requires a scratch register. */
2340
2341 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2342 do { \
2343 /* Decompose SImode constants into hi+lo_sum. We do have to \
2344 rerecognize what we produce, so be careful. */ \
2345 if (CONSTANT_P (X) \
2346 && (MODE != TFmode || TARGET_V9) \
2347 && GET_MODE (X) == SImode \
2348 && GET_CODE (X) != LO_SUM && GET_CODE (X) != HIGH \
2349 && ! (flag_pic \
2350 && (symbolic_operand (X, Pmode) \
2351 || pic_address_needs_scratch (X)))) \
2352 { \
2353 X = gen_rtx_LO_SUM (GET_MODE (X), \
2354 gen_rtx_HIGH (GET_MODE (X), X), X); \
2355 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL, \
2356 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
2357 OPNUM, TYPE); \
2358 goto WIN; \
2359 } \
2360 /* ??? 64-bit reloads. */ \
2361 } while (0)
2362
2363 /* Go to LABEL if ADDR (a legitimate address expression)
2364 has an effect that depends on the machine mode it is used for.
2365 On the SPARC this is never true. */
2366
2367 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
2368
2369 /* If we are referencing a function make the SYMBOL_REF special.
2370 In the Embedded Medium/Anywhere code model, %g4 points to the data segment
2371 so we must not add it to function addresses. */
2372
2373 #define ENCODE_SECTION_INFO(DECL) \
2374 do { \
2375 if (TARGET_CM_EMBMEDANY && TREE_CODE (DECL) == FUNCTION_DECL) \
2376 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
2377 } while (0)
2378 \f
2379 /* Specify the machine mode that this machine uses
2380 for the index in the tablejump instruction. */
2381 /* If we ever implement any of the full models (such as CM_FULLANY),
2382 this has to be DImode in that case */
2383 #ifdef HAVE_GAS_SUBSECTION_ORDERING
2384 #define CASE_VECTOR_MODE \
2385 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
2386 #else
2387 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
2388 we have to sign extend which slows things down. */
2389 #define CASE_VECTOR_MODE \
2390 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
2391 #endif
2392
2393 /* Define as C expression which evaluates to nonzero if the tablejump
2394 instruction expects the table to contain offsets from the address of the
2395 table.
2396 Do not define this if the table should contain absolute addresses. */
2397 /* #define CASE_VECTOR_PC_RELATIVE 1 */
2398
2399 /* Define this as 1 if `char' should by default be signed; else as 0. */
2400 #define DEFAULT_SIGNED_CHAR 1
2401
2402 /* Max number of bytes we can move from memory to memory
2403 in one reasonably fast instruction. */
2404 #define MOVE_MAX 8
2405
2406 #if 0 /* Sun 4 has matherr, so this is no good. */
2407 /* This is the value of the error code EDOM for this machine,
2408 used by the sqrt instruction. */
2409 #define TARGET_EDOM 33
2410
2411 /* This is how to refer to the variable errno. */
2412 #define GEN_ERRNO_RTX \
2413 gen_rtx_MEM (SImode, gen_rtx_SYMBOL_REF (Pmode, "errno"))
2414 #endif /* 0 */
2415
2416 /* Define if operations between registers always perform the operation
2417 on the full register even if a narrower mode is specified. */
2418 #define WORD_REGISTER_OPERATIONS
2419
2420 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2421 will either zero-extend or sign-extend. The value of this macro should
2422 be the code that says which one of the two operations is implicitly
2423 done, NIL if none. */
2424 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2425
2426 /* Nonzero if access to memory by bytes is slow and undesirable.
2427 For RISC chips, it means that access to memory by bytes is no
2428 better than access by words when possible, so grab a whole word
2429 and maybe make use of that. */
2430 #define SLOW_BYTE_ACCESS 1
2431
2432 /* We assume that the store-condition-codes instructions store 0 for false
2433 and some other value for true. This is the value stored for true. */
2434
2435 #define STORE_FLAG_VALUE 1
2436
2437 /* When a prototype says `char' or `short', really pass an `int'. */
2438 #define PROMOTE_PROTOTYPES (TARGET_ARCH32)
2439
2440 /* Define this to be nonzero if shift instructions ignore all but the low-order
2441 few bits. */
2442 #define SHIFT_COUNT_TRUNCATED 1
2443
2444 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2445 is done just by pretending it is already truncated. */
2446 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2447
2448 /* Specify the machine mode that pointers have.
2449 After generation of rtl, the compiler makes no further distinction
2450 between pointers and any other objects of this machine mode. */
2451 #define Pmode (TARGET_ARCH64 ? DImode : SImode)
2452
2453 /* Generate calls to memcpy, memcmp and memset. */
2454 #define TARGET_MEM_FUNCTIONS
2455
2456 /* Add any extra modes needed to represent the condition code.
2457
2458 On the Sparc, we have a "no-overflow" mode which is used when an add or
2459 subtract insn is used to set the condition code. Different branches are
2460 used in this case for some operations.
2461
2462 We also have two modes to indicate that the relevant condition code is
2463 in the floating-point condition code register. One for comparisons which
2464 will generate an exception if the result is unordered (CCFPEmode) and
2465 one for comparisons which will never trap (CCFPmode).
2466
2467 CCXmode and CCX_NOOVmode are only used by v9. */
2468
2469 #define EXTRA_CC_MODES \
2470 CC(CCXmode, "CCX") \
2471 CC(CC_NOOVmode, "CC_NOOV") \
2472 CC(CCX_NOOVmode, "CCX_NOOV") \
2473 CC(CCFPmode, "CCFP") \
2474 CC(CCFPEmode, "CCFPE")
2475
2476 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2477 return the mode to be used for the comparison. For floating-point,
2478 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand
2479 is a PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
2480 processing is needed. */
2481 #define SELECT_CC_MODE(OP,X,Y) select_cc_mode ((OP), (X), (Y))
2482
2483 /* Return non-zero if MODE implies a floating point inequality can be
2484 reversed. For Sparc this is always true because we have a full
2485 compliment of ordered and unordered comparisons, but until generic
2486 code knows how to reverse it correctly we keep the old definition. */
2487 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
2488
2489 /* A function address in a call instruction for indexing purposes. */
2490 #define FUNCTION_MODE Pmode
2491
2492 /* Define this if addresses of constant functions
2493 shouldn't be put through pseudo regs where they can be cse'd.
2494 Desirable on machines where ordinary constants are expensive
2495 but a CALL with constant address is cheap. */
2496 #define NO_FUNCTION_CSE
2497
2498 /* alloca should avoid clobbering the old register save area. */
2499 #define SETJMP_VIA_SAVE_AREA
2500
2501 /* Define subroutines to call to handle multiply and divide.
2502 Use the subroutines that Sun's library provides.
2503 The `*' prevents an underscore from being prepended by the compiler. */
2504
2505 #define DIVSI3_LIBCALL "*.div"
2506 #define UDIVSI3_LIBCALL "*.udiv"
2507 #define MODSI3_LIBCALL "*.rem"
2508 #define UMODSI3_LIBCALL "*.urem"
2509 /* .umul is a little faster than .mul. */
2510 #define MULSI3_LIBCALL "*.umul"
2511
2512 /* Define library calls for quad FP operations. These are all part of the
2513 SPARC 32bit ABI. */
2514 #define ADDTF3_LIBCALL "_Q_add"
2515 #define SUBTF3_LIBCALL "_Q_sub"
2516 #define NEGTF2_LIBCALL "_Q_neg"
2517 #define MULTF3_LIBCALL "_Q_mul"
2518 #define DIVTF3_LIBCALL "_Q_div"
2519 #define FLOATSITF2_LIBCALL "_Q_itoq"
2520 #define FIX_TRUNCTFSI2_LIBCALL "_Q_qtoi"
2521 #define FIXUNS_TRUNCTFSI2_LIBCALL "_Q_qtou"
2522 #define EXTENDSFTF2_LIBCALL "_Q_stoq"
2523 #define TRUNCTFSF2_LIBCALL "_Q_qtos"
2524 #define EXTENDDFTF2_LIBCALL "_Q_dtoq"
2525 #define TRUNCTFDF2_LIBCALL "_Q_qtod"
2526 #define EQTF2_LIBCALL "_Q_feq"
2527 #define NETF2_LIBCALL "_Q_fne"
2528 #define GTTF2_LIBCALL "_Q_fgt"
2529 #define GETF2_LIBCALL "_Q_fge"
2530 #define LTTF2_LIBCALL "_Q_flt"
2531 #define LETF2_LIBCALL "_Q_fle"
2532
2533 /* We can define the TFmode sqrt optab only if TARGET_FPU. This is because
2534 with soft-float, the SFmode and DFmode sqrt instructions will be absent,
2535 and the compiler will notice and try to use the TFmode sqrt instruction
2536 for calls to the builtin function sqrt, but this fails. */
2537 #define INIT_TARGET_OPTABS \
2538 do { \
2539 if (TARGET_ARCH32) \
2540 { \
2541 add_optab->handlers[(int) TFmode].libfunc \
2542 = init_one_libfunc (ADDTF3_LIBCALL); \
2543 sub_optab->handlers[(int) TFmode].libfunc \
2544 = init_one_libfunc (SUBTF3_LIBCALL); \
2545 neg_optab->handlers[(int) TFmode].libfunc \
2546 = init_one_libfunc (NEGTF2_LIBCALL); \
2547 smul_optab->handlers[(int) TFmode].libfunc \
2548 = init_one_libfunc (MULTF3_LIBCALL); \
2549 sdiv_optab->handlers[(int) TFmode].libfunc \
2550 = init_one_libfunc (DIVTF3_LIBCALL); \
2551 eqtf2_libfunc = init_one_libfunc (EQTF2_LIBCALL); \
2552 netf2_libfunc = init_one_libfunc (NETF2_LIBCALL); \
2553 gttf2_libfunc = init_one_libfunc (GTTF2_LIBCALL); \
2554 getf2_libfunc = init_one_libfunc (GETF2_LIBCALL); \
2555 lttf2_libfunc = init_one_libfunc (LTTF2_LIBCALL); \
2556 letf2_libfunc = init_one_libfunc (LETF2_LIBCALL); \
2557 trunctfsf2_libfunc = init_one_libfunc (TRUNCTFSF2_LIBCALL); \
2558 trunctfdf2_libfunc = init_one_libfunc (TRUNCTFDF2_LIBCALL); \
2559 extendsftf2_libfunc = init_one_libfunc (EXTENDSFTF2_LIBCALL); \
2560 extenddftf2_libfunc = init_one_libfunc (EXTENDDFTF2_LIBCALL); \
2561 floatsitf_libfunc = init_one_libfunc (FLOATSITF2_LIBCALL); \
2562 fixtfsi_libfunc = init_one_libfunc (FIX_TRUNCTFSI2_LIBCALL); \
2563 fixunstfsi_libfunc \
2564 = init_one_libfunc (FIXUNS_TRUNCTFSI2_LIBCALL); \
2565 if (TARGET_FPU) \
2566 sqrt_optab->handlers[(int) TFmode].libfunc \
2567 = init_one_libfunc ("_Q_sqrt"); \
2568 } \
2569 INIT_SUBTARGET_OPTABS; \
2570 } while (0)
2571
2572 /* This is meant to be redefined in the host dependent files */
2573 #define INIT_SUBTARGET_OPTABS
2574
2575 /* Nonzero if a floating point comparison library call for
2576 mode MODE that will return a boolean value. Zero if one
2577 of the libgcc2 functions is used. */
2578 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
2579
2580 /* Compute the cost of computing a constant rtl expression RTX
2581 whose rtx-code is CODE. The body of this macro is a portion
2582 of a switch statement. If the code is computed here,
2583 return it with a return statement. Otherwise, break from the switch. */
2584
2585 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
2586 case CONST_INT: \
2587 if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \
2588 return 0; \
2589 case HIGH: \
2590 return 2; \
2591 case CONST: \
2592 case LABEL_REF: \
2593 case SYMBOL_REF: \
2594 return 4; \
2595 case CONST_DOUBLE: \
2596 if (GET_MODE (RTX) == DImode) \
2597 if ((XINT (RTX, 3) == 0 \
2598 && (unsigned) XINT (RTX, 2) < 0x1000) \
2599 || (XINT (RTX, 3) == -1 \
2600 && XINT (RTX, 2) < 0 \
2601 && XINT (RTX, 2) >= -0x1000)) \
2602 return 0; \
2603 return 8;
2604
2605 #define ADDRESS_COST(RTX) 1
2606
2607 /* Compute extra cost of moving data between one register class
2608 and another. */
2609 #define GENERAL_OR_I64(C) ((C) == GENERAL_REGS || (C) == I64_REGS)
2610 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2611 (((FP_REG_CLASS_P (CLASS1) && GENERAL_OR_I64 (CLASS2)) \
2612 || (GENERAL_OR_I64 (CLASS1) && FP_REG_CLASS_P (CLASS2)) \
2613 || (CLASS1) == FPCC_REGS || (CLASS2) == FPCC_REGS) \
2614 ? (sparc_cpu == PROCESSOR_ULTRASPARC ? 12 : 6) : 2)
2615
2616 /* Provide the costs of a rtl expression. This is in the body of a
2617 switch on CODE. The purpose for the cost of MULT is to encourage
2618 `synth_mult' to find a synthetic multiply when reasonable.
2619
2620 If we need more than 12 insns to do a multiply, then go out-of-line,
2621 since the call overhead will be < 10% of the cost of the multiply. */
2622
2623 #define RTX_COSTS(X,CODE,OUTER_CODE) \
2624 case MULT: \
2625 if (sparc_cpu == PROCESSOR_ULTRASPARC) \
2626 return (GET_MODE (X) == DImode ? \
2627 COSTS_N_INSNS (34) : COSTS_N_INSNS (19)); \
2628 return TARGET_HARD_MUL ? COSTS_N_INSNS (5) : COSTS_N_INSNS (25); \
2629 case DIV: \
2630 case UDIV: \
2631 case MOD: \
2632 case UMOD: \
2633 if (sparc_cpu == PROCESSOR_ULTRASPARC) \
2634 return (GET_MODE (X) == DImode ? \
2635 COSTS_N_INSNS (68) : COSTS_N_INSNS (37)); \
2636 return COSTS_N_INSNS (25); \
2637 /* Make FLOAT and FIX more expensive than CONST_DOUBLE,\
2638 so that cse will favor the latter. */ \
2639 case FLOAT: \
2640 case FIX: \
2641 return 19;
2642
2643 /* Conditional branches with empty delay slots have a length of two. */
2644 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2645 do { \
2646 if (GET_CODE (INSN) == CALL_INSN \
2647 || (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn))) \
2648 LENGTH += 1; \
2649 } while (0)
2650 \f
2651 /* Control the assembler format that we output. */
2652
2653 /* Output at beginning of assembler file. */
2654
2655 #define ASM_FILE_START(file)
2656
2657 /* A C string constant describing how to begin a comment in the target
2658 assembler language. The compiler assumes that the comment will end at
2659 the end of the line. */
2660
2661 #define ASM_COMMENT_START "!"
2662
2663 /* Output to assembler file text saying following lines
2664 may contain character constants, extra white space, comments, etc. */
2665
2666 #define ASM_APP_ON ""
2667
2668 /* Output to assembler file text saying following lines
2669 no longer contain unusual constructs. */
2670
2671 #define ASM_APP_OFF ""
2672
2673 /* ??? Try to make the style consistent here (_OP?). */
2674
2675 #define ASM_FLOAT ".single"
2676 #define ASM_DOUBLE ".double"
2677 #define ASM_LONGDOUBLE ".xxx" /* ??? Not known (or used yet). */
2678
2679 /* How to refer to registers in assembler output.
2680 This sequence is indexed by compiler's hard-register-number (see above). */
2681
2682 #define REGISTER_NAMES \
2683 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
2684 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
2685 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
2686 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
2687 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
2688 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
2689 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
2690 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", \
2691 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39", \
2692 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47", \
2693 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55", \
2694 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63", \
2695 "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc"}
2696
2697 /* Define additional names for use in asm clobbers and asm declarations. */
2698
2699 #define ADDITIONAL_REGISTER_NAMES \
2700 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
2701
2702 /* On Sun 4, this limit is 2048. We use 1000 to be safe, since the length
2703 can run past this up to a continuation point. Once we used 1500, but
2704 a single entry in C++ can run more than 500 bytes, due to the length of
2705 mangled symbol names. dbxout.c should really be fixed to do
2706 continuations when they are actually needed instead of trying to
2707 guess... */
2708 #define DBX_CONTIN_LENGTH 1000
2709
2710 /* This is how to output the definition of a user-level label named NAME,
2711 such as the label on a static function or variable NAME. */
2712
2713 #define ASM_OUTPUT_LABEL(FILE,NAME) \
2714 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
2715
2716 /* This is how to output a command to make the user-level label named NAME
2717 defined for reference from other files. */
2718
2719 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
2720 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
2721
2722 /* The prefix to add to user-visible assembler symbols. */
2723
2724 #define USER_LABEL_PREFIX "_"
2725
2726 /* This is how to output a definition of an internal numbered label where
2727 PREFIX is the class of label and NUM is the number within the class. */
2728
2729 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
2730 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
2731
2732 /* This is how to store into the string LABEL
2733 the symbol_ref name of an internal numbered label where
2734 PREFIX is the class of label and NUM is the number within the class.
2735 This is suitable for output with `assemble_name'. */
2736
2737 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2738 sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
2739
2740 /* This is how we hook in and defer the case-vector until the end of
2741 the function. */
2742 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
2743 sparc_defer_case_vector ((LAB),(VEC), 0)
2744
2745 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
2746 sparc_defer_case_vector ((LAB),(VEC), 1)
2747
2748 /* This is how to output an element of a case-vector that is absolute. */
2749
2750 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2751 do { \
2752 char label[30]; \
2753 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
2754 if (CASE_VECTOR_MODE == SImode) \
2755 fprintf (FILE, "\t.word\t"); \
2756 else \
2757 fprintf (FILE, "\t.xword\t"); \
2758 assemble_name (FILE, label); \
2759 fputc ('\n', FILE); \
2760 } while (0)
2761
2762 /* This is how to output an element of a case-vector that is relative.
2763 (SPARC uses such vectors only when generating PIC.) */
2764
2765 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2766 do { \
2767 char label[30]; \
2768 ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE)); \
2769 if (CASE_VECTOR_MODE == SImode) \
2770 fprintf (FILE, "\t.word\t"); \
2771 else \
2772 fprintf (FILE, "\t.xword\t"); \
2773 assemble_name (FILE, label); \
2774 ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL)); \
2775 fputc ('-', FILE); \
2776 assemble_name (FILE, label); \
2777 fputc ('\n', FILE); \
2778 } while (0)
2779
2780 /* This is what to output before and after case-vector (both
2781 relative and absolute). If .subsection -1 works, we put case-vectors
2782 at the beginning of the current section. */
2783
2784 #ifdef HAVE_GAS_SUBSECTION_ORDERING
2785
2786 #define ASM_OUTPUT_ADDR_VEC_START(FILE) \
2787 fprintf(FILE, "\t.subsection\t-1\n")
2788
2789 #define ASM_OUTPUT_ADDR_VEC_END(FILE) \
2790 fprintf(FILE, "\t.previous\n")
2791
2792 #endif
2793
2794 /* This is how to output an assembler line
2795 that says to advance the location counter
2796 to a multiple of 2**LOG bytes. */
2797
2798 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2799 if ((LOG) != 0) \
2800 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
2801
2802 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
2803 fprintf (FILE, "\t.skip %u\n", (SIZE))
2804
2805 /* This says how to output an assembler line
2806 to define a global common symbol. */
2807
2808 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
2809 ( fputs ("\t.common ", (FILE)), \
2810 assemble_name ((FILE), (NAME)), \
2811 fprintf ((FILE), ",%u,\"bss\"\n", (SIZE)))
2812
2813 /* This says how to output an assembler line to define a local common
2814 symbol. */
2815
2816 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
2817 ( fputs ("\t.reserve ", (FILE)), \
2818 assemble_name ((FILE), (NAME)), \
2819 fprintf ((FILE), ",%u,\"bss\",%u\n", \
2820 (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
2821
2822 /* A C statement (sans semicolon) to output to the stdio stream
2823 FILE the assembler definition of uninitialized global DECL named
2824 NAME whose size is SIZE bytes and alignment is ALIGN bytes.
2825 Try to use asm_output_aligned_bss to implement this macro. */
2826
2827 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
2828 do { \
2829 fputs (".globl ", (FILE)); \
2830 assemble_name ((FILE), (NAME)); \
2831 fputs ("\n", (FILE)); \
2832 ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \
2833 } while (0)
2834
2835 /* Store in OUTPUT a string (made with alloca) containing
2836 an assembler-name for a local static variable named NAME.
2837 LABELNO is an integer which is different for each call. */
2838
2839 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2840 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2841 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2842
2843 #define IDENT_ASM_OP "\t.ident\t"
2844
2845 /* Output #ident as a .ident. */
2846
2847 #define ASM_OUTPUT_IDENT(FILE, NAME) \
2848 fprintf (FILE, "%s\"%s\"\n", IDENT_ASM_OP, NAME);
2849
2850 /* Output code to add DELTA to the first argument, and then jump to FUNCTION.
2851 Used for C++ multiple inheritance. */
2852 #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
2853 do { \
2854 int reg = 0; \
2855 \
2856 if (TARGET_ARCH64 \
2857 && aggregate_value_p (TREE_TYPE (TREE_TYPE (FUNCTION)))) \
2858 reg = 1; \
2859 if ((DELTA) >= 4096 || (DELTA) < -4096) \
2860 fprintf (FILE, "\tset\t%d, %%g1\n\tadd\t%%o%d, %%g1, %%o%d\n", \
2861 (int)(DELTA), reg, reg); \
2862 else \
2863 fprintf (FILE, "\tadd\t%%o%d, %d, %%o%d\n", reg, (int)(DELTA), reg);\
2864 fprintf (FILE, "\tor\t%%o7, %%g0, %%g1\n"); \
2865 fprintf (FILE, "\tcall\t"); \
2866 assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
2867 fprintf (FILE, ", 0\n"); \
2868 fprintf (FILE, "\t or\t%%g1, %%g0, %%o7\n"); \
2869 } while (0)
2870
2871 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2872 ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '(' || (CHAR) == '_')
2873
2874 /* Print operand X (an rtx) in assembler syntax to file FILE.
2875 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2876 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2877
2878 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2879
2880 /* Print a memory address as an operand to reference that memory location. */
2881
2882 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2883 { register rtx base, index = 0; \
2884 int offset = 0; \
2885 register rtx addr = ADDR; \
2886 if (GET_CODE (addr) == REG) \
2887 fputs (reg_names[REGNO (addr)], FILE); \
2888 else if (GET_CODE (addr) == PLUS) \
2889 { \
2890 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
2891 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
2892 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
2893 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
2894 else \
2895 base = XEXP (addr, 0), index = XEXP (addr, 1); \
2896 if (GET_CODE (base) == LO_SUM) \
2897 { \
2898 if (! USE_AS_OFFSETABLE_LO10 \
2899 || TARGET_ARCH32 \
2900 || TARGET_CM_MEDMID) \
2901 abort (); \
2902 output_operand (XEXP (base, 0), 0); \
2903 fputs ("+%lo(", FILE); \
2904 output_address (XEXP (base, 1)); \
2905 fprintf (FILE, ")+%d", offset); \
2906 } \
2907 else \
2908 { \
2909 fputs (reg_names[REGNO (base)], FILE); \
2910 if (index == 0) \
2911 fprintf (FILE, "%+d", offset); \
2912 else if (GET_CODE (index) == REG) \
2913 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
2914 else if (GET_CODE (index) == SYMBOL_REF \
2915 || GET_CODE (index) == CONST) \
2916 fputc ('+', FILE), output_addr_const (FILE, index); \
2917 else abort (); \
2918 } \
2919 } \
2920 else if (GET_CODE (addr) == MINUS \
2921 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
2922 { \
2923 output_addr_const (FILE, XEXP (addr, 0)); \
2924 fputs ("-(", FILE); \
2925 output_addr_const (FILE, XEXP (addr, 1)); \
2926 fputs ("-.)", FILE); \
2927 } \
2928 else if (GET_CODE (addr) == LO_SUM) \
2929 { \
2930 output_operand (XEXP (addr, 0), 0); \
2931 if (TARGET_CM_MEDMID) \
2932 fputs ("+%l44(", FILE); \
2933 else \
2934 fputs ("+%lo(", FILE); \
2935 output_address (XEXP (addr, 1)); \
2936 fputc (')', FILE); \
2937 } \
2938 else if (flag_pic && GET_CODE (addr) == CONST \
2939 && GET_CODE (XEXP (addr, 0)) == MINUS \
2940 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
2941 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
2942 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
2943 { \
2944 addr = XEXP (addr, 0); \
2945 output_addr_const (FILE, XEXP (addr, 0)); \
2946 /* Group the args of the second CONST in parenthesis. */ \
2947 fputs ("-(", FILE); \
2948 /* Skip past the second CONST--it does nothing for us. */\
2949 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
2950 /* Close the parenthesis. */ \
2951 fputc (')', FILE); \
2952 } \
2953 else \
2954 { \
2955 output_addr_const (FILE, addr); \
2956 } \
2957 }
2958
2959 /* Define the codes that are matched by predicates in sparc.c. */
2960
2961 #define PREDICATE_CODES \
2962 {"reg_or_0_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2963 {"fp_zero_operand", {CONST_DOUBLE}}, \
2964 {"intreg_operand", {SUBREG, REG}}, \
2965 {"fcc_reg_operand", {REG}}, \
2966 {"icc_or_fcc_reg_operand", {REG}}, \
2967 {"restore_operand", {REG}}, \
2968 {"call_operand", {MEM}}, \
2969 {"call_operand_address", {SYMBOL_REF, LABEL_REF, CONST, CONST_DOUBLE, \
2970 ADDRESSOF, SUBREG, REG, PLUS, LO_SUM, CONST_INT}}, \
2971 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
2972 {"symbolic_memory_operand", {SUBREG, MEM}}, \
2973 {"label_ref_operand", {LABEL_REF}}, \
2974 {"sp64_medium_pic_operand", {CONST}}, \
2975 {"data_segment_operand", {SYMBOL_REF, PLUS, CONST}}, \
2976 {"text_segment_operand", {LABEL_REF, SYMBOL_REF, PLUS, CONST}}, \
2977 {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \
2978 {"splittable_symbolic_memory_operand", {MEM}}, \
2979 {"splittable_immediate_memory_operand", {MEM}}, \
2980 {"eq_or_neq", {EQ, NE}}, \
2981 {"normal_comp_operator", {GE, GT, LE, LT, GTU, LEU}}, \
2982 {"noov_compare_op", {NE, EQ, GE, GT, LE, LT, GEU, GTU, LEU, LTU}}, \
2983 {"v9_regcmp_op", {EQ, NE, GE, LT, LE, GT}}, \
2984 {"extend_op", {SIGN_EXTEND, ZERO_EXTEND}}, \
2985 {"cc_arithop", {AND, IOR, XOR}}, \
2986 {"cc_arithopn", {AND, IOR}}, \
2987 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
2988 {"arith_add_operand", {SUBREG, REG, CONST_INT}}, \
2989 {"arith11_operand", {SUBREG, REG, CONST_INT}}, \
2990 {"arith10_operand", {SUBREG, REG, CONST_INT}}, \
2991 {"arith_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2992 {"arith_double_add_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2993 {"arith11_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2994 {"arith10_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2995 {"small_int", {CONST_INT}}, \
2996 {"small_int_or_double", {CONST_INT, CONST_DOUBLE}}, \
2997 {"uns_small_int", {CONST_INT}}, \
2998 {"uns_arith_operand", {SUBREG, REG, CONST_INT}}, \
2999 {"clobbered_register", {REG}}, \
3000 {"input_operand", {SUBREG, REG, CONST_INT, MEM, CONST}}, \
3001 {"const64_operand", {CONST_INT, CONST_DOUBLE}}, \
3002 {"const64_high_operand", {CONST_INT, CONST_DOUBLE}},
3003
3004 /* The number of Pmode words for the setjmp buffer. */
3005 #define JMP_BUF_SIZE 12
3006
3007 #define DONT_ACCESS_GBLS_AFTER_EPILOGUE (flag_pic)
3008
This page took 0.179208 seconds and 5 git commands to generate.