]> gcc.gnu.org Git - gcc.git/blob - gcc/config/rs6000/rs6000.h
fae5ea2b578b59ab9dfccc779aa1f22cfcf13476
[gcc.git] / gcc / config / rs6000 / rs6000.h
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published
11 by the Free Software Foundation; either version 3, or (at your
12 option) any later version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
16 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
17 License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* Note that some other tm.h files include this one and then override
24 many of the definitions. */
25
26 /* Definitions for the object file format. These are set at
27 compile-time. */
28
29 #define OBJECT_XCOFF 1
30 #define OBJECT_ELF 2
31 #define OBJECT_PEF 3
32 #define OBJECT_MACHO 4
33
34 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
35 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
36 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
37 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
38
39 #ifndef TARGET_AIX
40 #define TARGET_AIX 0
41 #endif
42
43 /* Control whether function entry points use a "dot" symbol when
44 ABI_AIX. */
45 #define DOT_SYMBOLS 1
46
47 /* Default string to use for cpu if not specified. */
48 #ifndef TARGET_CPU_DEFAULT
49 #define TARGET_CPU_DEFAULT ((char *)0)
50 #endif
51
52 /* If configured for PPC405, support PPC405CR Erratum77. */
53 #ifdef CONFIG_PPC405CR
54 #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
55 #else
56 #define PPC405_ERRATUM77 0
57 #endif
58
59 /* Common ASM definitions used by ASM_SPEC among the various targets
60 for handling -mcpu=xxx switches. */
61 #define ASM_CPU_SPEC \
62 "%{!mcpu*: \
63 %{mpower: %{!mpower2: -mpwr}} \
64 %{mpower2: -mpwrx} \
65 %{mpowerpc64*: -mppc64} \
66 %{!mpowerpc64*: %{mpowerpc*: -mppc}} \
67 %{mno-power: %{!mpowerpc*: -mcom}} \
68 %{!mno-power: %{!mpower*: %(asm_default)}}} \
69 %{mcpu=common: -mcom} \
70 %{mcpu=cell: -mcell} \
71 %{mcpu=power: -mpwr} \
72 %{mcpu=power2: -mpwrx} \
73 %{mcpu=power3: -mppc64} \
74 %{mcpu=power4: -mpower4} \
75 %{mcpu=power5: -mpower4} \
76 %{mcpu=power5+: -mpower4} \
77 %{mcpu=power6: -mpower4 -maltivec} \
78 %{mcpu=power6x: -mpower4 -maltivec} \
79 %{mcpu=powerpc: -mppc} \
80 %{mcpu=rios: -mpwr} \
81 %{mcpu=rios1: -mpwr} \
82 %{mcpu=rios2: -mpwrx} \
83 %{mcpu=rsc: -mpwr} \
84 %{mcpu=rsc1: -mpwr} \
85 %{mcpu=rs64a: -mppc64} \
86 %{mcpu=401: -mppc} \
87 %{mcpu=403: -m403} \
88 %{mcpu=405: -m405} \
89 %{mcpu=405fp: -m405} \
90 %{mcpu=440: -m440} \
91 %{mcpu=440fp: -m440} \
92 %{mcpu=505: -mppc} \
93 %{mcpu=601: -m601} \
94 %{mcpu=602: -mppc} \
95 %{mcpu=603: -mppc} \
96 %{mcpu=603e: -mppc} \
97 %{mcpu=ec603e: -mppc} \
98 %{mcpu=604: -mppc} \
99 %{mcpu=604e: -mppc} \
100 %{mcpu=620: -mppc64} \
101 %{mcpu=630: -mppc64} \
102 %{mcpu=740: -mppc} \
103 %{mcpu=750: -mppc} \
104 %{mcpu=G3: -mppc} \
105 %{mcpu=7400: -mppc -maltivec} \
106 %{mcpu=7450: -mppc -maltivec} \
107 %{mcpu=G4: -mppc -maltivec} \
108 %{mcpu=801: -mppc} \
109 %{mcpu=821: -mppc} \
110 %{mcpu=823: -mppc} \
111 %{mcpu=860: -mppc} \
112 %{mcpu=970: -mpower4 -maltivec} \
113 %{mcpu=G5: -mpower4 -maltivec} \
114 %{mcpu=8540: -me500} \
115 %{maltivec: -maltivec} \
116 -many"
117
118 #define CPP_DEFAULT_SPEC ""
119
120 #define ASM_DEFAULT_SPEC ""
121
122 /* This macro defines names of additional specifications to put in the specs
123 that can be used in various specifications like CC1_SPEC. Its definition
124 is an initializer with a subgrouping for each command option.
125
126 Each subgrouping contains a string constant, that defines the
127 specification name, and a string constant that used by the GCC driver
128 program.
129
130 Do not define this macro if it does not need to do anything. */
131
132 #define SUBTARGET_EXTRA_SPECS
133
134 #define EXTRA_SPECS \
135 { "cpp_default", CPP_DEFAULT_SPEC }, \
136 { "asm_cpu", ASM_CPU_SPEC }, \
137 { "asm_default", ASM_DEFAULT_SPEC }, \
138 { "cc1_cpu", CC1_CPU_SPEC }, \
139 SUBTARGET_EXTRA_SPECS
140
141 /* -mcpu=native handling only makes sense with compiler running on
142 an PowerPC chip. If changing this condition, also change
143 the condition in driver-rs6000.c. */
144 #if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
145 /* In driver-rs6000.c. */
146 extern const char *host_detect_local_cpu (int argc, const char **argv);
147 #define EXTRA_SPEC_FUNCTIONS \
148 { "local_cpu_detect", host_detect_local_cpu },
149 #define HAVE_LOCAL_CPU_DETECT
150 #endif
151
152 #if !defined (CC1_CPU_SPEC) && defined (HAVE_LOCAL_CPU_DETECT)
153 #define CC1_CPU_SPEC \
154 "%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
155 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
156 #endif
157
158 /* Architecture type. */
159
160 /* Define TARGET_MFCRF if the target assembler does not support the
161 optional field operand for mfcr. */
162
163 #ifndef HAVE_AS_MFCRF
164 #undef TARGET_MFCRF
165 #define TARGET_MFCRF 0
166 #endif
167
168 /* Define TARGET_POPCNTB if the target assembler does not support the
169 popcount byte instruction. */
170
171 #ifndef HAVE_AS_POPCNTB
172 #undef TARGET_POPCNTB
173 #define TARGET_POPCNTB 0
174 #endif
175
176 /* Define TARGET_FPRND if the target assembler does not support the
177 fp rounding instructions. */
178
179 #ifndef HAVE_AS_FPRND
180 #undef TARGET_FPRND
181 #define TARGET_FPRND 0
182 #endif
183
184 /* Define TARGET_CMPB if the target assembler does not support the
185 cmpb instruction. */
186
187 #ifndef HAVE_AS_CMPB
188 #undef TARGET_CMPB
189 #define TARGET_CMPB 0
190 #endif
191
192 /* Define TARGET_MFPGPR if the target assembler does not support the
193 mffpr and mftgpr instructions. */
194
195 #ifndef HAVE_AS_MFPGPR
196 #undef TARGET_MFPGPR
197 #define TARGET_MFPGPR 0
198 #endif
199
200 /* Define TARGET_DFP if the target assembler does not support decimal
201 floating point instructions. */
202 #ifndef HAVE_AS_DFP
203 #undef TARGET_DFP
204 #define TARGET_DFP 0
205 #endif
206
207 #ifndef TARGET_SECURE_PLT
208 #define TARGET_SECURE_PLT 0
209 #endif
210
211 #define TARGET_32BIT (! TARGET_64BIT)
212
213 #ifndef HAVE_AS_TLS
214 #define HAVE_AS_TLS 0
215 #endif
216
217 /* Return 1 for a symbol ref for a thread-local storage symbol. */
218 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
219 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
220
221 #ifdef IN_LIBGCC2
222 /* For libgcc2 we make sure this is a compile time constant */
223 #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
224 #undef TARGET_POWERPC64
225 #define TARGET_POWERPC64 1
226 #else
227 #undef TARGET_POWERPC64
228 #define TARGET_POWERPC64 0
229 #endif
230 #else
231 /* The option machinery will define this. */
232 #endif
233
234 #define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
235
236 /* Processor type. Order must match cpu attribute in MD file. */
237 enum processor_type
238 {
239 PROCESSOR_RIOS1,
240 PROCESSOR_RIOS2,
241 PROCESSOR_RS64A,
242 PROCESSOR_MPCCORE,
243 PROCESSOR_PPC403,
244 PROCESSOR_PPC405,
245 PROCESSOR_PPC440,
246 PROCESSOR_PPC601,
247 PROCESSOR_PPC603,
248 PROCESSOR_PPC604,
249 PROCESSOR_PPC604e,
250 PROCESSOR_PPC620,
251 PROCESSOR_PPC630,
252 PROCESSOR_PPC750,
253 PROCESSOR_PPC7400,
254 PROCESSOR_PPC7450,
255 PROCESSOR_PPC8540,
256 PROCESSOR_POWER4,
257 PROCESSOR_POWER5,
258 PROCESSOR_POWER6,
259 PROCESSOR_CELL
260 };
261
262 extern enum processor_type rs6000_cpu;
263
264 /* Recast the processor type to the cpu attribute. */
265 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
266
267 /* Define generic processor types based upon current deployment. */
268 #define PROCESSOR_COMMON PROCESSOR_PPC601
269 #define PROCESSOR_POWER PROCESSOR_RIOS1
270 #define PROCESSOR_POWERPC PROCESSOR_PPC604
271 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
272
273 /* Define the default processor. This is overridden by other tm.h files. */
274 #define PROCESSOR_DEFAULT PROCESSOR_RIOS1
275 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
276
277 /* Specify the dialect of assembler to use. New mnemonics is dialect one
278 and the old mnemonics are dialect zero. */
279 #define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
280
281 /* Types of costly dependences. */
282 enum rs6000_dependence_cost
283 {
284 max_dep_latency = 1000,
285 no_dep_costly,
286 all_deps_costly,
287 true_store_to_load_dep_costly,
288 store_to_load_dep_costly
289 };
290
291 /* Types of nop insertion schemes in sched target hook sched_finish. */
292 enum rs6000_nop_insertion
293 {
294 sched_finish_regroup_exact = 1000,
295 sched_finish_pad_groups,
296 sched_finish_none
297 };
298
299 /* Dispatch group termination caused by an insn. */
300 enum group_termination
301 {
302 current_group,
303 previous_group
304 };
305
306 /* Support for a compile-time default CPU, et cetera. The rules are:
307 --with-cpu is ignored if -mcpu is specified.
308 --with-tune is ignored if -mtune is specified.
309 --with-float is ignored if -mhard-float or -msoft-float are
310 specified. */
311 #define OPTION_DEFAULT_SPECS \
312 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
313 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
314 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }
315
316 /* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
317 struct rs6000_cpu_select
318 {
319 const char *string;
320 const char *name;
321 int set_tune_p;
322 int set_arch_p;
323 };
324
325 extern struct rs6000_cpu_select rs6000_select[];
326
327 /* Debug support */
328 extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
329 extern int rs6000_debug_stack; /* debug stack applications */
330 extern int rs6000_debug_arg; /* debug argument handling */
331
332 #define TARGET_DEBUG_STACK rs6000_debug_stack
333 #define TARGET_DEBUG_ARG rs6000_debug_arg
334
335 extern const char *rs6000_traceback_name; /* Type of traceback table. */
336
337 /* These are separate from target_flags because we've run out of bits
338 there. */
339 extern int rs6000_long_double_type_size;
340 extern int rs6000_ieeequad;
341 extern int rs6000_altivec_abi;
342 extern int rs6000_spe_abi;
343 extern int rs6000_float_gprs;
344 extern int rs6000_alignment_flags;
345 extern const char *rs6000_sched_insert_nops_str;
346 extern enum rs6000_nop_insertion rs6000_sched_insert_nops;
347
348 /* Alignment options for fields in structures for sub-targets following
349 AIX-like ABI.
350 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
351 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
352
353 Override the macro definitions when compiling libobjc to avoid undefined
354 reference to rs6000_alignment_flags due to library's use of GCC alignment
355 macros which use the macros below. */
356
357 #ifndef IN_TARGET_LIBS
358 #define MASK_ALIGN_POWER 0x00000000
359 #define MASK_ALIGN_NATURAL 0x00000001
360 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
361 #else
362 #define TARGET_ALIGN_NATURAL 0
363 #endif
364
365 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
366 #define TARGET_IEEEQUAD rs6000_ieeequad
367 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
368
369 #define TARGET_SPE_ABI 0
370 #define TARGET_SPE 0
371 #define TARGET_E500 0
372 #define TARGET_ISEL 0
373 #define TARGET_FPRS 1
374 #define TARGET_E500_SINGLE 0
375 #define TARGET_E500_DOUBLE 0
376 #define CHECK_E500_OPTIONS do { } while (0)
377
378 /* E500 processors only support plain "sync", not lwsync. */
379 #define TARGET_NO_LWSYNC TARGET_E500
380
381 /* Sometimes certain combinations of command options do not make sense
382 on a particular target machine. You can define a macro
383 `OVERRIDE_OPTIONS' to take account of this. This macro, if
384 defined, is executed once just after all the command options have
385 been parsed.
386
387 Do not use this macro to turn on various extra optimizations for
388 `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
389
390 On the RS/6000 this is used to define the target cpu type. */
391
392 #define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
393
394 /* Define this to change the optimizations performed by default. */
395 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
396
397 /* Show we can debug even without a frame pointer. */
398 #define CAN_DEBUG_WITHOUT_FP
399
400 /* Target pragma. */
401 #define REGISTER_TARGET_PRAGMAS() do { \
402 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
403 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
404 } while (0)
405
406 /* Target #defines. */
407 #define TARGET_CPU_CPP_BUILTINS() \
408 rs6000_cpu_cpp_builtins (pfile)
409
410 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
411 we're compiling for. Some configurations may need to override it. */
412 #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
413 do \
414 { \
415 if (BYTES_BIG_ENDIAN) \
416 { \
417 builtin_define ("__BIG_ENDIAN__"); \
418 builtin_define ("_BIG_ENDIAN"); \
419 builtin_assert ("machine=bigendian"); \
420 } \
421 else \
422 { \
423 builtin_define ("__LITTLE_ENDIAN__"); \
424 builtin_define ("_LITTLE_ENDIAN"); \
425 builtin_assert ("machine=littleendian"); \
426 } \
427 } \
428 while (0)
429 \f
430 /* Target machine storage layout. */
431
432 /* Define this macro if it is advisable to hold scalars in registers
433 in a wider mode than that declared by the program. In such cases,
434 the value is constrained to be within the bounds of the declared
435 type, but kept valid in the wider mode. The signedness of the
436 extension may differ from that of the type. */
437
438 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
439 if (GET_MODE_CLASS (MODE) == MODE_INT \
440 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
441 (MODE) = TARGET_32BIT ? SImode : DImode;
442
443 /* Define this if most significant bit is lowest numbered
444 in instructions that operate on numbered bit-fields. */
445 /* That is true on RS/6000. */
446 #define BITS_BIG_ENDIAN 1
447
448 /* Define this if most significant byte of a word is the lowest numbered. */
449 /* That is true on RS/6000. */
450 #define BYTES_BIG_ENDIAN 1
451
452 /* Define this if most significant word of a multiword number is lowest
453 numbered.
454
455 For RS/6000 we can decide arbitrarily since there are no machine
456 instructions for them. Might as well be consistent with bits and bytes. */
457 #define WORDS_BIG_ENDIAN 1
458
459 #define MAX_BITS_PER_WORD 64
460
461 /* Width of a word, in units (bytes). */
462 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
463 #ifdef IN_LIBGCC2
464 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
465 #else
466 #define MIN_UNITS_PER_WORD 4
467 #endif
468 #define UNITS_PER_FP_WORD 8
469 #define UNITS_PER_ALTIVEC_WORD 16
470 #define UNITS_PER_SPE_WORD 8
471
472 /* Type used for ptrdiff_t, as a string used in a declaration. */
473 #define PTRDIFF_TYPE "int"
474
475 /* Type used for size_t, as a string used in a declaration. */
476 #define SIZE_TYPE "long unsigned int"
477
478 /* Type used for wchar_t, as a string used in a declaration. */
479 #define WCHAR_TYPE "short unsigned int"
480
481 /* Width of wchar_t in bits. */
482 #define WCHAR_TYPE_SIZE 16
483
484 /* A C expression for the size in bits of the type `short' on the
485 target machine. If you don't define this, the default is half a
486 word. (If this would be less than one storage unit, it is
487 rounded up to one unit.) */
488 #define SHORT_TYPE_SIZE 16
489
490 /* A C expression for the size in bits of the type `int' on the
491 target machine. If you don't define this, the default is one
492 word. */
493 #define INT_TYPE_SIZE 32
494
495 /* A C expression for the size in bits of the type `long' on the
496 target machine. If you don't define this, the default is one
497 word. */
498 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
499
500 /* A C expression for the size in bits of the type `long long' on the
501 target machine. If you don't define this, the default is two
502 words. */
503 #define LONG_LONG_TYPE_SIZE 64
504
505 /* A C expression for the size in bits of the type `float' on the
506 target machine. If you don't define this, the default is one
507 word. */
508 #define FLOAT_TYPE_SIZE 32
509
510 /* A C expression for the size in bits of the type `double' on the
511 target machine. If you don't define this, the default is two
512 words. */
513 #define DOUBLE_TYPE_SIZE 64
514
515 /* A C expression for the size in bits of the type `long double' on
516 the target machine. If you don't define this, the default is two
517 words. */
518 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
519
520 /* Define this to set long double type size to use in libgcc2.c, which can
521 not depend on target_flags. */
522 #ifdef __LONG_DOUBLE_128__
523 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
524 #else
525 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
526 #endif
527
528 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
529 #define WIDEST_HARDWARE_FP_SIZE 64
530
531 /* Width in bits of a pointer.
532 See also the macro `Pmode' defined below. */
533 #define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
534
535 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
536 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
537
538 /* Boundary (in *bits*) on which stack pointer should be aligned. */
539 #define STACK_BOUNDARY \
540 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI) ? 64 : 128)
541
542 /* Allocation boundary (in *bits*) for the code of a function. */
543 #define FUNCTION_BOUNDARY 32
544
545 /* No data type wants to be aligned rounder than this. */
546 #define BIGGEST_ALIGNMENT 128
547
548 /* A C expression to compute the alignment for a variables in the
549 local store. TYPE is the data type, and ALIGN is the alignment
550 that the object would ordinarily have. */
551 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
552 ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 : \
553 (TARGET_E500_DOUBLE && TYPE_MODE (TYPE) == DFmode) ? 64 : \
554 (TARGET_SPE && TREE_CODE (TYPE) == VECTOR_TYPE \
555 && SPE_VECTOR_MODE (TYPE_MODE (TYPE))) ? 64 : ALIGN)
556
557 /* Alignment of field after `int : 0' in a structure. */
558 #define EMPTY_FIELD_BOUNDARY 32
559
560 /* Every structure's size must be a multiple of this. */
561 #define STRUCTURE_SIZE_BOUNDARY 8
562
563 /* Return 1 if a structure or array containing FIELD should be
564 accessed using `BLKMODE'.
565
566 For the SPE, simd types are V2SI, and gcc can be tempted to put the
567 entire thing in a DI and use subregs to access the internals.
568 store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
569 back-end. Because a single GPR can hold a V2SI, but not a DI, the
570 best thing to do is set structs to BLKmode and avoid Severe Tire
571 Damage.
572
573 On e500 v2, DF and DI modes suffer from the same anomaly. DF can
574 fit into 1, whereas DI still needs two. */
575 #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
576 ((TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE) \
577 || (TARGET_E500_DOUBLE && (MODE) == DFmode))
578
579 /* A bit-field declared as `int' forces `int' alignment for the struct. */
580 #define PCC_BITFIELD_TYPE_MATTERS 1
581
582 /* Make strings word-aligned so strcpy from constants will be faster.
583 Make vector constants quadword aligned. */
584 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
585 (TREE_CODE (EXP) == STRING_CST \
586 && (ALIGN) < BITS_PER_WORD \
587 ? BITS_PER_WORD \
588 : (ALIGN))
589
590 /* Make arrays of chars word-aligned for the same reasons.
591 Align vectors to 128 bits. Align SPE vectors and E500 v2 doubles to
592 64 bits. */
593 #define DATA_ALIGNMENT(TYPE, ALIGN) \
594 (TREE_CODE (TYPE) == VECTOR_TYPE ? (TARGET_SPE_ABI ? 64 : 128) \
595 : (TARGET_E500_DOUBLE && TYPE_MODE (TYPE) == DFmode) ? 64 \
596 : TREE_CODE (TYPE) == ARRAY_TYPE \
597 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
598 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
599
600 /* Nonzero if move instructions will actually fail to work
601 when given unaligned data. */
602 #define STRICT_ALIGNMENT 0
603
604 /* Define this macro to be the value 1 if unaligned accesses have a cost
605 many times greater than aligned accesses, for example if they are
606 emulated in a trap handler. */
607 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
608 (STRICT_ALIGNMENT \
609 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
610 || (MODE) == DDmode || (MODE) == TDmode \
611 || (MODE) == DImode) \
612 && (ALIGN) < 32))
613 \f
614 /* Standard register usage. */
615
616 /* Number of actual hardware registers.
617 The hardware registers are assigned numbers for the compiler
618 from 0 to just below FIRST_PSEUDO_REGISTER.
619 All registers that the compiler knows about must be given numbers,
620 even those that are not normally considered general registers.
621
622 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
623 an MQ register, a count register, a link register, and 8 condition
624 register fields, which we view here as separate registers. AltiVec
625 adds 32 vector registers and a VRsave register.
626
627 In addition, the difference between the frame and argument pointers is
628 a function of the number of registers saved, so we need to have a
629 register for AP that will later be eliminated in favor of SP or FP.
630 This is a normal register, but it is fixed.
631
632 We also create a pseudo register for float/int conversions, that will
633 really represent the memory location used. It is represented here as
634 a register, in order to work around problems in allocating stack storage
635 in inline functions.
636
637 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
638 pointer, which is eventually eliminated in favor of SP or FP. */
639
640 #define FIRST_PSEUDO_REGISTER 114
641
642 /* This must be included for pre gcc 3.0 glibc compatibility. */
643 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
644
645 /* Add 32 dwarf columns for synthetic SPE registers. */
646 #define DWARF_FRAME_REGISTERS ((FIRST_PSEUDO_REGISTER - 1) + 32)
647
648 /* The SPE has an additional 32 synthetic registers, with DWARF debug
649 info numbering for these registers starting at 1200. While eh_frame
650 register numbering need not be the same as the debug info numbering,
651 we choose to number these regs for eh_frame at 1200 too. This allows
652 future versions of the rs6000 backend to add hard registers and
653 continue to use the gcc hard register numbering for eh_frame. If the
654 extra SPE registers in eh_frame were numbered starting from the
655 current value of FIRST_PSEUDO_REGISTER, then if FIRST_PSEUDO_REGISTER
656 changed we'd need to introduce a mapping in DWARF_FRAME_REGNUM to
657 avoid invalidating older SPE eh_frame info.
658
659 We must map them here to avoid huge unwinder tables mostly consisting
660 of unused space. */
661 #define DWARF_REG_TO_UNWIND_COLUMN(r) \
662 ((r) > 1200 ? ((r) - 1200 + FIRST_PSEUDO_REGISTER - 1) : (r))
663
664 /* Use standard DWARF numbering for DWARF debugging information. */
665 #define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number (REGNO)
666
667 /* Use gcc hard register numbering for eh_frame. */
668 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
669
670 /* Map register numbers held in the call frame info that gcc has
671 collected using DWARF_FRAME_REGNUM to those that should be output in
672 .debug_frame and .eh_frame. We continue to use gcc hard reg numbers
673 for .eh_frame, but use the numbers mandated by the various ABIs for
674 .debug_frame. rs6000_emit_prologue has translated any combination of
675 CR2, CR3, CR4 saves to a save of CR2. The actual code emitted saves
676 the whole of CR, so we map CR2_REGNO to the DWARF reg for CR. */
677 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
678 ((FOR_EH) ? (REGNO) \
679 : (REGNO) == CR2_REGNO ? 64 \
680 : DBX_REGISTER_NUMBER (REGNO))
681
682 /* 1 for registers that have pervasive standard uses
683 and are not available for the register allocator.
684
685 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
686 as a local register; for all other OS's r2 is the TOC pointer.
687
688 cr5 is not supposed to be used.
689
690 On System V implementations, r13 is fixed and not available for use. */
691
692 #define FIXED_REGISTERS \
693 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
694 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
695 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
696 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
697 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
698 /* AltiVec registers. */ \
699 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
700 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
701 1, 1 \
702 , 1, 1, 1 \
703 }
704
705 /* 1 for registers not available across function calls.
706 These must include the FIXED_REGISTERS and also any
707 registers that can be used without being saved.
708 The latter must include the registers where values are returned
709 and the register where structure-value addresses are passed.
710 Aside from that, you can include as many other registers as you like. */
711
712 #define CALL_USED_REGISTERS \
713 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
714 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
715 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
716 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
717 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
718 /* AltiVec registers. */ \
719 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
720 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
721 1, 1 \
722 , 1, 1, 1 \
723 }
724
725 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
726 the entire set of `FIXED_REGISTERS' be included.
727 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
728 This macro is optional. If not specified, it defaults to the value
729 of `CALL_USED_REGISTERS'. */
730
731 #define CALL_REALLY_USED_REGISTERS \
732 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
733 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
734 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
735 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
736 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
737 /* AltiVec registers. */ \
738 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
739 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
740 0, 0 \
741 , 0, 0, 0 \
742 }
743
744 #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
745
746 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
747 #define FIRST_SAVED_FP_REGNO (14+32)
748 #define FIRST_SAVED_GP_REGNO 13
749
750 /* List the order in which to allocate registers. Each register must be
751 listed once, even those in FIXED_REGISTERS.
752
753 We allocate in the following order:
754 fp0 (not saved or used for anything)
755 fp13 - fp2 (not saved; incoming fp arg registers)
756 fp1 (not saved; return value)
757 fp31 - fp14 (saved; order given to save least number)
758 cr7, cr6 (not saved or special)
759 cr1 (not saved, but used for FP operations)
760 cr0 (not saved, but used for arithmetic operations)
761 cr4, cr3, cr2 (saved)
762 r0 (not saved; cannot be base reg)
763 r9 (not saved; best for TImode)
764 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
765 r3 (not saved; return value register)
766 r31 - r13 (saved; order given to save least number)
767 r12 (not saved; if used for DImode or DFmode would use r13)
768 mq (not saved; best to use it if we can)
769 ctr (not saved; when we have the choice ctr is better)
770 lr (saved)
771 cr5, r1, r2, ap, xer (fixed)
772 v0 - v1 (not saved or used for anything)
773 v13 - v3 (not saved; incoming vector arg registers)
774 v2 (not saved; incoming vector arg reg; return value)
775 v19 - v14 (not saved or used for anything)
776 v31 - v20 (saved; order given to save least number)
777 vrsave, vscr (fixed)
778 spe_acc, spefscr (fixed)
779 sfp (fixed)
780 */
781
782 #if FIXED_R2 == 1
783 #define MAYBE_R2_AVAILABLE
784 #define MAYBE_R2_FIXED 2,
785 #else
786 #define MAYBE_R2_AVAILABLE 2,
787 #define MAYBE_R2_FIXED
788 #endif
789
790 #define REG_ALLOC_ORDER \
791 {32, \
792 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
793 33, \
794 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
795 50, 49, 48, 47, 46, \
796 75, 74, 69, 68, 72, 71, 70, \
797 0, MAYBE_R2_AVAILABLE \
798 9, 11, 10, 8, 7, 6, 5, 4, \
799 3, \
800 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
801 18, 17, 16, 15, 14, 13, 12, \
802 64, 66, 65, \
803 73, 1, MAYBE_R2_FIXED 67, 76, \
804 /* AltiVec registers. */ \
805 77, 78, \
806 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
807 79, \
808 96, 95, 94, 93, 92, 91, \
809 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
810 109, 110, \
811 111, 112, 113 \
812 }
813
814 /* True if register is floating-point. */
815 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
816
817 /* True if register is a condition register. */
818 #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
819
820 /* True if register is a condition register, but not cr0. */
821 #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
822
823 /* True if register is an integer register. */
824 #define INT_REGNO_P(N) \
825 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
826
827 /* SPE SIMD registers are just the GPRs. */
828 #define SPE_SIMD_REGNO_P(N) ((N) <= 31)
829
830 /* True if register is the XER register. */
831 #define XER_REGNO_P(N) ((N) == XER_REGNO)
832
833 /* True if register is an AltiVec register. */
834 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
835
836 /* Return number of consecutive hard regs needed starting at reg REGNO
837 to hold something of mode MODE. */
838
839 #define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs ((REGNO), (MODE))
840
841 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
842 ((TARGET_32BIT && TARGET_POWERPC64 \
843 && (GET_MODE_SIZE (MODE) > 4) \
844 && INT_REGNO_P (REGNO)) ? 1 : 0)
845
846 #define ALTIVEC_VECTOR_MODE(MODE) \
847 ((MODE) == V16QImode \
848 || (MODE) == V8HImode \
849 || (MODE) == V4SFmode \
850 || (MODE) == V4SImode)
851
852 #define SPE_VECTOR_MODE(MODE) \
853 ((MODE) == V4HImode \
854 || (MODE) == V2SFmode \
855 || (MODE) == V1DImode \
856 || (MODE) == V2SImode)
857
858 #define UNITS_PER_SIMD_WORD \
859 (TARGET_ALTIVEC ? UNITS_PER_ALTIVEC_WORD \
860 : (TARGET_SPE ? UNITS_PER_SPE_WORD : UNITS_PER_WORD))
861
862 /* Value is TRUE if hard register REGNO can hold a value of
863 machine-mode MODE. */
864 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
865 rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
866
867 /* Value is 1 if it is a good idea to tie two pseudo registers
868 when one has mode MODE1 and one has mode MODE2.
869 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
870 for any hard reg, then this must be 0 for correct output. */
871 #define MODES_TIEABLE_P(MODE1, MODE2) \
872 (SCALAR_FLOAT_MODE_P (MODE1) \
873 ? SCALAR_FLOAT_MODE_P (MODE2) \
874 : SCALAR_FLOAT_MODE_P (MODE2) \
875 ? SCALAR_FLOAT_MODE_P (MODE1) \
876 : GET_MODE_CLASS (MODE1) == MODE_CC \
877 ? GET_MODE_CLASS (MODE2) == MODE_CC \
878 : GET_MODE_CLASS (MODE2) == MODE_CC \
879 ? GET_MODE_CLASS (MODE1) == MODE_CC \
880 : SPE_VECTOR_MODE (MODE1) \
881 ? SPE_VECTOR_MODE (MODE2) \
882 : SPE_VECTOR_MODE (MODE2) \
883 ? SPE_VECTOR_MODE (MODE1) \
884 : ALTIVEC_VECTOR_MODE (MODE1) \
885 ? ALTIVEC_VECTOR_MODE (MODE2) \
886 : ALTIVEC_VECTOR_MODE (MODE2) \
887 ? ALTIVEC_VECTOR_MODE (MODE1) \
888 : 1)
889
890 /* Post-reload, we can't use any new AltiVec registers, as we already
891 emitted the vrsave mask. */
892
893 #define HARD_REGNO_RENAME_OK(SRC, DST) \
894 (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
895
896 /* A C expression returning the cost of moving data from a register of class
897 CLASS1 to one of CLASS2. */
898
899 #define REGISTER_MOVE_COST rs6000_register_move_cost
900
901 /* A C expressions returning the cost of moving data of MODE from a register to
902 or from memory. */
903
904 #define MEMORY_MOVE_COST rs6000_memory_move_cost
905
906 /* Specify the cost of a branch insn; roughly the number of extra insns that
907 should be added to avoid a branch.
908
909 Set this to 3 on the RS/6000 since that is roughly the average cost of an
910 unscheduled conditional branch. */
911
912 #define BRANCH_COST 3
913
914 /* Override BRANCH_COST heuristic which empirically produces worse
915 performance for removing short circuiting from the logical ops. */
916
917 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
918
919 /* A fixed register used at epilogue generation to address SPE registers
920 with negative offsets. The 64-bit load/store instructions on the SPE
921 only take positive offsets (and small ones at that), so we need to
922 reserve a register for consing up negative offsets. */
923
924 #define FIXED_SCRATCH 0
925
926 /* Define this macro to change register usage conditional on target
927 flags. */
928
929 #define CONDITIONAL_REGISTER_USAGE rs6000_conditional_register_usage ()
930
931 /* Specify the registers used for certain standard purposes.
932 The values of these macros are register numbers. */
933
934 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
935 /* #define PC_REGNUM */
936
937 /* Register to use for pushing function arguments. */
938 #define STACK_POINTER_REGNUM 1
939
940 /* Base register for access to local variables of the function. */
941 #define HARD_FRAME_POINTER_REGNUM 31
942
943 /* Base register for access to local variables of the function. */
944 #define FRAME_POINTER_REGNUM 113
945
946 /* Value should be nonzero if functions must have frame pointers.
947 Zero means the frame pointer need not be set up (and parms
948 may be accessed via the stack pointer) in functions that seem suitable.
949 This is computed in `reload', in reload1.c. */
950 #define FRAME_POINTER_REQUIRED 0
951
952 /* Base register for access to arguments of the function. */
953 #define ARG_POINTER_REGNUM 67
954
955 /* Place to put static chain when calling a function that requires it. */
956 #define STATIC_CHAIN_REGNUM 11
957
958 \f
959 /* Define the classes of registers for register constraints in the
960 machine description. Also define ranges of constants.
961
962 One of the classes must always be named ALL_REGS and include all hard regs.
963 If there is more than one class, another class must be named NO_REGS
964 and contain no registers.
965
966 The name GENERAL_REGS must be the name of a class (or an alias for
967 another name such as ALL_REGS). This is the class of registers
968 that is allowed by "g" or "r" in a register constraint.
969 Also, registers outside this class are allocated only when
970 instructions express preferences for them.
971
972 The classes must be numbered in nondecreasing order; that is,
973 a larger-numbered class must never be contained completely
974 in a smaller-numbered class.
975
976 For any two classes, it is very desirable that there be another
977 class that represents their union. */
978
979 /* The RS/6000 has three types of registers, fixed-point, floating-point,
980 and condition registers, plus three special registers, MQ, CTR, and the
981 link register. AltiVec adds a vector register class.
982
983 However, r0 is special in that it cannot be used as a base register.
984 So make a class for registers valid as base registers.
985
986 Also, cr0 is the only condition code register that can be used in
987 arithmetic insns, so make a separate class for it. */
988
989 enum reg_class
990 {
991 NO_REGS,
992 BASE_REGS,
993 GENERAL_REGS,
994 FLOAT_REGS,
995 ALTIVEC_REGS,
996 VRSAVE_REGS,
997 VSCR_REGS,
998 SPE_ACC_REGS,
999 SPEFSCR_REGS,
1000 NON_SPECIAL_REGS,
1001 MQ_REGS,
1002 LINK_REGS,
1003 CTR_REGS,
1004 LINK_OR_CTR_REGS,
1005 SPECIAL_REGS,
1006 SPEC_OR_GEN_REGS,
1007 CR0_REGS,
1008 CR_REGS,
1009 NON_FLOAT_REGS,
1010 XER_REGS,
1011 ALL_REGS,
1012 LIM_REG_CLASSES
1013 };
1014
1015 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1016
1017 /* Give names of register classes as strings for dump file. */
1018
1019 #define REG_CLASS_NAMES \
1020 { \
1021 "NO_REGS", \
1022 "BASE_REGS", \
1023 "GENERAL_REGS", \
1024 "FLOAT_REGS", \
1025 "ALTIVEC_REGS", \
1026 "VRSAVE_REGS", \
1027 "VSCR_REGS", \
1028 "SPE_ACC_REGS", \
1029 "SPEFSCR_REGS", \
1030 "NON_SPECIAL_REGS", \
1031 "MQ_REGS", \
1032 "LINK_REGS", \
1033 "CTR_REGS", \
1034 "LINK_OR_CTR_REGS", \
1035 "SPECIAL_REGS", \
1036 "SPEC_OR_GEN_REGS", \
1037 "CR0_REGS", \
1038 "CR_REGS", \
1039 "NON_FLOAT_REGS", \
1040 "XER_REGS", \
1041 "ALL_REGS" \
1042 }
1043
1044 /* Define which registers fit in which classes.
1045 This is an initializer for a vector of HARD_REG_SET
1046 of length N_REG_CLASSES. */
1047
1048 #define REG_CLASS_CONTENTS \
1049 { \
1050 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1051 { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000 }, /* BASE_REGS */ \
1052 { 0xffffffff, 0x00000000, 0x00000008, 0x00020000 }, /* GENERAL_REGS */ \
1053 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
1054 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
1055 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
1056 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \
1057 { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \
1058 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \
1059 { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000 }, /* NON_SPECIAL_REGS */ \
1060 { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \
1061 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
1062 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
1063 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
1064 { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \
1065 { 0xffffffff, 0x00000000, 0x0000000f, 0x00022000 }, /* SPEC_OR_GEN_REGS */ \
1066 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
1067 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
1068 { 0xffffffff, 0x00000000, 0x0000efff, 0x00020000 }, /* NON_FLOAT_REGS */ \
1069 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */ \
1070 { 0xffffffff, 0xffffffff, 0xffffffff, 0x0003ffff } /* ALL_REGS */ \
1071 }
1072
1073 /* The same information, inverted:
1074 Return the class number of the smallest class containing
1075 reg number REGNO. This could be a conditional expression
1076 or could index an array. */
1077
1078 #define REGNO_REG_CLASS(REGNO) \
1079 ((REGNO) == 0 ? GENERAL_REGS \
1080 : (REGNO) < 32 ? BASE_REGS \
1081 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
1082 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS \
1083 : (REGNO) == CR0_REGNO ? CR0_REGS \
1084 : CR_REGNO_P (REGNO) ? CR_REGS \
1085 : (REGNO) == MQ_REGNO ? MQ_REGS \
1086 : (REGNO) == LR_REGNO ? LINK_REGS \
1087 : (REGNO) == CTR_REGNO ? CTR_REGS \
1088 : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS \
1089 : (REGNO) == XER_REGNO ? XER_REGS \
1090 : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS \
1091 : (REGNO) == VSCR_REGNO ? VRSAVE_REGS \
1092 : (REGNO) == SPE_ACC_REGNO ? SPE_ACC_REGS \
1093 : (REGNO) == SPEFSCR_REGNO ? SPEFSCR_REGS \
1094 : (REGNO) == FRAME_POINTER_REGNUM ? BASE_REGS \
1095 : NO_REGS)
1096
1097 /* The class value for index registers, and the one for base regs. */
1098 #define INDEX_REG_CLASS GENERAL_REGS
1099 #define BASE_REG_CLASS BASE_REGS
1100
1101 /* Given an rtx X being reloaded into a reg required to be
1102 in class CLASS, return the class of reg to actually use.
1103 In general this is just CLASS; but on some machines
1104 in some cases it is preferable to use a more restrictive class.
1105
1106 On the RS/6000, we have to return NO_REGS when we want to reload a
1107 floating-point CONST_DOUBLE to force it to be copied to memory.
1108
1109 We also don't want to reload integer values into floating-point
1110 registers if we can at all help it. In fact, this can
1111 cause reload to die, if it tries to generate a reload of CTR
1112 into a FP register and discovers it doesn't have the memory location
1113 required.
1114
1115 ??? Would it be a good idea to have reload do the converse, that is
1116 try to reload floating modes into FP registers if possible?
1117 */
1118
1119 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1120 ((CONSTANT_P (X) \
1121 && reg_classes_intersect_p ((CLASS), FLOAT_REGS)) \
1122 ? NO_REGS \
1123 : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
1124 && (CLASS) == NON_SPECIAL_REGS) \
1125 ? GENERAL_REGS \
1126 : (CLASS))
1127
1128 /* Return the register class of a scratch register needed to copy IN into
1129 or out of a register in CLASS in MODE. If it can be done directly,
1130 NO_REGS is returned. */
1131
1132 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1133 rs6000_secondary_reload_class (CLASS, MODE, IN)
1134
1135 /* If we are copying between FP or AltiVec registers and anything
1136 else, we need a memory location. The exception is when we are
1137 targeting ppc64 and the move to/from fpr to gpr instructions
1138 are available.*/
1139
1140 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1141 ((CLASS1) != (CLASS2) && (((CLASS1) == FLOAT_REGS \
1142 && (!TARGET_MFPGPR || !TARGET_POWERPC64 \
1143 || ((MODE != DFmode) \
1144 && (MODE != DDmode) \
1145 && (MODE != DImode)))) \
1146 || ((CLASS2) == FLOAT_REGS \
1147 && (!TARGET_MFPGPR || !TARGET_POWERPC64 \
1148 || ((MODE != DFmode) \
1149 && (MODE != DDmode) \
1150 && (MODE != DImode)))) \
1151 || (CLASS1) == ALTIVEC_REGS \
1152 || (CLASS2) == ALTIVEC_REGS))
1153
1154 /* Return the maximum number of consecutive registers
1155 needed to represent mode MODE in a register of class CLASS.
1156
1157 On RS/6000, this is the size of MODE in words,
1158 except in the FP regs, where a single reg is enough for two words. */
1159 #define CLASS_MAX_NREGS(CLASS, MODE) \
1160 (((CLASS) == FLOAT_REGS) \
1161 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
1162 : (TARGET_E500_DOUBLE && (CLASS) == GENERAL_REGS && (MODE) == DFmode) \
1163 ? 1 \
1164 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1165
1166 /* Return nonzero if for CLASS a mode change from FROM to TO is invalid. */
1167
1168 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1169 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1170 ? ((GET_MODE_SIZE (FROM) < 8 || GET_MODE_SIZE (TO) < 8 \
1171 || TARGET_IEEEQUAD) \
1172 && reg_classes_intersect_p (FLOAT_REGS, CLASS)) \
1173 : (((TARGET_E500_DOUBLE \
1174 && ((((TO) == DFmode) + ((FROM) == DFmode)) == 1 \
1175 || (((TO) == TFmode) + ((FROM) == TFmode)) == 1 \
1176 || (((TO) == DImode) + ((FROM) == DImode)) == 1)) \
1177 || (TARGET_SPE \
1178 && (SPE_VECTOR_MODE (FROM) + SPE_VECTOR_MODE (TO)) == 1)) \
1179 && reg_classes_intersect_p (GENERAL_REGS, CLASS)))
1180
1181 /* Stack layout; function entry, exit and calling. */
1182
1183 /* Enumeration to give which calling sequence to use. */
1184 enum rs6000_abi {
1185 ABI_NONE,
1186 ABI_AIX, /* IBM's AIX */
1187 ABI_V4, /* System V.4/eabi */
1188 ABI_DARWIN /* Apple's Darwin (OS X kernel) */
1189 };
1190
1191 extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1192
1193 /* Define this if pushing a word on the stack
1194 makes the stack pointer a smaller address. */
1195 #define STACK_GROWS_DOWNWARD
1196
1197 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
1198 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1199
1200 /* Define this to nonzero if the nominal address of the stack frame
1201 is at the high-address end of the local variables;
1202 that is, each additional local variable allocated
1203 goes at a more negative offset in the frame.
1204
1205 On the RS/6000, we grow upwards, from the area after the outgoing
1206 arguments. */
1207 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0)
1208
1209 /* Size of the outgoing register save area */
1210 #define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
1211 || DEFAULT_ABI == ABI_DARWIN) \
1212 ? (TARGET_64BIT ? 64 : 32) \
1213 : 0)
1214
1215 /* Size of the fixed area on the stack */
1216 #define RS6000_SAVE_AREA \
1217 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
1218 << (TARGET_64BIT ? 1 : 0))
1219
1220 /* MEM representing address to save the TOC register */
1221 #define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1222 plus_constant (stack_pointer_rtx, \
1223 (TARGET_32BIT ? 20 : 40)))
1224
1225 /* Align an address */
1226 #define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1227
1228 /* Offset within stack frame to start allocating local variables at.
1229 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1230 first local allocated. Otherwise, it is the offset to the BEGINNING
1231 of the first local allocated.
1232
1233 On the RS/6000, the frame pointer is the same as the stack pointer,
1234 except for dynamic allocations. So we start after the fixed area and
1235 outgoing parameter area. */
1236
1237 #define STARTING_FRAME_OFFSET \
1238 (FRAME_GROWS_DOWNWARD \
1239 ? 0 \
1240 : (RS6000_ALIGN (current_function_outgoing_args_size, \
1241 TARGET_ALTIVEC ? 16 : 8) \
1242 + RS6000_SAVE_AREA))
1243
1244 /* Offset from the stack pointer register to an item dynamically
1245 allocated on the stack, e.g., by `alloca'.
1246
1247 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1248 length of the outgoing arguments. The default is correct for most
1249 machines. See `function.c' for details. */
1250 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1251 (RS6000_ALIGN (current_function_outgoing_args_size, \
1252 TARGET_ALTIVEC ? 16 : 8) \
1253 + (STACK_POINTER_OFFSET))
1254
1255 /* If we generate an insn to push BYTES bytes,
1256 this says how many the stack pointer really advances by.
1257 On RS/6000, don't define this because there are no push insns. */
1258 /* #define PUSH_ROUNDING(BYTES) */
1259
1260 /* Offset of first parameter from the argument pointer register value.
1261 On the RS/6000, we define the argument pointer to the start of the fixed
1262 area. */
1263 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1264
1265 /* Offset from the argument pointer register value to the top of
1266 stack. This is different from FIRST_PARM_OFFSET because of the
1267 register save area. */
1268 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1269
1270 /* Define this if stack space is still allocated for a parameter passed
1271 in a register. The value is the number of bytes allocated to this
1272 area. */
1273 #define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
1274
1275 /* Define this if the above stack space is to be considered part of the
1276 space allocated by the caller. */
1277 #define OUTGOING_REG_PARM_STACK_SPACE 1
1278
1279 /* This is the difference between the logical top of stack and the actual sp.
1280
1281 For the RS/6000, sp points past the fixed area. */
1282 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1283
1284 /* Define this if the maximum size of all the outgoing args is to be
1285 accumulated and pushed during the prologue. The amount can be
1286 found in the variable current_function_outgoing_args_size. */
1287 #define ACCUMULATE_OUTGOING_ARGS 1
1288
1289 /* Value is the number of bytes of arguments automatically
1290 popped when returning from a subroutine call.
1291 FUNDECL is the declaration node of the function (as a tree),
1292 FUNTYPE is the data type of the function (as a tree),
1293 or for a library call it is an identifier node for the subroutine name.
1294 SIZE is the number of bytes of arguments passed on the stack. */
1295
1296 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1297
1298 /* Define how to find the value returned by a function.
1299 VALTYPE is the data type of the value (as a tree).
1300 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1301 otherwise, FUNC is 0. */
1302
1303 #define FUNCTION_VALUE(VALTYPE, FUNC) rs6000_function_value ((VALTYPE), (FUNC))
1304
1305 /* Define how to find the value returned by a library function
1306 assuming the value has mode MODE. */
1307
1308 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1309
1310 /* DRAFT_V4_STRUCT_RET defaults off. */
1311 #define DRAFT_V4_STRUCT_RET 0
1312
1313 /* Let TARGET_RETURN_IN_MEMORY control what happens. */
1314 #define DEFAULT_PCC_STRUCT_RETURN 0
1315
1316 /* Mode of stack savearea.
1317 FUNCTION is VOIDmode because calling convention maintains SP.
1318 BLOCK needs Pmode for SP.
1319 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1320 #define STACK_SAVEAREA_MODE(LEVEL) \
1321 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1322 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
1323
1324 /* Minimum and maximum general purpose registers used to hold arguments. */
1325 #define GP_ARG_MIN_REG 3
1326 #define GP_ARG_MAX_REG 10
1327 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1328
1329 /* Minimum and maximum floating point registers used to hold arguments. */
1330 #define FP_ARG_MIN_REG 33
1331 #define FP_ARG_AIX_MAX_REG 45
1332 #define FP_ARG_V4_MAX_REG 40
1333 #define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
1334 || DEFAULT_ABI == ABI_DARWIN) \
1335 ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
1336 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1337
1338 /* Minimum and maximum AltiVec registers used to hold arguments. */
1339 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1340 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1341 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1342
1343 /* Return registers */
1344 #define GP_ARG_RETURN GP_ARG_MIN_REG
1345 #define FP_ARG_RETURN FP_ARG_MIN_REG
1346 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1347
1348 /* Flags for the call/call_value rtl operations set up by function_arg */
1349 #define CALL_NORMAL 0x00000000 /* no special processing */
1350 /* Bits in 0x00000001 are unused. */
1351 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1352 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1353 #define CALL_LONG 0x00000008 /* always call indirect */
1354 #define CALL_LIBCALL 0x00000010 /* libcall */
1355
1356 /* We don't have prologue and epilogue functions to save/restore
1357 everything for most ABIs. */
1358 #define WORLD_SAVE_P(INFO) 0
1359
1360 /* 1 if N is a possible register number for a function value
1361 as seen by the caller.
1362
1363 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1364 #define FUNCTION_VALUE_REGNO_P(N) \
1365 ((N) == GP_ARG_RETURN \
1366 || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT && TARGET_FPRS) \
1367 || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1368
1369 /* 1 if N is a possible register number for function argument passing.
1370 On RS/6000, these are r3-r10 and fp1-fp13.
1371 On AltiVec, v2 - v13 are used for passing vectors. */
1372 #define FUNCTION_ARG_REGNO_P(N) \
1373 ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \
1374 || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \
1375 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
1376 || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \
1377 && TARGET_HARD_FLOAT && TARGET_FPRS))
1378 \f
1379 /* Define a data type for recording info about an argument list
1380 during the scan of that argument list. This data type should
1381 hold all necessary information about the function itself
1382 and about the args processed so far, enough to enable macros
1383 such as FUNCTION_ARG to determine where the next arg should go.
1384
1385 On the RS/6000, this is a structure. The first element is the number of
1386 total argument words, the second is used to store the next
1387 floating-point register number, and the third says how many more args we
1388 have prototype types for.
1389
1390 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1391 the next available GP register, `fregno' is the next available FP
1392 register, and `words' is the number of words used on the stack.
1393
1394 The varargs/stdarg support requires that this structure's size
1395 be a multiple of sizeof(int). */
1396
1397 typedef struct rs6000_args
1398 {
1399 int words; /* # words used for passing GP registers */
1400 int fregno; /* next available FP register */
1401 int vregno; /* next available AltiVec register */
1402 int nargs_prototype; /* # args left in the current prototype */
1403 int prototype; /* Whether a prototype was defined */
1404 int stdarg; /* Whether function is a stdarg function. */
1405 int call_cookie; /* Do special things for this call */
1406 int sysv_gregno; /* next available GP register */
1407 int intoffset; /* running offset in struct (darwin64) */
1408 int use_stack; /* any part of struct on stack (darwin64) */
1409 int named; /* false for varargs params */
1410 } CUMULATIVE_ARGS;
1411
1412 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1413 for a call to a function whose data type is FNTYPE.
1414 For a library call, FNTYPE is 0. */
1415
1416 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1417 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, N_NAMED_ARGS)
1418
1419 /* Similar, but when scanning the definition of a procedure. We always
1420 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1421
1422 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1423 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, 1000)
1424
1425 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1426
1427 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1428 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, 0)
1429
1430 /* Update the data in CUM to advance over an argument
1431 of mode MODE and data type TYPE.
1432 (TYPE is null for libcalls where that information may not be available.) */
1433
1434 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1435 function_arg_advance (&CUM, MODE, TYPE, NAMED, 0)
1436
1437 /* Determine where to put an argument to a function.
1438 Value is zero to push the argument on the stack,
1439 or a hard register in which to store the argument.
1440
1441 MODE is the argument's machine mode.
1442 TYPE is the data type of the argument (as a tree).
1443 This is null for libcalls where that information may
1444 not be available.
1445 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1446 the preceding args and about the function being called.
1447 NAMED is nonzero if this argument is a named parameter
1448 (otherwise it is an extra parameter matching an ellipsis).
1449
1450 On RS/6000 the first eight words of non-FP are normally in registers
1451 and the rest are pushed. The first 13 FP args are in registers.
1452
1453 If this is floating-point and no prototype is specified, we use
1454 both an FP and integer register (or possibly FP reg and stack). Library
1455 functions (when TYPE is zero) always have the proper types for args,
1456 so we can pass the FP value just in one register. emit_library_function
1457 doesn't support EXPR_LIST anyway. */
1458
1459 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1460 function_arg (&CUM, MODE, TYPE, NAMED)
1461
1462 /* If defined, a C expression which determines whether, and in which
1463 direction, to pad out an argument with extra space. The value
1464 should be of type `enum direction': either `upward' to pad above
1465 the argument, `downward' to pad below, or `none' to inhibit
1466 padding. */
1467
1468 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1469
1470 /* If defined, a C expression that gives the alignment boundary, in bits,
1471 of an argument with the specified mode and type. If it is not defined,
1472 PARM_BOUNDARY is used for all arguments. */
1473
1474 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1475 function_arg_boundary (MODE, TYPE)
1476
1477 /* Implement `va_start' for varargs and stdarg. */
1478 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1479 rs6000_va_start (valist, nextarg)
1480
1481 #define PAD_VARARGS_DOWN \
1482 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1483
1484 /* Output assembler code to FILE to increment profiler label # LABELNO
1485 for profiling a function entry. */
1486
1487 #define FUNCTION_PROFILER(FILE, LABELNO) \
1488 output_function_profiler ((FILE), (LABELNO));
1489
1490 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1491 the stack pointer does not matter. No definition is equivalent to
1492 always zero.
1493
1494 On the RS/6000, this is nonzero because we can restore the stack from
1495 its backpointer, which we maintain. */
1496 #define EXIT_IGNORE_STACK 1
1497
1498 /* Define this macro as a C expression that is nonzero for registers
1499 that are used by the epilogue or the return' pattern. The stack
1500 and frame pointer registers are already be assumed to be used as
1501 needed. */
1502
1503 #define EPILOGUE_USES(REGNO) \
1504 ((reload_completed && (REGNO) == LR_REGNO) \
1505 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
1506 || (current_function_calls_eh_return \
1507 && TARGET_AIX \
1508 && (REGNO) == 2))
1509
1510 \f
1511 /* TRAMPOLINE_TEMPLATE deleted */
1512
1513 /* Length in units of the trampoline for entering a nested function. */
1514
1515 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1516
1517 /* Emit RTL insns to initialize the variable parts of a trampoline.
1518 FNADDR is an RTX for the address of the function's pure code.
1519 CXT is an RTX for the static chain value for the function. */
1520
1521 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
1522 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
1523 \f
1524 /* Definitions for __builtin_return_address and __builtin_frame_address.
1525 __builtin_return_address (0) should give link register (65), enable
1526 this. */
1527 /* This should be uncommented, so that the link register is used, but
1528 currently this would result in unmatched insns and spilling fixed
1529 registers so we'll leave it for another day. When these problems are
1530 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1531 (mrs) */
1532 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1533
1534 /* Number of bytes into the frame return addresses can be found. See
1535 rs6000_stack_info in rs6000.c for more information on how the different
1536 abi's store the return address. */
1537 #define RETURN_ADDRESS_OFFSET \
1538 ((DEFAULT_ABI == ABI_AIX \
1539 || DEFAULT_ABI == ABI_DARWIN) ? (TARGET_32BIT ? 8 : 16) : \
1540 (DEFAULT_ABI == ABI_V4) ? 4 : \
1541 (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
1542
1543 /* The current return address is in link register (65). The return address
1544 of anything farther back is accessed normally at an offset of 8 from the
1545 frame pointer. */
1546 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1547 (rs6000_return_addr (COUNT, FRAME))
1548
1549 \f
1550 /* Definitions for register eliminations.
1551
1552 We have two registers that can be eliminated on the RS/6000. First, the
1553 frame pointer register can often be eliminated in favor of the stack
1554 pointer register. Secondly, the argument pointer register can always be
1555 eliminated; it is replaced with either the stack or frame pointer.
1556
1557 In addition, we use the elimination mechanism to see if r30 is needed
1558 Initially we assume that it isn't. If it is, we spill it. This is done
1559 by making it an eliminable register. We replace it with itself so that
1560 if it isn't needed, then existing uses won't be modified. */
1561
1562 /* This is an array of structures. Each structure initializes one pair
1563 of eliminable registers. The "from" register number is given first,
1564 followed by "to". Eliminations of the same "from" register are listed
1565 in order of preference. */
1566 #define ELIMINABLE_REGS \
1567 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1568 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1569 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1570 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1571 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1572 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1573
1574 /* Given FROM and TO register numbers, say whether this elimination is allowed.
1575 Frame pointer elimination is automatically handled.
1576
1577 For the RS/6000, if frame pointer elimination is being done, we would like
1578 to convert ap into fp, not sp.
1579
1580 We need r30 if -mminimal-toc was specified, and there are constant pool
1581 references. */
1582
1583 #define CAN_ELIMINATE(FROM, TO) \
1584 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1585 ? ! frame_pointer_needed \
1586 : (FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM \
1587 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
1588 : 1)
1589
1590 /* Define the offset between two registers, one to be eliminated, and the other
1591 its replacement, at the start of a routine. */
1592 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1593 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1594 \f
1595 /* Addressing modes, and classification of registers for them. */
1596
1597 #define HAVE_PRE_DECREMENT 1
1598 #define HAVE_PRE_INCREMENT 1
1599 #define HAVE_PRE_MODIFY_DISP 1
1600 #define HAVE_PRE_MODIFY_REG 1
1601
1602 /* Macros to check register numbers against specific register classes. */
1603
1604 /* These assume that REGNO is a hard or pseudo reg number.
1605 They give nonzero only if REGNO is a hard reg of the suitable class
1606 or a pseudo reg currently allocated to a suitable hard reg.
1607 Since they use reg_renumber, they are safe only once reg_renumber
1608 has been allocated, which happens in local-alloc.c. */
1609
1610 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1611 ((REGNO) < FIRST_PSEUDO_REGISTER \
1612 ? (REGNO) <= 31 || (REGNO) == 67 \
1613 || (REGNO) == FRAME_POINTER_REGNUM \
1614 : (reg_renumber[REGNO] >= 0 \
1615 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1616 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1617
1618 #define REGNO_OK_FOR_BASE_P(REGNO) \
1619 ((REGNO) < FIRST_PSEUDO_REGISTER \
1620 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1621 || (REGNO) == FRAME_POINTER_REGNUM \
1622 : (reg_renumber[REGNO] > 0 \
1623 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1624 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1625 \f
1626 /* Maximum number of registers that can appear in a valid memory address. */
1627
1628 #define MAX_REGS_PER_ADDRESS 2
1629
1630 /* Recognize any constant value that is a valid address. */
1631
1632 #define CONSTANT_ADDRESS_P(X) \
1633 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1634 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1635 || GET_CODE (X) == HIGH)
1636
1637 /* Nonzero if the constant value X is a legitimate general operand.
1638 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1639
1640 On the RS/6000, all integer constants are acceptable, most won't be valid
1641 for particular insns, though. Only easy FP constants are
1642 acceptable. */
1643
1644 #define LEGITIMATE_CONSTANT_P(X) \
1645 (((GET_CODE (X) != CONST_DOUBLE \
1646 && GET_CODE (X) != CONST_VECTOR) \
1647 || GET_MODE (X) == VOIDmode \
1648 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
1649 || easy_fp_constant (X, GET_MODE (X)) \
1650 || easy_vector_constant (X, GET_MODE (X))) \
1651 && !rs6000_tls_referenced_p (X))
1652
1653 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1654 #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
1655 && EASY_VECTOR_15((n) >> 1) \
1656 && ((n) & 1) == 0)
1657
1658 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1659 and check its validity for a certain class.
1660 We have two alternate definitions for each of them.
1661 The usual definition accepts all pseudo regs; the other rejects
1662 them unless they have been allocated suitable hard regs.
1663 The symbol REG_OK_STRICT causes the latter definition to be used.
1664
1665 Most source files want to accept pseudo regs in the hope that
1666 they will get allocated to the class that the insn wants them to be in.
1667 Source files for reload pass need to be strict.
1668 After reload, it makes no difference, since pseudo regs have
1669 been eliminated by then. */
1670
1671 #ifdef REG_OK_STRICT
1672 # define REG_OK_STRICT_FLAG 1
1673 #else
1674 # define REG_OK_STRICT_FLAG 0
1675 #endif
1676
1677 /* Nonzero if X is a hard reg that can be used as an index
1678 or if it is a pseudo reg in the non-strict case. */
1679 #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1680 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1681 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1682
1683 /* Nonzero if X is a hard reg that can be used as a base reg
1684 or if it is a pseudo reg in the non-strict case. */
1685 #define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1686 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1687 || REGNO_OK_FOR_BASE_P (REGNO (X)))
1688
1689 #define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
1690 #define REG_OK_FOR_BASE_P(X) INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
1691 \f
1692 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1693 that is a valid memory address for an instruction.
1694 The MODE argument is the machine mode for the MEM expression
1695 that wants to use this address.
1696
1697 On the RS/6000, there are four valid addresses: a SYMBOL_REF that
1698 refers to a constant pool entry of an address (or the sum of it
1699 plus a constant), a short (16-bit signed) constant plus a register,
1700 the sum of two registers, or a register indirect, possibly with an
1701 auto-increment. For DFmode and DImode with a constant plus register,
1702 we must ensure that both words are addressable or PowerPC64 with offset
1703 word aligned.
1704
1705 For modes spanning multiple registers (DFmode in 32-bit GPRs,
1706 32-bit DImode, TImode), indexed addressing cannot be used because
1707 adjacent memory cells are accessed by adding word-sized offsets
1708 during assembly output. */
1709
1710 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1711 { if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG)) \
1712 goto ADDR; \
1713 }
1714 \f
1715 /* Try machine-dependent ways of modifying an illegitimate address
1716 to be legitimate. If we find one, return the new, valid address.
1717 This macro is used in only one place: `memory_address' in explow.c.
1718
1719 OLDX is the address as it was before break_out_memory_refs was called.
1720 In some cases it is useful to look at this to decide what needs to be done.
1721
1722 MODE and WIN are passed so that this macro can use
1723 GO_IF_LEGITIMATE_ADDRESS.
1724
1725 It is always safe for this macro to do nothing. It exists to recognize
1726 opportunities to optimize the output.
1727
1728 On RS/6000, first check for the sum of a register with a constant
1729 integer that is out of range. If so, generate code to add the
1730 constant with the low-order 16 bits masked to the register and force
1731 this result into another register (this can be done with `cau').
1732 Then generate an address of REG+(CONST&0xffff), allowing for the
1733 possibility of bit 16 being a one.
1734
1735 Then check for the sum of a register and something not constant, try to
1736 load the other things into a register and return the sum. */
1737
1738 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1739 { rtx result = rs6000_legitimize_address (X, OLDX, MODE); \
1740 if (result != NULL_RTX) \
1741 { \
1742 (X) = result; \
1743 goto WIN; \
1744 } \
1745 }
1746
1747 /* Try a machine-dependent way of reloading an illegitimate address
1748 operand. If we find one, push the reload and jump to WIN. This
1749 macro is used in only one place: `find_reloads_address' in reload.c.
1750
1751 Implemented on rs6000 by rs6000_legitimize_reload_address.
1752 Note that (X) is evaluated twice; this is safe in current usage. */
1753
1754 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1755 do { \
1756 int win; \
1757 (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM), \
1758 (int)(TYPE), (IND_LEVELS), &win); \
1759 if ( win ) \
1760 goto WIN; \
1761 } while (0)
1762
1763 /* Go to LABEL if ADDR (a legitimate address expression)
1764 has an effect that depends on the machine mode it is used for. */
1765
1766 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1767 do { \
1768 if (rs6000_mode_dependent_address (ADDR)) \
1769 goto LABEL; \
1770 } while (0)
1771 \f
1772 /* The register number of the register used to address a table of
1773 static data addresses in memory. In some cases this register is
1774 defined by a processor's "application binary interface" (ABI).
1775 When this macro is defined, RTL is generated for this register
1776 once, as with the stack pointer and frame pointer registers. If
1777 this macro is not defined, it is up to the machine-dependent files
1778 to allocate such a register (if necessary). */
1779
1780 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1781 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
1782
1783 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1784
1785 /* Define this macro if the register defined by
1786 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
1787 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
1788
1789 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1790
1791 /* A C expression that is nonzero if X is a legitimate immediate
1792 operand on the target machine when generating position independent
1793 code. You can assume that X satisfies `CONSTANT_P', so you need
1794 not check this. You can also assume FLAG_PIC is true, so you need
1795 not check it either. You need not define this macro if all
1796 constants (including `SYMBOL_REF') can be immediate operands when
1797 generating position independent code. */
1798
1799 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
1800 \f
1801 /* Define this if some processing needs to be done immediately before
1802 emitting code for an insn. */
1803
1804 /* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
1805
1806 /* Specify the machine mode that this machine uses
1807 for the index in the tablejump instruction. */
1808 #define CASE_VECTOR_MODE SImode
1809
1810 /* Define as C expression which evaluates to nonzero if the tablejump
1811 instruction expects the table to contain offsets from the address of the
1812 table.
1813 Do not define this if the table should contain absolute addresses. */
1814 #define CASE_VECTOR_PC_RELATIVE 1
1815
1816 /* Define this as 1 if `char' should by default be signed; else as 0. */
1817 #define DEFAULT_SIGNED_CHAR 0
1818
1819 /* This flag, if defined, says the same insns that convert to a signed fixnum
1820 also convert validly to an unsigned one. */
1821
1822 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
1823
1824 /* An integer expression for the size in bits of the largest integer machine
1825 mode that should actually be used. */
1826
1827 /* Allow pairs of registers to be used, which is the intent of the default. */
1828 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1829
1830 /* Max number of bytes we can move from memory to memory
1831 in one reasonably fast instruction. */
1832 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
1833 #define MAX_MOVE_MAX 8
1834
1835 /* Nonzero if access to memory by bytes is no faster than for words.
1836 Also nonzero if doing byte operations (specifically shifts) in registers
1837 is undesirable. */
1838 #define SLOW_BYTE_ACCESS 1
1839
1840 /* Define if operations between registers always perform the operation
1841 on the full register even if a narrower mode is specified. */
1842 #define WORD_REGISTER_OPERATIONS
1843
1844 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1845 will either zero-extend or sign-extend. The value of this macro should
1846 be the code that says which one of the two operations is implicitly
1847 done, UNKNOWN if none. */
1848 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1849
1850 /* Define if loading short immediate values into registers sign extends. */
1851 #define SHORT_IMMEDIATES_SIGN_EXTEND
1852 \f
1853 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1854 is done just by pretending it is already truncated. */
1855 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1856
1857 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
1858 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1859 ((VALUE) = ((MODE) == SImode ? 32 : 64))
1860
1861 /* The CTZ patterns return -1 for input of zero. */
1862 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1)
1863
1864 /* Specify the machine mode that pointers have.
1865 After generation of rtl, the compiler makes no further distinction
1866 between pointers and any other objects of this machine mode. */
1867 #define Pmode (TARGET_32BIT ? SImode : DImode)
1868
1869 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
1870 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
1871
1872 /* Mode of a function address in a call instruction (for indexing purposes).
1873 Doesn't matter on RS/6000. */
1874 #define FUNCTION_MODE SImode
1875
1876 /* Define this if addresses of constant functions
1877 shouldn't be put through pseudo regs where they can be cse'd.
1878 Desirable on machines where ordinary constants are expensive
1879 but a CALL with constant address is cheap. */
1880 #define NO_FUNCTION_CSE
1881
1882 /* Define this to be nonzero if shift instructions ignore all but the low-order
1883 few bits.
1884
1885 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
1886 have been dropped from the PowerPC architecture. */
1887
1888 #define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
1889
1890 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
1891 should be adjusted to reflect any required changes. This macro is used when
1892 there is some systematic length adjustment required that would be difficult
1893 to express in the length attribute. */
1894
1895 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
1896
1897 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
1898 COMPARE, return the mode to be used for the comparison. For
1899 floating-point, CCFPmode should be used. CCUNSmode should be used
1900 for unsigned comparisons. CCEQmode should be used when we are
1901 doing an inequality comparison on the result of a
1902 comparison. CCmode should be used in all other cases. */
1903
1904 #define SELECT_CC_MODE(OP,X,Y) \
1905 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
1906 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
1907 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
1908 ? CCEQmode : CCmode))
1909
1910 /* Can the condition code MODE be safely reversed? This is safe in
1911 all cases on this port, because at present it doesn't use the
1912 trapping FP comparisons (fcmpo). */
1913 #define REVERSIBLE_CC_MODE(MODE) 1
1914
1915 /* Given a condition code and a mode, return the inverse condition. */
1916 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
1917
1918 /* Define the information needed to generate branch and scc insns. This is
1919 stored from the compare operation. */
1920
1921 extern GTY(()) rtx rs6000_compare_op0;
1922 extern GTY(()) rtx rs6000_compare_op1;
1923 extern int rs6000_compare_fp_p;
1924 \f
1925 /* Control the assembler format that we output. */
1926
1927 /* A C string constant describing how to begin a comment in the target
1928 assembler language. The compiler assumes that the comment will end at
1929 the end of the line. */
1930 #define ASM_COMMENT_START " #"
1931
1932 /* Flag to say the TOC is initialized */
1933 extern int toc_initialized;
1934
1935 /* Macro to output a special constant pool entry. Go to WIN if we output
1936 it. Otherwise, it is written the usual way.
1937
1938 On the RS/6000, toc entries are handled this way. */
1939
1940 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
1941 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
1942 { \
1943 output_toc (FILE, X, LABELNO, MODE); \
1944 goto WIN; \
1945 } \
1946 }
1947
1948 #ifdef HAVE_GAS_WEAK
1949 #define RS6000_WEAK 1
1950 #else
1951 #define RS6000_WEAK 0
1952 #endif
1953
1954 #if RS6000_WEAK
1955 /* Used in lieu of ASM_WEAKEN_LABEL. */
1956 #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
1957 do \
1958 { \
1959 fputs ("\t.weak\t", (FILE)); \
1960 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1961 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
1962 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
1963 { \
1964 if (TARGET_XCOFF) \
1965 fputs ("[DS]", (FILE)); \
1966 fputs ("\n\t.weak\t.", (FILE)); \
1967 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1968 } \
1969 fputc ('\n', (FILE)); \
1970 if (VAL) \
1971 { \
1972 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
1973 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
1974 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
1975 { \
1976 fputs ("\t.set\t.", (FILE)); \
1977 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1978 fputs (",.", (FILE)); \
1979 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
1980 fputc ('\n', (FILE)); \
1981 } \
1982 } \
1983 } \
1984 while (0)
1985 #endif
1986
1987 #if HAVE_GAS_WEAKREF
1988 #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
1989 do \
1990 { \
1991 fputs ("\t.weakref\t", (FILE)); \
1992 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1993 fputs (", ", (FILE)); \
1994 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
1995 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
1996 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
1997 { \
1998 fputs ("\n\t.weakref\t.", (FILE)); \
1999 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2000 fputs (", .", (FILE)); \
2001 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2002 } \
2003 fputc ('\n', (FILE)); \
2004 } while (0)
2005 #endif
2006
2007 /* This implements the `alias' attribute. */
2008 #undef ASM_OUTPUT_DEF_FROM_DECLS
2009 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2010 do \
2011 { \
2012 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2013 const char *name = IDENTIFIER_POINTER (TARGET); \
2014 if (TREE_CODE (DECL) == FUNCTION_DECL \
2015 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2016 { \
2017 if (TREE_PUBLIC (DECL)) \
2018 { \
2019 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2020 { \
2021 fputs ("\t.globl\t.", FILE); \
2022 RS6000_OUTPUT_BASENAME (FILE, alias); \
2023 putc ('\n', FILE); \
2024 } \
2025 } \
2026 else if (TARGET_XCOFF) \
2027 { \
2028 fputs ("\t.lglobl\t.", FILE); \
2029 RS6000_OUTPUT_BASENAME (FILE, alias); \
2030 putc ('\n', FILE); \
2031 } \
2032 fputs ("\t.set\t.", FILE); \
2033 RS6000_OUTPUT_BASENAME (FILE, alias); \
2034 fputs (",.", FILE); \
2035 RS6000_OUTPUT_BASENAME (FILE, name); \
2036 fputc ('\n', FILE); \
2037 } \
2038 ASM_OUTPUT_DEF (FILE, alias, name); \
2039 } \
2040 while (0)
2041
2042 #define TARGET_ASM_FILE_START rs6000_file_start
2043
2044 /* Output to assembler file text saying following lines
2045 may contain character constants, extra white space, comments, etc. */
2046
2047 #define ASM_APP_ON ""
2048
2049 /* Output to assembler file text saying following lines
2050 no longer contain unusual constructs. */
2051
2052 #define ASM_APP_OFF ""
2053
2054 /* How to refer to registers in assembler output.
2055 This sequence is indexed by compiler's hard-register-number (see above). */
2056
2057 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2058
2059 #define REGISTER_NAMES \
2060 { \
2061 &rs6000_reg_names[ 0][0], /* r0 */ \
2062 &rs6000_reg_names[ 1][0], /* r1 */ \
2063 &rs6000_reg_names[ 2][0], /* r2 */ \
2064 &rs6000_reg_names[ 3][0], /* r3 */ \
2065 &rs6000_reg_names[ 4][0], /* r4 */ \
2066 &rs6000_reg_names[ 5][0], /* r5 */ \
2067 &rs6000_reg_names[ 6][0], /* r6 */ \
2068 &rs6000_reg_names[ 7][0], /* r7 */ \
2069 &rs6000_reg_names[ 8][0], /* r8 */ \
2070 &rs6000_reg_names[ 9][0], /* r9 */ \
2071 &rs6000_reg_names[10][0], /* r10 */ \
2072 &rs6000_reg_names[11][0], /* r11 */ \
2073 &rs6000_reg_names[12][0], /* r12 */ \
2074 &rs6000_reg_names[13][0], /* r13 */ \
2075 &rs6000_reg_names[14][0], /* r14 */ \
2076 &rs6000_reg_names[15][0], /* r15 */ \
2077 &rs6000_reg_names[16][0], /* r16 */ \
2078 &rs6000_reg_names[17][0], /* r17 */ \
2079 &rs6000_reg_names[18][0], /* r18 */ \
2080 &rs6000_reg_names[19][0], /* r19 */ \
2081 &rs6000_reg_names[20][0], /* r20 */ \
2082 &rs6000_reg_names[21][0], /* r21 */ \
2083 &rs6000_reg_names[22][0], /* r22 */ \
2084 &rs6000_reg_names[23][0], /* r23 */ \
2085 &rs6000_reg_names[24][0], /* r24 */ \
2086 &rs6000_reg_names[25][0], /* r25 */ \
2087 &rs6000_reg_names[26][0], /* r26 */ \
2088 &rs6000_reg_names[27][0], /* r27 */ \
2089 &rs6000_reg_names[28][0], /* r28 */ \
2090 &rs6000_reg_names[29][0], /* r29 */ \
2091 &rs6000_reg_names[30][0], /* r30 */ \
2092 &rs6000_reg_names[31][0], /* r31 */ \
2093 \
2094 &rs6000_reg_names[32][0], /* fr0 */ \
2095 &rs6000_reg_names[33][0], /* fr1 */ \
2096 &rs6000_reg_names[34][0], /* fr2 */ \
2097 &rs6000_reg_names[35][0], /* fr3 */ \
2098 &rs6000_reg_names[36][0], /* fr4 */ \
2099 &rs6000_reg_names[37][0], /* fr5 */ \
2100 &rs6000_reg_names[38][0], /* fr6 */ \
2101 &rs6000_reg_names[39][0], /* fr7 */ \
2102 &rs6000_reg_names[40][0], /* fr8 */ \
2103 &rs6000_reg_names[41][0], /* fr9 */ \
2104 &rs6000_reg_names[42][0], /* fr10 */ \
2105 &rs6000_reg_names[43][0], /* fr11 */ \
2106 &rs6000_reg_names[44][0], /* fr12 */ \
2107 &rs6000_reg_names[45][0], /* fr13 */ \
2108 &rs6000_reg_names[46][0], /* fr14 */ \
2109 &rs6000_reg_names[47][0], /* fr15 */ \
2110 &rs6000_reg_names[48][0], /* fr16 */ \
2111 &rs6000_reg_names[49][0], /* fr17 */ \
2112 &rs6000_reg_names[50][0], /* fr18 */ \
2113 &rs6000_reg_names[51][0], /* fr19 */ \
2114 &rs6000_reg_names[52][0], /* fr20 */ \
2115 &rs6000_reg_names[53][0], /* fr21 */ \
2116 &rs6000_reg_names[54][0], /* fr22 */ \
2117 &rs6000_reg_names[55][0], /* fr23 */ \
2118 &rs6000_reg_names[56][0], /* fr24 */ \
2119 &rs6000_reg_names[57][0], /* fr25 */ \
2120 &rs6000_reg_names[58][0], /* fr26 */ \
2121 &rs6000_reg_names[59][0], /* fr27 */ \
2122 &rs6000_reg_names[60][0], /* fr28 */ \
2123 &rs6000_reg_names[61][0], /* fr29 */ \
2124 &rs6000_reg_names[62][0], /* fr30 */ \
2125 &rs6000_reg_names[63][0], /* fr31 */ \
2126 \
2127 &rs6000_reg_names[64][0], /* mq */ \
2128 &rs6000_reg_names[65][0], /* lr */ \
2129 &rs6000_reg_names[66][0], /* ctr */ \
2130 &rs6000_reg_names[67][0], /* ap */ \
2131 \
2132 &rs6000_reg_names[68][0], /* cr0 */ \
2133 &rs6000_reg_names[69][0], /* cr1 */ \
2134 &rs6000_reg_names[70][0], /* cr2 */ \
2135 &rs6000_reg_names[71][0], /* cr3 */ \
2136 &rs6000_reg_names[72][0], /* cr4 */ \
2137 &rs6000_reg_names[73][0], /* cr5 */ \
2138 &rs6000_reg_names[74][0], /* cr6 */ \
2139 &rs6000_reg_names[75][0], /* cr7 */ \
2140 \
2141 &rs6000_reg_names[76][0], /* xer */ \
2142 \
2143 &rs6000_reg_names[77][0], /* v0 */ \
2144 &rs6000_reg_names[78][0], /* v1 */ \
2145 &rs6000_reg_names[79][0], /* v2 */ \
2146 &rs6000_reg_names[80][0], /* v3 */ \
2147 &rs6000_reg_names[81][0], /* v4 */ \
2148 &rs6000_reg_names[82][0], /* v5 */ \
2149 &rs6000_reg_names[83][0], /* v6 */ \
2150 &rs6000_reg_names[84][0], /* v7 */ \
2151 &rs6000_reg_names[85][0], /* v8 */ \
2152 &rs6000_reg_names[86][0], /* v9 */ \
2153 &rs6000_reg_names[87][0], /* v10 */ \
2154 &rs6000_reg_names[88][0], /* v11 */ \
2155 &rs6000_reg_names[89][0], /* v12 */ \
2156 &rs6000_reg_names[90][0], /* v13 */ \
2157 &rs6000_reg_names[91][0], /* v14 */ \
2158 &rs6000_reg_names[92][0], /* v15 */ \
2159 &rs6000_reg_names[93][0], /* v16 */ \
2160 &rs6000_reg_names[94][0], /* v17 */ \
2161 &rs6000_reg_names[95][0], /* v18 */ \
2162 &rs6000_reg_names[96][0], /* v19 */ \
2163 &rs6000_reg_names[97][0], /* v20 */ \
2164 &rs6000_reg_names[98][0], /* v21 */ \
2165 &rs6000_reg_names[99][0], /* v22 */ \
2166 &rs6000_reg_names[100][0], /* v23 */ \
2167 &rs6000_reg_names[101][0], /* v24 */ \
2168 &rs6000_reg_names[102][0], /* v25 */ \
2169 &rs6000_reg_names[103][0], /* v26 */ \
2170 &rs6000_reg_names[104][0], /* v27 */ \
2171 &rs6000_reg_names[105][0], /* v28 */ \
2172 &rs6000_reg_names[106][0], /* v29 */ \
2173 &rs6000_reg_names[107][0], /* v30 */ \
2174 &rs6000_reg_names[108][0], /* v31 */ \
2175 &rs6000_reg_names[109][0], /* vrsave */ \
2176 &rs6000_reg_names[110][0], /* vscr */ \
2177 &rs6000_reg_names[111][0], /* spe_acc */ \
2178 &rs6000_reg_names[112][0], /* spefscr */ \
2179 &rs6000_reg_names[113][0], /* sfp */ \
2180 }
2181
2182 /* Table of additional register names to use in user input. */
2183
2184 #define ADDITIONAL_REGISTER_NAMES \
2185 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2186 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2187 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2188 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2189 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2190 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2191 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2192 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2193 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2194 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2195 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2196 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2197 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2198 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2199 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2200 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2201 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2202 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2203 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2204 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2205 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2206 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2207 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2208 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
2209 {"vrsave", 109}, {"vscr", 110}, \
2210 {"spe_acc", 111}, {"spefscr", 112}, \
2211 /* no additional names for: mq, lr, ctr, ap */ \
2212 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2213 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2214 {"cc", 68}, {"sp", 1}, {"toc", 2} }
2215
2216 /* Text to write out after a CALL that may be replaced by glue code by
2217 the loader. This depends on the AIX version. */
2218 #define RS6000_CALL_GLUE "cror 31,31,31"
2219
2220 /* This is how to output an element of a case-vector that is relative. */
2221
2222 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2223 do { char buf[100]; \
2224 fputs ("\t.long ", FILE); \
2225 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2226 assemble_name (FILE, buf); \
2227 putc ('-', FILE); \
2228 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2229 assemble_name (FILE, buf); \
2230 putc ('\n', FILE); \
2231 } while (0)
2232
2233 /* This is how to output an assembler line
2234 that says to advance the location counter
2235 to a multiple of 2**LOG bytes. */
2236
2237 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2238 if ((LOG) != 0) \
2239 fprintf (FILE, "\t.align %d\n", (LOG))
2240
2241 /* Pick up the return address upon entry to a procedure. Used for
2242 dwarf2 unwind information. This also enables the table driven
2243 mechanism. */
2244
2245 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
2246 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
2247
2248 /* Describe how we implement __builtin_eh_return. */
2249 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2250 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2251
2252 /* Print operand X (an rtx) in assembler syntax to file FILE.
2253 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2254 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2255
2256 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2257
2258 /* Define which CODE values are valid. */
2259
2260 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2261 ((CODE) == '.' || (CODE) == '&')
2262
2263 /* Print a memory address as an operand to reference that memory location. */
2264
2265 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2266
2267 /* uncomment for disabling the corresponding default options */
2268 /* #define MACHINE_no_sched_interblock */
2269 /* #define MACHINE_no_sched_speculative */
2270 /* #define MACHINE_no_sched_speculative_load */
2271
2272 /* General flags. */
2273 extern int flag_pic;
2274 extern int optimize;
2275 extern int flag_expensive_optimizations;
2276 extern int frame_pointer_needed;
2277
2278 enum rs6000_builtins
2279 {
2280 /* AltiVec builtins. */
2281 ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2282 ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2283 ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2284 ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2285 ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2286 ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2287 ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2288 ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
2289 ALTIVEC_BUILTIN_VADDUBM,
2290 ALTIVEC_BUILTIN_VADDUHM,
2291 ALTIVEC_BUILTIN_VADDUWM,
2292 ALTIVEC_BUILTIN_VADDFP,
2293 ALTIVEC_BUILTIN_VADDCUW,
2294 ALTIVEC_BUILTIN_VADDUBS,
2295 ALTIVEC_BUILTIN_VADDSBS,
2296 ALTIVEC_BUILTIN_VADDUHS,
2297 ALTIVEC_BUILTIN_VADDSHS,
2298 ALTIVEC_BUILTIN_VADDUWS,
2299 ALTIVEC_BUILTIN_VADDSWS,
2300 ALTIVEC_BUILTIN_VAND,
2301 ALTIVEC_BUILTIN_VANDC,
2302 ALTIVEC_BUILTIN_VAVGUB,
2303 ALTIVEC_BUILTIN_VAVGSB,
2304 ALTIVEC_BUILTIN_VAVGUH,
2305 ALTIVEC_BUILTIN_VAVGSH,
2306 ALTIVEC_BUILTIN_VAVGUW,
2307 ALTIVEC_BUILTIN_VAVGSW,
2308 ALTIVEC_BUILTIN_VCFUX,
2309 ALTIVEC_BUILTIN_VCFSX,
2310 ALTIVEC_BUILTIN_VCTSXS,
2311 ALTIVEC_BUILTIN_VCTUXS,
2312 ALTIVEC_BUILTIN_VCMPBFP,
2313 ALTIVEC_BUILTIN_VCMPEQUB,
2314 ALTIVEC_BUILTIN_VCMPEQUH,
2315 ALTIVEC_BUILTIN_VCMPEQUW,
2316 ALTIVEC_BUILTIN_VCMPEQFP,
2317 ALTIVEC_BUILTIN_VCMPGEFP,
2318 ALTIVEC_BUILTIN_VCMPGTUB,
2319 ALTIVEC_BUILTIN_VCMPGTSB,
2320 ALTIVEC_BUILTIN_VCMPGTUH,
2321 ALTIVEC_BUILTIN_VCMPGTSH,
2322 ALTIVEC_BUILTIN_VCMPGTUW,
2323 ALTIVEC_BUILTIN_VCMPGTSW,
2324 ALTIVEC_BUILTIN_VCMPGTFP,
2325 ALTIVEC_BUILTIN_VEXPTEFP,
2326 ALTIVEC_BUILTIN_VLOGEFP,
2327 ALTIVEC_BUILTIN_VMADDFP,
2328 ALTIVEC_BUILTIN_VMAXUB,
2329 ALTIVEC_BUILTIN_VMAXSB,
2330 ALTIVEC_BUILTIN_VMAXUH,
2331 ALTIVEC_BUILTIN_VMAXSH,
2332 ALTIVEC_BUILTIN_VMAXUW,
2333 ALTIVEC_BUILTIN_VMAXSW,
2334 ALTIVEC_BUILTIN_VMAXFP,
2335 ALTIVEC_BUILTIN_VMHADDSHS,
2336 ALTIVEC_BUILTIN_VMHRADDSHS,
2337 ALTIVEC_BUILTIN_VMLADDUHM,
2338 ALTIVEC_BUILTIN_VMRGHB,
2339 ALTIVEC_BUILTIN_VMRGHH,
2340 ALTIVEC_BUILTIN_VMRGHW,
2341 ALTIVEC_BUILTIN_VMRGLB,
2342 ALTIVEC_BUILTIN_VMRGLH,
2343 ALTIVEC_BUILTIN_VMRGLW,
2344 ALTIVEC_BUILTIN_VMSUMUBM,
2345 ALTIVEC_BUILTIN_VMSUMMBM,
2346 ALTIVEC_BUILTIN_VMSUMUHM,
2347 ALTIVEC_BUILTIN_VMSUMSHM,
2348 ALTIVEC_BUILTIN_VMSUMUHS,
2349 ALTIVEC_BUILTIN_VMSUMSHS,
2350 ALTIVEC_BUILTIN_VMINUB,
2351 ALTIVEC_BUILTIN_VMINSB,
2352 ALTIVEC_BUILTIN_VMINUH,
2353 ALTIVEC_BUILTIN_VMINSH,
2354 ALTIVEC_BUILTIN_VMINUW,
2355 ALTIVEC_BUILTIN_VMINSW,
2356 ALTIVEC_BUILTIN_VMINFP,
2357 ALTIVEC_BUILTIN_VMULEUB,
2358 ALTIVEC_BUILTIN_VMULESB,
2359 ALTIVEC_BUILTIN_VMULEUH,
2360 ALTIVEC_BUILTIN_VMULESH,
2361 ALTIVEC_BUILTIN_VMULOUB,
2362 ALTIVEC_BUILTIN_VMULOSB,
2363 ALTIVEC_BUILTIN_VMULOUH,
2364 ALTIVEC_BUILTIN_VMULOSH,
2365 ALTIVEC_BUILTIN_VNMSUBFP,
2366 ALTIVEC_BUILTIN_VNOR,
2367 ALTIVEC_BUILTIN_VOR,
2368 ALTIVEC_BUILTIN_VSEL_4SI,
2369 ALTIVEC_BUILTIN_VSEL_4SF,
2370 ALTIVEC_BUILTIN_VSEL_8HI,
2371 ALTIVEC_BUILTIN_VSEL_16QI,
2372 ALTIVEC_BUILTIN_VPERM_4SI,
2373 ALTIVEC_BUILTIN_VPERM_4SF,
2374 ALTIVEC_BUILTIN_VPERM_8HI,
2375 ALTIVEC_BUILTIN_VPERM_16QI,
2376 ALTIVEC_BUILTIN_VPKUHUM,
2377 ALTIVEC_BUILTIN_VPKUWUM,
2378 ALTIVEC_BUILTIN_VPKPX,
2379 ALTIVEC_BUILTIN_VPKUHSS,
2380 ALTIVEC_BUILTIN_VPKSHSS,
2381 ALTIVEC_BUILTIN_VPKUWSS,
2382 ALTIVEC_BUILTIN_VPKSWSS,
2383 ALTIVEC_BUILTIN_VPKUHUS,
2384 ALTIVEC_BUILTIN_VPKSHUS,
2385 ALTIVEC_BUILTIN_VPKUWUS,
2386 ALTIVEC_BUILTIN_VPKSWUS,
2387 ALTIVEC_BUILTIN_VREFP,
2388 ALTIVEC_BUILTIN_VRFIM,
2389 ALTIVEC_BUILTIN_VRFIN,
2390 ALTIVEC_BUILTIN_VRFIP,
2391 ALTIVEC_BUILTIN_VRFIZ,
2392 ALTIVEC_BUILTIN_VRLB,
2393 ALTIVEC_BUILTIN_VRLH,
2394 ALTIVEC_BUILTIN_VRLW,
2395 ALTIVEC_BUILTIN_VRSQRTEFP,
2396 ALTIVEC_BUILTIN_VSLB,
2397 ALTIVEC_BUILTIN_VSLH,
2398 ALTIVEC_BUILTIN_VSLW,
2399 ALTIVEC_BUILTIN_VSL,
2400 ALTIVEC_BUILTIN_VSLO,
2401 ALTIVEC_BUILTIN_VSPLTB,
2402 ALTIVEC_BUILTIN_VSPLTH,
2403 ALTIVEC_BUILTIN_VSPLTW,
2404 ALTIVEC_BUILTIN_VSPLTISB,
2405 ALTIVEC_BUILTIN_VSPLTISH,
2406 ALTIVEC_BUILTIN_VSPLTISW,
2407 ALTIVEC_BUILTIN_VSRB,
2408 ALTIVEC_BUILTIN_VSRH,
2409 ALTIVEC_BUILTIN_VSRW,
2410 ALTIVEC_BUILTIN_VSRAB,
2411 ALTIVEC_BUILTIN_VSRAH,
2412 ALTIVEC_BUILTIN_VSRAW,
2413 ALTIVEC_BUILTIN_VSR,
2414 ALTIVEC_BUILTIN_VSRO,
2415 ALTIVEC_BUILTIN_VSUBUBM,
2416 ALTIVEC_BUILTIN_VSUBUHM,
2417 ALTIVEC_BUILTIN_VSUBUWM,
2418 ALTIVEC_BUILTIN_VSUBFP,
2419 ALTIVEC_BUILTIN_VSUBCUW,
2420 ALTIVEC_BUILTIN_VSUBUBS,
2421 ALTIVEC_BUILTIN_VSUBSBS,
2422 ALTIVEC_BUILTIN_VSUBUHS,
2423 ALTIVEC_BUILTIN_VSUBSHS,
2424 ALTIVEC_BUILTIN_VSUBUWS,
2425 ALTIVEC_BUILTIN_VSUBSWS,
2426 ALTIVEC_BUILTIN_VSUM4UBS,
2427 ALTIVEC_BUILTIN_VSUM4SBS,
2428 ALTIVEC_BUILTIN_VSUM4SHS,
2429 ALTIVEC_BUILTIN_VSUM2SWS,
2430 ALTIVEC_BUILTIN_VSUMSWS,
2431 ALTIVEC_BUILTIN_VXOR,
2432 ALTIVEC_BUILTIN_VSLDOI_16QI,
2433 ALTIVEC_BUILTIN_VSLDOI_8HI,
2434 ALTIVEC_BUILTIN_VSLDOI_4SI,
2435 ALTIVEC_BUILTIN_VSLDOI_4SF,
2436 ALTIVEC_BUILTIN_VUPKHSB,
2437 ALTIVEC_BUILTIN_VUPKHPX,
2438 ALTIVEC_BUILTIN_VUPKHSH,
2439 ALTIVEC_BUILTIN_VUPKLSB,
2440 ALTIVEC_BUILTIN_VUPKLPX,
2441 ALTIVEC_BUILTIN_VUPKLSH,
2442 ALTIVEC_BUILTIN_MTVSCR,
2443 ALTIVEC_BUILTIN_MFVSCR,
2444 ALTIVEC_BUILTIN_DSSALL,
2445 ALTIVEC_BUILTIN_DSS,
2446 ALTIVEC_BUILTIN_LVSL,
2447 ALTIVEC_BUILTIN_LVSR,
2448 ALTIVEC_BUILTIN_DSTT,
2449 ALTIVEC_BUILTIN_DSTST,
2450 ALTIVEC_BUILTIN_DSTSTT,
2451 ALTIVEC_BUILTIN_DST,
2452 ALTIVEC_BUILTIN_LVEBX,
2453 ALTIVEC_BUILTIN_LVEHX,
2454 ALTIVEC_BUILTIN_LVEWX,
2455 ALTIVEC_BUILTIN_LVXL,
2456 ALTIVEC_BUILTIN_LVX,
2457 ALTIVEC_BUILTIN_STVX,
2458 ALTIVEC_BUILTIN_STVEBX,
2459 ALTIVEC_BUILTIN_STVEHX,
2460 ALTIVEC_BUILTIN_STVEWX,
2461 ALTIVEC_BUILTIN_STVXL,
2462 ALTIVEC_BUILTIN_VCMPBFP_P,
2463 ALTIVEC_BUILTIN_VCMPEQFP_P,
2464 ALTIVEC_BUILTIN_VCMPEQUB_P,
2465 ALTIVEC_BUILTIN_VCMPEQUH_P,
2466 ALTIVEC_BUILTIN_VCMPEQUW_P,
2467 ALTIVEC_BUILTIN_VCMPGEFP_P,
2468 ALTIVEC_BUILTIN_VCMPGTFP_P,
2469 ALTIVEC_BUILTIN_VCMPGTSB_P,
2470 ALTIVEC_BUILTIN_VCMPGTSH_P,
2471 ALTIVEC_BUILTIN_VCMPGTSW_P,
2472 ALTIVEC_BUILTIN_VCMPGTUB_P,
2473 ALTIVEC_BUILTIN_VCMPGTUH_P,
2474 ALTIVEC_BUILTIN_VCMPGTUW_P,
2475 ALTIVEC_BUILTIN_ABSS_V4SI,
2476 ALTIVEC_BUILTIN_ABSS_V8HI,
2477 ALTIVEC_BUILTIN_ABSS_V16QI,
2478 ALTIVEC_BUILTIN_ABS_V4SI,
2479 ALTIVEC_BUILTIN_ABS_V4SF,
2480 ALTIVEC_BUILTIN_ABS_V8HI,
2481 ALTIVEC_BUILTIN_ABS_V16QI,
2482 ALTIVEC_BUILTIN_MASK_FOR_LOAD,
2483 ALTIVEC_BUILTIN_MASK_FOR_STORE,
2484 ALTIVEC_BUILTIN_VEC_INIT_V4SI,
2485 ALTIVEC_BUILTIN_VEC_INIT_V8HI,
2486 ALTIVEC_BUILTIN_VEC_INIT_V16QI,
2487 ALTIVEC_BUILTIN_VEC_INIT_V4SF,
2488 ALTIVEC_BUILTIN_VEC_SET_V4SI,
2489 ALTIVEC_BUILTIN_VEC_SET_V8HI,
2490 ALTIVEC_BUILTIN_VEC_SET_V16QI,
2491 ALTIVEC_BUILTIN_VEC_SET_V4SF,
2492 ALTIVEC_BUILTIN_VEC_EXT_V4SI,
2493 ALTIVEC_BUILTIN_VEC_EXT_V8HI,
2494 ALTIVEC_BUILTIN_VEC_EXT_V16QI,
2495 ALTIVEC_BUILTIN_VEC_EXT_V4SF,
2496
2497 /* Altivec overloaded builtins. */
2498 ALTIVEC_BUILTIN_VCMPEQ_P,
2499 ALTIVEC_BUILTIN_OVERLOADED_FIRST = ALTIVEC_BUILTIN_VCMPEQ_P,
2500 ALTIVEC_BUILTIN_VCMPGT_P,
2501 ALTIVEC_BUILTIN_VCMPGE_P,
2502 ALTIVEC_BUILTIN_VEC_ABS,
2503 ALTIVEC_BUILTIN_VEC_ABSS,
2504 ALTIVEC_BUILTIN_VEC_ADD,
2505 ALTIVEC_BUILTIN_VEC_ADDC,
2506 ALTIVEC_BUILTIN_VEC_ADDS,
2507 ALTIVEC_BUILTIN_VEC_AND,
2508 ALTIVEC_BUILTIN_VEC_ANDC,
2509 ALTIVEC_BUILTIN_VEC_AVG,
2510 ALTIVEC_BUILTIN_VEC_CEIL,
2511 ALTIVEC_BUILTIN_VEC_CMPB,
2512 ALTIVEC_BUILTIN_VEC_CMPEQ,
2513 ALTIVEC_BUILTIN_VEC_CMPEQUB,
2514 ALTIVEC_BUILTIN_VEC_CMPEQUH,
2515 ALTIVEC_BUILTIN_VEC_CMPEQUW,
2516 ALTIVEC_BUILTIN_VEC_CMPGE,
2517 ALTIVEC_BUILTIN_VEC_CMPGT,
2518 ALTIVEC_BUILTIN_VEC_CMPLE,
2519 ALTIVEC_BUILTIN_VEC_CMPLT,
2520 ALTIVEC_BUILTIN_VEC_CTF,
2521 ALTIVEC_BUILTIN_VEC_CTS,
2522 ALTIVEC_BUILTIN_VEC_CTU,
2523 ALTIVEC_BUILTIN_VEC_DST,
2524 ALTIVEC_BUILTIN_VEC_DSTST,
2525 ALTIVEC_BUILTIN_VEC_DSTSTT,
2526 ALTIVEC_BUILTIN_VEC_DSTT,
2527 ALTIVEC_BUILTIN_VEC_EXPTE,
2528 ALTIVEC_BUILTIN_VEC_FLOOR,
2529 ALTIVEC_BUILTIN_VEC_LD,
2530 ALTIVEC_BUILTIN_VEC_LDE,
2531 ALTIVEC_BUILTIN_VEC_LDL,
2532 ALTIVEC_BUILTIN_VEC_LOGE,
2533 ALTIVEC_BUILTIN_VEC_LVEBX,
2534 ALTIVEC_BUILTIN_VEC_LVEHX,
2535 ALTIVEC_BUILTIN_VEC_LVEWX,
2536 ALTIVEC_BUILTIN_VEC_LVSL,
2537 ALTIVEC_BUILTIN_VEC_LVSR,
2538 ALTIVEC_BUILTIN_VEC_MADD,
2539 ALTIVEC_BUILTIN_VEC_MADDS,
2540 ALTIVEC_BUILTIN_VEC_MAX,
2541 ALTIVEC_BUILTIN_VEC_MERGEH,
2542 ALTIVEC_BUILTIN_VEC_MERGEL,
2543 ALTIVEC_BUILTIN_VEC_MIN,
2544 ALTIVEC_BUILTIN_VEC_MLADD,
2545 ALTIVEC_BUILTIN_VEC_MPERM,
2546 ALTIVEC_BUILTIN_VEC_MRADDS,
2547 ALTIVEC_BUILTIN_VEC_MRGHB,
2548 ALTIVEC_BUILTIN_VEC_MRGHH,
2549 ALTIVEC_BUILTIN_VEC_MRGHW,
2550 ALTIVEC_BUILTIN_VEC_MRGLB,
2551 ALTIVEC_BUILTIN_VEC_MRGLH,
2552 ALTIVEC_BUILTIN_VEC_MRGLW,
2553 ALTIVEC_BUILTIN_VEC_MSUM,
2554 ALTIVEC_BUILTIN_VEC_MSUMS,
2555 ALTIVEC_BUILTIN_VEC_MTVSCR,
2556 ALTIVEC_BUILTIN_VEC_MULE,
2557 ALTIVEC_BUILTIN_VEC_MULO,
2558 ALTIVEC_BUILTIN_VEC_NMSUB,
2559 ALTIVEC_BUILTIN_VEC_NOR,
2560 ALTIVEC_BUILTIN_VEC_OR,
2561 ALTIVEC_BUILTIN_VEC_PACK,
2562 ALTIVEC_BUILTIN_VEC_PACKPX,
2563 ALTIVEC_BUILTIN_VEC_PACKS,
2564 ALTIVEC_BUILTIN_VEC_PACKSU,
2565 ALTIVEC_BUILTIN_VEC_PERM,
2566 ALTIVEC_BUILTIN_VEC_RE,
2567 ALTIVEC_BUILTIN_VEC_RL,
2568 ALTIVEC_BUILTIN_VEC_ROUND,
2569 ALTIVEC_BUILTIN_VEC_RSQRTE,
2570 ALTIVEC_BUILTIN_VEC_SEL,
2571 ALTIVEC_BUILTIN_VEC_SL,
2572 ALTIVEC_BUILTIN_VEC_SLD,
2573 ALTIVEC_BUILTIN_VEC_SLL,
2574 ALTIVEC_BUILTIN_VEC_SLO,
2575 ALTIVEC_BUILTIN_VEC_SPLAT,
2576 ALTIVEC_BUILTIN_VEC_SPLAT_S16,
2577 ALTIVEC_BUILTIN_VEC_SPLAT_S32,
2578 ALTIVEC_BUILTIN_VEC_SPLAT_S8,
2579 ALTIVEC_BUILTIN_VEC_SPLAT_U16,
2580 ALTIVEC_BUILTIN_VEC_SPLAT_U32,
2581 ALTIVEC_BUILTIN_VEC_SPLAT_U8,
2582 ALTIVEC_BUILTIN_VEC_SPLTB,
2583 ALTIVEC_BUILTIN_VEC_SPLTH,
2584 ALTIVEC_BUILTIN_VEC_SPLTW,
2585 ALTIVEC_BUILTIN_VEC_SR,
2586 ALTIVEC_BUILTIN_VEC_SRA,
2587 ALTIVEC_BUILTIN_VEC_SRL,
2588 ALTIVEC_BUILTIN_VEC_SRO,
2589 ALTIVEC_BUILTIN_VEC_ST,
2590 ALTIVEC_BUILTIN_VEC_STE,
2591 ALTIVEC_BUILTIN_VEC_STL,
2592 ALTIVEC_BUILTIN_VEC_STVEBX,
2593 ALTIVEC_BUILTIN_VEC_STVEHX,
2594 ALTIVEC_BUILTIN_VEC_STVEWX,
2595 ALTIVEC_BUILTIN_VEC_SUB,
2596 ALTIVEC_BUILTIN_VEC_SUBC,
2597 ALTIVEC_BUILTIN_VEC_SUBS,
2598 ALTIVEC_BUILTIN_VEC_SUM2S,
2599 ALTIVEC_BUILTIN_VEC_SUM4S,
2600 ALTIVEC_BUILTIN_VEC_SUMS,
2601 ALTIVEC_BUILTIN_VEC_TRUNC,
2602 ALTIVEC_BUILTIN_VEC_UNPACKH,
2603 ALTIVEC_BUILTIN_VEC_UNPACKL,
2604 ALTIVEC_BUILTIN_VEC_VADDFP,
2605 ALTIVEC_BUILTIN_VEC_VADDSBS,
2606 ALTIVEC_BUILTIN_VEC_VADDSHS,
2607 ALTIVEC_BUILTIN_VEC_VADDSWS,
2608 ALTIVEC_BUILTIN_VEC_VADDUBM,
2609 ALTIVEC_BUILTIN_VEC_VADDUBS,
2610 ALTIVEC_BUILTIN_VEC_VADDUHM,
2611 ALTIVEC_BUILTIN_VEC_VADDUHS,
2612 ALTIVEC_BUILTIN_VEC_VADDUWM,
2613 ALTIVEC_BUILTIN_VEC_VADDUWS,
2614 ALTIVEC_BUILTIN_VEC_VAVGSB,
2615 ALTIVEC_BUILTIN_VEC_VAVGSH,
2616 ALTIVEC_BUILTIN_VEC_VAVGSW,
2617 ALTIVEC_BUILTIN_VEC_VAVGUB,
2618 ALTIVEC_BUILTIN_VEC_VAVGUH,
2619 ALTIVEC_BUILTIN_VEC_VAVGUW,
2620 ALTIVEC_BUILTIN_VEC_VCFSX,
2621 ALTIVEC_BUILTIN_VEC_VCFUX,
2622 ALTIVEC_BUILTIN_VEC_VCMPEQFP,
2623 ALTIVEC_BUILTIN_VEC_VCMPEQUB,
2624 ALTIVEC_BUILTIN_VEC_VCMPEQUH,
2625 ALTIVEC_BUILTIN_VEC_VCMPEQUW,
2626 ALTIVEC_BUILTIN_VEC_VCMPGTFP,
2627 ALTIVEC_BUILTIN_VEC_VCMPGTSB,
2628 ALTIVEC_BUILTIN_VEC_VCMPGTSH,
2629 ALTIVEC_BUILTIN_VEC_VCMPGTSW,
2630 ALTIVEC_BUILTIN_VEC_VCMPGTUB,
2631 ALTIVEC_BUILTIN_VEC_VCMPGTUH,
2632 ALTIVEC_BUILTIN_VEC_VCMPGTUW,
2633 ALTIVEC_BUILTIN_VEC_VMAXFP,
2634 ALTIVEC_BUILTIN_VEC_VMAXSB,
2635 ALTIVEC_BUILTIN_VEC_VMAXSH,
2636 ALTIVEC_BUILTIN_VEC_VMAXSW,
2637 ALTIVEC_BUILTIN_VEC_VMAXUB,
2638 ALTIVEC_BUILTIN_VEC_VMAXUH,
2639 ALTIVEC_BUILTIN_VEC_VMAXUW,
2640 ALTIVEC_BUILTIN_VEC_VMINFP,
2641 ALTIVEC_BUILTIN_VEC_VMINSB,
2642 ALTIVEC_BUILTIN_VEC_VMINSH,
2643 ALTIVEC_BUILTIN_VEC_VMINSW,
2644 ALTIVEC_BUILTIN_VEC_VMINUB,
2645 ALTIVEC_BUILTIN_VEC_VMINUH,
2646 ALTIVEC_BUILTIN_VEC_VMINUW,
2647 ALTIVEC_BUILTIN_VEC_VMRGHB,
2648 ALTIVEC_BUILTIN_VEC_VMRGHH,
2649 ALTIVEC_BUILTIN_VEC_VMRGHW,
2650 ALTIVEC_BUILTIN_VEC_VMRGLB,
2651 ALTIVEC_BUILTIN_VEC_VMRGLH,
2652 ALTIVEC_BUILTIN_VEC_VMRGLW,
2653 ALTIVEC_BUILTIN_VEC_VMSUMMBM,
2654 ALTIVEC_BUILTIN_VEC_VMSUMSHM,
2655 ALTIVEC_BUILTIN_VEC_VMSUMSHS,
2656 ALTIVEC_BUILTIN_VEC_VMSUMUBM,
2657 ALTIVEC_BUILTIN_VEC_VMSUMUHM,
2658 ALTIVEC_BUILTIN_VEC_VMSUMUHS,
2659 ALTIVEC_BUILTIN_VEC_VMULESB,
2660 ALTIVEC_BUILTIN_VEC_VMULESH,
2661 ALTIVEC_BUILTIN_VEC_VMULEUB,
2662 ALTIVEC_BUILTIN_VEC_VMULEUH,
2663 ALTIVEC_BUILTIN_VEC_VMULOSB,
2664 ALTIVEC_BUILTIN_VEC_VMULOSH,
2665 ALTIVEC_BUILTIN_VEC_VMULOUB,
2666 ALTIVEC_BUILTIN_VEC_VMULOUH,
2667 ALTIVEC_BUILTIN_VEC_VPKSHSS,
2668 ALTIVEC_BUILTIN_VEC_VPKSHUS,
2669 ALTIVEC_BUILTIN_VEC_VPKSWSS,
2670 ALTIVEC_BUILTIN_VEC_VPKSWUS,
2671 ALTIVEC_BUILTIN_VEC_VPKUHUM,
2672 ALTIVEC_BUILTIN_VEC_VPKUHUS,
2673 ALTIVEC_BUILTIN_VEC_VPKUWUM,
2674 ALTIVEC_BUILTIN_VEC_VPKUWUS,
2675 ALTIVEC_BUILTIN_VEC_VRLB,
2676 ALTIVEC_BUILTIN_VEC_VRLH,
2677 ALTIVEC_BUILTIN_VEC_VRLW,
2678 ALTIVEC_BUILTIN_VEC_VSLB,
2679 ALTIVEC_BUILTIN_VEC_VSLH,
2680 ALTIVEC_BUILTIN_VEC_VSLW,
2681 ALTIVEC_BUILTIN_VEC_VSPLTB,
2682 ALTIVEC_BUILTIN_VEC_VSPLTH,
2683 ALTIVEC_BUILTIN_VEC_VSPLTW,
2684 ALTIVEC_BUILTIN_VEC_VSRAB,
2685 ALTIVEC_BUILTIN_VEC_VSRAH,
2686 ALTIVEC_BUILTIN_VEC_VSRAW,
2687 ALTIVEC_BUILTIN_VEC_VSRB,
2688 ALTIVEC_BUILTIN_VEC_VSRH,
2689 ALTIVEC_BUILTIN_VEC_VSRW,
2690 ALTIVEC_BUILTIN_VEC_VSUBFP,
2691 ALTIVEC_BUILTIN_VEC_VSUBSBS,
2692 ALTIVEC_BUILTIN_VEC_VSUBSHS,
2693 ALTIVEC_BUILTIN_VEC_VSUBSWS,
2694 ALTIVEC_BUILTIN_VEC_VSUBUBM,
2695 ALTIVEC_BUILTIN_VEC_VSUBUBS,
2696 ALTIVEC_BUILTIN_VEC_VSUBUHM,
2697 ALTIVEC_BUILTIN_VEC_VSUBUHS,
2698 ALTIVEC_BUILTIN_VEC_VSUBUWM,
2699 ALTIVEC_BUILTIN_VEC_VSUBUWS,
2700 ALTIVEC_BUILTIN_VEC_VSUM4SBS,
2701 ALTIVEC_BUILTIN_VEC_VSUM4SHS,
2702 ALTIVEC_BUILTIN_VEC_VSUM4UBS,
2703 ALTIVEC_BUILTIN_VEC_VUPKHPX,
2704 ALTIVEC_BUILTIN_VEC_VUPKHSB,
2705 ALTIVEC_BUILTIN_VEC_VUPKHSH,
2706 ALTIVEC_BUILTIN_VEC_VUPKLPX,
2707 ALTIVEC_BUILTIN_VEC_VUPKLSB,
2708 ALTIVEC_BUILTIN_VEC_VUPKLSH,
2709 ALTIVEC_BUILTIN_VEC_XOR,
2710 ALTIVEC_BUILTIN_VEC_STEP,
2711 ALTIVEC_BUILTIN_OVERLOADED_LAST = ALTIVEC_BUILTIN_VEC_STEP,
2712
2713 /* SPE builtins. */
2714 SPE_BUILTIN_EVADDW,
2715 SPE_BUILTIN_EVAND,
2716 SPE_BUILTIN_EVANDC,
2717 SPE_BUILTIN_EVDIVWS,
2718 SPE_BUILTIN_EVDIVWU,
2719 SPE_BUILTIN_EVEQV,
2720 SPE_BUILTIN_EVFSADD,
2721 SPE_BUILTIN_EVFSDIV,
2722 SPE_BUILTIN_EVFSMUL,
2723 SPE_BUILTIN_EVFSSUB,
2724 SPE_BUILTIN_EVLDDX,
2725 SPE_BUILTIN_EVLDHX,
2726 SPE_BUILTIN_EVLDWX,
2727 SPE_BUILTIN_EVLHHESPLATX,
2728 SPE_BUILTIN_EVLHHOSSPLATX,
2729 SPE_BUILTIN_EVLHHOUSPLATX,
2730 SPE_BUILTIN_EVLWHEX,
2731 SPE_BUILTIN_EVLWHOSX,
2732 SPE_BUILTIN_EVLWHOUX,
2733 SPE_BUILTIN_EVLWHSPLATX,
2734 SPE_BUILTIN_EVLWWSPLATX,
2735 SPE_BUILTIN_EVMERGEHI,
2736 SPE_BUILTIN_EVMERGEHILO,
2737 SPE_BUILTIN_EVMERGELO,
2738 SPE_BUILTIN_EVMERGELOHI,
2739 SPE_BUILTIN_EVMHEGSMFAA,
2740 SPE_BUILTIN_EVMHEGSMFAN,
2741 SPE_BUILTIN_EVMHEGSMIAA,
2742 SPE_BUILTIN_EVMHEGSMIAN,
2743 SPE_BUILTIN_EVMHEGUMIAA,
2744 SPE_BUILTIN_EVMHEGUMIAN,
2745 SPE_BUILTIN_EVMHESMF,
2746 SPE_BUILTIN_EVMHESMFA,
2747 SPE_BUILTIN_EVMHESMFAAW,
2748 SPE_BUILTIN_EVMHESMFANW,
2749 SPE_BUILTIN_EVMHESMI,
2750 SPE_BUILTIN_EVMHESMIA,
2751 SPE_BUILTIN_EVMHESMIAAW,
2752 SPE_BUILTIN_EVMHESMIANW,
2753 SPE_BUILTIN_EVMHESSF,
2754 SPE_BUILTIN_EVMHESSFA,
2755 SPE_BUILTIN_EVMHESSFAAW,
2756 SPE_BUILTIN_EVMHESSFANW,
2757 SPE_BUILTIN_EVMHESSIAAW,
2758 SPE_BUILTIN_EVMHESSIANW,
2759 SPE_BUILTIN_EVMHEUMI,
2760 SPE_BUILTIN_EVMHEUMIA,
2761 SPE_BUILTIN_EVMHEUMIAAW,
2762 SPE_BUILTIN_EVMHEUMIANW,
2763 SPE_BUILTIN_EVMHEUSIAAW,
2764 SPE_BUILTIN_EVMHEUSIANW,
2765 SPE_BUILTIN_EVMHOGSMFAA,
2766 SPE_BUILTIN_EVMHOGSMFAN,
2767 SPE_BUILTIN_EVMHOGSMIAA,
2768 SPE_BUILTIN_EVMHOGSMIAN,
2769 SPE_BUILTIN_EVMHOGUMIAA,
2770 SPE_BUILTIN_EVMHOGUMIAN,
2771 SPE_BUILTIN_EVMHOSMF,
2772 SPE_BUILTIN_EVMHOSMFA,
2773 SPE_BUILTIN_EVMHOSMFAAW,
2774 SPE_BUILTIN_EVMHOSMFANW,
2775 SPE_BUILTIN_EVMHOSMI,
2776 SPE_BUILTIN_EVMHOSMIA,
2777 SPE_BUILTIN_EVMHOSMIAAW,
2778 SPE_BUILTIN_EVMHOSMIANW,
2779 SPE_BUILTIN_EVMHOSSF,
2780 SPE_BUILTIN_EVMHOSSFA,
2781 SPE_BUILTIN_EVMHOSSFAAW,
2782 SPE_BUILTIN_EVMHOSSFANW,
2783 SPE_BUILTIN_EVMHOSSIAAW,
2784 SPE_BUILTIN_EVMHOSSIANW,
2785 SPE_BUILTIN_EVMHOUMI,
2786 SPE_BUILTIN_EVMHOUMIA,
2787 SPE_BUILTIN_EVMHOUMIAAW,
2788 SPE_BUILTIN_EVMHOUMIANW,
2789 SPE_BUILTIN_EVMHOUSIAAW,
2790 SPE_BUILTIN_EVMHOUSIANW,
2791 SPE_BUILTIN_EVMWHSMF,
2792 SPE_BUILTIN_EVMWHSMFA,
2793 SPE_BUILTIN_EVMWHSMI,
2794 SPE_BUILTIN_EVMWHSMIA,
2795 SPE_BUILTIN_EVMWHSSF,
2796 SPE_BUILTIN_EVMWHSSFA,
2797 SPE_BUILTIN_EVMWHUMI,
2798 SPE_BUILTIN_EVMWHUMIA,
2799 SPE_BUILTIN_EVMWLSMIAAW,
2800 SPE_BUILTIN_EVMWLSMIANW,
2801 SPE_BUILTIN_EVMWLSSIAAW,
2802 SPE_BUILTIN_EVMWLSSIANW,
2803 SPE_BUILTIN_EVMWLUMI,
2804 SPE_BUILTIN_EVMWLUMIA,
2805 SPE_BUILTIN_EVMWLUMIAAW,
2806 SPE_BUILTIN_EVMWLUMIANW,
2807 SPE_BUILTIN_EVMWLUSIAAW,
2808 SPE_BUILTIN_EVMWLUSIANW,
2809 SPE_BUILTIN_EVMWSMF,
2810 SPE_BUILTIN_EVMWSMFA,
2811 SPE_BUILTIN_EVMWSMFAA,
2812 SPE_BUILTIN_EVMWSMFAN,
2813 SPE_BUILTIN_EVMWSMI,
2814 SPE_BUILTIN_EVMWSMIA,
2815 SPE_BUILTIN_EVMWSMIAA,
2816 SPE_BUILTIN_EVMWSMIAN,
2817 SPE_BUILTIN_EVMWHSSFAA,
2818 SPE_BUILTIN_EVMWSSF,
2819 SPE_BUILTIN_EVMWSSFA,
2820 SPE_BUILTIN_EVMWSSFAA,
2821 SPE_BUILTIN_EVMWSSFAN,
2822 SPE_BUILTIN_EVMWUMI,
2823 SPE_BUILTIN_EVMWUMIA,
2824 SPE_BUILTIN_EVMWUMIAA,
2825 SPE_BUILTIN_EVMWUMIAN,
2826 SPE_BUILTIN_EVNAND,
2827 SPE_BUILTIN_EVNOR,
2828 SPE_BUILTIN_EVOR,
2829 SPE_BUILTIN_EVORC,
2830 SPE_BUILTIN_EVRLW,
2831 SPE_BUILTIN_EVSLW,
2832 SPE_BUILTIN_EVSRWS,
2833 SPE_BUILTIN_EVSRWU,
2834 SPE_BUILTIN_EVSTDDX,
2835 SPE_BUILTIN_EVSTDHX,
2836 SPE_BUILTIN_EVSTDWX,
2837 SPE_BUILTIN_EVSTWHEX,
2838 SPE_BUILTIN_EVSTWHOX,
2839 SPE_BUILTIN_EVSTWWEX,
2840 SPE_BUILTIN_EVSTWWOX,
2841 SPE_BUILTIN_EVSUBFW,
2842 SPE_BUILTIN_EVXOR,
2843 SPE_BUILTIN_EVABS,
2844 SPE_BUILTIN_EVADDSMIAAW,
2845 SPE_BUILTIN_EVADDSSIAAW,
2846 SPE_BUILTIN_EVADDUMIAAW,
2847 SPE_BUILTIN_EVADDUSIAAW,
2848 SPE_BUILTIN_EVCNTLSW,
2849 SPE_BUILTIN_EVCNTLZW,
2850 SPE_BUILTIN_EVEXTSB,
2851 SPE_BUILTIN_EVEXTSH,
2852 SPE_BUILTIN_EVFSABS,
2853 SPE_BUILTIN_EVFSCFSF,
2854 SPE_BUILTIN_EVFSCFSI,
2855 SPE_BUILTIN_EVFSCFUF,
2856 SPE_BUILTIN_EVFSCFUI,
2857 SPE_BUILTIN_EVFSCTSF,
2858 SPE_BUILTIN_EVFSCTSI,
2859 SPE_BUILTIN_EVFSCTSIZ,
2860 SPE_BUILTIN_EVFSCTUF,
2861 SPE_BUILTIN_EVFSCTUI,
2862 SPE_BUILTIN_EVFSCTUIZ,
2863 SPE_BUILTIN_EVFSNABS,
2864 SPE_BUILTIN_EVFSNEG,
2865 SPE_BUILTIN_EVMRA,
2866 SPE_BUILTIN_EVNEG,
2867 SPE_BUILTIN_EVRNDW,
2868 SPE_BUILTIN_EVSUBFSMIAAW,
2869 SPE_BUILTIN_EVSUBFSSIAAW,
2870 SPE_BUILTIN_EVSUBFUMIAAW,
2871 SPE_BUILTIN_EVSUBFUSIAAW,
2872 SPE_BUILTIN_EVADDIW,
2873 SPE_BUILTIN_EVLDD,
2874 SPE_BUILTIN_EVLDH,
2875 SPE_BUILTIN_EVLDW,
2876 SPE_BUILTIN_EVLHHESPLAT,
2877 SPE_BUILTIN_EVLHHOSSPLAT,
2878 SPE_BUILTIN_EVLHHOUSPLAT,
2879 SPE_BUILTIN_EVLWHE,
2880 SPE_BUILTIN_EVLWHOS,
2881 SPE_BUILTIN_EVLWHOU,
2882 SPE_BUILTIN_EVLWHSPLAT,
2883 SPE_BUILTIN_EVLWWSPLAT,
2884 SPE_BUILTIN_EVRLWI,
2885 SPE_BUILTIN_EVSLWI,
2886 SPE_BUILTIN_EVSRWIS,
2887 SPE_BUILTIN_EVSRWIU,
2888 SPE_BUILTIN_EVSTDD,
2889 SPE_BUILTIN_EVSTDH,
2890 SPE_BUILTIN_EVSTDW,
2891 SPE_BUILTIN_EVSTWHE,
2892 SPE_BUILTIN_EVSTWHO,
2893 SPE_BUILTIN_EVSTWWE,
2894 SPE_BUILTIN_EVSTWWO,
2895 SPE_BUILTIN_EVSUBIFW,
2896
2897 /* Compares. */
2898 SPE_BUILTIN_EVCMPEQ,
2899 SPE_BUILTIN_EVCMPGTS,
2900 SPE_BUILTIN_EVCMPGTU,
2901 SPE_BUILTIN_EVCMPLTS,
2902 SPE_BUILTIN_EVCMPLTU,
2903 SPE_BUILTIN_EVFSCMPEQ,
2904 SPE_BUILTIN_EVFSCMPGT,
2905 SPE_BUILTIN_EVFSCMPLT,
2906 SPE_BUILTIN_EVFSTSTEQ,
2907 SPE_BUILTIN_EVFSTSTGT,
2908 SPE_BUILTIN_EVFSTSTLT,
2909
2910 /* EVSEL compares. */
2911 SPE_BUILTIN_EVSEL_CMPEQ,
2912 SPE_BUILTIN_EVSEL_CMPGTS,
2913 SPE_BUILTIN_EVSEL_CMPGTU,
2914 SPE_BUILTIN_EVSEL_CMPLTS,
2915 SPE_BUILTIN_EVSEL_CMPLTU,
2916 SPE_BUILTIN_EVSEL_FSCMPEQ,
2917 SPE_BUILTIN_EVSEL_FSCMPGT,
2918 SPE_BUILTIN_EVSEL_FSCMPLT,
2919 SPE_BUILTIN_EVSEL_FSTSTEQ,
2920 SPE_BUILTIN_EVSEL_FSTSTGT,
2921 SPE_BUILTIN_EVSEL_FSTSTLT,
2922
2923 SPE_BUILTIN_EVSPLATFI,
2924 SPE_BUILTIN_EVSPLATI,
2925 SPE_BUILTIN_EVMWHSSMAA,
2926 SPE_BUILTIN_EVMWHSMFAA,
2927 SPE_BUILTIN_EVMWHSMIAA,
2928 SPE_BUILTIN_EVMWHUSIAA,
2929 SPE_BUILTIN_EVMWHUMIAA,
2930 SPE_BUILTIN_EVMWHSSFAN,
2931 SPE_BUILTIN_EVMWHSSIAN,
2932 SPE_BUILTIN_EVMWHSMFAN,
2933 SPE_BUILTIN_EVMWHSMIAN,
2934 SPE_BUILTIN_EVMWHUSIAN,
2935 SPE_BUILTIN_EVMWHUMIAN,
2936 SPE_BUILTIN_EVMWHGSSFAA,
2937 SPE_BUILTIN_EVMWHGSMFAA,
2938 SPE_BUILTIN_EVMWHGSMIAA,
2939 SPE_BUILTIN_EVMWHGUMIAA,
2940 SPE_BUILTIN_EVMWHGSSFAN,
2941 SPE_BUILTIN_EVMWHGSMFAN,
2942 SPE_BUILTIN_EVMWHGSMIAN,
2943 SPE_BUILTIN_EVMWHGUMIAN,
2944 SPE_BUILTIN_MTSPEFSCR,
2945 SPE_BUILTIN_MFSPEFSCR,
2946 SPE_BUILTIN_BRINC,
2947
2948 RS6000_BUILTIN_COUNT
2949 };
2950
2951 enum rs6000_builtin_type_index
2952 {
2953 RS6000_BTI_NOT_OPAQUE,
2954 RS6000_BTI_opaque_V2SI,
2955 RS6000_BTI_opaque_V2SF,
2956 RS6000_BTI_opaque_p_V2SI,
2957 RS6000_BTI_opaque_V4SI,
2958 RS6000_BTI_V16QI,
2959 RS6000_BTI_V2SI,
2960 RS6000_BTI_V2SF,
2961 RS6000_BTI_V4HI,
2962 RS6000_BTI_V4SI,
2963 RS6000_BTI_V4SF,
2964 RS6000_BTI_V8HI,
2965 RS6000_BTI_unsigned_V16QI,
2966 RS6000_BTI_unsigned_V8HI,
2967 RS6000_BTI_unsigned_V4SI,
2968 RS6000_BTI_bool_char, /* __bool char */
2969 RS6000_BTI_bool_short, /* __bool short */
2970 RS6000_BTI_bool_int, /* __bool int */
2971 RS6000_BTI_pixel, /* __pixel */
2972 RS6000_BTI_bool_V16QI, /* __vector __bool char */
2973 RS6000_BTI_bool_V8HI, /* __vector __bool short */
2974 RS6000_BTI_bool_V4SI, /* __vector __bool int */
2975 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
2976 RS6000_BTI_long, /* long_integer_type_node */
2977 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
2978 RS6000_BTI_INTQI, /* intQI_type_node */
2979 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
2980 RS6000_BTI_INTHI, /* intHI_type_node */
2981 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
2982 RS6000_BTI_INTSI, /* intSI_type_node */
2983 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
2984 RS6000_BTI_float, /* float_type_node */
2985 RS6000_BTI_void, /* void_type_node */
2986 RS6000_BTI_MAX
2987 };
2988
2989
2990 #define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
2991 #define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
2992 #define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
2993 #define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2994 #define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
2995 #define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI])
2996 #define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF])
2997 #define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
2998 #define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
2999 #define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
3000 #define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
3001 #define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
3002 #define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
3003 #define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
3004 #define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
3005 #define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
3006 #define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
3007 #define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
3008 #define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
3009 #define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
3010 #define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
3011 #define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
3012
3013 #define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
3014 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
3015 #define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
3016 #define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
3017 #define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
3018 #define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
3019 #define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
3020 #define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
3021 #define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
3022 #define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
3023
3024 extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
3025 extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
3026
This page took 0.174426 seconds and 4 git commands to generate.