]> gcc.gnu.org Git - gcc.git/blob - gcc/config/sparc/sparc.h
3e69891f288e7211ed40187c2838c7077a1048ae
[gcc.git] / gcc / config / sparc / sparc.h
1 /* Definitions of target machine for GNU compiler, for Sun SPARC.
2 Copyright (C) 1987, 1988, 1989, 1992 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com).
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Note that some other tm.h files include this one and then override
22 many of the definitions that relate to assembler syntax. */
23
24 #define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} %{g:-lg}"
25
26 /* Provide required defaults for linker -e and -d switches. */
27
28 #define LINK_SPEC \
29 "%{!nostdlib:%{!e*:-e start}} -dc -dp %{static:-Bstatic} %{assert*}"
30
31 /* Special flags to the Sun-4 assembler when using pipe for input. */
32
33 #define ASM_SPEC " %{pipe:-} %{fpic:-k} %{fPIC:-k}"
34
35 /* Prevent error on `-sun4' and `-target sun4' options. */
36 /* This used to translate -dalign to -malign, but that is no good
37 because it can't turn off the usual meaning of making debugging dumps. */
38
39 #define CC1_SPEC "%{sun4:} %{target:}"
40
41 #if 0
42 /* Sparc ABI says that long double is 4 words.
43 ??? This doesn't work yet. */
44 #define LONG_DOUBLE_TYPE_SIZE 128
45 #endif
46
47 #define PTRDIFF_TYPE "int"
48 #define SIZE_TYPE "int"
49 #define WCHAR_TYPE "short unsigned int"
50 #define WCHAR_TYPE_SIZE 16
51
52 /* Omit frame pointer at high optimization levels. */
53
54 #define OPTIMIZATION_OPTIONS(OPTIMIZE) \
55 { \
56 if (OPTIMIZE >= 2) \
57 { \
58 flag_omit_frame_pointer = 1; \
59 } \
60 }
61
62 /* These compiler options take an argument. We ignore -target for now. */
63
64 #define WORD_SWITCH_TAKES_ARG(STR) \
65 (!strcmp (STR, "Tdata") || !strcmp (STR, "include") \
66 || !strcmp (STR, "imacros") || !strcmp (STR, "target") \
67 || !strcmp (STR, "assert") || !strcmp (STR, "aux-info"))
68
69 /* Names to predefine in the preprocessor for this target machine. */
70
71 #define CPP_PREDEFINES "-Dsparc -Dsun -Dunix"
72
73 /* Print subsidiary information on the compiler version in use. */
74
75 #define TARGET_VERSION fprintf (stderr, " (sparc)");
76
77 /* Generate DBX debugging information. */
78
79 #define DBX_DEBUGGING_INFO
80
81 /* Run-time compilation parameters selecting different hardware subsets. */
82
83 extern int target_flags;
84
85 /* Nonzero if we should generate code to use the fpu. */
86 #define TARGET_FPU (target_flags & 1)
87
88 /* Nonzero if we should use FUNCTION_EPILOGUE. Otherwise, we
89 use fast return insns, but lose some generality. */
90 #define TARGET_EPILOGUE (target_flags & 2)
91
92 /* Nonzero means that reference doublewords as if they were guaranteed
93 to be aligned...if they aren't, too bad for the user!
94 Like -dalign in Sun cc. */
95 #define TARGET_HOPE_ALIGN (target_flags & 16)
96
97 /* Nonzero means make sure all doubles are on 8-byte boundaries.
98 This option results in a calling convention that is incompatible with
99 every other sparc compiler in the world, and thus should only ever be
100 used for experimenting. Also, varargs won't work with it, but it doesn't
101 seem worth trying to fix. */
102 #define TARGET_FORCE_ALIGN (target_flags & 32)
103
104 /* Macro to define tables used to set the flags.
105 This is a list in braces of pairs in braces,
106 each pair being { "NAME", VALUE }
107 where VALUE is the bits to set or minus the bits to clear.
108 An empty string NAME is used to identify the default VALUE. */
109
110 #define TARGET_SWITCHES \
111 { {"fpu", 1}, \
112 {"soft-float", -1}, \
113 {"epilogue", 2}, \
114 {"no-epilogue", -2}, \
115 {"hope-align", 16}, \
116 {"force-align", 48}, \
117 { "", TARGET_DEFAULT}}
118
119 #define TARGET_DEFAULT 3
120 \f
121 /* target machine storage layout */
122
123 /* Define this if most significant bit is lowest numbered
124 in instructions that operate on numbered bit-fields. */
125 #define BITS_BIG_ENDIAN 1
126
127 /* Define this if most significant byte of a word is the lowest numbered. */
128 /* This is true on the SPARC. */
129 #define BYTES_BIG_ENDIAN 1
130
131 /* Define this if most significant word of a multiword number is the lowest
132 numbered. */
133 /* Doubles are stored in memory with the high order word first. This
134 matters when cross-compiling. */
135 #define WORDS_BIG_ENDIAN 1
136
137 /* number of bits in an addressable storage unit */
138 #define BITS_PER_UNIT 8
139
140 /* Width in bits of a "word", which is the contents of a machine register.
141 Note that this is not necessarily the width of data type `int';
142 if using 16-bit ints on a 68000, this would still be 32.
143 But on a machine with 16-bit registers, this would be 16. */
144 #define BITS_PER_WORD 32
145 #define MAX_BITS_PER_WORD 32
146
147 /* Width of a word, in units (bytes). */
148 #define UNITS_PER_WORD 4
149
150 /* Width in bits of a pointer.
151 See also the macro `Pmode' defined below. */
152 #define POINTER_SIZE 32
153
154 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
155 #define PARM_BOUNDARY 32
156
157 /* Boundary (in *bits*) on which stack pointer should be aligned. */
158 #define STACK_BOUNDARY 64
159
160 /* Allocation boundary (in *bits*) for the code of a function. */
161 #define FUNCTION_BOUNDARY 32
162
163 /* Alignment of field after `int : 0' in a structure. */
164 #define EMPTY_FIELD_BOUNDARY 32
165
166 /* Every structure's size must be a multiple of this. */
167 #define STRUCTURE_SIZE_BOUNDARY 8
168
169 /* A bitfield declared as `int' forces `int' alignment for the struct. */
170 #define PCC_BITFIELD_TYPE_MATTERS 1
171
172 /* No data type wants to be aligned rounder than this. */
173 #define BIGGEST_ALIGNMENT 64
174
175 /* Make strings word-aligned so strcpy from constants will be faster. */
176 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
177 (TREE_CODE (EXP) == STRING_CST \
178 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
179
180 /* Make arrays of chars word-aligned for the same reasons. */
181 #define DATA_ALIGNMENT(TYPE, ALIGN) \
182 (TREE_CODE (TYPE) == ARRAY_TYPE \
183 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
184 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
185
186 /* Set this nonzero if move instructions will actually fail to work
187 when given unaligned data. */
188 #define STRICT_ALIGNMENT 1
189
190 /* Things that must be doubleword aligned cannot go in the text section,
191 because the linker fails to align the text section enough!
192 Put them in the data section. */
193 #define MAX_TEXT_ALIGN 32
194
195 #define SELECT_SECTION(T,RELOC) \
196 { \
197 if (TREE_CODE (T) == VAR_DECL) \
198 { \
199 if (TREE_READONLY (T) && ! TREE_SIDE_EFFECTS (T) \
200 && DECL_ALIGN (T) <= MAX_TEXT_ALIGN \
201 && ! (flag_pic && (RELOC))) \
202 text_section (); \
203 else \
204 data_section (); \
205 } \
206 else if (TREE_CODE (T) == CONSTRUCTOR) \
207 { \
208 if (flag_pic != 0 && (RELOC) != 0) \
209 data_section (); \
210 } \
211 else if (*tree_code_type[(int) TREE_CODE (T)] == 'c') \
212 { \
213 if ((TREE_CODE (T) == STRING_CST && flag_writable_strings) \
214 || TYPE_ALIGN (TREE_TYPE (T)) > MAX_TEXT_ALIGN) \
215 data_section (); \
216 else \
217 text_section (); \
218 } \
219 }
220
221 /* Use text section for a constant
222 unless we need more alignment than that offers. */
223 #define SELECT_RTX_SECTION(MODE, X) \
224 { \
225 if (GET_MODE_BITSIZE (MODE) <= MAX_TEXT_ALIGN \
226 && ! (flag_pic && symbolic_operand (X))) \
227 text_section (); \
228 else \
229 data_section (); \
230 }
231 \f
232 /* Standard register usage. */
233
234 /* Number of actual hardware registers.
235 The hardware registers are assigned numbers for the compiler
236 from 0 to just below FIRST_PSEUDO_REGISTER.
237 All registers that the compiler knows about must be given numbers,
238 even those that are not normally considered general registers.
239
240 SPARC has 32 integer registers and 32 floating point registers. */
241
242 #define FIRST_PSEUDO_REGISTER 64
243
244 /* 1 for registers that have pervasive standard uses
245 and are not available for the register allocator.
246 0 is used for the condition code and not to represent %g0, which is
247 hardwired to 0, so reg 0 is *not* fixed.
248 g1 through g4 are free to use as temporaries.
249 g5 through g7 are reserved for the operating system. */
250 #define FIXED_REGISTERS \
251 {0, 0, 0, 0, 0, 1, 1, 1, \
252 0, 0, 0, 0, 0, 0, 1, 0, \
253 0, 0, 0, 0, 0, 0, 0, 0, \
254 0, 0, 0, 0, 0, 0, 1, 1, \
255 \
256 0, 0, 0, 0, 0, 0, 0, 0, \
257 0, 0, 0, 0, 0, 0, 0, 0, \
258 0, 0, 0, 0, 0, 0, 0, 0, \
259 0, 0, 0, 0, 0, 0, 0, 0}
260
261 /* 1 for registers not available across function calls.
262 These must include the FIXED_REGISTERS and also any
263 registers that can be used without being saved.
264 The latter must include the registers where values are returned
265 and the register where structure-value addresses are passed.
266 Aside from that, you can include as many other registers as you like. */
267 #define CALL_USED_REGISTERS \
268 {1, 1, 1, 1, 1, 1, 1, 1, \
269 1, 1, 1, 1, 1, 1, 1, 1, \
270 0, 0, 0, 0, 0, 0, 0, 0, \
271 0, 0, 0, 0, 0, 0, 1, 1, \
272 \
273 1, 1, 1, 1, 1, 1, 1, 1, \
274 1, 1, 1, 1, 1, 1, 1, 1, \
275 1, 1, 1, 1, 1, 1, 1, 1, \
276 1, 1, 1, 1, 1, 1, 1, 1}
277
278 /* Return number of consecutive hard regs needed starting at reg REGNO
279 to hold something of mode MODE.
280 This is ordinarily the length in words of a value of mode MODE
281 but can be less for certain modes in special long registers.
282
283 On SPARC, ordinary registers hold 32 bits worth;
284 this means both integer and floating point registers.
285
286 We use vectors to keep this information about registers. */
287
288 /* How many hard registers it takes to make a register of this mode. */
289 extern int hard_regno_nregs[];
290
291 #define HARD_REGNO_NREGS(REGNO, MODE) \
292 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
293
294 /* Value is 1 if register/mode pair is acceptable on sparc. */
295 extern int hard_regno_mode_ok[FIRST_PSEUDO_REGISTER];
296
297 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
298 On SPARC, the cpu registers can hold any mode but the float registers
299 can only hold SFmode or DFmode. See sparc.c for how we
300 initialize this. */
301 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
302 ((hard_regno_mode_ok[REGNO] & (1<<(int)(MODE))) != 0)
303
304 /* Value is 1 if it is a good idea to tie two pseudo registers
305 when one has mode MODE1 and one has mode MODE2.
306 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
307 for any hard reg, then this must be 0 for correct output. */
308 #define MODES_TIEABLE_P(MODE1, MODE2) \
309 ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
310
311 /* Specify the registers used for certain standard purposes.
312 The values of these macros are register numbers. */
313
314 /* SPARC pc isn't overloaded on a register that the compiler knows about. */
315 /* #define PC_REGNUM */
316
317 /* Register to use for pushing function arguments. */
318 #define STACK_POINTER_REGNUM 14
319
320 /* Actual top-of-stack address is 92 greater than the contents
321 of the stack pointer register. 92 = 68 + 24. 64 bytes reserving space
322 for the ins and local registers, 4 byte for structure return address, and
323 24 bytes for the 6 register parameters. */
324 #define STACK_POINTER_OFFSET FIRST_PARM_OFFSET(0)
325
326 /* Base register for access to local variables of the function. */
327 #define FRAME_POINTER_REGNUM 30
328
329 #if 0
330 /* Register that is used for the return address. */
331 #define RETURN_ADDR_REGNUM 15
332 #endif
333
334 /* Value should be nonzero if functions must have frame pointers.
335 Zero means the frame pointer need not be set up (and parms
336 may be accessed via the stack pointer) in functions that seem suitable.
337 This is computed in `reload', in reload1.c.
338
339 Used in flow.c, global-alloc.c, and reload1.c. */
340 extern int leaf_function;
341
342 #define FRAME_POINTER_REQUIRED \
343 (! (leaf_function_p () && only_leaf_regs_used ()))
344
345 /* C statement to store the difference between the frame pointer
346 and the stack pointer values immediately after the function prologue.
347
348 Note, we always pretend that this is a leaf function because if
349 it's not, there's no point in trying to eliminate the
350 frame pointer. If it is a leaf function, we guessed right! */
351 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
352 do { (VAR) = compute_frame_size (get_frame_size (), 1); } while (0)
353
354 /* Base register for access to arguments of the function. */
355 #define ARG_POINTER_REGNUM 30
356
357 /* Register in which static-chain is passed to a function. */
358 /* ??? */
359 #define STATIC_CHAIN_REGNUM 1
360
361 /* Register which holds offset table for position-independent
362 data references. */
363
364 #define PIC_OFFSET_TABLE_REGNUM 23
365
366 #define INITIALIZE_PIC initialize_pic ()
367 #define FINALIZE_PIC finalize_pic ()
368
369 /* Sparc ABI says that quad-precision floats and all structures are returned
370 in memory. */
371 #define RETURN_IN_MEMORY(TYPE) \
372 (TREE_CODE (TYPE) == RECORD_TYPE || TREE_CODE (TYPE) == UNION_TYPE \
373 || TYPE_MODE (TYPE) == TFmode)
374
375 /* Functions which return large structures get the address
376 to place the wanted value at offset 64 from the frame.
377 Must reserve 64 bytes for the in and local registers. */
378 /* Used only in other #defines in this file. */
379 #define STRUCT_VALUE_OFFSET 64
380
381 #define STRUCT_VALUE \
382 gen_rtx (MEM, Pmode, \
383 gen_rtx (PLUS, Pmode, stack_pointer_rtx, \
384 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
385 #define STRUCT_VALUE_INCOMING \
386 gen_rtx (MEM, Pmode, \
387 gen_rtx (PLUS, Pmode, frame_pointer_rtx, \
388 gen_rtx (CONST_INT, VOIDmode, STRUCT_VALUE_OFFSET)))
389 \f
390 /* Define the classes of registers for register constraints in the
391 machine description. Also define ranges of constants.
392
393 One of the classes must always be named ALL_REGS and include all hard regs.
394 If there is more than one class, another class must be named NO_REGS
395 and contain no registers.
396
397 The name GENERAL_REGS must be the name of a class (or an alias for
398 another name such as ALL_REGS). This is the class of registers
399 that is allowed by "g" or "r" in a register constraint.
400 Also, registers outside this class are allocated only when
401 instructions express preferences for them.
402
403 The classes must be numbered in nondecreasing order; that is,
404 a larger-numbered class must never be contained completely
405 in a smaller-numbered class.
406
407 For any two classes, it is very desirable that there be another
408 class that represents their union. */
409
410 /* The SPARC has two kinds of registers, general and floating point. */
411
412 enum reg_class { NO_REGS, GENERAL_REGS, FP_REGS, ALL_REGS, LIM_REG_CLASSES };
413
414 #define N_REG_CLASSES (int) LIM_REG_CLASSES
415
416 /* Give names of register classes as strings for dump file. */
417
418 #define REG_CLASS_NAMES \
419 {"NO_REGS", "GENERAL_REGS", "FP_REGS", "ALL_REGS" }
420
421 /* Define which registers fit in which classes.
422 This is an initializer for a vector of HARD_REG_SET
423 of length N_REG_CLASSES. */
424
425 #if 0 && defined (__GNUC__)
426 #define REG_CLASS_CONTENTS {0LL, 0xfffffffeLL, 0xffffffff00000000LL, 0xfffffffffffffffeLL}
427 #else
428 #define REG_CLASS_CONTENTS {{0, 0}, {-2, 0}, {0, -1}, {-2, -1}}
429 #endif
430
431 /* The same information, inverted:
432 Return the class number of the smallest class containing
433 reg number REGNO. This could be a conditional expression
434 or could index an array. */
435
436 #define REGNO_REG_CLASS(REGNO) \
437 ((REGNO) >= 32 ? FP_REGS : (REGNO) == 0 ? NO_REGS : GENERAL_REGS)
438
439 /* This is the order in which to allocate registers
440 normally. */
441 #define REG_ALLOC_ORDER \
442 { 8, 9, 10, 11, 12, 13, 2, 3, \
443 15, 16, 17, 18, 19, 20, 21, 22, \
444 23, 24, 25, 26, 27, 28, 29, 31, \
445 32, 33, 34, 35, 36, 37, 38, 39, \
446 40, 41, 42, 43, 44, 45, 46, 47, \
447 48, 49, 50, 51, 52, 53, 54, 55, \
448 56, 57, 58, 59, 60, 61, 62, 63, \
449 1, 4, 5, 6, 7, 0, 14, 30}
450
451 /* This is the order in which to allocate registers for
452 leaf functions. If all registers can fit in the "i" registers,
453 then we have the possibility of having a leaf function. */
454 #define REG_LEAF_ALLOC_ORDER \
455 { 2, 3, 24, 25, 26, 27, 28, 29, \
456 15, 8, 9, 10, 11, 12, 13, \
457 16, 17, 18, 19, 20, 21, 22, 23, \
458 32, 33, 34, 35, 36, 37, 38, 39, \
459 40, 41, 42, 43, 44, 45, 46, 47, \
460 48, 49, 50, 51, 52, 53, 54, 55, \
461 56, 57, 58, 59, 60, 61, 62, 63, \
462 1, 4, 5, 6, 7, 0, 14, 30, 31}
463
464 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
465
466 #define LEAF_REGISTERS \
467 { 1, 1, 1, 1, 1, 1, 1, 1, \
468 0, 0, 0, 0, 0, 0, 1, 0, \
469 0, 0, 0, 0, 0, 0, 0, 0, \
470 1, 1, 1, 1, 1, 1, 0, 1, \
471 1, 1, 1, 1, 1, 1, 1, 1, \
472 1, 1, 1, 1, 1, 1, 1, 1, \
473 1, 1, 1, 1, 1, 1, 1, 1, \
474 1, 1, 1, 1, 1, 1, 1, 1}
475
476 extern char leaf_reg_remap[];
477 #define LEAF_REG_REMAP(REGNO) (leaf_reg_remap[REGNO])
478 extern char leaf_reg_backmap[];
479 #define LEAF_REG_BACKMAP(REGNO) (leaf_reg_backmap[REGNO])
480
481 #define REG_USED_SO_FAR(REGNO) \
482 ((REGNO) >= 24 && (REGNO) < 30 \
483 ? (regs_ever_live[24] \
484 || regs_ever_live[25] \
485 || regs_ever_live[26] \
486 || regs_ever_live[27] \
487 || regs_ever_live[28] \
488 || regs_ever_live[29]) : 0)
489
490 /* The class value for index registers, and the one for base regs. */
491 #define INDEX_REG_CLASS GENERAL_REGS
492 #define BASE_REG_CLASS GENERAL_REGS
493
494 /* Get reg_class from a letter such as appears in the machine description. */
495
496 #define REG_CLASS_FROM_LETTER(C) \
497 ((C) == 'f' ? FP_REGS : (C) == 'r' ? GENERAL_REGS : NO_REGS)
498
499 /* The letters I, J, K, L and M in a register constraint string
500 can be used to stand for particular ranges of immediate operands.
501 This macro defines what the ranges are.
502 C is the letter, and VALUE is a constant value.
503 Return 1 if VALUE is in the range specified by C.
504
505 For SPARC, `I' is used for the range of constants an insn
506 can actually contain.
507 `J' is used for the range which is just zero (since that is R0).
508 `K' is used for the 5-bit operand of a compare insns. */
509
510 #define SMALL_INT(X) ((unsigned) (INTVAL (X) + 0x1000) < 0x2000)
511
512 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
513 ((C) == 'I' ? (unsigned) ((VALUE) + 0x1000) < 0x2000 \
514 : (C) == 'J' ? (VALUE) == 0 \
515 : (C) == 'K' ? ((VALUE) & 0x3ff) == 0 \
516 : 0)
517
518 /* Similar, but for floating constants, and defining letters G and H.
519 Here VALUE is the CONST_DOUBLE rtx itself. */
520
521 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
522 ((C) == 'G' ? CONST_DOUBLE_HIGH (VALUE) == 0 \
523 && CONST_DOUBLE_LOW (VALUE) == 0 \
524 : (C) == 'H' ? arith_double_operand (VALUE, DImode) \
525 : 0)
526
527 /* Given an rtx X being reloaded into a reg required to be
528 in class CLASS, return the class of reg to actually use.
529 In general this is just CLASS; but on some machines
530 in some cases it is preferable to use a more restrictive class. */
531 #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
532
533 /* Return the register class of a scratch register needed to load IN into
534 a register of class CLASS in MODE.
535
536 On the SPARC, when PIC, we need a temporary when loading some addresses
537 into a register. */
538
539 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, IN) \
540 (flag_pic && pic_address_needs_scratch (IN) ? GENERAL_REGS : NO_REGS)
541
542 /* Return the maximum number of consecutive registers
543 needed to represent mode MODE in a register of class CLASS. */
544 /* On SPARC, this is the size of MODE in words. */
545 #define CLASS_MAX_NREGS(CLASS, MODE) \
546 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
547 \f
548 /* Stack layout; function entry, exit and calling. */
549
550 /* Define the number of register that can hold parameters.
551 These two macros are used only in other macro definitions below. */
552 #define NPARM_REGS 6
553
554 /* Define this if pushing a word on the stack
555 makes the stack pointer a smaller address. */
556 #define STACK_GROWS_DOWNWARD
557
558 /* Define this if the nominal address of the stack frame
559 is at the high-address end of the local variables;
560 that is, each additional local variable allocated
561 goes at a more negative offset in the frame. */
562 #define FRAME_GROWS_DOWNWARD
563
564 /* Offset within stack frame to start allocating local variables at.
565 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
566 first local allocated. Otherwise, it is the offset to the BEGINNING
567 of the first local allocated. */
568 #define STARTING_FRAME_OFFSET (-16)
569
570 /* If we generate an insn to push BYTES bytes,
571 this says how many the stack pointer really advances by.
572 On SPARC, don't define this because there are no push insns. */
573 /* #define PUSH_ROUNDING(BYTES) */
574
575 /* Offset of first parameter from the argument pointer register value.
576 This is 64 for the ins and locals, plus 4 for the struct-return reg
577 even if this function isn't going to use it.
578 If TARGET_FORCE_ALIGN, we must reserve 4 more bytes to ensure that the
579 stack remains aligned. */
580 #define FIRST_PARM_OFFSET(FNDECL) \
581 (STRUCT_VALUE_OFFSET + UNITS_PER_WORD + (TARGET_FORCE_ALIGN ? 4 : 0))
582
583 /* When a parameter is passed in a register, stack space is still
584 allocated for it. */
585 #define REG_PARM_STACK_SPACE(DECL) (NPARM_REGS * UNITS_PER_WORD)
586
587 /* Keep the stack pointer constant throughout the function.
588 This is both an optimization and a necessity: longjmp
589 doesn't behave itself when the stack pointer moves within
590 the function! */
591 #define ACCUMULATE_OUTGOING_ARGS
592
593 /* Value is the number of bytes of arguments automatically
594 popped when returning from a subroutine call.
595 FUNTYPE is the data type of the function (as a tree),
596 or for a library call it is an identifier node for the subroutine name.
597 SIZE is the number of bytes of arguments passed on the stack. */
598
599 #define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
600
601 /* Some subroutine macros specific to this machine. */
602 #define BASE_RETURN_VALUE_REG(MODE) \
603 ((MODE) == SFmode || (MODE) == DFmode ? 32 : 8)
604 #define BASE_OUTGOING_VALUE_REG(MODE) \
605 ((MODE) == SFmode || (MODE) == DFmode ? 32 : 24)
606 #define BASE_PASSING_ARG_REG(MODE) (8)
607 #define BASE_INCOMING_ARG_REG(MODE) (24)
608
609 /* Define how to find the value returned by a function.
610 VALTYPE is the data type of the value (as a tree).
611 If the precise function being called is known, FUNC is its FUNCTION_DECL;
612 otherwise, FUNC is 0. */
613
614 /* On SPARC the value is found in the first "output" register. */
615
616 #define FUNCTION_VALUE(VALTYPE, FUNC) \
617 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
618
619 /* But the called function leaves it in the first "input" register. */
620
621 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
622 gen_rtx (REG, TYPE_MODE (VALTYPE), BASE_OUTGOING_VALUE_REG (TYPE_MODE (VALTYPE)))
623
624 /* Define how to find the value returned by a library function
625 assuming the value has mode MODE. */
626
627 #define LIBCALL_VALUE(MODE) \
628 gen_rtx (REG, MODE, BASE_RETURN_VALUE_REG (MODE))
629
630 /* 1 if N is a possible register number for a function value
631 as seen by the caller.
632 On SPARC, the first "output" reg is used for integer values,
633 and the first floating point register is used for floating point values. */
634
635 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 8 || (N) == 32)
636
637 /* 1 if N is a possible register number for function argument passing.
638 On SPARC, these are the "output" registers. */
639
640 #define FUNCTION_ARG_REGNO_P(N) ((N) < 14 && (N) > 7)
641 \f
642 /* Define a data type for recording info about an argument list
643 during the scan of that argument list. This data type should
644 hold all necessary information about the function itself
645 and about the args processed so far, enough to enable macros
646 such as FUNCTION_ARG to determine where the next arg should go.
647
648 On SPARC, this is a single integer, which is a number of words
649 of arguments scanned so far (including the invisible argument,
650 if any, which holds the structure-value-address).
651 Thus 7 or more means all following args should go on the stack. */
652
653 #define CUMULATIVE_ARGS int
654
655 #define ROUND_ADVANCE(SIZE) \
656 ((SIZE + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
657
658 /* Round a register number up to a proper boundary for an arg of mode MODE.
659 Note that we need an odd/even pair for a two-word arg,
660 since that will become 8-byte aligned when stored in memory. */
661 #define ROUND_REG(X, MODE) \
662 (TARGET_FORCE_ALIGN && GET_MODE_UNIT_SIZE ((MODE)) > 4 \
663 ? ((X) + ! ((X) & 1)) : (X))
664
665 /* Initialize a variable CUM of type CUMULATIVE_ARGS
666 for a call to a function whose data type is FNTYPE.
667 For a library call, FNTYPE is 0.
668
669 On SPARC, the offset always starts at 0: the first parm reg is always
670 the same reg. */
671
672 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) ((CUM) = 0)
673
674 /* Update the data in CUM to advance over an argument
675 of mode MODE and data type TYPE.
676 (TYPE is null for libcalls where that information may not be available.) */
677
678 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
679 ((CUM) = (ROUND_REG ((CUM), (MODE)) \
680 + ((MODE) != BLKmode \
681 ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
682 : ROUND_ADVANCE (int_size_in_bytes (TYPE)))))
683
684 /* Determine where to put an argument to a function.
685 Value is zero to push the argument on the stack,
686 or a hard register in which to store the argument.
687
688 MODE is the argument's machine mode.
689 TYPE is the data type of the argument (as a tree).
690 This is null for libcalls where that information may
691 not be available.
692 CUM is a variable of type CUMULATIVE_ARGS which gives info about
693 the preceding args and about the function being called.
694 NAMED is nonzero if this argument is a named parameter
695 (otherwise it is an extra parameter matching an ellipsis). */
696
697 /* On SPARC the first six args are normally in registers
698 and the rest are pushed. Any arg that starts within the first 6 words
699 is at least partially passed in a register unless its data type forbids. */
700
701 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
702 (ROUND_REG ((CUM), (MODE)) < NPARM_REGS \
703 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
704 && ((TYPE)==0 || (MODE) != BLKmode \
705 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
706 ? gen_rtx (REG, (MODE), \
707 (BASE_PASSING_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE)))) \
708 : 0)
709
710 /* Define where a function finds its arguments.
711 This is different from FUNCTION_ARG because of register windows. */
712
713 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
714 (ROUND_REG ((CUM), (MODE)) < NPARM_REGS \
715 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
716 && ((TYPE)==0 || (MODE) != BLKmode \
717 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
718 ? gen_rtx (REG, (MODE), \
719 (BASE_INCOMING_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE)))) \
720 : 0)
721
722 /* For an arg passed partly in registers and partly in memory,
723 this is the number of registers used.
724 For args passed entirely in registers or entirely in memory, zero.
725 Any arg that starts in the first 6 regs but won't entirely fit in them
726 needs partial registers on the Sparc. */
727
728 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
729 ((ROUND_REG ((CUM), (MODE)) < NPARM_REGS \
730 && ((TYPE)==0 || ! TREE_ADDRESSABLE ((tree)(TYPE))) \
731 && ((TYPE)==0 || (MODE) != BLKmode \
732 || (TYPE_ALIGN ((TYPE)) % PARM_BOUNDARY == 0)) \
733 && (ROUND_REG ((CUM), (MODE)) \
734 + ((MODE) == BLKmode \
735 ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
736 : ROUND_ADVANCE (GET_MODE_SIZE (MODE)))) - NPARM_REGS > 0) \
737 ? (NPARM_REGS - ROUND_REG ((CUM), (MODE))) \
738 : 0)
739
740 /* The SPARC ABI stipulates passing struct arguments (of any size) and
741 quad-precision floats by invisible reference. */
742 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
743 ((TYPE && (TREE_CODE (TYPE) == RECORD_TYPE \
744 || TREE_CODE (TYPE) == UNION_TYPE)) \
745 || (MODE == TFmode))
746
747 /* If defined, a C expression that gives the alignment boundary, in
748 bits, of an argument with the specified mode and type. If it is
749 not defined, `PARM_BOUNDARY' is used for all arguments.
750
751 This definition does nothing special unless TARGET_FORCE_ALIGN;
752 in that case, it aligns each arg to the natural boundary. */
753
754 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
755 (! TARGET_FORCE_ALIGN \
756 ? PARM_BOUNDARY \
757 : (((TYPE) != 0) \
758 ? (TYPE_ALIGN (TYPE) <= PARM_BOUNDARY \
759 ? PARM_BOUNDARY \
760 : TYPE_ALIGN (TYPE)) \
761 : (GET_MODE_ALIGNMENT (MODE) <= PARM_BOUNDARY \
762 ? PARM_BOUNDARY \
763 : GET_MODE_ALIGNMENT (MODE))))
764
765 /* Define the information needed to generate branch and scc insns. This is
766 stored from the compare operation. Note that we can't use "rtx" here
767 since it hasn't been defined! */
768
769 extern struct rtx_def *sparc_compare_op0, *sparc_compare_op1;
770
771 /* Define the function that build the compare insn for scc and bcc. */
772
773 extern struct rtx_def *gen_compare_reg ();
774 \f
775 /* Generate the special assembly code needed to tell the assembler whatever
776 it might need to know about the return value of a function.
777
778 For Sparc assemblers, we need to output a .proc pseudo-op which conveys
779 information to the assembler relating to peephole optimization (done in
780 the assembler). */
781
782 #define ASM_DECLARE_RESULT(FILE, RESULT) \
783 fprintf ((FILE), "\t.proc\t0%o\n", sparc_type_code (TREE_TYPE (RESULT)))
784
785 /* Output the label for a function definition. */
786
787 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
788 do { \
789 ASM_DECLARE_RESULT (FILE, DECL_RESULT (DECL)); \
790 ASM_OUTPUT_LABEL (FILE, NAME); \
791 } while (0)
792
793 /* Two views of the size of the current frame. */
794 extern int actual_fsize;
795 extern int apparent_fsize;
796
797 /* This macro generates the assembly code for function entry.
798 FILE is a stdio stream to output the code to.
799 SIZE is an int: how many units of temporary storage to allocate.
800 Refer to the array `regs_ever_live' to determine which registers
801 to save; `regs_ever_live[I]' is nonzero if register number I
802 is ever used in the function. This macro is responsible for
803 knowing which registers should not be saved even if used. */
804
805 /* On SPARC, move-double insns between fpu and cpu need an 8-byte block
806 of memory. If any fpu reg is used in the function, we allocate
807 such a block here, at the bottom of the frame, just in case it's needed.
808
809 If this function is a leaf procedure, then we may choose not
810 to do a "save" insn. The decision about whether or not
811 to do this is made in regclass.c. */
812
813 #define FUNCTION_PROLOGUE(FILE, SIZE) \
814 output_function_prologue (FILE, SIZE, leaf_function)
815
816 /* Output assembler code to FILE to increment profiler label # LABELNO
817 for profiling a function entry. */
818
819 #define FUNCTION_PROFILER(FILE, LABELNO) \
820 fprintf (FILE, "\tsethi %%hi(LP%d),%%o0\n\tcall mcount\n\tor %%lo(LP%d),%%o0,%%o0\n", \
821 (LABELNO), (LABELNO))
822
823 /* Output assembler code to FILE to initialize this source file's
824 basic block profiling info, if that has not already been done. */
825
826 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
827 fprintf (FILE, "\tsethi %%hi(LPBX0),%%o0\n\tld [%%lo(LPBX0)+%%o0],%%o1\n\ttst %%o1\n\tbne LPY%d\n\tadd %%o0,%%lo(LPBX0),%%o0\n\tcall ___bb_init_func\n\tnop\nLPY%d:\n", \
828 (LABELNO), (LABELNO))
829
830 /* Output assembler code to FILE to increment the entry-count for
831 the BLOCKNO'th basic block in this source file. */
832
833 #define BLOCK_PROFILER(FILE, BLOCKNO) \
834 { \
835 int blockn = (BLOCKNO); \
836 fprintf (FILE, "\tsethi %%hi(LPBX2+%d),%%g1\n\tld [%%lo(LPBX2+%d)+%%g1],%%g2\n\
837 \tadd %%g2,1,%%g2\n\tst %%g2,[%%lo(LPBX2+%d)+%%g1]\n", \
838 4 * blockn, 4 * blockn, 4 * blockn); \
839 }
840
841 /* Output rtl to increment the entry-count for the LABELNO'th instrumented
842 arc in this source file. */
843
844 #define ARC_PROFILER(ARCNO, INSERT_AFTER) \
845 output_arc_profiler (ARCNO, INSERT_AFTER)
846
847 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
848 the stack pointer does not matter. The value is tested only in
849 functions that have frame pointers.
850 No definition is equivalent to always zero. */
851
852 extern int current_function_calls_alloca;
853 extern int current_function_outgoing_args_size;
854
855 #define EXIT_IGNORE_STACK \
856 (get_frame_size () != 0 \
857 || current_function_calls_alloca || current_function_outgoing_args_size)
858
859 /* This macro generates the assembly code for function exit,
860 on machines that need it. If FUNCTION_EPILOGUE is not defined
861 then individual return instructions are generated for each
862 return statement. Args are same as for FUNCTION_PROLOGUE.
863
864 The function epilogue should not depend on the current stack pointer!
865 It should use the frame pointer only. This is mandatory because
866 of alloca; we also take advantage of it to omit stack adjustments
867 before returning. */
868
869 /* This declaration is needed due to traditional/ANSI
870 incompatibilities which cannot be #ifdefed away
871 because they occur inside of macros. Sigh. */
872 extern union tree_node *current_function_decl;
873
874 #define FUNCTION_EPILOGUE(FILE, SIZE) \
875 output_function_epilogue (FILE, SIZE, leaf_function)
876
877 #define DELAY_SLOTS_FOR_EPILOGUE 1
878 #define ELIGIBLE_FOR_EPILOGUE_DELAY(trial, slots_filled) \
879 eligible_for_epilogue_delay (trial, slots_filled)
880
881 /* Output assembler code for a block containing the constant parts
882 of a trampoline, leaving space for the variable parts. */
883
884 /* On the sparc, the trampoline contains five instructions:
885 sethi #TOP_OF_FUNCTION,%g2
886 or #BOTTOM_OF_FUNCTION,%g2,%g2
887 sethi #TOP_OF_STATIC,%g1
888 jmp g2
889 or #BOTTOM_OF_STATIC,%g1,%g1 */
890 #define TRAMPOLINE_TEMPLATE(FILE) \
891 { \
892 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
893 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
894 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
895 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x81C08000)); \
896 ASM_OUTPUT_INT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x00000000)); \
897 }
898
899 /* Length in units of the trampoline for entering a nested function. */
900
901 #define TRAMPOLINE_SIZE 20
902
903 /* Emit RTL insns to initialize the variable parts of a trampoline.
904 FNADDR is an RTX for the address of the function's pure code.
905 CXT is an RTX for the static chain value for the function.
906
907 This takes 16 insns: 2 shifts & 2 ands (to split up addresses), 4 sethi
908 (to load in opcodes), 4 iors (to merge address and opcodes), and 4 writes
909 (to store insns). This is a bit excessive. Perhaps a different
910 mechanism would be better here. */
911
912 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
913 { \
914 rtx high_cxt = expand_shift (RSHIFT_EXPR, SImode, CXT, \
915 size_int (10), 0, 1); \
916 rtx high_fn = expand_shift (RSHIFT_EXPR, SImode, FNADDR, \
917 size_int (10), 0, 1); \
918 rtx low_cxt = expand_and (CXT, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
919 rtx low_fn = expand_and (FNADDR, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); \
920 rtx g1_sethi = gen_rtx (HIGH, SImode, \
921 gen_rtx (CONST_INT, VOIDmode, 0x03000000)); \
922 rtx g2_sethi = gen_rtx (HIGH, SImode, \
923 gen_rtx (CONST_INT, VOIDmode, 0x05000000)); \
924 rtx g1_ori = gen_rtx (HIGH, SImode, \
925 gen_rtx (CONST_INT, VOIDmode, 0x82106000)); \
926 rtx g2_ori = gen_rtx (HIGH, SImode, \
927 gen_rtx (CONST_INT, VOIDmode, 0x8410A000)); \
928 rtx tem = gen_reg_rtx (SImode); \
929 emit_move_insn (tem, g2_sethi); \
930 emit_insn (gen_iorsi3 (high_fn, high_fn, tem)); \
931 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 0)), high_fn);\
932 emit_move_insn (tem, g2_ori); \
933 emit_insn (gen_iorsi3 (low_fn, low_fn, tem)); \
934 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 4)), low_fn);\
935 emit_move_insn (tem, g1_sethi); \
936 emit_insn (gen_iorsi3 (high_cxt, high_cxt, tem)); \
937 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 8)), high_cxt);\
938 emit_move_insn (tem, g1_ori); \
939 emit_insn (gen_iorsi3 (low_cxt, low_cxt, tem)); \
940 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 16)), low_cxt);\
941 }
942
943 /* Emit code for a call to builtin_saveregs. We must emit USE insns which
944 reference the 6 input registers. Ordinarily they are not call used
945 registers, but they are for _builtin_saveregs, so we must make this
946 explicit. */
947
948 #define EXPAND_BUILTIN_SAVEREGS(ARGLIST) \
949 (emit_insn (gen_rtx (USE, VOIDmode, gen_rtx (REG, TImode, 24))), \
950 emit_insn (gen_rtx (USE, VOIDmode, gen_rtx (REG, DImode, 28))), \
951 expand_call (exp, target, ignore))
952 \f
953 /* Addressing modes, and classification of registers for them. */
954
955 /* #define HAVE_POST_INCREMENT */
956 /* #define HAVE_POST_DECREMENT */
957
958 /* #define HAVE_PRE_DECREMENT */
959 /* #define HAVE_PRE_INCREMENT */
960
961 /* Macros to check register numbers against specific register classes. */
962
963 /* These assume that REGNO is a hard or pseudo reg number.
964 They give nonzero only if REGNO is a hard reg of the suitable class
965 or a pseudo reg currently allocated to a suitable hard reg.
966 Since they use reg_renumber, they are safe only once reg_renumber
967 has been allocated, which happens in local-alloc.c. */
968
969 #define REGNO_OK_FOR_INDEX_P(REGNO) \
970 (((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
971 #define REGNO_OK_FOR_BASE_P(REGNO) \
972 (((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32) && (REGNO) != 0)
973 #define REGNO_OK_FOR_FP_P(REGNO) \
974 (((REGNO) ^ 0x20) < 32 \
975 || (((REGNO) != 0) && (unsigned) (reg_renumber[REGNO] ^ 0x20) < 32))
976
977 /* Now macros that check whether X is a register and also,
978 strictly, whether it is in a specified class.
979
980 These macros are specific to the SPARC, and may be used only
981 in code for printing assembler insns and in conditions for
982 define_optimization. */
983
984 /* 1 if X is an fp register. */
985
986 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
987 \f
988 /* Maximum number of registers that can appear in a valid memory address. */
989
990 #define MAX_REGS_PER_ADDRESS 2
991
992 /* Recognize any constant value that is a valid address. */
993
994 #define CONSTANT_ADDRESS_P(X) (CONSTANT_P (X))
995
996 /* Nonzero if the constant value X is a legitimate general operand.
997 Anything can be made to work except floating point constants. */
998
999 #define LEGITIMATE_CONSTANT_P(X) \
1000 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode)
1001
1002 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1003 and check its validity for a certain class.
1004 We have two alternate definitions for each of them.
1005 The usual definition accepts all pseudo regs; the other rejects
1006 them unless they have been allocated suitable hard regs.
1007 The symbol REG_OK_STRICT causes the latter definition to be used.
1008
1009 Most source files want to accept pseudo regs in the hope that
1010 they will get allocated to the class that the insn wants them to be in.
1011 Source files for reload pass need to be strict.
1012 After reload, it makes no difference, since pseudo regs have
1013 been eliminated by then. */
1014
1015 /* Optional extra constraints for this machine. Borrowed from romp.h.
1016
1017 For the SPARC, `Q' means that this is a memory operand but not a
1018 symbolic memory operand. Note that an unassigned pseudo register
1019 is such a memory operand. Needed because reload will generate
1020 these things in insns and then not re-recognize the insns, causing
1021 constrain_operands to fail.
1022
1023 `R' handles the LO_SUM which can be an address for `Q'.
1024
1025 `S' handles constraints for calls. */
1026
1027 #ifndef REG_OK_STRICT
1028
1029 /* Nonzero if X is a hard reg that can be used as an index
1030 or if it is a pseudo reg. */
1031 #define REG_OK_FOR_INDEX_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1032 /* Nonzero if X is a hard reg that can be used as a base reg
1033 or if it is a pseudo reg. */
1034 #define REG_OK_FOR_BASE_P(X) (((unsigned) REGNO (X)) - 32 >= 32 && REGNO (X) != 0)
1035
1036 #define EXTRA_CONSTRAINT(OP, C) \
1037 ((C) == 'Q' ? \
1038 ((GET_CODE (OP) == MEM \
1039 && memory_address_p (GET_MODE (OP), XEXP (OP, 0)) \
1040 && ! symbolic_memory_operand (OP, VOIDmode))) \
1041 : ((C) == 'R' ? \
1042 (GET_CODE (OP) == LO_SUM \
1043 && GET_CODE (XEXP (OP, 0)) == REG \
1044 && REG_OK_FOR_BASE_P (XEXP (OP, 0))) \
1045 : ((C) == 'S' \
1046 ? CONSTANT_P (OP) || memory_address_p (Pmode, OP) : 0)))
1047
1048 #else
1049
1050 /* Nonzero if X is a hard reg that can be used as an index. */
1051 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1052 /* Nonzero if X is a hard reg that can be used as a base reg. */
1053 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1054
1055 #define EXTRA_CONSTRAINT(OP, C) \
1056 ((C) == 'Q' ? \
1057 (GET_CODE (OP) == REG ? \
1058 (REGNO (OP) >= FIRST_PSEUDO_REGISTER \
1059 && reg_renumber[REGNO (OP)] < 0) \
1060 : GET_CODE (OP) == MEM) \
1061 : ((C) == 'R' ? \
1062 (GET_CODE (OP) == LO_SUM \
1063 && GET_CODE (XEXP (OP, 0)) == REG \
1064 && REG_OK_FOR_BASE_P (XEXP (OP, 0))) \
1065 : ((C) == 'S' \
1066 ? (CONSTANT_P (OP) \
1067 || (GET_CODE (OP) == REG && reg_renumber[REGNO (OP)] > 0)\
1068 || strict_memory_address_p (Pmode, OP)) : 0)))
1069 #endif
1070 \f
1071 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1072 that is a valid memory address for an instruction.
1073 The MODE argument is the machine mode for the MEM expression
1074 that wants to use this address.
1075
1076 On SPARC, the actual legitimate addresses must be REG+REG or REG+SMALLINT
1077 ordinarily. This changes a bit when generating PIC.
1078
1079 If you change this, execute "rm explow.o recog.o reload.o". */
1080
1081 #define RTX_OK_FOR_BASE_P(X) \
1082 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1083 || (GET_CODE (X) == SUBREG \
1084 && GET_CODE (SUBREG_REG (X)) == REG \
1085 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1086
1087 #define RTX_OK_FOR_INDEX_P(X) \
1088 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
1089 || (GET_CODE (X) == SUBREG \
1090 && GET_CODE (SUBREG_REG (X)) == REG \
1091 && REG_OK_FOR_INDEX_P (SUBREG_REG (X))))
1092
1093 #define RTX_OK_FOR_OFFSET_P(X) \
1094 (GET_CODE (X) == CONST_INT && INTVAL (X) >= -0x1000 && INTVAL (X) < 0x1000)
1095
1096 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1097 { if (RTX_OK_FOR_BASE_P (X)) \
1098 goto ADDR; \
1099 else if (GET_CODE (X) == PLUS) \
1100 { \
1101 register rtx op0 = XEXP (X, 0); \
1102 register rtx op1 = XEXP (X, 1); \
1103 if (flag_pic && op0 == pic_offset_table_rtx) \
1104 { \
1105 if (RTX_OK_FOR_BASE_P (op1)) \
1106 goto ADDR; \
1107 else if (flag_pic == 1 \
1108 && GET_CODE (op1) != REG \
1109 && GET_CODE (op1) != LO_SUM \
1110 && GET_CODE (op1) != MEM) \
1111 goto ADDR; \
1112 } \
1113 else if (RTX_OK_FOR_BASE_P (op0)) \
1114 { \
1115 if (RTX_OK_FOR_INDEX_P (op1) \
1116 || RTX_OK_FOR_OFFSET_P (op1)) \
1117 goto ADDR; \
1118 } \
1119 else if (RTX_OK_FOR_BASE_P (op1)) \
1120 { \
1121 if (RTX_OK_FOR_INDEX_P (op0) \
1122 || RTX_OK_FOR_OFFSET_P (op0)) \
1123 goto ADDR; \
1124 } \
1125 } \
1126 else if (GET_CODE (X) == LO_SUM) \
1127 { \
1128 register rtx op0 = XEXP (X, 0); \
1129 register rtx op1 = XEXP (X, 1); \
1130 if (RTX_OK_FOR_BASE_P (op0) \
1131 && CONSTANT_P (op1)) \
1132 goto ADDR; \
1133 } \
1134 else if (GET_CODE (X) == CONST_INT && SMALL_INT (X)) \
1135 goto ADDR; \
1136 }
1137 \f
1138 /* Try machine-dependent ways of modifying an illegitimate address
1139 to be legitimate. If we find one, return the new, valid address.
1140 This macro is used in only one place: `memory_address' in explow.c.
1141
1142 OLDX is the address as it was before break_out_memory_refs was called.
1143 In some cases it is useful to look at this to decide what needs to be done.
1144
1145 MODE and WIN are passed so that this macro can use
1146 GO_IF_LEGITIMATE_ADDRESS.
1147
1148 It is always safe for this macro to do nothing. It exists to recognize
1149 opportunities to optimize the output. */
1150
1151 /* On SPARC, change REG+N into REG+REG, and REG+(X*Y) into REG+REG. */
1152 extern struct rtx_def *legitimize_pic_address ();
1153 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1154 { rtx sparc_x = (X); \
1155 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == MULT) \
1156 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
1157 force_operand (XEXP (X, 0), 0)); \
1158 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == MULT) \
1159 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1160 force_operand (XEXP (X, 1), 0)); \
1161 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == PLUS) \
1162 (X) = gen_rtx (PLUS, Pmode, force_operand (XEXP (X, 0), 0),\
1163 XEXP (X, 1)); \
1164 if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == PLUS) \
1165 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1166 force_operand (XEXP (X, 1), 0)); \
1167 if (sparc_x != (X) && memory_address_p (MODE, X)) \
1168 goto WIN; \
1169 if (flag_pic) (X) = legitimize_pic_address (X, MODE, 0, 0); \
1170 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 1))) \
1171 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1172 copy_to_mode_reg (Pmode, XEXP (X, 1))); \
1173 else if (GET_CODE (X) == PLUS && CONSTANT_ADDRESS_P (XEXP (X, 0))) \
1174 (X) = gen_rtx (PLUS, Pmode, XEXP (X, 1), \
1175 copy_to_mode_reg (Pmode, XEXP (X, 0))); \
1176 else if (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST \
1177 || GET_CODE (X) == LABEL_REF) \
1178 (X) = gen_rtx (LO_SUM, Pmode, \
1179 copy_to_mode_reg (Pmode, gen_rtx (HIGH, Pmode, X)), X); \
1180 if (memory_address_p (MODE, X)) \
1181 goto WIN; }
1182
1183 /* Go to LABEL if ADDR (a legitimate address expression)
1184 has an effect that depends on the machine mode it is used for.
1185 On the SPARC this is never true. */
1186
1187 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1188 \f
1189 /* Specify the machine mode that this machine uses
1190 for the index in the tablejump instruction. */
1191 #define CASE_VECTOR_MODE SImode
1192
1193 /* Define this if the tablejump instruction expects the table
1194 to contain offsets from the address of the table.
1195 Do not define this if the table should contain absolute addresses. */
1196 /* #define CASE_VECTOR_PC_RELATIVE */
1197
1198 /* Specify the tree operation to be used to convert reals to integers. */
1199 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1200
1201 /* This is the kind of divide that is easiest to do in the general case. */
1202 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1203
1204 /* Define this as 1 if `char' should by default be signed; else as 0. */
1205 #define DEFAULT_SIGNED_CHAR 1
1206
1207 /* Max number of bytes we can move from memory to memory
1208 in one reasonably fast instruction. */
1209 #define MOVE_MAX 8
1210
1211 /* Define if normal loads of shorter-than-word items from memory clears
1212 the rest of the bigs in the register. */
1213 #define BYTE_LOADS_ZERO_EXTEND
1214
1215 /* Nonzero if access to memory by bytes is slow and undesirable.
1216 For RISC chips, it means that access to memory by bytes is no
1217 better than access by words when possible, so grab a whole word
1218 and maybe make use of that. */
1219 #define SLOW_BYTE_ACCESS 1
1220
1221 /* We assume that the store-condition-codes instructions store 0 for false
1222 and some other value for true. This is the value stored for true. */
1223
1224 #define STORE_FLAG_VALUE 1
1225
1226 /* When a prototype says `char' or `short', really pass an `int'. */
1227 #define PROMOTE_PROTOTYPES
1228
1229 /* Define if shifts truncate the shift count
1230 which implies one can omit a sign-extension or zero-extension
1231 of a shift count. */
1232 #define SHIFT_COUNT_TRUNCATED
1233
1234 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1235 is done just by pretending it is already truncated. */
1236 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1237
1238 /* Specify the machine mode that pointers have.
1239 After generation of rtl, the compiler makes no further distinction
1240 between pointers and any other objects of this machine mode. */
1241 #define Pmode SImode
1242
1243 /* Generate calls to memcpy, memcmp and memset. */
1244 #define TARGET_MEM_FUNCTIONS
1245
1246 /* Add any extra modes needed to represent the condition code.
1247
1248 On the Sparc, we have a "no-overflow" mode which is used when an add or
1249 subtract insn is used to set the condition code. Different branches are
1250 used in this case for some operations.
1251
1252 We also have two modes to indicate that the relevant condition code is
1253 in the floating-point condition code register. One for comparisons which
1254 will generate an exception if the result is unordered (CCFPEmode) and
1255 one for comparisons which will never trap (CCFPmode). This really should
1256 be a separate register, but we don't want to go to 65 registers. */
1257 #define EXTRA_CC_MODES CC_NOOVmode, CCFPmode, CCFPEmode
1258
1259 /* Define the names for the modes specified above. */
1260 #define EXTRA_CC_NAMES "CC_NOOV", "CCFP", "CCFPE"
1261
1262 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1263 return the mode to be used for the comparison. For floating-point,
1264 CCFP[E]mode is used. CC_NOOVmode should be used when the first operand is a
1265 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1266 needed. */
1267 #define SELECT_CC_MODE(OP,X) \
1268 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1269 ? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
1270 : ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS || GET_CODE (X) == NEG) \
1271 ? CC_NOOVmode : CCmode))
1272
1273 /* A function address in a call instruction
1274 is a byte address (for indexing purposes)
1275 so give the MEM rtx a byte's mode. */
1276 #define FUNCTION_MODE SImode
1277
1278 /* Define this if addresses of constant functions
1279 shouldn't be put through pseudo regs where they can be cse'd.
1280 Desirable on machines where ordinary constants are expensive
1281 but a CALL with constant address is cheap. */
1282 #define NO_FUNCTION_CSE
1283
1284 /* alloca should avoid clobbering the old register save area. */
1285 #define SETJMP_VIA_SAVE_AREA
1286
1287 /* Define subroutines to call to handle multiply and divide.
1288 Use the subroutines that Sun's library provides.
1289 The `*' prevents an underscore from being prepended by the compiler. */
1290
1291 #define DIVSI3_LIBCALL "*.div"
1292 #define UDIVSI3_LIBCALL "*.udiv"
1293 #define MODSI3_LIBCALL "*.rem"
1294 #define UMODSI3_LIBCALL "*.urem"
1295 /* .umul is a little faster than .mul. */
1296 #define MULSI3_LIBCALL "*.umul"
1297
1298 /* Compute the cost of computing a constant rtl expression RTX
1299 whose rtx-code is CODE. The body of this macro is a portion
1300 of a switch statement. If the code is computed here,
1301 return it with a return statement. Otherwise, break from the switch. */
1302
1303 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1304 case CONST_INT: \
1305 if (INTVAL (RTX) == 0) \
1306 return 0; \
1307 if (INTVAL (RTX) < 0x1000 && INTVAL (RTX) >= -0x1000) \
1308 return 1; \
1309 case HIGH: \
1310 return 2; \
1311 case CONST: \
1312 case LABEL_REF: \
1313 case SYMBOL_REF: \
1314 return 4; \
1315 case CONST_DOUBLE: \
1316 if (GET_MODE (RTX) == DImode) \
1317 if ((XINT (RTX, 3) == 0 \
1318 && (unsigned) XINT (RTX, 2) < 0x1000) \
1319 || (XINT (RTX, 3) == -1 \
1320 && XINT (RTX, 2) < 0 \
1321 && XINT (RTX, 2) >= -0x1000)) \
1322 return 1; \
1323 return 8;
1324
1325 /* SPARC offers addressing modes which are "as cheap as a register".
1326 See sparc.c (or gcc.texinfo) for details. */
1327
1328 #define ADDRESS_COST(RTX) \
1329 (GET_CODE (RTX) == REG ? 1 : sparc_address_cost (RTX))
1330
1331 /* Compute extra cost of moving data between one register class
1332 and another. */
1333 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
1334 (((CLASS1 == FP_REGS && CLASS2 == GENERAL_REGS) \
1335 || (CLASS1 == GENERAL_REGS && CLASS2 == FP_REGS)) ? 6 : 2)
1336
1337 /* Provide the costs of a rtl expression. This is in the body of a
1338 switch on CODE. The purpose for the cost of MULT is to encourage
1339 `synth_mult' to find a synthetic multiply when reasonable.
1340
1341 If we need more than 12 insns to do a multiply, then go out-of-line,
1342 since the call overhead will be < 10% of the cost of the multiply. */
1343
1344 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1345 case MULT: \
1346 return COSTS_N_INSNS (25); \
1347 case DIV: \
1348 case UDIV: \
1349 case MOD: \
1350 case UMOD: \
1351 return COSTS_N_INSNS (20); \
1352 /* Make FLOAT more expensive than CONST_DOUBLE, \
1353 so that cse will favor the latter. */ \
1354 case FLOAT: \
1355 return 19;
1356
1357 /* Conditional branches with empty delay slots have a length of two. */
1358 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1359 if (GET_CODE (INSN) == CALL_INSN \
1360 || (GET_CODE (INSN) == JUMP_INSN && ! simplejump_p (insn))) \
1361 LENGTH += 1;
1362 \f
1363 /* Control the assembler format that we output. */
1364
1365 /* Output at beginning of assembler file. */
1366
1367 #define ASM_FILE_START(file)
1368
1369 /* Output to assembler file text saying following lines
1370 may contain character constants, extra white space, comments, etc. */
1371
1372 #define ASM_APP_ON ""
1373
1374 /* Output to assembler file text saying following lines
1375 no longer contain unusual constructs. */
1376
1377 #define ASM_APP_OFF ""
1378
1379 /* Output before read-only data. */
1380
1381 #define TEXT_SECTION_ASM_OP ".text"
1382
1383 /* Output before writable data. */
1384
1385 #define DATA_SECTION_ASM_OP ".data"
1386
1387 /* How to refer to registers in assembler output.
1388 This sequence is indexed by compiler's hard-register-number (see above). */
1389
1390 #define REGISTER_NAMES \
1391 {"%g0", "%g1", "%g2", "%g3", "%g4", "%g5", "%g6", "%g7", \
1392 "%o0", "%o1", "%o2", "%o3", "%o4", "%o5", "%sp", "%o7", \
1393 "%l0", "%l1", "%l2", "%l3", "%l4", "%l5", "%l6", "%l7", \
1394 "%i0", "%i1", "%i2", "%i3", "%i4", "%i5", "%fp", "%i7", \
1395 "%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", \
1396 "%f8", "%f9", "%f10", "%f11", "%f12", "%f13", "%f14", "%f15", \
1397 "%f16", "%f17", "%f18", "%f19", "%f20", "%f21", "%f22", "%f23", \
1398 "%f24", "%f25", "%f26", "%f27", "%f28", "%f29", "%f30", "%f31"}
1399
1400 /* Define additional names for use in asm clobbers and asm declarations.
1401
1402 We define the fake Condition Code register as an alias for reg 0 (which
1403 is our `condition code' register), so that condition codes can easily
1404 be clobbered by an asm. No such register actually exists. Condition
1405 codes are partly stored in the PSR and partly in the FSR. */
1406
1407 #define ADDITIONAL_REGISTER_NAMES {"ccr", 0, "cc", 0}
1408
1409 /* How to renumber registers for dbx and gdb. */
1410
1411 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1412
1413 /* On Sun 4, this limit is 2048. We use 1500 to be safe,
1414 since the length can run past this up to a continuation point. */
1415 #define DBX_CONTIN_LENGTH 1500
1416
1417 /* This is how to output a note to DBX telling it the line number
1418 to which the following sequence of instructions corresponds.
1419
1420 This is needed for SunOS 4.0, and should not hurt for 3.2
1421 versions either. */
1422 #define ASM_OUTPUT_SOURCE_LINE(file, line) \
1423 { static int sym_lineno = 1; \
1424 fprintf (file, ".stabn 68,0,%d,LM%d\nLM%d:\n", \
1425 line, sym_lineno, sym_lineno); \
1426 sym_lineno += 1; }
1427
1428 /* This is how to output the definition of a user-level label named NAME,
1429 such as the label on a static function or variable NAME. */
1430
1431 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1432 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1433
1434 /* This is how to output a command to make the user-level label named NAME
1435 defined for reference from other files. */
1436
1437 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1438 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1439
1440 /* This is how to output a reference to a user-level label named NAME.
1441 `assemble_name' uses this. */
1442
1443 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1444 fprintf (FILE, "_%s", NAME)
1445
1446 /* This is how to output an internal numbered label where
1447 PREFIX is the class of label and NUM is the number within the class. */
1448
1449 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1450 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1451
1452 /* This is how to store into the string LABEL
1453 the symbol_ref name of an internal numbered label where
1454 PREFIX is the class of label and NUM is the number within the class.
1455 This is suitable for output with `assemble_name'. */
1456
1457 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1458 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1459
1460 /* This is how to output an assembler line defining a `double' constant. */
1461
1462 /* Assemblers (both gas 1.35 and as in 4.0.3)
1463 seem to treat -0.0 as if it were 0.0.
1464 They reject 99e9999, but accept inf. */
1465 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1466 { \
1467 if (REAL_VALUE_ISINF (VALUE)) \
1468 fprintf (FILE, "\t.double 0r%sinf\n", (VALUE) > 0 ? "" : "-"); \
1469 else if (REAL_VALUE_ISNAN (VALUE) \
1470 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1471 { \
1472 union { double d; long l[2];} t; \
1473 t.d = (VALUE); \
1474 fprintf (FILE, "\t.word 0x%lx\n\t.word 0x%lx\n", t.l[0], t.l[1]); \
1475 } \
1476 else \
1477 fprintf (FILE, "\t.double 0r%.17g\n", VALUE); \
1478 }
1479
1480 /* This is how to output an assembler line defining a `float' constant. */
1481
1482 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1483 { \
1484 if (REAL_VALUE_ISINF (VALUE)) \
1485 fprintf (FILE, "\t.single 0r%sinf\n", (VALUE) > 0 ? "" : "-"); \
1486 else if (REAL_VALUE_ISNAN (VALUE) \
1487 || REAL_VALUE_MINUS_ZERO (VALUE)) \
1488 { \
1489 union { float f; long l;} t; \
1490 t.f = (VALUE); \
1491 fprintf (FILE, "\t.word 0x%lx\n", t.l); \
1492 } \
1493 else \
1494 fprintf (FILE, "\t.single 0r%.9g\n", VALUE); \
1495 }
1496
1497 /* This is how to output an assembler line defining an `int' constant. */
1498
1499 #define ASM_OUTPUT_INT(FILE,VALUE) \
1500 ( fprintf (FILE, "\t.word "), \
1501 output_addr_const (FILE, (VALUE)), \
1502 fprintf (FILE, "\n"))
1503
1504 /* This is how to output an assembler line defining a DImode constant. */
1505 #define ASM_OUTPUT_DOUBLE_INT(FILE,VALUE) \
1506 output_double_int (FILE, VALUE)
1507
1508 /* Likewise for `char' and `short' constants. */
1509
1510 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1511 ( fprintf (FILE, "\t.half "), \
1512 output_addr_const (FILE, (VALUE)), \
1513 fprintf (FILE, "\n"))
1514
1515 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1516 ( fprintf (FILE, "\t.byte "), \
1517 output_addr_const (FILE, (VALUE)), \
1518 fprintf (FILE, "\n"))
1519
1520 /* This is how to output an assembler line for a numeric constant byte. */
1521
1522 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1523 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1524
1525 /* This is how to output an element of a case-vector that is absolute. */
1526
1527 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1528 do { \
1529 char label[30]; \
1530 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1531 fprintf (FILE, "\t.word\t"); \
1532 assemble_name (FILE, label); \
1533 fprintf (FILE, "\n"); \
1534 } while (0)
1535
1536 /* This is how to output an element of a case-vector that is relative.
1537 (SPARC uses such vectors only when generating PIC.) */
1538
1539 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1540 do { \
1541 char label[30]; \
1542 ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE); \
1543 fprintf (FILE, "\t.word\t"); \
1544 assemble_name (FILE, label); \
1545 fprintf (FILE, "-1b\n"); \
1546 } while (0)
1547
1548 /* This is how to output an assembler line
1549 that says to advance the location counter
1550 to a multiple of 2**LOG bytes. */
1551
1552 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1553 if ((LOG) != 0) \
1554 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1555
1556 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1557 fprintf (FILE, "\t.skip %u\n", (SIZE))
1558
1559 /* This says how to output an assembler line
1560 to define a global common symbol. */
1561
1562 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1563 ( fputs ("\t.global ", (FILE)), \
1564 assemble_name ((FILE), (NAME)), \
1565 fputs ("\n\t.common ", (FILE)), \
1566 assemble_name ((FILE), (NAME)), \
1567 fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
1568
1569 /* This says how to output an assembler line
1570 to define a local common symbol. */
1571
1572 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1573 ( fputs ("\n\t.reserve ", (FILE)), \
1574 assemble_name ((FILE), (NAME)), \
1575 fprintf ((FILE), ",%u,\"bss\"\n", (ROUNDED)))
1576
1577 /* Store in OUTPUT a string (made with alloca) containing
1578 an assembler-name for a local static variable named NAME.
1579 LABELNO is an integer which is different for each call. */
1580
1581 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1582 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1583 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1584
1585 /* Define the parentheses used to group arithmetic operations
1586 in assembler code. */
1587
1588 #define ASM_OPEN_PAREN "("
1589 #define ASM_CLOSE_PAREN ")"
1590
1591 /* Define results of standard character escape sequences. */
1592 #define TARGET_BELL 007
1593 #define TARGET_BS 010
1594 #define TARGET_TAB 011
1595 #define TARGET_NEWLINE 012
1596 #define TARGET_VT 013
1597 #define TARGET_FF 014
1598 #define TARGET_CR 015
1599
1600 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1601 ((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^')
1602
1603 /* Print operand X (an rtx) in assembler syntax to file FILE.
1604 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1605 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1606
1607 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1608
1609 /* Print a memory address as an operand to reference that memory location. */
1610
1611 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1612 { register rtx base, index = 0; \
1613 int offset = 0; \
1614 register rtx addr = ADDR; \
1615 if (GET_CODE (addr) == REG) \
1616 fputs (reg_names[REGNO (addr)], FILE); \
1617 else if (GET_CODE (addr) == PLUS) \
1618 { \
1619 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
1620 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);\
1621 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1622 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);\
1623 else \
1624 base = XEXP (addr, 0), index = XEXP (addr, 1); \
1625 fputs (reg_names[REGNO (base)], FILE); \
1626 if (index == 0) \
1627 fprintf (FILE, "%+d", offset); \
1628 else if (GET_CODE (index) == REG) \
1629 fprintf (FILE, "+%s", reg_names[REGNO (index)]); \
1630 else if (GET_CODE (index) == SYMBOL_REF) \
1631 fputc ('+', FILE), output_addr_const (FILE, index); \
1632 else abort (); \
1633 } \
1634 else if (GET_CODE (addr) == MINUS \
1635 && GET_CODE (XEXP (addr, 1)) == LABEL_REF) \
1636 { \
1637 output_addr_const (FILE, XEXP (addr, 0)); \
1638 fputs ("-(", FILE); \
1639 output_addr_const (FILE, XEXP (addr, 1)); \
1640 fputs ("-.)", FILE); \
1641 } \
1642 else if (GET_CODE (addr) == LO_SUM) \
1643 { \
1644 output_operand (XEXP (addr, 0), 0); \
1645 fputs ("+%lo(", FILE); \
1646 output_address (XEXP (addr, 1)); \
1647 fputc (')', FILE); \
1648 } \
1649 else if (flag_pic && GET_CODE (addr) == CONST \
1650 && GET_CODE (XEXP (addr, 0)) == MINUS \
1651 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST \
1652 && GET_CODE (XEXP (XEXP (XEXP (addr, 0), 1), 0)) == MINUS \
1653 && XEXP (XEXP (XEXP (XEXP (addr, 0), 1), 0), 1) == pc_rtx) \
1654 { \
1655 addr = XEXP (addr, 0); \
1656 output_addr_const (FILE, XEXP (addr, 0)); \
1657 /* Group the args of the second CONST in parenthesis. */ \
1658 fputs ("-(", FILE); \
1659 /* Skip past the second CONST--it does nothing for us. */\
1660 output_addr_const (FILE, XEXP (XEXP (addr, 1), 0)); \
1661 /* Close the parenthesis. */ \
1662 fputc (')', FILE); \
1663 } \
1664 else \
1665 { \
1666 output_addr_const (FILE, addr); \
1667 } \
1668 }
1669
1670 /* Declare functions defined in sparc.c and used in templates. */
1671
1672 extern char *singlemove_string ();
1673 extern char *output_move_double ();
1674 extern char *output_move_quad ();
1675 extern char *output_fp_move_double ();
1676 extern char *output_fp_move_quad ();
1677 extern char *output_block_move ();
1678 extern char *output_scc_insn ();
1679 extern char *output_cbranch ();
1680 extern char *output_return ();
1681 extern char *output_floatsisf2 ();
1682 extern char *output_floatsidf2 ();
1683 extern char *output_floatsitf2 ();
1684
1685 /* Defined in flags.h, but insn-emit.c does not include flags.h. */
1686
1687 extern int flag_pic;
This page took 0.122399 seconds and 5 git commands to generate.