]> gcc.gnu.org Git - gcc.git/blob - gcc/config/sparc/sparc.h
final.c (output_addr_const): Use target opening and closing parentheses.
[gcc.git] / gcc / config / sparc / sparc.h
1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 1988, 1989, 1992, 1994, 1995, 1996, 1997, 1998, 1999
3 2000, 2001 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com).
5 64 bit SPARC V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
6 at Cygnus Support.
7
8 This file is part of GNU CC.
9
10 GNU CC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14
15 GNU CC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GNU CC; see the file COPYING. If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 /* Note that some other tm.h files include this one and then override
26 whatever definitions are necessary. */
27
28 /* Specify this in a cover file to provide bi-architecture (32/64) support. */
29 /* #define SPARC_BI_ARCH */
30
31 /* Macro used later in this file to determine default architecture. */
32 #define DEFAULT_ARCH32_P ((TARGET_DEFAULT & MASK_64BIT) == 0)
33
34 /* TARGET_ARCH{32,64} are the main macros to decide which of the two
35 architectures to compile for. We allow targets to choose compile time or
36 runtime selection. */
37 #ifdef IN_LIBGCC2
38 #if defined(__sparcv9) || defined(__arch64__)
39 #define TARGET_ARCH32 0
40 #else
41 #define TARGET_ARCH32 1
42 #endif /* sparc64 */
43 #else
44 #ifdef SPARC_BI_ARCH
45 #define TARGET_ARCH32 (! TARGET_64BIT)
46 #else
47 #define TARGET_ARCH32 (DEFAULT_ARCH32_P)
48 #endif /* SPARC_BI_ARCH */
49 #endif /* IN_LIBGCC2 */
50 #define TARGET_ARCH64 (! TARGET_ARCH32)
51
52 /* Code model selection.
53 -mcmodel is used to select the v9 code model.
54 Different code models aren't supported for v7/8 code.
55
56 TARGET_CM_32: 32 bit address space, top 32 bits = 0,
57 pointers are 32 bits. Note that this isn't intended
58 to imply a v7/8 abi.
59
60 TARGET_CM_MEDLOW: 32 bit address space, top 32 bits = 0,
61 avoid generating %uhi and %ulo terms,
62 pointers are 64 bits.
63
64 TARGET_CM_MEDMID: 64 bit address space.
65 The executable must be in the low 16 TB of memory.
66 This corresponds to the low 44 bits, and the %[hml]44
67 relocs are used. The text segment has a maximum size
68 of 31 bits.
69
70 TARGET_CM_MEDANY: 64 bit address space.
71 The text and data segments have a maximum size of 31
72 bits and may be located anywhere. The maximum offset
73 from any instruction to the label _GLOBAL_OFFSET_TABLE_
74 is 31 bits.
75
76 TARGET_CM_EMBMEDANY: 64 bit address space.
77 The text and data segments have a maximum size of 31 bits
78 and may be located anywhere. Register %g4 contains
79 the start address of the data segment.
80 */
81
82 enum cmodel {
83 CM_32,
84 CM_MEDLOW,
85 CM_MEDMID,
86 CM_MEDANY,
87 CM_EMBMEDANY
88 };
89
90 /* Value of -mcmodel specified by user. */
91 extern const char *sparc_cmodel_string;
92 /* One of CM_FOO. */
93 extern enum cmodel sparc_cmodel;
94
95 /* V9 code model selection. */
96 #define TARGET_CM_MEDLOW (sparc_cmodel == CM_MEDLOW)
97 #define TARGET_CM_MEDMID (sparc_cmodel == CM_MEDMID)
98 #define TARGET_CM_MEDANY (sparc_cmodel == CM_MEDANY)
99 #define TARGET_CM_EMBMEDANY (sparc_cmodel == CM_EMBMEDANY)
100
101 #define SPARC_DEFAULT_CMODEL CM_32
102
103 /* This is call-clobbered in the normal ABI, but is reserved in the
104 home grown (aka upward compatible) embedded ABI. */
105 #define EMBMEDANY_BASE_REG "%g4"
106 \f
107 /* Values of TARGET_CPU_DEFAULT, set via -D in the Makefile,
108 and specified by the user via --with-cpu=foo.
109 This specifies the cpu implementation, not the architecture size. */
110 /* Note that TARGET_CPU_v9 is assumed to start the list of 64-bit
111 capable cpu's. */
112 #define TARGET_CPU_sparc 0
113 #define TARGET_CPU_v7 0 /* alias for previous */
114 #define TARGET_CPU_sparclet 1
115 #define TARGET_CPU_sparclite 2
116 #define TARGET_CPU_v8 3 /* generic v8 implementation */
117 #define TARGET_CPU_supersparc 4
118 #define TARGET_CPU_hypersparc 5
119 #define TARGET_CPU_sparc86x 6
120 #define TARGET_CPU_sparclite86x 6
121 #define TARGET_CPU_v9 7 /* generic v9 implementation */
122 #define TARGET_CPU_sparcv9 7 /* alias */
123 #define TARGET_CPU_sparc64 7 /* alias */
124 #define TARGET_CPU_ultrasparc 8
125
126 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9 \
127 || TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
128
129 #define CPP_CPU32_DEFAULT_SPEC ""
130 #define ASM_CPU32_DEFAULT_SPEC ""
131
132 #if TARGET_CPU_DEFAULT == TARGET_CPU_v9
133 /* ??? What does Sun's CC pass? */
134 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
135 /* ??? It's not clear how other assemblers will handle this, so by default
136 use GAS. Sun's Solaris assembler recognizes -xarch=v8plus, but this case
137 is handled in sol2.h. */
138 #define ASM_CPU64_DEFAULT_SPEC "-Av9"
139 #endif
140 #if TARGET_CPU_DEFAULT == TARGET_CPU_ultrasparc
141 #define CPP_CPU64_DEFAULT_SPEC "-D__sparc_v9__"
142 #define ASM_CPU64_DEFAULT_SPEC "-Av9a"
143 #endif
144
145 #else
146
147 #define CPP_CPU64_DEFAULT_SPEC ""
148 #define ASM_CPU64_DEFAULT_SPEC ""
149
150 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparc \
151 || TARGET_CPU_DEFAULT == TARGET_CPU_v8
152 #define CPP_CPU32_DEFAULT_SPEC ""
153 #define ASM_CPU32_DEFAULT_SPEC ""
154 #endif
155
156 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclet
157 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclet__"
158 #define ASM_CPU32_DEFAULT_SPEC "-Asparclet"
159 #endif
160
161 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite
162 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite__"
163 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
164 #endif
165
166 #if TARGET_CPU_DEFAULT == TARGET_CPU_supersparc
167 #define CPP_CPU32_DEFAULT_SPEC "-D__supersparc__ -D__sparc_v8__"
168 #define ASM_CPU32_DEFAULT_SPEC ""
169 #endif
170
171 #if TARGET_CPU_DEFAULT == TARGET_CPU_hypersparc
172 #define CPP_CPU32_DEFAULT_SPEC "-D__hypersparc__ -D__sparc_v8__"
173 #define ASM_CPU32_DEFAULT_SPEC ""
174 #endif
175
176 #if TARGET_CPU_DEFAULT == TARGET_CPU_sparclite86x
177 #define CPP_CPU32_DEFAULT_SPEC "-D__sparclite86x__"
178 #define ASM_CPU32_DEFAULT_SPEC "-Asparclite"
179 #endif
180
181 #endif
182
183 #if !defined(CPP_CPU32_DEFAULT_SPEC) || !defined(CPP_CPU64_DEFAULT_SPEC)
184 Unrecognized value in TARGET_CPU_DEFAULT.
185 #endif
186
187 #ifdef SPARC_BI_ARCH
188
189 #define CPP_CPU_DEFAULT_SPEC \
190 (DEFAULT_ARCH32_P ? "\
191 %{m64:" CPP_CPU64_DEFAULT_SPEC "} \
192 %{!m64:" CPP_CPU32_DEFAULT_SPEC "} \
193 " : "\
194 %{m32:" CPP_CPU32_DEFAULT_SPEC "} \
195 %{!m32:" CPP_CPU64_DEFAULT_SPEC "} \
196 ")
197 #define ASM_CPU_DEFAULT_SPEC \
198 (DEFAULT_ARCH32_P ? "\
199 %{m64:" ASM_CPU64_DEFAULT_SPEC "} \
200 %{!m64:" ASM_CPU32_DEFAULT_SPEC "} \
201 " : "\
202 %{m32:" ASM_CPU32_DEFAULT_SPEC "} \
203 %{!m32:" ASM_CPU64_DEFAULT_SPEC "} \
204 ")
205
206 #else /* !SPARC_BI_ARCH */
207
208 #define CPP_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? CPP_CPU32_DEFAULT_SPEC : CPP_CPU64_DEFAULT_SPEC)
209 #define ASM_CPU_DEFAULT_SPEC (DEFAULT_ARCH32_P ? ASM_CPU32_DEFAULT_SPEC : ASM_CPU64_DEFAULT_SPEC)
210
211 #endif /* !SPARC_BI_ARCH */
212
213 /* Names to predefine in the preprocessor for this target machine.
214 ??? It would be nice to not include any subtarget specific values here,
215 however there's no way to portably provide subtarget values to
216 CPP_PREFINES. Also, -D values in CPP_SUBTARGET_SPEC don't get turned into
217 foo, __foo and __foo__. */
218
219 #define CPP_PREDEFINES "-Dsparc -Dsun -Dunix -Asystem=unix -Asystem=bsd"
220
221 /* Define macros to distinguish architectures. */
222
223 /* Common CPP definitions used by CPP_SPEC amongst the various targets
224 for handling -mcpu=xxx switches. */
225 #define CPP_CPU_SPEC "\
226 %{mcypress:} \
227 %{msparclite:-D__sparclite__} \
228 %{mf930:-D__sparclite__} %{mf934:-D__sparclite__} \
229 %{mv8:-D__sparc_v8__} \
230 %{msupersparc:-D__supersparc__ -D__sparc_v8__} \
231 %{mcpu=sparclet:-D__sparclet__} %{mcpu=tsc701:-D__sparclet__} \
232 %{mcpu=sparclite:-D__sparclite__} \
233 %{mcpu=f930:-D__sparclite__} %{mcpu=f934:-D__sparclite__} \
234 %{mcpu=v8:-D__sparc_v8__} \
235 %{mcpu=supersparc:-D__supersparc__ -D__sparc_v8__} \
236 %{mcpu=hypersparc:-D__hypersparc__ -D__sparc_v8__} \
237 %{mcpu=sparclite86x:-D__sparclite86x__} \
238 %{mcpu=v9:-D__sparc_v9__} \
239 %{mcpu=ultrasparc:-D__sparc_v9__} \
240 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(cpp_cpu_default)}}}}}}} \
241 "
242
243 /* ??? The GCC_NEW_VARARGS macro is now obsolete, because gcc always uses
244 the right varags.h file when bootstrapping. */
245 /* ??? It's not clear what value we want to use for -Acpu/machine for
246 sparc64 in 32 bit environments, so for now we only use `sparc64' in
247 64 bit environments. */
248
249 #ifdef SPARC_BI_ARCH
250
251 #define CPP_ARCH32_SPEC "-D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int \
252 -D__GCC_NEW_VARARGS__ -Acpu=sparc -Amachine=sparc"
253 #define CPP_ARCH64_SPEC "-D__SIZE_TYPE__=long\\ unsigned\\ int -D__PTRDIFF_TYPE__=long\\ int \
254 -D__arch64__ -Acpu=sparc64 -Amachine=sparc64"
255
256 #else
257
258 #define CPP_ARCH32_SPEC "-D__GCC_NEW_VARARGS__ -Acpu=sparc -Amachine=sparc"
259 #define CPP_ARCH64_SPEC "-D__arch64__ -Acpu=sparc64 -Amachine=sparc64"
260
261 #endif
262
263 #define CPP_ARCH_DEFAULT_SPEC \
264 (DEFAULT_ARCH32_P ? CPP_ARCH32_SPEC : CPP_ARCH64_SPEC)
265
266 #define CPP_ARCH_SPEC "\
267 %{m32:%(cpp_arch32)} \
268 %{m64:%(cpp_arch64)} \
269 %{!m32:%{!m64:%(cpp_arch_default)}} \
270 "
271
272 /* Macros to distinguish endianness. */
273 #define CPP_ENDIAN_SPEC "\
274 %{mlittle-endian:-D__LITTLE_ENDIAN__} \
275 %{mlittle-endian-data:-D__LITTLE_ENDIAN_DATA__}"
276
277 /* Macros to distinguish the particular subtarget. */
278 #define CPP_SUBTARGET_SPEC ""
279
280 #define CPP_SPEC "%(cpp_cpu) %(cpp_arch) %(cpp_endian) %(cpp_subtarget)"
281
282 /* Prevent error on `-sun4' and `-target sun4' options. */
283 /* This used to translate -dalign to -malign, but that is no good
284 because it can't turn off the usual meaning of making debugging dumps. */
285 /* Translate old style -m<cpu> into new style -mcpu=<cpu>.
286 ??? Delete support for -m<cpu> for 2.9. */
287
288 #define CC1_SPEC "\
289 %{sun4:} %{target:} \
290 %{mcypress:-mcpu=cypress} \
291 %{msparclite:-mcpu=sparclite} %{mf930:-mcpu=f930} %{mf934:-mcpu=f934} \
292 %{mv8:-mcpu=v8} %{msupersparc:-mcpu=supersparc} \
293 "
294
295 /* Override in target specific files. */
296 #define ASM_CPU_SPEC "\
297 %{mcpu=sparclet:-Asparclet} %{mcpu=tsc701:-Asparclet} \
298 %{msparclite:-Asparclite} \
299 %{mf930:-Asparclite} %{mf934:-Asparclite} \
300 %{mcpu=sparclite:-Asparclite} \
301 %{mcpu=sparclite86x:-Asparclite} \
302 %{mcpu=f930:-Asparclite} %{mcpu=f934:-Asparclite} \
303 %{mv8plus:-Av8plus} \
304 %{mcpu=v9:-Av9} \
305 %{mcpu=ultrasparc:%{!mv8plus:-Av9a}} \
306 %{!mcpu*:%{!mcypress:%{!msparclite:%{!mf930:%{!mf934:%{!mv8:%{!msupersparc:%(asm_cpu_default)}}}}}}} \
307 "
308
309 /* Word size selection, among other things.
310 This is what GAS uses. Add %(asm_arch) to ASM_SPEC to enable. */
311
312 #define ASM_ARCH32_SPEC "-32"
313 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
314 #define ASM_ARCH64_SPEC "-64 -no-undeclared-regs"
315 #else
316 #define ASM_ARCH64_SPEC "-64"
317 #endif
318 #define ASM_ARCH_DEFAULT_SPEC \
319 (DEFAULT_ARCH32_P ? ASM_ARCH32_SPEC : ASM_ARCH64_SPEC)
320
321 #define ASM_ARCH_SPEC "\
322 %{m32:%(asm_arch32)} \
323 %{m64:%(asm_arch64)} \
324 %{!m32:%{!m64:%(asm_arch_default)}} \
325 "
326
327 #ifdef HAVE_AS_RELAX_OPTION
328 #define ASM_RELAX_SPEC "%{!mno-relax:-relax}"
329 #else
330 #define ASM_RELAX_SPEC ""
331 #endif
332
333 /* Special flags to the Sun-4 assembler when using pipe for input. */
334
335 #define ASM_SPEC "\
336 %| %{R} %{!pg:%{!p:%{fpic:-k} %{fPIC:-k}}} %{keep-local-as-symbols:-L} \
337 %(asm_cpu) %(asm_relax)"
338
339 #define LIB_SPEC "%{!shared:%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} %{g:-lg}}"
340
341 /* Provide required defaults for linker -e and -d switches. */
342
343 #define LINK_SPEC \
344 "%{!shared:%{!nostdlib:%{!r*:%{!e*:-e start}}} -dc -dp} %{static:-Bstatic} \
345 %{assert*} %{shared:%{!mimpure-text:-assert pure-text}}"
346
347 /* This macro defines names of additional specifications to put in the specs
348 that can be used in various specifications like CC1_SPEC. Its definition
349 is an initializer with a subgrouping for each command option.
350
351 Each subgrouping contains a string constant, that defines the
352 specification name, and a string constant that used by the GNU CC driver
353 program.
354
355 Do not define this macro if it does not need to do anything. */
356
357 #define EXTRA_SPECS \
358 { "cpp_cpu", CPP_CPU_SPEC }, \
359 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
360 { "cpp_arch32", CPP_ARCH32_SPEC }, \
361 { "cpp_arch64", CPP_ARCH64_SPEC }, \
362 { "cpp_arch_default", CPP_ARCH_DEFAULT_SPEC },\
363 { "cpp_arch", CPP_ARCH_SPEC }, \
364 { "cpp_endian", CPP_ENDIAN_SPEC }, \
365 { "cpp_subtarget", CPP_SUBTARGET_SPEC }, \
366 { "asm_cpu", ASM_CPU_SPEC }, \
367 { "asm_cpu_default", ASM_CPU_DEFAULT_SPEC }, \
368 { "asm_arch32", ASM_ARCH32_SPEC }, \
369 { "asm_arch64", ASM_ARCH64_SPEC }, \
370 { "asm_relax", ASM_RELAX_SPEC }, \
371 { "asm_arch_default", ASM_ARCH_DEFAULT_SPEC },\
372 { "asm_arch", ASM_ARCH_SPEC }, \
373 SUBTARGET_EXTRA_SPECS
374
375 #define SUBTARGET_EXTRA_SPECS
376 \f
377 #ifdef SPARC_BI_ARCH
378 #define NO_BUILTIN_PTRDIFF_TYPE
379 #define NO_BUILTIN_SIZE_TYPE
380 #endif
381 #define PTRDIFF_TYPE (TARGET_ARCH64 ? "long int" : "int")
382 #define SIZE_TYPE (TARGET_ARCH64 ? "long unsigned int" : "unsigned int")
383
384 /* ??? This should be 32 bits for v9 but what can we do? */
385 #define WCHAR_TYPE "short unsigned int"
386 #define WCHAR_TYPE_SIZE 16
387 #define MAX_WCHAR_TYPE_SIZE 16
388
389 /* Show we can debug even without a frame pointer. */
390 #define CAN_DEBUG_WITHOUT_FP
391
392 /* To make profiling work with -f{pic,PIC}, we need to emit the profiling
393 code into the rtl. Also, if we are profiling, we cannot eliminate
394 the frame pointer (because the return address will get smashed). */
395
396 #define OVERRIDE_OPTIONS \
397 do { \
398 if (profile_flag || profile_block_flag || profile_arc_flag) \
399 { \
400 if (flag_pic) \
401 { \
402 const char *pic_string = (flag_pic == 1) ? "-fpic" : "-fPIC";\
403 warning ("%s and profiling conflict: disabling %s", \
404 pic_string, pic_string); \
405 flag_pic = 0; \
406 } \
407 flag_omit_frame_pointer = 0; \
408 } \
409 sparc_override_options (); \
410 SUBTARGET_OVERRIDE_OPTIONS; \
411 } while (0)
412
413 /* This is meant to be redefined in the host dependent files. */
414 #define SUBTARGET_OVERRIDE_OPTIONS
415
416 /* These compiler options take an argument. We ignore -target for now. */
417
418 #define WORD_SWITCH_TAKES_ARG(STR) \
419 (DEFAULT_WORD_SWITCH_TAKES_ARG (STR) \
420 || !strcmp (STR, "target") || !strcmp (STR, "assert"))
421
422 /* Print subsidiary information on the compiler version in use. */
423
424 #define TARGET_VERSION fprintf (stderr, " (sparc)");
425
426 /* Generate DBX debugging information. */
427
428 #define DBX_DEBUGGING_INFO
429 \f
430 /* Run-time compilation parameters selecting different hardware subsets. */
431
432 extern int target_flags;
433
434 /* Nonzero if we should generate code to use the fpu. */
435 #define MASK_FPU 1
436 #define TARGET_FPU (target_flags & MASK_FPU)
437
438 /* Nonzero if we should use function_epilogue(). Otherwise, we
439 use fast return insns, but lose some generality. */
440 #define MASK_EPILOGUE 2
441 #define TARGET_EPILOGUE (target_flags & MASK_EPILOGUE)
442
443 /* Nonzero if we should assume that double pointers might be unaligned.
444 This can happen when linking gcc compiled code with other compilers,
445 because the ABI only guarantees 4 byte alignment. */
446 #define MASK_UNALIGNED_DOUBLES 4
447 #define TARGET_UNALIGNED_DOUBLES (target_flags & MASK_UNALIGNED_DOUBLES)
448
449 /* Nonzero means that we should generate code for a v8 sparc. */
450 #define MASK_V8 0x8
451 #define TARGET_V8 (target_flags & MASK_V8)
452
453 /* Nonzero means that we should generate code for a sparclite.
454 This enables the sparclite specific instructions, but does not affect
455 whether FPU instructions are emitted. */
456 #define MASK_SPARCLITE 0x10
457 #define TARGET_SPARCLITE (target_flags & MASK_SPARCLITE)
458
459 /* Nonzero if we're compiling for the sparclet. */
460 #define MASK_SPARCLET 0x20
461 #define TARGET_SPARCLET (target_flags & MASK_SPARCLET)
462
463 /* Nonzero if we're compiling for v9 sparc.
464 Note that v9's can run in 32 bit mode so this doesn't necessarily mean
465 the word size is 64. */
466 #define MASK_V9 0x40
467 #define TARGET_V9 (target_flags & MASK_V9)
468
469 /* Non-zero to generate code that uses the instructions deprecated in
470 the v9 architecture. This option only applies to v9 systems. */
471 /* ??? This isn't user selectable yet. It's used to enable such insns
472 on 32 bit v9 systems and for the moment they're permanently disabled
473 on 64 bit v9 systems. */
474 #define MASK_DEPRECATED_V8_INSNS 0x80
475 #define TARGET_DEPRECATED_V8_INSNS (target_flags & MASK_DEPRECATED_V8_INSNS)
476
477 /* Mask of all CPU selection flags. */
478 #define MASK_ISA \
479 (MASK_V8 + MASK_SPARCLITE + MASK_SPARCLET + MASK_V9 + MASK_DEPRECATED_V8_INSNS)
480
481 /* Non-zero means don't pass `-assert pure-text' to the linker. */
482 #define MASK_IMPURE_TEXT 0x100
483 #define TARGET_IMPURE_TEXT (target_flags & MASK_IMPURE_TEXT)
484
485 /* Nonzero means that we should generate code using a flat register window
486 model, i.e. no save/restore instructions are generated, which is
487 compatible with normal sparc code.
488 The frame pointer is %i7 instead of %fp. */
489 #define MASK_FLAT 0x200
490 #define TARGET_FLAT (target_flags & MASK_FLAT)
491
492 /* Nonzero means use the registers that the Sparc ABI reserves for
493 application software. This must be the default to coincide with the
494 setting in FIXED_REGISTERS. */
495 #define MASK_APP_REGS 0x400
496 #define TARGET_APP_REGS (target_flags & MASK_APP_REGS)
497
498 /* Option to select how quad word floating point is implemented.
499 When TARGET_HARD_QUAD is true, we use the hardware quad instructions.
500 Otherwise, we use the SPARC ABI quad library functions. */
501 #define MASK_HARD_QUAD 0x800
502 #define TARGET_HARD_QUAD (target_flags & MASK_HARD_QUAD)
503
504 /* Non-zero on little-endian machines. */
505 /* ??? Little endian support currently only exists for sparclet-aout and
506 sparc64-elf configurations. May eventually want to expand the support
507 to all targets, but for now it's kept local to only those two. */
508 #define MASK_LITTLE_ENDIAN 0x1000
509 #define TARGET_LITTLE_ENDIAN (target_flags & MASK_LITTLE_ENDIAN)
510
511 /* 0x2000, 0x4000 are unused */
512
513 /* Nonzero if pointers are 64 bits. */
514 #define MASK_PTR64 0x8000
515 #define TARGET_PTR64 (target_flags & MASK_PTR64)
516
517 /* Nonzero if generating code to run in a 64 bit environment.
518 This is intended to only be used by TARGET_ARCH{32,64} as they are the
519 mechanism used to control compile time or run time selection. */
520 #define MASK_64BIT 0x10000
521 #define TARGET_64BIT (target_flags & MASK_64BIT)
522
523 /* 0x20000,0x40000 unused */
524
525 /* Non-zero means use a stack bias of 2047. Stack offsets are obtained by
526 adding 2047 to %sp. This option is for v9 only and is the default. */
527 #define MASK_STACK_BIAS 0x80000
528 #define TARGET_STACK_BIAS (target_flags & MASK_STACK_BIAS)
529
530 /* 0x100000,0x200000 unused */
531
532 /* Non-zero means -m{,no-}fpu was passed on the command line. */
533 #define MASK_FPU_SET 0x400000
534 #define TARGET_FPU_SET (target_flags & MASK_FPU_SET)
535
536 /* Use the UltraSPARC Visual Instruction Set extensions. */
537 #define MASK_VIS 0x1000000
538 #define TARGET_VIS (target_flags & MASK_VIS)
539
540 /* Compile for Solaris V8+. 32 bit Solaris preserves the high bits of
541 the current out and global registers and Linux 2.2+ as well. */
542 #define MASK_V8PLUS 0x2000000
543 #define TARGET_V8PLUS (target_flags & MASK_V8PLUS)
544
545 /* Force a the fastest alignment on structures to take advantage of
546 faster copies. */
547 #define MASK_FASTER_STRUCTS 0x4000000
548 #define TARGET_FASTER_STRUCTS (target_flags & MASK_FASTER_STRUCTS)
549
550 /* Use IEEE quad long double. */
551 #define MASK_LONG_DOUBLE_128 0x8000000
552 #define TARGET_LONG_DOUBLE_128 (target_flags & MASK_LONG_DOUBLE_128)
553
554 /* TARGET_HARD_MUL: Use hardware multiply instructions but not %y.
555 TARGET_HARD_MUL32: Use hardware multiply instructions with rd %y
556 to get high 32 bits. False in V8+ or V9 because multiply stores
557 a 64 bit result in a register. */
558
559 #define TARGET_HARD_MUL32 \
560 ((TARGET_V8 || TARGET_SPARCLITE \
561 || TARGET_SPARCLET || TARGET_DEPRECATED_V8_INSNS) \
562 && ! TARGET_V8PLUS && TARGET_ARCH32)
563
564 #define TARGET_HARD_MUL \
565 (TARGET_V8 || TARGET_SPARCLITE || TARGET_SPARCLET \
566 || TARGET_DEPRECATED_V8_INSNS || TARGET_V8PLUS)
567
568
569 /* Macro to define tables used to set the flags.
570 This is a list in braces of pairs in braces,
571 each pair being { "NAME", VALUE }
572 where VALUE is the bits to set or minus the bits to clear.
573 An empty string NAME is used to identify the default VALUE. */
574
575 #define TARGET_SWITCHES \
576 { {"fpu", MASK_FPU | MASK_FPU_SET, \
577 N_("Use hardware fp") }, \
578 {"no-fpu", -MASK_FPU, \
579 N_("Do not use hardware fp") }, \
580 {"no-fpu", MASK_FPU_SET, NULL, }, \
581 {"hard-float", MASK_FPU | MASK_FPU_SET, \
582 N_("Use hardware fp") }, \
583 {"soft-float", -MASK_FPU, \
584 N_("Do not use hardware fp") }, \
585 {"soft-float", MASK_FPU_SET, NULL }, \
586 {"epilogue", MASK_EPILOGUE, \
587 N_("Use function_epilogue()") }, \
588 {"no-epilogue", -MASK_EPILOGUE, \
589 N_("Do not use function_epilogue()") }, \
590 {"unaligned-doubles", MASK_UNALIGNED_DOUBLES, \
591 N_("Assume possible double misalignment") }, \
592 {"no-unaligned-doubles", -MASK_UNALIGNED_DOUBLES, \
593 N_("Assume all doubles are aligned") }, \
594 {"impure-text", MASK_IMPURE_TEXT, \
595 N_("Pass -assert pure-text to linker") }, \
596 {"no-impure-text", -MASK_IMPURE_TEXT, \
597 N_("Do not pass -assert pure-text to linker") }, \
598 {"flat", MASK_FLAT, \
599 N_("Use flat register window model") }, \
600 {"no-flat", -MASK_FLAT, \
601 N_("Do not use flat register window model") }, \
602 {"app-regs", MASK_APP_REGS, \
603 N_("Use ABI reserved registers") }, \
604 {"no-app-regs", -MASK_APP_REGS, \
605 N_("Do not use ABI reserved registers") }, \
606 {"hard-quad-float", MASK_HARD_QUAD, \
607 N_("Use hardware quad fp instructions") }, \
608 {"soft-quad-float", -MASK_HARD_QUAD, \
609 N_("Do not use hardware quad fp instructions") }, \
610 {"v8plus", MASK_V8PLUS, \
611 N_("Compile for v8plus ABI") }, \
612 {"no-v8plus", -MASK_V8PLUS, \
613 N_("Do not compile for v8plus ABI") }, \
614 {"vis", MASK_VIS, \
615 N_("Utilize Visual Instruction Set") }, \
616 {"no-vis", -MASK_VIS, \
617 N_("Do not utilize Visual Instruction Set") }, \
618 /* ??? These are deprecated, coerced to -mcpu=. Delete in 2.9. */ \
619 {"cypress", 0, \
620 N_("Optimize for Cypress processors") }, \
621 {"sparclite", 0, \
622 N_("Optimize for SparcLite processors") }, \
623 {"f930", 0, \
624 N_("Optimize for F930 processors") }, \
625 {"f934", 0, \
626 N_("Optimize for F934 processors") }, \
627 {"v8", 0, \
628 N_("Use V8 Sparc ISA") }, \
629 {"supersparc", 0, \
630 N_("Optimize for SuperSparc processors") }, \
631 /* End of deprecated options. */ \
632 {"ptr64", MASK_PTR64, \
633 N_("Pointers are 64-bit") }, \
634 {"ptr32", -MASK_PTR64, \
635 N_("Pointers are 32-bit") }, \
636 {"32", -MASK_64BIT, \
637 N_("Use 32-bit ABI") }, \
638 {"64", MASK_64BIT, \
639 N_("Use 64-bit ABI") }, \
640 {"stack-bias", MASK_STACK_BIAS, \
641 N_("Use stack bias") }, \
642 {"no-stack-bias", -MASK_STACK_BIAS, \
643 N_("Do not use stack bias") }, \
644 {"faster-structs", MASK_FASTER_STRUCTS, \
645 N_("Use structs on stronger alignment for double-word copies") }, \
646 {"no-faster-structs", -MASK_FASTER_STRUCTS, \
647 N_("Do not use structs on stronger alignment for double-word copies") }, \
648 {"relax", 0, \
649 N_("Optimize tail call instructions in assembler and linker") }, \
650 {"no-relax", 0, \
651 N_("Do not optimize tail call instructions in assembler or linker") }, \
652 SUBTARGET_SWITCHES \
653 { "", TARGET_DEFAULT, ""}}
654
655 /* MASK_APP_REGS must always be the default because that's what
656 FIXED_REGISTERS is set to and -ffixed- is processed before
657 CONDITIONAL_REGISTER_USAGE is called (where we process -mno-app-regs). */
658 #define TARGET_DEFAULT (MASK_APP_REGS + MASK_EPILOGUE + MASK_FPU)
659
660 /* This is meant to be redefined in target specific files. */
661 #define SUBTARGET_SWITCHES
662
663 /* Processor type.
664 These must match the values for the cpu attribute in sparc.md. */
665 enum processor_type {
666 PROCESSOR_V7,
667 PROCESSOR_CYPRESS,
668 PROCESSOR_V8,
669 PROCESSOR_SUPERSPARC,
670 PROCESSOR_SPARCLITE,
671 PROCESSOR_F930,
672 PROCESSOR_F934,
673 PROCESSOR_HYPERSPARC,
674 PROCESSOR_SPARCLITE86X,
675 PROCESSOR_SPARCLET,
676 PROCESSOR_TSC701,
677 PROCESSOR_V9,
678 PROCESSOR_ULTRASPARC
679 };
680
681 /* This is set from -m{cpu,tune}=xxx. */
682 extern enum processor_type sparc_cpu;
683
684 /* Recast the cpu class to be the cpu attribute.
685 Every file includes us, but not every file includes insn-attr.h. */
686 #define sparc_cpu_attr ((enum attr_cpu) sparc_cpu)
687
688 /* This macro is similar to `TARGET_SWITCHES' but defines names of
689 command options that have values. Its definition is an
690 initializer with a subgrouping for each command option.
691
692 Each subgrouping contains a string constant, that defines the
693 fixed part of the option name, and the address of a variable.
694 The variable, type `char *', is set to the variable part of the
695 given option if the fixed part matches. The actual option name
696 is made by appending `-m' to the specified name.
697
698 Here is an example which defines `-mshort-data-NUMBER'. If the
699 given option is `-mshort-data-512', the variable `m88k_short_data'
700 will be set to the string `"512"'.
701
702 extern char *m88k_short_data;
703 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
704
705 #define TARGET_OPTIONS \
706 { \
707 { "cpu=", &sparc_select[1].string, \
708 N_("Use features of and schedule code for given CPU") }, \
709 { "tune=", &sparc_select[2].string, \
710 N_("Schedule code for given CPU") }, \
711 { "cmodel=", &sparc_cmodel_string, \
712 N_("Use given Sparc code model") }, \
713 SUBTARGET_OPTIONS \
714 }
715
716 /* This is meant to be redefined in target specific files. */
717 #define SUBTARGET_OPTIONS
718
719 /* sparc_select[0] is reserved for the default cpu. */
720 struct sparc_cpu_select
721 {
722 const char *string;
723 const char *name;
724 int set_tune_p;
725 int set_arch_p;
726 };
727
728 extern struct sparc_cpu_select sparc_select[];
729 \f
730 /* target machine storage layout */
731
732 /* Define for cross-compilation to a sparc target with no TFmode from a host
733 with a different float format (e.g. VAX). */
734 #define REAL_ARITHMETIC
735
736 /* Define this if most significant bit is lowest numbered
737 in instructions that operate on numbered bit-fields. */
738 #define BITS_BIG_ENDIAN 1
739
740 /* Define this if most significant byte of a word is the lowest numbered. */
741 #define BYTES_BIG_ENDIAN 1
742
743 /* Define this if most significant word of a multiword number is the lowest
744 numbered. */
745 #define WORDS_BIG_ENDIAN 1
746
747 /* Define this to set the endianness to use in libgcc2.c, which can
748 not depend on target_flags. */
749 #if defined (__LITTLE_ENDIAN__) || defined(__LITTLE_ENDIAN_DATA__)
750 #define LIBGCC2_WORDS_BIG_ENDIAN 0
751 #else
752 #define LIBGCC2_WORDS_BIG_ENDIAN 1
753 #endif
754
755 /* number of bits in an addressable storage unit */
756 #define BITS_PER_UNIT 8
757
758 /* Width in bits of a "word", which is the contents of a machine register.
759 Note that this is not necessarily the width of data type `int';
760 if using 16-bit ints on a 68000, this would still be 32.
761 But on a machine with 16-bit registers, this would be 16. */
762 #define BITS_PER_WORD (TARGET_ARCH64 ? 64 : 32)
763 #define MAX_BITS_PER_WORD 64
764
765 /* Width of a word, in units (bytes). */
766 #define UNITS_PER_WORD (TARGET_ARCH64 ? 8 : 4)
767 #define MIN_UNITS_PER_WORD 4
768
769 /* Now define the sizes of the C data types. */
770
771 #define SHORT_TYPE_SIZE 16
772 #define INT_TYPE_SIZE 32
773 #define LONG_TYPE_SIZE (TARGET_ARCH64 ? 64 : 32)
774 #define LONG_LONG_TYPE_SIZE 64
775 #define FLOAT_TYPE_SIZE 32
776 #define DOUBLE_TYPE_SIZE 64
777
778 #ifdef SPARC_BI_ARCH
779 #define MAX_LONG_TYPE_SIZE 64
780 #endif
781
782 #if 0
783 /* ??? This does not work in SunOS 4.x, so it is not enabled here.
784 Instead, it is enabled in sol2.h, because it does work under Solaris. */
785 /* Define for support of TFmode long double and REAL_ARITHMETIC.
786 Sparc ABI says that long double is 4 words. */
787 #define LONG_DOUBLE_TYPE_SIZE 128
788 #endif
789
790 /* Width in bits of a pointer.
791 See also the macro `Pmode' defined below. */
792 #define POINTER_SIZE (TARGET_PTR64 ? 64 : 32)
793
794 /* If we have to extend pointers (only when TARGET_ARCH64 and not
795 TARGET_PTR64), we want to do it unsigned. This macro does nothing
796 if ptr_mode and Pmode are the same. */
797 #define POINTERS_EXTEND_UNSIGNED 1
798
799 /* A macro to update MODE and UNSIGNEDP when an object whose type
800 is TYPE and which has the specified mode and signedness is to be
801 stored in a register. This macro is only called when TYPE is a
802 scalar type. */
803 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
804 if (TARGET_ARCH64 \
805 && GET_MODE_CLASS (MODE) == MODE_INT \
806 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
807 (MODE) = DImode;
808
809 /* Define this macro if the promotion described by PROMOTE_MODE
810 should also be done for outgoing function arguments. */
811 /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
812 for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test
813 for this value. */
814 #define PROMOTE_FUNCTION_ARGS
815
816 /* Define this macro if the promotion described by PROMOTE_MODE
817 should also be done for the return value of functions.
818 If this macro is defined, FUNCTION_VALUE must perform the same
819 promotions done by PROMOTE_MODE. */
820 /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
821 for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test
822 for this value. */
823 #define PROMOTE_FUNCTION_RETURN
824
825 /* Define this macro if the promotion described by PROMOTE_MODE
826 should _only_ be performed for outgoing function arguments or
827 function return values, as specified by PROMOTE_FUNCTION_ARGS
828 and PROMOTE_FUNCTION_RETURN, respectively. */
829 /* This is only needed for TARGET_ARCH64, but since PROMOTE_MODE is a no-op
830 for TARGET_ARCH32 this is ok. Otherwise we'd need to add a runtime test
831 for this value. For TARGET_ARCH64 we need it, as we don't have instructions
832 for arithmetic operations which do zero/sign extension at the same time,
833 so without this we end up with a srl/sra after every assignment to an
834 user variable, which means very very bad code. */
835 #define PROMOTE_FOR_CALL_ONLY
836
837 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
838 #define PARM_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
839
840 /* Boundary (in *bits*) on which stack pointer should be aligned. */
841 #define STACK_BOUNDARY (TARGET_ARCH64 ? 128 : 64)
842
843 /* ALIGN FRAMES on double word boundaries */
844
845 #define SPARC_STACK_ALIGN(LOC) \
846 (TARGET_ARCH64 ? (((LOC)+15) & ~15) : (((LOC)+7) & ~7))
847
848 /* Allocation boundary (in *bits*) for the code of a function. */
849 #define FUNCTION_BOUNDARY 32
850
851 /* Alignment of field after `int : 0' in a structure. */
852 #define EMPTY_FIELD_BOUNDARY (TARGET_ARCH64 ? 64 : 32)
853
854 /* Every structure's size must be a multiple of this. */
855 #define STRUCTURE_SIZE_BOUNDARY 8
856
857 /* A bitfield declared as `int' forces `int' alignment for the struct. */
858 #define PCC_BITFIELD_TYPE_MATTERS 1
859
860 /* No data type wants to be aligned rounder than this. */
861 #define BIGGEST_ALIGNMENT (TARGET_ARCH64 ? 128 : 64)
862
863 /* The best alignment to use in cases where we have a choice. */
864 #define FASTEST_ALIGNMENT 64
865
866 /* Define this macro as an expression for the alignment of a structure
867 (given by STRUCT as a tree node) if the alignment computed in the
868 usual way is COMPUTED and the alignment explicitly specified was
869 SPECIFIED.
870
871 The default is to use SPECIFIED if it is larger; otherwise, use
872 the smaller of COMPUTED and `BIGGEST_ALIGNMENT' */
873 #define ROUND_TYPE_ALIGN(STRUCT, COMPUTED, SPECIFIED) \
874 (TARGET_FASTER_STRUCTS ? \
875 ((TREE_CODE (STRUCT) == RECORD_TYPE \
876 || TREE_CODE (STRUCT) == UNION_TYPE \
877 || TREE_CODE (STRUCT) == QUAL_UNION_TYPE) \
878 && TYPE_FIELDS (STRUCT) != 0 \
879 ? MAX (MAX ((COMPUTED), (SPECIFIED)), BIGGEST_ALIGNMENT) \
880 : MAX ((COMPUTED), (SPECIFIED))) \
881 : MAX ((COMPUTED), (SPECIFIED)))
882
883 /* Make strings word-aligned so strcpy from constants will be faster. */
884 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
885 ((TREE_CODE (EXP) == STRING_CST \
886 && (ALIGN) < FASTEST_ALIGNMENT) \
887 ? FASTEST_ALIGNMENT : (ALIGN))
888
889 /* Make arrays of chars word-aligned for the same reasons. */
890 #define DATA_ALIGNMENT(TYPE, ALIGN) \
891 (TREE_CODE (TYPE) == ARRAY_TYPE \
892 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
893 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
894
895 /* Set this nonzero if move instructions will actually fail to work
896 when given unaligned data. */
897 #define STRICT_ALIGNMENT 1
898
899 /* Things that must be doubleword aligned cannot go in the text section,
900 because the linker fails to align the text section enough!
901 Put them in the data section. This macro is only used in this file. */
902 #define MAX_TEXT_ALIGN 32
903
904 /* This forces all variables and constants to the data section when PIC.
905 This is because the SunOS 4 shared library scheme thinks everything in
906 text is a function, and patches the address to point to a loader stub. */
907 /* This is defined to zero for every system which doesn't use the a.out object
908 file format. */
909 #ifndef SUNOS4_SHARED_LIBRARIES
910 #define SUNOS4_SHARED_LIBRARIES 0
911 #endif
912
913 /* This is defined differently for v9 in a cover file. */
914 #define SELECT_SECTION(T,RELOC) \
915 { \
916 if (TREE_CODE (T) == VAR_DECL) \
917 { \
918 if (TREE_READONLY (T) && ! TREE_SIDE_EFFECTS (T) \
919 && DECL_INITIAL (T) \
920 && (DECL_INITIAL (T) == error_mark_node \
921 || TREE_CONSTANT (DECL_INITIAL (T))) \
922 && DECL_ALIGN (T) <= MAX_TEXT_ALIGN \
923 && ! (flag_pic && ((RELOC) || SUNOS4_SHARED_LIBRARIES))) \
924 text_section (); \
925 else \
926 data_section (); \
927 } \
928 else if (TREE_CODE (T) == CONSTRUCTOR) \
929 { \
930 if (flag_pic && ((RELOC) || SUNOS4_SHARED_LIBRARIES)) \
931 data_section (); \
932 } \
933 else if (TREE_CODE_CLASS (TREE_CODE (T)) == 'c') \
934 { \
935 if ((TREE_CODE (T) == STRING_CST && flag_writable_strings) \
936 || TYPE_ALIGN (TREE_TYPE (T)) > MAX_TEXT_ALIGN \
937 || (flag_pic && ((RELOC) || SUNOS4_SHARED_LIBRARIES))) \
938 data_section (); \
939 else \
940 text_section (); \
941 } \
942 }
943
944 /* Use text section for a constant
945 unless we need more alignment than that offers. */
946 /* This is defined differently for v9 in a cover file. */
947 #define SELECT_RTX_SECTION(MODE, X) \
948 { \
949 if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
950 && ! (flag_pic && (symbolic_operand ((X), (MODE)) || SUNOS4_SHARED_LIBRARIES))) \
951 text_section (); \
952 else \
953 data_section (); \
954 }
955 \f
956 /* Standard register usage. */
957
958 /* Number of actual hardware registers.
959 The hardware registers are assigned numbers for the compiler
960 from 0 to just below FIRST_PSEUDO_REGISTER.
961 All registers that the compiler knows about must be given numbers,
962 even those that are not normally considered general registers.
963
964 SPARC has 32 integer registers and 32 floating point registers.
965 64 bit SPARC has 32 additional fp regs, but the odd numbered ones are not
966 accessible. We still account for them to simplify register computations
967 (eg: in CLASS_MAX_NREGS). There are also 4 fp condition code registers, so
968 32+32+32+4 == 100.
969 Register 100 is used as the integer condition code register. */
970
971 #define FIRST_PSEUDO_REGISTER 101
972
973 #define SPARC_FIRST_FP_REG 32
974 /* Additional V9 fp regs. */
975 #define SPARC_FIRST_V9_FP_REG 64
976 #define SPARC_LAST_V9_FP_REG 95
977 /* V9 %fcc[0123]. V8 uses (figuratively) %fcc0. */
978 #define SPARC_FIRST_V9_FCC_REG 96
979 #define SPARC_LAST_V9_FCC_REG 99
980 /* V8 fcc reg. */
981 #define SPARC_FCC_REG 96
982 /* Integer CC reg. We don't distinguish %icc from %xcc. */
983 #define SPARC_ICC_REG 100
984
985 /* Nonzero if REGNO is an fp reg. */
986 #define SPARC_FP_REG_P(REGNO) \
987 ((REGNO) >= SPARC_FIRST_FP_REG && (REGNO) <= SPARC_LAST_V9_FP_REG)
988
989 /* Argument passing regs. */
990 #define SPARC_OUTGOING_INT_ARG_FIRST 8
991 #define SPARC_INCOMING_INT_ARG_FIRST (TARGET_FLAT ? 8 : 24)
992 #define SPARC_FP_ARG_FIRST 32
993
994 /* 1 for registers that have pervasive standard uses
995 and are not available for the register allocator.
996
997 On non-v9 systems:
998 g1 is free to use as temporary.
999 g2-g4 are reserved for applications. Gcc normally uses them as
1000 temporaries, but this can be disabled via the -mno-app-regs option.
1001 g5 through g7 are reserved for the operating system.
1002
1003 On v9 systems:
1004 g1,g5 are free to use as temporaries, and are free to use between calls
1005 if the call is to an external function via the PLT.
1006 g4 is free to use as a temporary in the non-embedded case.
1007 g4 is reserved in the embedded case.
1008 g2-g3 are reserved for applications. Gcc normally uses them as
1009 temporaries, but this can be disabled via the -mno-app-regs option.
1010 g6-g7 are reserved for the operating system (or application in
1011 embedded case).
1012 ??? Register 1 is used as a temporary by the 64 bit sethi pattern, so must
1013 currently be a fixed register until this pattern is rewritten.
1014 Register 1 is also used when restoring call-preserved registers in large
1015 stack frames.
1016
1017 Registers fixed in arch32 and not arch64 (or vice-versa) are marked in
1018 CONDITIONAL_REGISTER_USAGE in order to properly handle -ffixed-.
1019 */
1020
1021 #define FIXED_REGISTERS \
1022 {1, 0, 2, 2, 2, 2, 1, 1, \
1023 0, 0, 0, 0, 0, 0, 1, 0, \
1024 0, 0, 0, 0, 0, 0, 0, 0, \
1025 0, 0, 0, 0, 0, 0, 1, 1, \
1026 \
1027 0, 0, 0, 0, 0, 0, 0, 0, \
1028 0, 0, 0, 0, 0, 0, 0, 0, \
1029 0, 0, 0, 0, 0, 0, 0, 0, \
1030 0, 0, 0, 0, 0, 0, 0, 0, \
1031 \
1032 0, 0, 0, 0, 0, 0, 0, 0, \
1033 0, 0, 0, 0, 0, 0, 0, 0, \
1034 0, 0, 0, 0, 0, 0, 0, 0, \
1035 0, 0, 0, 0, 0, 0, 0, 0, \
1036 \
1037 0, 0, 0, 0, 0}
1038
1039 /* 1 for registers not available across function calls.
1040 These must include the FIXED_REGISTERS and also any
1041 registers that can be used without being saved.
1042 The latter must include the registers where values are returned
1043 and the register where structure-value addresses are passed.
1044 Aside from that, you can include as many other registers as you like. */
1045
1046 #define CALL_USED_REGISTERS \
1047 {1, 1, 1, 1, 1, 1, 1, 1, \
1048 1, 1, 1, 1, 1, 1, 1, 1, \
1049 0, 0, 0, 0, 0, 0, 0, 0, \
1050 0, 0, 0, 0, 0, 0, 1, 1, \
1051 \
1052 1, 1, 1, 1, 1, 1, 1, 1, \
1053 1, 1, 1, 1, 1, 1, 1, 1, \
1054 1, 1, 1, 1, 1, 1, 1, 1, \
1055 1, 1, 1, 1, 1, 1, 1, 1, \
1056 \
1057 1, 1, 1, 1, 1, 1, 1, 1, \
1058 1, 1, 1, 1, 1, 1, 1, 1, \
1059 1, 1, 1, 1, 1, 1, 1, 1, \
1060 1, 1, 1, 1, 1, 1, 1, 1, \
1061 \
1062 1, 1, 1, 1, 1}
1063
1064 /* If !TARGET_FPU, then make the fp registers and fp cc regs fixed so that
1065 they won't be allocated. */
1066
1067 #define CONDITIONAL_REGISTER_USAGE \
1068 do \
1069 { \
1070 if (flag_pic) \
1071 { \
1072 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
1073 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
1074 } \
1075 /* If the user has passed -f{fixed,call-{used,saved}}-g5 */ \
1076 /* then honour it. */ \
1077 if (TARGET_ARCH32 && fixed_regs[5]) \
1078 fixed_regs[5] = 1; \
1079 else if (TARGET_ARCH64 && fixed_regs[5] == 2) \
1080 fixed_regs[5] = 0; \
1081 if (! TARGET_V9) \
1082 { \
1083 int regno; \
1084 for (regno = SPARC_FIRST_V9_FP_REG; \
1085 regno <= SPARC_LAST_V9_FP_REG; \
1086 regno++) \
1087 fixed_regs[regno] = 1; \
1088 /* %fcc0 is used by v8 and v9. */ \
1089 for (regno = SPARC_FIRST_V9_FCC_REG + 1; \
1090 regno <= SPARC_LAST_V9_FCC_REG; \
1091 regno++) \
1092 fixed_regs[regno] = 1; \
1093 } \
1094 if (! TARGET_FPU) \
1095 { \
1096 int regno; \
1097 for (regno = 32; regno < SPARC_LAST_V9_FCC_REG; regno++) \
1098 fixed_regs[regno] = 1; \
1099 } \
1100 /* If the user has passed -f{fixed,call-{used,saved}}-g2 */ \
1101 /* then honour it. Likewise with g3 and g4. */ \
1102 if (fixed_regs[2] == 2) \
1103 fixed_regs[2] = ! TARGET_APP_REGS; \
1104 if (fixed_regs[3] == 2) \
1105 fixed_regs[3] = ! TARGET_APP_REGS; \
1106 if (TARGET_ARCH32 && fixed_regs[4] == 2) \
1107 fixed_regs[4] = ! TARGET_APP_REGS; \
1108 else if (TARGET_CM_EMBMEDANY) \
1109 fixed_regs[4] = 1; \
1110 else if (fixed_regs[4] == 2) \
1111 fixed_regs[4] = 0; \
1112 if (TARGET_FLAT) \
1113 { \
1114 /* Let the compiler believe the frame pointer is still \
1115 %fp, but output it as %i7. */ \
1116 fixed_regs[31] = 1; \
1117 reg_names[FRAME_POINTER_REGNUM] = "%i7"; \
1118 /* Disable leaf functions */ \
1119 memset (sparc_leaf_regs, 0, FIRST_PSEUDO_REGISTER); \
1120 } \
1121 if (profile_block_flag) \
1122 { \
1123 /* %g1 and %g2 (sparc32) resp. %g4 (sparc64) must be \
1124 fixed, because BLOCK_PROFILER uses them. */ \
1125 fixed_regs[1] = 1; \
1126 fixed_regs[TARGET_ARCH64 ? 4 : 2] = 1; \
1127 } \
1128 } \
1129 while (0)
1130
1131 /* Return number of consecutive hard regs needed starting at reg REGNO
1132 to hold something of mode MODE.
1133 This is ordinarily the length in words of a value of mode MODE
1134 but can be less for certain modes in special long registers.
1135
1136 On SPARC, ordinary registers hold 32 bits worth;
1137 this means both integer and floating point registers.
1138 On v9, integer regs hold 64 bits worth; floating point regs hold
1139 32 bits worth (this includes the new fp regs as even the odd ones are
1140 included in the hard register count). */
1141
1142 #define HARD_REGNO_NREGS(REGNO, MODE) \
1143 (TARGET_ARCH64 \
1144 ? ((REGNO) < 32 \
1145 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD \
1146 : (GET_MODE_SIZE (MODE) + 3) / 4) \
1147 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1148
1149 /* Due to the ARCH64 descrepancy above we must override these
1150 next two macros too. */
1151 #define REG_SIZE(R) \
1152 (TARGET_ARCH64 \
1153 && ((GET_CODE (R) == REG \
1154 && ((REGNO (R) >= FIRST_PSEUDO_REGISTER \
1155 && FLOAT_MODE_P (GET_MODE (R))) \
1156 || (REGNO (R) < FIRST_PSEUDO_REGISTER \
1157 && REGNO (R) >= 32))) \
1158 || (GET_CODE (R) == SUBREG \
1159 && ((REGNO (SUBREG_REG (R)) >= FIRST_PSEUDO_REGISTER \
1160 && FLOAT_MODE_P (GET_MODE (SUBREG_REG (R)))) \
1161 || (REGNO (SUBREG_REG (R)) < FIRST_PSEUDO_REGISTER \
1162 && REGNO (SUBREG_REG (R)) >= 32)))) \
1163 ? (GET_MODE_SIZE (GET_MODE (R)) + 3) / 4 \
1164 : (GET_MODE_SIZE (GET_MODE (R)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1165
1166 #define REGMODE_NATURAL_SIZE(MODE) \
1167 ((TARGET_ARCH64 && FLOAT_MODE_P (MODE)) ? 4 : UNITS_PER_WORD)
1168
1169 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
1170 See sparc.c for how we initialize this. */
1171 extern int *hard_regno_mode_classes;
1172 extern int sparc_mode_class[];
1173
1174 /* ??? Because of the funny way we pass parameters we should allow certain
1175 ??? types of float/complex values to be in integer registers during
1176 ??? RTL generation. This only matters on arch32. */
1177 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1178 ((hard_regno_mode_classes[REGNO] & sparc_mode_class[MODE]) != 0)
1179
1180 /* Value is 1 if it is a good idea to tie two pseudo registers
1181 when one has mode MODE1 and one has mode MODE2.
1182 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1183 for any hard reg, then this must be 0 for correct output.
1184
1185 For V9: SFmode can't be combined with other float modes, because they can't
1186 be allocated to the %d registers. Also, DFmode won't fit in odd %f
1187 registers, but SFmode will. */
1188 #define MODES_TIEABLE_P(MODE1, MODE2) \
1189 ((MODE1) == (MODE2) \
1190 || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
1191 && (! TARGET_V9 \
1192 || (GET_MODE_CLASS (MODE1) != MODE_FLOAT \
1193 || (MODE1 != SFmode && MODE2 != SFmode)))))
1194
1195 /* Specify the registers used for certain standard purposes.
1196 The values of these macros are register numbers. */
1197
1198 /* SPARC pc isn't overloaded on a register that the compiler knows about. */
1199 /* #define PC_REGNUM */
1200
1201 /* Register to use for pushing function arguments. */
1202 #define STACK_POINTER_REGNUM 14
1203
1204 /* Actual top-of-stack address is 92/176 greater than the contents of the
1205 stack pointer register for !v9/v9. That is:
1206 - !v9: 64 bytes for the in and local registers, 4 bytes for structure return
1207 address, and 6*4 bytes for the 6 register parameters.
1208 - v9: 128 bytes for the in and local registers + 6*8 bytes for the integer
1209 parameter regs. */
1210 #define STACK_POINTER_OFFSET FIRST_PARM_OFFSET(0)
1211
1212 /* The stack bias (amount by which the hardware register is offset by). */
1213 #define SPARC_STACK_BIAS ((TARGET_ARCH64 && TARGET_STACK_BIAS) ? 2047 : 0)
1214
1215 /* Is stack biased? */
1216 #define STACK_BIAS SPARC_STACK_BIAS
1217
1218 /* Base register for access to local variables of the function. */
1219 #define FRAME_POINTER_REGNUM 30
1220
1221 #if 0
1222 /* Register that is used for the return address for the flat model. */
1223 #define RETURN_ADDR_REGNUM 15
1224 #endif
1225
1226 /* Value should be nonzero if functions must have frame pointers.
1227 Zero means the frame pointer need not be set up (and parms
1228 may be accessed via the stack pointer) in functions that seem suitable.
1229 This is computed in `reload', in reload1.c.
1230 Used in flow.c, global.c, and reload1.c.
1231
1232 Being a non-leaf function does not mean a frame pointer is needed in the
1233 flat window model. However, the debugger won't be able to backtrace through
1234 us with out it. */
1235 #define FRAME_POINTER_REQUIRED \
1236 (TARGET_FLAT ? (current_function_calls_alloca || current_function_varargs \
1237 || !leaf_function_p ()) \
1238 : ! (leaf_function_p () && only_leaf_regs_used ()))
1239
1240 /* C statement to store the difference between the frame pointer
1241 and the stack pointer values immediately after the function prologue.
1242
1243 Note, we always pretend that this is a leaf function because if
1244 it's not, there's no point in trying to eliminate the
1245 frame pointer. If it is a leaf function, we guessed right! */
1246 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
1247 ((VAR) = (TARGET_FLAT ? sparc_flat_compute_frame_size (get_frame_size ()) \
1248 : compute_frame_size (get_frame_size (), 1)))
1249
1250 /* Base register for access to arguments of the function. */
1251 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
1252
1253 /* Register in which static-chain is passed to a function. This must
1254 not be a register used by the prologue. */
1255 #define STATIC_CHAIN_REGNUM (TARGET_ARCH64 ? 5 : 2)
1256
1257 /* Register which holds offset table for position-independent
1258 data references. */
1259
1260 #define PIC_OFFSET_TABLE_REGNUM 23
1261
1262 /* Pick a default value we can notice from override_options:
1263 !v9: Default is on.
1264 v9: Default is off. */
1265
1266 #define DEFAULT_PCC_STRUCT_RETURN -1
1267
1268 /* Sparc ABI says that quad-precision floats and all structures are returned
1269 in memory.
1270 For v9: unions <= 32 bytes in size are returned in int regs,
1271 structures up to 32 bytes are returned in int and fp regs. */
1272
1273 #define RETURN_IN_MEMORY(TYPE) \
1274 (TARGET_ARCH32 \
1275 ? (TYPE_MODE (TYPE) == BLKmode \
1276 || TYPE_MODE (TYPE) == TFmode \
1277 || TYPE_MODE (TYPE) == TCmode) \
1278 : (TYPE_MODE (TYPE) == BLKmode \
1279 && (unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) > 32))
1280
1281 /* Functions which return large structures get the address
1282 to place the wanted value at offset 64 from the frame.
1283 Must reserve 64 bytes for the in and local registers.
1284 v9: Functions which return large structures get the address to place the
1285 wanted value from an invisible first argument. */
1286 /* Used only in other #defines in this file. */
1287 #define STRUCT_VALUE_OFFSET 64
1288
1289 #define STRUCT_VALUE \
1290 (TARGET_ARCH64 \
1291 ? 0 \
1292 : gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, \
1293 STRUCT_VALUE_OFFSET)))
1294
1295 #define STRUCT_VALUE_INCOMING \
1296 (TARGET_ARCH64 \
1297 ? 0 \
1298 : gen_rtx_MEM (Pmode, plus_constant (frame_pointer_rtx, \
1299 STRUCT_VALUE_OFFSET)))
1300 \f
1301 /* Define the classes of registers for register constraints in the
1302 machine description. Also define ranges of constants.
1303
1304 One of the classes must always be named ALL_REGS and include all hard regs.
1305 If there is more than one class, another class must be named NO_REGS
1306 and contain no registers.
1307
1308 The name GENERAL_REGS must be the name of a class (or an alias for
1309 another name such as ALL_REGS). This is the class of registers
1310 that is allowed by "g" or "r" in a register constraint.
1311 Also, registers outside this class are allocated only when
1312 instructions express preferences for them.
1313
1314 The classes must be numbered in nondecreasing order; that is,
1315 a larger-numbered class must never be contained completely
1316 in a smaller-numbered class.
1317
1318 For any two classes, it is very desirable that there be another
1319 class that represents their union. */
1320
1321 /* The SPARC has various kinds of registers: general, floating point,
1322 and condition codes [well, it has others as well, but none that we
1323 care directly about].
1324
1325 For v9 we must distinguish between the upper and lower floating point
1326 registers because the upper ones can't hold SFmode values.
1327 HARD_REGNO_MODE_OK won't help here because reload assumes that register(s)
1328 satisfying a group need for a class will also satisfy a single need for
1329 that class. EXTRA_FP_REGS is a bit of a misnomer as it covers all 64 fp
1330 regs.
1331
1332 It is important that one class contains all the general and all the standard
1333 fp regs. Otherwise find_reg() won't properly allocate int regs for moves,
1334 because reg_class_record() will bias the selection in favor of fp regs,
1335 because reg_class_subunion[GENERAL_REGS][FP_REGS] will yield FP_REGS,
1336 because FP_REGS > GENERAL_REGS.
1337
1338 It is also important that one class contain all the general and all the
1339 fp regs. Otherwise when spilling a DFmode reg, it may be from EXTRA_FP_REGS
1340 but find_reloads() may use class GENERAL_OR_FP_REGS. This will cause
1341 allocate_reload_reg() to bypass it causing an abort because the compiler
1342 thinks it doesn't have a spill reg when in fact it does.
1343
1344 v9 also has 4 floating point condition code registers. Since we don't
1345 have a class that is the union of FPCC_REGS with either of the others,
1346 it is important that it appear first. Otherwise the compiler will die
1347 trying to compile _fixunsdfsi because fix_truncdfsi2 won't match its
1348 constraints.
1349
1350 It is important that SPARC_ICC_REG have class NO_REGS. Otherwise combine
1351 may try to use it to hold an SImode value. See register_operand.
1352 ??? Should %fcc[0123] be handled similarly?
1353 */
1354
1355 enum reg_class { NO_REGS, FPCC_REGS, I64_REGS, GENERAL_REGS, FP_REGS,
1356 EXTRA_FP_REGS, GENERAL_OR_FP_REGS, GENERAL_OR_EXTRA_FP_REGS,
1357 ALL_REGS, LIM_REG_CLASSES };
1358
1359 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1360
1361 /* Give names of register classes as strings for dump file. */
1362
1363 #define REG_CLASS_NAMES \
1364 { "NO_REGS", "FPCC_REGS", "I64_REGS", "GENERAL_REGS", "FP_REGS", \
1365 "EXTRA_FP_REGS", "GENERAL_OR_FP_REGS", "GENERAL_OR_EXTRA_FP_REGS", \
1366 "ALL_REGS" }
1367
1368 /* Define which registers fit in which classes.
1369 This is an initializer for a vector of HARD_REG_SET
1370 of length N_REG_CLASSES. */
1371
1372 #define REG_CLASS_CONTENTS \
1373 {{0, 0, 0, 0}, {0, 0, 0, 0xf}, {0xffff, 0, 0, 0}, \
1374 {-1, 0, 0, 0}, {0, -1, 0, 0}, {0, -1, -1, 0}, \
1375 {-1, -1, 0, 0}, {-1, -1, -1, 0}, {-1, -1, -1, 0x1f}}
1376
1377 /* The same information, inverted:
1378 Return the class number of the smallest class containing
1379 reg number REGNO. This could be a conditional expression
1380 or could index an array. */
1381
1382 extern enum reg_class sparc_regno_reg_class[];
1383
1384 #define REGNO_REG_CLASS(REGNO) sparc_regno_reg_class[(REGNO)]
1385
1386 /* This is the order in which to allocate registers normally.
1387
1388 We put %f0/%f1 last among the float registers, so as to make it more
1389 likely that a pseudo-register which dies in the float return register
1390 will get allocated to the float return register, thus saving a move
1391 instruction at the end of the function. */
1392
1393 #define REG_ALLOC_ORDER \
1394 { 8, 9, 10, 11, 12, 13, 2, 3, \
1395 15, 16, 17, 18, 19, 20, 21, 22, \
1396 23, 24, 25, 26, 27, 28, 29, 31, \
1397 34, 35, 36, 37, 38, 39, /* %f2-%f7 */ \
1398 40, 41, 42, 43, 44, 45, 46, 47, /* %f8-%f15 */ \
1399 48, 49, 50, 51, 52, 53, 54, 55, /* %f16-%f23 */ \
1400 56, 57, 58, 59, 60, 61, 62, 63, /* %f24-%f31 */ \
1401 64, 65, 66, 67, 68, 69, 70, 71, /* %f32-%f39 */ \
1402 72, 73, 74, 75, 76, 77, 78, 79, /* %f40-%f47 */ \
1403 80, 81, 82, 83, 84, 85, 86, 87, /* %f48-%f55 */ \
1404 88, 89, 90, 91, 92, 93, 94, 95, /* %f56-%f63 */ \
1405 32, 33, /* %f0,%f1 */ \
1406 96, 97, 98, 99, 100, /* %fcc0-3, %icc */ \
1407 1, 4, 5, 6, 7, 0, 14, 30}
1408
1409 /* This is the order in which to allocate registers for
1410 leaf functions. If all registers can fit in the "gi" registers,
1411 then we have the possibility of having a leaf function. */
1412
1413 #define REG_LEAF_ALLOC_ORDER \
1414 { 2, 3, 24, 25, 26, 27, 28, 29, \
1415 4, 5, 6, 7, 1, \
1416 15, 8, 9, 10, 11, 12, 13, \
1417 16, 17, 18, 19, 20, 21, 22, 23, \
1418 34, 35, 36, 37, 38, 39, \
1419 40, 41, 42, 43, 44, 45, 46, 47, \
1420 48, 49, 50, 51, 52, 53, 54, 55, \
1421 56, 57, 58, 59, 60, 61, 62, 63, \
1422 64, 65, 66, 67, 68, 69, 70, 71, \
1423 72, 73, 74, 75, 76, 77, 78, 79, \
1424 80, 81, 82, 83, 84, 85, 86, 87, \
1425 88, 89, 90, 91, 92, 93, 94, 95, \
1426 32, 33, \
1427 96, 97, 98, 99, 100, \
1428 0, 14, 30, 31}
1429
1430 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
1431
1432 extern char sparc_leaf_regs[];
1433 #define LEAF_REGISTERS sparc_leaf_regs
1434
1435 extern char leaf_reg_remap[];
1436 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
1437
1438 /* The class value for index registers, and the one for base regs. */
1439 #define INDEX_REG_CLASS GENERAL_REGS
1440 #define BASE_REG_CLASS GENERAL_REGS
1441
1442 /* Local macro to handle the two v9 classes of FP regs. */
1443 #define FP_REG_CLASS_P(CLASS) ((CLASS) == FP_REGS || (CLASS) == EXTRA_FP_REGS)
1444
1445 /* Get reg_class from a letter such as appears in the machine description.
1446 In the not-v9 case, coerce v9's 'e' class to 'f', so we can use 'e' in the
1447 .md file for v8 and v9.
1448 'd' and 'b' are used for single and double precision VIS operations,
1449 if TARGET_VIS.
1450 'h' is used for V8+ 64 bit global and out registers. */
1451
1452 #define REG_CLASS_FROM_LETTER(C) \
1453 (TARGET_V9 \
1454 ? ((C) == 'f' ? FP_REGS \
1455 : (C) == 'e' ? EXTRA_FP_REGS \
1456 : (C) == 'c' ? FPCC_REGS \
1457 : ((C) == 'd' && TARGET_VIS) ? FP_REGS\
1458 : ((C) == 'b' && TARGET_VIS) ? EXTRA_FP_REGS\
1459 : ((C) == 'h' && TARGET_V8PLUS) ? I64_REGS\
1460 : NO_REGS) \
1461 : ((C) == 'f' ? FP_REGS \
1462 : (C) == 'e' ? FP_REGS \
1463 : (C) == 'c' ? FPCC_REGS \
1464 : NO_REGS))
1465
1466 /* The letters I, J, K, L and M in a register constraint string
1467 can be used to stand for particular ranges of immediate operands.
1468 This macro defines what the ranges are.
1469 C is the letter, and VALUE is a constant value.
1470 Return 1 if VALUE is in the range specified by C.
1471
1472 `I' is used for the range of constants an insn can actually contain.
1473 `J' is used for the range which is just zero (since that is R0).
1474 `K' is used for constants which can be loaded with a single sethi insn.
1475 `L' is used for the range of constants supported by the movcc insns.
1476 `M' is used for the range of constants supported by the movrcc insns. */
1477
1478 #define SPARC_SIMM10_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x200 < 0x400)
1479 #define SPARC_SIMM11_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x400 < 0x800)
1480 #define SPARC_SIMM13_P(X) ((unsigned HOST_WIDE_INT) (X) + 0x1000 < 0x2000)
1481 /* 10 and 11 bit immediates are only used for a few specific insns.
1482 SMALL_INT is used throughout the port so we continue to use it. */
1483 #define SMALL_INT(X) (SPARC_SIMM13_P (INTVAL (X)))
1484 /* 13 bit immediate, considering only the low 32 bits */
1485 #define SMALL_INT32(X) (SPARC_SIMM13_P ((int)INTVAL (X) & 0xffffffff))
1486 #define SPARC_SETHI_P(X) \
1487 (((unsigned HOST_WIDE_INT) (X) & \
1488 (TARGET_ARCH64 ? ~(unsigned HOST_WIDE_INT) 0xfffffc00 : 0x3ff)) == 0)
1489
1490 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1491 ((C) == 'I' ? SPARC_SIMM13_P (VALUE) \
1492 : (C) == 'J' ? (VALUE) == 0 \
1493 : (C) == 'K' ? SPARC_SETHI_P (VALUE) \
1494 : (C) == 'L' ? SPARC_SIMM11_P (VALUE) \
1495 : (C) == 'M' ? SPARC_SIMM10_P (VALUE) \
1496 : 0)
1497
1498 /* Similar, but for floating constants, and defining letters G and H.
1499 Here VALUE is the CONST_DOUBLE rtx itself. */
1500
1501 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1502 ((C) == 'G' ? fp_zero_operand (VALUE, GET_MODE (VALUE)) \
1503 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
1504 : 0)
1505
1506 /* Given an rtx X being reloaded into a reg required to be
1507 in class CLASS, return the class of reg to actually use.
1508 In general this is just CLASS; but on some machines
1509 in some cases it is preferable to use a more restrictive class. */
1510 /* - We can't load constants into FP registers.
1511 - We can't load FP constants into integer registers when soft-float,
1512 because there is no soft-float pattern with a r/F constraint.
1513 - We can't load FP constants into integer registers for TFmode unless
1514 it is 0.0L, because there is no movtf pattern with a r/F constraint.
1515 - Try and reload integer constants (symbolic or otherwise) back into
1516 registers directly, rather than having them dumped to memory. */
1517
1518 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1519 (CONSTANT_P (X) \
1520 ? ((FP_REG_CLASS_P (CLASS) \
1521 || (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1522 && ! TARGET_FPU) \
1523 || (GET_MODE (X) == TFmode \
1524 && ! fp_zero_operand (X, TFmode))) \
1525 ? NO_REGS \
1526 : (!FP_REG_CLASS_P (CLASS) \
1527 && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT) \
1528 ? GENERAL_REGS \
1529 : (CLASS)) \
1530 : (CLASS))
1531
1532 /* Return the register class of a scratch register needed to load IN into
1533 a register of class CLASS in MODE.
1534
1535 We need a temporary when loading/storing a HImode/QImode value
1536 between memory and the FPU registers. This can happen when combine puts
1537 a paradoxical subreg in a float/fix conversion insn. */
1538
1539 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1540 ((FP_REG_CLASS_P (CLASS) \
1541 && ((MODE) == HImode || (MODE) == QImode) \
1542 && (GET_CODE (IN) == MEM \
1543 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1544 && true_regnum (IN) == -1))) \
1545 ? GENERAL_REGS \
1546 : (((TARGET_CM_MEDANY \
1547 && symbolic_operand ((IN), (MODE))) \
1548 || (TARGET_CM_EMBMEDANY \
1549 && text_segment_operand ((IN), (MODE)))) \
1550 && !flag_pic) \
1551 ? GENERAL_REGS \
1552 : NO_REGS)
1553
1554 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, IN) \
1555 ((FP_REG_CLASS_P (CLASS) \
1556 && ((MODE) == HImode || (MODE) == QImode) \
1557 && (GET_CODE (IN) == MEM \
1558 || ((GET_CODE (IN) == REG || GET_CODE (IN) == SUBREG) \
1559 && true_regnum (IN) == -1))) \
1560 ? GENERAL_REGS \
1561 : (((TARGET_CM_MEDANY \
1562 && symbolic_operand ((IN), (MODE))) \
1563 || (TARGET_CM_EMBMEDANY \
1564 && text_segment_operand ((IN), (MODE)))) \
1565 && !flag_pic) \
1566 ? GENERAL_REGS \
1567 : NO_REGS)
1568
1569 /* On SPARC it is not possible to directly move data between
1570 GENERAL_REGS and FP_REGS. */
1571 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1572 (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
1573
1574 /* Return the stack location to use for secondary memory needed reloads.
1575 We want to use the reserved location just below the frame pointer.
1576 However, we must ensure that there is a frame, so use assign_stack_local
1577 if the frame size is zero. */
1578 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1579 (get_frame_size () == 0 \
1580 ? assign_stack_local (MODE, GET_MODE_SIZE (MODE), 0) \
1581 : gen_rtx_MEM (MODE, plus_constant (frame_pointer_rtx, \
1582 STARTING_FRAME_OFFSET)))
1583
1584 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on v9
1585 because the movsi and movsf patterns don't handle r/f moves.
1586 For v8 we copy the default definition. */
1587 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1588 (TARGET_ARCH64 \
1589 ? (GET_MODE_BITSIZE (MODE) < 32 \
1590 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
1591 : MODE) \
1592 : (GET_MODE_BITSIZE (MODE) < BITS_PER_WORD \
1593 ? mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (MODE), 0) \
1594 : MODE))
1595
1596 /* Return the maximum number of consecutive registers
1597 needed to represent mode MODE in a register of class CLASS. */
1598 /* On SPARC, this is the size of MODE in words. */
1599 #define CLASS_MAX_NREGS(CLASS, MODE) \
1600 (FP_REG_CLASS_P (CLASS) ? (GET_MODE_SIZE (MODE) + 3) / 4 \
1601 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1602 \f
1603 /* Stack layout; function entry, exit and calling. */
1604
1605 /* Define the number of register that can hold parameters.
1606 This macro is only used in other macro definitions below and in sparc.c.
1607 MODE is the mode of the argument.
1608 !v9: All args are passed in %o0-%o5.
1609 v9: %o0-%o5 and %f0-%f31 are cumulatively used to pass values.
1610 See the description in sparc.c. */
1611 #define NPARM_REGS(MODE) \
1612 (TARGET_ARCH64 \
1613 ? (GET_MODE_CLASS (MODE) == MODE_FLOAT ? 32 : 6) \
1614 : 6)
1615
1616 /* Define this if pushing a word on the stack
1617 makes the stack pointer a smaller address. */
1618 #define STACK_GROWS_DOWNWARD
1619
1620 /* Define this if the nominal address of the stack frame
1621 is at the high-address end of the local variables;
1622 that is, each additional local variable allocated
1623 goes at a more negative offset in the frame. */
1624 #define FRAME_GROWS_DOWNWARD
1625
1626 /* Offset within stack frame to start allocating local variables at.
1627 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1628 first local allocated. Otherwise, it is the offset to the BEGINNING
1629 of the first local allocated. */
1630 /* This allows space for one TFmode floating point value. */
1631 #define STARTING_FRAME_OFFSET \
1632 (TARGET_ARCH64 ? (SPARC_STACK_BIAS - 16) \
1633 : (-SPARC_STACK_ALIGN (LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)))
1634
1635 /* If we generate an insn to push BYTES bytes,
1636 this says how many the stack pointer really advances by.
1637 On SPARC, don't define this because there are no push insns. */
1638 /* #define PUSH_ROUNDING(BYTES) */
1639
1640 /* Offset of first parameter from the argument pointer register value.
1641 !v9: This is 64 for the ins and locals, plus 4 for the struct-return reg
1642 even if this function isn't going to use it.
1643 v9: This is 128 for the ins and locals. */
1644 #define FIRST_PARM_OFFSET(FNDECL) \
1645 (TARGET_ARCH64 ? (SPARC_STACK_BIAS + 16 * UNITS_PER_WORD) \
1646 : (STRUCT_VALUE_OFFSET + UNITS_PER_WORD))
1647
1648 /* Offset from the argument pointer register value to the CFA.
1649 This is different from FIRST_PARM_OFFSET because the register window
1650 comes between the CFA and the arguments. */
1651
1652 #define ARG_POINTER_CFA_OFFSET(FNDECL) SPARC_STACK_BIAS
1653
1654 /* When a parameter is passed in a register, stack space is still
1655 allocated for it.
1656 !v9: All 6 possible integer registers have backing store allocated.
1657 v9: Only space for the arguments passed is allocated. */
1658 /* ??? Ideally, we'd use zero here (as the minimum), but zero has special
1659 meaning to the backend. Further, we need to be able to detect if a
1660 varargs/unprototyped function is called, as they may want to spill more
1661 registers than we've provided space. Ugly, ugly. So for now we retain
1662 all 6 slots even for v9. */
1663 #define REG_PARM_STACK_SPACE(DECL) (6 * UNITS_PER_WORD)
1664
1665 /* Keep the stack pointer constant throughout the function.
1666 This is both an optimization and a necessity: longjmp
1667 doesn't behave itself when the stack pointer moves within
1668 the function! */
1669 #define ACCUMULATE_OUTGOING_ARGS 1
1670
1671 /* Value is the number of bytes of arguments automatically
1672 popped when returning from a subroutine call.
1673 FUNDECL is the declaration node of the function (as a tree),
1674 FUNTYPE is the data type of the function (as a tree),
1675 or for a library call it is an identifier node for the subroutine name.
1676 SIZE is the number of bytes of arguments passed on the stack. */
1677
1678 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1679
1680 /* Some subroutine macros specific to this machine.
1681 When !TARGET_FPU, put float return values in the general registers,
1682 since we don't have any fp registers. */
1683 #define BASE_RETURN_VALUE_REG(MODE) \
1684 (TARGET_ARCH64 \
1685 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 : 8) \
1686 : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 : 8))
1687
1688 #define BASE_OUTGOING_VALUE_REG(MODE) \
1689 (TARGET_ARCH64 \
1690 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 \
1691 : TARGET_FLAT ? 8 : 24) \
1692 : (((MODE) == SFmode || (MODE) == DFmode) && TARGET_FPU ? 32 \
1693 : (TARGET_FLAT ? 8 : 24)))
1694
1695 #define BASE_PASSING_ARG_REG(MODE) \
1696 (TARGET_ARCH64 \
1697 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 : 8) \
1698 : 8)
1699
1700 /* ??? FIXME -- seems wrong for v9 structure passing... */
1701 #define BASE_INCOMING_ARG_REG(MODE) \
1702 (TARGET_ARCH64 \
1703 ? (TARGET_FPU && FLOAT_MODE_P (MODE) ? 32 \
1704 : TARGET_FLAT ? 8 : 24) \
1705 : (TARGET_FLAT ? 8 : 24))
1706
1707 /* Define this macro if the target machine has "register windows". This
1708 C expression returns the register number as seen by the called function
1709 corresponding to register number OUT as seen by the calling function.
1710 Return OUT if register number OUT is not an outbound register. */
1711
1712 #define INCOMING_REGNO(OUT) \
1713 ((TARGET_FLAT || (OUT) < 8 || (OUT) > 15) ? (OUT) : (OUT) + 16)
1714
1715 /* Define this macro if the target machine has "register windows". This
1716 C expression returns the register number as seen by the calling function
1717 corresponding to register number IN as seen by the called function.
1718 Return IN if register number IN is not an inbound register. */
1719
1720 #define OUTGOING_REGNO(IN) \
1721 ((TARGET_FLAT || (IN) < 24 || (IN) > 31) ? (IN) : (IN) - 16)
1722
1723 /* Define this macro if the target machine has register windows. This
1724 C expression returns true if the register is call-saved but is in the
1725 register window. */
1726
1727 #define LOCAL_REGNO(REGNO) \
1728 (TARGET_FLAT ? 0 : (REGNO) >= 16 && (REGNO) <= 31)
1729
1730 /* Define how to find the value returned by a function.
1731 VALTYPE is the data type of the value (as a tree).
1732 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1733 otherwise, FUNC is 0. */
1734
1735 /* On SPARC the value is found in the first "output" register. */
1736
1737 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1738 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 1)
1739
1740 /* But the called function leaves it in the first "input" register. */
1741
1742 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
1743 function_value ((VALTYPE), TYPE_MODE (VALTYPE), 0)
1744
1745 /* Define how to find the value returned by a library function
1746 assuming the value has mode MODE. */
1747
1748 #define LIBCALL_VALUE(MODE) \
1749 function_value (NULL_TREE, (MODE), 1)
1750
1751 /* 1 if N is a possible register number for a function value
1752 as seen by the caller.
1753 On SPARC, the first "output" reg is used for integer values,
1754 and the first floating point register is used for floating point values. */
1755
1756 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
1757
1758 /* Define the size of space to allocate for the return value of an
1759 untyped_call. */
1760
1761 #define APPLY_RESULT_SIZE 16
1762
1763 /* 1 if N is a possible register number for function argument passing.
1764 On SPARC, these are the "output" registers. v9 also uses %f0-%f31. */
1765
1766 #define FUNCTION_ARG_REGNO_P(N) \
1767 (TARGET_ARCH64 \
1768 ? (((N) >= 8 && (N) <= 13) || ((N) >= 32 && (N) <= 63)) \
1769 : ((N) >= 8 && (N) <= 13))
1770 \f
1771 /* Define a data type for recording info about an argument list
1772 during the scan of that argument list. This data type should
1773 hold all necessary information about the function itself
1774 and about the args processed so far, enough to enable macros
1775 such as FUNCTION_ARG to determine where the next arg should go.
1776
1777 On SPARC (!v9), this is a single integer, which is a number of words
1778 of arguments scanned so far (including the invisible argument,
1779 if any, which holds the structure-value-address).
1780 Thus 7 or more means all following args should go on the stack.
1781
1782 For v9, we also need to know whether a prototype is present. */
1783
1784 struct sparc_args {
1785 int words; /* number of words passed so far */
1786 int prototype_p; /* non-zero if a prototype is present */
1787 int libcall_p; /* non-zero if a library call */
1788 };
1789 #define CUMULATIVE_ARGS struct sparc_args
1790
1791 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1792 for a call to a function whose data type is FNTYPE.
1793 For a library call, FNTYPE is 0. */
1794
1795 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1796 init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (INDIRECT));
1797
1798 /* Update the data in CUM to advance over an argument
1799 of mode MODE and data type TYPE.
1800 TYPE is null for libcalls where that information may not be available. */
1801
1802 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1803 function_arg_advance (& (CUM), (MODE), (TYPE), (NAMED))
1804
1805 /* Nonzero if we do not know how to pass TYPE solely in registers. */
1806
1807 #define MUST_PASS_IN_STACK(MODE,TYPE) \
1808 ((TYPE) != 0 \
1809 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
1810 || TREE_ADDRESSABLE (TYPE)))
1811
1812 /* Determine where to put an argument to a function.
1813 Value is zero to push the argument on the stack,
1814 or a hard register in which to store the argument.
1815
1816 MODE is the argument's machine mode.
1817 TYPE is the data type of the argument (as a tree).
1818 This is null for libcalls where that information may
1819 not be available.
1820 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1821 the preceding args and about the function being called.
1822 NAMED is nonzero if this argument is a named parameter
1823 (otherwise it is an extra parameter matching an ellipsis). */
1824
1825 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1826 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 0)
1827
1828 /* Define where a function finds its arguments.
1829 This is different from FUNCTION_ARG because of register windows. */
1830
1831 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1832 function_arg (& (CUM), (MODE), (TYPE), (NAMED), 1)
1833
1834 /* For an arg passed partly in registers and partly in memory,
1835 this is the number of registers used.
1836 For args passed entirely in registers or entirely in memory, zero. */
1837
1838 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1839 function_arg_partial_nregs (& (CUM), (MODE), (TYPE), (NAMED))
1840
1841 /* A C expression that indicates when an argument must be passed by reference.
1842 If nonzero for an argument, a copy of that argument is made in memory and a
1843 pointer to the argument is passed instead of the argument itself.
1844 The pointer is passed in whatever way is appropriate for passing a pointer
1845 to that type. */
1846
1847 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1848 function_arg_pass_by_reference (& (CUM), (MODE), (TYPE), (NAMED))
1849
1850 /* If defined, a C expression which determines whether, and in which direction,
1851 to pad out an argument with extra space. The value should be of type
1852 `enum direction': either `upward' to pad above the argument,
1853 `downward' to pad below, or `none' to inhibit padding. */
1854
1855 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1856 function_arg_padding ((MODE), (TYPE))
1857
1858 /* If defined, a C expression that gives the alignment boundary, in bits,
1859 of an argument with the specified mode and type. If it is not defined,
1860 PARM_BOUNDARY is used for all arguments.
1861 For sparc64, objects requiring 16 byte alignment are passed that way. */
1862
1863 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1864 ((TARGET_ARCH64 \
1865 && (GET_MODE_ALIGNMENT (MODE) == 128 \
1866 || ((TYPE) && TYPE_ALIGN (TYPE) == 128))) \
1867 ? 128 : PARM_BOUNDARY)
1868 \f
1869 /* Define the information needed to generate branch and scc insns. This is
1870 stored from the compare operation. Note that we can't use "rtx" here
1871 since it hasn't been defined! */
1872
1873 extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;
1874
1875 \f
1876 /* Generate the special assembly code needed to tell the assembler whatever
1877 it might need to know about the return value of a function.
1878
1879 For Sparc assemblers, we need to output a .proc pseudo-op which conveys
1880 information to the assembler relating to peephole optimization (done in
1881 the assembler). */
1882
1883 #define ASM_DECLARE_RESULT(FILE, RESULT) \
1884 fprintf ((FILE), "\t.proc\t0%lo\n", sparc_type_code (TREE_TYPE (RESULT)))
1885
1886 /* Output the label for a function definition. */
1887
1888 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
1889 do { \
1890 ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
1891 ASM_OUTPUT_LABEL (FILE, NAME); \
1892 } while (0)
1893
1894 /* Output the special assembly code needed to tell the assembler some
1895 register is used as global register variable.
1896
1897 SPARC 64bit psABI declares registers %g2 and %g3 as application
1898 registers and %g6 and %g7 as OS registers. Any object using them
1899 should declare (for %g2/%g3 has to, for %g6/%g7 can) that it uses them
1900 and how they are used (scratch or some global variable).
1901 Linker will then refuse to link together objects which use those
1902 registers incompatibly.
1903
1904 Unless the registers are used for scratch, two different global
1905 registers cannot be declared to the same name, so in the unlikely
1906 case of a global register variable occupying more than one register
1907 we prefix the second and following registers with .gnu.part1. etc. */
1908
1909 extern char sparc_hard_reg_printed[8];
1910
1911 #ifdef HAVE_AS_REGISTER_PSEUDO_OP
1912 #define ASM_DECLARE_REGISTER_GLOBAL(FILE, DECL, REGNO, NAME) \
1913 do { \
1914 if (TARGET_ARCH64) \
1915 { \
1916 int end = HARD_REGNO_NREGS ((REGNO), DECL_MODE (decl)) + (REGNO); \
1917 int reg; \
1918 for (reg = (REGNO); reg < 8 && reg < end; reg++) \
1919 if ((reg & ~1) == 2 || (reg & ~1) == 6) \
1920 { \
1921 if (reg == (REGNO)) \
1922 fprintf ((FILE), "\t.register\t%%g%d, %s\n", reg, (NAME)); \
1923 else \
1924 fprintf ((FILE), "\t.register\t%%g%d, .gnu.part%d.%s\n", \
1925 reg, reg - (REGNO), (NAME)); \
1926 sparc_hard_reg_printed[reg] = 1; \
1927 } \
1928 } \
1929 } while (0)
1930 #endif
1931
1932 \f
1933 /* Output assembler code to FILE to increment profiler label # LABELNO
1934 for profiling a function entry. */
1935
1936 #define FUNCTION_PROFILER(FILE, LABELNO) \
1937 sparc_function_profiler(FILE, LABELNO)
1938
1939 /* Set the name of the mcount function for the system. */
1940
1941 #define MCOUNT_FUNCTION "*mcount"
1942
1943 /* The following macro shall output assembler code to FILE
1944 to initialize basic-block profiling. */
1945
1946 #define FUNCTION_BLOCK_PROFILER(FILE, BLOCK_OR_LABEL) \
1947 sparc_function_block_profiler(FILE, BLOCK_OR_LABEL)
1948
1949 /* The following macro shall output assembler code to FILE
1950 to increment a counter associated with basic block number BLOCKNO. */
1951
1952 #define BLOCK_PROFILER(FILE, BLOCKNO) \
1953 sparc_block_profiler (FILE, BLOCKNO)
1954
1955 /* The following macro shall output assembler code to FILE
1956 to indicate a return from function during basic-block profiling. */
1957
1958 #define FUNCTION_BLOCK_PROFILER_EXIT(FILE) \
1959 sparc_function_block_profiler_exit(FILE)
1960
1961 #ifdef IN_LIBGCC2
1962
1963 /* The function `__bb_trace_func' is called in every basic block
1964 and is not allowed to change the machine state. Saving (restoring)
1965 the state can either be done in the BLOCK_PROFILER macro,
1966 before calling function (rsp. after returning from function)
1967 `__bb_trace_func', or it can be done inside the function by
1968 defining the macros:
1969
1970 MACHINE_STATE_SAVE(ID)
1971 MACHINE_STATE_RESTORE(ID)
1972
1973 In the latter case care must be taken, that the prologue code
1974 of function `__bb_trace_func' does not already change the
1975 state prior to saving it with MACHINE_STATE_SAVE.
1976
1977 The parameter `ID' is a string identifying a unique macro use.
1978
1979 On sparc it is sufficient to save the psw register to memory.
1980 Unfortunately the psw register can be read in supervisor mode only,
1981 so we read only the condition codes by using branch instructions
1982 and hope that this is enough.
1983
1984 On V9, life is much sweater: there is a user accessible %ccr
1985 register, but we use it for 64bit libraries only. */
1986
1987 #if TARGET_ARCH32
1988
1989 #define MACHINE_STATE_SAVE(ID) \
1990 int ms_flags, ms_saveret; \
1991 asm volatile( \
1992 "mov %%g2,%1\n\
1993 mov %%g0,%0\n\
1994 be,a LFLGNZ"ID"\n\
1995 or %0,4,%0\n\
1996 LFLGNZ"ID":\n\
1997 bcs,a LFLGNC"ID"\n\
1998 or %0,1,%0\n\
1999 LFLGNC"ID":\n\
2000 bvs,a LFLGNV"ID"\n\
2001 or %0,2,%0\n\
2002 LFLGNV"ID":\n\
2003 bneg,a LFLGNN"ID"\n\
2004 or %0,8,%0\n\
2005 LFLGNN"ID":" \
2006 : "=r"(ms_flags), "=r"(ms_saveret));
2007
2008 #else
2009
2010 #define MACHINE_STATE_SAVE(ID) \
2011 unsigned long ms_flags, ms_saveret; \
2012 asm volatile( \
2013 "mov %%g4,%1\n\
2014 rd %%ccr,%0" \
2015 : "=r"(ms_flags), "=r"(ms_saveret));
2016
2017 #endif
2018
2019 /* On sparc MACHINE_STATE_RESTORE restores the psw register from memory.
2020 The psw register can be written in supervisor mode only,
2021 which is true even for simple condition codes.
2022 We use some combination of instructions to produce the
2023 proper condition codes, but some flag combinations can not
2024 be generated in this way. If this happens an unimplemented
2025 instruction will be executed to abort the program. */
2026
2027 #if TARGET_ARCH32
2028
2029 #define MACHINE_STATE_RESTORE(ID) \
2030 { extern char flgtab[] __asm__("LFLGTAB"ID); \
2031 int scratch; \
2032 asm volatile ( \
2033 "jmpl %2+%1,%%g0\n\
2034 ! Do part of VC in the delay slot here, as it needs 3 insns.\n\
2035 addcc 2,%3,%%g0\n\
2036 LFLGTAB" ID ":\n\
2037 ! 0\n\
2038 ba LFLGRET"ID"\n\
2039 orcc 1,%%g0,%%g0\n\
2040 ! C\n\
2041 ba LFLGRET"ID"\n\
2042 addcc 2,%3,%%g0\n\
2043 ! V\n\
2044 unimp\n\
2045 nop\n\
2046 ! VC\n\
2047 ba LFLGRET"ID"\n\
2048 addxcc %4,%4,%0\n\
2049 ! Z\n\
2050 ba LFLGRET"ID"\n\
2051 subcc %%g0,%%g0,%%g0\n\
2052 ! ZC\n\
2053 ba LFLGRET"ID"\n\
2054 addcc 1,%3,%0\n\
2055 ! ZVC\n\
2056 ba LFLGRET"ID"\n\
2057 addcc %4,%4,%0\n\
2058 ! N\n\
2059 ba LFLGRET"ID"\n\
2060 orcc %%g0,-1,%%g0\n\
2061 ! NC\n\
2062 ba LFLGRET"ID"\n\
2063 addcc %%g0,%3,%%g0\n\
2064 ! NV\n\
2065 unimp\n\
2066 nop\n\
2067 ! NVC\n\
2068 unimp\n\
2069 nop\n\
2070 ! NZ\n\
2071 unimp\n\
2072 nop\n\
2073 ! NZC\n\
2074 unimp\n\
2075 nop\n\
2076 ! NZV\n\
2077 unimp\n\
2078 nop\n\
2079 ! NZVC\n\
2080 unimp\n\
2081 nop\n\
2082 LFLGRET"ID":\n\
2083 mov %5,%%g2" \
2084 : "=r"(scratch) \
2085 : "r"(ms_flags*8), "r"(flgtab), "r"(-1), \
2086 "r"(0x80000000), "r"(ms_saveret) \
2087 : "cc", "g2"); }
2088
2089 #else
2090
2091 #define MACHINE_STATE_RESTORE(ID) \
2092 asm volatile ( \
2093 "wr %0,0,%%ccr\n\
2094 mov %1,%%g4" \
2095 : : "r"(ms_flags), "r"(ms_saveret) \
2096 : "cc", "g4");
2097
2098 #endif
2099
2100 #endif /* IN_LIBGCC2 */
2101 \f
2102 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2103 the stack pointer does not matter. The value is tested only in
2104 functions that have frame pointers.
2105 No definition is equivalent to always zero. */
2106
2107 #define EXIT_IGNORE_STACK \
2108 (get_frame_size () != 0 \
2109 || current_function_calls_alloca || current_function_outgoing_args_size)
2110
2111 #define DELAY_SLOTS_FOR_EPILOGUE \
2112 (TARGET_FLAT ? sparc_flat_epilogue_delay_slots () : 1)
2113 #define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
2114 (TARGET_FLAT ? sparc_flat_eligible_for_epilogue_delay (trial, slots_filled) \
2115 : eligible_for_epilogue_delay (trial, slots_filled))
2116
2117 /* Define registers used by the epilogue and return instruction. */
2118 #define EPILOGUE_USES(REGNO) \
2119 (!TARGET_FLAT && REGNO == 31)
2120 \f
2121 /* Length in units of the trampoline for entering a nested function. */
2122
2123 #define TRAMPOLINE_SIZE (TARGET_ARCH64 ? 32 : 16)
2124
2125 #define TRAMPOLINE_ALIGNMENT 128 /* 16 bytes */
2126
2127 /* Emit RTL insns to initialize the variable parts of a trampoline.
2128 FNADDR is an RTX for the address of the function's pure code.
2129 CXT is an RTX for the static chain value for the function. */
2130
2131 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
2132 if (TARGET_ARCH64) \
2133 sparc64_initialize_trampoline (TRAMP, FNADDR, CXT); \
2134 else \
2135 sparc_initialize_trampoline (TRAMP, FNADDR, CXT)
2136 \f
2137 /* Generate necessary RTL for __builtin_saveregs(). */
2138
2139 #define EXPAND_BUILTIN_SAVEREGS() sparc_builtin_saveregs ()
2140
2141 /* Implement `va_start' for varargs and stdarg. */
2142 #define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
2143 sparc_va_start (stdarg, valist, nextarg)
2144
2145 /* Implement `va_arg'. */
2146 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
2147 sparc_va_arg (valist, type)
2148
2149 /* Define this macro if the location where a function argument is passed
2150 depends on whether or not it is a named argument.
2151
2152 This macro controls how the NAMED argument to FUNCTION_ARG
2153 is set for varargs and stdarg functions. With this macro defined,
2154 the NAMED argument is always true for named arguments, and false for
2155 unnamed arguments. If this is not defined, but SETUP_INCOMING_VARARGS
2156 is defined, then all arguments are treated as named. Otherwise, all named
2157 arguments except the last are treated as named.
2158 For the v9 we want NAMED to mean what it says it means. */
2159
2160 #define STRICT_ARGUMENT_NAMING TARGET_V9
2161
2162 /* We do not allow sibling calls if -mflat, nor
2163 we do not allow indirect calls to be optimized into sibling calls. */
2164 #define FUNCTION_OK_FOR_SIBCALL(DECL) (DECL && ! TARGET_FLAT)
2165
2166 /* Generate RTL to flush the register windows so as to make arbitrary frames
2167 available. */
2168 #define SETUP_FRAME_ADDRESSES() \
2169 emit_insn (gen_flush_register_windows ())
2170
2171 /* Given an rtx for the address of a frame,
2172 return an rtx for the address of the word in the frame
2173 that holds the dynamic chain--the previous frame's address.
2174 ??? -mflat support? */
2175 #define DYNAMIC_CHAIN_ADDRESS(frame) plus_constant (frame, 14 * UNITS_PER_WORD)
2176
2177 /* The return address isn't on the stack, it is in a register, so we can't
2178 access it from the current frame pointer. We can access it from the
2179 previous frame pointer though by reading a value from the register window
2180 save area. */
2181 #define RETURN_ADDR_IN_PREVIOUS_FRAME
2182
2183 /* This is the offset of the return address to the true next instruction to be
2184 executed for the current function. */
2185 #define RETURN_ADDR_OFFSET \
2186 (8 + 4 * (! TARGET_ARCH64 && current_function_returns_struct))
2187
2188 /* The current return address is in %i7. The return address of anything
2189 farther back is in the register window save area at [%fp+60]. */
2190 /* ??? This ignores the fact that the actual return address is +8 for normal
2191 returns, and +12 for structure returns. */
2192 #define RETURN_ADDR_RTX(count, frame) \
2193 ((count == -1) \
2194 ? gen_rtx_REG (Pmode, 31) \
2195 : gen_rtx_MEM (Pmode, \
2196 memory_address (Pmode, plus_constant (frame, \
2197 15 * UNITS_PER_WORD))))
2198
2199 /* Before the prologue, the return address is %o7 + 8. OK, sometimes it's
2200 +12, but always using +8 is close enough for frame unwind purposes.
2201 Actually, just using %o7 is close enough for unwinding, but %o7+8
2202 is something you can return to. */
2203 #define INCOMING_RETURN_ADDR_RTX \
2204 plus_constant (gen_rtx_REG (word_mode, 15), 8)
2205 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (15)
2206
2207 /* The offset from the incoming value of %sp to the top of the stack frame
2208 for the current function. On sparc64, we have to account for the stack
2209 bias if present. */
2210 #define INCOMING_FRAME_SP_OFFSET SPARC_STACK_BIAS
2211
2212 /* Describe how we implement __builtin_eh_return. */
2213 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 24 : INVALID_REGNUM)
2214 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 1) /* %g1 */
2215 #define EH_RETURN_HANDLER_RTX gen_rtx_REG (Pmode, 31) /* %i7 */
2216 \f
2217 /* Addressing modes, and classification of registers for them. */
2218
2219 /* #define HAVE_POST_INCREMENT 0 */
2220 /* #define HAVE_POST_DECREMENT 0 */
2221
2222 /* #define HAVE_PRE_DECREMENT 0 */
2223 /* #define HAVE_PRE_INCREMENT 0 */
2224
2225 /* Macros to check register numbers against specific register classes. */
2226
2227 /* These assume that REGNO is a hard or pseudo reg number.
2228 They give nonzero only if REGNO is a hard reg of the suitable class
2229 or a pseudo reg currently allocated to a suitable hard reg.
2230 Since they use reg_renumber, they are safe only once reg_renumber
2231 has been allocated, which happens in local-alloc.c. */
2232
2233 #define REGNO_OK_FOR_INDEX_P(REGNO) \
2234 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32)
2235 #define REGNO_OK_FOR_BASE_P(REGNO) \
2236 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < (unsigned)32)
2237 #define REGNO_OK_FOR_FP_P(REGNO) \
2238 (((unsigned) (REGNO) - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)) \
2239 || ((unsigned) reg_renumber[REGNO] - 32 < (TARGET_V9 ? (unsigned)64 : (unsigned)32)))
2240 #define REGNO_OK_FOR_CCFP_P(REGNO) \
2241 (TARGET_V9 \
2242 && (((unsigned) (REGNO) - 96 < (unsigned)4) \
2243 || ((unsigned) reg_renumber[REGNO] - 96 < (unsigned)4)))
2244
2245 /* Now macros that check whether X is a register and also,
2246 strictly, whether it is in a specified class.
2247
2248 These macros are specific to the SPARC, and may be used only
2249 in code for printing assembler insns and in conditions for
2250 define_optimization. */
2251
2252 /* 1 if X is an fp register. */
2253
2254 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
2255
2256 /* Is X, a REG, an in or global register? i.e. is regno 0..7 or 24..31 */
2257 #define IN_OR_GLOBAL_P(X) (REGNO (X) < 8 || (REGNO (X) >= 24 && REGNO (X) <= 31))
2258 \f
2259 /* Maximum number of registers that can appear in a valid memory address. */
2260
2261 #define MAX_REGS_PER_ADDRESS 2
2262
2263 /* Recognize any constant value that is a valid address.
2264 When PIC, we do not accept an address that would require a scratch reg
2265 to load into a register. */
2266
2267 #define CONSTANT_ADDRESS_P(X) \
2268 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
2269 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
2270 || (GET_CODE (X) == CONST \
2271 && ! (flag_pic && pic_address_needs_scratch (X))))
2272
2273 /* Define this, so that when PIC, reload won't try to reload invalid
2274 addresses which require two reload registers. */
2275
2276 #define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
2277
2278 /* Nonzero if the constant value X is a legitimate general operand.
2279 Anything can be made to work except floating point constants.
2280 If TARGET_VIS, 0.0 can be made to work as well. */
2281
2282 #define LEGITIMATE_CONSTANT_P(X) \
2283 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode || \
2284 (TARGET_VIS && \
2285 (GET_MODE (X) == SFmode || GET_MODE (X) == DFmode || \
2286 GET_MODE (X) == TFmode) && \
2287 fp_zero_operand (X, GET_MODE (X))))
2288
2289 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2290 and check its validity for a certain class.
2291 We have two alternate definitions for each of them.
2292 The usual definition accepts all pseudo regs; the other rejects
2293 them unless they have been allocated suitable hard regs.
2294 The symbol REG_OK_STRICT causes the latter definition to be used.
2295
2296 Most source files want to accept pseudo regs in the hope that
2297 they will get allocated to the class that the insn wants them to be in.
2298 Source files for reload pass need to be strict.
2299 After reload, it makes no difference, since pseudo regs have
2300 been eliminated by then. */
2301
2302 /* Optional extra constraints for this machine.
2303
2304 'Q' handles floating point constants which can be moved into
2305 an integer register with a single sethi instruction.
2306
2307 'R' handles floating point constants which can be moved into
2308 an integer register with a single mov instruction.
2309
2310 'S' handles floating point constants which can be moved into
2311 an integer register using a high/lo_sum sequence.
2312
2313 'T' handles memory addresses where the alignment is known to
2314 be at least 8 bytes.
2315
2316 `U' handles all pseudo registers or a hard even numbered
2317 integer register, needed for ldd/std instructions. */
2318
2319 #define EXTRA_CONSTRAINT_BASE(OP, C) \
2320 ((C) == 'Q' ? fp_sethi_p(OP) \
2321 : (C) == 'R' ? fp_mov_p(OP) \
2322 : (C) == 'S' ? fp_high_losum_p(OP) \
2323 : 0)
2324
2325 #ifndef REG_OK_STRICT
2326
2327 /* Nonzero if X is a hard reg that can be used as an index
2328 or if it is a pseudo reg. */
2329 #define REG_OK_FOR_INDEX_P(X) \
2330 (((unsigned) REGNO (X)) - 32 >= (FIRST_PSEUDO_REGISTER - 32))
2331 /* Nonzero if X is a hard reg that can be used as a base reg
2332 or if it is a pseudo reg. */
2333 #define REG_OK_FOR_BASE_P(X) \
2334 (((unsigned) REGNO (X)) - 32 >= (FIRST_PSEUDO_REGISTER - 32))
2335
2336 /* 'T', 'U' are for aligned memory loads which aren't needed for arch64. */
2337
2338 #define EXTRA_CONSTRAINT(OP, C) \
2339 (EXTRA_CONSTRAINT_BASE(OP, C) \
2340 || ((! TARGET_ARCH64 && (C) == 'T') \
2341 ? (mem_min_alignment (OP, 8)) \
2342 : ((! TARGET_ARCH64 && (C) == 'U') \
2343 ? (register_ok_for_ldd (OP)) \
2344 : 0)))
2345
2346 #else
2347
2348 /* Nonzero if X is a hard reg that can be used as an index. */
2349 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
2350 /* Nonzero if X is a hard reg that can be used as a base reg. */
2351 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
2352
2353 #define EXTRA_CONSTRAINT(OP, C) \
2354 (EXTRA_CONSTRAINT_BASE(OP, C) \
2355 || ((! TARGET_ARCH64 && (C) == 'T') \
2356 ? mem_min_alignment (OP, 8) && strict_memory_address_p (Pmode, XEXP (OP, 0)) \
2357 : ((! TARGET_ARCH64 && (C) == 'U') \
2358 ? (GET_CODE (OP) == REG \
2359 && (REGNO (OP) < FIRST_PSEUDO_REGISTER \
2360 || reg_renumber[REGNO (OP)] >= 0) \
2361 && register_ok_for_ldd (OP)) \
2362 : 0)))
2363
2364 #endif
2365 \f
2366 /* Should gcc use [%reg+%lo(xx)+offset] addresses? */
2367
2368 #ifdef HAVE_AS_OFFSETABLE_LO10
2369 #define USE_AS_OFFSETABLE_LO10 1
2370 #else
2371 #define USE_AS_OFFSETABLE_LO10 0
2372 #endif
2373 \f
2374 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2375 that is a valid memory address for an instruction.
2376 The MODE argument is the machine mode for the MEM expression
2377 that wants to use this address.
2378
2379 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
2380 ordinarily. This changes a bit when generating PIC.
2381
2382 If you change this, execute "rm explow.o recog.o reload.o". */
2383
2384 #define RTX_OK_FOR_BASE_P(X) \
2385 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
2386 || (GET_CODE (X) == SUBREG \
2387 && GET_CODE (SUBREG_REG (X)) == REG \
2388 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
2389
2390 #define RTX_OK_FOR_INDEX_P(X) \
2391 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
2392 || (GET_CODE (X) == SUBREG \
2393 && GET_CODE (SUBREG_REG (X)) == REG \
2394 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
2395
2396 #define RTX_OK_FOR_OFFSET_P(X) \
2397 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000 - 8)
2398
2399 #define RTX_OK_FOR_OLO10_P(X) \
2400 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0xc00 - 8)
2401
2402 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2403 { if (RTX_OK_FOR_BASE_P (X)) \
2404 goto ADDR; \
2405 else if (GET_CODE (X) == PLUS) \
2406 { \
2407 register rtx op0 = XEXP (X, 0); \
2408 register rtx op1 = XEXP (X, 1); \
2409 if (flag_pic && op0 == pic_offset_table_rtx) \
2410 { \
2411 if (RTX_OK_FOR_BASE_P (op1)) \
2412 goto ADDR; \
2413 else if (flag_pic == 1 \
2414 && GET_CODE (op1) != REG \
2415 && GET_CODE (op1) != LO_SUM \
2416 && GET_CODE (op1) != MEM \
2417 && (GET_CODE (op1) != CONST_INT \
2418 || SMALL_INT (op1))) \
2419 goto ADDR; \
2420 } \
2421 else if (RTX_OK_FOR_BASE_P (op0)) \
2422 { \
2423 if ((RTX_OK_FOR_INDEX_P (op1) \
2424 /* We prohibit REG + REG for TFmode when \
2425 there are no instructions which accept \
2426 REG+REG instructions. We do this \
2427 because REG+REG is not an offsetable \
2428 address. If we get the situation \
2429 in reload where source and destination \
2430 of a movtf pattern are both MEMs with \
2431 REG+REG address, then only one of them \
2432 gets converted to an offsetable \
2433 address. */ \
2434 && (MODE != TFmode \
2435 || (TARGET_FPU && TARGET_ARCH64 \
2436 && TARGET_V9 \
2437 && TARGET_HARD_QUAD)) \
2438 /* We prohibit REG + REG on ARCH32 if \
2439 not optimizing for DFmode/DImode \
2440 because then mem_min_alignment is \
2441 likely to be zero after reload and the \
2442 forced split would lack a matching \
2443 splitter pattern. */ \
2444 && (TARGET_ARCH64 || optimize \
2445 || (MODE != DFmode \
2446 && MODE != DImode))) \
2447 || RTX_OK_FOR_OFFSET_P (op1)) \
2448 goto ADDR; \
2449 } \
2450 else if (RTX_OK_FOR_BASE_P (op1)) \
2451 { \
2452 if ((RTX_OK_FOR_INDEX_P (op0) \
2453 /* See the previous comment. */ \
2454 && (MODE != TFmode \
2455 || (TARGET_FPU && TARGET_ARCH64 \
2456 && TARGET_V9 \
2457 && TARGET_HARD_QUAD)) \
2458 && (TARGET_ARCH64 || optimize \
2459 || (MODE != DFmode \
2460 && MODE != DImode))) \
2461 || RTX_OK_FOR_OFFSET_P (op0)) \
2462 goto ADDR; \
2463 } \
2464 else if (USE_AS_OFFSETABLE_LO10 \
2465 && GET_CODE (op0) == LO_SUM \
2466 && TARGET_ARCH64 \
2467 && ! TARGET_CM_MEDMID \
2468 && RTX_OK_FOR_OLO10_P (op1)) \
2469 { \
2470 register rtx op00 = XEXP (op0, 0); \
2471 register rtx op01 = XEXP (op0, 1); \
2472 if (RTX_OK_FOR_BASE_P (op00) \
2473 && CONSTANT_P (op01)) \
2474 goto ADDR; \
2475 } \
2476 else if (USE_AS_OFFSETABLE_LO10 \
2477 && GET_CODE (op1) == LO_SUM \
2478 && TARGET_ARCH64 \
2479 && ! TARGET_CM_MEDMID \
2480 && RTX_OK_FOR_OLO10_P (op0)) \
2481 { \
2482 register rtx op10 = XEXP (op1, 0); \
2483 register rtx op11 = XEXP (op1, 1); \
2484 if (RTX_OK_FOR_BASE_P (op10) \
2485 && CONSTANT_P (op11)) \
2486 goto ADDR; \
2487 } \
2488 } \
2489 else if (GET_CODE (X) == LO_SUM) \
2490 { \
2491 register rtx op0 = XEXP (X, 0); \
2492 register rtx op1 = XEXP (X, 1); \
2493 if (RTX_OK_FOR_BASE_P (op0) \
2494 && CONSTANT_P (op1) \
2495 /* We can't allow TFmode, because an offset \
2496 greater than or equal to the alignment (8) \
2497 may cause the LO_SUM to overflow if !v9. */\
2498 && (MODE != TFmode || TARGET_V9)) \
2499 goto ADDR; \
2500 } \
2501 else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
2502 goto ADDR; \
2503 }
2504 \f
2505 /* Try machine-dependent ways of modifying an illegitimate address
2506 to be legitimate. If we find one, return the new, valid address.
2507 This macro is used in only one place: `memory_address' in explow.c.
2508
2509 OLDX is the address as it was before break_out_memory_refs was called.
2510 In some cases it is useful to look at this to decide what needs to be done.
2511
2512 MODE and WIN are passed so that this macro can use
2513 GO_IF_LEGITIMATE_ADDRESS.
2514
2515 It is always safe for this macro to do nothing. It exists to recognize
2516 opportunities to optimize the output. */
2517
2518 /* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
2519 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2520 { rtx sparc_x = (X); \
2521 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
2522 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 1), \
2523 force_operand (XEXP (X, 0), NULL_RTX)); \
2524 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
2525 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2526 force_operand (XEXP (X, 1), NULL_RTX)); \
2527 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
2528 (X) = gen_rtx_PLUS (Pmode, force_operand (XEXP (X, 0), NULL_RTX),\
2529 XEXP (X, 1)); \
2530 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
2531 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2532 force_operand (XEXP (X, 1), NULL_RTX)); \
2533 if (sparc_x != (X) && memory_address_p (MODE, X)) \
2534 goto WIN; \
2535 if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0); \
2536 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
2537 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
2538 copy_to_mode_reg (Pmode, XEXP (X, 1))); \
2539 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
2540 (X) = gen_rtx_PLUS (Pmode, XEXP (X, 1), \
2541 copy_to_mode_reg (Pmode, XEXP (X, 0))); \
2542 else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
2543 || GET_CODE (X) == LABEL_REF) \
2544 (X) = copy_to_suggested_reg (X, NULL_RTX, Pmode); \
2545 if (memory_address_p (MODE, X)) \
2546 goto WIN; }
2547
2548 /* Try a machine-dependent way of reloading an illegitimate address
2549 operand. If we find one, push the reload and jump to WIN. This
2550 macro is used in only one place: `find_reloads_address' in reload.c.
2551
2552 For Sparc 32, we wish to handle addresses by splitting them into
2553 HIGH+LO_SUM pairs, retaining the LO_SUM in the memory reference.
2554 This cuts the number of extra insns by one.
2555
2556 Do nothing when generating PIC code and the address is a
2557 symbolic operand or requires a scratch register. */
2558
2559 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2560 do { \
2561 /* Decompose SImode constants into hi+lo_sum. We do have to \
2562 rerecognize what we produce, so be careful. */ \
2563 if (CONSTANT_P (X) \
2564 && (MODE != TFmode || TARGET_V9) \
2565 && GET_MODE (X) == SImode \
2566 && GET_CODE (X) != LO_SUM && GET_CODE (X) != HIGH \
2567 && ! (flag_pic \
2568 && (symbolic_operand (X, Pmode) \
2569 || pic_address_needs_scratch (X)))) \
2570 { \
2571 X = gen_rtx_LO_SUM (GET_MODE (X), \
2572 gen_rtx_HIGH (GET_MODE (X), X), X); \
2573 push_reload (XEXP (X, 0), NULL_RTX, &XEXP (X, 0), NULL, \
2574 BASE_REG_CLASS, GET_MODE (X), VOIDmode, 0, 0, \
2575 OPNUM, TYPE); \
2576 goto WIN; \
2577 } \
2578 /* ??? 64-bit reloads. */ \
2579 } while (0)
2580
2581 /* Go to LABEL if ADDR (a legitimate address expression)
2582 has an effect that depends on the machine mode it is used for.
2583 On the SPARC this is never true. */
2584
2585 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
2586
2587 /* If we are referencing a function make the SYMBOL_REF special.
2588 In the Embedded Medium/Anywhere code model, %g4 points to the data segment
2589 so we must not add it to function addresses. */
2590
2591 #define ENCODE_SECTION_INFO(DECL) \
2592 do { \
2593 if (TARGET_CM_EMBMEDANY && TREE_CODE (DECL) == FUNCTION_DECL) \
2594 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
2595 } while (0)
2596 \f
2597 /* Specify the machine mode that this machine uses
2598 for the index in the tablejump instruction. */
2599 /* If we ever implement any of the full models (such as CM_FULLANY),
2600 this has to be DImode in that case */
2601 #ifdef HAVE_GAS_SUBSECTION_ORDERING
2602 #define CASE_VECTOR_MODE \
2603 (! TARGET_PTR64 ? SImode : flag_pic ? SImode : TARGET_CM_MEDLOW ? SImode : DImode)
2604 #else
2605 /* If assembler does not have working .subsection -1, we use DImode for pic, as otherwise
2606 we have to sign extend which slows things down. */
2607 #define CASE_VECTOR_MODE \
2608 (! TARGET_PTR64 ? SImode : flag_pic ? DImode : TARGET_CM_MEDLOW ? SImode : DImode)
2609 #endif
2610
2611 /* Define as C expression which evaluates to nonzero if the tablejump
2612 instruction expects the table to contain offsets from the address of the
2613 table.
2614 Do not define this if the table should contain absolute addresses. */
2615 /* #define CASE_VECTOR_PC_RELATIVE 1 */
2616
2617 /* Specify the tree operation to be used to convert reals to integers. */
2618 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
2619
2620 /* This is the kind of divide that is easiest to do in the general case. */
2621 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
2622
2623 /* Define this as 1 if `char' should by default be signed; else as 0. */
2624 #define DEFAULT_SIGNED_CHAR 1
2625
2626 /* Max number of bytes we can move from memory to memory
2627 in one reasonably fast instruction. */
2628 #define MOVE_MAX 8
2629
2630 #if 0 /* Sun 4 has matherr, so this is no good. */
2631 /* This is the value of the error code EDOM for this machine,
2632 used by the sqrt instruction. */
2633 #define TARGET_EDOM 33
2634
2635 /* This is how to refer to the variable errno. */
2636 #define GEN_ERRNO_RTX \
2637 gen_rtx_MEM (SImode, gen_rtx_SYMBOL_REF (Pmode, "errno"))
2638 #endif /* 0 */
2639
2640 /* Define if operations between registers always perform the operation
2641 on the full register even if a narrower mode is specified. */
2642 #define WORD_REGISTER_OPERATIONS
2643
2644 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2645 will either zero-extend or sign-extend. The value of this macro should
2646 be the code that says which one of the two operations is implicitly
2647 done, NIL if none. */
2648 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2649
2650 /* Nonzero if access to memory by bytes is slow and undesirable.
2651 For RISC chips, it means that access to memory by bytes is no
2652 better than access by words when possible, so grab a whole word
2653 and maybe make use of that. */
2654 #define SLOW_BYTE_ACCESS 1
2655
2656 /* We assume that the store-condition-codes instructions store 0 for false
2657 and some other value for true. This is the value stored for true. */
2658
2659 #define STORE_FLAG_VALUE 1
2660
2661 /* When a prototype says `char' or `short', really pass an `int'. */
2662 #define PROMOTE_PROTOTYPES (TARGET_ARCH32)
2663
2664 /* Define this to be nonzero if shift instructions ignore all but the low-order
2665 few bits. */
2666 #define SHIFT_COUNT_TRUNCATED 1
2667
2668 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2669 is done just by pretending it is already truncated. */
2670 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2671
2672 /* Specify the machine mode that pointers have.
2673 After generation of rtl, the compiler makes no further distinction
2674 between pointers and any other objects of this machine mode. */
2675 #define Pmode (TARGET_ARCH64 ? DImode : SImode)
2676
2677 /* Generate calls to memcpy, memcmp and memset. */
2678 #define TARGET_MEM_FUNCTIONS
2679
2680 /* Add any extra modes needed to represent the condition code.
2681
2682 On the Sparc, we have a "no-overflow" mode which is used when an add or
2683 subtract insn is used to set the condition code. Different branches are
2684 used in this case for some operations.
2685
2686 We also have two modes to indicate that the relevant condition code is
2687 in the floating-point condition code register. One for comparisons which
2688 will generate an exception if the result is unordered (CCFPEmode) and
2689 one for comparisons which will never trap (CCFPmode).
2690
2691 CCXmode and CCX_NOOVmode are only used by v9. */
2692
2693 #define EXTRA_CC_MODES \
2694 CC(CCXmode, "CCX") \
2695 CC(CC_NOOVmode, "CC_NOOV") \
2696 CC(CCX_NOOVmode, "CCX_NOOV") \
2697 CC(CCFPmode, "CCFP") \
2698 CC(CCFPEmode, "CCFPE")
2699
2700 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2701 return the mode to be used for the comparison. For floating-point,
2702 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand
2703 is a PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
2704 processing is needed. */
2705 #define SELECT_CC_MODE(OP,X,Y) select_cc_mode ((OP), (X), (Y))
2706
2707 /* Return non-zero if MODE implies a floating point inequality can be
2708 reversed. For Sparc this is always true because we have a full
2709 compliment of ordered and unordered comparisons, but until generic
2710 code knows how to reverse it correctly we keep the old definition. */
2711 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
2712
2713 /* A function address in a call instruction for indexing purposes. */
2714 #define FUNCTION_MODE Pmode
2715
2716 /* Define this if addresses of constant functions
2717 shouldn't be put through pseudo regs where they can be cse'd.
2718 Desirable on machines where ordinary constants are expensive
2719 but a CALL with constant address is cheap. */
2720 #define NO_FUNCTION_CSE
2721
2722 /* alloca should avoid clobbering the old register save area. */
2723 #define SETJMP_VIA_SAVE_AREA
2724
2725 /* Define subroutines to call to handle multiply and divide.
2726 Use the subroutines that Sun's library provides.
2727 The `*' prevents an underscore from being prepended by the compiler. */
2728
2729 #define DIVSI3_LIBCALL "*.div"
2730 #define UDIVSI3_LIBCALL "*.udiv"
2731 #define MODSI3_LIBCALL "*.rem"
2732 #define UMODSI3_LIBCALL "*.urem"
2733 /* .umul is a little faster than .mul. */
2734 #define MULSI3_LIBCALL "*.umul"
2735
2736 /* Define library calls for quad FP operations. These are all part of the
2737 SPARC 32bit ABI. */
2738 #define ADDTF3_LIBCALL "_Q_add"
2739 #define SUBTF3_LIBCALL "_Q_sub"
2740 #define NEGTF2_LIBCALL "_Q_neg"
2741 #define MULTF3_LIBCALL "_Q_mul"
2742 #define DIVTF3_LIBCALL "_Q_div"
2743 #define FLOATSITF2_LIBCALL "_Q_itoq"
2744 #define FIX_TRUNCTFSI2_LIBCALL "_Q_qtoi"
2745 #define FIXUNS_TRUNCTFSI2_LIBCALL "_Q_qtou"
2746 #define EXTENDSFTF2_LIBCALL "_Q_stoq"
2747 #define TRUNCTFSF2_LIBCALL "_Q_qtos"
2748 #define EXTENDDFTF2_LIBCALL "_Q_dtoq"
2749 #define TRUNCTFDF2_LIBCALL "_Q_qtod"
2750 #define EQTF2_LIBCALL "_Q_feq"
2751 #define NETF2_LIBCALL "_Q_fne"
2752 #define GTTF2_LIBCALL "_Q_fgt"
2753 #define GETF2_LIBCALL "_Q_fge"
2754 #define LTTF2_LIBCALL "_Q_flt"
2755 #define LETF2_LIBCALL "_Q_fle"
2756
2757 /* We can define the TFmode sqrt optab only if TARGET_FPU. This is because
2758 with soft-float, the SFmode and DFmode sqrt instructions will be absent,
2759 and the compiler will notice and try to use the TFmode sqrt instruction
2760 for calls to the builtin function sqrt, but this fails. */
2761 #define INIT_TARGET_OPTABS \
2762 do { \
2763 if (TARGET_ARCH32) \
2764 { \
2765 add_optab->handlers[(int) TFmode].libfunc \
2766 = init_one_libfunc (ADDTF3_LIBCALL); \
2767 sub_optab->handlers[(int) TFmode].libfunc \
2768 = init_one_libfunc (SUBTF3_LIBCALL); \
2769 neg_optab->handlers[(int) TFmode].libfunc \
2770 = init_one_libfunc (NEGTF2_LIBCALL); \
2771 smul_optab->handlers[(int) TFmode].libfunc \
2772 = init_one_libfunc (MULTF3_LIBCALL); \
2773 flodiv_optab->handlers[(int) TFmode].libfunc \
2774 = init_one_libfunc (DIVTF3_LIBCALL); \
2775 eqtf2_libfunc = init_one_libfunc (EQTF2_LIBCALL); \
2776 netf2_libfunc = init_one_libfunc (NETF2_LIBCALL); \
2777 gttf2_libfunc = init_one_libfunc (GTTF2_LIBCALL); \
2778 getf2_libfunc = init_one_libfunc (GETF2_LIBCALL); \
2779 lttf2_libfunc = init_one_libfunc (LTTF2_LIBCALL); \
2780 letf2_libfunc = init_one_libfunc (LETF2_LIBCALL); \
2781 trunctfsf2_libfunc = init_one_libfunc (TRUNCTFSF2_LIBCALL); \
2782 trunctfdf2_libfunc = init_one_libfunc (TRUNCTFDF2_LIBCALL); \
2783 extendsftf2_libfunc = init_one_libfunc (EXTENDSFTF2_LIBCALL); \
2784 extenddftf2_libfunc = init_one_libfunc (EXTENDDFTF2_LIBCALL); \
2785 floatsitf_libfunc = init_one_libfunc (FLOATSITF2_LIBCALL); \
2786 fixtfsi_libfunc = init_one_libfunc (FIX_TRUNCTFSI2_LIBCALL); \
2787 fixunstfsi_libfunc \
2788 = init_one_libfunc (FIXUNS_TRUNCTFSI2_LIBCALL); \
2789 if (TARGET_FPU) \
2790 sqrt_optab->handlers[(int) TFmode].libfunc \
2791 = init_one_libfunc ("_Q_sqrt"); \
2792 } \
2793 INIT_SUBTARGET_OPTABS; \
2794 } while (0)
2795
2796 /* This is meant to be redefined in the host dependent files */
2797 #define INIT_SUBTARGET_OPTABS
2798
2799 /* Nonzero if a floating point comparison library call for
2800 mode MODE that will return a boolean value. Zero if one
2801 of the libgcc2 functions is used. */
2802 #define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) ((MODE) == TFmode)
2803
2804 /* Compute the cost of computing a constant rtl expression RTX
2805 whose rtx-code is CODE. The body of this macro is a portion
2806 of a switch statement. If the code is computed here,
2807 return it with a return statement. Otherwise, break from the switch. */
2808
2809 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
2810 case CONST_INT: \
2811 if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \
2812 return 0; \
2813 case HIGH: \
2814 return 2; \
2815 case CONST: \
2816 case LABEL_REF: \
2817 case SYMBOL_REF: \
2818 return 4; \
2819 case CONST_DOUBLE: \
2820 if (GET_MODE (RTX) == DImode) \
2821 if ((XINT (RTX, 3) == 0 \
2822 && (unsigned) XINT (RTX, 2) < 0x1000) \
2823 || (XINT (RTX, 3) == -1 \
2824 && XINT (RTX, 2) < 0 \
2825 && XINT (RTX, 2) >= -0x1000)) \
2826 return 0; \
2827 return 8;
2828
2829 #define ADDRESS_COST(RTX) 1
2830
2831 /* Compute extra cost of moving data between one register class
2832 and another. */
2833 #define GENERAL_OR_I64(C) ((C) == GENERAL_REGS || (C) == I64_REGS)
2834 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2835 (((FP_REG_CLASS_P (CLASS1) && GENERAL_OR_I64 (CLASS2)) \
2836 || (GENERAL_OR_I64 (CLASS1) && FP_REG_CLASS_P (CLASS2)) \
2837 || (CLASS1) == FPCC_REGS || (CLASS2) == FPCC_REGS) \
2838 ? (sparc_cpu == PROCESSOR_ULTRASPARC ? 12 : 6) : 2)
2839
2840 /* Provide the costs of a rtl expression. This is in the body of a
2841 switch on CODE. The purpose for the cost of MULT is to encourage
2842 `synth_mult' to find a synthetic multiply when reasonable.
2843
2844 If we need more than 12 insns to do a multiply, then go out-of-line,
2845 since the call overhead will be < 10% of the cost of the multiply. */
2846
2847 #define RTX_COSTS(X,CODE,OUTER_CODE) \
2848 case MULT: \
2849 if (sparc_cpu == PROCESSOR_ULTRASPARC) \
2850 return (GET_MODE (X) == DImode ? \
2851 COSTS_N_INSNS (34) : COSTS_N_INSNS (19)); \
2852 return TARGET_HARD_MUL ? COSTS_N_INSNS (5) : COSTS_N_INSNS (25); \
2853 case DIV: \
2854 case UDIV: \
2855 case MOD: \
2856 case UMOD: \
2857 if (sparc_cpu == PROCESSOR_ULTRASPARC) \
2858 return (GET_MODE (X) == DImode ? \
2859 COSTS_N_INSNS (68) : COSTS_N_INSNS (37)); \
2860 return COSTS_N_INSNS (25); \
2861 /* Make FLOAT and FIX more expensive than CONST_DOUBLE,\
2862 so that cse will favor the latter. */ \
2863 case FLOAT: \
2864 case FIX: \
2865 return 19;
2866
2867 #define ISSUE_RATE sparc_issue_rate()
2868
2869 /* Adjust the cost of dependencies. */
2870 #define ADJUST_COST(INSN,LINK,DEP,COST) \
2871 (COST) = sparc_adjust_cost(INSN, LINK, DEP, COST)
2872
2873 #define MD_SCHED_INIT(DUMP, SCHED_VERBOSE, MAX_READY) \
2874 if (sparc_cpu == PROCESSOR_ULTRASPARC) \
2875 ultrasparc_sched_init (DUMP, SCHED_VERBOSE)
2876
2877 #define MD_SCHED_REORDER(DUMP, SCHED_VERBOSE, READY, N_READY, CLOCK, CIM) \
2878 do { \
2879 if (sparc_cpu == PROCESSOR_ULTRASPARC) \
2880 ultrasparc_sched_reorder (DUMP, SCHED_VERBOSE, READY, N_READY); \
2881 CIM = issue_rate; \
2882 } while (0)
2883
2884 #define MD_SCHED_VARIABLE_ISSUE(DUMP, SCHED_VERBOSE, INSN, CAN_ISSUE_MORE) \
2885 do { \
2886 if (sparc_cpu == PROCESSOR_ULTRASPARC) \
2887 (CAN_ISSUE_MORE) = ultrasparc_variable_issue (INSN); \
2888 else \
2889 (CAN_ISSUE_MORE)--; \
2890 } while (0)
2891
2892 /* Conditional branches with empty delay slots have a length of two. */
2893 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2894 do { \
2895 if (GET_CODE (INSN) == CALL_INSN \
2896 || (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn))) \
2897 LENGTH += 1; \
2898 } while (0)
2899 \f
2900 /* Control the assembler format that we output. */
2901
2902 /* Output at beginning of assembler file. */
2903
2904 #define ASM_FILE_START(file)
2905
2906 /* A C string constant describing how to begin a comment in the target
2907 assembler language. The compiler assumes that the comment will end at
2908 the end of the line. */
2909
2910 #define ASM_COMMENT_START "!"
2911
2912 /* Output to assembler file text saying following lines
2913 may contain character constants, extra white space, comments, etc. */
2914
2915 #define ASM_APP_ON ""
2916
2917 /* Output to assembler file text saying following lines
2918 no longer contain unusual constructs. */
2919
2920 #define ASM_APP_OFF ""
2921
2922 /* ??? Try to make the style consistent here (_OP?). */
2923
2924 #define ASM_LONGLONG ".xword"
2925 #define ASM_LONG ".word"
2926 #define ASM_SHORT ".half"
2927 #define ASM_BYTE_OP "\t.byte\t"
2928 #define ASM_FLOAT ".single"
2929 #define ASM_DOUBLE ".double"
2930 #define ASM_LONGDOUBLE ".xxx" /* ??? Not known (or used yet). */
2931
2932 /* Output before read-only data. */
2933
2934 #define TEXT_SECTION_ASM_OP "\t.text"
2935
2936 /* Output before writable data. */
2937
2938 #define DATA_SECTION_ASM_OP "\t.data"
2939
2940 /* How to refer to registers in assembler output.
2941 This sequence is indexed by compiler's hard-register-number (see above). */
2942
2943 #define REGISTER_NAMES \
2944 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
2945 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
2946 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
2947 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
2948 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
2949 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
2950 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
2951 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31", \
2952 "%f32", "%f33", "%f34", "%f35", "%f36", "%f37", "%f38", "%f39", \
2953 "%f40", "%f41", "%f42", "%f43", "%f44", "%f45", "%f46", "%f47", \
2954 "%f48", "%f49", "%f50", "%f51", "%f52", "%f53", "%f54", "%f55", \
2955 "%f56", "%f57", "%f58", "%f59", "%f60", "%f61", "%f62", "%f63", \
2956 "%fcc0", "%fcc1", "%fcc2", "%fcc3", "%icc"}
2957
2958 /* Define additional names for use in asm clobbers and asm declarations. */
2959
2960 #define ADDITIONAL_REGISTER_NAMES \
2961 {{"ccr", SPARC_ICC_REG}, {"cc", SPARC_ICC_REG}}
2962
2963 /* How to renumber registers for dbx and gdb. In the flat model, the frame
2964 pointer is really %i7. */
2965
2966 #define DBX_REGISTER_NUMBER(REGNO) \
2967 (TARGET_FLAT && REGNO == FRAME_POINTER_REGNUM ? 31 : REGNO)
2968
2969 /* On Sun 4, this limit is 2048. We use 1000 to be safe, since the length
2970 can run past this up to a continuation point. Once we used 1500, but
2971 a single entry in C++ can run more than 500 bytes, due to the length of
2972 mangled symbol names. dbxout.c should really be fixed to do
2973 continuations when they are actually needed instead of trying to
2974 guess... */
2975 #define DBX_CONTIN_LENGTH 1000
2976
2977 /* This is how to output a note to DBX telling it the line number
2978 to which the following sequence of instructions corresponds.
2979
2980 This is needed for SunOS 4.0, and should not hurt for 3.2
2981 versions either. */
2982 #define ASM_OUTPUT_SOURCE_LINE(file, line) \
2983 { static int sym_lineno = 1; \
2984 fprintf (file, ".stabn 68,0,%d,LM%d\nLM%d:\n", \
2985 line, sym_lineno, sym_lineno); \
2986 sym_lineno += 1; }
2987
2988 /* This is how to output the definition of a user-level label named NAME,
2989 such as the label on a static function or variable NAME. */
2990
2991 #define ASM_OUTPUT_LABEL(FILE,NAME) \
2992 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
2993
2994 /* This is how to output a command to make the user-level label named NAME
2995 defined for reference from other files. */
2996
2997 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
2998 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
2999
3000 /* The prefix to add to user-visible assembler symbols. */
3001
3002 #define USER_LABEL_PREFIX "_"
3003
3004 /* This is how to output a definition of an internal numbered label where
3005 PREFIX is the class of label and NUM is the number within the class. */
3006
3007 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
3008 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
3009
3010 /* This is how to store into the string LABEL
3011 the symbol_ref name of an internal numbered label where
3012 PREFIX is the class of label and NUM is the number within the class.
3013 This is suitable for output with `assemble_name'. */
3014
3015 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
3016 sprintf ((LABEL), "*%s%ld", (PREFIX), (long)(NUM))
3017
3018 /* This is how to output an assembler line defining a `float' constant.
3019 We always have to use a .long pseudo-op to do this because the native
3020 SVR4 ELF assembler is buggy and it generates incorrect values when we
3021 try to use the .float pseudo-op instead. */
3022
3023 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
3024 { \
3025 long t; \
3026 char str[30]; \
3027 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
3028 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
3029 fprintf (FILE, "\t%s\t0x%lx %s ~%s\n", ASM_LONG, t, \
3030 ASM_COMMENT_START, str); \
3031 } \
3032
3033 /* This is how to output an assembler line defining a `double' constant.
3034 We always have to use a .long pseudo-op to do this because the native
3035 SVR4 ELF assembler is buggy and it generates incorrect values when we
3036 try to use the .float pseudo-op instead. */
3037
3038 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
3039 { \
3040 long t[2]; \
3041 char str[30]; \
3042 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
3043 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
3044 fprintf (FILE, "\t%s\t0x%lx %s ~%s\n", ASM_LONG, t[0], \
3045 ASM_COMMENT_START, str); \
3046 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t[1]); \
3047 }
3048
3049 /* This is how to output an assembler line defining a `long double'
3050 constant. */
3051
3052 #define ASM_OUTPUT_LONG_DOUBLE(FILE,VALUE) \
3053 { \
3054 long t[4]; \
3055 char str[30]; \
3056 REAL_VALUE_TO_TARGET_LONG_DOUBLE ((VALUE), t); \
3057 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
3058 fprintf (FILE, "\t%s\t0x%lx %s ~%s\n", ASM_LONG, t[0], \
3059 ASM_COMMENT_START, str); \
3060 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t[1]); \
3061 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t[2]); \
3062 fprintf (FILE, "\t%s\t0x%lx\n", ASM_LONG, t[3]); \
3063 }
3064
3065 /* This is how to output an assembler line defining an `int' constant. */
3066
3067 #define ASM_OUTPUT_INT(FILE,VALUE) \
3068 ( fprintf (FILE, "\t%s\t", ASM_LONG), \
3069 output_addr_const (FILE, (VALUE)), \
3070 fprintf (FILE, "\n"))
3071
3072 /* This is how to output an assembler line defining a DImode constant. */
3073 #define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
3074 output_double_int (FILE, VALUE)
3075
3076 /* Likewise for `char' and `short' constants. */
3077
3078 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
3079 ( fprintf (FILE, "\t%s\t", ASM_SHORT), \
3080 output_addr_const (FILE, (VALUE)), \
3081 fprintf (FILE, "\n"))
3082
3083 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
3084 ( fprintf (FILE, "%s", ASM_BYTE_OP), \
3085 output_addr_const (FILE, (VALUE)), \
3086 fprintf (FILE, "\n"))
3087
3088 /* This is how to output an assembler line for a numeric constant byte. */
3089
3090 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
3091 fprintf (FILE, "%s0x%x\n", ASM_BYTE_OP, (VALUE))
3092
3093 /* This is how we hook in and defer the case-vector until the end of
3094 the function. */
3095 #define ASM_OUTPUT_ADDR_VEC(LAB,VEC) \
3096 sparc_defer_case_vector ((LAB),(VEC), 0)
3097
3098 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,VEC) \
3099 sparc_defer_case_vector ((LAB),(VEC), 1)
3100
3101 /* This is how to output an element of a case-vector that is absolute. */
3102
3103 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
3104 do { \
3105 char label[30]; \
3106 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
3107 if (CASE_VECTOR_MODE == SImode) \
3108 fprintf (FILE, "\t.word\t"); \
3109 else \
3110 fprintf (FILE, "\t.xword\t"); \
3111 assemble_name (FILE, label); \
3112 fputc ('\n', FILE); \
3113 } while (0)
3114
3115 /* This is how to output an element of a case-vector that is relative.
3116 (SPARC uses such vectors only when generating PIC.) */
3117
3118 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
3119 do { \
3120 char label[30]; \
3121 ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE)); \
3122 if (CASE_VECTOR_MODE == SImode) \
3123 fprintf (FILE, "\t.word\t"); \
3124 else \
3125 fprintf (FILE, "\t.xword\t"); \
3126 assemble_name (FILE, label); \
3127 ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL)); \
3128 fputc ('-', FILE); \
3129 assemble_name (FILE, label); \
3130 fputc ('\n', FILE); \
3131 } while (0)
3132
3133 /* This is what to output before and after case-vector (both
3134 relative and absolute). If .subsection -1 works, we put case-vectors
3135 at the beginning of the current section. */
3136
3137 #ifdef HAVE_GAS_SUBSECTION_ORDERING
3138
3139 #define ASM_OUTPUT_ADDR_VEC_START(FILE) \
3140 fprintf(FILE, "\t.subsection\t-1\n")
3141
3142 #define ASM_OUTPUT_ADDR_VEC_END(FILE) \
3143 fprintf(FILE, "\t.previous\n")
3144
3145 #endif
3146
3147 /* This is how to output an assembler line
3148 that says to advance the location counter
3149 to a multiple of 2**LOG bytes. */
3150
3151 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
3152 if ((LOG) != 0) \
3153 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
3154
3155 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
3156 fprintf (FILE, "\t.skip %u\n", (SIZE))
3157
3158 /* This says how to output an assembler line
3159 to define a global common symbol. */
3160
3161 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
3162 ( fputs ("\t.common ", (FILE)), \
3163 assemble_name ((FILE), (NAME)), \
3164 fprintf ((FILE), ",%u,\"bss\"\n", (SIZE)))
3165
3166 /* This says how to output an assembler line to define a local common
3167 symbol. */
3168
3169 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
3170 ( fputs ("\t.reserve ", (FILE)), \
3171 assemble_name ((FILE), (NAME)), \
3172 fprintf ((FILE), ",%u,\"bss\",%u\n", \
3173 (SIZE), ((ALIGNED) / BITS_PER_UNIT)))
3174
3175 /* A C statement (sans semicolon) to output to the stdio stream
3176 FILE the assembler definition of uninitialized global DECL named
3177 NAME whose size is SIZE bytes and alignment is ALIGN bytes.
3178 Try to use asm_output_aligned_bss to implement this macro. */
3179
3180 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
3181 do { \
3182 fputs (".globl ", (FILE)); \
3183 assemble_name ((FILE), (NAME)); \
3184 fputs ("\n", (FILE)); \
3185 ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \
3186 } while (0)
3187
3188 /* Store in OUTPUT a string (made with alloca) containing
3189 an assembler-name for a local static variable named NAME.
3190 LABELNO is an integer which is different for each call. */
3191
3192 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
3193 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
3194 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
3195
3196 #define IDENT_ASM_OP "\t.ident\t"
3197
3198 /* Output #ident as a .ident. */
3199
3200 #define ASM_OUTPUT_IDENT(FILE, NAME) \
3201 fprintf (FILE, "%s\"%s\"\n", IDENT_ASM_OP, NAME);
3202
3203 /* Output code to add DELTA to the first argument, and then jump to FUNCTION.
3204 Used for C++ multiple inheritance. */
3205 #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
3206 do { \
3207 int reg = 0; \
3208 \
3209 if (TARGET_ARCH64 \
3210 && aggregate_value_p (TREE_TYPE (TREE_TYPE (FUNCTION)))) \
3211 reg = 1; \
3212 if ((DELTA) >= 4096 || (DELTA) < -4096) \
3213 fprintf (FILE, "\tset\t%d, %%g1\n\tadd\t%%o%d, %%g1, %%o%d\n", \
3214 (int)(DELTA), reg, reg); \
3215 else \
3216 fprintf (FILE, "\tadd\t%%o%d, %d, %%o%d\n", reg, (int)(DELTA), reg);\
3217 fprintf (FILE, "\tor\t%%o7, %%g0, %%g1\n"); \
3218 fprintf (FILE, "\tcall\t"); \
3219 assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
3220 fprintf (FILE, ", 0\n"); \
3221 fprintf (FILE, "\t or\t%%g1, %%g0, %%o7\n"); \
3222 } while (0)
3223
3224 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
3225 ((CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^' || (CHAR) == '(' || (CHAR) == '_')
3226
3227 /* Print operand X (an rtx) in assembler syntax to file FILE.
3228 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
3229 For `%' followed by punctuation, CODE is the punctuation and X is null. */
3230
3231 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
3232
3233 /* Print a memory address as an operand to reference that memory location. */
3234
3235 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
3236 { register rtx base, index = 0; \
3237 int offset = 0; \
3238 register rtx addr = ADDR; \
3239 if (GET_CODE (addr) == REG) \
3240 fputs (reg_names[REGNO (addr)], FILE); \
3241 else if (GET_CODE (addr) == PLUS) \
3242 { \
3243 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
3244 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
3245 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
3246 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
3247 else \
3248 base = XEXP (addr, 0), index = XEXP (addr, 1); \
3249 if (GET_CODE (base) == LO_SUM) \
3250 { \
3251 if (! USE_AS_OFFSETABLE_LO10 \
3252 || TARGET_ARCH32 \
3253 || TARGET_CM_MEDMID) \
3254 abort (); \
3255 output_operand (XEXP (base, 0), 0); \
3256 fputs ("+%lo(", FILE); \
3257 output_address (XEXP (base, 1)); \
3258 fprintf (FILE, ")+%d", offset); \
3259 } \
3260 else \
3261 { \
3262 fputs (reg_names[REGNO (base)], FILE); \
3263 if (index == 0) \
3264 fprintf (FILE, "%+d", offset); \
3265 else if (GET_CODE (index) == REG) \
3266 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
3267 else if (GET_CODE (index) == SYMBOL_REF \
3268 || GET_CODE (index) == CONST) \
3269 fputc ('+', FILE), output_addr_const (FILE, index); \
3270 else abort (); \
3271 } \
3272 } \
3273 else if (GET_CODE (addr) == MINUS \
3274 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
3275 { \
3276 output_addr_const (FILE, XEXP (addr, 0)); \
3277 fputs ("-(", FILE); \
3278 output_addr_const (FILE, XEXP (addr, 1)); \
3279 fputs ("-.)", FILE); \
3280 } \
3281 else if (GET_CODE (addr) == LO_SUM) \
3282 { \
3283 output_operand (XEXP (addr, 0), 0); \
3284 if (TARGET_CM_MEDMID) \
3285 fputs ("+%l44(", FILE); \
3286 else \
3287 fputs ("+%lo(", FILE); \
3288 output_address (XEXP (addr, 1)); \
3289 fputc (')', FILE); \
3290 } \
3291 else if (flag_pic && GET_CODE (addr) == CONST \
3292 && GET_CODE (XEXP (addr, 0)) == MINUS \
3293 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
3294 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
3295 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
3296 { \
3297 addr = XEXP (addr, 0); \
3298 output_addr_const (FILE, XEXP (addr, 0)); \
3299 /* Group the args of the second CONST in parenthesis. */ \
3300 fputs ("-(", FILE); \
3301 /* Skip past the second CONST--it does nothing for us. */\
3302 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
3303 /* Close the parenthesis. */ \
3304 fputc (')', FILE); \
3305 } \
3306 else \
3307 { \
3308 output_addr_const (FILE, addr); \
3309 } \
3310 }
3311
3312 /* Define the codes that are matched by predicates in sparc.c. */
3313
3314 #define PREDICATE_CODES \
3315 {"reg_or_0_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3316 {"fp_zero_operand", {CONST_DOUBLE}}, \
3317 {"intreg_operand", {SUBREG, REG}}, \
3318 {"fcc_reg_operand", {REG}}, \
3319 {"icc_or_fcc_reg_operand", {REG}}, \
3320 {"restore_operand", {REG}}, \
3321 {"call_operand", {MEM}}, \
3322 {"call_operand_address", {SYMBOL_REF, LABEL_REF, CONST, CONST_DOUBLE, \
3323 ADDRESSOF, SUBREG, REG, PLUS, LO_SUM, CONST_INT}}, \
3324 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
3325 {"symbolic_memory_operand", {SUBREG, MEM}}, \
3326 {"label_ref_operand", {LABEL_REF}}, \
3327 {"sp64_medium_pic_operand", {CONST}}, \
3328 {"data_segment_operand", {SYMBOL_REF, PLUS, CONST}}, \
3329 {"text_segment_operand", {LABEL_REF, SYMBOL_REF, PLUS, CONST}}, \
3330 {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \
3331 {"splittable_symbolic_memory_operand", {MEM}}, \
3332 {"splittable_immediate_memory_operand", {MEM}}, \
3333 {"eq_or_neq", {EQ, NE}}, \
3334 {"normal_comp_operator", {GE, GT, LE, LT, GTU, LEU}}, \
3335 {"noov_compare_op", {NE, EQ, GE, GT, LE, LT, GEU, GTU, LEU, LTU}}, \
3336 {"v9_regcmp_op", {EQ, NE, GE, LT, LE, GT}}, \
3337 {"extend_op", {SIGN_EXTEND, ZERO_EXTEND}}, \
3338 {"cc_arithop", {AND, IOR, XOR}}, \
3339 {"cc_arithopn", {AND, IOR}}, \
3340 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
3341 {"arith_add_operand", {SUBREG, REG, CONST_INT}}, \
3342 {"arith11_operand", {SUBREG, REG, CONST_INT}}, \
3343 {"arith10_operand", {SUBREG, REG, CONST_INT}}, \
3344 {"arith_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3345 {"arith_double_add_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3346 {"arith11_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3347 {"arith10_double_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
3348 {"small_int", {CONST_INT}}, \
3349 {"small_int_or_double", {CONST_INT, CONST_DOUBLE}}, \
3350 {"uns_small_int", {CONST_INT}}, \
3351 {"uns_arith_operand", {SUBREG, REG, CONST_INT}}, \
3352 {"clobbered_register", {REG}}, \
3353 {"input_operand", {SUBREG, REG, CONST_INT, MEM, CONST}}, \
3354 {"const64_operand", {CONST_INT, CONST_DOUBLE}}, \
3355 {"const64_high_operand", {CONST_INT, CONST_DOUBLE}},
3356
3357 /* The number of Pmode words for the setjmp buffer. */
3358 #define JMP_BUF_SIZE 12
3359
3360 #define DONT_ACCESS_GBLS_AFTER_EPILOGUE (flag_pic)
3361
This page took 0.195039 seconds and 5 git commands to generate.