]> gcc.gnu.org Git - gcc.git/blob - gcc/config/rs6000/rs6000.h
Update copyright years.
[gcc.git] / gcc / config / rs6000 / rs6000.h
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992-2020 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
25
26 /* Note that some other tm.h files include this one and then override
27 many of the definitions. */
28
29 #ifndef RS6000_OPTS_H
30 #include "config/rs6000/rs6000-opts.h"
31 #endif
32
33 /* 128-bit floating point precision values. */
34 #ifndef RS6000_MODES_H
35 #include "config/rs6000/rs6000-modes.h"
36 #endif
37
38 /* Definitions for the object file format. These are set at
39 compile-time. */
40
41 #define OBJECT_XCOFF 1
42 #define OBJECT_ELF 2
43 #define OBJECT_MACHO 4
44
45 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
46 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
47 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
48
49 #ifndef TARGET_AIX
50 #define TARGET_AIX 0
51 #endif
52
53 #ifndef TARGET_AIX_OS
54 #define TARGET_AIX_OS 0
55 #endif
56
57 /* Turn off TOC support if pc-relative addressing is used. */
58 #define TARGET_TOC (TARGET_HAS_TOC && !TARGET_PCREL)
59
60 /* On 32-bit systems without a TOC or pc-relative addressing, we need to use
61 ADDIS/ADDI to load up the address of a symbol. */
62 #define TARGET_NO_TOC_OR_PCREL (!TARGET_HAS_TOC && !TARGET_PCREL)
63
64 /* Control whether function entry points use a "dot" symbol when
65 ABI_AIX. */
66 #define DOT_SYMBOLS 1
67
68 /* Default string to use for cpu if not specified. */
69 #ifndef TARGET_CPU_DEFAULT
70 #define TARGET_CPU_DEFAULT ((char *)0)
71 #endif
72
73 /* If configured for PPC405, support PPC405CR Erratum77. */
74 #ifdef CONFIG_PPC405CR
75 #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
76 #else
77 #define PPC405_ERRATUM77 0
78 #endif
79
80 #ifndef SUBTARGET_DRIVER_SELF_SPECS
81 # define SUBTARGET_DRIVER_SELF_SPECS ""
82 #endif
83
84 /* Only for use in the testsuite: -mdejagnu-cpu= simply overrides -mcpu=.
85 With older versions of Dejagnu the command line arguments you set in
86 RUNTESTFLAGS override those set in the testcases; with this option,
87 the testcase will always win. Ditto for -mdejagnu-tune=. */
88 #define DRIVER_SELF_SPECS \
89 "%{mdejagnu-cpu=*: %<mcpu=* -mcpu=%*}", \
90 "%{mdejagnu-tune=*: %<mtune=* -mtune=%*}", \
91 "%{mdejagnu-*: %<mdejagnu-*}", \
92 SUBTARGET_DRIVER_SELF_SPECS
93
94 #if CHECKING_P
95 #define ASM_OPT_ANY ""
96 #else
97 #define ASM_OPT_ANY " -many"
98 #endif
99
100 /* Common ASM definitions used by ASM_SPEC among the various targets for
101 handling -mcpu=xxx switches. There is a parallel list in driver-rs6000.c to
102 provide the default assembler options if the user uses -mcpu=native, so if
103 you make changes here, make them also there. PR63177: Do not pass -mpower8
104 to the assembler if -mpower9-vector was also used. */
105 #define ASM_CPU_SPEC \
106 "%{mcpu=native: %(asm_cpu_native); \
107 mcpu=power9: -mpower9; \
108 mcpu=power8|mcpu=powerpc64le: %{mpower9-vector: -mpower9;: -mpower8}; \
109 mcpu=power7: -mpower7; \
110 mcpu=power6x: -mpower6 %{!mvsx:%{!maltivec:-maltivec}}; \
111 mcpu=power6: -mpower6 %{!mvsx:%{!maltivec:-maltivec}}; \
112 mcpu=power5+: -mpower5; \
113 mcpu=power5: -mpower5; \
114 mcpu=power4: -mpower4; \
115 mcpu=power3: -mppc64; \
116 mcpu=powerpc: -mppc; \
117 mcpu=powerpc64: -mppc64; \
118 mcpu=a2: -ma2; \
119 mcpu=cell: -mcell; \
120 mcpu=rs64: -mppc64; \
121 mcpu=401: -mppc; \
122 mcpu=403: -m403; \
123 mcpu=405: -m405; \
124 mcpu=405fp: -m405; \
125 mcpu=440: -m440; \
126 mcpu=440fp: -m440; \
127 mcpu=464: -m440; \
128 mcpu=464fp: -m440; \
129 mcpu=476: -m476; \
130 mcpu=476fp: -m476; \
131 mcpu=505: -mppc; \
132 mcpu=601: -m601; \
133 mcpu=602: -mppc; \
134 mcpu=603: -mppc; \
135 mcpu=603e: -mppc; \
136 mcpu=ec603e: -mppc; \
137 mcpu=604: -mppc; \
138 mcpu=604e: -mppc; \
139 mcpu=620: -mppc64; \
140 mcpu=630: -mppc64; \
141 mcpu=740: -mppc; \
142 mcpu=750: -mppc; \
143 mcpu=G3: -mppc; \
144 mcpu=7400: -mppc %{!mvsx:%{!maltivec:-maltivec}}; \
145 mcpu=7450: -mppc %{!mvsx:%{!maltivec:-maltivec}}; \
146 mcpu=G4: -mppc %{!mvsx:%{!maltivec:-maltivec}}; \
147 mcpu=801: -mppc; \
148 mcpu=821: -mppc; \
149 mcpu=823: -mppc; \
150 mcpu=860: -mppc; \
151 mcpu=970: -mpower4 %{!mvsx:%{!maltivec:-maltivec}}; \
152 mcpu=G5: -mpower4 %{!mvsx:%{!maltivec:-maltivec}}; \
153 mcpu=8540: -me500; \
154 mcpu=8548: -me500; \
155 mcpu=e300c2: -me300; \
156 mcpu=e300c3: -me300; \
157 mcpu=e500mc: -me500mc; \
158 mcpu=e500mc64: -me500mc64; \
159 mcpu=e5500: -me5500; \
160 mcpu=e6500: -me6500; \
161 mcpu=titan: -mtitan; \
162 mcpu=future: -mfuture; \
163 !mcpu*: %{mpower9-vector: -mpower9; \
164 mpower8-vector|mcrypto|mdirect-move|mhtm: -mpower8; \
165 mvsx: -mpower7; \
166 mpowerpc64: -mppc64;: %(asm_default)}; \
167 :%eMissing -mcpu option in ASM_CPU_SPEC?\n} \
168 %{mvsx: -mvsx -maltivec; maltivec: -maltivec}" \
169 ASM_OPT_ANY
170
171 #define CPP_DEFAULT_SPEC ""
172
173 #define ASM_DEFAULT_SPEC ""
174 #define ASM_DEFAULT_EXTRA ""
175
176 /* This macro defines names of additional specifications to put in the specs
177 that can be used in various specifications like CC1_SPEC. Its definition
178 is an initializer with a subgrouping for each command option.
179
180 Each subgrouping contains a string constant, that defines the
181 specification name, and a string constant that used by the GCC driver
182 program.
183
184 Do not define this macro if it does not need to do anything. */
185
186 #define SUBTARGET_EXTRA_SPECS
187
188 #define EXTRA_SPECS \
189 { "cpp_default", CPP_DEFAULT_SPEC }, \
190 { "asm_cpu", ASM_CPU_SPEC }, \
191 { "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \
192 { "asm_default", ASM_DEFAULT_SPEC ASM_DEFAULT_EXTRA }, \
193 { "cc1_cpu", CC1_CPU_SPEC }, \
194 SUBTARGET_EXTRA_SPECS
195
196 /* -mcpu=native handling only makes sense with compiler running on
197 an PowerPC chip. If changing this condition, also change
198 the condition in driver-rs6000.c. */
199 #if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
200 /* In driver-rs6000.c. */
201 extern const char *host_detect_local_cpu (int argc, const char **argv);
202 #define EXTRA_SPEC_FUNCTIONS \
203 { "local_cpu_detect", host_detect_local_cpu },
204 #define HAVE_LOCAL_CPU_DETECT
205 #define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
206
207 #else
208 #define ASM_CPU_NATIVE_SPEC "%(asm_default)"
209 #endif
210
211 #ifndef CC1_CPU_SPEC
212 #ifdef HAVE_LOCAL_CPU_DETECT
213 #define CC1_CPU_SPEC \
214 "%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
215 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
216 #else
217 #define CC1_CPU_SPEC ""
218 #endif
219 #endif
220
221 /* Architecture type. */
222
223 /* Define TARGET_MFCRF if the target assembler does not support the
224 optional field operand for mfcr. */
225
226 #ifndef HAVE_AS_MFCRF
227 #undef TARGET_MFCRF
228 #define TARGET_MFCRF 0
229 #endif
230
231 #ifndef TARGET_SECURE_PLT
232 #define TARGET_SECURE_PLT 0
233 #endif
234
235 #ifndef TARGET_CMODEL
236 #define TARGET_CMODEL CMODEL_SMALL
237 #endif
238
239 #define TARGET_32BIT (! TARGET_64BIT)
240
241 #ifndef HAVE_AS_TLS
242 #define HAVE_AS_TLS 0
243 #endif
244
245 #ifndef HAVE_AS_PLTSEQ
246 #define HAVE_AS_PLTSEQ 0
247 #endif
248
249 #ifndef TARGET_PLTSEQ
250 #define TARGET_PLTSEQ 0
251 #endif
252
253 #ifndef TARGET_LINK_STACK
254 #define TARGET_LINK_STACK 0
255 #endif
256
257 #ifndef SET_TARGET_LINK_STACK
258 #define SET_TARGET_LINK_STACK(X) do { } while (0)
259 #endif
260
261 #ifndef TARGET_FLOAT128_ENABLE_TYPE
262 #define TARGET_FLOAT128_ENABLE_TYPE 0
263 #endif
264
265 /* Return 1 for a symbol ref for a thread-local storage symbol. */
266 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
267 (SYMBOL_REF_P (RTX) && SYMBOL_REF_TLS_MODEL (RTX) != 0)
268
269 #ifdef IN_LIBGCC2
270 /* For libgcc2 we make sure this is a compile time constant */
271 #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
272 #undef TARGET_POWERPC64
273 #define TARGET_POWERPC64 1
274 #else
275 #undef TARGET_POWERPC64
276 #define TARGET_POWERPC64 0
277 #endif
278 #else
279 /* The option machinery will define this. */
280 #endif
281
282 #define TARGET_DEFAULT (MASK_MULTIPLE)
283
284 /* Define generic processor types based upon current deployment. */
285 #define PROCESSOR_COMMON PROCESSOR_PPC601
286 #define PROCESSOR_POWERPC PROCESSOR_PPC604
287 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
288
289 /* Define the default processor. This is overridden by other tm.h files. */
290 #define PROCESSOR_DEFAULT PROCESSOR_PPC603
291 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
292
293 /* Specify the dialect of assembler to use. Only new mnemonics are supported
294 starting with GCC 4.8, i.e. just one dialect, but for backwards
295 compatibility with older inline asm ASSEMBLER_DIALECT needs to be
296 defined. */
297 #define ASSEMBLER_DIALECT 1
298
299 /* Debug support */
300 #define MASK_DEBUG_STACK 0x01 /* debug stack applications */
301 #define MASK_DEBUG_ARG 0x02 /* debug argument handling */
302 #define MASK_DEBUG_REG 0x04 /* debug register handling */
303 #define MASK_DEBUG_ADDR 0x08 /* debug memory addressing */
304 #define MASK_DEBUG_COST 0x10 /* debug rtx codes */
305 #define MASK_DEBUG_TARGET 0x20 /* debug target attribute/pragma */
306 #define MASK_DEBUG_BUILTIN 0x40 /* debug builtins */
307 #define MASK_DEBUG_ALL (MASK_DEBUG_STACK \
308 | MASK_DEBUG_ARG \
309 | MASK_DEBUG_REG \
310 | MASK_DEBUG_ADDR \
311 | MASK_DEBUG_COST \
312 | MASK_DEBUG_TARGET \
313 | MASK_DEBUG_BUILTIN)
314
315 #define TARGET_DEBUG_STACK (rs6000_debug & MASK_DEBUG_STACK)
316 #define TARGET_DEBUG_ARG (rs6000_debug & MASK_DEBUG_ARG)
317 #define TARGET_DEBUG_REG (rs6000_debug & MASK_DEBUG_REG)
318 #define TARGET_DEBUG_ADDR (rs6000_debug & MASK_DEBUG_ADDR)
319 #define TARGET_DEBUG_COST (rs6000_debug & MASK_DEBUG_COST)
320 #define TARGET_DEBUG_TARGET (rs6000_debug & MASK_DEBUG_TARGET)
321 #define TARGET_DEBUG_BUILTIN (rs6000_debug & MASK_DEBUG_BUILTIN)
322
323 /* Helper macros for TFmode. Quad floating point (TFmode) can be either IBM
324 long double format that uses a pair of doubles, or IEEE 128-bit floating
325 point. KFmode was added as a way to represent IEEE 128-bit floating point,
326 even if the default for long double is the IBM long double format.
327 Similarly IFmode is the IBM long double format even if the default is IEEE
328 128-bit. Don't allow IFmode if -msoft-float. */
329 #define FLOAT128_IEEE_P(MODE) \
330 ((TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128 \
331 && ((MODE) == TFmode || (MODE) == TCmode)) \
332 || ((MODE) == KFmode) || ((MODE) == KCmode))
333
334 #define FLOAT128_IBM_P(MODE) \
335 ((!TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128 \
336 && ((MODE) == TFmode || (MODE) == TCmode)) \
337 || (TARGET_HARD_FLOAT && ((MODE) == IFmode || (MODE) == ICmode)))
338
339 /* Helper macros to say whether a 128-bit floating point type can go in a
340 single vector register, or whether it needs paired scalar values. */
341 #define FLOAT128_VECTOR_P(MODE) (TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE))
342
343 #define FLOAT128_2REG_P(MODE) \
344 (FLOAT128_IBM_P (MODE) \
345 || ((MODE) == TDmode) \
346 || (!TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE)))
347
348 /* Return true for floating point that does not use a vector register. */
349 #define SCALAR_FLOAT_MODE_NOT_VECTOR_P(MODE) \
350 (SCALAR_FLOAT_MODE_P (MODE) && !FLOAT128_VECTOR_P (MODE))
351
352 /* Describe the vector unit used for arithmetic operations. */
353 extern enum rs6000_vector rs6000_vector_unit[];
354
355 #define VECTOR_UNIT_NONE_P(MODE) \
356 (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
357
358 #define VECTOR_UNIT_VSX_P(MODE) \
359 (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
360
361 #define VECTOR_UNIT_P8_VECTOR_P(MODE) \
362 (rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR)
363
364 #define VECTOR_UNIT_ALTIVEC_P(MODE) \
365 (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
366
367 #define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE) \
368 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
369 (int)VECTOR_VSX, \
370 (int)VECTOR_P8_VECTOR))
371
372 /* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either
373 altivec (VMX) or VSX vector instructions. P8 vector support is upwards
374 compatible, so allow it as well, rather than changing all of the uses of the
375 macro. */
376 #define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \
377 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
378 (int)VECTOR_ALTIVEC, \
379 (int)VECTOR_P8_VECTOR))
380
381 /* Describe whether to use VSX loads or Altivec loads. For now, just use the
382 same unit as the vector unit we are using, but we may want to migrate to
383 using VSX style loads even for types handled by altivec. */
384 extern enum rs6000_vector rs6000_vector_mem[];
385
386 #define VECTOR_MEM_NONE_P(MODE) \
387 (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
388
389 #define VECTOR_MEM_VSX_P(MODE) \
390 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
391
392 #define VECTOR_MEM_P8_VECTOR_P(MODE) \
393 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
394
395 #define VECTOR_MEM_ALTIVEC_P(MODE) \
396 (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
397
398 #define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE) \
399 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
400 (int)VECTOR_VSX, \
401 (int)VECTOR_P8_VECTOR))
402
403 #define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \
404 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
405 (int)VECTOR_ALTIVEC, \
406 (int)VECTOR_P8_VECTOR))
407
408 /* Return the alignment of a given vector type, which is set based on the
409 vector unit use. VSX for instance can load 32 or 64 bit aligned words
410 without problems, while Altivec requires 128-bit aligned vectors. */
411 extern int rs6000_vector_align[];
412
413 #define VECTOR_ALIGN(MODE) \
414 ((rs6000_vector_align[(MODE)] != 0) \
415 ? rs6000_vector_align[(MODE)] \
416 : (int)GET_MODE_BITSIZE ((MODE)))
417
418 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
419 with scalar instructions. */
420 #define VECTOR_ELEMENT_SCALAR_64BIT ((BYTES_BIG_ENDIAN) ? 0 : 1)
421
422 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
423 with the ISA 3.0 MFVSRLD instructions. */
424 #define VECTOR_ELEMENT_MFVSRLD_64BIT ((BYTES_BIG_ENDIAN) ? 1 : 0)
425
426 /* Alignment options for fields in structures for sub-targets following
427 AIX-like ABI.
428 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
429 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
430
431 Override the macro definitions when compiling libobjc to avoid undefined
432 reference to rs6000_alignment_flags due to library's use of GCC alignment
433 macros which use the macros below. */
434
435 #ifndef IN_TARGET_LIBS
436 #define MASK_ALIGN_POWER 0x00000000
437 #define MASK_ALIGN_NATURAL 0x00000001
438 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
439 #else
440 #define TARGET_ALIGN_NATURAL 0
441 #endif
442
443 /* We use values 126..128 to pick the appropriate long double type (IFmode,
444 KFmode, TFmode). */
445 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size > 64)
446 #define TARGET_IEEEQUAD rs6000_ieeequad
447 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
448 #define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
449
450 /* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
451 Enable 32-bit fcfid's on any of the switches for newer ISA machines. */
452 #define TARGET_FCFID (TARGET_POWERPC64 \
453 || TARGET_PPC_GPOPT /* 970/power4 */ \
454 || TARGET_POPCNTB /* ISA 2.02 */ \
455 || TARGET_CMPB /* ISA 2.05 */ \
456 || TARGET_POPCNTD) /* ISA 2.06 */
457
458 #define TARGET_FCTIDZ TARGET_FCFID
459 #define TARGET_STFIWX TARGET_PPC_GFXOPT
460 #define TARGET_LFIWAX TARGET_CMPB
461 #define TARGET_LFIWZX TARGET_POPCNTD
462 #define TARGET_FCFIDS TARGET_POPCNTD
463 #define TARGET_FCFIDU TARGET_POPCNTD
464 #define TARGET_FCFIDUS TARGET_POPCNTD
465 #define TARGET_FCTIDUZ TARGET_POPCNTD
466 #define TARGET_FCTIWUZ TARGET_POPCNTD
467 #define TARGET_CTZ TARGET_MODULO
468 #define TARGET_EXTSWSLI (TARGET_MODULO && TARGET_POWERPC64)
469 #define TARGET_MADDLD TARGET_MODULO
470
471 #define TARGET_XSCVDPSPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
472 #define TARGET_XSCVSPDPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
473 #define TARGET_VADDUQM (TARGET_P8_VECTOR && TARGET_POWERPC64)
474 #define TARGET_DIRECT_MOVE_128 (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
475 && TARGET_POWERPC64)
476 #define TARGET_VEXTRACTUB (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
477 && TARGET_POWERPC64)
478
479 /* Whether we should avoid (SUBREG:SI (REG:SF) and (SUBREG:SF (REG:SI). */
480 #define TARGET_NO_SF_SUBREG TARGET_DIRECT_MOVE_64BIT
481 #define TARGET_ALLOW_SF_SUBREG (!TARGET_DIRECT_MOVE_64BIT)
482
483 /* This wants to be set for p8 and newer. On p7, overlapping unaligned
484 loads are slow. */
485 #define TARGET_EFFICIENT_OVERLAPPING_UNALIGNED TARGET_EFFICIENT_UNALIGNED_VSX
486
487 /* Byte/char syncs were added as phased in for ISA 2.06B, but are not present
488 in power7, so conditionalize them on p8 features. TImode syncs need quad
489 memory support. */
490 #define TARGET_SYNC_HI_QI (TARGET_QUAD_MEMORY \
491 || TARGET_QUAD_MEMORY_ATOMIC \
492 || TARGET_DIRECT_MOVE)
493
494 #define TARGET_SYNC_TI TARGET_QUAD_MEMORY_ATOMIC
495
496 /* Power7 has both 32-bit load and store integer for the FPRs, so we don't need
497 to allocate the SDmode stack slot to get the value into the proper location
498 in the register. */
499 #define TARGET_NO_SDMODE_STACK (TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP)
500
501 /* ISA 3.0 has new min/max functions that don't need fast math that are being
502 phased in. Min/max using FSEL or XSMAXDP/XSMINDP do not return the correct
503 answers if the arguments are not in the normal range. */
504 #define TARGET_MINMAX (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
505 && (TARGET_P9_MINMAX || !flag_trapping_math))
506
507 /* In switching from using target_flags to using rs6000_isa_flags, the options
508 machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>. For now map
509 OPTION_MASK_<xxx> back into MASK_<xxx>. */
510 #define MASK_ALTIVEC OPTION_MASK_ALTIVEC
511 #define MASK_CMPB OPTION_MASK_CMPB
512 #define MASK_CRYPTO OPTION_MASK_CRYPTO
513 #define MASK_DFP OPTION_MASK_DFP
514 #define MASK_DIRECT_MOVE OPTION_MASK_DIRECT_MOVE
515 #define MASK_DLMZB OPTION_MASK_DLMZB
516 #define MASK_EABI OPTION_MASK_EABI
517 #define MASK_FLOAT128_KEYWORD OPTION_MASK_FLOAT128_KEYWORD
518 #define MASK_FLOAT128_HW OPTION_MASK_FLOAT128_HW
519 #define MASK_FPRND OPTION_MASK_FPRND
520 #define MASK_P8_FUSION OPTION_MASK_P8_FUSION
521 #define MASK_HARD_FLOAT OPTION_MASK_HARD_FLOAT
522 #define MASK_HTM OPTION_MASK_HTM
523 #define MASK_ISEL OPTION_MASK_ISEL
524 #define MASK_MFCRF OPTION_MASK_MFCRF
525 #define MASK_MULHW OPTION_MASK_MULHW
526 #define MASK_MULTIPLE OPTION_MASK_MULTIPLE
527 #define MASK_NO_UPDATE OPTION_MASK_NO_UPDATE
528 #define MASK_P8_VECTOR OPTION_MASK_P8_VECTOR
529 #define MASK_P9_VECTOR OPTION_MASK_P9_VECTOR
530 #define MASK_P9_MISC OPTION_MASK_P9_MISC
531 #define MASK_POPCNTB OPTION_MASK_POPCNTB
532 #define MASK_POPCNTD OPTION_MASK_POPCNTD
533 #define MASK_PPC_GFXOPT OPTION_MASK_PPC_GFXOPT
534 #define MASK_PPC_GPOPT OPTION_MASK_PPC_GPOPT
535 #define MASK_RECIP_PRECISION OPTION_MASK_RECIP_PRECISION
536 #define MASK_SOFT_FLOAT OPTION_MASK_SOFT_FLOAT
537 #define MASK_STRICT_ALIGN OPTION_MASK_STRICT_ALIGN
538 #define MASK_UPDATE OPTION_MASK_UPDATE
539 #define MASK_VSX OPTION_MASK_VSX
540 #define MASK_FUTURE OPTION_MASK_FUTURE
541
542 #ifndef IN_LIBGCC2
543 #define MASK_POWERPC64 OPTION_MASK_POWERPC64
544 #endif
545
546 #ifdef TARGET_64BIT
547 #define MASK_64BIT OPTION_MASK_64BIT
548 #endif
549
550 #ifdef TARGET_LITTLE_ENDIAN
551 #define MASK_LITTLE_ENDIAN OPTION_MASK_LITTLE_ENDIAN
552 #endif
553
554 #ifdef TARGET_REGNAMES
555 #define MASK_REGNAMES OPTION_MASK_REGNAMES
556 #endif
557
558 #ifdef TARGET_PROTOTYPE
559 #define MASK_PROTOTYPE OPTION_MASK_PROTOTYPE
560 #endif
561
562 #ifdef TARGET_MODULO
563 #define RS6000_BTM_MODULO OPTION_MASK_MODULO
564 #endif
565
566
567 /* For power systems, we want to enable Altivec and VSX builtins even if the
568 user did not use -maltivec or -mvsx to allow the builtins to be used inside
569 of #pragma GCC target or the target attribute to change the code level for a
570 given system. */
571
572 #define TARGET_EXTRA_BUILTINS (TARGET_POWERPC64 \
573 || TARGET_PPC_GPOPT /* 970/power4 */ \
574 || TARGET_POPCNTB /* ISA 2.02 */ \
575 || TARGET_CMPB /* ISA 2.05 */ \
576 || TARGET_POPCNTD /* ISA 2.06 */ \
577 || TARGET_ALTIVEC \
578 || TARGET_VSX \
579 || TARGET_HARD_FLOAT)
580
581 /* E500 cores only support plain "sync", not lwsync. */
582 #define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
583 || rs6000_cpu == PROCESSOR_PPC8548)
584
585
586 /* Which machine supports the various reciprocal estimate instructions. */
587 #define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT)
588
589 #define TARGET_FRE (TARGET_HARD_FLOAT \
590 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
591
592 #define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \
593 && TARGET_PPC_GFXOPT)
594
595 #define TARGET_FRSQRTE (TARGET_HARD_FLOAT \
596 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
597
598 /* Macro to say whether we can do optimizations where we need to do parts of
599 the calculation in 64-bit GPRs and then is transfered to the vector
600 registers. */
601 #define TARGET_DIRECT_MOVE_64BIT (TARGET_DIRECT_MOVE \
602 && TARGET_P8_VECTOR \
603 && TARGET_POWERPC64)
604
605 /* Whether the various reciprocal divide/square root estimate instructions
606 exist, and whether we should automatically generate code for the instruction
607 by default. */
608 #define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */
609 #define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */
610 #define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */
611 #define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */
612
613 extern unsigned char rs6000_recip_bits[];
614
615 #define RS6000_RECIP_HAVE_RE_P(MODE) \
616 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
617
618 #define RS6000_RECIP_AUTO_RE_P(MODE) \
619 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
620
621 #define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
622 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
623
624 #define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
625 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
626
627 /* The default CPU for TARGET_OPTION_OVERRIDE. */
628 #define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
629
630 /* Target pragma. */
631 #define REGISTER_TARGET_PRAGMAS() do { \
632 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
633 targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
634 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
635 rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
636 } while (0)
637
638 /* Target #defines. */
639 #define TARGET_CPU_CPP_BUILTINS() \
640 rs6000_cpu_cpp_builtins (pfile)
641
642 /* Target CPU versions for D. */
643 #define TARGET_D_CPU_VERSIONS rs6000_d_target_versions
644
645 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
646 we're compiling for. Some configurations may need to override it. */
647 #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
648 do \
649 { \
650 if (BYTES_BIG_ENDIAN) \
651 { \
652 builtin_define ("__BIG_ENDIAN__"); \
653 builtin_define ("_BIG_ENDIAN"); \
654 builtin_assert ("machine=bigendian"); \
655 } \
656 else \
657 { \
658 builtin_define ("__LITTLE_ENDIAN__"); \
659 builtin_define ("_LITTLE_ENDIAN"); \
660 builtin_assert ("machine=littleendian"); \
661 } \
662 } \
663 while (0)
664 \f
665 /* Target machine storage layout. */
666
667 /* Define this macro if it is advisable to hold scalars in registers
668 in a wider mode than that declared by the program. In such cases,
669 the value is constrained to be within the bounds of the declared
670 type, but kept valid in the wider mode. The signedness of the
671 extension may differ from that of the type. */
672
673 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
674 if (GET_MODE_CLASS (MODE) == MODE_INT \
675 && GET_MODE_SIZE (MODE) < (TARGET_32BIT ? 4 : 8)) \
676 (MODE) = TARGET_32BIT ? SImode : DImode;
677
678 /* Define this if most significant bit is lowest numbered
679 in instructions that operate on numbered bit-fields. */
680 /* That is true on RS/6000. */
681 #define BITS_BIG_ENDIAN 1
682
683 /* Define this if most significant byte of a word is the lowest numbered. */
684 /* That is true on RS/6000. */
685 #define BYTES_BIG_ENDIAN 1
686
687 /* Define this if most significant word of a multiword number is lowest
688 numbered.
689
690 For RS/6000 we can decide arbitrarily since there are no machine
691 instructions for them. Might as well be consistent with bits and bytes. */
692 #define WORDS_BIG_ENDIAN 1
693
694 /* This says that for the IBM long double the larger magnitude double
695 comes first. It's really a two element double array, and arrays
696 don't index differently between little- and big-endian. */
697 #define LONG_DOUBLE_LARGE_FIRST 1
698
699 #define MAX_BITS_PER_WORD 64
700
701 /* Width of a word, in units (bytes). */
702 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
703 #ifdef IN_LIBGCC2
704 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
705 #else
706 #define MIN_UNITS_PER_WORD 4
707 #endif
708 #define UNITS_PER_FP_WORD 8
709 #define UNITS_PER_ALTIVEC_WORD 16
710 #define UNITS_PER_VSX_WORD 16
711
712 /* Type used for ptrdiff_t, as a string used in a declaration. */
713 #define PTRDIFF_TYPE "int"
714
715 /* Type used for size_t, as a string used in a declaration. */
716 #define SIZE_TYPE "long unsigned int"
717
718 /* Type used for wchar_t, as a string used in a declaration. */
719 #define WCHAR_TYPE "short unsigned int"
720
721 /* Width of wchar_t in bits. */
722 #define WCHAR_TYPE_SIZE 16
723
724 /* A C expression for the size in bits of the type `short' on the
725 target machine. If you don't define this, the default is half a
726 word. (If this would be less than one storage unit, it is
727 rounded up to one unit.) */
728 #define SHORT_TYPE_SIZE 16
729
730 /* A C expression for the size in bits of the type `int' on the
731 target machine. If you don't define this, the default is one
732 word. */
733 #define INT_TYPE_SIZE 32
734
735 /* A C expression for the size in bits of the type `long' on the
736 target machine. If you don't define this, the default is one
737 word. */
738 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
739
740 /* A C expression for the size in bits of the type `long long' on the
741 target machine. If you don't define this, the default is two
742 words. */
743 #define LONG_LONG_TYPE_SIZE 64
744
745 /* A C expression for the size in bits of the type `float' on the
746 target machine. If you don't define this, the default is one
747 word. */
748 #define FLOAT_TYPE_SIZE 32
749
750 /* A C expression for the size in bits of the type `double' on the
751 target machine. If you don't define this, the default is two
752 words. */
753 #define DOUBLE_TYPE_SIZE 64
754
755 /* A C expression for the size in bits of the type `long double' on the target
756 machine. If you don't define this, the default is two words. */
757 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
758
759 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
760 #define WIDEST_HARDWARE_FP_SIZE 64
761
762 /* Width in bits of a pointer.
763 See also the macro `Pmode' defined below. */
764 extern unsigned rs6000_pointer_size;
765 #define POINTER_SIZE rs6000_pointer_size
766
767 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
768 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
769
770 /* Boundary (in *bits*) on which stack pointer should be aligned. */
771 #define STACK_BOUNDARY \
772 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
773 ? 64 : 128)
774
775 /* Allocation boundary (in *bits*) for the code of a function. */
776 #define FUNCTION_BOUNDARY 32
777
778 /* No data type wants to be aligned rounder than this. */
779 #define BIGGEST_ALIGNMENT 128
780
781 /* Alignment of field after `int : 0' in a structure. */
782 #define EMPTY_FIELD_BOUNDARY 32
783
784 /* Every structure's size must be a multiple of this. */
785 #define STRUCTURE_SIZE_BOUNDARY 8
786
787 /* A bit-field declared as `int' forces `int' alignment for the struct. */
788 #define PCC_BITFIELD_TYPE_MATTERS 1
789
790 enum data_align { align_abi, align_opt, align_both };
791
792 /* A C expression to compute the alignment for a variables in the
793 local store. TYPE is the data type, and ALIGN is the alignment
794 that the object would ordinarily have. */
795 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
796 rs6000_data_alignment (TYPE, ALIGN, align_both)
797
798 /* Make arrays of chars word-aligned for the same reasons. */
799 #define DATA_ALIGNMENT(TYPE, ALIGN) \
800 rs6000_data_alignment (TYPE, ALIGN, align_opt)
801
802 /* Align vectors to 128 bits. */
803 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
804 rs6000_data_alignment (TYPE, ALIGN, align_abi)
805
806 /* Nonzero if move instructions will actually fail to work
807 when given unaligned data. */
808 #define STRICT_ALIGNMENT 0
809 \f
810 /* Standard register usage. */
811
812 /* Number of actual hardware registers.
813 The hardware registers are assigned numbers for the compiler
814 from 0 to just below FIRST_PSEUDO_REGISTER.
815 All registers that the compiler knows about must be given numbers,
816 even those that are not normally considered general registers.
817
818 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
819 a count register, a link register, and 8 condition register fields,
820 which we view here as separate registers. AltiVec adds 32 vector
821 registers and a VRsave register.
822
823 In addition, the difference between the frame and argument pointers is
824 a function of the number of registers saved, so we need to have a
825 register for AP that will later be eliminated in favor of SP or FP.
826 This is a normal register, but it is fixed.
827
828 We also create a pseudo register for float/int conversions, that will
829 really represent the memory location used. It is represented here as
830 a register, in order to work around problems in allocating stack storage
831 in inline functions.
832
833 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
834 pointer, which is eventually eliminated in favor of SP or FP. */
835
836 #define FIRST_PSEUDO_REGISTER 111
837
838 /* Use standard DWARF numbering for DWARF debugging information. */
839 #define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number ((REGNO), 0)
840
841 /* Use gcc hard register numbering for eh_frame. */
842 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
843
844 /* Map register numbers held in the call frame info that gcc has
845 collected using DWARF_FRAME_REGNUM to those that should be output in
846 .debug_frame and .eh_frame. */
847 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
848 rs6000_dbx_register_number ((REGNO), (FOR_EH) ? 2 : 1)
849
850 /* 1 for registers that have pervasive standard uses
851 and are not available for the register allocator.
852
853 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
854 as a local register; for all other OS's r2 is the TOC pointer.
855
856 On System V implementations, r13 is fixed and not available for use. */
857
858 #define FIXED_REGISTERS \
859 {/* GPRs */ \
860 0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
861 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
862 /* FPRs */ \
863 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
864 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
865 /* VRs */ \
866 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
867 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
868 /* lr ctr ca ap */ \
869 0, 0, 1, 1, \
870 /* cr0..cr7 */ \
871 0, 0, 0, 0, 0, 0, 0, 0, \
872 /* vrsave vscr sfp */ \
873 1, 1, 1 \
874 }
875
876 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
877 the entire set of `FIXED_REGISTERS' be included.
878 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
879 This macro is optional. If not specified, it defaults to the value
880 of `CALL_USED_REGISTERS'. */
881
882 #define CALL_REALLY_USED_REGISTERS \
883 {/* GPRs */ \
884 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
885 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
886 /* FPRs */ \
887 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
888 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
889 /* VRs */ \
890 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
891 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
892 /* lr ctr ca ap */ \
893 1, 1, 1, 1, \
894 /* cr0..cr7 */ \
895 1, 1, 0, 0, 0, 1, 1, 1, \
896 /* vrsave vscr sfp */ \
897 0, 0, 0 \
898 }
899
900 #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
901
902 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
903 #define FIRST_SAVED_FP_REGNO (14+32)
904 #define FIRST_SAVED_GP_REGNO (FIXED_R13 ? 14 : 13)
905
906 /* List the order in which to allocate registers. Each register must be
907 listed once, even those in FIXED_REGISTERS.
908
909 We allocate in the following order:
910 fp0 (not saved or used for anything)
911 fp13 - fp2 (not saved; incoming fp arg registers)
912 fp1 (not saved; return value)
913 fp31 - fp14 (saved; order given to save least number)
914 cr7, cr5 (not saved or special)
915 cr6 (not saved, but used for vector operations)
916 cr1 (not saved, but used for FP operations)
917 cr0 (not saved, but used for arithmetic operations)
918 cr4, cr3, cr2 (saved)
919 r9 (not saved; best for TImode)
920 r10, r8-r4 (not saved; highest first for less conflict with params)
921 r3 (not saved; return value register)
922 r11 (not saved; later alloc to help shrink-wrap)
923 r0 (not saved; cannot be base reg)
924 r31 - r13 (saved; order given to save least number)
925 r12 (not saved; if used for DImode or DFmode would use r13)
926 ctr (not saved; when we have the choice ctr is better)
927 lr (saved)
928 r1, r2, ap, ca (fixed)
929 v0 - v1 (not saved or used for anything)
930 v13 - v3 (not saved; incoming vector arg registers)
931 v2 (not saved; incoming vector arg reg; return value)
932 v19 - v14 (not saved or used for anything)
933 v31 - v20 (saved; order given to save least number)
934 vrsave, vscr (fixed)
935 sfp (fixed)
936 */
937
938 #if FIXED_R2 == 1
939 #define MAYBE_R2_AVAILABLE
940 #define MAYBE_R2_FIXED 2,
941 #else
942 #define MAYBE_R2_AVAILABLE 2,
943 #define MAYBE_R2_FIXED
944 #endif
945
946 #if FIXED_R13 == 1
947 #define EARLY_R12 12,
948 #define LATE_R12
949 #else
950 #define EARLY_R12
951 #define LATE_R12 12,
952 #endif
953
954 #define REG_ALLOC_ORDER \
955 {32, \
956 /* move fr13 (ie 45) later, so if we need TFmode, it does */ \
957 /* not use fr14 which is a saved register. */ \
958 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45, \
959 33, \
960 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
961 50, 49, 48, 47, 46, \
962 100, 107, 105, 106, 101, 104, 103, 102, \
963 MAYBE_R2_AVAILABLE \
964 9, 10, 8, 7, 6, 5, 4, \
965 3, EARLY_R12 11, 0, \
966 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
967 18, 17, 16, 15, 14, 13, LATE_R12 \
968 97, 96, \
969 1, MAYBE_R2_FIXED 99, 98, \
970 /* AltiVec registers. */ \
971 64, 65, \
972 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, \
973 66, \
974 83, 82, 81, 80, 79, 78, \
975 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, \
976 108, 109, \
977 110 \
978 }
979
980 /* True if register is floating-point. */
981 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
982
983 /* True if register is a condition register. */
984 #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
985
986 /* True if register is a condition register, but not cr0. */
987 #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
988
989 /* True if register is an integer register. */
990 #define INT_REGNO_P(N) \
991 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
992
993 /* True if register is the CA register. */
994 #define CA_REGNO_P(N) ((N) == CA_REGNO)
995
996 /* True if register is an AltiVec register. */
997 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
998
999 /* True if register is a VSX register. */
1000 #define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
1001
1002 /* Alternate name for any vector register supporting floating point, no matter
1003 which instruction set(s) are available. */
1004 #define VFLOAT_REGNO_P(N) \
1005 (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1006
1007 /* Alternate name for any vector register supporting integer, no matter which
1008 instruction set(s) are available. */
1009 #define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1010
1011 /* Alternate name for any vector register supporting logical operations, no
1012 matter which instruction set(s) are available. Allow GPRs as well as the
1013 vector registers. */
1014 #define VLOGICAL_REGNO_P(N) \
1015 (INT_REGNO_P (N) || ALTIVEC_REGNO_P (N) \
1016 || (TARGET_VSX && FP_REGNO_P (N))) \
1017
1018 /* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
1019 enough space to account for vectors in FP regs. However, TFmode/TDmode
1020 should not use VSX instructions to do a caller save. */
1021 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1022 ((NREGS) <= rs6000_hard_regno_nregs[MODE][REGNO] \
1023 ? (MODE) \
1024 : TARGET_VSX \
1025 && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \
1026 && FP_REGNO_P (REGNO) \
1027 ? V2DFmode \
1028 : FLOAT128_IBM_P (MODE) && FP_REGNO_P (REGNO) \
1029 ? DFmode \
1030 : (MODE) == TDmode && FP_REGNO_P (REGNO) \
1031 ? DImode \
1032 : choose_hard_reg_mode ((REGNO), (NREGS), NULL))
1033
1034 #define VSX_VECTOR_MODE(MODE) \
1035 ((MODE) == V4SFmode \
1036 || (MODE) == V2DFmode) \
1037
1038 /* Note KFmode and possibly TFmode (i.e. IEEE 128-bit floating point) are not
1039 really a vector, but we want to treat it as a vector for moves, and
1040 such. */
1041
1042 #define ALTIVEC_VECTOR_MODE(MODE) \
1043 ((MODE) == V16QImode \
1044 || (MODE) == V8HImode \
1045 || (MODE) == V4SFmode \
1046 || (MODE) == V4SImode \
1047 || FLOAT128_VECTOR_P (MODE))
1048
1049 #define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \
1050 (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \
1051 || (MODE) == V2DImode || (MODE) == V1TImode)
1052
1053 /* Post-reload, we can't use any new AltiVec registers, as we already
1054 emitted the vrsave mask. */
1055
1056 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1057 (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
1058
1059 /* Specify the cost of a branch insn; roughly the number of extra insns that
1060 should be added to avoid a branch.
1061
1062 Set this to 3 on the RS/6000 since that is roughly the average cost of an
1063 unscheduled conditional branch. */
1064
1065 #define BRANCH_COST(speed_p, predictable_p) 3
1066
1067 /* Override BRANCH_COST heuristic which empirically produces worse
1068 performance for removing short circuiting from the logical ops. */
1069
1070 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1071
1072 /* Specify the registers used for certain standard purposes.
1073 The values of these macros are register numbers. */
1074
1075 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1076 /* #define PC_REGNUM */
1077
1078 /* Register to use for pushing function arguments. */
1079 #define STACK_POINTER_REGNUM 1
1080
1081 /* Base register for access to local variables of the function. */
1082 #define HARD_FRAME_POINTER_REGNUM 31
1083
1084 /* Base register for access to local variables of the function. */
1085 #define FRAME_POINTER_REGNUM 110
1086
1087 /* Base register for access to arguments of the function. */
1088 #define ARG_POINTER_REGNUM 99
1089
1090 /* Place to put static chain when calling a function that requires it. */
1091 #define STATIC_CHAIN_REGNUM 11
1092
1093 /* Base register for access to thread local storage variables. */
1094 #define TLS_REGNUM ((TARGET_64BIT) ? 13 : 2)
1095
1096 \f
1097 /* Define the classes of registers for register constraints in the
1098 machine description. Also define ranges of constants.
1099
1100 One of the classes must always be named ALL_REGS and include all hard regs.
1101 If there is more than one class, another class must be named NO_REGS
1102 and contain no registers.
1103
1104 The name GENERAL_REGS must be the name of a class (or an alias for
1105 another name such as ALL_REGS). This is the class of registers
1106 that is allowed by "g" or "r" in a register constraint.
1107 Also, registers outside this class are allocated only when
1108 instructions express preferences for them.
1109
1110 The classes must be numbered in nondecreasing order; that is,
1111 a larger-numbered class must never be contained completely
1112 in a smaller-numbered class.
1113
1114 For any two classes, it is very desirable that there be another
1115 class that represents their union. */
1116
1117 /* The RS/6000 has three types of registers, fixed-point, floating-point, and
1118 condition registers, plus three special registers, CTR, and the link
1119 register. AltiVec adds a vector register class. VSX registers overlap the
1120 FPR registers and the Altivec registers.
1121
1122 However, r0 is special in that it cannot be used as a base register.
1123 So make a class for registers valid as base registers.
1124
1125 Also, cr0 is the only condition code register that can be used in
1126 arithmetic insns, so make a separate class for it. */
1127
1128 enum reg_class
1129 {
1130 NO_REGS,
1131 BASE_REGS,
1132 GENERAL_REGS,
1133 FLOAT_REGS,
1134 ALTIVEC_REGS,
1135 VSX_REGS,
1136 VRSAVE_REGS,
1137 VSCR_REGS,
1138 GEN_OR_FLOAT_REGS,
1139 GEN_OR_VSX_REGS,
1140 LINK_REGS,
1141 CTR_REGS,
1142 LINK_OR_CTR_REGS,
1143 SPECIAL_REGS,
1144 SPEC_OR_GEN_REGS,
1145 CR0_REGS,
1146 CR_REGS,
1147 NON_FLOAT_REGS,
1148 CA_REGS,
1149 ALL_REGS,
1150 LIM_REG_CLASSES
1151 };
1152
1153 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1154
1155 /* Give names of register classes as strings for dump file. */
1156
1157 #define REG_CLASS_NAMES \
1158 { \
1159 "NO_REGS", \
1160 "BASE_REGS", \
1161 "GENERAL_REGS", \
1162 "FLOAT_REGS", \
1163 "ALTIVEC_REGS", \
1164 "VSX_REGS", \
1165 "VRSAVE_REGS", \
1166 "VSCR_REGS", \
1167 "GEN_OR_FLOAT_REGS", \
1168 "GEN_OR_VSX_REGS", \
1169 "LINK_REGS", \
1170 "CTR_REGS", \
1171 "LINK_OR_CTR_REGS", \
1172 "SPECIAL_REGS", \
1173 "SPEC_OR_GEN_REGS", \
1174 "CR0_REGS", \
1175 "CR_REGS", \
1176 "NON_FLOAT_REGS", \
1177 "CA_REGS", \
1178 "ALL_REGS" \
1179 }
1180
1181 /* Define which registers fit in which classes.
1182 This is an initializer for a vector of HARD_REG_SET
1183 of length N_REG_CLASSES. */
1184
1185 #define REG_CLASS_CONTENTS \
1186 { \
1187 /* NO_REGS. */ \
1188 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1189 /* BASE_REGS. */ \
1190 { 0xfffffffe, 0x00000000, 0x00000000, 0x00004008 }, \
1191 /* GENERAL_REGS. */ \
1192 { 0xffffffff, 0x00000000, 0x00000000, 0x00004008 }, \
1193 /* FLOAT_REGS. */ \
1194 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, \
1195 /* ALTIVEC_REGS. */ \
1196 { 0x00000000, 0x00000000, 0xffffffff, 0x00000000 }, \
1197 /* VSX_REGS. */ \
1198 { 0x00000000, 0xffffffff, 0xffffffff, 0x00000000 }, \
1199 /* VRSAVE_REGS. */ \
1200 { 0x00000000, 0x00000000, 0x00000000, 0x00001000 }, \
1201 /* VSCR_REGS. */ \
1202 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, \
1203 /* GEN_OR_FLOAT_REGS. */ \
1204 { 0xffffffff, 0xffffffff, 0x00000000, 0x00004008 }, \
1205 /* GEN_OR_VSX_REGS. */ \
1206 { 0xffffffff, 0xffffffff, 0xffffffff, 0x00004008 }, \
1207 /* LINK_REGS. */ \
1208 { 0x00000000, 0x00000000, 0x00000000, 0x00000001 }, \
1209 /* CTR_REGS. */ \
1210 { 0x00000000, 0x00000000, 0x00000000, 0x00000002 }, \
1211 /* LINK_OR_CTR_REGS. */ \
1212 { 0x00000000, 0x00000000, 0x00000000, 0x00000003 }, \
1213 /* SPECIAL_REGS. */ \
1214 { 0x00000000, 0x00000000, 0x00000000, 0x00001003 }, \
1215 /* SPEC_OR_GEN_REGS. */ \
1216 { 0xffffffff, 0x00000000, 0x00000000, 0x0000500b }, \
1217 /* CR0_REGS. */ \
1218 { 0x00000000, 0x00000000, 0x00000000, 0x00000010 }, \
1219 /* CR_REGS. */ \
1220 { 0x00000000, 0x00000000, 0x00000000, 0x00000ff0 }, \
1221 /* NON_FLOAT_REGS. */ \
1222 { 0xffffffff, 0x00000000, 0x00000000, 0x00004ffb }, \
1223 /* CA_REGS. */ \
1224 { 0x00000000, 0x00000000, 0x00000000, 0x00000004 }, \
1225 /* ALL_REGS. */ \
1226 { 0xffffffff, 0xffffffff, 0xffffffff, 0x00007fff } \
1227 }
1228
1229 /* The same information, inverted:
1230 Return the class number of the smallest class containing
1231 reg number REGNO. This could be a conditional expression
1232 or could index an array. */
1233
1234 extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1235
1236 #define REGNO_REG_CLASS(REGNO) \
1237 (gcc_checking_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)),\
1238 rs6000_regno_regclass[(REGNO)])
1239
1240 /* Register classes for various constraints that are based on the target
1241 switches. */
1242 enum r6000_reg_class_enum {
1243 RS6000_CONSTRAINT_d, /* fpr registers for double values */
1244 RS6000_CONSTRAINT_f, /* fpr registers for single values */
1245 RS6000_CONSTRAINT_v, /* Altivec registers */
1246 RS6000_CONSTRAINT_wa, /* Any VSX register */
1247 RS6000_CONSTRAINT_we, /* VSX register if ISA 3.0 vector. */
1248 RS6000_CONSTRAINT_wr, /* GPR register if 64-bit */
1249 RS6000_CONSTRAINT_wx, /* FPR register for STFIWX */
1250 RS6000_CONSTRAINT_wA, /* BASE_REGS if 64-bit. */
1251 RS6000_CONSTRAINT_MAX
1252 };
1253
1254 extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
1255
1256 /* The class value for index registers, and the one for base regs. */
1257 #define INDEX_REG_CLASS GENERAL_REGS
1258 #define BASE_REG_CLASS BASE_REGS
1259
1260 /* Return whether a given register class can hold VSX objects. */
1261 #define VSX_REG_CLASS_P(CLASS) \
1262 ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1263
1264 /* Return whether a given register class targets general purpose registers. */
1265 #define GPR_REG_CLASS_P(CLASS) ((CLASS) == GENERAL_REGS || (CLASS) == BASE_REGS)
1266
1267 /* Given an rtx X being reloaded into a reg required to be
1268 in class CLASS, return the class of reg to actually use.
1269 In general this is just CLASS; but on some machines
1270 in some cases it is preferable to use a more restrictive class.
1271
1272 On the RS/6000, we have to return NO_REGS when we want to reload a
1273 floating-point CONST_DOUBLE to force it to be copied to memory.
1274
1275 We also don't want to reload integer values into floating-point
1276 registers if we can at all help it. In fact, this can
1277 cause reload to die, if it tries to generate a reload of CTR
1278 into a FP register and discovers it doesn't have the memory location
1279 required.
1280
1281 ??? Would it be a good idea to have reload do the converse, that is
1282 try to reload floating modes into FP registers if possible?
1283 */
1284
1285 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1286 rs6000_preferred_reload_class_ptr (X, CLASS)
1287
1288 /* Return the register class of a scratch register needed to copy IN into
1289 or out of a register in CLASS in MODE. If it can be done directly,
1290 NO_REGS is returned. */
1291
1292 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1293 rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
1294
1295 /* Return the maximum number of consecutive registers
1296 needed to represent mode MODE in a register of class CLASS.
1297
1298 On RS/6000, this is the size of MODE in words, except in the FP regs, where
1299 a single reg is enough for two words, unless we have VSX, where the FP
1300 registers can hold 128 bits. */
1301 #define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
1302
1303 /* Stack layout; function entry, exit and calling. */
1304
1305 /* Define this if pushing a word on the stack
1306 makes the stack pointer a smaller address. */
1307 #define STACK_GROWS_DOWNWARD 1
1308
1309 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
1310 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1311
1312 /* Define this to nonzero if the nominal address of the stack frame
1313 is at the high-address end of the local variables;
1314 that is, each additional local variable allocated
1315 goes at a more negative offset in the frame.
1316
1317 On the RS/6000, we grow upwards, from the area after the outgoing
1318 arguments. */
1319 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0 \
1320 || (flag_sanitize & SANITIZE_ADDRESS) != 0)
1321
1322 /* Size of the fixed area on the stack */
1323 #define RS6000_SAVE_AREA \
1324 ((DEFAULT_ABI == ABI_V4 ? 8 : DEFAULT_ABI == ABI_ELFv2 ? 16 : 24) \
1325 << (TARGET_64BIT ? 1 : 0))
1326
1327 /* Stack offset for toc save slot. */
1328 #define RS6000_TOC_SAVE_SLOT \
1329 ((DEFAULT_ABI == ABI_ELFv2 ? 12 : 20) << (TARGET_64BIT ? 1 : 0))
1330
1331 /* Align an address */
1332 #define RS6000_ALIGN(n,a) ROUND_UP ((n), (a))
1333
1334 /* Offset within stack frame to start allocating local variables at.
1335 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1336 first local allocated. Otherwise, it is the offset to the BEGINNING
1337 of the first local allocated.
1338
1339 On the RS/6000, the frame pointer is the same as the stack pointer,
1340 except for dynamic allocations. So we start after the fixed area and
1341 outgoing parameter area.
1342
1343 If the function uses dynamic stack space (CALLS_ALLOCA is set), that
1344 space needs to be aligned to STACK_BOUNDARY, i.e. the sum of the
1345 sizes of the fixed area and the parameter area must be a multiple of
1346 STACK_BOUNDARY. */
1347
1348 #define RS6000_STARTING_FRAME_OFFSET \
1349 (cfun->calls_alloca \
1350 ? (RS6000_ALIGN (crtl->outgoing_args_size + RS6000_SAVE_AREA, \
1351 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8 )) \
1352 : (RS6000_ALIGN (crtl->outgoing_args_size, \
1353 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
1354 + RS6000_SAVE_AREA))
1355
1356 /* Offset from the stack pointer register to an item dynamically
1357 allocated on the stack, e.g., by `alloca'.
1358
1359 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1360 length of the outgoing arguments. The default is correct for most
1361 machines. See `function.c' for details.
1362
1363 This value must be a multiple of STACK_BOUNDARY (hard coded in
1364 `emit-rtl.c'). */
1365 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1366 RS6000_ALIGN (crtl->outgoing_args_size.to_constant () \
1367 + STACK_POINTER_OFFSET, \
1368 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)
1369
1370 /* If we generate an insn to push BYTES bytes,
1371 this says how many the stack pointer really advances by.
1372 On RS/6000, don't define this because there are no push insns. */
1373 /* #define PUSH_ROUNDING(BYTES) */
1374
1375 /* Offset of first parameter from the argument pointer register value.
1376 On the RS/6000, we define the argument pointer to the start of the fixed
1377 area. */
1378 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1379
1380 /* Offset from the argument pointer register value to the top of
1381 stack. This is different from FIRST_PARM_OFFSET because of the
1382 register save area. */
1383 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1384
1385 /* Define this if stack space is still allocated for a parameter passed
1386 in a register. The value is the number of bytes allocated to this
1387 area. */
1388 #define REG_PARM_STACK_SPACE(FNDECL) \
1389 rs6000_reg_parm_stack_space ((FNDECL), false)
1390
1391 /* Define this macro if space guaranteed when compiling a function body
1392 is different to space required when making a call, a situation that
1393 can arise with K&R style function definitions. */
1394 #define INCOMING_REG_PARM_STACK_SPACE(FNDECL) \
1395 rs6000_reg_parm_stack_space ((FNDECL), true)
1396
1397 /* Define this if the above stack space is to be considered part of the
1398 space allocated by the caller. */
1399 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1400
1401 /* This is the difference between the logical top of stack and the actual sp.
1402
1403 For the RS/6000, sp points past the fixed area. */
1404 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1405
1406 /* Define this if the maximum size of all the outgoing args is to be
1407 accumulated and pushed during the prologue. The amount can be
1408 found in the variable crtl->outgoing_args_size. */
1409 #define ACCUMULATE_OUTGOING_ARGS 1
1410
1411 /* Define how to find the value returned by a library function
1412 assuming the value has mode MODE. */
1413
1414 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1415
1416 /* DRAFT_V4_STRUCT_RET defaults off. */
1417 #define DRAFT_V4_STRUCT_RET 0
1418
1419 /* Let TARGET_RETURN_IN_MEMORY control what happens. */
1420 #define DEFAULT_PCC_STRUCT_RETURN 0
1421
1422 /* Mode of stack savearea.
1423 FUNCTION is VOIDmode because calling convention maintains SP.
1424 BLOCK needs Pmode for SP.
1425 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1426 #define STACK_SAVEAREA_MODE(LEVEL) \
1427 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1428 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode)
1429
1430 /* Minimum and maximum general purpose registers used to hold arguments. */
1431 #define GP_ARG_MIN_REG 3
1432 #define GP_ARG_MAX_REG 10
1433 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1434
1435 /* Minimum and maximum floating point registers used to hold arguments. */
1436 #define FP_ARG_MIN_REG 33
1437 #define FP_ARG_AIX_MAX_REG 45
1438 #define FP_ARG_V4_MAX_REG 40
1439 #define FP_ARG_MAX_REG (DEFAULT_ABI == ABI_V4 \
1440 ? FP_ARG_V4_MAX_REG : FP_ARG_AIX_MAX_REG)
1441 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1442
1443 /* Minimum and maximum AltiVec registers used to hold arguments. */
1444 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1445 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1446 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1447
1448 /* Maximum number of registers per ELFv2 homogeneous aggregate argument. */
1449 #define AGGR_ARG_NUM_REG 8
1450
1451 /* Return registers */
1452 #define GP_ARG_RETURN GP_ARG_MIN_REG
1453 #define FP_ARG_RETURN FP_ARG_MIN_REG
1454 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1455 #define FP_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? FP_ARG_RETURN \
1456 : (FP_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1457 #define ALTIVEC_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 \
1458 ? (ALTIVEC_ARG_RETURN \
1459 + (TARGET_FLOAT128_TYPE ? 1 : 0)) \
1460 : (ALTIVEC_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1461
1462 /* Flags for the call/call_value rtl operations set up by function_arg */
1463 #define CALL_NORMAL 0x00000000 /* no special processing */
1464 /* Bits in 0x00000001 are unused. */
1465 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1466 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1467 #define CALL_LONG 0x00000008 /* always call indirect */
1468 #define CALL_LIBCALL 0x00000010 /* libcall */
1469
1470 /* Identify PLT sequence for rs6000_pltseq_template. */
1471 enum rs6000_pltseq_enum {
1472 RS6000_PLTSEQ_TOCSAVE,
1473 RS6000_PLTSEQ_PLT16_HA,
1474 RS6000_PLTSEQ_PLT16_LO,
1475 RS6000_PLTSEQ_MTCTR,
1476 RS6000_PLTSEQ_PLT_PCREL34
1477 };
1478
1479 #define IS_V4_FP_ARGS(OP) \
1480 ((INTVAL (OP) & (CALL_V4_CLEAR_FP_ARGS | CALL_V4_SET_FP_ARGS)) != 0)
1481
1482 /* We don't have prologue and epilogue functions to save/restore
1483 everything for most ABIs. */
1484 #define WORLD_SAVE_P(INFO) 0
1485
1486 /* 1 if N is a possible register number for a function value
1487 as seen by the caller.
1488
1489 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1490 #define FUNCTION_VALUE_REGNO_P(N) \
1491 ((N) == GP_ARG_RETURN \
1492 || (IN_RANGE ((N), FP_ARG_RETURN, FP_ARG_MAX_RETURN) \
1493 && TARGET_HARD_FLOAT) \
1494 || (IN_RANGE ((N), ALTIVEC_ARG_RETURN, ALTIVEC_ARG_MAX_RETURN) \
1495 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1496
1497 /* 1 if N is a possible register number for function argument passing.
1498 On RS/6000, these are r3-r10 and fp1-fp13.
1499 On AltiVec, v2 - v13 are used for passing vectors. */
1500 #define FUNCTION_ARG_REGNO_P(N) \
1501 (IN_RANGE ((N), GP_ARG_MIN_REG, GP_ARG_MAX_REG) \
1502 || (IN_RANGE ((N), ALTIVEC_ARG_MIN_REG, ALTIVEC_ARG_MAX_REG) \
1503 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
1504 || (IN_RANGE ((N), FP_ARG_MIN_REG, FP_ARG_MAX_REG) \
1505 && TARGET_HARD_FLOAT))
1506 \f
1507 /* Define a data type for recording info about an argument list
1508 during the scan of that argument list. This data type should
1509 hold all necessary information about the function itself
1510 and about the args processed so far, enough to enable macros
1511 such as FUNCTION_ARG to determine where the next arg should go.
1512
1513 On the RS/6000, this is a structure. The first element is the number of
1514 total argument words, the second is used to store the next
1515 floating-point register number, and the third says how many more args we
1516 have prototype types for.
1517
1518 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1519 the next available GP register, `fregno' is the next available FP
1520 register, and `words' is the number of words used on the stack.
1521
1522 The varargs/stdarg support requires that this structure's size
1523 be a multiple of sizeof(int). */
1524
1525 typedef struct rs6000_args
1526 {
1527 int words; /* # words used for passing GP registers */
1528 int fregno; /* next available FP register */
1529 int vregno; /* next available AltiVec register */
1530 int nargs_prototype; /* # args left in the current prototype */
1531 int prototype; /* Whether a prototype was defined */
1532 int stdarg; /* Whether function is a stdarg function. */
1533 int call_cookie; /* Do special things for this call */
1534 int sysv_gregno; /* next available GP register */
1535 int intoffset; /* running offset in struct (darwin64) */
1536 int use_stack; /* any part of struct on stack (darwin64) */
1537 int floats_in_gpr; /* count of SFmode floats taking up
1538 GPR space (darwin64) */
1539 int named; /* false for varargs params */
1540 int escapes; /* if function visible outside tu */
1541 int libcall; /* If this is a compiler generated call. */
1542 } CUMULATIVE_ARGS;
1543
1544 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1545 for a call to a function whose data type is FNTYPE.
1546 For a library call, FNTYPE is 0. */
1547
1548 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1549 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1550 N_NAMED_ARGS, FNDECL, VOIDmode)
1551
1552 /* Similar, but when scanning the definition of a procedure. We always
1553 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1554
1555 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1556 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1557 1000, current_function_decl, VOIDmode)
1558
1559 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1560
1561 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1562 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1563 0, NULL_TREE, MODE)
1564
1565 #define PAD_VARARGS_DOWN \
1566 (targetm.calls.function_arg_padding (TYPE_MODE (type), type) == PAD_DOWNWARD)
1567
1568 /* Output assembler code to FILE to increment profiler label # LABELNO
1569 for profiling a function entry. */
1570
1571 #define FUNCTION_PROFILER(FILE, LABELNO) \
1572 output_function_profiler ((FILE), (LABELNO));
1573
1574 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1575 the stack pointer does not matter. No definition is equivalent to
1576 always zero.
1577
1578 On the RS/6000, this is nonzero because we can restore the stack from
1579 its backpointer, which we maintain. */
1580 #define EXIT_IGNORE_STACK 1
1581
1582 /* Define this macro as a C expression that is nonzero for registers
1583 that are used by the epilogue or the return' pattern. The stack
1584 and frame pointer registers are already be assumed to be used as
1585 needed. */
1586
1587 #define EPILOGUE_USES(REGNO) \
1588 ((reload_completed && (REGNO) == LR_REGNO) \
1589 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
1590 || (crtl->calls_eh_return \
1591 && TARGET_AIX \
1592 && (REGNO) == 2))
1593
1594 \f
1595 /* Length in units of the trampoline for entering a nested function. */
1596
1597 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1598 \f
1599 /* Definitions for __builtin_return_address and __builtin_frame_address.
1600 __builtin_return_address (0) should give link register (LR_REGNO), enable
1601 this. */
1602 /* This should be uncommented, so that the link register is used, but
1603 currently this would result in unmatched insns and spilling fixed
1604 registers so we'll leave it for another day. When these problems are
1605 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1606 (mrs) */
1607 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1608
1609 /* Number of bytes into the frame return addresses can be found. See
1610 rs6000_stack_info in rs6000.c for more information on how the different
1611 abi's store the return address. */
1612 #define RETURN_ADDRESS_OFFSET \
1613 ((DEFAULT_ABI == ABI_V4 ? 4 : 8) << (TARGET_64BIT ? 1 : 0))
1614
1615 /* The current return address is in the link register. The return address
1616 of anything farther back is accessed normally at an offset of 8 from the
1617 frame pointer. */
1618 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1619 (rs6000_return_addr (COUNT, FRAME))
1620
1621 \f
1622 /* Definitions for register eliminations.
1623
1624 We have two registers that can be eliminated on the RS/6000. First, the
1625 frame pointer register can often be eliminated in favor of the stack
1626 pointer register. Secondly, the argument pointer register can always be
1627 eliminated; it is replaced with either the stack or frame pointer.
1628
1629 In addition, we use the elimination mechanism to see if r30 is needed
1630 Initially we assume that it isn't. If it is, we spill it. This is done
1631 by making it an eliminable register. We replace it with itself so that
1632 if it isn't needed, then existing uses won't be modified. */
1633
1634 /* This is an array of structures. Each structure initializes one pair
1635 of eliminable registers. The "from" register number is given first,
1636 followed by "to". Eliminations of the same "from" register are listed
1637 in order of preference. */
1638 #define ELIMINABLE_REGS \
1639 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1640 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1641 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1642 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1643 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1644 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1645
1646 /* Define the offset between two registers, one to be eliminated, and the other
1647 its replacement, at the start of a routine. */
1648 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1649 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1650 \f
1651 /* Addressing modes, and classification of registers for them. */
1652
1653 #define HAVE_PRE_DECREMENT 1
1654 #define HAVE_PRE_INCREMENT 1
1655 #define HAVE_PRE_MODIFY_DISP 1
1656 #define HAVE_PRE_MODIFY_REG 1
1657
1658 /* Macros to check register numbers against specific register classes. */
1659
1660 /* These assume that REGNO is a hard or pseudo reg number.
1661 They give nonzero only if REGNO is a hard reg of the suitable class
1662 or a pseudo reg currently allocated to a suitable hard reg.
1663 Since they use reg_renumber, they are safe only once reg_renumber
1664 has been allocated, which happens in reginfo.c during register
1665 allocation. */
1666
1667 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1668 (HARD_REGISTER_NUM_P (REGNO) \
1669 ? (REGNO) <= 31 \
1670 || (REGNO) == ARG_POINTER_REGNUM \
1671 || (REGNO) == FRAME_POINTER_REGNUM \
1672 : (reg_renumber[REGNO] >= 0 \
1673 && (reg_renumber[REGNO] <= 31 \
1674 || reg_renumber[REGNO] == ARG_POINTER_REGNUM \
1675 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1676
1677 #define REGNO_OK_FOR_BASE_P(REGNO) \
1678 (HARD_REGISTER_NUM_P (REGNO) \
1679 ? ((REGNO) > 0 && (REGNO) <= 31) \
1680 || (REGNO) == ARG_POINTER_REGNUM \
1681 || (REGNO) == FRAME_POINTER_REGNUM \
1682 : (reg_renumber[REGNO] > 0 \
1683 && (reg_renumber[REGNO] <= 31 \
1684 || reg_renumber[REGNO] == ARG_POINTER_REGNUM \
1685 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1686
1687 /* Nonzero if X is a hard reg that can be used as an index
1688 or if it is a pseudo reg in the non-strict case. */
1689 #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1690 ((!(STRICT) && !HARD_REGISTER_P (X)) \
1691 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1692
1693 /* Nonzero if X is a hard reg that can be used as a base reg
1694 or if it is a pseudo reg in the non-strict case. */
1695 #define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1696 ((!(STRICT) && !HARD_REGISTER_P (X)) \
1697 || REGNO_OK_FOR_BASE_P (REGNO (X)))
1698
1699 \f
1700 /* Maximum number of registers that can appear in a valid memory address. */
1701
1702 #define MAX_REGS_PER_ADDRESS 2
1703
1704 /* Recognize any constant value that is a valid address. */
1705
1706 #define CONSTANT_ADDRESS_P(X) \
1707 (GET_CODE (X) == LABEL_REF || SYMBOL_REF_P (X) \
1708 || CONST_INT_P (X) || GET_CODE (X) == CONST \
1709 || GET_CODE (X) == HIGH)
1710
1711 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1712 #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
1713 && EASY_VECTOR_15((n) >> 1) \
1714 && ((n) & 1) == 0)
1715
1716 #define EASY_VECTOR_MSB(n,mode) \
1717 ((((unsigned HOST_WIDE_INT) (n)) & GET_MODE_MASK (mode)) == \
1718 ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
1719
1720 \f
1721 #define FIND_BASE_TERM rs6000_find_base_term
1722 \f
1723 /* The register number of the register used to address a table of
1724 static data addresses in memory. In some cases this register is
1725 defined by a processor's "application binary interface" (ABI).
1726 When this macro is defined, RTL is generated for this register
1727 once, as with the stack pointer and frame pointer registers. If
1728 this macro is not defined, it is up to the machine-dependent files
1729 to allocate such a register (if necessary). */
1730
1731 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1732 #define PIC_OFFSET_TABLE_REGNUM \
1733 (TARGET_TOC ? TOC_REGISTER \
1734 : flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM \
1735 : INVALID_REGNUM)
1736
1737 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1738
1739 /* Define this macro if the register defined by
1740 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
1741 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
1742
1743 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1744
1745 /* A C expression that is nonzero if X is a legitimate immediate
1746 operand on the target machine when generating position independent
1747 code. You can assume that X satisfies `CONSTANT_P', so you need
1748 not check this. You can also assume FLAG_PIC is true, so you need
1749 not check it either. You need not define this macro if all
1750 constants (including `SYMBOL_REF') can be immediate operands when
1751 generating position independent code. */
1752
1753 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
1754 \f
1755 /* Specify the machine mode that this machine uses
1756 for the index in the tablejump instruction. */
1757 #define CASE_VECTOR_MODE SImode
1758
1759 /* Define as C expression which evaluates to nonzero if the tablejump
1760 instruction expects the table to contain offsets from the address of the
1761 table.
1762 Do not define this if the table should contain absolute addresses. */
1763 #define CASE_VECTOR_PC_RELATIVE 1
1764
1765 /* Define this as 1 if `char' should by default be signed; else as 0. */
1766 #define DEFAULT_SIGNED_CHAR 0
1767
1768 /* An integer expression for the size in bits of the largest integer machine
1769 mode that should actually be used. */
1770
1771 /* Allow pairs of registers to be used, which is the intent of the default. */
1772 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1773
1774 /* Max number of bytes we can move from memory to memory
1775 in one reasonably fast instruction. */
1776 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
1777 #define MAX_MOVE_MAX 8
1778
1779 /* Nonzero if access to memory by bytes is no faster than for words.
1780 Also nonzero if doing byte operations (specifically shifts) in registers
1781 is undesirable. */
1782 #define SLOW_BYTE_ACCESS 1
1783
1784 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1785 will either zero-extend or sign-extend. The value of this macro should
1786 be the code that says which one of the two operations is implicitly
1787 done, UNKNOWN if none. */
1788 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1789
1790 /* Define if loading short immediate values into registers sign extends. */
1791 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
1792 \f
1793 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
1794 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1795 ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
1796
1797 /* The CTZ patterns that are implemented in terms of CLZ return -1 for input of
1798 zero. The hardware instructions added in Power9 and the sequences using
1799 popcount return 32 or 64. */
1800 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1801 (TARGET_CTZ || TARGET_POPCNTD \
1802 ? ((VALUE) = GET_MODE_BITSIZE (MODE), 2) \
1803 : ((VALUE) = -1, 2))
1804
1805 /* Specify the machine mode that pointers have.
1806 After generation of rtl, the compiler makes no further distinction
1807 between pointers and any other objects of this machine mode. */
1808 extern scalar_int_mode rs6000_pmode;
1809 #define Pmode rs6000_pmode
1810
1811 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
1812 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
1813
1814 /* Mode of a function address in a call instruction (for indexing purposes).
1815 Doesn't matter on RS/6000. */
1816 #define FUNCTION_MODE SImode
1817
1818 /* Define this if addresses of constant functions
1819 shouldn't be put through pseudo regs where they can be cse'd.
1820 Desirable on machines where ordinary constants are expensive
1821 but a CALL with constant address is cheap. */
1822 #define NO_FUNCTION_CSE 1
1823
1824 /* Define this to be nonzero if shift instructions ignore all but the low-order
1825 few bits.
1826
1827 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
1828 have been dropped from the PowerPC architecture. */
1829 #define SHIFT_COUNT_TRUNCATED 0
1830
1831 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
1832 should be adjusted to reflect any required changes. This macro is used when
1833 there is some systematic length adjustment required that would be difficult
1834 to express in the length attribute.
1835
1836 In the PowerPC, we use this to adjust the length of an instruction if one or
1837 more prefixed instructions are generated, using the attribute
1838 num_prefixed_insns. A prefixed instruction is 8 bytes instead of 4, but the
1839 hardware requires that a prefied instruciton does not cross a 64-byte
1840 boundary. This means the compiler has to assume the length of the first
1841 prefixed instruction is 12 bytes instead of 8 bytes. Since the length is
1842 already set for the non-prefixed instruction, we just need to udpate for the
1843 difference. */
1844
1845 #define ADJUST_INSN_LENGTH(INSN,LENGTH) \
1846 (LENGTH) = rs6000_adjust_insn_length ((INSN), (LENGTH))
1847
1848 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
1849 COMPARE, return the mode to be used for the comparison. For
1850 floating-point, CCFPmode should be used. CCUNSmode should be used
1851 for unsigned comparisons. CCEQmode should be used when we are
1852 doing an inequality comparison on the result of a
1853 comparison. CCmode should be used in all other cases. */
1854
1855 #define SELECT_CC_MODE(OP,X,Y) \
1856 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
1857 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
1858 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
1859 ? CCEQmode : CCmode))
1860
1861 /* Can the condition code MODE be safely reversed? This is safe in
1862 all cases on this port, because at present it doesn't use the
1863 trapping FP comparisons (fcmpo). */
1864 #define REVERSIBLE_CC_MODE(MODE) 1
1865
1866 /* Given a condition code and a mode, return the inverse condition. */
1867 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
1868
1869 \f
1870 /* Target cpu costs. */
1871
1872 struct processor_costs {
1873 const int mulsi; /* cost of SImode multiplication. */
1874 const int mulsi_const; /* cost of SImode multiplication by constant. */
1875 const int mulsi_const9; /* cost of SImode mult by short constant. */
1876 const int muldi; /* cost of DImode multiplication. */
1877 const int divsi; /* cost of SImode division. */
1878 const int divdi; /* cost of DImode division. */
1879 const int fp; /* cost of simple SFmode and DFmode insns. */
1880 const int dmul; /* cost of DFmode multiplication (and fmadd). */
1881 const int sdiv; /* cost of SFmode division (fdivs). */
1882 const int ddiv; /* cost of DFmode division (fdiv). */
1883 const int cache_line_size; /* cache line size in bytes. */
1884 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
1885 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
1886 const int simultaneous_prefetches; /* number of parallel prefetch
1887 operations. */
1888 const int sfdf_convert; /* cost of SF->DF conversion. */
1889 };
1890
1891 extern const struct processor_costs *rs6000_cost;
1892 \f
1893 /* Control the assembler format that we output. */
1894
1895 /* A C string constant describing how to begin a comment in the target
1896 assembler language. The compiler assumes that the comment will end at
1897 the end of the line. */
1898 #define ASM_COMMENT_START " #"
1899
1900 /* Flag to say the TOC is initialized */
1901 extern int toc_initialized;
1902
1903 /* Macro to output a special constant pool entry. Go to WIN if we output
1904 it. Otherwise, it is written the usual way.
1905
1906 On the RS/6000, toc entries are handled this way. */
1907
1908 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
1909 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
1910 { \
1911 output_toc (FILE, X, LABELNO, MODE); \
1912 goto WIN; \
1913 } \
1914 }
1915
1916 #ifdef HAVE_GAS_WEAK
1917 #define RS6000_WEAK 1
1918 #else
1919 #define RS6000_WEAK 0
1920 #endif
1921
1922 #if RS6000_WEAK
1923 /* Used in lieu of ASM_WEAKEN_LABEL. */
1924 #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
1925 rs6000_asm_weaken_decl ((FILE), (DECL), (NAME), (VAL))
1926 #endif
1927
1928 #if HAVE_GAS_WEAKREF
1929 #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
1930 do \
1931 { \
1932 fputs ("\t.weakref\t", (FILE)); \
1933 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1934 fputs (", ", (FILE)); \
1935 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
1936 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
1937 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
1938 { \
1939 fputs ("\n\t.weakref\t.", (FILE)); \
1940 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1941 fputs (", .", (FILE)); \
1942 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
1943 } \
1944 fputc ('\n', (FILE)); \
1945 } while (0)
1946 #endif
1947
1948 /* This implements the `alias' attribute. */
1949 #undef ASM_OUTPUT_DEF_FROM_DECLS
1950 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
1951 do \
1952 { \
1953 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
1954 const char *name = IDENTIFIER_POINTER (TARGET); \
1955 if (TREE_CODE (DECL) == FUNCTION_DECL \
1956 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
1957 { \
1958 if (TREE_PUBLIC (DECL)) \
1959 { \
1960 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
1961 { \
1962 fputs ("\t.globl\t.", FILE); \
1963 RS6000_OUTPUT_BASENAME (FILE, alias); \
1964 putc ('\n', FILE); \
1965 } \
1966 } \
1967 else if (TARGET_XCOFF) \
1968 { \
1969 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
1970 { \
1971 fputs ("\t.lglobl\t.", FILE); \
1972 RS6000_OUTPUT_BASENAME (FILE, alias); \
1973 putc ('\n', FILE); \
1974 fputs ("\t.lglobl\t", FILE); \
1975 RS6000_OUTPUT_BASENAME (FILE, alias); \
1976 putc ('\n', FILE); \
1977 } \
1978 } \
1979 fputs ("\t.set\t.", FILE); \
1980 RS6000_OUTPUT_BASENAME (FILE, alias); \
1981 fputs (",.", FILE); \
1982 RS6000_OUTPUT_BASENAME (FILE, name); \
1983 fputc ('\n', FILE); \
1984 } \
1985 ASM_OUTPUT_DEF (FILE, alias, name); \
1986 } \
1987 while (0)
1988
1989 #define TARGET_ASM_FILE_START rs6000_file_start
1990
1991 /* Output to assembler file text saying following lines
1992 may contain character constants, extra white space, comments, etc. */
1993
1994 #define ASM_APP_ON ""
1995
1996 /* Output to assembler file text saying following lines
1997 no longer contain unusual constructs. */
1998
1999 #define ASM_APP_OFF ""
2000
2001 /* How to refer to registers in assembler output.
2002 This sequence is indexed by compiler's hard-register-number (see above). */
2003
2004 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2005
2006 #define REGISTER_NAMES \
2007 { \
2008 &rs6000_reg_names[ 0][0], /* r0 */ \
2009 &rs6000_reg_names[ 1][0], /* r1 */ \
2010 &rs6000_reg_names[ 2][0], /* r2 */ \
2011 &rs6000_reg_names[ 3][0], /* r3 */ \
2012 &rs6000_reg_names[ 4][0], /* r4 */ \
2013 &rs6000_reg_names[ 5][0], /* r5 */ \
2014 &rs6000_reg_names[ 6][0], /* r6 */ \
2015 &rs6000_reg_names[ 7][0], /* r7 */ \
2016 &rs6000_reg_names[ 8][0], /* r8 */ \
2017 &rs6000_reg_names[ 9][0], /* r9 */ \
2018 &rs6000_reg_names[10][0], /* r10 */ \
2019 &rs6000_reg_names[11][0], /* r11 */ \
2020 &rs6000_reg_names[12][0], /* r12 */ \
2021 &rs6000_reg_names[13][0], /* r13 */ \
2022 &rs6000_reg_names[14][0], /* r14 */ \
2023 &rs6000_reg_names[15][0], /* r15 */ \
2024 &rs6000_reg_names[16][0], /* r16 */ \
2025 &rs6000_reg_names[17][0], /* r17 */ \
2026 &rs6000_reg_names[18][0], /* r18 */ \
2027 &rs6000_reg_names[19][0], /* r19 */ \
2028 &rs6000_reg_names[20][0], /* r20 */ \
2029 &rs6000_reg_names[21][0], /* r21 */ \
2030 &rs6000_reg_names[22][0], /* r22 */ \
2031 &rs6000_reg_names[23][0], /* r23 */ \
2032 &rs6000_reg_names[24][0], /* r24 */ \
2033 &rs6000_reg_names[25][0], /* r25 */ \
2034 &rs6000_reg_names[26][0], /* r26 */ \
2035 &rs6000_reg_names[27][0], /* r27 */ \
2036 &rs6000_reg_names[28][0], /* r28 */ \
2037 &rs6000_reg_names[29][0], /* r29 */ \
2038 &rs6000_reg_names[30][0], /* r30 */ \
2039 &rs6000_reg_names[31][0], /* r31 */ \
2040 \
2041 &rs6000_reg_names[32][0], /* fr0 */ \
2042 &rs6000_reg_names[33][0], /* fr1 */ \
2043 &rs6000_reg_names[34][0], /* fr2 */ \
2044 &rs6000_reg_names[35][0], /* fr3 */ \
2045 &rs6000_reg_names[36][0], /* fr4 */ \
2046 &rs6000_reg_names[37][0], /* fr5 */ \
2047 &rs6000_reg_names[38][0], /* fr6 */ \
2048 &rs6000_reg_names[39][0], /* fr7 */ \
2049 &rs6000_reg_names[40][0], /* fr8 */ \
2050 &rs6000_reg_names[41][0], /* fr9 */ \
2051 &rs6000_reg_names[42][0], /* fr10 */ \
2052 &rs6000_reg_names[43][0], /* fr11 */ \
2053 &rs6000_reg_names[44][0], /* fr12 */ \
2054 &rs6000_reg_names[45][0], /* fr13 */ \
2055 &rs6000_reg_names[46][0], /* fr14 */ \
2056 &rs6000_reg_names[47][0], /* fr15 */ \
2057 &rs6000_reg_names[48][0], /* fr16 */ \
2058 &rs6000_reg_names[49][0], /* fr17 */ \
2059 &rs6000_reg_names[50][0], /* fr18 */ \
2060 &rs6000_reg_names[51][0], /* fr19 */ \
2061 &rs6000_reg_names[52][0], /* fr20 */ \
2062 &rs6000_reg_names[53][0], /* fr21 */ \
2063 &rs6000_reg_names[54][0], /* fr22 */ \
2064 &rs6000_reg_names[55][0], /* fr23 */ \
2065 &rs6000_reg_names[56][0], /* fr24 */ \
2066 &rs6000_reg_names[57][0], /* fr25 */ \
2067 &rs6000_reg_names[58][0], /* fr26 */ \
2068 &rs6000_reg_names[59][0], /* fr27 */ \
2069 &rs6000_reg_names[60][0], /* fr28 */ \
2070 &rs6000_reg_names[61][0], /* fr29 */ \
2071 &rs6000_reg_names[62][0], /* fr30 */ \
2072 &rs6000_reg_names[63][0], /* fr31 */ \
2073 \
2074 &rs6000_reg_names[64][0], /* vr0 */ \
2075 &rs6000_reg_names[65][0], /* vr1 */ \
2076 &rs6000_reg_names[66][0], /* vr2 */ \
2077 &rs6000_reg_names[67][0], /* vr3 */ \
2078 &rs6000_reg_names[68][0], /* vr4 */ \
2079 &rs6000_reg_names[69][0], /* vr5 */ \
2080 &rs6000_reg_names[70][0], /* vr6 */ \
2081 &rs6000_reg_names[71][0], /* vr7 */ \
2082 &rs6000_reg_names[72][0], /* vr8 */ \
2083 &rs6000_reg_names[73][0], /* vr9 */ \
2084 &rs6000_reg_names[74][0], /* vr10 */ \
2085 &rs6000_reg_names[75][0], /* vr11 */ \
2086 &rs6000_reg_names[76][0], /* vr12 */ \
2087 &rs6000_reg_names[77][0], /* vr13 */ \
2088 &rs6000_reg_names[78][0], /* vr14 */ \
2089 &rs6000_reg_names[79][0], /* vr15 */ \
2090 &rs6000_reg_names[80][0], /* vr16 */ \
2091 &rs6000_reg_names[81][0], /* vr17 */ \
2092 &rs6000_reg_names[82][0], /* vr18 */ \
2093 &rs6000_reg_names[83][0], /* vr19 */ \
2094 &rs6000_reg_names[84][0], /* vr20 */ \
2095 &rs6000_reg_names[85][0], /* vr21 */ \
2096 &rs6000_reg_names[86][0], /* vr22 */ \
2097 &rs6000_reg_names[87][0], /* vr23 */ \
2098 &rs6000_reg_names[88][0], /* vr24 */ \
2099 &rs6000_reg_names[89][0], /* vr25 */ \
2100 &rs6000_reg_names[90][0], /* vr26 */ \
2101 &rs6000_reg_names[91][0], /* vr27 */ \
2102 &rs6000_reg_names[92][0], /* vr28 */ \
2103 &rs6000_reg_names[93][0], /* vr29 */ \
2104 &rs6000_reg_names[94][0], /* vr30 */ \
2105 &rs6000_reg_names[95][0], /* vr31 */ \
2106 \
2107 &rs6000_reg_names[96][0], /* lr */ \
2108 &rs6000_reg_names[97][0], /* ctr */ \
2109 &rs6000_reg_names[98][0], /* ca */ \
2110 &rs6000_reg_names[99][0], /* ap */ \
2111 \
2112 &rs6000_reg_names[100][0], /* cr0 */ \
2113 &rs6000_reg_names[101][0], /* cr1 */ \
2114 &rs6000_reg_names[102][0], /* cr2 */ \
2115 &rs6000_reg_names[103][0], /* cr3 */ \
2116 &rs6000_reg_names[104][0], /* cr4 */ \
2117 &rs6000_reg_names[105][0], /* cr5 */ \
2118 &rs6000_reg_names[106][0], /* cr6 */ \
2119 &rs6000_reg_names[107][0], /* cr7 */ \
2120 \
2121 &rs6000_reg_names[108][0], /* vrsave */ \
2122 &rs6000_reg_names[109][0], /* vscr */ \
2123 \
2124 &rs6000_reg_names[110][0] /* sfp */ \
2125 }
2126
2127 /* Table of additional register names to use in user input. */
2128
2129 #define ADDITIONAL_REGISTER_NAMES \
2130 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2131 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2132 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2133 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2134 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2135 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2136 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2137 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2138 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2139 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2140 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2141 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2142 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2143 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2144 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2145 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2146 {"v0", 64}, {"v1", 65}, {"v2", 66}, {"v3", 67}, \
2147 {"v4", 68}, {"v5", 69}, {"v6", 70}, {"v7", 71}, \
2148 {"v8", 72}, {"v9", 73}, {"v10", 74}, {"v11", 75}, \
2149 {"v12", 76}, {"v13", 77}, {"v14", 78}, {"v15", 79}, \
2150 {"v16", 80}, {"v17", 81}, {"v18", 82}, {"v19", 83}, \
2151 {"v20", 84}, {"v21", 85}, {"v22", 86}, {"v23", 87}, \
2152 {"v24", 88}, {"v25", 89}, {"v26", 90}, {"v27", 91}, \
2153 {"v28", 92}, {"v29", 93}, {"v30", 94}, {"v31", 95}, \
2154 {"vrsave", 108}, {"vscr", 109}, \
2155 /* no additional names for: lr, ctr, ap */ \
2156 {"cr0", 100},{"cr1", 101},{"cr2", 102},{"cr3", 103}, \
2157 {"cr4", 104},{"cr5", 105},{"cr6", 106},{"cr7", 107}, \
2158 {"cc", 100},{"sp", 1}, {"toc", 2}, \
2159 /* CA is only part of XER, but we do not model the other parts (yet). */ \
2160 {"xer", 98}, \
2161 /* VSX registers overlaid on top of FR, Altivec registers */ \
2162 {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \
2163 {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \
2164 {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \
2165 {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \
2166 {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \
2167 {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \
2168 {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \
2169 {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \
2170 {"vs32", 64}, {"vs33", 65}, {"vs34", 66}, {"vs35", 67}, \
2171 {"vs36", 68}, {"vs37", 69}, {"vs38", 70}, {"vs39", 71}, \
2172 {"vs40", 72}, {"vs41", 73}, {"vs42", 74}, {"vs43", 75}, \
2173 {"vs44", 76}, {"vs45", 77}, {"vs46", 78}, {"vs47", 79}, \
2174 {"vs48", 80}, {"vs49", 81}, {"vs50", 82}, {"vs51", 83}, \
2175 {"vs52", 84}, {"vs53", 85}, {"vs54", 86}, {"vs55", 87}, \
2176 {"vs56", 88}, {"vs57", 89}, {"vs58", 90}, {"vs59", 91}, \
2177 {"vs60", 92}, {"vs61", 93}, {"vs62", 94}, {"vs63", 95}, \
2178 }
2179
2180 /* This is how to output an element of a case-vector that is relative. */
2181
2182 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2183 do { char buf[100]; \
2184 fputs ("\t.long ", FILE); \
2185 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2186 assemble_name (FILE, buf); \
2187 putc ('-', FILE); \
2188 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2189 assemble_name (FILE, buf); \
2190 putc ('\n', FILE); \
2191 } while (0)
2192
2193 /* This is how to output an assembler line
2194 that says to advance the location counter
2195 to a multiple of 2**LOG bytes. */
2196
2197 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2198 if ((LOG) != 0) \
2199 fprintf (FILE, "\t.align %d\n", (LOG))
2200
2201 /* How to align the given loop. */
2202 #define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL)
2203
2204 /* Alignment guaranteed by __builtin_malloc. */
2205 /* FIXME: 128-bit alignment is guaranteed by glibc for TARGET_64BIT.
2206 However, specifying the stronger guarantee currently leads to
2207 a regression in SPEC CPU2006 437.leslie3d. The stronger
2208 guarantee should be implemented here once that's fixed. */
2209 #define MALLOC_ABI_ALIGNMENT (64)
2210
2211 /* Pick up the return address upon entry to a procedure. Used for
2212 dwarf2 unwind information. This also enables the table driven
2213 mechanism. */
2214
2215 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
2216 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
2217
2218 /* Describe how we implement __builtin_eh_return. */
2219 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2220 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2221
2222 /* Print operand X (an rtx) in assembler syntax to file FILE.
2223 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2224 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2225
2226 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2227
2228 /* Define which CODE values are valid. */
2229
2230 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '&')
2231
2232 /* Print a memory address as an operand to reference that memory location. */
2233
2234 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2235
2236 /* For switching between functions with different target attributes. */
2237 #define SWITCHABLE_TARGET 1
2238
2239 /* uncomment for disabling the corresponding default options */
2240 /* #define MACHINE_no_sched_interblock */
2241 /* #define MACHINE_no_sched_speculative */
2242 /* #define MACHINE_no_sched_speculative_load */
2243
2244 /* General flags. */
2245 extern int frame_pointer_needed;
2246
2247 /* Classification of the builtin functions as to which switches enable the
2248 builtin, and what attributes it should have. We used to use the target
2249 flags macros, but we've run out of bits, so we now map the options into new
2250 settings used here. */
2251
2252 /* Builtin attributes. */
2253 #define RS6000_BTC_SPECIAL 0x00000000 /* Special function. */
2254 #define RS6000_BTC_UNARY 0x00000001 /* normal unary function. */
2255 #define RS6000_BTC_BINARY 0x00000002 /* normal binary function. */
2256 #define RS6000_BTC_TERNARY 0x00000003 /* normal ternary function. */
2257 #define RS6000_BTC_PREDICATE 0x00000004 /* predicate function. */
2258 #define RS6000_BTC_ABS 0x00000005 /* Altivec/VSX ABS function. */
2259 #define RS6000_BTC_DST 0x00000007 /* Altivec DST function. */
2260 #define RS6000_BTC_TYPE_MASK 0x0000000f /* Mask to isolate types */
2261
2262 #define RS6000_BTC_MISC 0x00000000 /* No special attributes. */
2263 #define RS6000_BTC_CONST 0x00000100 /* Neither uses, nor
2264 modifies global state. */
2265 #define RS6000_BTC_PURE 0x00000200 /* reads global
2266 state/mem and does
2267 not modify global state. */
2268 #define RS6000_BTC_FP 0x00000400 /* depends on rounding mode. */
2269 #define RS6000_BTC_ATTR_MASK 0x00000700 /* Mask of the attributes. */
2270
2271 /* Miscellaneous information. */
2272 #define RS6000_BTC_SPR 0x01000000 /* function references SPRs. */
2273 #define RS6000_BTC_VOID 0x02000000 /* function has no return value. */
2274 #define RS6000_BTC_CR 0x04000000 /* function references a CR. */
2275 #define RS6000_BTC_OVERLOADED 0x08000000 /* function is overloaded. */
2276 #define RS6000_BTC_MISC_MASK 0x1f000000 /* Mask of the misc info. */
2277
2278 /* Convenience macros to document the instruction type. */
2279 #define RS6000_BTC_MEM RS6000_BTC_MISC /* load/store touches mem. */
2280 #define RS6000_BTC_SAT RS6000_BTC_MISC /* saturate sets VSCR. */
2281
2282 /* Builtin targets. For now, we reuse the masks for those options that are in
2283 target flags, and pick a random bit for ldbl128, which isn't in
2284 target_flags. */
2285 #define RS6000_BTM_ALWAYS 0 /* Always enabled. */
2286 #define RS6000_BTM_ALTIVEC MASK_ALTIVEC /* VMX/altivec vectors. */
2287 #define RS6000_BTM_CMPB MASK_CMPB /* ISA 2.05: compare bytes. */
2288 #define RS6000_BTM_VSX MASK_VSX /* VSX (vector/scalar). */
2289 #define RS6000_BTM_P8_VECTOR MASK_P8_VECTOR /* ISA 2.07 vector. */
2290 #define RS6000_BTM_P9_VECTOR MASK_P9_VECTOR /* ISA 3.0 vector. */
2291 #define RS6000_BTM_P9_MISC MASK_P9_MISC /* ISA 3.0 misc. non-vector */
2292 #define RS6000_BTM_CRYPTO MASK_CRYPTO /* crypto funcs. */
2293 #define RS6000_BTM_HTM MASK_HTM /* hardware TM funcs. */
2294 #define RS6000_BTM_FRE MASK_POPCNTB /* FRE instruction. */
2295 #define RS6000_BTM_FRES MASK_PPC_GFXOPT /* FRES instruction. */
2296 #define RS6000_BTM_FRSQRTE MASK_PPC_GFXOPT /* FRSQRTE instruction. */
2297 #define RS6000_BTM_FRSQRTES MASK_POPCNTB /* FRSQRTES instruction. */
2298 #define RS6000_BTM_POPCNTD MASK_POPCNTD /* Target supports ISA 2.06. */
2299 #define RS6000_BTM_CELL MASK_FPRND /* Target is cell powerpc. */
2300 #define RS6000_BTM_DFP MASK_DFP /* Decimal floating point. */
2301 #define RS6000_BTM_HARD_FLOAT MASK_SOFT_FLOAT /* Hardware floating point. */
2302 #define RS6000_BTM_LDBL128 MASK_MULTIPLE /* 128-bit long double. */
2303 #define RS6000_BTM_64BIT MASK_64BIT /* 64-bit addressing. */
2304 #define RS6000_BTM_POWERPC64 MASK_POWERPC64 /* 64-bit registers. */
2305 #define RS6000_BTM_FLOAT128 MASK_FLOAT128_KEYWORD /* IEEE 128-bit float. */
2306 #define RS6000_BTM_FLOAT128_HW MASK_FLOAT128_HW /* IEEE 128-bit float h/w. */
2307
2308 #define RS6000_BTM_COMMON (RS6000_BTM_ALTIVEC \
2309 | RS6000_BTM_VSX \
2310 | RS6000_BTM_P8_VECTOR \
2311 | RS6000_BTM_P9_VECTOR \
2312 | RS6000_BTM_P9_MISC \
2313 | RS6000_BTM_MODULO \
2314 | RS6000_BTM_CRYPTO \
2315 | RS6000_BTM_FRE \
2316 | RS6000_BTM_FRES \
2317 | RS6000_BTM_FRSQRTE \
2318 | RS6000_BTM_FRSQRTES \
2319 | RS6000_BTM_HTM \
2320 | RS6000_BTM_POPCNTD \
2321 | RS6000_BTM_CELL \
2322 | RS6000_BTM_DFP \
2323 | RS6000_BTM_HARD_FLOAT \
2324 | RS6000_BTM_LDBL128 \
2325 | RS6000_BTM_POWERPC64 \
2326 | RS6000_BTM_FLOAT128 \
2327 | RS6000_BTM_FLOAT128_HW)
2328
2329 /* Define builtin enum index. */
2330
2331 #undef RS6000_BUILTIN_0
2332 #undef RS6000_BUILTIN_1
2333 #undef RS6000_BUILTIN_2
2334 #undef RS6000_BUILTIN_3
2335 #undef RS6000_BUILTIN_A
2336 #undef RS6000_BUILTIN_D
2337 #undef RS6000_BUILTIN_H
2338 #undef RS6000_BUILTIN_P
2339 #undef RS6000_BUILTIN_X
2340
2341 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2342 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2343 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2344 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2345 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2346 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2347 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2348 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2349 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2350
2351 enum rs6000_builtins
2352 {
2353 #include "rs6000-builtin.def"
2354
2355 RS6000_BUILTIN_COUNT
2356 };
2357
2358 #undef RS6000_BUILTIN_0
2359 #undef RS6000_BUILTIN_1
2360 #undef RS6000_BUILTIN_2
2361 #undef RS6000_BUILTIN_3
2362 #undef RS6000_BUILTIN_A
2363 #undef RS6000_BUILTIN_D
2364 #undef RS6000_BUILTIN_H
2365 #undef RS6000_BUILTIN_P
2366 #undef RS6000_BUILTIN_X
2367
2368 /* Mappings for overloaded builtins. */
2369 struct altivec_builtin_types
2370 {
2371 enum rs6000_builtins code;
2372 enum rs6000_builtins overloaded_code;
2373 signed char ret_type;
2374 signed char op1;
2375 signed char op2;
2376 signed char op3;
2377 };
2378 extern const struct altivec_builtin_types altivec_overloaded_builtins[];
2379
2380 enum rs6000_builtin_type_index
2381 {
2382 RS6000_BTI_NOT_OPAQUE,
2383 RS6000_BTI_opaque_V4SI,
2384 RS6000_BTI_V16QI, /* __vector signed char */
2385 RS6000_BTI_V1TI,
2386 RS6000_BTI_V2DI,
2387 RS6000_BTI_V2DF,
2388 RS6000_BTI_V4HI,
2389 RS6000_BTI_V4SI,
2390 RS6000_BTI_V4SF,
2391 RS6000_BTI_V8HI,
2392 RS6000_BTI_unsigned_V16QI, /* __vector unsigned char */
2393 RS6000_BTI_unsigned_V1TI,
2394 RS6000_BTI_unsigned_V8HI,
2395 RS6000_BTI_unsigned_V4SI,
2396 RS6000_BTI_unsigned_V2DI,
2397 RS6000_BTI_bool_char, /* __bool char */
2398 RS6000_BTI_bool_short, /* __bool short */
2399 RS6000_BTI_bool_int, /* __bool int */
2400 RS6000_BTI_bool_long_long, /* __bool long long */
2401 RS6000_BTI_pixel, /* __pixel (16 bits arranged as 4
2402 channels of 1, 5, 5, and 5 bits
2403 respectively as packed with the
2404 vpkpx insn. __pixel is only
2405 meaningful as a vector type.
2406 There is no corresponding scalar
2407 __pixel data type.) */
2408 RS6000_BTI_bool_V16QI, /* __vector __bool char */
2409 RS6000_BTI_bool_V8HI, /* __vector __bool short */
2410 RS6000_BTI_bool_V4SI, /* __vector __bool int */
2411 RS6000_BTI_bool_V2DI, /* __vector __bool long */
2412 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
2413 RS6000_BTI_long, /* long_integer_type_node */
2414 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
2415 RS6000_BTI_long_long, /* long_long_integer_type_node */
2416 RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
2417 RS6000_BTI_INTQI, /* (signed) intQI_type_node */
2418 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
2419 RS6000_BTI_INTHI, /* intHI_type_node */
2420 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
2421 RS6000_BTI_INTSI, /* intSI_type_node (signed) */
2422 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
2423 RS6000_BTI_INTDI, /* intDI_type_node */
2424 RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */
2425 RS6000_BTI_INTTI, /* intTI_type_node */
2426 RS6000_BTI_UINTTI, /* unsigned_intTI_type_node */
2427 RS6000_BTI_float, /* float_type_node */
2428 RS6000_BTI_double, /* double_type_node */
2429 RS6000_BTI_long_double, /* long_double_type_node */
2430 RS6000_BTI_dfloat64, /* dfloat64_type_node */
2431 RS6000_BTI_dfloat128, /* dfloat128_type_node */
2432 RS6000_BTI_void, /* void_type_node */
2433 RS6000_BTI_ieee128_float, /* ieee 128-bit floating point */
2434 RS6000_BTI_ibm128_float, /* IBM 128-bit floating point */
2435 RS6000_BTI_const_str, /* pointer to const char * */
2436 RS6000_BTI_MAX
2437 };
2438
2439
2440 #define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2441 #define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
2442 #define V1TI_type_node (rs6000_builtin_types[RS6000_BTI_V1TI])
2443 #define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI])
2444 #define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF])
2445 #define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
2446 #define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
2447 #define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
2448 #define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
2449 #define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
2450 #define unsigned_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V1TI])
2451 #define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2452 #define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
2453 #define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
2454 #define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
2455 #define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
2456 #define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
2457 #define bool_long_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long_long])
2458 #define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
2459 #define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2460 #define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2461 #define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
2462 #define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
2463 #define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2464
2465 #define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long])
2466 #define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
2467 #define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
2468 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2469 #define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
2470 #define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
2471 #define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
2472 #define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
2473 #define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
2474 #define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
2475 #define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI])
2476 #define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI])
2477 #define intTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTTI])
2478 #define uintTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTTI])
2479 #define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
2480 #define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double])
2481 #define long_double_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_double])
2482 #define dfloat64_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat64])
2483 #define dfloat128_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat128])
2484 #define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
2485 #define ieee128_float_type_node (rs6000_builtin_types[RS6000_BTI_ieee128_float])
2486 #define ibm128_float_type_node (rs6000_builtin_types[RS6000_BTI_ibm128_float])
2487 #define const_str_type_node (rs6000_builtin_types[RS6000_BTI_const_str])
2488
2489 extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2490 extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
2491
2492 #ifndef USED_FOR_TARGET
2493 /* A C structure for machine-specific, per-function data.
2494 This is added to the cfun structure. */
2495 typedef struct GTY(()) machine_function
2496 {
2497 /* Flags if __builtin_return_address (n) with n >= 1 was used. */
2498 int ra_needs_full_frame;
2499 /* Flags if __builtin_return_address (0) was used. */
2500 int ra_need_lr;
2501 /* Cache lr_save_p after expansion of builtin_eh_return. */
2502 int lr_save_state;
2503 /* Whether we need to save the TOC to the reserved stack location in the
2504 function prologue. */
2505 bool save_toc_in_prologue;
2506 /* Offset from virtual_stack_vars_rtx to the start of the ABI_V4
2507 varargs save area. */
2508 HOST_WIDE_INT varargs_save_offset;
2509 /* Alternative internal arg pointer for -fsplit-stack. */
2510 rtx split_stack_arg_pointer;
2511 bool split_stack_argp_used;
2512 /* Flag if r2 setup is needed with ELFv2 ABI. */
2513 bool r2_setup_needed;
2514 /* The number of components we use for separate shrink-wrapping. */
2515 int n_components;
2516 /* The components already handled by separate shrink-wrapping, which should
2517 not be considered by the prologue and epilogue. */
2518 bool gpr_is_wrapped_separately[32];
2519 bool fpr_is_wrapped_separately[32];
2520 bool lr_is_wrapped_separately;
2521 bool toc_is_wrapped_separately;
2522 } machine_function;
2523 #endif
2524
2525
2526 #define TARGET_SUPPORTS_WIDE_INT 1
2527
2528 #if (GCC_VERSION >= 3000)
2529 #pragma GCC poison TARGET_FLOAT128 OPTION_MASK_FLOAT128 MASK_FLOAT128
2530 #endif
2531
2532 /* Whether a given VALUE is a valid 16 or 34-bit signed integer. */
2533 #define SIGNED_INTEGER_NBIT_P(VALUE, N) \
2534 IN_RANGE ((VALUE), \
2535 -(HOST_WIDE_INT_1 << ((N)-1)), \
2536 (HOST_WIDE_INT_1 << ((N)-1)) - 1)
2537
2538 #define SIGNED_INTEGER_16BIT_P(VALUE) SIGNED_INTEGER_NBIT_P (VALUE, 16)
2539 #define SIGNED_INTEGER_34BIT_P(VALUE) SIGNED_INTEGER_NBIT_P (VALUE, 34)
2540
2541 /* Like SIGNED_INTEGER_16BIT_P and SIGNED_INTEGER_34BIT_P, but with an extra
2542 argument that gives a length to validate a range of addresses, to allow for
2543 splitting insns into several insns, each of which has an offsettable
2544 address. */
2545 #define SIGNED_16BIT_OFFSET_EXTRA_P(VALUE, EXTRA) \
2546 IN_RANGE ((VALUE), \
2547 -(HOST_WIDE_INT_1 << 15), \
2548 (HOST_WIDE_INT_1 << 15) - 1 - (EXTRA))
2549
2550 #define SIGNED_34BIT_OFFSET_EXTRA_P(VALUE, EXTRA) \
2551 IN_RANGE ((VALUE), \
2552 -(HOST_WIDE_INT_1 << 33), \
2553 (HOST_WIDE_INT_1 << 33) - 1 - (EXTRA))
2554
2555 /* Define this if some processing needs to be done before outputting the
2556 assembler code. On the PowerPC, we remember if the current insn is a normal
2557 prefixed insn where we need to emit a 'p' before the insn. */
2558 #define FINAL_PRESCAN_INSN(INSN, OPERANDS, NOPERANDS) \
2559 do \
2560 { \
2561 if (TARGET_PREFIXED_ADDR) \
2562 rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS); \
2563 } \
2564 while (0)
2565
2566 /* Do anything special before emitting an opcode. We use it to emit a 'p' for
2567 prefixed insns that is set in FINAL_PRESCAN_INSN. */
2568 #define ASM_OUTPUT_OPCODE(STREAM, OPCODE) \
2569 do \
2570 { \
2571 if (TARGET_PREFIXED_ADDR) \
2572 rs6000_asm_output_opcode (STREAM); \
2573 } \
2574 while (0)
This page took 0.16486 seconds and 5 git commands to generate.