]> gcc.gnu.org Git - gcc.git/blob - gcc/config/rs6000/rs6000.h
b3e2a939f7c8eb2d24cc1aa8eb20b0f771fdb139
[gcc.git] / gcc / config / rs6000 / rs6000.h
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21
22 /* Note that some other tm.h files include this one and then override
23 many of the definitions that relate to assembler syntax. */
24
25
26 /* Names to predefine in the preprocessor for this target machine. */
27
28 #define CPP_PREDEFINES "-D_IBMR2 -D_POWER -D_AIX -D_AIX32 \
29 -Asystem(unix) -Asystem(aix) -Acpu(rs6000) -Amachine(rs6000)"
30
31 /* Print subsidiary information on the compiler version in use. */
32 #define TARGET_VERSION ;
33
34 /* Tell the assembler to assume that all undefined names are external.
35
36 Don't do this until the fixed IBM assembler is more generally available.
37 When this becomes permanently defined, the ASM_OUTPUT_EXTERNAL,
38 ASM_OUTPUT_EXTERNAL_LIBCALL, and RS6000_OUTPUT_BASENAME macros will no
39 longer be needed. Also, the extern declaration of mcount in ASM_FILE_START
40 will no longer be needed. */
41
42 /* #define ASM_SPEC "-u" */
43
44 /* Define appropriate architecture macros for preprocessor depending on
45 target switches. */
46
47 #define CPP_SPEC "\
48 %{posix: -D_POSIX_SOURCE} \
49 %{!mcpu*: \
50 %{mpower: %{!mpower2: -D_ARCH_PWR}} \
51 %{mpower2: -D_ARCH_PWR2} \
52 %{mpowerpc*: -D_ARCH_PPC} \
53 %{mno-power: %{!mpowerpc*: -D_ARCH_COM}} \
54 %{!mno-power: %{!mpower2: -D_ARCH_PWR}}} \
55 %{mcpu=common: -D_ARCH_COM} \
56 %{mcpu=power: -D_ARCH_PWR} \
57 %{mcpu=powerpc: -D_ARCH_PPC} \
58 %{mcpu=rios: -D_ARCH_PWR} \
59 %{mcpu=rios1: -D_ARCH_PWR} \
60 %{mcpu=rios2: -D_ARCH_PWR2} \
61 %{mcpu=rsc: -D_ARCH_PWR} \
62 %{mcpu=rsc1: -D_ARCH_PWR} \
63 %{mcpu=601: -D_ARCH_PPC -D_ARCH_PWR} \
64 %{mcpu=mpc601: -D_ARCH_PPC -D_ARCH_PWR} \
65 %{mcpu=ppc601: -D_ARCH_PPC -D_ARCH_PWR} \
66 %{mcpu=603: -D_ARCH_PPC} \
67 %{mcpu=mpc603: -D_ARCH_PPC} \
68 %{mcpu=ppc603: -D_ARCH_PPC} \
69 %{mcpu=604: -D_ARCH_PPC} \
70 %{mcpu=mpc604: -D_ARCH_PPC} \
71 %{mcpu=ppc604: -D_ARCH_PPC}"
72
73 /* Define the options for the binder: Start text at 512, align all segments
74 to 512 bytes, and warn if there is text relocation.
75
76 The -bhalt:4 option supposedly changes the level at which ld will abort,
77 but it also suppresses warnings about multiply defined symbols and is
78 used by the AIX cc command. So we use it here.
79
80 -bnodelcsect undoes a poor choice of default relating to multiply-defined
81 csects. See AIX documentation for more information about this.
82
83 -bM:SRE tells the linker that the output file is Shared REusable. Note
84 that to actually build a shared library you will also need to specify an
85 export list with the -Wl,-bE option. */
86
87 #define LINK_SPEC "-T512 -H512 %{!r:-btextro} -bhalt:4 -bnodelcsect\
88 %{static:-bnso -bI:/lib/syscalls.exp} %{g*:-bexport:/usr/lib/libg.exp}\
89 %{shared:-bM:SRE}"
90
91 /* Profiled library versions are used by linking with special directories. */
92 #define LIB_SPEC "%{pg:-L/lib/profiled -L/usr/lib/profiled}\
93 %{p:-L/lib/profiled -L/usr/lib/profiled} %{g*:-lg} -lc"
94
95 /* gcc must do the search itself to find libgcc.a, not use -l. */
96 #define LIBGCC_SPEC "%{!shared:libgcc.a%s}"
97
98 /* Don't turn -B into -L if the argument specifies a relative file name. */
99 #define RELATIVE_PREFIX_NOT_LINKDIR
100
101 /* The AIX linker will discard static constructors in object files before
102 collect has a chance to see them, so scan the object files directly. */
103 #define COLLECT_SCAN_OBJECTS
104
105 /* Architecture type. */
106
107 extern int target_flags;
108
109 /* Use POWER architecture instructions and MQ register. */
110 #define MASK_POWER 0x01
111
112 /* Use POWER2 extensions to POWER architecture. */
113 #define MASK_POWER2 0x02
114
115 /* Use PowerPC architecture instructions. */
116 #define MASK_POWERPC 0x04
117
118 /* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
119 #define MASK_PPC_GPOPT 0x08
120
121 /* Use PowerPC Graphics group optional instructions, e.g. fsel. */
122 #define MASK_PPC_GFXOPT 0x10
123
124 /* Use PowerPC-64 architecture instructions. */
125 #define MASK_POWERPC64 0x20
126
127 /* Use revised mnemonic names defined for PowerPC architecture. */
128 #define MASK_NEW_MNEMONICS 0x40
129
130 /* Disable placing fp constants in the TOC; can be turned on when the
131 TOC overflows. */
132 #define MASK_NO_FP_IN_TOC 0x80
133
134 /* Disable placing symbol+offset constants in the TOC; can be turned on when
135 the TOC overflows. */
136 #define MASK_NO_SUM_IN_TOC 0x100
137
138 /* Output only one TOC entry per module. Normally linking fails if
139 there are more than 16K unique variables/constants in an executable. With
140 this option, linking fails only if there are more than 16K modules, or
141 if there are more than 16K unique variables/constant in a single module.
142
143 This is at the cost of having 2 extra loads and one extra store per
144 function, and one less allocatable register. */
145 #define MASK_MINIMAL_TOC 0x200
146
147 /* Nonzero for the 64bit model: ints, longs, and pointers are 64 bits. */
148 #define MASK_64BIT 0x400
149
150 /* Disable use of FPRs. */
151 #define MASK_NO_FPR 0x800
152
153 /* Enable load/store multiple, even on powerpc */
154 #define MASK_MULTIPLE 0x1000
155
156 #define TARGET_POWER (target_flags & MASK_POWER)
157 #define TARGET_POWER2 (target_flags & MASK_POWER2)
158 #define TARGET_POWERPC (target_flags & MASK_POWERPC)
159 #define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
160 #define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
161 #define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
162 #define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
163 #define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
164 #define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
165 #define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
166 #define TARGET_64BIT (target_flags & MASK_64BIT)
167 #define TARGET_NO_FPR (target_flags & MASK_NO_FPR)
168 #define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
169
170 /* Run-time compilation parameters selecting different hardware subsets.
171
172 Macro to define tables used to set the flags.
173 This is a list in braces of pairs in braces,
174 each pair being { "NAME", VALUE }
175 where VALUE is the bits to set or minus the bits to clear.
176 An empty string NAME is used to identify the default VALUE. */
177
178 /* This is meant to be redefined in the host dependent files */
179 #ifndef SUBTARGET_SWITCHES
180 #define SUBTARGET_SWITCHES
181 #endif
182
183 #define TARGET_SWITCHES \
184 {{"power", MASK_POWER}, \
185 {"power2", MASK_POWER | MASK_POWER2}, \
186 {"no-power2", - MASK_POWER2}, \
187 {"no-power", - (MASK_POWER | MASK_POWER2)}, \
188 {"powerpc", MASK_POWERPC}, \
189 {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
190 | MASK_PPC_GFXOPT | MASK_POWERPC64)}, \
191 {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT}, \
192 {"no-powerpc-gpopt", - MASK_PPC_GPOPT}, \
193 {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT}, \
194 {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT}, \
195 {"new-mnemonics", MASK_NEW_MNEMONICS}, \
196 {"old-mnemonics", -MASK_NEW_MNEMONICS}, \
197 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
198 | MASK_MINIMAL_TOC)}, \
199 {"fp-in-toc", - MASK_NO_FP_IN_TOC}, \
200 {"no-fp-in-toc", MASK_NO_FP_IN_TOC}, \
201 {"sum-in-toc", - MASK_NO_SUM_IN_TOC}, \
202 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC}, \
203 {"minimal-toc", MASK_MINIMAL_TOC}, \
204 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC)}, \
205 {"no-minimal-toc", - MASK_MINIMAL_TOC}, \
206 {"fp-regs", - MASK_NO_FPR}, \
207 {"no-fp-regs", MASK_NO_FPR}, \
208 {"multiple", MASK_MULTIPLE}, \
209 {"no-multiple", - MASK_MULTIPLE}, \
210 SUBTARGET_SWITCHES \
211 {"", TARGET_DEFAULT}}
212
213 #define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE)
214
215 /* Processor type. */
216 enum processor_type
217 {PROCESSOR_RIOS1,
218 PROCESSOR_RIOS2,
219 PROCESSOR_PPC601,
220 PROCESSOR_PPC603,
221 PROCESSOR_PPC604,
222 PROCESSOR_PPC620};
223
224 extern enum processor_type rs6000_cpu;
225
226 /* Recast the processor type to the cpu attribute. */
227 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
228
229 /* Define generic processor types based upon current deployment. */
230 #define PROCESSOR_COMMON PROCESSOR_PPC601
231 #define PROCESSOR_POWER PROCESSOR_RIOS1
232 #define PROCESSOR_POWERPC PROCESSOR_PPC601
233
234 /* Define the default processor. This is overridden by other tm.h files. */
235 #define PROCESSOR_DEFAULT PROCESSOR_RIOS1
236
237 /* Specify the dialect of assembler to use. New mnemonics is dialect one
238 and the old mnemonics are dialect zero. */
239 #define ASSEMBLER_DIALECT TARGET_NEW_MNEMONICS ? 1 : 0
240
241 /* This macro is similar to `TARGET_SWITCHES' but defines names of
242 command options that have values. Its definition is an
243 initializer with a subgrouping for each command option.
244
245 Each subgrouping contains a string constant, that defines the
246 fixed part of the option name, and the address of a variable.
247 The variable, type `char *', is set to the variable part of the
248 given option if the fixed part matches. The actual option name
249 is made by appending `-m' to the specified name.
250
251 Here is an example which defines `-mshort-data-NUMBER'. If the
252 given option is `-mshort-data-512', the variable `m88k_short_data'
253 will be set to the string `"512"'.
254
255 extern char *m88k_short_data;
256 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
257
258 #define TARGET_OPTIONS \
259 { {"cpu=", &rs6000_cpu_string}}
260
261 extern char *rs6000_cpu_string;
262
263 /* Sometimes certain combinations of command options do not make sense
264 on a particular target machine. You can define a macro
265 `OVERRIDE_OPTIONS' to take account of this. This macro, if
266 defined, is executed once just after all the command options have
267 been parsed.
268
269 On the RS/6000 this is used to define the target cpu type. */
270
271 #define OVERRIDE_OPTIONS \
272 do { \
273 rs6000_override_options (); \
274 SUBTARGET_OVERRIDE_OPTIONS; \
275 } while (0)
276
277 /* For OS-dependent options */
278 #ifndef SUBTARGET_OVERRIDE_OPTIONS
279 #define SUBTARGET_OVERRIDE_OPTIONS
280 #endif
281
282 /* Show we can debug even without a frame pointer. */
283 #define CAN_DEBUG_WITHOUT_FP
284 \f
285 /* target machine storage layout */
286
287 /* Define to support cross compilation to an RS6000 target. */
288 #define REAL_ARITHMETIC
289
290 /* Define this macro if it is advisable to hold scalars in registers
291 in a wider mode than that declared by the program. In such cases,
292 the value is constrained to be within the bounds of the declared
293 type, but kept valid in the wider mode. The signedness of the
294 extension may differ from that of the type. */
295
296 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
297 if (GET_MODE_CLASS (MODE) == MODE_INT \
298 && GET_MODE_SIZE (MODE) < 4) \
299 (MODE) = SImode;
300
301 /* Define this if most significant bit is lowest numbered
302 in instructions that operate on numbered bit-fields. */
303 /* That is true on RS/6000. */
304 #define BITS_BIG_ENDIAN 1
305
306 /* Define this if most significant byte of a word is the lowest numbered. */
307 /* That is true on RS/6000. */
308 #define BYTES_BIG_ENDIAN 1
309
310 /* Define this if most significant word of a multiword number is lowest
311 numbered.
312
313 For RS/6000 we can decide arbitrarily since there are no machine
314 instructions for them. Might as well be consistent with bits and bytes. */
315 #define WORDS_BIG_ENDIAN 1
316
317 /* number of bits in an addressable storage unit */
318 #define BITS_PER_UNIT 8
319
320 /* Width in bits of a "word", which is the contents of a machine register.
321 Note that this is not necessarily the width of data type `int';
322 if using 16-bit ints on a 68000, this would still be 32.
323 But on a machine with 16-bit registers, this would be 16. */
324 #define BITS_PER_WORD (TARGET_POWERPC64 ? 64 : 32)
325 #define MAX_BITS_PER_WORD 64
326
327 /* Width of a word, in units (bytes). */
328 #define UNITS_PER_WORD (TARGET_POWERPC64 ? 8 : 4)
329 #define MIN_UNITS_PER_WORD 4
330 #define UNITS_PER_FP_WORD 8
331
332 /* Type used for ptrdiff_t, as a string used in a declaration. */
333 #define PTRDIFF_TYPE "int"
334
335 /* Type used for wchar_t, as a string used in a declaration. */
336 #define WCHAR_TYPE "short unsigned int"
337
338 /* Width of wchar_t in bits. */
339 #define WCHAR_TYPE_SIZE 16
340
341 /* A C expression for the size in bits of the type `short' on the
342 target machine. If you don't define this, the default is half a
343 word. (If this would be less than one storage unit, it is
344 rounded up to one unit.) */
345 #define SHORT_TYPE_SIZE 16
346
347 /* A C expression for the size in bits of the type `int' on the
348 target machine. If you don't define this, the default is one
349 word. */
350 #define INT_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
351 #define MAX_INT_TYPE_SIZE 64
352
353 /* A C expression for the size in bits of the type `long' on the
354 target machine. If you don't define this, the default is one
355 word. */
356 #define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
357 #define MAX_LONG_TYPE_SIZE 64
358
359 /* A C expression for the size in bits of the type `long long' on the
360 target machine. If you don't define this, the default is two
361 words. */
362 #define LONG_LONG_TYPE_SIZE 64
363
364 /* A C expression for the size in bits of the type `char' on the
365 target machine. If you don't define this, the default is one
366 quarter of a word. (If this would be less than one storage unit,
367 it is rounded up to one unit.) */
368 #define CHAR_TYPE_SIZE BITS_PER_UNIT
369
370 /* A C expression for the size in bits of the type `float' on the
371 target machine. If you don't define this, the default is one
372 word. */
373 #define FLOAT_TYPE_SIZE 32
374
375 /* A C expression for the size in bits of the type `double' on the
376 target machine. If you don't define this, the default is two
377 words. */
378 #define DOUBLE_TYPE_SIZE 64
379
380 /* A C expression for the size in bits of the type `long double' on
381 the target machine. If you don't define this, the default is two
382 words. */
383 #define LONG_DOUBLE_TYPE_SIZE 64
384
385 /* Width in bits of a pointer.
386 See also the macro `Pmode' defined below. */
387 #define POINTER_SIZE (TARGET_64BIT ? 64 : 32)
388
389 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
390 #define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
391
392 /* Boundary (in *bits*) on which stack pointer should be aligned. */
393 #define STACK_BOUNDARY 64
394
395 /* Allocation boundary (in *bits*) for the code of a function. */
396 #define FUNCTION_BOUNDARY 32
397
398 /* No data type wants to be aligned rounder than this. */
399 #define BIGGEST_ALIGNMENT (TARGET_64BIT ? 64 : 32)
400
401 /* Alignment of field after `int : 0' in a structure. */
402 #define EMPTY_FIELD_BOUNDARY 32
403
404 /* Every structure's size must be a multiple of this. */
405 #define STRUCTURE_SIZE_BOUNDARY 8
406
407 /* A bitfield declared as `int' forces `int' alignment for the struct. */
408 #define PCC_BITFIELD_TYPE_MATTERS 1
409
410 /* Make strings word-aligned so strcpy from constants will be faster. */
411 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
412 (TREE_CODE (EXP) == STRING_CST \
413 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
414
415 /* Make arrays of chars word-aligned for the same reasons. */
416 #define DATA_ALIGNMENT(TYPE, ALIGN) \
417 (TREE_CODE (TYPE) == ARRAY_TYPE \
418 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
419 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
420
421 /* Non-zero if move instructions will actually fail to work
422 when given unaligned data. */
423 #define STRICT_ALIGNMENT 0
424 \f
425 /* Standard register usage. */
426
427 /* Number of actual hardware registers.
428 The hardware registers are assigned numbers for the compiler
429 from 0 to just below FIRST_PSEUDO_REGISTER.
430 All registers that the compiler knows about must be given numbers,
431 even those that are not normally considered general registers.
432
433 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
434 an MQ register, a count register, a link register, and 8 condition
435 register fields, which we view here as separate registers.
436
437 In addition, the difference between the frame and argument pointers is
438 a function of the number of registers saved, so we need to have a
439 register for AP that will later be eliminated in favor of SP or FP.
440 This is a normal register, but it is fixed. */
441
442 #define FIRST_PSEUDO_REGISTER 76
443
444 /* 1 for registers that have pervasive standard uses
445 and are not available for the register allocator.
446
447 On RS/6000, r1 is used for the stack and r2 is used as the TOC pointer.
448
449 cr5 is not supposed to be used. */
450
451 #define FIXED_REGISTERS \
452 {0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
453 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
454 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
455 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
456 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0}
457
458 /* 1 for registers not available across function calls.
459 These must include the FIXED_REGISTERS and also any
460 registers that can be used without being saved.
461 The latter must include the registers where values are returned
462 and the register where structure-value addresses are passed.
463 Aside from that, you can include as many other registers as you like. */
464
465 #define CALL_USED_REGISTERS \
466 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, \
467 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
468 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
469 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
470 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1}
471
472 /* List the order in which to allocate registers. Each register must be
473 listed once, even those in FIXED_REGISTERS.
474
475 We allocate in the following order:
476 fp0 (not saved or used for anything)
477 fp13 - fp2 (not saved; incoming fp arg registers)
478 fp1 (not saved; return value)
479 fp31 - fp14 (saved; order given to save least number)
480 cr1, cr6, cr7 (not saved or special)
481 cr0 (not saved, but used for arithmetic operations)
482 cr2, cr3, cr4 (saved)
483 r0 (not saved; cannot be base reg)
484 r9 (not saved; best for TImode)
485 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
486 r3 (not saved; return value register)
487 r31 - r13 (saved; order given to save least number)
488 r12 (not saved; if used for DImode or DFmode would use r13)
489 mq (not saved; best to use it if we can)
490 ctr (not saved; when we have the choice ctr is better)
491 lr (saved)
492 cr5, r1, r2, ap (fixed) */
493
494 #define REG_ALLOC_ORDER \
495 {32, \
496 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
497 33, \
498 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
499 50, 49, 48, 47, 46, \
500 69, 74, 75, 68, 70, 71, 72, \
501 0, \
502 9, 11, 10, 8, 7, 6, 5, 4, \
503 3, \
504 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
505 18, 17, 16, 15, 14, 13, 12, \
506 64, 66, 65, \
507 73, 1, 2, 67}
508
509 /* True if register is floating-point. */
510 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
511
512 /* True if register is a condition register. */
513 #define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
514
515 /* True if register is an integer register. */
516 #define INT_REGNO_P(N) ((N) <= 31 || (N) == 67)
517
518 /* Return number of consecutive hard regs needed starting at reg REGNO
519 to hold something of mode MODE.
520 This is ordinarily the length in words of a value of mode MODE
521 but can be less for certain modes in special long registers.
522
523 On RS/6000, ordinary registers hold 32 bits worth;
524 a single floating point register holds 64 bits worth. */
525
526 #define HARD_REGNO_NREGS(REGNO, MODE) \
527 (FP_REGNO_P (REGNO) \
528 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
529 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
530
531 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
532 For POWER and PowerPC, the GPRs can hold any mode, but the float
533 registers only can hold floating modes and DImode, and CR register only
534 can hold CC modes. We cannot put TImode anywhere except general
535 register and it must be able to fit within the register set. */
536
537 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
538 (FP_REGNO_P (REGNO) ? \
539 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
540 || (GET_MODE_CLASS (MODE) == MODE_INT \
541 && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
542 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
543 : ! INT_REGNO_P (REGNO) ? (GET_MODE_CLASS (MODE) == MODE_INT \
544 && GET_MODE_SIZE (MODE) <= UNITS_PER_WORD) \
545 : 1)
546
547 /* Value is 1 if it is a good idea to tie two pseudo registers
548 when one has mode MODE1 and one has mode MODE2.
549 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
550 for any hard reg, then this must be 0 for correct output. */
551 #define MODES_TIEABLE_P(MODE1, MODE2) \
552 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
553 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
554 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
555 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
556 : GET_MODE_CLASS (MODE1) == MODE_CC \
557 ? GET_MODE_CLASS (MODE2) == MODE_CC \
558 : GET_MODE_CLASS (MODE2) == MODE_CC \
559 ? GET_MODE_CLASS (MODE1) == MODE_CC \
560 : 1)
561
562 /* A C expression returning the cost of moving data from a register of class
563 CLASS1 to one of CLASS2.
564
565 On the RS/6000, copying between floating-point and fixed-point
566 registers is expensive. */
567
568 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
569 ((CLASS1) == FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 2 \
570 : (CLASS1) == FLOAT_REGS && (CLASS2) != FLOAT_REGS ? 10 \
571 : (CLASS1) != FLOAT_REGS && (CLASS2) == FLOAT_REGS ? 10 \
572 : (((CLASS1) == SPECIAL_REGS || (CLASS1) == MQ_REGS \
573 || (CLASS1) == LINK_REGS || (CLASS1) == CTR_REGS \
574 || (CLASS1) == LINK_OR_CTR_REGS) \
575 && ((CLASS2) == SPECIAL_REGS || (CLASS2) == MQ_REGS \
576 || (CLASS2) == LINK_REGS || (CLASS2) == CTR_REGS \
577 || (CLASS2) == LINK_OR_CTR_REGS)) ? 10 \
578 : 2)
579
580 /* A C expressions returning the cost of moving data of MODE from a register to
581 or from memory.
582
583 On the RS/6000, bump this up a bit. */
584
585 #define MEMORY_MOVE_COST(MODE) \
586 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
587 && (rs6000_cpu == PROCESSOR_RIOS1 || rs6000_cpu == PROCESSOR_PPC601) \
588 ? 3 : 2) \
589 + 4)
590
591 /* Specify the cost of a branch insn; roughly the number of extra insns that
592 should be added to avoid a branch.
593
594 Set this to 3 on the RS/6000 since that is roughly the average cost of an
595 unscheduled conditional branch. */
596
597 #define BRANCH_COST 3
598
599 /* A C statement (sans semicolon) to update the integer variable COST
600 based on the relationship between INSN that is dependent on
601 DEP_INSN through the dependence LINK. The default is to make no
602 adjustment to COST. On the RS/6000, ignore the cost of anti- and
603 output-dependencies. In fact, output dependencies on the CR do have
604 a cost, but it is probably not worthwhile to track it. */
605
606 #define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
607 (COST) = rs6000_adjust_cost (INSN,LINK,DEP_INSN,COST)
608
609 /* Define this macro to change register usage conditional on target flags.
610 Set MQ register fixed (already call_used) if not POWER architecture
611 (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
612 Conditionally disable FPRs. */
613
614 #define CONDITIONAL_REGISTER_USAGE \
615 { \
616 if (! TARGET_POWER) \
617 fixed_regs[64] = 1; \
618 if (TARGET_NO_FPR) \
619 for (i = 32; i < 64; i++) \
620 fixed_regs[i] = call_used_regs[i] = 1; \
621 }
622
623 /* Specify the registers used for certain standard purposes.
624 The values of these macros are register numbers. */
625
626 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
627 /* #define PC_REGNUM */
628
629 /* Register to use for pushing function arguments. */
630 #define STACK_POINTER_REGNUM 1
631
632 /* Base register for access to local variables of the function. */
633 #define FRAME_POINTER_REGNUM 31
634
635 /* Value should be nonzero if functions must have frame pointers.
636 Zero means the frame pointer need not be set up (and parms
637 may be accessed via the stack pointer) in functions that seem suitable.
638 This is computed in `reload', in reload1.c. */
639 #define FRAME_POINTER_REQUIRED 0
640
641 /* Base register for access to arguments of the function. */
642 #define ARG_POINTER_REGNUM 67
643
644 /* Place to put static chain when calling a function that requires it. */
645 #define STATIC_CHAIN_REGNUM 11
646
647 /* Place that structure value return address is placed.
648
649 On the RS/6000, it is passed as an extra parameter. */
650 #define STRUCT_VALUE 0
651 \f
652 /* Define the classes of registers for register constraints in the
653 machine description. Also define ranges of constants.
654
655 One of the classes must always be named ALL_REGS and include all hard regs.
656 If there is more than one class, another class must be named NO_REGS
657 and contain no registers.
658
659 The name GENERAL_REGS must be the name of a class (or an alias for
660 another name such as ALL_REGS). This is the class of registers
661 that is allowed by "g" or "r" in a register constraint.
662 Also, registers outside this class are allocated only when
663 instructions express preferences for them.
664
665 The classes must be numbered in nondecreasing order; that is,
666 a larger-numbered class must never be contained completely
667 in a smaller-numbered class.
668
669 For any two classes, it is very desirable that there be another
670 class that represents their union. */
671
672 /* The RS/6000 has three types of registers, fixed-point, floating-point,
673 and condition registers, plus three special registers, MQ, CTR, and the
674 link register.
675
676 However, r0 is special in that it cannot be used as a base register.
677 So make a class for registers valid as base registers.
678
679 Also, cr0 is the only condition code register that can be used in
680 arithmetic insns, so make a separate class for it. */
681
682 enum reg_class { NO_REGS, BASE_REGS, GENERAL_REGS, FLOAT_REGS,
683 NON_SPECIAL_REGS, MQ_REGS, LINK_REGS, CTR_REGS, LINK_OR_CTR_REGS,
684 SPECIAL_REGS, SPEC_OR_GEN_REGS, CR0_REGS, CR_REGS, NON_FLOAT_REGS,
685 ALL_REGS, LIM_REG_CLASSES };
686
687 #define N_REG_CLASSES (int) LIM_REG_CLASSES
688
689 /* Give names of register classes as strings for dump file. */
690
691 #define REG_CLASS_NAMES \
692 { "NO_REGS", "BASE_REGS", "GENERAL_REGS", "FLOAT_REGS", \
693 "NON_SPECIAL_REGS", "MQ_REGS", "LINK_REGS", "CTR_REGS", \
694 "LINK_OR_CTR_REGS", "SPECIAL_REGS", "SPEC_OR_GEN_REGS", \
695 "CR0_REGS", "CR_REGS", "NON_FLOAT_REGS", "ALL_REGS" }
696
697 /* Define which registers fit in which classes.
698 This is an initializer for a vector of HARD_REG_SET
699 of length N_REG_CLASSES. */
700
701 #define REG_CLASS_CONTENTS \
702 { {0, 0, 0}, {0xfffffffe, 0, 8}, {~0, 0, 8}, \
703 {0, ~0, 0}, {~0, ~0, 8}, {0, 0, 1}, {0, 0, 2}, \
704 {0, 0, 4}, {0, 0, 6}, {0, 0, 7}, {~0, 0, 15}, \
705 {0, 0, 16}, {0, 0, 0xff0}, {~0, 0, 0xffff}, \
706 {~0, ~0, 0xffff} }
707
708 /* The same information, inverted:
709 Return the class number of the smallest class containing
710 reg number REGNO. This could be a conditional expression
711 or could index an array. */
712
713 #define REGNO_REG_CLASS(REGNO) \
714 ((REGNO) == 0 ? GENERAL_REGS \
715 : (REGNO) < 32 ? BASE_REGS \
716 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
717 : (REGNO) == 68 ? CR0_REGS \
718 : CR_REGNO_P (REGNO) ? CR_REGS \
719 : (REGNO) == 64 ? MQ_REGS \
720 : (REGNO) == 65 ? LINK_REGS \
721 : (REGNO) == 66 ? CTR_REGS \
722 : (REGNO) == 67 ? BASE_REGS \
723 : NO_REGS)
724
725 /* The class value for index registers, and the one for base regs. */
726 #define INDEX_REG_CLASS GENERAL_REGS
727 #define BASE_REG_CLASS BASE_REGS
728
729 /* Get reg_class from a letter such as appears in the machine description. */
730
731 #define REG_CLASS_FROM_LETTER(C) \
732 ((C) == 'f' ? FLOAT_REGS \
733 : (C) == 'b' ? BASE_REGS \
734 : (C) == 'h' ? SPECIAL_REGS \
735 : (C) == 'q' ? MQ_REGS \
736 : (C) == 'c' ? CTR_REGS \
737 : (C) == 'l' ? LINK_REGS \
738 : (C) == 'x' ? CR0_REGS \
739 : (C) == 'y' ? CR_REGS \
740 : NO_REGS)
741
742 /* The letters I, J, K, L, M, N, and P in a register constraint string
743 can be used to stand for particular ranges of immediate operands.
744 This macro defines what the ranges are.
745 C is the letter, and VALUE is a constant value.
746 Return 1 if VALUE is in the range specified by C.
747
748 `I' is signed 16-bit constants
749 `J' is a constant with only the high-order 16 bits non-zero
750 `K' is a constant with only the low-order 16 bits non-zero
751 `L' is a constant that can be placed into a mask operand
752 `M' is a constant that is greater than 31
753 `N' is a constant that is an exact power of two
754 `O' is the constant zero
755 `P' is a constant whose negation is a signed 16-bit constant */
756
757 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
758 ( (C) == 'I' ? (unsigned) ((VALUE) + 0x8000) < 0x10000 \
759 : (C) == 'J' ? ((VALUE) & 0xffff) == 0 \
760 : (C) == 'K' ? ((VALUE) & 0xffff0000) == 0 \
761 : (C) == 'L' ? mask_constant (VALUE) \
762 : (C) == 'M' ? (VALUE) > 31 \
763 : (C) == 'N' ? exact_log2 (VALUE) >= 0 \
764 : (C) == 'O' ? (VALUE) == 0 \
765 : (C) == 'P' ? (unsigned) ((- (VALUE)) + 0x8000) < 0x1000 \
766 : 0)
767
768 /* Similar, but for floating constants, and defining letters G and H.
769 Here VALUE is the CONST_DOUBLE rtx itself.
770
771 We flag for special constants when we can copy the constant into
772 a general register in two insns for DF and one insn for SF. */
773
774 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
775 ((C) == 'G' ? easy_fp_constant (VALUE, GET_MODE (VALUE)) : 0)
776
777 /* Optional extra constraints for this machine.
778
779 For the RS/6000, `Q' means that this is a memory operand that is just
780 an offset from a register. */
781
782 #define EXTRA_CONSTRAINT(OP, C) \
783 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
784 : (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP) \
785 : 0)
786
787 /* Given an rtx X being reloaded into a reg required to be
788 in class CLASS, return the class of reg to actually use.
789 In general this is just CLASS; but on some machines
790 in some cases it is preferable to use a more restrictive class.
791
792 On the RS/6000, we have to return NO_REGS when we want to reload a
793 floating-point CONST_DOUBLE to force it to be copied to memory. */
794
795 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
796 ((GET_CODE (X) == CONST_DOUBLE \
797 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
798 ? NO_REGS : (CLASS))
799
800 /* Return the register class of a scratch register needed to copy IN into
801 or out of a register in CLASS in MODE. If it can be done directly,
802 NO_REGS is returned. */
803
804 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
805 secondary_reload_class (CLASS, MODE, IN)
806
807 /* If we are copying between FP registers and anything else, we need a memory
808 location. */
809
810 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
811 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS || (CLASS2) == FLOAT_REGS))
812
813 /* Return the maximum number of consecutive registers
814 needed to represent mode MODE in a register of class CLASS.
815
816 On RS/6000, this is the size of MODE in words,
817 except in the FP regs, where a single reg is enough for two words. */
818 #define CLASS_MAX_NREGS(CLASS, MODE) \
819 ((CLASS) == FLOAT_REGS \
820 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
821 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
822
823 /* If defined, gives a class of registers that cannot be used as the
824 operand of a SUBREG that changes the size of the object. */
825
826 #define CLASS_CANNOT_CHANGE_SIZE FLOAT_REGS
827 \f
828 /* Stack layout; function entry, exit and calling. */
829
830 /* Define this if pushing a word on the stack
831 makes the stack pointer a smaller address. */
832 #define STACK_GROWS_DOWNWARD
833
834 /* Define this if the nominal address of the stack frame
835 is at the high-address end of the local variables;
836 that is, each additional local variable allocated
837 goes at a more negative offset in the frame.
838
839 On the RS/6000, we grow upwards, from the area after the outgoing
840 arguments. */
841 /* #define FRAME_GROWS_DOWNWARD */
842
843 /* Offset within stack frame to start allocating local variables at.
844 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
845 first local allocated. Otherwise, it is the offset to the BEGINNING
846 of the first local allocated.
847
848 On the RS/6000, the frame pointer is the same as the stack pointer,
849 except for dynamic allocations. So we start after the fixed area and
850 outgoing parameter area. */
851
852 #define STARTING_FRAME_OFFSET (current_function_outgoing_args_size \
853 + (TARGET_64BIT ? 48 : 24))
854
855 /* If we generate an insn to push BYTES bytes,
856 this says how many the stack pointer really advances by.
857 On RS/6000, don't define this because there are no push insns. */
858 /* #define PUSH_ROUNDING(BYTES) */
859
860 /* Offset of first parameter from the argument pointer register value.
861 On the RS/6000, we define the argument pointer to the start of the fixed
862 area. */
863 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_64BIT ? 48 : 24)
864
865 /* Define this if stack space is still allocated for a parameter passed
866 in a register. The value is the number of bytes allocated to this
867 area. */
868 #define REG_PARM_STACK_SPACE(FNDECL) (TARGET_64BIT ? 64 : 32)
869
870 /* Define this if the above stack space is to be considered part of the
871 space allocated by the caller. */
872 #define OUTGOING_REG_PARM_STACK_SPACE
873
874 /* This is the difference between the logical top of stack and the actual sp.
875
876 For the RS/6000, sp points past the fixed area. */
877 #define STACK_POINTER_OFFSET (TARGET_64BIT ? 48 : 24)
878
879 /* Define this if the maximum size of all the outgoing args is to be
880 accumulated and pushed during the prologue. The amount can be
881 found in the variable current_function_outgoing_args_size. */
882 #define ACCUMULATE_OUTGOING_ARGS
883
884 /* Value is the number of bytes of arguments automatically
885 popped when returning from a subroutine call.
886 FUNTYPE is the data type of the function (as a tree),
887 or for a library call it is an identifier node for the subroutine name.
888 SIZE is the number of bytes of arguments passed on the stack. */
889
890 #define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
891
892 /* Define how to find the value returned by a function.
893 VALTYPE is the data type of the value (as a tree).
894 If the precise function being called is known, FUNC is its FUNCTION_DECL;
895 otherwise, FUNC is 0.
896
897 On RS/6000 an integer value is in r3 and a floating-point value is in
898 fp1. */
899
900 #define FUNCTION_VALUE(VALTYPE, FUNC) \
901 gen_rtx (REG, TYPE_MODE (VALTYPE), \
902 TREE_CODE (VALTYPE) == REAL_TYPE ? 33 : 3)
903
904 /* Define how to find the value returned by a library function
905 assuming the value has mode MODE. */
906
907 #define LIBCALL_VALUE(MODE) \
908 gen_rtx (REG, MODE, GET_MODE_CLASS (MODE) == MODE_FLOAT ? 33 : 3)
909
910 /* The definition of this macro implies that there are cases where
911 a scalar value cannot be returned in registers.
912
913 For the RS/6000, any structure or union type is returned in memory. */
914
915 #define RETURN_IN_MEMORY(TYPE) \
916 (TYPE_MODE (TYPE) == BLKmode)
917
918 /* 1 if N is a possible register number for a function value
919 as seen by the caller.
920
921 On RS/6000, this is r3 and fp1. */
922
923 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 3 || ((N) == 33))
924
925 /* 1 if N is a possible register number for function argument passing.
926 On RS/6000, these are r3-r10 and fp1-fp13. */
927
928 #define FUNCTION_ARG_REGNO_P(N) \
929 (((N) <= 10 && (N) >= 3) || ((N) >= 33 && (N) <= 45))
930 \f
931 /* Define a data type for recording info about an argument list
932 during the scan of that argument list. This data type should
933 hold all necessary information about the function itself
934 and about the args processed so far, enough to enable macros
935 such as FUNCTION_ARG to determine where the next arg should go.
936
937 On the RS/6000, this is a structure. The first element is the number of
938 total argument words, the second is used to store the next
939 floating-point register number, and the third says how many more args we
940 have prototype types for. */
941
942 struct rs6000_args {int words, fregno, nargs_prototype; };
943 #define CUMULATIVE_ARGS struct rs6000_args
944
945 /* Define intermediate macro to compute the size (in registers) of an argument
946 for the RS/6000. */
947
948 #define RS6000_ARG_SIZE(MODE, TYPE, NAMED) \
949 (! (NAMED) ? 0 \
950 : (MODE) != BLKmode \
951 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
952 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
953
954 /* Initialize a variable CUM of type CUMULATIVE_ARGS
955 for a call to a function whose data type is FNTYPE.
956 For a library call, FNTYPE is 0. */
957
958 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
959 (CUM).words = 0, \
960 (CUM).fregno = 33, \
961 (CUM).nargs_prototype = (FNTYPE && TYPE_ARG_TYPES (FNTYPE) \
962 ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1 \
963 + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
964 || RETURN_IN_MEMORY (TREE_TYPE (FNTYPE)))) \
965 : 0)
966
967 /* Similar, but when scanning the definition of a procedure. We always
968 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
969
970 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
971 (CUM).words = 0, \
972 (CUM).fregno = 33, \
973 (CUM).nargs_prototype = 1000
974
975 /* Update the data in CUM to advance over an argument
976 of mode MODE and data type TYPE.
977 (TYPE is null for libcalls where that information may not be available.) */
978
979 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
980 { (CUM).nargs_prototype--; \
981 if (NAMED) \
982 { \
983 (CUM).words += RS6000_ARG_SIZE (MODE, TYPE, NAMED); \
984 if (GET_MODE_CLASS (MODE) == MODE_FLOAT) \
985 (CUM).fregno++; \
986 } \
987 }
988
989 /* Non-zero if we can use a floating-point register to pass this arg. */
990 #define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
991 (GET_MODE_CLASS (MODE) == MODE_FLOAT && (CUM).fregno < 46)
992
993 /* Determine where to put an argument to a function.
994 Value is zero to push the argument on the stack,
995 or a hard register in which to store the argument.
996
997 MODE is the argument's machine mode.
998 TYPE is the data type of the argument (as a tree).
999 This is null for libcalls where that information may
1000 not be available.
1001 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1002 the preceding args and about the function being called.
1003 NAMED is nonzero if this argument is a named parameter
1004 (otherwise it is an extra parameter matching an ellipsis).
1005
1006 On RS/6000 the first eight words of non-FP are normally in registers
1007 and the rest are pushed. The first 13 FP args are in registers.
1008
1009 If this is floating-point and no prototype is specified, we use
1010 both an FP and integer register (or possibly FP reg and stack). Library
1011 functions (when TYPE is zero) always have the proper types for args,
1012 so we can pass the FP value just in one register. emit_library_function
1013 doesn't support EXPR_LIST anyway. */
1014
1015 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1016 (! (NAMED) ? 0 \
1017 : ((TYPE) != 0 && TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST) ? 0 \
1018 : USE_FP_FOR_ARG_P (CUM, MODE, TYPE) \
1019 ? ((CUM).nargs_prototype > 0 || (TYPE) == 0 \
1020 ? gen_rtx (REG, MODE, (CUM).fregno) \
1021 : ((CUM).words < 8 \
1022 ? gen_rtx (EXPR_LIST, VOIDmode, \
1023 gen_rtx (REG, (MODE), 3 + (CUM).words), \
1024 gen_rtx (REG, (MODE), (CUM).fregno)) \
1025 : gen_rtx (EXPR_LIST, VOIDmode, 0, \
1026 gen_rtx (REG, (MODE), (CUM).fregno)))) \
1027 : (CUM).words < 8 ? gen_rtx(REG, (MODE), 3 + (CUM).words) : 0)
1028
1029 /* For an arg passed partly in registers and partly in memory,
1030 this is the number of registers used.
1031 For args passed entirely in registers or entirely in memory, zero. */
1032
1033 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1034 (! (NAMED) ? 0 \
1035 : USE_FP_FOR_ARG_P (CUM, MODE, TYPE) && (CUM).nargs_prototype >= 0 ? 0 \
1036 : (((CUM).words < 8 \
1037 && 8 < ((CUM).words + RS6000_ARG_SIZE (MODE, TYPE, NAMED))) \
1038 ? 8 - (CUM).words : 0))
1039
1040 /* Perform any needed actions needed for a function that is receiving a
1041 variable number of arguments.
1042
1043 CUM is as above.
1044
1045 MODE and TYPE are the mode and type of the current parameter.
1046
1047 PRETEND_SIZE is a variable that should be set to the amount of stack
1048 that must be pushed by the prolog to pretend that our caller pushed
1049 it.
1050
1051 Normally, this macro will push all remaining incoming registers on the
1052 stack and set PRETEND_SIZE to the length of the registers pushed. */
1053
1054 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1055 { if ((CUM).words < 8) \
1056 { \
1057 int first_reg_offset = (CUM).words; \
1058 \
1059 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
1060 first_reg_offset += RS6000_ARG_SIZE (TYPE_MODE (TYPE), TYPE, 1); \
1061 \
1062 if (first_reg_offset > 8) \
1063 first_reg_offset = 8; \
1064 \
1065 if (! (NO_RTL) && first_reg_offset != 8) \
1066 move_block_from_reg \
1067 (3 + first_reg_offset, \
1068 gen_rtx (MEM, BLKmode, \
1069 plus_constant (virtual_incoming_args_rtx, \
1070 first_reg_offset * 4)), \
1071 8 - first_reg_offset, (8 - first_reg_offset) * UNITS_PER_WORD); \
1072 PRETEND_SIZE = (8 - first_reg_offset) * UNITS_PER_WORD; \
1073 } \
1074 }
1075
1076 /* This macro generates the assembly code for function entry.
1077 FILE is a stdio stream to output the code to.
1078 SIZE is an int: how many units of temporary storage to allocate.
1079 Refer to the array `regs_ever_live' to determine which registers
1080 to save; `regs_ever_live[I]' is nonzero if register number I
1081 is ever used in the function. This macro is responsible for
1082 knowing which registers should not be saved even if used. */
1083
1084 #define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
1085
1086 /* Output assembler code to FILE to increment profiler label # LABELNO
1087 for profiling a function entry. */
1088
1089 #define FUNCTION_PROFILER(FILE, LABELNO) \
1090 output_function_profiler ((FILE), (LABELNO));
1091
1092 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1093 the stack pointer does not matter. No definition is equivalent to
1094 always zero.
1095
1096 On the RS/6000, this is non-zero because we can restore the stack from
1097 its backpointer, which we maintain. */
1098 #define EXIT_IGNORE_STACK 1
1099
1100 /* This macro generates the assembly code for function exit,
1101 on machines that need it. If FUNCTION_EPILOGUE is not defined
1102 then individual return instructions are generated for each
1103 return statement. Args are same as for FUNCTION_PROLOGUE.
1104
1105 The function epilogue should not depend on the current stack pointer!
1106 It should use the frame pointer only. This is mandatory because
1107 of alloca; we also take advantage of it to omit stack adjustments
1108 before returning. */
1109
1110 #define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
1111 \f
1112 /* Output assembler code for a block containing the constant parts
1113 of a trampoline, leaving space for the variable parts.
1114
1115 The trampoline should set the static chain pointer to value placed
1116 into the trampoline and should branch to the specified routine.
1117
1118 On the RS/6000, this is not code at all, but merely a data area,
1119 since that is the way all functions are called. The first word is
1120 the address of the function, the second word is the TOC pointer (r2),
1121 and the third word is the static chain value. */
1122
1123 #define TRAMPOLINE_TEMPLATE(FILE) { fprintf (FILE, "\t.long 0, 0, 0\n"); }
1124
1125 /* Length in units of the trampoline for entering a nested function. */
1126
1127 #define TRAMPOLINE_SIZE 12
1128
1129 /* Emit RTL insns to initialize the variable parts of a trampoline.
1130 FNADDR is an RTX for the address of the function's pure code.
1131 CXT is an RTX for the static chain value for the function. */
1132
1133 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
1134 { \
1135 emit_move_insn (gen_rtx (MEM, SImode, \
1136 memory_address (SImode, (ADDR))), \
1137 gen_rtx (MEM, SImode, \
1138 memory_address (SImode, (FNADDR)))); \
1139 emit_move_insn (gen_rtx (MEM, SImode, \
1140 memory_address (SImode, \
1141 plus_constant ((ADDR), 4))), \
1142 gen_rtx (MEM, SImode, \
1143 memory_address (SImode, \
1144 plus_constant ((FNADDR), 4)))); \
1145 emit_move_insn (gen_rtx (MEM, SImode, \
1146 memory_address (SImode, \
1147 plus_constant ((ADDR), 8))), \
1148 force_reg (SImode, (CXT))); \
1149 }
1150 \f
1151 /* Definitions for register eliminations.
1152
1153 We have two registers that can be eliminated on the RS/6000. First, the
1154 frame pointer register can often be eliminated in favor of the stack
1155 pointer register. Secondly, the argument pointer register can always be
1156 eliminated; it is replaced with either the stack or frame pointer.
1157
1158 In addition, we use the elimination mechanism to see if r30 is needed
1159 Initially we assume that it isn't. If it is, we spill it. This is done
1160 by making it an eliminable register. We replace it with itself so that
1161 if it isn't needed, then existing uses won't be modified. */
1162
1163 /* This is an array of structures. Each structure initializes one pair
1164 of eliminable registers. The "from" register number is given first,
1165 followed by "to". Eliminations of the same "from" register are listed
1166 in order of preference. */
1167 #define ELIMINABLE_REGS \
1168 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1169 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1170 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1171 { 30, 30} }
1172
1173 /* Given FROM and TO register numbers, say whether this elimination is allowed.
1174 Frame pointer elimination is automatically handled.
1175
1176 For the RS/6000, if frame pointer elimination is being done, we would like
1177 to convert ap into fp, not sp.
1178
1179 We need r30 if -mmininal-toc was specified, and there are constant pool
1180 references. */
1181
1182 #define CAN_ELIMINATE(FROM, TO) \
1183 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1184 ? ! frame_pointer_needed \
1185 : (FROM) == 30 ? ! TARGET_MINIMAL_TOC || get_pool_size () == 0 \
1186 : 1)
1187
1188 /* Define the offset between two registers, one to be eliminated, and the other
1189 its replacement, at the start of a routine. */
1190 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1191 { \
1192 int total_stack_size = (rs6000_sa_size () + get_frame_size () \
1193 + current_function_outgoing_args_size); \
1194 \
1195 total_stack_size = (total_stack_size + 7) & ~7; \
1196 \
1197 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1198 { \
1199 if (rs6000_pushes_stack ()) \
1200 (OFFSET) = 0; \
1201 else \
1202 (OFFSET) = - total_stack_size; \
1203 } \
1204 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1205 (OFFSET) = total_stack_size; \
1206 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1207 { \
1208 if (rs6000_pushes_stack ()) \
1209 (OFFSET) = total_stack_size; \
1210 else \
1211 (OFFSET) = 0; \
1212 } \
1213 else if ((FROM) == 30) \
1214 (OFFSET) = 0; \
1215 else \
1216 abort (); \
1217 }
1218 \f
1219 /* Addressing modes, and classification of registers for them. */
1220
1221 /* #define HAVE_POST_INCREMENT */
1222 /* #define HAVE_POST_DECREMENT */
1223
1224 #define HAVE_PRE_DECREMENT
1225 #define HAVE_PRE_INCREMENT
1226
1227 /* Macros to check register numbers against specific register classes. */
1228
1229 /* These assume that REGNO is a hard or pseudo reg number.
1230 They give nonzero only if REGNO is a hard reg of the suitable class
1231 or a pseudo reg currently allocated to a suitable hard reg.
1232 Since they use reg_renumber, they are safe only once reg_renumber
1233 has been allocated, which happens in local-alloc.c. */
1234
1235 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1236 ((REGNO) < FIRST_PSEUDO_REGISTER \
1237 ? (REGNO) <= 31 || (REGNO) == 67 \
1238 : (reg_renumber[REGNO] >= 0 \
1239 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1240
1241 #define REGNO_OK_FOR_BASE_P(REGNO) \
1242 ((REGNO) < FIRST_PSEUDO_REGISTER \
1243 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1244 : (reg_renumber[REGNO] > 0 \
1245 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1246 \f
1247 /* Maximum number of registers that can appear in a valid memory address. */
1248
1249 #define MAX_REGS_PER_ADDRESS 2
1250
1251 /* Recognize any constant value that is a valid address. */
1252
1253 #define CONSTANT_ADDRESS_P(X) \
1254 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1255 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1256 || GET_CODE (X) == HIGH)
1257
1258 /* Nonzero if the constant value X is a legitimate general operand.
1259 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1260
1261 On the RS/6000, all integer constants are acceptable, most won't be valid
1262 for particular insns, though. Only easy FP constants are
1263 acceptable. */
1264
1265 #define LEGITIMATE_CONSTANT_P(X) \
1266 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
1267 || easy_fp_constant (X, GET_MODE (X)))
1268
1269 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1270 and check its validity for a certain class.
1271 We have two alternate definitions for each of them.
1272 The usual definition accepts all pseudo regs; the other rejects
1273 them unless they have been allocated suitable hard regs.
1274 The symbol REG_OK_STRICT causes the latter definition to be used.
1275
1276 Most source files want to accept pseudo regs in the hope that
1277 they will get allocated to the class that the insn wants them to be in.
1278 Source files for reload pass need to be strict.
1279 After reload, it makes no difference, since pseudo regs have
1280 been eliminated by then. */
1281
1282 #ifndef REG_OK_STRICT
1283
1284 /* Nonzero if X is a hard reg that can be used as an index
1285 or if it is a pseudo reg. */
1286 #define REG_OK_FOR_INDEX_P(X) \
1287 (REGNO (X) <= 31 || REGNO (X) == 67 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1288
1289 /* Nonzero if X is a hard reg that can be used as a base reg
1290 or if it is a pseudo reg. */
1291 #define REG_OK_FOR_BASE_P(X) \
1292 (REGNO (X) > 0 && REG_OK_FOR_INDEX_P (X))
1293
1294 #else
1295
1296 /* Nonzero if X is a hard reg that can be used as an index. */
1297 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1298 /* Nonzero if X is a hard reg that can be used as a base reg. */
1299 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1300
1301 #endif
1302 \f
1303 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1304 that is a valid memory address for an instruction.
1305 The MODE argument is the machine mode for the MEM expression
1306 that wants to use this address.
1307
1308 On the RS/6000, there are four valid address: a SYMBOL_REF that
1309 refers to a constant pool entry of an address (or the sum of it
1310 plus a constant), a short (16-bit signed) constant plus a register,
1311 the sum of two registers, or a register indirect, possibly with an
1312 auto-increment. For DFmode and DImode with an constant plus register,
1313 we must ensure that both words are addressable. */
1314
1315 #define LEGITIMATE_CONSTANT_POOL_BASE_P(X) \
1316 (GET_CODE (X) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (X) \
1317 && ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (get_pool_constant (X)))
1318
1319 #define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
1320 (LEGITIMATE_CONSTANT_POOL_BASE_P (X) \
1321 || (GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
1322 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
1323 && LEGITIMATE_CONSTANT_POOL_BASE_P (XEXP (XEXP (X, 0), 0))))
1324
1325 #define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \
1326 (GET_CODE (X) == CONST_INT \
1327 && (unsigned) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
1328
1329 #define LEGITIMATE_OFFSET_ADDRESS_P(MODE,X) \
1330 (GET_CODE (X) == PLUS \
1331 && GET_CODE (XEXP (X, 0)) == REG \
1332 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1333 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
1334 && (((MODE) != DFmode && (MODE) != DImode) \
1335 || LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4)))
1336
1337 #define LEGITIMATE_INDEXED_ADDRESS_P(X) \
1338 (GET_CODE (X) == PLUS \
1339 && GET_CODE (XEXP (X, 0)) == REG \
1340 && GET_CODE (XEXP (X, 1)) == REG \
1341 && ((REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1342 && REG_OK_FOR_INDEX_P (XEXP (X, 1))) \
1343 || (REG_OK_FOR_BASE_P (XEXP (X, 1)) \
1344 && REG_OK_FOR_INDEX_P (XEXP (X, 0)))))
1345
1346 #define LEGITIMATE_INDIRECT_ADDRESS_P(X) \
1347 (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X))
1348
1349 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1350 { if (LEGITIMATE_INDIRECT_ADDRESS_P (X)) \
1351 goto ADDR; \
1352 if (GET_CODE (X) == PRE_INC \
1353 && LEGITIMATE_INDIRECT_ADDRESS_P (XEXP (X, 0))) \
1354 goto ADDR; \
1355 if (GET_CODE (X) == PRE_DEC \
1356 && LEGITIMATE_INDIRECT_ADDRESS_P (XEXP (X, 0))) \
1357 goto ADDR; \
1358 if (LEGITIMATE_CONSTANT_POOL_ADDRESS_P (X)) \
1359 goto ADDR; \
1360 if (LEGITIMATE_OFFSET_ADDRESS_P (MODE, X)) \
1361 goto ADDR; \
1362 if ((MODE) != DImode && (MODE) != TImode \
1363 && LEGITIMATE_INDEXED_ADDRESS_P (X)) \
1364 goto ADDR; \
1365 }
1366 \f
1367 /* Try machine-dependent ways of modifying an illegitimate address
1368 to be legitimate. If we find one, return the new, valid address.
1369 This macro is used in only one place: `memory_address' in explow.c.
1370
1371 OLDX is the address as it was before break_out_memory_refs was called.
1372 In some cases it is useful to look at this to decide what needs to be done.
1373
1374 MODE and WIN are passed so that this macro can use
1375 GO_IF_LEGITIMATE_ADDRESS.
1376
1377 It is always safe for this macro to do nothing. It exists to recognize
1378 opportunities to optimize the output.
1379
1380 On RS/6000, first check for the sum of a register with a constant
1381 integer that is out of range. If so, generate code to add the
1382 constant with the low-order 16 bits masked to the register and force
1383 this result into another register (this can be done with `cau').
1384 Then generate an address of REG+(CONST&0xffff), allowing for the
1385 possibility of bit 16 being a one.
1386
1387 Then check for the sum of a register and something not constant, try to
1388 load the other things into a register and return the sum. */
1389
1390 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1391 { if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1392 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1393 && (unsigned) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \
1394 { int high_int, low_int; \
1395 high_int = INTVAL (XEXP (X, 1)) >> 16; \
1396 low_int = INTVAL (XEXP (X, 1)) & 0xffff; \
1397 if (low_int & 0x8000) \
1398 high_int += 1, low_int |= 0xffff0000; \
1399 (X) = gen_rtx (PLUS, SImode, \
1400 force_operand \
1401 (gen_rtx (PLUS, SImode, XEXP (X, 0), \
1402 gen_rtx (CONST_INT, VOIDmode, \
1403 high_int << 16)), 0),\
1404 gen_rtx (CONST_INT, VOIDmode, low_int)); \
1405 goto WIN; \
1406 } \
1407 else if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1408 && GET_CODE (XEXP (X, 1)) != CONST_INT \
1409 && (MODE) != DImode && (MODE) != TImode) \
1410 { \
1411 (X) = gen_rtx (PLUS, SImode, XEXP (X, 0), \
1412 force_reg (SImode, force_operand (XEXP (X, 1), 0))); \
1413 goto WIN; \
1414 } \
1415 }
1416
1417 /* Go to LABEL if ADDR (a legitimate address expression)
1418 has an effect that depends on the machine mode it is used for.
1419
1420 On the RS/6000 this is true if the address is valid with a zero offset
1421 but not with an offset of four (this means it cannot be used as an
1422 address for DImode or DFmode) or is a pre-increment or decrement. Since
1423 we know it is valid, we just check for an address that is not valid with
1424 an offset of four. */
1425
1426 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1427 { if (GET_CODE (ADDR) == PLUS \
1428 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
1429 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 4)) \
1430 goto LABEL; \
1431 if (GET_CODE (ADDR) == PRE_INC) \
1432 goto LABEL; \
1433 if (GET_CODE (ADDR) == PRE_DEC) \
1434 goto LABEL; \
1435 }
1436 \f
1437 /* Define this if some processing needs to be done immediately before
1438 emitting code for an insn. */
1439
1440 /* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
1441
1442 /* Specify the machine mode that this machine uses
1443 for the index in the tablejump instruction. */
1444 #define CASE_VECTOR_MODE SImode
1445
1446 /* Define this if the tablejump instruction expects the table
1447 to contain offsets from the address of the table.
1448 Do not define this if the table should contain absolute addresses. */
1449 #define CASE_VECTOR_PC_RELATIVE
1450
1451 /* Specify the tree operation to be used to convert reals to integers. */
1452 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1453
1454 /* This is the kind of divide that is easiest to do in the general case. */
1455 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1456
1457 /* Define this as 1 if `char' should by default be signed; else as 0. */
1458 #define DEFAULT_SIGNED_CHAR 0
1459
1460 /* This flag, if defined, says the same insns that convert to a signed fixnum
1461 also convert validly to an unsigned one. */
1462
1463 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
1464
1465 /* Max number of bytes we can move from memory to memory
1466 in one reasonably fast instruction. */
1467 #define MOVE_MAX (TARGET_POWER ? 16 : (TARGET_POWERPC64 ? 8 : 4))
1468 #define MAX_MOVE_MAX 16
1469
1470 /* Nonzero if access to memory by bytes is no faster than for words.
1471 Also non-zero if doing byte operations (specifically shifts) in registers
1472 is undesirable. */
1473 #define SLOW_BYTE_ACCESS 1
1474
1475 /* Define if operations between registers always perform the operation
1476 on the full register even if a narrower mode is specified. */
1477 #define WORD_REGISTER_OPERATIONS
1478
1479 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1480 will either zero-extend or sign-extend. The value of this macro should
1481 be the code that says which one of the two operations is implicitly
1482 done, NIL if none. */
1483 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1484
1485 /* Define if loading short immediate values into registers sign extends. */
1486 #define SHORT_IMMEDIATES_SIGN_EXTEND
1487 \f
1488 /* The RS/6000 uses the XCOFF format. */
1489
1490 #define XCOFF_DEBUGGING_INFO
1491
1492 /* Define if the object format being used is COFF or a superset. */
1493 #define OBJECT_FORMAT_COFF
1494
1495 /* Define the magic numbers that we recognize as COFF. */
1496
1497 #define MY_ISCOFF(magic) \
1498 ((magic) == U802WRMAGIC || (magic) == U802ROMAGIC || (magic) == U802TOCMAGIC)
1499
1500 /* This is the only version of nm that collect2 can work with. */
1501 #define REAL_NM_FILE_NAME "/usr/ucb/nm"
1502
1503 /* We don't have GAS for the RS/6000 yet, so don't write out special
1504 .stabs in cc1plus. */
1505
1506 #define FASCIST_ASSEMBLER
1507
1508 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1509 is done just by pretending it is already truncated. */
1510 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1511
1512 /* Specify the machine mode that pointers have.
1513 After generation of rtl, the compiler makes no further distinction
1514 between pointers and any other objects of this machine mode. */
1515 #define Pmode (TARGET_64BIT ? DImode : SImode)
1516
1517 /* Mode of a function address in a call instruction (for indexing purposes).
1518
1519 Doesn't matter on RS/6000. */
1520 #define FUNCTION_MODE (TARGET_64BIT ? DImode : SImode)
1521
1522 /* Define this if addresses of constant functions
1523 shouldn't be put through pseudo regs where they can be cse'd.
1524 Desirable on machines where ordinary constants are expensive
1525 but a CALL with constant address is cheap. */
1526 #define NO_FUNCTION_CSE
1527
1528 /* Define this to be nonzero if shift instructions ignore all but the low-order
1529 few bits.
1530
1531 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
1532 have been dropped from the PowerPC architecture. */
1533
1534 #define SHIFT_COUNT_TRUNCATED TARGET_POWER ? 1 : 0
1535
1536 /* Use atexit for static constructors/destructors, instead of defining
1537 our own exit function. */
1538 #define HAVE_ATEXIT
1539
1540 /* Compute the cost of computing a constant rtl expression RTX
1541 whose rtx-code is CODE. The body of this macro is a portion
1542 of a switch statement. If the code is computed here,
1543 return it with a return statement. Otherwise, break from the switch.
1544
1545 On the RS/6000, if it is valid in the insn, it is free. So this
1546 always returns 0. */
1547
1548 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1549 case CONST_INT: \
1550 case CONST: \
1551 case LABEL_REF: \
1552 case SYMBOL_REF: \
1553 case CONST_DOUBLE: \
1554 return 0;
1555
1556 /* Provide the costs of a rtl expression. This is in the body of a
1557 switch on CODE. */
1558
1559 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1560 case MULT: \
1561 switch (rs6000_cpu) \
1562 { \
1563 case PROCESSOR_RIOS1: \
1564 return (GET_CODE (XEXP (X, 1)) != CONST_INT \
1565 ? COSTS_N_INSNS (5) \
1566 : INTVAL (XEXP (X, 1)) >= -256 && INTVAL (XEXP (X, 1)) <= 255 \
1567 ? COSTS_N_INSNS (3) : COSTS_N_INSNS (4)); \
1568 case PROCESSOR_RIOS2: \
1569 return COSTS_N_INSNS (2); \
1570 case PROCESSOR_PPC601: \
1571 case PROCESSOR_PPC603: \
1572 return COSTS_N_INSNS (5); \
1573 case PROCESSOR_PPC604: \
1574 case PROCESSOR_PPC620: \
1575 return COSTS_N_INSNS (4); \
1576 } \
1577 case DIV: \
1578 case MOD: \
1579 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
1580 && exact_log2 (INTVAL (XEXP (X, 1))) >= 0) \
1581 return COSTS_N_INSNS (2); \
1582 /* otherwise fall through to normal divide. */ \
1583 case UDIV: \
1584 case UMOD: \
1585 switch (rs6000_cpu) \
1586 { \
1587 case PROCESSOR_RIOS1: \
1588 return COSTS_N_INSNS (19); \
1589 case PROCESSOR_RIOS2: \
1590 return COSTS_N_INSNS (13); \
1591 case PROCESSOR_PPC601: \
1592 return COSTS_N_INSNS (36); \
1593 case PROCESSOR_PPC603: \
1594 return COSTS_N_INSNS (37); \
1595 case PROCESSOR_PPC604: \
1596 case PROCESSOR_PPC620: \
1597 return COSTS_N_INSNS (20); \
1598 } \
1599 case MEM: \
1600 /* MEM should be slightly more expensive than (plus (reg) (const)) */ \
1601 return 5;
1602
1603 /* Compute the cost of an address. This is meant to approximate the size
1604 and/or execution delay of an insn using that address. If the cost is
1605 approximated by the RTL complexity, including CONST_COSTS above, as
1606 is usually the case for CISC machines, this macro should not be defined.
1607 For aggressively RISCy machines, only one insn format is allowed, so
1608 this macro should be a constant. The value of this macro only matters
1609 for valid addresses.
1610
1611 For the RS/6000, everything is cost 0. */
1612
1613 #define ADDRESS_COST(RTX) 0
1614
1615 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
1616 should be adjusted to reflect any required changes. This macro is used when
1617 there is some systematic length adjustment required that would be difficult
1618 to express in the length attribute. */
1619
1620 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
1621
1622 /* Add any extra modes needed to represent the condition code.
1623
1624 For the RS/6000, we need separate modes when unsigned (logical) comparisons
1625 are being done and we need a separate mode for floating-point. We also
1626 use a mode for the case when we are comparing the results of two
1627 comparisons. */
1628
1629 #define EXTRA_CC_MODES CCUNSmode, CCFPmode, CCEQmode
1630
1631 /* Define the names for the modes specified above. */
1632 #define EXTRA_CC_NAMES "CCUNS", "CCFP", "CCEQ"
1633
1634 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1635 return the mode to be used for the comparison. For floating-point, CCFPmode
1636 should be used. CCUNSmode should be used for unsigned comparisons.
1637 CCEQmode should be used when we are doing an inequality comparison on
1638 the result of a comparison. CCmode should be used in all other cases. */
1639
1640 #define SELECT_CC_MODE(OP,X,Y) \
1641 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
1642 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
1643 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
1644 ? CCEQmode : CCmode))
1645
1646 /* Define the information needed to generate branch and scc insns. This is
1647 stored from the compare operation. Note that we can't use "rtx" here
1648 since it hasn't been defined! */
1649
1650 extern struct rtx_def *rs6000_compare_op0, *rs6000_compare_op1;
1651 extern int rs6000_compare_fp_p;
1652
1653 /* Set to non-zero by "fix" operation to indicate that itrunc and
1654 uitrunc must be defined. */
1655
1656 extern int rs6000_trunc_used;
1657
1658 /* Function names to call to do floating point truncation. */
1659
1660 #define RS6000_ITRUNC "itrunc"
1661 #define RS6000_UITRUNC "uitrunc"
1662
1663 /* Prefix and suffix to use to saving floating point */
1664 #ifndef SAVE_FP_PREFIX
1665 #define SAVE_FP_PREFIX "._savef"
1666 #define SAVE_FP_SUFFIX ""
1667 #endif
1668
1669 /* Prefix and suffix to use to restoring floating point */
1670 #ifndef RESTORE_FP_PREFIX
1671 #define RESTORE_FP_PREFIX "._restf"
1672 #define RESTORE_FP_SUFFIX ""
1673 #endif
1674
1675 \f
1676 /* Control the assembler format that we output. */
1677
1678 /* Output at beginning of assembler file.
1679
1680 Initialize the section names for the RS/6000 at this point.
1681
1682 Specify filename to assembler.
1683
1684 We want to go into the TOC section so at least one .toc will be emitted.
1685 Also, in order to output proper .bs/.es pairs, we need at least one static
1686 [RW] section emitted.
1687
1688 We then switch back to text to force the gcc2_compiled. label and the space
1689 allocated after it (when profiling) into the text section.
1690
1691 Finally, declare mcount when profiling to make the assembler happy. */
1692
1693 #define ASM_FILE_START(FILE) \
1694 { \
1695 rs6000_gen_section_name (&xcoff_bss_section_name, \
1696 main_input_filename, ".bss_"); \
1697 rs6000_gen_section_name (&xcoff_private_data_section_name, \
1698 main_input_filename, ".rw_"); \
1699 rs6000_gen_section_name (&xcoff_read_only_section_name, \
1700 main_input_filename, ".ro_"); \
1701 \
1702 output_file_directive (FILE, main_input_filename); \
1703 toc_section (); \
1704 if (write_symbols != NO_DEBUG) \
1705 private_data_section (); \
1706 text_section (); \
1707 if (profile_flag) \
1708 fprintf (FILE, "\t.extern .mcount\n"); \
1709 }
1710
1711 /* Output at end of assembler file.
1712
1713 On the RS/6000, referencing data should automatically pull in text. */
1714
1715 #define ASM_FILE_END(FILE) \
1716 { \
1717 text_section (); \
1718 fprintf (FILE, "_section_.text:\n"); \
1719 data_section (); \
1720 fprintf (FILE, "\t.long _section_.text\n"); \
1721 }
1722
1723 /* We define this to prevent the name mangler from putting dollar signs into
1724 function names. */
1725
1726 #define NO_DOLLAR_IN_LABEL
1727
1728 /* We define this to 0 so that gcc will never accept a dollar sign in a
1729 variable name. This is needed because the AIX assembler will not accept
1730 dollar signs. */
1731
1732 #define DOLLARS_IN_IDENTIFIERS 0
1733
1734 /* Implicit library calls should use memcpy, not bcopy, etc. */
1735
1736 #define TARGET_MEM_FUNCTIONS
1737
1738 /* Define the extra sections we need. We define three: one is the read-only
1739 data section which is used for constants. This is a csect whose name is
1740 derived from the name of the input file. The second is for initialized
1741 global variables. This is a csect whose name is that of the variable.
1742 The third is the TOC. */
1743
1744 #define EXTRA_SECTIONS \
1745 read_only_data, private_data, read_only_private_data, toc, bss
1746
1747 /* Define the name of our readonly data section. */
1748
1749 #define READONLY_DATA_SECTION read_only_data_section
1750
1751 /* If we are referencing a function that is static or is known to be
1752 in this file, make the SYMBOL_REF special. We can use this to indicate
1753 that we can branch to this function without emitting a no-op after the
1754 call. */
1755
1756 #define ENCODE_SECTION_INFO(DECL) \
1757 if (TREE_CODE (DECL) == FUNCTION_DECL \
1758 && (TREE_ASM_WRITTEN (DECL) || ! TREE_PUBLIC (DECL))) \
1759 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
1760
1761 /* Indicate that jump tables go in the text section. */
1762
1763 #define JUMP_TABLES_IN_TEXT_SECTION
1764
1765 /* Define the routines to implement these extra sections. */
1766
1767 #define EXTRA_SECTION_FUNCTIONS \
1768 \
1769 void \
1770 read_only_data_section () \
1771 { \
1772 if (in_section != read_only_data) \
1773 { \
1774 fprintf (asm_out_file, ".csect %s[RO]\n", \
1775 xcoff_read_only_section_name); \
1776 in_section = read_only_data; \
1777 } \
1778 } \
1779 \
1780 void \
1781 private_data_section () \
1782 { \
1783 if (in_section != private_data) \
1784 { \
1785 fprintf (asm_out_file, ".csect %s[RW]\n", \
1786 xcoff_private_data_section_name); \
1787 \
1788 in_section = private_data; \
1789 } \
1790 } \
1791 \
1792 void \
1793 read_only_private_data_section () \
1794 { \
1795 if (in_section != read_only_private_data) \
1796 { \
1797 fprintf (asm_out_file, ".csect %s[RO]\n", \
1798 xcoff_private_data_section_name); \
1799 in_section = read_only_private_data; \
1800 } \
1801 } \
1802 \
1803 void \
1804 toc_section () \
1805 { \
1806 if (TARGET_MINIMAL_TOC) \
1807 { \
1808 static int toc_initialized = 0; \
1809 \
1810 /* toc_section is always called at least once from ASM_FILE_START, \
1811 so this is guaranteed to always be defined once and only once \
1812 in each file. */ \
1813 if (! toc_initialized) \
1814 { \
1815 fprintf (asm_out_file, ".toc\nLCTOC..0:\n"); \
1816 fprintf (asm_out_file, "\t.tc toc_table[TC],toc_table[RW]\n"); \
1817 toc_initialized = 1; \
1818 } \
1819 \
1820 if (in_section != toc) \
1821 fprintf (asm_out_file, ".csect toc_table[RW]\n"); \
1822 } \
1823 else \
1824 { \
1825 if (in_section != toc) \
1826 fprintf (asm_out_file, ".toc\n"); \
1827 } \
1828 in_section = toc; \
1829 }
1830
1831 /* This macro produces the initial definition of a function name.
1832 On the RS/6000, we need to place an extra '.' in the function name and
1833 output the function descriptor.
1834
1835 The csect for the function will have already been created by the
1836 `text_section' call previously done. We do have to go back to that
1837 csect, however. */
1838
1839 /* ??? What do the 16 and 044 in the .function line really mean? */
1840
1841 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1842 { if (TREE_PUBLIC (DECL)) \
1843 { \
1844 fprintf (FILE, "\t.globl ."); \
1845 RS6000_OUTPUT_BASENAME (FILE, NAME); \
1846 fprintf (FILE, "\n"); \
1847 } \
1848 else \
1849 { \
1850 fprintf (FILE, "\t.lglobl ."); \
1851 RS6000_OUTPUT_BASENAME (FILE, NAME); \
1852 fprintf (FILE, "\n"); \
1853 } \
1854 fprintf (FILE, ".csect "); \
1855 RS6000_OUTPUT_BASENAME (FILE, NAME); \
1856 fprintf (FILE, "[DS]\n"); \
1857 RS6000_OUTPUT_BASENAME (FILE, NAME); \
1858 fprintf (FILE, ":\n"); \
1859 fprintf (FILE, "\t.long ."); \
1860 RS6000_OUTPUT_BASENAME (FILE, NAME); \
1861 fprintf (FILE, ", TOC[tc0], 0\n"); \
1862 fprintf (FILE, ".csect .text[PR]\n."); \
1863 RS6000_OUTPUT_BASENAME (FILE, NAME); \
1864 fprintf (FILE, ":\n"); \
1865 if (write_symbols == XCOFF_DEBUG) \
1866 xcoffout_declare_function (FILE, DECL, NAME); \
1867 }
1868
1869 /* Return non-zero if this entry is to be written into the constant pool
1870 in a special way. We do so if this is a SYMBOL_REF, LABEL_REF or a CONST
1871 containing one of them. If -mfp-in-toc (the default), we also do
1872 this for floating-point constants. We actually can only do this
1873 if the FP formats of the target and host machines are the same, but
1874 we can't check that since not every file that uses
1875 GO_IF_LEGITIMATE_ADDRESS_P includes real.h. */
1876
1877 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY_P(X) \
1878 (GET_CODE (X) == SYMBOL_REF \
1879 || (GET_CODE (X) == CONST && GET_CODE (XEXP (X, 0)) == PLUS \
1880 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF) \
1881 || GET_CODE (X) == LABEL_REF \
1882 || (! (TARGET_NO_FP_IN_TOC && ! TARGET_MINIMAL_TOC) \
1883 && GET_CODE (X) == CONST_DOUBLE \
1884 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1885 && BITS_PER_WORD == HOST_BITS_PER_INT))
1886
1887 /* Select section for constant in constant pool.
1888
1889 On RS/6000, all constants are in the private read-only data area.
1890 However, if this is being placed in the TOC it must be output as a
1891 toc entry. */
1892
1893 #define SELECT_RTX_SECTION(MODE, X) \
1894 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
1895 toc_section (); \
1896 else \
1897 read_only_private_data_section (); \
1898 }
1899
1900 /* Macro to output a special constant pool entry. Go to WIN if we output
1901 it. Otherwise, it is written the usual way.
1902
1903 On the RS/6000, toc entries are handled this way. */
1904
1905 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
1906 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X)) \
1907 { \
1908 output_toc (FILE, X, LABELNO); \
1909 goto WIN; \
1910 } \
1911 }
1912
1913 /* Select the section for an initialized data object.
1914
1915 On the RS/6000, we have a special section for all variables except those
1916 that are static. */
1917
1918 #define SELECT_SECTION(EXP,RELOC) \
1919 { \
1920 if ((TREE_CODE (EXP) == STRING_CST \
1921 && !flag_writable_strings) \
1922 || (TREE_READONLY (EXP) && ! TREE_THIS_VOLATILE (EXP) \
1923 && DECL_INITIAL (EXP) \
1924 && (DECL_INITIAL (EXP) == error_mark_node \
1925 || TREE_CONSTANT (DECL_INITIAL (EXP))) \
1926 && ! (RELOC))) \
1927 { \
1928 if (TREE_PUBLIC (EXP)) \
1929 read_only_data_section (); \
1930 else \
1931 read_only_private_data_section (); \
1932 } \
1933 else \
1934 { \
1935 if (TREE_PUBLIC (EXP)) \
1936 data_section (); \
1937 else \
1938 private_data_section (); \
1939 } \
1940 }
1941
1942 /* This outputs NAME to FILE up to the first null or '['. */
1943
1944 #define RS6000_OUTPUT_BASENAME(FILE, NAME) \
1945 if ((NAME)[0] == '*' || (NAME)[strlen (NAME) - 1] != ']') \
1946 assemble_name (FILE, NAME); \
1947 else \
1948 { \
1949 int _len = strlen (NAME); \
1950 char *_p = alloca (_len + 1); \
1951 \
1952 strcpy (_p, NAME); \
1953 _p[_len - 4] = '\0'; \
1954 assemble_name (FILE, _p); \
1955 }
1956
1957 /* Output something to declare an external symbol to the assembler. Most
1958 assemblers don't need this.
1959
1960 If we haven't already, add "[RW]" (or "[DS]" for a function) to the
1961 name. Normally we write this out along with the name. In the few cases
1962 where we can't, it gets stripped off. */
1963
1964 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1965 { rtx _symref = XEXP (DECL_RTL (DECL), 0); \
1966 if ((TREE_CODE (DECL) == VAR_DECL \
1967 || TREE_CODE (DECL) == FUNCTION_DECL) \
1968 && (NAME)[0] != '*' \
1969 && (NAME)[strlen (NAME) - 1] != ']') \
1970 { \
1971 char *_name = (char *) permalloc (strlen (XSTR (_symref, 0)) + 5); \
1972 strcpy (_name, XSTR (_symref, 0)); \
1973 strcat (_name, TREE_CODE (DECL) == FUNCTION_DECL ? "[DS]" : "[RW]"); \
1974 XSTR (_symref, 0) = _name; \
1975 } \
1976 fprintf (FILE, "\t.extern "); \
1977 assemble_name (FILE, XSTR (_symref, 0)); \
1978 if (TREE_CODE (DECL) == FUNCTION_DECL) \
1979 { \
1980 fprintf (FILE, "\n\t.extern ."); \
1981 RS6000_OUTPUT_BASENAME (FILE, XSTR (_symref, 0)); \
1982 } \
1983 fprintf (FILE, "\n"); \
1984 }
1985
1986 /* Similar, but for libcall. We only have to worry about the function name,
1987 not that of the descriptor. */
1988
1989 #define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
1990 { fprintf (FILE, "\t.extern ."); \
1991 assemble_name (FILE, XSTR (FUN, 0)); \
1992 fprintf (FILE, "\n"); \
1993 }
1994
1995 /* Output to assembler file text saying following lines
1996 may contain character constants, extra white space, comments, etc. */
1997
1998 #define ASM_APP_ON ""
1999
2000 /* Output to assembler file text saying following lines
2001 no longer contain unusual constructs. */
2002
2003 #define ASM_APP_OFF ""
2004
2005 /* Output before instructions. */
2006
2007 #define TEXT_SECTION_ASM_OP ".csect .text[PR]"
2008
2009 /* Output before writable data. */
2010
2011 #define DATA_SECTION_ASM_OP ".csect .data[RW]"
2012
2013 /* How to refer to registers in assembler output.
2014 This sequence is indexed by compiler's hard-register-number (see above). */
2015
2016 #define REGISTER_NAMES \
2017 {"0", "1", "2", "3", "4", "5", "6", "7", \
2018 "8", "9", "10", "11", "12", "13", "14", "15", \
2019 "16", "17", "18", "19", "20", "21", "22", "23", \
2020 "24", "25", "26", "27", "28", "29", "30", "31", \
2021 "0", "1", "2", "3", "4", "5", "6", "7", \
2022 "8", "9", "10", "11", "12", "13", "14", "15", \
2023 "16", "17", "18", "19", "20", "21", "22", "23", \
2024 "24", "25", "26", "27", "28", "29", "30", "31", \
2025 "mq", "lr", "ctr", "ap", \
2026 "0", "1", "2", "3", "4", "5", "6", "7" }
2027
2028 /* Table of additional register names to use in user input. */
2029
2030 #define ADDITIONAL_REGISTER_NAMES \
2031 {"r0", 0, "r1", 1, "r2", 2, "r3", 3, \
2032 "r4", 4, "r5", 5, "r6", 6, "r7", 7, \
2033 "r8", 8, "r9", 9, "r10", 10, "r11", 11, \
2034 "r12", 12, "r13", 13, "r14", 14, "r15", 15, \
2035 "r16", 16, "r17", 17, "r18", 18, "r19", 19, \
2036 "r20", 20, "r21", 21, "r22", 22, "r23", 23, \
2037 "r24", 24, "r25", 25, "r26", 26, "r27", 27, \
2038 "r28", 28, "r29", 29, "r30", 30, "r31", 31, \
2039 "fr0", 32, "fr1", 33, "fr2", 34, "fr3", 35, \
2040 "fr4", 36, "fr5", 37, "fr6", 38, "fr7", 39, \
2041 "fr8", 40, "fr9", 41, "fr10", 42, "fr11", 43, \
2042 "fr12", 44, "fr13", 45, "fr14", 46, "fr15", 47, \
2043 "fr16", 48, "fr17", 49, "fr18", 50, "fr19", 51, \
2044 "fr20", 52, "fr21", 53, "fr22", 54, "fr23", 55, \
2045 "fr24", 56, "fr25", 57, "fr26", 58, "fr27", 59, \
2046 "fr28", 60, "fr29", 61, "fr30", 62, "fr31", 63, \
2047 /* no additional names for: mq, lr, ctr, ap */ \
2048 "cr0", 68, "cr1", 69, "cr2", 70, "cr3", 71, \
2049 "cr4", 72, "cr5", 73, "cr6", 74, "cr7", 75, \
2050 "cc", 68 }
2051
2052 /* How to renumber registers for dbx and gdb. */
2053
2054 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
2055
2056 /* Text to write out after a CALL that may be replaced by glue code by
2057 the loader. This depends on the AIX version. */
2058 #define RS6000_CALL_GLUE "cror 31,31,31"
2059
2060 /* This is how to output the definition of a user-level label named NAME,
2061 such as the label on a static function or variable NAME. */
2062
2063 #define ASM_OUTPUT_LABEL(FILE,NAME) \
2064 do { RS6000_OUTPUT_BASENAME (FILE, NAME); fputs (":\n", FILE); } while (0)
2065
2066 /* This is how to output a command to make the user-level label named NAME
2067 defined for reference from other files. */
2068
2069 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
2070 do { fputs ("\t.globl ", FILE); \
2071 RS6000_OUTPUT_BASENAME (FILE, NAME); fputs ("\n", FILE);} while (0)
2072
2073 /* This is how to output a reference to a user-level label named NAME.
2074 `assemble_name' uses this. */
2075
2076 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
2077 fprintf (FILE, NAME)
2078
2079 /* This is how to output an internal numbered label where
2080 PREFIX is the class of label and NUM is the number within the class. */
2081
2082 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
2083 fprintf (FILE, "%s..%d:\n", PREFIX, NUM)
2084
2085 /* This is how to output an internal label prefix. rs6000.c uses this
2086 when generating traceback tables. */
2087
2088 #define ASM_OUTPUT_INTERNAL_LABEL_PREFIX(FILE,PREFIX) \
2089 fprintf (FILE, "%s..", PREFIX)
2090
2091 /* This is how to output a label for a jump table. Arguments are the same as
2092 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
2093 passed. */
2094
2095 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
2096 { ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
2097
2098 /* This is how to store into the string LABEL
2099 the symbol_ref name of an internal numbered label where
2100 PREFIX is the class of label and NUM is the number within the class.
2101 This is suitable for output with `assemble_name'. */
2102
2103 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
2104 sprintf (LABEL, "%s..%d", PREFIX, NUM)
2105
2106 /* This is how to output an assembler line defining a `double' constant. */
2107
2108 #define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
2109 { \
2110 if (REAL_VALUE_ISINF (VALUE) \
2111 || REAL_VALUE_ISNAN (VALUE) \
2112 || REAL_VALUE_MINUS_ZERO (VALUE)) \
2113 { \
2114 long t[2]; \
2115 REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t); \
2116 fprintf (FILE, "\t.long 0x%lx\n\t.long 0x%lx\n", \
2117 t[0] & 0xffffffff, t[1] & 0xffffffff); \
2118 } \
2119 else \
2120 { \
2121 char str[30]; \
2122 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", str); \
2123 fprintf (FILE, "\t.double 0d%s\n", str); \
2124 } \
2125 }
2126
2127 /* This is how to output an assembler line defining a `float' constant. */
2128
2129 #define ASM_OUTPUT_FLOAT(FILE, VALUE) \
2130 { \
2131 if (REAL_VALUE_ISINF (VALUE) \
2132 || REAL_VALUE_ISNAN (VALUE) \
2133 || REAL_VALUE_MINUS_ZERO (VALUE)) \
2134 { \
2135 long t; \
2136 REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t); \
2137 fprintf (FILE, "\t.long 0x%lx\n", t & 0xffffffff); \
2138 } \
2139 else \
2140 { \
2141 char str[30]; \
2142 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str); \
2143 fprintf (FILE, "\t.float 0d%s\n", str); \
2144 } \
2145 }
2146
2147 /* This is how to output an assembler line defining an `int' constant. */
2148
2149 #define ASM_OUTPUT_INT(FILE,VALUE) \
2150 ( fprintf (FILE, "\t.long "), \
2151 output_addr_const (FILE, (VALUE)), \
2152 fprintf (FILE, "\n"))
2153
2154 /* Likewise for `char' and `short' constants. */
2155
2156 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
2157 ( fprintf (FILE, "\t.short "), \
2158 output_addr_const (FILE, (VALUE)), \
2159 fprintf (FILE, "\n"))
2160
2161 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
2162 ( fprintf (FILE, "\t.byte "), \
2163 output_addr_const (FILE, (VALUE)), \
2164 fprintf (FILE, "\n"))
2165
2166 /* This is how to output an assembler line for a numeric constant byte. */
2167
2168 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
2169 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
2170
2171 /* This is how to output an assembler line to define N characters starting
2172 at P to FILE. */
2173
2174 #define ASM_OUTPUT_ASCII(FILE, P, N) output_ascii ((FILE), (P), (N))
2175
2176 /* This is how to output code to push a register on the stack.
2177 It need not be very fast code. */
2178
2179 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
2180 asm_fprintf (FILE, "\{tstu|stwu} %s,-4(r1)\n", reg_names[REGNO]);
2181
2182 /* This is how to output an insn to pop a register from the stack.
2183 It need not be very fast code. */
2184
2185 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
2186 asm_fprintf (FILE, "\t{l|lwz} %s,0(r1)\n\t{ai|addic} r1,r1,4\n", \
2187 reg_names[REGNO])
2188
2189 /* This is how to output an element of a case-vector that is absolute.
2190 (RS/6000 does not use such vectors, but we must define this macro
2191 anyway.) */
2192
2193 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2194 do { char buf[100]; \
2195 fprintf (FILE, "\t.long "); \
2196 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2197 assemble_name (FILE, buf); \
2198 fprintf (FILE, "\n"); \
2199 } while (0)
2200
2201 /* This is how to output an element of a case-vector that is relative. */
2202
2203 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
2204 do { char buf[100]; \
2205 fprintf (FILE, "\t.long "); \
2206 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2207 assemble_name (FILE, buf); \
2208 fprintf (FILE, "-"); \
2209 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2210 assemble_name (FILE, buf); \
2211 fprintf (FILE, "\n"); \
2212 } while (0)
2213
2214 /* This is how to output an assembler line
2215 that says to advance the location counter
2216 to a multiple of 2**LOG bytes. */
2217
2218 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2219 if ((LOG) != 0) \
2220 fprintf (FILE, "\t.align %d\n", (LOG))
2221
2222 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
2223 fprintf (FILE, "\t.space %d\n", (SIZE))
2224
2225 /* This says how to output an assembler line
2226 to define a global common symbol. */
2227
2228 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
2229 do { fputs (".comm ", (FILE)); \
2230 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2231 fprintf ((FILE), ",%d\n", (SIZE)); } while (0)
2232
2233 /* This says how to output an assembler line
2234 to define a local common symbol. */
2235
2236 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
2237 do { fputs (".lcomm ", (FILE)); \
2238 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2239 fprintf ((FILE), ",%d,%s\n", (SIZE), xcoff_bss_section_name); \
2240 } while (0)
2241
2242 /* Store in OUTPUT a string (made with alloca) containing
2243 an assembler-name for a local static variable named NAME.
2244 LABELNO is an integer which is different for each call. */
2245
2246 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2247 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2248 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2249
2250 /* Define the parentheses used to group arithmetic operations
2251 in assembler code. */
2252
2253 #define ASM_OPEN_PAREN "("
2254 #define ASM_CLOSE_PAREN ")"
2255
2256 /* Define results of standard character escape sequences. */
2257 #define TARGET_BELL 007
2258 #define TARGET_BS 010
2259 #define TARGET_TAB 011
2260 #define TARGET_NEWLINE 012
2261 #define TARGET_VT 013
2262 #define TARGET_FF 014
2263 #define TARGET_CR 015
2264
2265 /* Print operand X (an rtx) in assembler syntax to file FILE.
2266 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2267 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2268
2269 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2270
2271 /* Define which CODE values are valid. */
2272
2273 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '.' || (CODE) == '*')
2274
2275 /* Print a memory address as an operand to reference that memory location. */
2276
2277 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2278
2279 /* Define the codes that are matched by predicates in rs6000.c. */
2280
2281 #define PREDICATE_CODES \
2282 {"short_cint_operand", {CONST_INT}}, \
2283 {"u_short_cint_operand", {CONST_INT}}, \
2284 {"non_short_cint_operand", {CONST_INT}}, \
2285 {"gpc_reg_operand", {SUBREG, REG}}, \
2286 {"cc_reg_operand", {SUBREG, REG}}, \
2287 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
2288 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
2289 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
2290 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2291 {"easy_fp_constant", {CONST_DOUBLE}}, \
2292 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
2293 {"lwa_operand", {SUBREG, MEM, REG}}, \
2294 {"fp_reg_or_mem_operand", {SUBREG, MEM, REG}}, \
2295 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
2296 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2297 {"non_add_cint_operand", {CONST_INT}}, \
2298 {"and_operand", {SUBREG, REG, CONST_INT}}, \
2299 {"non_and_cint_operand", {CONST_INT}}, \
2300 {"logical_operand", {SUBREG, REG, CONST_INT}}, \
2301 {"non_logical_cint_operand", {CONST_INT}}, \
2302 {"mask_operand", {CONST_INT}}, \
2303 {"call_operand", {SYMBOL_REF, REG}}, \
2304 {"current_file_function_operand", {SYMBOL_REF}}, \
2305 {"input_operand", {SUBREG, MEM, REG, CONST_INT, SYMBOL_REF}}, \
2306 {"load_multiple_operation", {PARALLEL}}, \
2307 {"store_multiple_operation", {PARALLEL}}, \
2308 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
2309 GT, LEU, LTU, GEU, GTU}}, \
2310 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
2311 GT, LEU, LTU, GEU, GTU}},
This page took 0.139334 seconds and 4 git commands to generate.