]> gcc.gnu.org Git - gcc.git/blob - gcc/config/sh/sh.h
c-format.c (maybe_read_dollar_number): Use safe-ctype macros and/or fold extra calls...
[gcc.git] / gcc / config / sh / sh.h
1 /* Definitions of target machine for GNU compiler for Hitachi Super-H.
2 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4 Contributed by Steve Chamberlain (sac@cygnus.com).
5 Improved by Jim Wilson (wilson@cygnus.com).
6
7 This file is part of GNU CC.
8
9 GNU CC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13
14 GNU CC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GNU CC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #ifndef GCC_SH_H
25 #define GCC_SH_H
26
27 #define TARGET_VERSION \
28 fputs (" (Hitachi SH)", stderr);
29
30 /* Unfortunately, insn-attrtab.c doesn't include insn-codes.h. We can't
31 include it here, because hconfig.h is also included by gencodes.c . */
32 /* ??? No longer true. */
33 extern int code_for_indirect_jump_scratch;
34
35 /* Generate SDB debugging information. */
36
37 #define SDB_DEBUGGING_INFO
38
39 /* Output DBX (stabs) debugging information if doing -gstabs. */
40
41 #include "dbxcoff.h"
42
43 #define SDB_DELIM ";"
44
45 #define CPP_SPEC " \
46 %{m1:-D__sh1__} \
47 %{m2:-D__sh2__} \
48 %{m3:-D__sh3__} \
49 %{m3e:-D__SH3E__} \
50 %{m4-single-only:-D__SH4_SINGLE_ONLY__} \
51 %{m4-single:-D__SH4_SINGLE__} \
52 %{m4-nofpu:-D__sh3__ -D__SH4_NOFPU__} \
53 %{m4:-D__SH4__} \
54 %{!m1:%{!m2:%{!m3*:%{!m4*:%(cpp_default_cpu_spec)}}}} \
55 %{mnomacsave:-D__NOMACSAVE__} \
56 %{mhitachi:-D__HITACHI__} \
57 %(subtarget_cpp_spec) \
58 %(subtarget_cpp_ptr_spec) \
59 %(subtarget_cpp_endian_spec) "
60
61 #ifndef SUBTARGET_CPP_ENDIAN_SPEC
62 #define SUBTARGET_CPP_ENDIAN_SPEC "%{ml:-D__LITTLE_ENDIAN__}"
63 #endif
64
65 #ifndef SUBTARGET_CPP_SPEC
66 #define SUBTARGET_CPP_SPEC ""
67 #endif
68
69 #ifndef CPP_DEFAULT_CPU_SPEC
70 #define CPP_DEFAULT_CPU_SPEC "-D__sh1__"
71 #endif
72
73 #ifndef SUBTARGET_CPP_PTR_SPEC
74 #define SUBTARGET_CPP_PTR_SPEC "-D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int"
75 #endif
76
77 #define EXTRA_SPECS \
78 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
79 { "subtarget_cpp_endian_spec", SUBTARGET_CPP_ENDIAN_SPEC }, \
80 { "subtarget_cpp_ptr_spec", SUBTARGET_CPP_PTR_SPEC }, \
81 { "cpp_default_cpu_spec", CPP_DEFAULT_CPU_SPEC },
82
83 #define CPP_PREDEFINES "-D__sh__ -Acpu=sh -Amachine=sh"
84
85 #define ASM_SPEC "%{ml:-little} %{mrelax:-relax}"
86
87 #define LINK_SPEC "%{ml:-m shl} %{mrelax:-relax}"
88
89 /* We can not debug without a frame pointer. */
90 /* #define CAN_DEBUG_WITHOUT_FP */
91
92 #define CONDITIONAL_REGISTER_USAGE do \
93 { \
94 int regno; \
95 if (! TARGET_SH4 || ! TARGET_FMOVD) \
96 { \
97 for (regno = FIRST_XD_REG; regno <= LAST_XD_REG; regno++) \
98 fixed_regs[regno] = call_used_regs[regno] = 1; \
99 if (! TARGET_SH4) \
100 { \
101 if (! TARGET_SH3E) \
102 { \
103 for (regno = FIRST_FP_REG; regno <= LAST_FP_REG; regno++) \
104 fixed_regs[regno] = call_used_regs[regno] = 1; \
105 fixed_regs[FPUL_REG] = call_used_regs[FPUL_REG] = 1; \
106 } \
107 } \
108 } \
109 if (flag_pic) \
110 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
111 /* Hitachi saves and restores mac registers on call. */ \
112 if (TARGET_HITACHI && ! TARGET_NOMACSAVE) \
113 { \
114 call_used_regs[MACH_REG] = 0; \
115 call_used_regs[MACL_REG] = 0; \
116 } \
117 for (regno = FIRST_GENERAL_REG; regno <= LAST_GENERAL_REG; regno++) \
118 if (! fixed_regs[regno] && call_used_regs[regno]) \
119 SET_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], regno); \
120 } while (0)
121 \f
122 /* ??? Need to write documentation for all SH options and add it to the
123 invoke.texi file. */
124
125 /* Run-time compilation parameters selecting different hardware subsets. */
126
127 extern int target_flags;
128 #define ISIZE_BIT (1<<1)
129 #define DALIGN_BIT (1<<6)
130 #define SH1_BIT (1<<8)
131 #define SH2_BIT (1<<9)
132 #define SH3_BIT (1<<10)
133 #define SH3E_BIT (1<<11)
134 #define HARD_SH4_BIT (1<<5)
135 #define FPU_SINGLE_BIT (1<<7)
136 #define SH4_BIT (1<<12)
137 #define FMOVD_BIT (1<<4)
138 #define SPACE_BIT (1<<13)
139 #define BIGTABLE_BIT (1<<14)
140 #define RELAX_BIT (1<<15)
141 #define USERMODE_BIT (1<<16)
142 #define HITACHI_BIT (1<<22)
143 #define NOMACSAVE_BIT (1<<23)
144 #define PREFERGOT_BIT (1<<24)
145 #define PADSTRUCT_BIT (1<<28)
146 #define LITTLE_ENDIAN_BIT (1<<29)
147 #define IEEE_BIT (1<<30)
148
149 /* Nonzero if we should dump out instruction size info. */
150 #define TARGET_DUMPISIZE (target_flags & ISIZE_BIT)
151
152 /* Nonzero to align doubles on 64 bit boundaries. */
153 #define TARGET_ALIGN_DOUBLE (target_flags & DALIGN_BIT)
154
155 /* Nonzero if we should generate code using type 1 insns. */
156 #define TARGET_SH1 (target_flags & SH1_BIT)
157
158 /* Nonzero if we should generate code using type 2 insns. */
159 #define TARGET_SH2 (target_flags & SH2_BIT)
160
161 /* Nonzero if we should generate code using type 3 insns. */
162 #define TARGET_SH3 (target_flags & SH3_BIT)
163
164 /* Nonzero if we should generate code using type 3E insns. */
165 #define TARGET_SH3E (target_flags & SH3E_BIT)
166
167 /* Nonzero if the cache line size is 32. */
168 #define TARGET_CACHE32 (target_flags & HARD_SH4_BIT)
169
170 /* Nonzero if we schedule for a superscalar implementation. */
171 #define TARGET_SUPERSCALAR (target_flags & HARD_SH4_BIT)
172
173 /* Nonzero if the target has separate instruction and data caches. */
174 #define TARGET_HARVARD (target_flags & HARD_SH4_BIT)
175
176 /* Nonzero if compiling for SH4 hardware (to be used for insn costs etc.) */
177 #define TARGET_HARD_SH4 (target_flags & HARD_SH4_BIT)
178
179 /* Nonzero if the default precision of th FPU is single */
180 #define TARGET_FPU_SINGLE (target_flags & FPU_SINGLE_BIT)
181
182 /* Nonzero if we should generate code using type 4 insns. */
183 #define TARGET_SH4 (target_flags & SH4_BIT)
184
185 /* Nonzero if we should generate fmovd. */
186 #define TARGET_FMOVD (target_flags & FMOVD_BIT)
187
188 /* Nonzero if we respect NANs. */
189 #define TARGET_IEEE (target_flags & IEEE_BIT)
190
191 /* Nonzero if we should generate smaller code rather than faster code. */
192 #define TARGET_SMALLCODE (target_flags & SPACE_BIT)
193
194 /* Nonzero to use long jump tables. */
195 #define TARGET_BIGTABLE (target_flags & BIGTABLE_BIT)
196
197 /* Nonzero to generate pseudo-ops needed by the assembler and linker
198 to do function call relaxing. */
199 #define TARGET_RELAX (target_flags & RELAX_BIT)
200
201 /* Nonzero if using Hitachi's calling convention. */
202 #define TARGET_HITACHI (target_flags & HITACHI_BIT)
203
204 /* Nonzero if not saving macl/mach when using -mhitachi */
205 #define TARGET_NOMACSAVE (target_flags & NOMACSAVE_BIT)
206
207 /* Nonzero if padding structures to a multiple of 4 bytes. This is
208 incompatible with Hitachi's compiler, and gives unusual structure layouts
209 which confuse programmers.
210 ??? This option is not useful, but is retained in case there are people
211 who are still relying on it. It may be deleted in the future. */
212 #define TARGET_PADSTRUCT (target_flags & PADSTRUCT_BIT)
213
214 /* Nonzero if generating code for a little endian SH. */
215 #define TARGET_LITTLE_ENDIAN (target_flags & LITTLE_ENDIAN_BIT)
216
217 /* Nonzero if we should do everything in userland. */
218 #define TARGET_USERMODE (target_flags & USERMODE_BIT)
219
220 /* Nonzero if we should prefer @GOT calls when generating PIC. */
221 #define TARGET_PREFERGOT (target_flags & PREFERGOT_BIT)
222
223 /* Reset all target-selection flags. */
224 #define TARGET_NONE -(SH1_BIT | SH2_BIT | SH3_BIT | SH3E_BIT | SH4_BIT \
225 | HARD_SH4_BIT | FPU_SINGLE_BIT)
226
227 #define TARGET_SWITCHES \
228 { {"1", TARGET_NONE, "" }, \
229 {"1", SH1_BIT, "" }, \
230 {"2", TARGET_NONE, "" }, \
231 {"2", SH2_BIT|SH1_BIT, "" }, \
232 {"3", TARGET_NONE, "" }, \
233 {"3", SH3_BIT|SH2_BIT|SH1_BIT, "" }, \
234 {"3e", TARGET_NONE, "" }, \
235 {"3e", SH3E_BIT|SH3_BIT|SH2_BIT|SH1_BIT|FPU_SINGLE_BIT, "" }, \
236 {"4-single-only", TARGET_NONE, "" }, \
237 {"4-single-only", SH3E_BIT|SH3_BIT|SH2_BIT|SH1_BIT|HARD_SH4_BIT|FPU_SINGLE_BIT, "" }, \
238 {"4-single", TARGET_NONE, "" }, \
239 {"4-single", SH4_BIT|SH3E_BIT|SH3_BIT|SH2_BIT|SH1_BIT|HARD_SH4_BIT|FPU_SINGLE_BIT, "" },\
240 {"4-nofpu", TARGET_NONE, "" }, \
241 {"4-nofpu", SH3_BIT|SH2_BIT|SH1_BIT|HARD_SH4_BIT, "" },\
242 {"4", TARGET_NONE, "" }, \
243 {"4", SH4_BIT|SH3E_BIT|SH3_BIT|SH2_BIT|SH1_BIT|HARD_SH4_BIT, "" }, \
244 {"b", -LITTLE_ENDIAN_BIT, "" }, \
245 {"bigtable", BIGTABLE_BIT, "" }, \
246 {"dalign", DALIGN_BIT, "" }, \
247 {"fmovd", FMOVD_BIT, "" }, \
248 {"hitachi", HITACHI_BIT, "" }, \
249 {"nomacsave", NOMACSAVE_BIT, "" }, \
250 {"ieee", IEEE_BIT, "" }, \
251 {"isize", ISIZE_BIT, "" }, \
252 {"l", LITTLE_ENDIAN_BIT, "" }, \
253 {"no-ieee", -IEEE_BIT, "" }, \
254 {"padstruct", PADSTRUCT_BIT, "" }, \
255 {"prefergot", PREFERGOT_BIT, "" }, \
256 {"relax", RELAX_BIT, "" }, \
257 {"space", SPACE_BIT, "" }, \
258 {"usermode", USERMODE_BIT, "" }, \
259 SUBTARGET_SWITCHES \
260 {"", TARGET_DEFAULT, "" } \
261 }
262
263 /* This are meant to be redefined in the host dependent files */
264 #define SUBTARGET_SWITCHES
265
266 #define TARGET_DEFAULT (SH1_BIT)
267
268 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
269 do { \
270 if (LEVEL) \
271 flag_omit_frame_pointer = -1; \
272 if (SIZE) \
273 target_flags |= SPACE_BIT; \
274 } while (0)
275
276 #define ASSEMBLER_DIALECT assembler_dialect
277
278 extern int assembler_dialect;
279
280 #define OVERRIDE_OPTIONS \
281 do { \
282 sh_cpu = CPU_SH1; \
283 assembler_dialect = 0; \
284 if (TARGET_SH2) \
285 sh_cpu = CPU_SH2; \
286 if (TARGET_SH3) \
287 sh_cpu = CPU_SH3; \
288 if (TARGET_SH3E) \
289 sh_cpu = CPU_SH3E; \
290 if (TARGET_SH4) \
291 { \
292 assembler_dialect = 1; \
293 sh_cpu = CPU_SH4; \
294 } \
295 if (! TARGET_SH4 || ! TARGET_FMOVD) \
296 { \
297 /* Prevent usage of explicit register names for variables \
298 for registers not present / not addressable in the \
299 target architecture. */ \
300 int regno; \
301 for (regno = (TARGET_SH3E) ? 17 : 0; \
302 regno <= 24; regno++) \
303 fp_reg_names[regno][0] = 0; \
304 } \
305 if (flag_omit_frame_pointer < 0) \
306 { \
307 /* The debugging information is sufficient, \
308 but gdb doesn't implement this yet */ \
309 if (0) \
310 flag_omit_frame_pointer \
311 = (PREFERRED_DEBUGGING_TYPE == DWARF_DEBUG \
312 || PREFERRED_DEBUGGING_TYPE == DWARF2_DEBUG); \
313 else \
314 flag_omit_frame_pointer = 0; \
315 } \
316 \
317 if (flag_pic && ! TARGET_PREFERGOT) \
318 flag_no_function_cse = 1; \
319 \
320 /* Never run scheduling before reload, since that can \
321 break global alloc, and generates slower code anyway due \
322 to the pressure on R0. */ \
323 flag_schedule_insns = 0; \
324 } while (0)
325 \f
326 /* Target machine storage layout. */
327
328 /* Define to use software floating point emulator for REAL_ARITHMETIC and
329 decimal <-> binary conversion. */
330 #define REAL_ARITHMETIC
331
332 /* Define this if most significant bit is lowest numbered
333 in instructions that operate on numbered bit-fields. */
334
335 #define BITS_BIG_ENDIAN 0
336
337 /* Define this if most significant byte of a word is the lowest numbered. */
338 #define BYTES_BIG_ENDIAN (TARGET_LITTLE_ENDIAN == 0)
339
340 /* Define this if most significant word of a multiword number is the lowest
341 numbered. */
342 #define WORDS_BIG_ENDIAN (TARGET_LITTLE_ENDIAN == 0)
343
344 /* Define this to set the endianness to use in libgcc2.c, which can
345 not depend on target_flags. */
346 #if defined(__LITTLE_ENDIAN__)
347 #define LIBGCC2_WORDS_BIG_ENDIAN 0
348 #else
349 #define LIBGCC2_WORDS_BIG_ENDIAN 1
350 #endif
351
352 /* Number of bits in an addressable storage unit. */
353 #define BITS_PER_UNIT 8
354
355 /* Width in bits of a "word", which is the contents of a machine register.
356 Note that this is not necessarily the width of data type `int';
357 if using 16-bit ints on a 68000, this would still be 32.
358 But on a machine with 16-bit registers, this would be 16. */
359 #define BITS_PER_WORD 32
360 #define MAX_BITS_PER_WORD 32
361
362 /* Width of a word, in units (bytes). */
363 #define UNITS_PER_WORD 4
364
365 /* Width in bits of a pointer.
366 See also the macro `Pmode' defined below. */
367 #define POINTER_SIZE 32
368
369 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
370 #define PARM_BOUNDARY 32
371
372 /* Boundary (in *bits*) on which stack pointer should be aligned. */
373 #define STACK_BOUNDARY BIGGEST_ALIGNMENT
374
375 /* The log (base 2) of the cache line size, in bytes. Processors prior to
376 SH2 have no actual cache, but they fetch code in chunks of 4 bytes.
377 The SH2/3 have 16 byte cache lines, and the SH4 has a 32 byte cache line */
378 #define CACHE_LOG (TARGET_CACHE32 ? 5 : TARGET_SH2 ? 4 : 2)
379
380 /* Allocation boundary (in *bits*) for the code of a function.
381 32 bit alignment is faster, because instructions are always fetched as a
382 pair from a longword boundary. */
383 #define FUNCTION_BOUNDARY (TARGET_SMALLCODE ? 16 : (1 << CACHE_LOG) * 8)
384
385 /* Alignment of field after `int : 0' in a structure. */
386 #define EMPTY_FIELD_BOUNDARY 32
387
388 /* No data type wants to be aligned rounder than this. */
389 #define BIGGEST_ALIGNMENT (TARGET_ALIGN_DOUBLE ? 64 : 32)
390
391 /* The best alignment to use in cases where we have a choice. */
392 #define FASTEST_ALIGNMENT 32
393
394 /* Make strings word-aligned so strcpy from constants will be faster. */
395 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
396 ((TREE_CODE (EXP) == STRING_CST \
397 && (ALIGN) < FASTEST_ALIGNMENT) \
398 ? FASTEST_ALIGNMENT : (ALIGN))
399
400 #ifndef MAX_OFILE_ALIGNMENT
401 #define MAX_OFILE_ALIGNMENT 128
402 #endif
403
404 /* Make arrays of chars word-aligned for the same reasons. */
405 #define DATA_ALIGNMENT(TYPE, ALIGN) \
406 (TREE_CODE (TYPE) == ARRAY_TYPE \
407 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
408 && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
409
410 /* Number of bits which any structure or union's size must be a
411 multiple of. Each structure or union's size is rounded up to a
412 multiple of this. */
413 #define STRUCTURE_SIZE_BOUNDARY (TARGET_PADSTRUCT ? 32 : 8)
414
415 /* Set this nonzero if move instructions will actually fail to work
416 when given unaligned data. */
417 #define STRICT_ALIGNMENT 1
418
419 /* If LABEL_AFTER_BARRIER demands an alignment, return its base 2 logarithm. */
420 #define LABEL_ALIGN_AFTER_BARRIER(LABEL_AFTER_BARRIER) \
421 barrier_align (LABEL_AFTER_BARRIER)
422
423 #define LOOP_ALIGN(A_LABEL) \
424 ((! optimize || TARGET_HARVARD || TARGET_SMALLCODE) \
425 ? 0 : sh_loop_align (A_LABEL))
426
427 #define LABEL_ALIGN(A_LABEL) \
428 ( \
429 (PREV_INSN (A_LABEL) \
430 && GET_CODE (PREV_INSN (A_LABEL)) == INSN \
431 && GET_CODE (PATTERN (PREV_INSN (A_LABEL))) == UNSPEC_VOLATILE \
432 && XINT (PATTERN (PREV_INSN (A_LABEL)), 1) == UNSPECV_ALIGN) \
433 /* explicit alignment insn in constant tables. */ \
434 ? INTVAL (XVECEXP (PATTERN (PREV_INSN (A_LABEL)), 0, 0)) \
435 : 0)
436
437 /* Jump tables must be 32 bit aligned, no matter the size of the element. */
438 #define ADDR_VEC_ALIGN(ADDR_VEC) 2
439
440 /* The base two logarithm of the known minimum alignment of an insn length. */
441 #define INSN_LENGTH_ALIGNMENT(A_INSN) \
442 (GET_CODE (A_INSN) == INSN \
443 ? 1 \
444 : GET_CODE (A_INSN) == JUMP_INSN || GET_CODE (A_INSN) == CALL_INSN \
445 ? 1 \
446 : CACHE_LOG)
447 \f
448 /* Standard register usage. */
449
450 /* Register allocation for the Hitachi calling convention:
451
452 r0 arg return
453 r1..r3 scratch
454 r4..r7 args in
455 r8..r13 call saved
456 r14 frame pointer/call saved
457 r15 stack pointer
458 ap arg pointer (doesn't really exist, always eliminated)
459 pr subroutine return address
460 t t bit
461 mach multiply/accumulate result, high part
462 macl multiply/accumulate result, low part.
463 fpul fp/int communication register
464 rap return address pointer register
465 fr0 fp arg return
466 fr1..fr3 scratch floating point registers
467 fr4..fr11 fp args in
468 fr12..fr15 call saved floating point registers */
469
470 /* Number of actual hardware registers.
471 The hardware registers are assigned numbers for the compiler
472 from 0 to just below FIRST_PSEUDO_REGISTER.
473 All registers that the compiler knows about must be given numbers,
474 even those that are not normally considered general registers. */
475
476 /* There are many other relevant definitions in sh.md's md_constants. */
477
478 #define FIRST_GENERAL_REG R0_REG
479 #define LAST_GENERAL_REG (FIRST_GENERAL_REG + 15)
480 #define FIRST_FP_REG DR0_REG
481 #define LAST_FP_REG (FIRST_FP_REG + 15)
482 #define FIRST_XD_REG XD0_REG
483 #define LAST_XD_REG (FIRST_XD_REG + 7)
484
485 #define GENERAL_REGISTER_P(REGNO) \
486 ((REGNO) >= FIRST_GENERAL_REG && (REGNO) <= LAST_GENERAL_REG)
487
488 #define GENERAL_OR_AP_REGISTER_P(REGNO) \
489 (GENERAL_REGISTER_P (REGNO) || ((REGNO) == AP_REG))
490
491 #define FP_REGISTER_P(REGNO) \
492 ((REGNO) >= FIRST_FP_REG && (REGNO) <= LAST_FP_REG)
493
494 #define XD_REGISTER_P(REGNO) \
495 ((REGNO) >= FIRST_XD_REG && (REGNO) <= LAST_XD_REG)
496
497 #define FP_OR_XD_REGISTER_P(REGNO) \
498 (FP_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO))
499
500 #define FP_ANY_REGISTER_P(REGNO) \
501 (FP_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO) || (REGNO) == FPUL_REG)
502
503 #define SPECIAL_REGISTER_P(REGNO) \
504 ((REGNO) == GBR_REG || (REGNO) == T_REG \
505 || (REGNO) == MACH_REG || (REGNO) == MACL_REG)
506
507 #define FIRST_PSEUDO_REGISTER 49
508
509 /* 1 for registers that have pervasive standard uses
510 and are not available for the register allocator.
511
512 Mach register is fixed 'cause it's only 10 bits wide for SH1.
513 It is 32 bits wide for SH2. */
514
515 #define FIXED_REGISTERS \
516 { 0, 0, 0, 0, \
517 0, 0, 0, 0, \
518 0, 0, 0, 0, \
519 0, 0, 0, 1, \
520 1, 1, 1, 1, \
521 1, 1, 0, 1, \
522 0, 0, 0, 0, \
523 0, 0, 0, 0, \
524 0, 0, 0, 0, \
525 0, 0, 0, 0, \
526 0, 0, 0, 0, \
527 0, 0, 0, 0, \
528 1, \
529 }
530
531 /* 1 for registers not available across function calls.
532 These must include the FIXED_REGISTERS and also any
533 registers that can be used without being saved.
534 The latter must include the registers where values are returned
535 and the register where structure-value addresses are passed.
536 Aside from that, you can include as many other registers as you like. */
537
538 #define CALL_USED_REGISTERS \
539 { 1, 1, 1, 1, \
540 1, 1, 1, 1, \
541 0, 0, 0, 0, \
542 0, 0, 0, 1, \
543 1, 0, 1, 1, \
544 1, 1, 1, 1, \
545 1, 1, 1, 1, \
546 1, 1, 1, 1, \
547 1, 1, 1, 1, \
548 0, 0, 0, 0, \
549 1, 1, 1, 1, \
550 1, 1, 0, 0, \
551 1, \
552 }
553
554 /* Return number of consecutive hard regs needed starting at reg REGNO
555 to hold something of mode MODE.
556 This is ordinarily the length in words of a value of mode MODE
557 but can be less for certain modes in special long registers.
558
559 On the SH all but the XD regs are UNITS_PER_WORD bits wide. */
560
561 #define HARD_REGNO_NREGS(REGNO, MODE) \
562 (XD_REGISTER_P (REGNO) \
563 ? (GET_MODE_SIZE (MODE) / (2 * UNITS_PER_WORD)) \
564 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) \
565
566 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
567 We can allow any mode in any general register. The special registers
568 only allow SImode. Don't allow any mode in the PR. */
569
570 /* We cannot hold DCmode values in the XD registers because alter_reg
571 handles subregs of them incorrectly. We could work around this by
572 spacing the XD registers like the DR registers, but this would require
573 additional memory in every compilation to hold larger register vectors.
574 We could hold SFmode / SCmode values in XD registers, but that
575 would require a tertiary reload when reloading from / to memory,
576 and a secondary reload to reload from / to general regs; that
577 seems to be a loosing proposition. */
578 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
579 (SPECIAL_REGISTER_P (REGNO) ? (MODE) == SImode \
580 : (REGNO) == FPUL_REG ? (MODE) == SImode || (MODE) == SFmode \
581 : FP_REGISTER_P (REGNO) && (MODE) == SFmode \
582 ? 1 \
583 : FP_REGISTER_P (REGNO) \
584 ? ((MODE) == SFmode \
585 || (TARGET_SH3E && (MODE) == SCmode) \
586 || (((TARGET_SH4 && (MODE) == DFmode) || (MODE) == DCmode) \
587 && (((REGNO) - FIRST_FP_REG) & 1) == 0)) \
588 : XD_REGISTER_P (REGNO) \
589 ? (MODE) == DFmode \
590 : (REGNO) == PR_REG ? 0 \
591 : (REGNO) == FPSCR_REG ? (MODE) == PSImode \
592 : 1)
593
594 /* Value is 1 if it is a good idea to tie two pseudo registers
595 when one has mode MODE1 and one has mode MODE2.
596 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
597 for any hard reg, then this must be 0 for correct output.
598 That's the case for xd registers: we don't hold SFmode values in
599 them, so we can't tie an SFmode pseudos with one in another
600 floating-point mode. */
601
602 #define MODES_TIEABLE_P(MODE1, MODE2) \
603 ((MODE1) == (MODE2) \
604 || (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
605 && (MODE1) != SFmode && (MODE2) != SFmode))
606
607 /* Specify the registers used for certain standard purposes.
608 The values of these macros are register numbers. */
609
610 /* Define this if the program counter is overloaded on a register. */
611 /* #define PC_REGNUM 15*/
612
613 /* Register to use for pushing function arguments. */
614 #define STACK_POINTER_REGNUM SP_REG
615
616 /* Base register for access to local variables of the function. */
617 #define FRAME_POINTER_REGNUM FP_REG
618
619 /* Fake register that holds the address on the stack of the
620 current function's return address. */
621 #define RETURN_ADDRESS_POINTER_REGNUM RAP_REG
622
623 /* Register to hold the addressing base for position independent
624 code access to data items. */
625 #define PIC_OFFSET_TABLE_REGNUM PIC_REG
626
627 #define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
628
629 /* Value should be nonzero if functions must have frame pointers.
630 Zero means the frame pointer need not be set up (and parms may be accessed
631 via the stack pointer) in functions that seem suitable. */
632
633 #define FRAME_POINTER_REQUIRED 0
634
635 /* Definitions for register eliminations.
636
637 We have three registers that can be eliminated on the SH. First, the
638 frame pointer register can often be eliminated in favor of the stack
639 pointer register. Secondly, the argument pointer register can always be
640 eliminated; it is replaced with either the stack or frame pointer.
641 Third, there is the return address pointer, which can also be replaced
642 with either the stack or the frame pointer. */
643
644 /* This is an array of structures. Each structure initializes one pair
645 of eliminable registers. The "from" register number is given first,
646 followed by "to". Eliminations of the same "from" register are listed
647 in order of preference. */
648
649 /* If you add any registers here that are not actually hard registers,
650 and that have any alternative of elimination that doesn't always
651 apply, you need to amend calc_live_regs to exclude it, because
652 reload spills all eliminable registers where it sees an
653 can_eliminate == 0 entry, thus making them 'live' .
654 If you add any hard registers that can be eliminated in different
655 ways, you have to patch reload to spill them only when all alternatives
656 of elimination fail. */
657
658 #define ELIMINABLE_REGS \
659 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
660 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
661 { RETURN_ADDRESS_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
662 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
663 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},}
664
665 /* Given FROM and TO register numbers, say whether this elimination
666 is allowed. */
667 #define CAN_ELIMINATE(FROM, TO) \
668 (!((FROM) == FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED))
669
670 /* Define the offset between two registers, one to be eliminated, and the other
671 its replacement, at the start of a routine. */
672
673 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
674 OFFSET = initial_elimination_offset ((FROM), (TO))
675
676 /* Base register for access to arguments of the function. */
677 #define ARG_POINTER_REGNUM AP_REG
678
679 /* Register in which the static-chain is passed to a function. */
680 #define STATIC_CHAIN_REGNUM 3
681
682 /* The register in which a struct value address is passed. */
683
684 #define STRUCT_VALUE_REGNUM 2
685
686 /* If the structure value address is not passed in a register, define
687 `STRUCT_VALUE' as an expression returning an RTX for the place
688 where the address is passed. If it returns 0, the address is
689 passed as an "invisible" first argument. */
690
691 /* The Hitachi calling convention doesn't quite fit into this scheme since
692 the address is passed like an invisible argument, but one that is always
693 passed in memory. */
694 #define STRUCT_VALUE \
695 (TARGET_HITACHI ? 0 : gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM))
696
697 #define RETURN_IN_MEMORY(TYPE) \
698 (TYPE_MODE (TYPE) == BLKmode \
699 || TARGET_HITACHI && TREE_CODE (TYPE) == RECORD_TYPE)
700
701 /* Don't default to pcc-struct-return, because we have already specified
702 exactly how to return structures in the RETURN_IN_MEMORY macro. */
703
704 #define DEFAULT_PCC_STRUCT_RETURN 0
705 \f
706 /* Define the classes of registers for register constraints in the
707 machine description. Also define ranges of constants.
708
709 One of the classes must always be named ALL_REGS and include all hard regs.
710 If there is more than one class, another class must be named NO_REGS
711 and contain no registers.
712
713 The name GENERAL_REGS must be the name of a class (or an alias for
714 another name such as ALL_REGS). This is the class of registers
715 that is allowed by "g" or "r" in a register constraint.
716 Also, registers outside this class are allocated only when
717 instructions express preferences for them.
718
719 The classes must be numbered in nondecreasing order; that is,
720 a larger-numbered class must never be contained completely
721 in a smaller-numbered class.
722
723 For any two classes, it is very desirable that there be another
724 class that represents their union. */
725
726 /* The SH has two sorts of general registers, R0 and the rest. R0 can
727 be used as the destination of some of the arithmetic ops. There are
728 also some special purpose registers; the T bit register, the
729 Procedure Return Register and the Multiply Accumulate Registers. */
730 /* Place GENERAL_REGS after FPUL_REGS so that it will be preferred by
731 reg_class_subunion. We don't want to have an actual union class
732 of these, because it would only be used when both classes are calculated
733 to give the same cost, but there is only one FPUL register.
734 Besides, regclass fails to notice the different REGISTER_MOVE_COSTS
735 applying to the actual instruction alternative considered. E.g., the
736 y/r alternative of movsi_ie is considered to have no more cost that
737 the r/r alternative, which is patently untrue. */
738
739 enum reg_class
740 {
741 NO_REGS,
742 R0_REGS,
743 PR_REGS,
744 T_REGS,
745 MAC_REGS,
746 FPUL_REGS,
747 SIBCALL_REGS,
748 GENERAL_REGS,
749 FP0_REGS,
750 FP_REGS,
751 DF_REGS,
752 FPSCR_REGS,
753 GENERAL_FP_REGS,
754 ALL_REGS,
755 LIM_REG_CLASSES
756 };
757
758 #define N_REG_CLASSES (int) LIM_REG_CLASSES
759
760 /* Give names of register classes as strings for dump file. */
761 #define REG_CLASS_NAMES \
762 { \
763 "NO_REGS", \
764 "R0_REGS", \
765 "PR_REGS", \
766 "T_REGS", \
767 "MAC_REGS", \
768 "FPUL_REGS", \
769 "SIBCALL_REGS", \
770 "GENERAL_REGS", \
771 "FP0_REGS", \
772 "FP_REGS", \
773 "DF_REGS", \
774 "FPSCR_REGS", \
775 "GENERAL_FP_REGS", \
776 "ALL_REGS", \
777 }
778
779 /* Define which registers fit in which classes.
780 This is an initializer for a vector of HARD_REG_SET
781 of length N_REG_CLASSES. */
782
783 #define REG_CLASS_CONTENTS \
784 { \
785 { 0x00000000, 0x00000000 }, /* NO_REGS */ \
786 { 0x00000001, 0x00000000 }, /* R0_REGS */ \
787 { 0x00020000, 0x00000000 }, /* PR_REGS */ \
788 { 0x00040000, 0x00000000 }, /* T_REGS */ \
789 { 0x00300000, 0x00000000 }, /* MAC_REGS */ \
790 { 0x00400000, 0x00000000 }, /* FPUL_REGS */ \
791 /* SIBCALL_REGS is initialized in CONDITIONAL_REGISTER_USAGE. */ \
792 { 0x00000000, 0x00000000 }, /* SIBCALL_REGS */ \
793 { 0x0081FFFF, 0x00000000 }, /* GENERAL_REGS */ \
794 { 0x01000000, 0x00000000 }, /* FP0_REGS */ \
795 { 0xFF000000, 0x000000FF }, /* FP_REGS */ \
796 { 0xFF000000, 0x0000FFFF }, /* DF_REGS */ \
797 { 0x00000000, 0x00010000 }, /* FPSCR_REGS */ \
798 { 0xFF81FFFF, 0x0000FFFF }, /* GENERAL_FP_REGS */ \
799 { 0xFFFFFFFF, 0x0001FFFF }, /* ALL_REGS */ \
800 }
801
802 /* The same information, inverted:
803 Return the class number of the smallest class containing
804 reg number REGNO. This could be a conditional expression
805 or could index an array. */
806
807 extern int regno_reg_class[];
808 #define REGNO_REG_CLASS(REGNO) regno_reg_class[(REGNO)]
809
810 /* When defined, the compiler allows registers explicitly used in the
811 rtl to be used as spill registers but prevents the compiler from
812 extending the lifetime of these registers. */
813
814 #define SMALL_REGISTER_CLASSES 1
815
816 /* The order in which register should be allocated. */
817 /* Sometimes FP0_REGS becomes the preferred class of a floating point pseudo,
818 and GENERAL_FP_REGS the alternate class. Since FP0 is likely to be
819 spilled or used otherwise, we better have the FP_REGS allocated first. */
820 #define REG_ALLOC_ORDER \
821 { 25,26,27,28,29,30,31,24,32,33,34,35,36,37,38,39, \
822 40,41,42,43,44,45,46,47,48, \
823 1,2,3,7,6,5,4,0,8,9,10,11,12,13,14, \
824 22,15,16,17,18,19,20,21,23 }
825
826 /* The class value for index registers, and the one for base regs. */
827 #define INDEX_REG_CLASS R0_REGS
828 #define BASE_REG_CLASS GENERAL_REGS
829
830 /* Get reg_class from a letter such as appears in the machine
831 description. */
832 extern enum reg_class reg_class_from_letter[];
833
834 #define REG_CLASS_FROM_LETTER(C) \
835 ( ISLOWER (C) ? reg_class_from_letter[(C)-'a'] : NO_REGS )
836 \f
837 /* The letters I, J, K, L and M in a register constraint string
838 can be used to stand for particular ranges of immediate operands.
839 This macro defines what the ranges are.
840 C is the letter, and VALUE is a constant value.
841 Return 1 if VALUE is in the range specified by C.
842 I: arithmetic operand -127..128, as used in add, sub, etc
843 K: shift operand 1,2,8 or 16
844 L: logical operand 0..255, as used in and, or, etc.
845 M: constant 1
846 N: constant 0 */
847
848 #define CONST_OK_FOR_I(VALUE) (((HOST_WIDE_INT)(VALUE))>= -128 \
849 && ((HOST_WIDE_INT)(VALUE)) <= 127)
850 #define CONST_OK_FOR_K(VALUE) ((VALUE)==1||(VALUE)==2||(VALUE)==8||(VALUE)==16)
851 #define CONST_OK_FOR_L(VALUE) (((HOST_WIDE_INT)(VALUE))>= 0 \
852 && ((HOST_WIDE_INT)(VALUE)) <= 255)
853 #define CONST_OK_FOR_M(VALUE) ((VALUE)==1)
854 #define CONST_OK_FOR_N(VALUE) ((VALUE)==0)
855 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
856 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) \
857 : (C) == 'K' ? CONST_OK_FOR_K (VALUE) \
858 : (C) == 'L' ? CONST_OK_FOR_L (VALUE) \
859 : (C) == 'M' ? CONST_OK_FOR_M (VALUE) \
860 : (C) == 'N' ? CONST_OK_FOR_N (VALUE) \
861 : 0)
862
863 /* Similar, but for floating constants, and defining letters G and H.
864 Here VALUE is the CONST_DOUBLE rtx itself. */
865
866 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
867 ((C) == 'G' ? (fp_zero_operand (VALUE) && fldi_ok ()) \
868 : (C) == 'H' ? (fp_one_operand (VALUE) && fldi_ok ()) \
869 : (C) == 'F')
870
871 /* Given an rtx X being reloaded into a reg required to be
872 in class CLASS, return the class of reg to actually use.
873 In general this is just CLASS; but on some machines
874 in some cases it is preferable to use a more restrictive class. */
875
876 #define PREFERRED_RELOAD_CLASS(X, CLASS) (CLASS)
877
878 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,X) \
879 ((((((CLASS) == FP_REGS || (CLASS) == FP0_REGS \
880 || (CLASS) == DF_REGS) \
881 && (GET_CODE (X) == REG && GENERAL_OR_AP_REGISTER_P (REGNO (X)))) \
882 || (((CLASS) == GENERAL_REGS || (CLASS) == R0_REGS) \
883 && GET_CODE (X) == REG \
884 && FP_REGISTER_P (REGNO (X)))) \
885 && MODE == SFmode) \
886 ? FPUL_REGS \
887 : ((CLASS) == FPUL_REGS \
888 && (GET_CODE (X) == MEM \
889 || (GET_CODE (X) == REG \
890 && (REGNO (X) >= FIRST_PSEUDO_REGISTER \
891 || REGNO (X) == T_REG \
892 || system_reg_operand (X, VOIDmode))))) \
893 ? GENERAL_REGS \
894 : (((CLASS) == MAC_REGS || (CLASS) == PR_REGS) \
895 && GET_CODE (X) == REG && ! GENERAL_REGISTER_P (REGNO (X)) \
896 && (CLASS) != REGNO_REG_CLASS (REGNO (X))) \
897 ? GENERAL_REGS : NO_REGS)
898
899 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,X) \
900 ((((CLASS) == FP_REGS || (CLASS) == FP0_REGS || (CLASS) == DF_REGS) \
901 && immediate_operand ((X), (MODE)) \
902 && ! ((fp_zero_operand (X) || fp_one_operand (X)) \
903 && (MODE) == SFmode && fldi_ok ())) \
904 ? R0_REGS \
905 : (CLASS == FPUL_REGS \
906 && ((GET_CODE (X) == REG \
907 && (REGNO (X) == MACL_REG || REGNO (X) == MACH_REG \
908 || REGNO (X) == T_REG)))) \
909 ? GENERAL_REGS \
910 : CLASS == FPUL_REGS && immediate_operand ((X), (MODE)) \
911 ? (GET_CODE (X) == CONST_INT && CONST_OK_FOR_I (INTVAL (X)) \
912 ? GENERAL_REGS \
913 : R0_REGS) \
914 : (CLASS == FPSCR_REGS \
915 && ((GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
916 || (GET_CODE (X) == MEM && GET_CODE (XEXP ((X), 0)) == PLUS)))\
917 ? GENERAL_REGS \
918 : SECONDARY_OUTPUT_RELOAD_CLASS((CLASS),(MODE),(X)))
919
920 /* Return the maximum number of consecutive registers
921 needed to represent mode MODE in a register of class CLASS.
922
923 On SH this is the size of MODE in words. */
924 #define CLASS_MAX_NREGS(CLASS, MODE) \
925 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
926
927 /* If defined, gives a class of registers that cannot be used as the
928 operand of a SUBREG that changes the mode of the object illegally. */
929
930 #define CLASS_CANNOT_CHANGE_MODE DF_REGS
931
932 /* Defines illegal mode changes for CLASS_CANNOT_CHANGE_MODE. */
933
934 #define CLASS_CANNOT_CHANGE_MODE_P(FROM,TO) \
935 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO))
936 \f
937 /* Stack layout; function entry, exit and calling. */
938
939 /* Define the number of registers that can hold parameters.
940 These macros are used only in other macro definitions below. */
941
942 #define NPARM_REGS(MODE) \
943 (TARGET_SH3E && (MODE) == SFmode \
944 ? 8 \
945 : TARGET_SH4 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
946 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
947 ? 8 \
948 : 4)
949
950 #define FIRST_PARM_REG (FIRST_GENERAL_REG + 4)
951 #define FIRST_RET_REG FIRST_GENERAL_REG
952
953 #define FIRST_FP_PARM_REG (FIRST_FP_REG + 4)
954 #define FIRST_FP_RET_REG FIRST_FP_REG
955
956 /* Define this if pushing a word on the stack
957 makes the stack pointer a smaller address. */
958 #define STACK_GROWS_DOWNWARD
959
960 /* Define this macro if the addresses of local variable slots are at
961 negative offsets from the frame pointer.
962
963 The SH only has positive indexes, so grow the frame up. */
964 /* #define FRAME_GROWS_DOWNWARD */
965
966 /* Offset from the frame pointer to the first local variable slot to
967 be allocated. */
968 #define STARTING_FRAME_OFFSET 0
969
970 /* If we generate an insn to push BYTES bytes,
971 this says how many the stack pointer really advances by. */
972 /* Don't define PUSH_ROUNDING, since the hardware doesn't do this.
973 When PUSH_ROUNDING is not defined, PARM_BOUNDARY will cause gcc to
974 do correct alignment. */
975 #if 0
976 #define PUSH_ROUNDING(NPUSHED) (((NPUSHED) + 3) & ~3)
977 #endif
978
979 /* Offset of first parameter from the argument pointer register value. */
980 #define FIRST_PARM_OFFSET(FNDECL) 0
981
982 /* Value is the number of byte of arguments automatically
983 popped when returning from a subroutine call.
984 FUNDECL is the declaration node of the function (as a tree),
985 FUNTYPE is the data type of the function (as a tree),
986 or for a library call it is an identifier node for the subroutine name.
987 SIZE is the number of bytes of arguments passed on the stack.
988
989 On the SH, the caller does not pop any of its arguments that were passed
990 on the stack. */
991 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
992
993 /* Nonzero if we do not know how to pass TYPE solely in registers.
994 Values that come in registers with inconvenient padding are stored
995 to memory at the function start. */
996
997 #define MUST_PASS_IN_STACK(MODE,TYPE) \
998 ((TYPE) != 0 \
999 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
1000 || TREE_ADDRESSABLE (TYPE)))
1001 /* Some subroutine macros specific to this machine. */
1002
1003 #define BASE_RETURN_VALUE_REG(MODE) \
1004 ((TARGET_SH3E && ((MODE) == SFmode)) \
1005 ? FIRST_FP_RET_REG \
1006 : TARGET_SH3E && (MODE) == SCmode \
1007 ? FIRST_FP_RET_REG \
1008 : (TARGET_SH4 \
1009 && ((MODE) == DFmode || (MODE) == SFmode \
1010 || (MODE) == DCmode || (MODE) == SCmode )) \
1011 ? FIRST_FP_RET_REG \
1012 : FIRST_RET_REG)
1013
1014 #define BASE_ARG_REG(MODE) \
1015 ((TARGET_SH3E && ((MODE) == SFmode)) \
1016 ? FIRST_FP_PARM_REG \
1017 : TARGET_SH4 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1018 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)\
1019 ? FIRST_FP_PARM_REG \
1020 : FIRST_PARM_REG)
1021
1022 /* Define how to find the value returned by a function.
1023 VALTYPE is the data type of the value (as a tree).
1024 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1025 otherwise, FUNC is 0.
1026 For the SH, this is like LIBCALL_VALUE, except that we must change the
1027 mode like PROMOTE_MODE does.
1028 ??? PROMOTE_MODE is ignored for non-scalar types. The set of types
1029 tested here has to be kept in sync with the one in explow.c:promote_mode. */
1030
1031 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1032 gen_rtx (REG, \
1033 ((GET_MODE_CLASS (TYPE_MODE (VALTYPE)) == MODE_INT \
1034 && GET_MODE_SIZE (TYPE_MODE (VALTYPE)) < UNITS_PER_WORD \
1035 && (TREE_CODE (VALTYPE) == INTEGER_TYPE \
1036 || TREE_CODE (VALTYPE) == ENUMERAL_TYPE \
1037 || TREE_CODE (VALTYPE) == BOOLEAN_TYPE \
1038 || TREE_CODE (VALTYPE) == CHAR_TYPE \
1039 || TREE_CODE (VALTYPE) == REAL_TYPE \
1040 || TREE_CODE (VALTYPE) == OFFSET_TYPE)) \
1041 ? SImode : TYPE_MODE (VALTYPE)), \
1042 BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
1043
1044 /* Define how to find the value returned by a library function
1045 assuming the value has mode MODE. */
1046 #define LIBCALL_VALUE(MODE) \
1047 gen_rtx_REG ((MODE), BASE_RETURN_VALUE_REG (MODE));
1048
1049 /* 1 if N is a possible register number for a function value. */
1050 #define FUNCTION_VALUE_REGNO_P(REGNO) \
1051 ((REGNO) == FIRST_RET_REG || (TARGET_SH3E && (REGNO) == FIRST_FP_RET_REG))
1052
1053 /* 1 if N is a possible register number for function argument passing. */
1054 #define FUNCTION_ARG_REGNO_P(REGNO) \
1055 (((REGNO) >= FIRST_PARM_REG && (REGNO) < (FIRST_PARM_REG + 4)) \
1056 || (TARGET_SH3E \
1057 && (REGNO) >= FIRST_FP_PARM_REG && (REGNO) < (FIRST_FP_PARM_REG + 8)))
1058 \f
1059 /* Define a data type for recording info about an argument list
1060 during the scan of that argument list. This data type should
1061 hold all necessary information about the function itself
1062 and about the args processed so far, enough to enable macros
1063 such as FUNCTION_ARG to determine where the next arg should go.
1064
1065 On SH, this is a single integer, which is a number of words
1066 of arguments scanned so far (including the invisible argument,
1067 if any, which holds the structure-value-address).
1068 Thus NARGREGS or more means all following args should go on the stack. */
1069
1070 enum sh_arg_class { SH_ARG_INT = 0, SH_ARG_FLOAT = 1 };
1071 struct sh_args {
1072 int arg_count[2];
1073 int force_mem;
1074 };
1075
1076 #define CUMULATIVE_ARGS struct sh_args
1077
1078 #define GET_SH_ARG_CLASS(MODE) \
1079 ((TARGET_SH3E && (MODE) == SFmode) \
1080 ? SH_ARG_FLOAT \
1081 : TARGET_SH4 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1082 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
1083 ? SH_ARG_FLOAT : SH_ARG_INT)
1084
1085 #define ROUND_ADVANCE(SIZE) \
1086 (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1087
1088 /* Round a register number up to a proper boundary for an arg of mode
1089 MODE.
1090
1091 The SH doesn't care about double alignment, so we only
1092 round doubles to even regs when asked to explicitly. */
1093
1094 #define ROUND_REG(CUM, MODE) \
1095 (((TARGET_ALIGN_DOUBLE \
1096 || (TARGET_SH4 && ((MODE) == DFmode || (MODE) == DCmode) \
1097 && (CUM).arg_count[(int) SH_ARG_FLOAT] < NPARM_REGS (MODE)))\
1098 && GET_MODE_UNIT_SIZE ((MODE)) > UNITS_PER_WORD) \
1099 ? ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] \
1100 + ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] & 1)) \
1101 : (CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)])
1102
1103 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1104 for a call to a function whose data type is FNTYPE.
1105 For a library call, FNTYPE is 0.
1106
1107 On SH, the offset always starts at 0: the first parm reg is always
1108 the same reg for a given argument class.
1109
1110 For TARGET_HITACHI, the structure value pointer is passed in memory. */
1111
1112 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1113 do { \
1114 (CUM).arg_count[(int) SH_ARG_INT] = 0; \
1115 (CUM).arg_count[(int) SH_ARG_FLOAT] = 0; \
1116 (CUM).force_mem \
1117 = (TARGET_HITACHI && FNTYPE \
1118 && aggregate_value_p (TREE_TYPE (FNTYPE))); \
1119 } while (0)
1120
1121 /* Update the data in CUM to advance over an argument
1122 of mode MODE and data type TYPE.
1123 (TYPE is null for libcalls where that information may not be
1124 available.) */
1125
1126 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1127 if ((CUM).force_mem) \
1128 (CUM).force_mem = 0; \
1129 else if (! TARGET_SH4 || PASS_IN_REG_P ((CUM), (MODE), (TYPE))) \
1130 ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] \
1131 = (ROUND_REG ((CUM), (MODE)) \
1132 + ((MODE) == BLKmode \
1133 ? ROUND_ADVANCE (int_size_in_bytes (TYPE)) \
1134 : ROUND_ADVANCE (GET_MODE_SIZE (MODE)))))
1135
1136 /* Return boolean indicating arg of mode MODE will be passed in a reg.
1137 This macro is only used in this file. */
1138
1139 #define PASS_IN_REG_P(CUM, MODE, TYPE) \
1140 (((TYPE) == 0 \
1141 || (! TREE_ADDRESSABLE ((tree)(TYPE)) \
1142 && (! TARGET_HITACHI || ! AGGREGATE_TYPE_P (TYPE)))) \
1143 && ! (CUM).force_mem \
1144 && (TARGET_SH3E \
1145 ? ((MODE) == BLKmode \
1146 ? (((CUM).arg_count[(int) SH_ARG_INT] * UNITS_PER_WORD \
1147 + int_size_in_bytes (TYPE)) \
1148 <= NPARM_REGS (SImode) * UNITS_PER_WORD) \
1149 : ((ROUND_REG((CUM), (MODE)) \
1150 + HARD_REGNO_NREGS (BASE_ARG_REG (MODE), (MODE))) \
1151 <= NPARM_REGS (MODE))) \
1152 : ROUND_REG ((CUM), (MODE)) < NPARM_REGS (MODE)))
1153
1154 /* Define where to put the arguments to a function.
1155 Value is zero to push the argument on the stack,
1156 or a hard register in which to store the argument.
1157
1158 MODE is the argument's machine mode.
1159 TYPE is the data type of the argument (as a tree).
1160 This is null for libcalls where that information may
1161 not be available.
1162 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1163 the preceding args and about the function being called.
1164 NAMED is nonzero if this argument is a named parameter
1165 (otherwise it is an extra parameter matching an ellipsis).
1166
1167 On SH the first args are normally in registers
1168 and the rest are pushed. Any arg that starts within the first
1169 NPARM_REGS words is at least partially passed in a register unless
1170 its data type forbids. */
1171
1172 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1173 ((PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \
1174 && ((NAMED) \
1175 || (! TARGET_HITACHI && (TARGET_SH3E || ! current_function_varargs)))) \
1176 ? gen_rtx_REG ((MODE), \
1177 ((BASE_ARG_REG (MODE) + ROUND_REG ((CUM), (MODE))) \
1178 ^ ((MODE) == SFmode && TARGET_SH4 \
1179 && TARGET_LITTLE_ENDIAN != 0))) \
1180 : 0)
1181
1182 #define PRETEND_OUTGOING_VARARGS_NAMED (! TARGET_HITACHI)
1183
1184 /* For an arg passed partly in registers and partly in memory,
1185 this is the number of registers used.
1186 For args passed entirely in registers or entirely in memory, zero.
1187
1188 We sometimes split args. */
1189
1190 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1191 ((PASS_IN_REG_P ((CUM), (MODE), (TYPE)) \
1192 && ! TARGET_SH4 \
1193 && (ROUND_REG ((CUM), (MODE)) \
1194 + ((MODE) != BLKmode \
1195 ? ROUND_ADVANCE (GET_MODE_SIZE (MODE)) \
1196 : ROUND_ADVANCE (int_size_in_bytes (TYPE))) \
1197 > NPARM_REGS (MODE))) \
1198 ? NPARM_REGS (MODE) - ROUND_REG ((CUM), (MODE)) \
1199 : 0)
1200
1201 extern int current_function_anonymous_args;
1202
1203 /* Perform any needed actions needed for a function that is receiving a
1204 variable number of arguments. */
1205
1206 #define SETUP_INCOMING_VARARGS(ASF, MODE, TYPE, PAS, ST) \
1207 current_function_anonymous_args = 1;
1208
1209 /* Define the `__builtin_va_list' type for the ABI. */
1210 #define BUILD_VA_LIST_TYPE(VALIST) \
1211 (VALIST) = sh_build_va_list ()
1212
1213 /* Implement `va_start' for varargs and stdarg. */
1214 #define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
1215 sh_va_start (stdarg, valist, nextarg)
1216
1217 /* Implement `va_arg'. */
1218 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1219 sh_va_arg (valist, type)
1220
1221 /* Call the function profiler with a given profile label.
1222 We use two .aligns, so as to make sure that both the .long is aligned
1223 on a 4 byte boundary, and that the .long is a fixed distance (2 bytes)
1224 from the trapa instruction. */
1225
1226 #define FUNCTION_PROFILER(STREAM,LABELNO) \
1227 { \
1228 fprintf((STREAM), "\t.align\t2\n"); \
1229 fprintf((STREAM), "\ttrapa\t#33\n"); \
1230 fprintf((STREAM), "\t.align\t2\n"); \
1231 asm_fprintf((STREAM), "\t.long\t%LLP%d\n", (LABELNO)); \
1232 }
1233
1234 /* Define this macro if the code for function profiling should come
1235 before the function prologue. Normally, the profiling code comes
1236 after. */
1237
1238 #define PROFILE_BEFORE_PROLOGUE
1239
1240 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1241 the stack pointer does not matter. The value is tested only in
1242 functions that have frame pointers.
1243 No definition is equivalent to always zero. */
1244
1245 #define EXIT_IGNORE_STACK 1
1246
1247 /*
1248 On the SH, the trampoline looks like
1249 2 0002 D202 mov.l l2,r2
1250 1 0000 D301 mov.l l1,r3
1251 3 0004 422B jmp @r2
1252 4 0006 0009 nop
1253 5 0008 00000000 l1: .long area
1254 6 000c 00000000 l2: .long function */
1255
1256 /* Length in units of the trampoline for entering a nested function. */
1257 #define TRAMPOLINE_SIZE 16
1258
1259 /* Alignment required for a trampoline in bits . */
1260 #define TRAMPOLINE_ALIGNMENT \
1261 ((CACHE_LOG < 3 || (TARGET_SMALLCODE && ! TARGET_HARVARD)) ? 32 : 64)
1262
1263 /* Emit RTL insns to initialize the variable parts of a trampoline.
1264 FNADDR is an RTX for the address of the function's pure code.
1265 CXT is an RTX for the static chain value for the function. */
1266
1267 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) do \
1268 { \
1269 emit_move_insn (gen_rtx_MEM (SImode, (TRAMP)), \
1270 GEN_INT (trunc_int_for_mode \
1271 (TARGET_LITTLE_ENDIAN ? 0xd301d202 : 0xd202d301,\
1272 SImode))); \
1273 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 4)), \
1274 GEN_INT (TARGET_LITTLE_ENDIAN ? 0x0009422b : 0x422b0009));\
1275 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 8)), \
1276 (CXT)); \
1277 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 12)), \
1278 (FNADDR)); \
1279 if (TARGET_HARVARD) \
1280 { \
1281 if (TARGET_USERMODE) \
1282 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__ic_invalidate"),\
1283 0, VOIDmode, 1, (TRAMP), SImode); \
1284 else \
1285 emit_insn (gen_ic_invalidate_line (TRAMP)); \
1286 } \
1287 } while (0)
1288
1289 /* A C expression whose value is RTL representing the value of the return
1290 address for the frame COUNT steps up from the current frame.
1291 FRAMEADDR is already the frame pointer of the COUNT frame, so we
1292 can ignore COUNT. */
1293
1294 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1295 (((COUNT) == 0) \
1296 ? get_hard_reg_initial_val (Pmode, PR_REG) \
1297 : (rtx) 0)
1298 \f
1299 /* Generate necessary RTL for __builtin_saveregs(). */
1300 #define EXPAND_BUILTIN_SAVEREGS() sh_builtin_saveregs ()
1301 \f
1302 /* Addressing modes, and classification of registers for them. */
1303 #define HAVE_POST_INCREMENT 1
1304 /*#define HAVE_PRE_INCREMENT 1*/
1305 /*#define HAVE_POST_DECREMENT 1*/
1306 #define HAVE_PRE_DECREMENT 1
1307
1308 #define USE_LOAD_POST_INCREMENT(mode) ((mode == SImode || mode == DImode) \
1309 ? 0 : 1)
1310 #define USE_LOAD_PRE_DECREMENT(mode) 0
1311 #define USE_STORE_POST_INCREMENT(mode) 0
1312 #define USE_STORE_PRE_DECREMENT(mode) ((mode == SImode || mode == DImode) \
1313 ? 0 : 1)
1314
1315 #define MOVE_BY_PIECES_P(SIZE, ALIGN) (move_by_pieces_ninsns (SIZE, ALIGN) \
1316 < (TARGET_SMALLCODE ? 2 : \
1317 ((ALIGN >= 32) ? 16 : 2)))
1318
1319 /* Macros to check register numbers against specific register classes. */
1320
1321 /* These assume that REGNO is a hard or pseudo reg number.
1322 They give nonzero only if REGNO is a hard reg of the suitable class
1323 or a pseudo reg currently allocated to a suitable hard reg.
1324 Since they use reg_renumber, they are safe only once reg_renumber
1325 has been allocated, which happens in local-alloc.c. */
1326
1327 #define REGNO_OK_FOR_BASE_P(REGNO) \
1328 (GENERAL_OR_AP_REGISTER_P (REGNO) \
1329 || GENERAL_OR_AP_REGISTER_P (reg_renumber[(REGNO)]))
1330 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1331 ((REGNO) == R0_REG || (unsigned) reg_renumber[(REGNO)] == R0_REG)
1332
1333 /* Maximum number of registers that can appear in a valid memory
1334 address. */
1335
1336 #define MAX_REGS_PER_ADDRESS 2
1337
1338 /* Recognize any constant value that is a valid address. */
1339
1340 #define CONSTANT_ADDRESS_P(X) (GET_CODE (X) == LABEL_REF)
1341
1342 /* Nonzero if the constant value X is a legitimate general operand. */
1343
1344 #define LEGITIMATE_CONSTANT_P(X) \
1345 (GET_CODE (X) != CONST_DOUBLE \
1346 || GET_MODE (X) == DFmode || GET_MODE (X) == SFmode \
1347 || (TARGET_SH3E && (fp_zero_operand (X) || fp_one_operand (X))))
1348
1349 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1350 and check its validity for a certain class.
1351 We have two alternate definitions for each of them.
1352 The usual definition accepts all pseudo regs; the other rejects
1353 them unless they have been allocated suitable hard regs.
1354 The symbol REG_OK_STRICT causes the latter definition to be used. */
1355
1356 #ifndef REG_OK_STRICT
1357
1358 /* Nonzero if X is a hard reg that can be used as a base reg
1359 or if it is a pseudo reg. */
1360 #define REG_OK_FOR_BASE_P(X) \
1361 (GENERAL_OR_AP_REGISTER_P (REGNO (X)) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1362
1363 /* Nonzero if X is a hard reg that can be used as an index
1364 or if it is a pseudo reg. */
1365 #define REG_OK_FOR_INDEX_P(X) \
1366 (REGNO (X) == R0_REG || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1367
1368 /* Nonzero if X/OFFSET is a hard reg that can be used as an index
1369 or if X is a pseudo reg. */
1370 #define SUBREG_OK_FOR_INDEX_P(X, OFFSET) \
1371 ((REGNO (X) == R0_REG && OFFSET == 0) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1372
1373 #else
1374
1375 /* Nonzero if X is a hard reg that can be used as a base reg. */
1376 #define REG_OK_FOR_BASE_P(X) \
1377 REGNO_OK_FOR_BASE_P (REGNO (X))
1378
1379 /* Nonzero if X is a hard reg that can be used as an index. */
1380 #define REG_OK_FOR_INDEX_P(X) \
1381 REGNO_OK_FOR_INDEX_P (REGNO (X))
1382
1383 /* Nonzero if X/OFFSET is a hard reg that can be used as an index. */
1384 #define SUBREG_OK_FOR_INDEX_P(X, OFFSET) \
1385 (REGNO_OK_FOR_INDEX_P (REGNO (X)) && (OFFSET) == 0)
1386
1387 #endif
1388
1389 /* The 'Q' constraint is a pc relative load operand. */
1390 #define EXTRA_CONSTRAINT_Q(OP) \
1391 (GET_CODE (OP) == MEM \
1392 && ((GET_CODE (XEXP ((OP), 0)) == LABEL_REF) \
1393 || (GET_CODE (XEXP ((OP), 0)) == CONST \
1394 && GET_CODE (XEXP (XEXP ((OP), 0), 0)) == PLUS \
1395 && GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 0)) == LABEL_REF \
1396 && GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 1)) == CONST_INT)))
1397
1398 #define EXTRA_CONSTRAINT(OP, C) \
1399 ((C) == 'Q' ? EXTRA_CONSTRAINT_Q (OP) \
1400 : 0)
1401 \f
1402 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1403 that is a valid memory address for an instruction.
1404 The MODE argument is the machine mode for the MEM expression
1405 that wants to use this address. */
1406
1407 #define MODE_DISP_OK_4(X,MODE) \
1408 (GET_MODE_SIZE (MODE) == 4 && (unsigned) INTVAL (X) < 64 \
1409 && ! (INTVAL (X) & 3) && ! (TARGET_SH3E && (MODE) == SFmode))
1410
1411 #define MODE_DISP_OK_8(X,MODE) \
1412 ((GET_MODE_SIZE(MODE)==8) && ((unsigned)INTVAL(X)<60) \
1413 && ! (INTVAL(X) & 3) && ! (TARGET_SH4 && (MODE) == DFmode))
1414
1415 #define BASE_REGISTER_RTX_P(X) \
1416 ((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1417 || (GET_CODE (X) == SUBREG \
1418 && GET_CODE (SUBREG_REG (X)) == REG \
1419 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
1420
1421 /* Since this must be r0, which is a single register class, we must check
1422 SUBREGs more carefully, to be sure that we don't accept one that extends
1423 outside the class. */
1424 #define INDEX_REGISTER_RTX_P(X) \
1425 ((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
1426 || (GET_CODE (X) == SUBREG \
1427 && GET_CODE (SUBREG_REG (X)) == REG \
1428 && SUBREG_OK_FOR_INDEX_P (SUBREG_REG (X), SUBREG_BYTE (X))))
1429
1430 /* Jump to LABEL if X is a valid address RTX. This must also take
1431 REG_OK_STRICT into account when deciding about valid registers, but it uses
1432 the above macros so we are in luck.
1433
1434 Allow REG
1435 REG+disp
1436 REG+r0
1437 REG++
1438 --REG */
1439
1440 /* ??? The SH3e does not have the REG+disp addressing mode when loading values
1441 into the FRx registers. We implement this by setting the maximum offset
1442 to zero when the value is SFmode. This also restricts loading of SFmode
1443 values into the integer registers, but that can't be helped. */
1444
1445 /* The SH allows a displacement in a QI or HI amode, but only when the
1446 other operand is R0. GCC doesn't handle this very well, so we forgo
1447 all of that.
1448
1449 A legitimate index for a QI or HI is 0, SI can be any number 0..63,
1450 DI can be any number 0..60. */
1451
1452 #define GO_IF_LEGITIMATE_INDEX(MODE, OP, LABEL) \
1453 do { \
1454 if (GET_CODE (OP) == CONST_INT) \
1455 { \
1456 if (MODE_DISP_OK_4 ((OP), (MODE))) goto LABEL; \
1457 if (MODE_DISP_OK_8 ((OP), (MODE))) goto LABEL; \
1458 } \
1459 } while(0)
1460
1461 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
1462 { \
1463 if (BASE_REGISTER_RTX_P (X)) \
1464 goto LABEL; \
1465 else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == PRE_DEC) \
1466 && BASE_REGISTER_RTX_P (XEXP ((X), 0))) \
1467 goto LABEL; \
1468 else if (GET_CODE (X) == PLUS \
1469 && ((MODE) != PSImode || reload_completed)) \
1470 { \
1471 rtx xop0 = XEXP ((X), 0); \
1472 rtx xop1 = XEXP ((X), 1); \
1473 if (GET_MODE_SIZE (MODE) <= 8 && BASE_REGISTER_RTX_P (xop0)) \
1474 GO_IF_LEGITIMATE_INDEX ((MODE), xop1, LABEL); \
1475 if (GET_MODE_SIZE (MODE) <= 4 \
1476 || (TARGET_SH4 && TARGET_FMOVD && MODE == DFmode)) \
1477 { \
1478 if (BASE_REGISTER_RTX_P (xop1) && INDEX_REGISTER_RTX_P (xop0))\
1479 goto LABEL; \
1480 if (INDEX_REGISTER_RTX_P (xop1) && BASE_REGISTER_RTX_P (xop0))\
1481 goto LABEL; \
1482 } \
1483 } \
1484 }
1485 \f
1486 /* Try machine-dependent ways of modifying an illegitimate address
1487 to be legitimate. If we find one, return the new, valid address.
1488 This macro is used in only one place: `memory_address' in explow.c.
1489
1490 OLDX is the address as it was before break_out_memory_refs was called.
1491 In some cases it is useful to look at this to decide what needs to be done.
1492
1493 MODE and WIN are passed so that this macro can use
1494 GO_IF_LEGITIMATE_ADDRESS.
1495
1496 It is always safe for this macro to do nothing. It exists to recognize
1497 opportunities to optimize the output.
1498
1499 For the SH, if X is almost suitable for indexing, but the offset is
1500 out of range, convert it into a normal form so that cse has a chance
1501 of reducing the number of address registers used. */
1502
1503 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1504 { \
1505 if (flag_pic) \
1506 (X) = legitimize_pic_address (OLDX, MODE, NULL_RTX); \
1507 if (GET_CODE (X) == PLUS \
1508 && (GET_MODE_SIZE (MODE) == 4 \
1509 || GET_MODE_SIZE (MODE) == 8) \
1510 && GET_CODE (XEXP ((X), 1)) == CONST_INT \
1511 && BASE_REGISTER_RTX_P (XEXP ((X), 0)) \
1512 && ! (TARGET_SH4 && (MODE) == DFmode) \
1513 && ! (TARGET_SH3E && (MODE) == SFmode)) \
1514 { \
1515 rtx index_rtx = XEXP ((X), 1); \
1516 HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base; \
1517 rtx sum; \
1518 \
1519 GO_IF_LEGITIMATE_INDEX ((MODE), index_rtx, WIN); \
1520 /* On rare occasions, we might get an unaligned pointer \
1521 that is indexed in a way to give an aligned address. \
1522 Therefore, keep the lower two bits in offset_base. */ \
1523 /* Instead of offset_base 128..131 use 124..127, so that \
1524 simple add suffices. */ \
1525 if (offset > 127) \
1526 { \
1527 offset_base = ((offset + 4) & ~60) - 4; \
1528 } \
1529 else \
1530 offset_base = offset & ~60; \
1531 /* Sometimes the normal form does not suit DImode. We \
1532 could avoid that by using smaller ranges, but that \
1533 would give less optimized code when SImode is \
1534 prevalent. */ \
1535 if (GET_MODE_SIZE (MODE) + offset - offset_base <= 64) \
1536 { \
1537 sum = expand_binop (Pmode, add_optab, XEXP ((X), 0), \
1538 GEN_INT (offset_base), NULL_RTX, 0, \
1539 OPTAB_LIB_WIDEN); \
1540 \
1541 (X) = gen_rtx_PLUS (Pmode, sum, GEN_INT (offset - offset_base)); \
1542 goto WIN; \
1543 } \
1544 } \
1545 }
1546
1547 /* A C compound statement that attempts to replace X, which is an address
1548 that needs reloading, with a valid memory address for an operand of
1549 mode MODE. WIN is a C statement label elsewhere in the code.
1550
1551 Like for LEGITIMIZE_ADDRESS, for the SH we try to get a normal form
1552 of the address. That will allow inheritance of the address reloads. */
1553
1554 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1555 { \
1556 if (GET_CODE (X) == PLUS \
1557 && (GET_MODE_SIZE (MODE) == 4 || GET_MODE_SIZE (MODE) == 8) \
1558 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1559 && BASE_REGISTER_RTX_P (XEXP (X, 0)) \
1560 && ! (TARGET_SH4 && (MODE) == DFmode) \
1561 && ! ((MODE) == PSImode && (TYPE) == RELOAD_FOR_INPUT_ADDRESS)) \
1562 { \
1563 rtx index_rtx = XEXP (X, 1); \
1564 HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base; \
1565 rtx sum; \
1566 \
1567 if (TARGET_SH3E && MODE == SFmode) \
1568 { \
1569 X = copy_rtx (X); \
1570 push_reload (index_rtx, NULL_RTX, &XEXP (X, 1), NULL, \
1571 INDEX_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), \
1572 (TYPE)); \
1573 goto WIN; \
1574 } \
1575 /* Instead of offset_base 128..131 use 124..127, so that \
1576 simple add suffices. */ \
1577 if (offset > 127) \
1578 { \
1579 offset_base = ((offset + 4) & ~60) - 4; \
1580 } \
1581 else \
1582 offset_base = offset & ~60; \
1583 /* Sometimes the normal form does not suit DImode. We \
1584 could avoid that by using smaller ranges, but that \
1585 would give less optimized code when SImode is \
1586 prevalent. */ \
1587 if (GET_MODE_SIZE (MODE) + offset - offset_base <= 64) \
1588 { \
1589 sum = gen_rtx (PLUS, Pmode, XEXP (X, 0), \
1590 GEN_INT (offset_base)); \
1591 X = gen_rtx (PLUS, Pmode, sum, GEN_INT (offset - offset_base));\
1592 push_reload (sum, NULL_RTX, &XEXP (X, 0), NULL, \
1593 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), \
1594 (TYPE)); \
1595 goto WIN; \
1596 } \
1597 } \
1598 /* We must re-recognize what we created before. */ \
1599 else if (GET_CODE (X) == PLUS \
1600 && (GET_MODE_SIZE (MODE) == 4 || GET_MODE_SIZE (MODE) == 8) \
1601 && GET_CODE (XEXP (X, 0)) == PLUS \
1602 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1603 && BASE_REGISTER_RTX_P (XEXP (XEXP (X, 0), 0)) \
1604 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1605 && ! (TARGET_SH3E && MODE == SFmode)) \
1606 { \
1607 /* Because this address is so complex, we know it must have \
1608 been created by LEGITIMIZE_RELOAD_ADDRESS before; thus, \
1609 it is already unshared, and needs no further unsharing. */ \
1610 push_reload (XEXP ((X), 0), NULL_RTX, &XEXP ((X), 0), NULL, \
1611 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), (TYPE));\
1612 goto WIN; \
1613 } \
1614 }
1615
1616 /* Go to LABEL if ADDR (a legitimate address expression)
1617 has an effect that depends on the machine mode it is used for.
1618
1619 ??? Strictly speaking, we should also include all indexed addressing,
1620 because the index scale factor is the length of the operand.
1621 However, the impact of GO_IF_MODE_DEPENDENT_ADDRESS would be to
1622 high if we did that. So we rely on reload to fix things up. */
1623
1624 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1625 { \
1626 if (GET_CODE(ADDR) == PRE_DEC || GET_CODE(ADDR) == POST_INC) \
1627 goto LABEL; \
1628 }
1629 \f
1630 /* Specify the machine mode that this machine uses
1631 for the index in the tablejump instruction. */
1632 #define CASE_VECTOR_MODE (TARGET_BIGTABLE ? SImode : HImode)
1633
1634 #define CASE_VECTOR_SHORTEN_MODE(MIN_OFFSET, MAX_OFFSET, BODY) \
1635 ((MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 127 \
1636 ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 0, QImode) \
1637 : (MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 255 \
1638 ? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 1, QImode) \
1639 : (MIN_OFFSET) >= -32768 && (MAX_OFFSET) <= 32767 ? HImode \
1640 : SImode)
1641
1642 /* Define as C expression which evaluates to nonzero if the tablejump
1643 instruction expects the table to contain offsets from the address of the
1644 table.
1645 Do not define this if the table should contain absolute addresses. */
1646 #define CASE_VECTOR_PC_RELATIVE 1
1647
1648 /* Specify the tree operation to be used to convert reals to integers. */
1649 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1650
1651 /* This is the kind of divide that is easiest to do in the general case. */
1652 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1653
1654 /* Since the SH3e has only `float' support, it is desirable to make all
1655 floating point types equivalent to `float'. */
1656 #define DOUBLE_TYPE_SIZE ((TARGET_SH3E && ! TARGET_SH4) ? 32 : 64)
1657
1658 /* 'char' is signed by default. */
1659 #define DEFAULT_SIGNED_CHAR 1
1660
1661 /* The type of size_t unsigned int. */
1662 #define SIZE_TYPE "unsigned int"
1663
1664 #define WCHAR_TYPE "short unsigned int"
1665 #define WCHAR_TYPE_SIZE 16
1666
1667 /* Don't cse the address of the function being compiled. */
1668 /*#define NO_RECURSIVE_FUNCTION_CSE 1*/
1669
1670 /* Max number of bytes we can move from memory to memory
1671 in one reasonably fast instruction. */
1672 #define MOVE_MAX 4
1673
1674 /* Max number of bytes we want move_by_pieces to be able to copy
1675 efficiently. */
1676 #define MOVE_MAX_PIECES (TARGET_SH4 ? 8 : 4)
1677
1678 /* Define if operations between registers always perform the operation
1679 on the full register even if a narrower mode is specified. */
1680 #define WORD_REGISTER_OPERATIONS
1681
1682 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1683 will either zero-extend or sign-extend. The value of this macro should
1684 be the code that says which one of the two operations is implicitly
1685 done, NIL if none. */
1686 #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
1687
1688 /* Define if loading short immediate values into registers sign extends. */
1689 #define SHORT_IMMEDIATES_SIGN_EXTEND
1690
1691 /* Define this if zero-extension is slow (more than one real instruction).
1692 On the SH, it's only one instruction. */
1693 /* #define SLOW_ZERO_EXTEND */
1694
1695 /* Nonzero if access to memory by bytes is no faster than for words. */
1696 #define SLOW_BYTE_ACCESS 1
1697
1698 /* We assume that the store-condition-codes instructions store 0 for false
1699 and some other value for true. This is the value stored for true. */
1700
1701 #define STORE_FLAG_VALUE 1
1702
1703 /* Immediate shift counts are truncated by the output routines (or was it
1704 the assembler?). Shift counts in a register are truncated by SH. Note
1705 that the native compiler puts too large (> 32) immediate shift counts
1706 into a register and shifts by the register, letting the SH decide what
1707 to do instead of doing that itself. */
1708 /* ??? The library routines in lib1funcs.asm truncate the shift count.
1709 However, the SH3 has hardware shifts that do not truncate exactly as gcc
1710 expects - the sign bit is significant - so it appears that we need to
1711 leave this zero for correct SH3 code. */
1712 #define SHIFT_COUNT_TRUNCATED (! TARGET_SH3)
1713
1714 /* All integers have the same format so truncation is easy. */
1715 #define TRULY_NOOP_TRUNCATION(OUTPREC,INPREC) 1
1716
1717 /* Define this if addresses of constant functions
1718 shouldn't be put through pseudo regs where they can be cse'd.
1719 Desirable on machines where ordinary constants are expensive
1720 but a CALL with constant address is cheap. */
1721 /*#define NO_FUNCTION_CSE 1*/
1722
1723 /* Chars and shorts should be passed as ints. */
1724 #define PROMOTE_PROTOTYPES 1
1725
1726 /* The machine modes of pointers and functions. */
1727 #define Pmode SImode
1728 #define FUNCTION_MODE Pmode
1729
1730 /* The relative costs of various types of constants. */
1731
1732 #define CONST_COSTS(RTX, CODE, OUTER_CODE) \
1733 case CONST_INT: \
1734 if (CONST_OK_FOR_I (INTVAL (RTX))) \
1735 return 0; \
1736 else if (((OUTER_CODE) == AND || (OUTER_CODE) == IOR || (OUTER_CODE) == XOR) \
1737 && CONST_OK_FOR_L (INTVAL (RTX))) \
1738 return 1; \
1739 else \
1740 return 8; \
1741 case CONST: \
1742 case LABEL_REF: \
1743 case SYMBOL_REF: \
1744 return 5; \
1745 case CONST_DOUBLE: \
1746 return 10;
1747
1748 #define RTX_COSTS(X, CODE, OUTER_CODE) \
1749 case PLUS: \
1750 return COSTS_N_INSNS (addsubcosts (X)); \
1751 case AND: \
1752 return COSTS_N_INSNS (andcosts (X)); \
1753 case MULT: \
1754 return COSTS_N_INSNS (multcosts (X)); \
1755 case ASHIFT: \
1756 case ASHIFTRT: \
1757 case LSHIFTRT: \
1758 return COSTS_N_INSNS (shiftcosts (X)); \
1759 case DIV: \
1760 case UDIV: \
1761 case MOD: \
1762 case UMOD: \
1763 return COSTS_N_INSNS (20); \
1764 case FLOAT: \
1765 case FIX: \
1766 return 100;
1767
1768 /* The multiply insn on the SH1 and the divide insns on the SH1 and SH2
1769 are actually function calls with some special constraints on arguments
1770 and register usage.
1771
1772 These macros tell reorg that the references to arguments and
1773 register clobbers for insns of type sfunc do not appear to happen
1774 until after the millicode call. This allows reorg to put insns
1775 which set the argument registers into the delay slot of the millicode
1776 call -- thus they act more like traditional CALL_INSNs.
1777
1778 get_attr_is_sfunc will try to recognize the given insn, so make sure to
1779 filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1780 in particular. */
1781
1782 #define INSN_SETS_ARE_DELAYED(X) \
1783 ((GET_CODE (X) == INSN \
1784 && GET_CODE (PATTERN (X)) != SEQUENCE \
1785 && GET_CODE (PATTERN (X)) != USE \
1786 && GET_CODE (PATTERN (X)) != CLOBBER \
1787 && get_attr_is_sfunc (X)))
1788
1789 #define INSN_REFERENCES_ARE_DELAYED(X) \
1790 ((GET_CODE (X) == INSN \
1791 && GET_CODE (PATTERN (X)) != SEQUENCE \
1792 && GET_CODE (PATTERN (X)) != USE \
1793 && GET_CODE (PATTERN (X)) != CLOBBER \
1794 && get_attr_is_sfunc (X)))
1795
1796 \f
1797 /* Position Independent Code. */
1798 /* Define this macro if references to a symbol must be treated
1799 differently depending on something about the variable or function
1800 named by the symbol (such as what section it is in).
1801
1802 On SH, if using PIC, mark a SYMBOL_REF for a non-global symbol
1803 so that we may access it using GOTOFF instead of GOT. */
1804
1805 #define ENCODE_SECTION_INFO(DECL) \
1806 do \
1807 { \
1808 if (flag_pic) \
1809 { \
1810 rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
1811 ? TREE_CST_RTL (DECL) : DECL_RTL (DECL)); \
1812 \
1813 SYMBOL_REF_FLAG (XEXP (rtl, 0)) = \
1814 (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
1815 || ! TREE_PUBLIC (DECL)); \
1816 } \
1817 } \
1818 while (0)
1819
1820 /* We can't directly access anything that contains a symbol,
1821 nor can we indirect via the constant pool. */
1822 #define LEGITIMATE_PIC_OPERAND_P(X) \
1823 (! nonpic_symbol_mentioned_p (X) \
1824 && (! CONSTANT_POOL_ADDRESS_P (X) \
1825 || ! nonpic_symbol_mentioned_p (get_pool_constant (X))))
1826
1827 #define SYMBOLIC_CONST_P(X) \
1828 ((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF) \
1829 && nonpic_symbol_mentioned_p (X))
1830 \f
1831 /* Compute the cost of an address. For the SH, all valid addresses are
1832 the same cost. Use a slightly higher cost for reg + reg addressing,
1833 since it increases pressure on r0. */
1834
1835 #define ADDRESS_COST(X) (GET_CODE (X) == PLUS && ! CONSTANT_P (XEXP (X, 1)) \
1836 ? 1 : 0)
1837
1838 /* Compute extra cost of moving data between one register class
1839 and another. */
1840
1841 /* Regclass always uses 2 for moves in the same register class;
1842 If SECONDARY*_RELOAD_CLASS says something about the src/dst pair,
1843 it uses this information. Hence, the general register <-> floating point
1844 register information here is not used for SFmode. */
1845 #define REGISTER_MOVE_COST(MODE, SRCCLASS, DSTCLASS) \
1846 ((((DSTCLASS) == T_REGS) || ((DSTCLASS) == PR_REGS)) ? 10 \
1847 : ((((DSTCLASS) == FP0_REGS || (DSTCLASS) == FP_REGS || (DSTCLASS) == DF_REGS) \
1848 && ((SRCCLASS) == GENERAL_REGS || (SRCCLASS) == R0_REGS)) \
1849 || (((DSTCLASS) == GENERAL_REGS || (DSTCLASS) == R0_REGS) \
1850 && ((SRCCLASS) == FP0_REGS || (SRCCLASS) == FP_REGS \
1851 || (SRCCLASS) == DF_REGS))) \
1852 ? TARGET_FMOVD ? 8 : 12 \
1853 : (((DSTCLASS) == FPUL_REGS \
1854 && ((SRCCLASS) == GENERAL_REGS || (SRCCLASS) == R0_REGS)) \
1855 || (SRCCLASS == FPUL_REGS \
1856 && ((DSTCLASS) == GENERAL_REGS || (DSTCLASS) == R0_REGS))) \
1857 ? 5 \
1858 : (((DSTCLASS) == FPUL_REGS \
1859 && ((SRCCLASS) == PR_REGS || (SRCCLASS) == MAC_REGS \
1860 || (SRCCLASS) == T_REGS)) \
1861 || ((SRCCLASS) == FPUL_REGS \
1862 && ((DSTCLASS) == PR_REGS || (DSTCLASS) == MAC_REGS))) \
1863 ? 7 \
1864 : 2)
1865
1866 /* ??? Perhaps make MEMORY_MOVE_COST depend on compiler option? This
1867 would be so that people with slow memory systems could generate
1868 different code that does fewer memory accesses. */
1869
1870 /* A C expression for the cost of a branch instruction. A value of 1
1871 is the default; other values are interpreted relative to that.
1872 The SH1 does not have delay slots, hence we get a pipeline stall
1873 at every branch. The SH4 is superscalar, so the single delay slot
1874 is not sufficient to keep both pipelines filled. */
1875 #define BRANCH_COST (! TARGET_SH2 || TARGET_HARD_SH4 ? 2 : 1)
1876 \f
1877 /* Assembler output control. */
1878
1879 /* A C string constant describing how to begin a comment in the target
1880 assembler language. The compiler assumes that the comment will end at
1881 the end of the line. */
1882 #define ASM_COMMENT_START "!"
1883
1884 /* The text to go at the start of the assembler file. */
1885 #define ASM_FILE_START(STREAM) \
1886 output_file_start (STREAM)
1887
1888 #define ASM_FILE_END(STREAM)
1889
1890 #define ASM_APP_ON ""
1891 #define ASM_APP_OFF ""
1892 #define FILE_ASM_OP "\t.file\n"
1893 #define IDENT_ASM_OP "\t.ident\t"
1894 #define SET_ASM_OP "\t.set\t"
1895
1896 /* How to change between sections. */
1897
1898 #define TEXT_SECTION_ASM_OP "\t.text"
1899 #define DATA_SECTION_ASM_OP "\t.data"
1900
1901 /* If defined, a C expression whose value is a string containing the
1902 assembler operation to identify the following data as
1903 uninitialized global data. If not defined, and neither
1904 `ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined,
1905 uninitialized global data will be output in the data section if
1906 `-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be
1907 used. */
1908 #ifndef BSS_SECTION_ASM_OP
1909 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
1910 #endif
1911
1912 /* Like `ASM_OUTPUT_BSS' except takes the required alignment as a
1913 separate, explicit argument. If you define this macro, it is used
1914 in place of `ASM_OUTPUT_BSS', and gives you more flexibility in
1915 handling the required alignment of the variable. The alignment is
1916 specified as the number of bits.
1917
1918 Try to use function `asm_output_aligned_bss' defined in file
1919 `varasm.c' when defining this macro. */
1920 #ifndef ASM_OUTPUT_ALIGNED_BSS
1921 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1922 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
1923 #endif
1924
1925 /* Define this so that jump tables go in same section as the current function,
1926 which could be text or it could be a user defined section. */
1927 #define JUMP_TABLES_IN_TEXT_SECTION 1
1928
1929 /* Switch into a generic section. */
1930 #define TARGET_ASM_NAMED_SECTION sh_asm_named_section
1931
1932 /* This is the pseudo-op used to generate a reference to a specific
1933 symbol in some section. */
1934
1935 #define INT_ASM_OP "\t.long\t"
1936
1937 #undef DO_GLOBAL_CTORS_BODY
1938 #define DO_GLOBAL_CTORS_BODY \
1939 { \
1940 typedef (*pfunc)(); \
1941 extern pfunc __ctors[]; \
1942 extern pfunc __ctors_end[]; \
1943 pfunc *p; \
1944 for (p = __ctors_end; p > __ctors; ) \
1945 { \
1946 (*--p)(); \
1947 } \
1948 }
1949
1950 #undef DO_GLOBAL_DTORS_BODY
1951 #define DO_GLOBAL_DTORS_BODY \
1952 { \
1953 typedef (*pfunc)(); \
1954 extern pfunc __dtors[]; \
1955 extern pfunc __dtors_end[]; \
1956 pfunc *p; \
1957 for (p = __dtors; p < __dtors_end; p++) \
1958 { \
1959 (*p)(); \
1960 } \
1961 }
1962
1963 #define ASM_OUTPUT_REG_PUSH(file, v) \
1964 fprintf ((file), "\tmov.l\tr%d,@-r15\n", (v));
1965
1966 #define ASM_OUTPUT_REG_POP(file, v) \
1967 fprintf ((file), "\tmov.l\t@r15+,r%d\n", (v));
1968
1969 /* The assembler's names for the registers. RFP need not always be used as
1970 the Real framepointer; it can also be used as a normal general register.
1971 Note that the name `fp' is horribly misleading since `fp' is in fact only
1972 the argument-and-return-context pointer. */
1973
1974 extern char fp_reg_names[][5];
1975
1976 #define REGISTER_NAMES \
1977 { \
1978 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
1979 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1980 "ap", "pr", "t", "gbr", "mach","macl", fp_reg_names[16], "rap", \
1981 fp_reg_names[0], fp_reg_names[1] , fp_reg_names[2], fp_reg_names[3], \
1982 fp_reg_names[4], fp_reg_names[5], fp_reg_names[6], fp_reg_names[7], \
1983 fp_reg_names[8], fp_reg_names[9], fp_reg_names[10], fp_reg_names[11], \
1984 fp_reg_names[12], fp_reg_names[13], fp_reg_names[14], fp_reg_names[15], \
1985 fp_reg_names[17], fp_reg_names[18], fp_reg_names[19], fp_reg_names[20], \
1986 fp_reg_names[21], fp_reg_names[22], fp_reg_names[23], fp_reg_names[24], \
1987 "fpscr", \
1988 }
1989
1990 #define DEBUG_REGISTER_NAMES \
1991 { \
1992 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
1993 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1994 "ap", "pr", "t", "gbr", "mach","macl", "fpul","rap", \
1995 "fr0","fr1","fr2", "fr3", "fr4", "fr5", "fr6", "fr7", \
1996 "fr8","fr9","fr10","fr11","fr12","fr13","fr14","fr15",\
1997 "xd0","xd2","xd4", "xd6", "xd8", "xd10","xd12","xd14", \
1998 "fpscr", \
1999 }
2000
2001 /* DBX register number for a given compiler register number. */
2002 /* GDB has FPUL at 23 and FP0 at 25, so we must add one to all FP registers
2003 to match gdb. */
2004 #define DBX_REGISTER_NUMBER(REGNO) \
2005 (((REGNO) >= 22 && (REGNO) <= 39) ? ((REGNO) + 1) : (REGNO))
2006
2007 /* Output a label definition. */
2008 #define ASM_OUTPUT_LABEL(FILE,NAME) \
2009 do { assemble_name ((FILE), (NAME)); fputs (":\n", (FILE)); } while (0)
2010
2011 /* This is how to output an assembler line
2012 that says to advance the location counter
2013 to a multiple of 2**LOG bytes. */
2014
2015 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2016 if ((LOG) != 0) \
2017 fprintf ((FILE), "\t.align %d\n", (LOG))
2018
2019 /* Output a function label definition. */
2020 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL) \
2021 ASM_OUTPUT_LABEL((STREAM), (NAME))
2022
2023 /* Output a globalising directive for a label. */
2024 #define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
2025 (fprintf ((STREAM), "\t.global\t"), \
2026 assemble_name ((STREAM), (NAME)), \
2027 fputc ('\n', (STREAM)))
2028
2029 /* The prefix to add to user-visible assembler symbols. */
2030
2031 #define USER_LABEL_PREFIX "_"
2032
2033 /* The prefix to add to an internally generated label. */
2034
2035 #define LOCAL_LABEL_PREFIX ""
2036
2037 /* Make an internal label into a string. */
2038 #define ASM_GENERATE_INTERNAL_LABEL(STRING, PREFIX, NUM) \
2039 sprintf ((STRING), "*%s%s%ld", LOCAL_LABEL_PREFIX, (PREFIX), (long)(NUM))
2040
2041 /* Output an internal label definition. */
2042 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
2043 asm_fprintf ((FILE), "%L%s%d:\n", (PREFIX), (NUM))
2044
2045 /* #define ASM_OUTPUT_CASE_END(STREAM,NUM,TABLE) */
2046
2047 /* Construct a private name. */
2048 #define ASM_FORMAT_PRIVATE_NAME(OUTVAR,NAME,NUMBER) \
2049 ((OUTVAR) = (char *) alloca (strlen (NAME) + 10), \
2050 sprintf ((OUTVAR), "%s.%d", (NAME), (NUMBER)))
2051
2052 /* Output a relative address table. */
2053
2054 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM,BODY,VALUE,REL) \
2055 switch (GET_MODE (BODY)) \
2056 { \
2057 case SImode: \
2058 asm_fprintf ((STREAM), "\t.long\t%LL%d-%LL%d\n", (VALUE),(REL)); \
2059 break; \
2060 case HImode: \
2061 asm_fprintf ((STREAM), "\t.word\t%LL%d-%LL%d\n", (VALUE),(REL)); \
2062 break; \
2063 case QImode: \
2064 asm_fprintf ((STREAM), "\t.byte\t%LL%d-%LL%d\n", (VALUE),(REL)); \
2065 break; \
2066 default: \
2067 break; \
2068 }
2069
2070 /* Output an absolute table element. */
2071
2072 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM,VALUE) \
2073 if (TARGET_BIGTABLE) \
2074 asm_fprintf ((STREAM), "\t.long\t%LL%d\n", (VALUE)); \
2075 else \
2076 asm_fprintf ((STREAM), "\t.word\t%LL%d\n", (VALUE)); \
2077
2078 /* Output various types of constants. */
2079
2080 /* This is how to output an assembler line defining a `double'. */
2081
2082 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
2083 do { char dstr[30]; \
2084 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
2085 fprintf ((FILE), "\t.double %s\n", dstr); \
2086 } while (0)
2087
2088 /* This is how to output an assembler line defining a `float' constant. */
2089 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
2090 do { char dstr[30]; \
2091 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
2092 fprintf ((FILE), "\t.float %s\n", dstr); \
2093 } while (0)
2094
2095 #define ASM_OUTPUT_INT(STREAM, EXP) \
2096 (fprintf ((STREAM), "\t.long\t"), \
2097 output_addr_const ((STREAM), (EXP)), \
2098 fputc ('\n', (STREAM)))
2099
2100 #define ASM_OUTPUT_SHORT(STREAM, EXP) \
2101 (fprintf ((STREAM), "\t.short\t"), \
2102 output_addr_const ((STREAM), (EXP)), \
2103 fputc ('\n', (STREAM)))
2104
2105 #define ASM_OUTPUT_CHAR(STREAM, EXP) \
2106 (fprintf ((STREAM), "\t.byte\t"), \
2107 output_addr_const ((STREAM), (EXP)), \
2108 fputc ('\n', (STREAM)))
2109
2110 #define ASM_OUTPUT_BYTE(STREAM, VALUE) \
2111 fprintf ((STREAM), "\t.byte\t%d\n", (VALUE)) \
2112
2113 /* The next two are used for debug info when compiling with -gdwarf. */
2114 #define UNALIGNED_SHORT_ASM_OP "\t.uaword\t"
2115 #define UNALIGNED_INT_ASM_OP "\t.ualong\t"
2116
2117 /* Loop alignment is now done in machine_dependent_reorg, so that
2118 branch shortening can know about it. */
2119
2120 /* This is how to output an assembler line
2121 that says to advance the location counter by SIZE bytes. */
2122
2123 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
2124 fprintf ((FILE), "\t.space %d\n", (SIZE))
2125
2126 /* This says how to output an assembler line
2127 to define a global common symbol. */
2128
2129 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
2130 ( fputs ("\t.comm ", (FILE)), \
2131 assemble_name ((FILE), (NAME)), \
2132 fprintf ((FILE), ",%d\n", (SIZE)))
2133
2134 /* This says how to output an assembler line
2135 to define a local common symbol. */
2136
2137 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
2138 ( fputs ("\t.lcomm ", (FILE)), \
2139 assemble_name ((FILE), (NAME)), \
2140 fprintf ((FILE), ",%d\n", (SIZE)))
2141 \f
2142 /* A C statement to be executed just prior to the output of
2143 assembler code for INSN, to modify the extracted operands so
2144 they will be output differently.
2145
2146 Here the argument OPVEC is the vector containing the operands
2147 extracted from INSN, and NOPERANDS is the number of elements of
2148 the vector which contain meaningful data for this insn.
2149 The contents of this vector are what will be used to convert the insn
2150 template into assembler code, so you can change the assembler output
2151 by changing the contents of the vector. */
2152
2153 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2154 final_prescan_insn ((INSN), (OPVEC), (NOPERANDS))
2155
2156 /* Print operand X (an rtx) in assembler syntax to file FILE.
2157 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2158 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2159
2160 #define PRINT_OPERAND(STREAM, X, CODE) print_operand ((STREAM), (X), (CODE))
2161
2162 /* Print a memory address as an operand to reference that memory location. */
2163
2164 #define PRINT_OPERAND_ADDRESS(STREAM,X) print_operand_address ((STREAM), (X))
2165
2166 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2167 ((CHAR) == '.' || (CHAR) == '#' || (CHAR) == '@' || (CHAR) == ',' \
2168 || (CHAR) == '$')
2169
2170 /* Recognize machine-specific patterns that may appear within
2171 constants. Used for PIC-specific UNSPECs. */
2172 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
2173 do \
2174 if (flag_pic && GET_CODE (X) == UNSPEC && XVECLEN ((X), 0) == 1) \
2175 { \
2176 switch (XINT ((X), 1)) \
2177 { \
2178 case UNSPEC_PIC: \
2179 /* GLOBAL_OFFSET_TABLE or local symbols, no suffix. */ \
2180 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
2181 break; \
2182 case UNSPEC_GOT: \
2183 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
2184 fputs ("@GOT", (STREAM)); \
2185 break; \
2186 case UNSPEC_GOTOFF: \
2187 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
2188 fputs ("@GOTOFF", (STREAM)); \
2189 break; \
2190 case UNSPEC_PLT: \
2191 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
2192 fputs ("@PLT", (STREAM)); \
2193 break; \
2194 case UNSPEC_CALLER: \
2195 { \
2196 char name[32]; \
2197 /* LPCS stands for Label for PIC Call Site. */ \
2198 ASM_GENERATE_INTERNAL_LABEL \
2199 (name, "LPCS", INTVAL (XVECEXP ((X), 0, 0))); \
2200 assemble_name ((STREAM), name); \
2201 } \
2202 break; \
2203 default: \
2204 goto FAIL; \
2205 } \
2206 break; \
2207 } \
2208 else \
2209 goto FAIL; \
2210 while (0)
2211
2212 \f
2213 extern struct rtx_def *sh_compare_op0;
2214 extern struct rtx_def *sh_compare_op1;
2215
2216 /* Which processor to schedule for. The elements of the enumeration must
2217 match exactly the cpu attribute in the sh.md file. */
2218
2219 enum processor_type {
2220 PROCESSOR_SH1,
2221 PROCESSOR_SH2,
2222 PROCESSOR_SH3,
2223 PROCESSOR_SH3E,
2224 PROCESSOR_SH4
2225 };
2226
2227 #define sh_cpu_attr ((enum attr_cpu)sh_cpu)
2228 extern enum processor_type sh_cpu;
2229
2230 extern int optimize; /* needed for gen_casesi. */
2231
2232 enum mdep_reorg_phase_e
2233 {
2234 SH_BEFORE_MDEP_REORG,
2235 SH_INSERT_USES_LABELS,
2236 SH_SHORTEN_BRANCHES0,
2237 SH_FIXUP_PCLOAD,
2238 SH_SHORTEN_BRANCHES1,
2239 SH_AFTER_MDEP_REORG
2240 };
2241
2242 extern enum mdep_reorg_phase_e mdep_reorg_phase;
2243
2244 #define MACHINE_DEPENDENT_REORG(X) machine_dependent_reorg(X)
2245
2246 /* Generate calls to memcpy, memcmp and memset. */
2247
2248 #define TARGET_MEM_FUNCTIONS
2249
2250 /* Handle Hitachi compiler's pragmas. */
2251 #define REGISTER_TARGET_PRAGMAS(PFILE) do { \
2252 cpp_register_pragma (PFILE, 0, "interrupt", sh_pr_interrupt); \
2253 cpp_register_pragma (PFILE, 0, "trapa", sh_pr_trapa); \
2254 cpp_register_pragma (PFILE, 0, "nosave_low_regs", sh_pr_nosave_low_regs); \
2255 } while (0)
2256
2257 /* Set when processing a function with pragma interrupt turned on. */
2258
2259 extern int pragma_interrupt;
2260
2261 /* Set when processing a function with interrupt attribute. */
2262
2263 extern int current_function_interrupt;
2264
2265 /* Set to an RTX containing the address of the stack to switch to
2266 for interrupt functions. */
2267 extern struct rtx_def *sp_switch;
2268
2269 extern int rtx_equal_function_value_matters;
2270 extern struct rtx_def *fpscr_rtx;
2271
2272 \f
2273 /* Instructions with unfilled delay slots take up an
2274 extra two bytes for the nop in the delay slot.
2275 sh-dsp parallel processing insns are four bytes long. */
2276
2277 #define ADJUST_INSN_LENGTH(X, LENGTH) \
2278 (LENGTH) += sh_insn_length_adjustment (X);
2279 \f
2280 /* Define the codes that are matched by predicates in sh.c. */
2281 #define PREDICATE_CODES \
2282 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
2283 {"arith_reg_operand", {SUBREG, REG}}, \
2284 {"arith_reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
2285 {"binary_float_operator", {PLUS, MULT}}, \
2286 {"commutative_float_operator", {PLUS, MULT}}, \
2287 {"fp_arith_reg_operand", {SUBREG, REG}}, \
2288 {"fpscr_operand", {REG}}, \
2289 {"fpul_operand", {REG}}, \
2290 {"general_movsrc_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE, MEM}}, \
2291 {"general_movdst_operand", {SUBREG, REG, MEM}}, \
2292 {"logical_operand", {SUBREG, REG, CONST_INT}}, \
2293 {"noncommutative_float_operator", {MINUS, DIV}}, \
2294 {"register_operand", {SUBREG, REG}}, \
2295 {"symbol_ref_operand", {SYMBOL_REF}},
2296
2297 /* Define this macro if it is advisable to hold scalars in registers
2298 in a wider mode than that declared by the program. In such cases,
2299 the value is constrained to be within the bounds of the declared
2300 type, but kept valid in the wider mode. The signedness of the
2301 extension may differ from that of the type.
2302
2303 Leaving the unsignedp unchanged gives better code than always setting it
2304 to 0. This is despite the fact that we have only signed char and short
2305 load instructions. */
2306 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
2307 if (GET_MODE_CLASS (MODE) == MODE_INT \
2308 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
2309 (MODE) = SImode;
2310
2311 /* Defining PROMOTE_FUNCTION_ARGS eliminates some unnecessary zero/sign
2312 extensions applied to char/short functions arguments. Defining
2313 PROMOTE_FUNCTION_RETURN does the same for function returns. */
2314
2315 #define PROMOTE_FUNCTION_ARGS
2316 #define PROMOTE_FUNCTION_RETURN
2317
2318 /* ??? Define ACCUMULATE_OUTGOING_ARGS? This is more efficient than pushing
2319 and poping arguments. However, we do have push/pop instructions, and
2320 rather limited offsets (4 bits) in load/store instructions, so it isn't
2321 clear if this would give better code. If implemented, should check for
2322 compatibility problems. */
2323
2324 #define SH_DYNAMIC_SHIFT_COST \
2325 (TARGET_HARD_SH4 ? 1 : TARGET_SH3 ? (TARGET_SMALLCODE ? 1 : 2) : 20)
2326
2327
2328 #define NUM_MODES_FOR_MODE_SWITCHING { FP_MODE_NONE }
2329
2330 #define OPTIMIZE_MODE_SWITCHING(ENTITY) TARGET_SH4
2331
2332 #define NORMAL_MODE(ENTITY) \
2333 (TARGET_FPU_SINGLE ? FP_MODE_SINGLE : FP_MODE_DOUBLE)
2334
2335 #define EPILOGUE_USES(REGNO) ((TARGET_SH3E || TARGET_SH4) \
2336 && (REGNO) == FPSCR_REG)
2337
2338 #define MODE_NEEDED(ENTITY, INSN) \
2339 (recog_memoized (INSN) >= 0 \
2340 ? get_attr_fp_mode (INSN) \
2341 : FP_MODE_NONE)
2342
2343 #define MODE_PRIORITY_TO_MODE(ENTITY, N) \
2344 ((TARGET_FPU_SINGLE != 0) ^ (N) ? FP_MODE_SINGLE : FP_MODE_DOUBLE)
2345
2346 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
2347 fpscr_set_from_mem ((MODE), (HARD_REGS_LIVE))
2348
2349 #define MD_CAN_REDIRECT_BRANCH(INSN, SEQ) \
2350 sh_can_redirect_branch ((INSN), (SEQ))
2351
2352 #define DWARF_LINE_MIN_INSTR_LENGTH 2
2353
2354 /* SH constant pool breaks the devices in crtstuff.c to control section
2355 in where code resides. We have to write it as asm code. */
2356 #define CRT_CALL_STATIC_FUNCTION(func) \
2357 if (0) \
2358 /* This avoids warnings about the static function being unused. */ \
2359 func (); \
2360 else \
2361 /* We should be passing FUNC to the asm statement as an asm input \
2362 operand, but this breaks with -fPIC. FIXME. */ \
2363 asm \
2364 ("mov.l 1f,r1\n\
2365 mova 2f,r0\n\
2366 braf r1\n\
2367 lds r0,pr\n\
2368 0: .p2align 2\n\
2369 1: .long " USER_LABEL_PREFIX #func " - 0b\n\
2370 2:")
2371
2372 #define ALLOCATE_INITIAL_VALUE(hard_reg) \
2373 (REGNO (hard_reg) == PR_REG \
2374 ? (current_function_is_leaf && ! sh_pr_n_sets () \
2375 ? (hard_reg) \
2376 : gen_rtx_MEM (Pmode, arg_pointer_rtx)) \
2377 : NULL_RTX)
2378
2379 #endif /* ! GCC_SH_H */
This page took 0.1443 seconds and 5 git commands to generate.