]> gcc.gnu.org Git - gcc.git/blob - gcc/config/rs6000/rs6000.h
79fcc68c3cba5477190547e4cf018b35337afa9d
[gcc.git] / gcc / config / rs6000 / rs6000.h
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published
10 by the Free Software Foundation; either version 2, or (at your
11 option) any later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the
20 Free Software Foundation, 59 Temple Place - Suite 330, Boston,
21 MA 02111-1307, USA. */
22
23 /* Note that some other tm.h files include this one and then override
24 many of the definitions. */
25
26 /* Definitions for the object file format. These are set at
27 compile-time. */
28
29 #define OBJECT_XCOFF 1
30 #define OBJECT_ELF 2
31 #define OBJECT_PEF 3
32 #define OBJECT_MACHO 4
33
34 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
35 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
36 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
37 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
38
39 #ifndef TARGET_AIX
40 #define TARGET_AIX 0
41 #endif
42
43 /* Control whether function entry points use a "dot" symbol when
44 ABI_AIX. */
45 #define DOT_SYMBOLS 1
46
47 /* Default string to use for cpu if not specified. */
48 #ifndef TARGET_CPU_DEFAULT
49 #define TARGET_CPU_DEFAULT ((char *)0)
50 #endif
51
52 /* Common ASM definitions used by ASM_SPEC among the various targets
53 for handling -mcpu=xxx switches. */
54 #define ASM_CPU_SPEC \
55 "%{!mcpu*: \
56 %{mpower: %{!mpower2: -mpwr}} \
57 %{mpower2: -mpwrx} \
58 %{mpowerpc64*: -mppc64} \
59 %{!mpowerpc64*: %{mpowerpc*: -mppc}} \
60 %{mno-power: %{!mpowerpc*: -mcom}} \
61 %{!mno-power: %{!mpower*: %(asm_default)}}} \
62 %{mcpu=common: -mcom} \
63 %{mcpu=power: -mpwr} \
64 %{mcpu=power2: -mpwrx} \
65 %{mcpu=power3: -mppc64} \
66 %{mcpu=power4: -mpower4} \
67 %{mcpu=power5: -mpower4} \
68 %{mcpu=powerpc: -mppc} \
69 %{mcpu=rios: -mpwr} \
70 %{mcpu=rios1: -mpwr} \
71 %{mcpu=rios2: -mpwrx} \
72 %{mcpu=rsc: -mpwr} \
73 %{mcpu=rsc1: -mpwr} \
74 %{mcpu=rs64a: -mppc64} \
75 %{mcpu=401: -mppc} \
76 %{mcpu=403: -m403} \
77 %{mcpu=405: -m405} \
78 %{mcpu=405fp: -m405} \
79 %{mcpu=440: -m440} \
80 %{mcpu=440fp: -m440} \
81 %{mcpu=505: -mppc} \
82 %{mcpu=601: -m601} \
83 %{mcpu=602: -mppc} \
84 %{mcpu=603: -mppc} \
85 %{mcpu=603e: -mppc} \
86 %{mcpu=ec603e: -mppc} \
87 %{mcpu=604: -mppc} \
88 %{mcpu=604e: -mppc} \
89 %{mcpu=620: -mppc64} \
90 %{mcpu=630: -mppc64} \
91 %{mcpu=740: -mppc} \
92 %{mcpu=750: -mppc} \
93 %{mcpu=G3: -mppc} \
94 %{mcpu=7400: -mppc -maltivec} \
95 %{mcpu=7450: -mppc -maltivec} \
96 %{mcpu=G4: -mppc -maltivec} \
97 %{mcpu=801: -mppc} \
98 %{mcpu=821: -mppc} \
99 %{mcpu=823: -mppc} \
100 %{mcpu=860: -mppc} \
101 %{mcpu=970: -mpower4 -maltivec} \
102 %{mcpu=G5: -mpower4 -maltivec} \
103 %{mcpu=8540: -me500} \
104 %{maltivec: -maltivec} \
105 -many"
106
107 #define CPP_DEFAULT_SPEC ""
108
109 #define ASM_DEFAULT_SPEC ""
110
111 /* This macro defines names of additional specifications to put in the specs
112 that can be used in various specifications like CC1_SPEC. Its definition
113 is an initializer with a subgrouping for each command option.
114
115 Each subgrouping contains a string constant, that defines the
116 specification name, and a string constant that used by the GCC driver
117 program.
118
119 Do not define this macro if it does not need to do anything. */
120
121 #define SUBTARGET_EXTRA_SPECS
122
123 #define EXTRA_SPECS \
124 { "cpp_default", CPP_DEFAULT_SPEC }, \
125 { "asm_cpu", ASM_CPU_SPEC }, \
126 { "asm_default", ASM_DEFAULT_SPEC }, \
127 SUBTARGET_EXTRA_SPECS
128
129 /* Architecture type. */
130
131 /* Define TARGET_MFCRF if the target assembler does not support the
132 optional field operand for mfcr. */
133
134 #ifndef HAVE_AS_MFCRF
135 #undef TARGET_MFCRF
136 #define TARGET_MFCRF 0
137 #endif
138
139 /* Define TARGET_POPCNTB if the target assembler does not support the
140 popcount byte instruction. */
141
142 #ifndef HAVE_AS_POPCNTB
143 #undef TARGET_POPCNTB
144 #define TARGET_POPCNTB 0
145 #endif
146
147 #define TARGET_32BIT (! TARGET_64BIT)
148
149 /* Emit a dtp-relative reference to a TLS variable. */
150
151 #ifdef HAVE_AS_TLS
152 #define ASM_OUTPUT_DWARF_DTPREL(FILE, SIZE, X) \
153 rs6000_output_dwarf_dtprel (FILE, SIZE, X)
154 #endif
155
156 #ifndef HAVE_AS_TLS
157 #define HAVE_AS_TLS 0
158 #endif
159
160 /* Return 1 for a symbol ref for a thread-local storage symbol. */
161 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
162 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
163
164 #ifdef IN_LIBGCC2
165 /* For libgcc2 we make sure this is a compile time constant */
166 #if defined (__64BIT__) || defined (__powerpc64__)
167 #undef TARGET_POWERPC64
168 #define TARGET_POWERPC64 1
169 #else
170 #undef TARGET_POWERPC64
171 #define TARGET_POWERPC64 0
172 #endif
173 #else
174 /* The option machinery will define this. */
175 #endif
176
177 #define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
178
179 /* Processor type. Order must match cpu attribute in MD file. */
180 enum processor_type
181 {
182 PROCESSOR_RIOS1,
183 PROCESSOR_RIOS2,
184 PROCESSOR_RS64A,
185 PROCESSOR_MPCCORE,
186 PROCESSOR_PPC403,
187 PROCESSOR_PPC405,
188 PROCESSOR_PPC440,
189 PROCESSOR_PPC601,
190 PROCESSOR_PPC603,
191 PROCESSOR_PPC604,
192 PROCESSOR_PPC604e,
193 PROCESSOR_PPC620,
194 PROCESSOR_PPC630,
195 PROCESSOR_PPC750,
196 PROCESSOR_PPC7400,
197 PROCESSOR_PPC7450,
198 PROCESSOR_PPC8540,
199 PROCESSOR_POWER4,
200 PROCESSOR_POWER5
201 };
202
203 extern enum processor_type rs6000_cpu;
204
205 /* Recast the processor type to the cpu attribute. */
206 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
207
208 /* Define generic processor types based upon current deployment. */
209 #define PROCESSOR_COMMON PROCESSOR_PPC601
210 #define PROCESSOR_POWER PROCESSOR_RIOS1
211 #define PROCESSOR_POWERPC PROCESSOR_PPC604
212 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
213
214 /* Define the default processor. This is overridden by other tm.h files. */
215 #define PROCESSOR_DEFAULT PROCESSOR_RIOS1
216 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
217
218 /* Specify the dialect of assembler to use. New mnemonics is dialect one
219 and the old mnemonics are dialect zero. */
220 #define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
221
222 /* Types of costly dependences. */
223 enum rs6000_dependence_cost
224 {
225 max_dep_latency = 1000,
226 no_dep_costly,
227 all_deps_costly,
228 true_store_to_load_dep_costly,
229 store_to_load_dep_costly
230 };
231
232 /* Types of nop insertion schemes in sched target hook sched_finish. */
233 enum rs6000_nop_insertion
234 {
235 sched_finish_regroup_exact = 1000,
236 sched_finish_pad_groups,
237 sched_finish_none
238 };
239
240 /* Dispatch group termination caused by an insn. */
241 enum group_termination
242 {
243 current_group,
244 previous_group
245 };
246
247 /* Support for a compile-time default CPU, et cetera. The rules are:
248 --with-cpu is ignored if -mcpu is specified.
249 --with-tune is ignored if -mtune is specified.
250 --with-float is ignored if -mhard-float or -msoft-float are
251 specified. */
252 #define OPTION_DEFAULT_SPECS \
253 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
254 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
255 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }
256
257 /* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
258 struct rs6000_cpu_select
259 {
260 const char *string;
261 const char *name;
262 int set_tune_p;
263 int set_arch_p;
264 };
265
266 extern struct rs6000_cpu_select rs6000_select[];
267
268 /* Debug support */
269 extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
270 extern const char *rs6000_abi_string; /* for -mabi={sysv,darwin,eabi,aix,altivec} */
271 extern int rs6000_debug_stack; /* debug stack applications */
272 extern int rs6000_debug_arg; /* debug argument handling */
273
274 #define TARGET_DEBUG_STACK rs6000_debug_stack
275 #define TARGET_DEBUG_ARG rs6000_debug_arg
276
277 extern const char *rs6000_traceback_name; /* Type of traceback table. */
278
279 /* These are separate from target_flags because we've run out of bits
280 there. */
281 extern const char *rs6000_long_double_size_string;
282 extern int rs6000_long_double_type_size;
283 extern int rs6000_altivec_abi;
284 extern int rs6000_spe_abi;
285 extern int rs6000_isel;
286 extern int rs6000_spe;
287 extern int rs6000_float_gprs;
288 extern const char* rs6000_alignment_string;
289 extern int rs6000_alignment_flags;
290 extern const char *rs6000_sched_restricted_insns_priority_str;
291 extern int rs6000_sched_restricted_insns_priority;
292 extern const char *rs6000_sched_insert_nops_str;
293 extern enum rs6000_nop_insertion rs6000_sched_insert_nops;
294
295 /* Alignment options for fields in structures for sub-targets following
296 AIX-like ABI.
297 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
298 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
299
300 Override the macro definitions when compiling libobjc to avoid undefined
301 reference to rs6000_alignment_flags due to library's use of GCC alignment
302 macros which use the macros below. */
303
304 #ifndef IN_TARGET_LIBS
305 #define MASK_ALIGN_POWER 0x00000000
306 #define MASK_ALIGN_NATURAL 0x00000001
307 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
308 #else
309 #define TARGET_ALIGN_NATURAL 0
310 #endif
311
312 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
313 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
314
315 #define TARGET_SPE_ABI 0
316 #define TARGET_SPE 0
317 #define TARGET_E500 0
318 #define TARGET_ISEL 0
319 #define TARGET_FPRS 1
320 #define TARGET_E500_SINGLE 0
321 #define TARGET_E500_DOUBLE 0
322
323 /* Sometimes certain combinations of command options do not make sense
324 on a particular target machine. You can define a macro
325 `OVERRIDE_OPTIONS' to take account of this. This macro, if
326 defined, is executed once just after all the command options have
327 been parsed.
328
329 Do not use this macro to turn on various extra optimizations for
330 `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
331
332 On the RS/6000 this is used to define the target cpu type. */
333
334 #define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
335
336 /* Define this to change the optimizations performed by default. */
337 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
338
339 /* Show we can debug even without a frame pointer. */
340 #define CAN_DEBUG_WITHOUT_FP
341
342 /* Target pragma. */
343 #define REGISTER_TARGET_PRAGMAS() do { \
344 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
345 } while (0)
346
347 /* Target #defines. */
348 #define TARGET_CPU_CPP_BUILTINS() \
349 rs6000_cpu_cpp_builtins (pfile)
350
351 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
352 we're compiling for. Some configurations may need to override it. */
353 #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
354 do \
355 { \
356 if (BYTES_BIG_ENDIAN) \
357 { \
358 builtin_define ("__BIG_ENDIAN__"); \
359 builtin_define ("_BIG_ENDIAN"); \
360 builtin_assert ("machine=bigendian"); \
361 } \
362 else \
363 { \
364 builtin_define ("__LITTLE_ENDIAN__"); \
365 builtin_define ("_LITTLE_ENDIAN"); \
366 builtin_assert ("machine=littleendian"); \
367 } \
368 } \
369 while (0)
370 \f
371 /* Target machine storage layout. */
372
373 /* Define this macro if it is advisable to hold scalars in registers
374 in a wider mode than that declared by the program. In such cases,
375 the value is constrained to be within the bounds of the declared
376 type, but kept valid in the wider mode. The signedness of the
377 extension may differ from that of the type. */
378
379 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
380 if (GET_MODE_CLASS (MODE) == MODE_INT \
381 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
382 (MODE) = TARGET_32BIT ? SImode : DImode;
383
384 /* Define this if most significant bit is lowest numbered
385 in instructions that operate on numbered bit-fields. */
386 /* That is true on RS/6000. */
387 #define BITS_BIG_ENDIAN 1
388
389 /* Define this if most significant byte of a word is the lowest numbered. */
390 /* That is true on RS/6000. */
391 #define BYTES_BIG_ENDIAN 1
392
393 /* Define this if most significant word of a multiword number is lowest
394 numbered.
395
396 For RS/6000 we can decide arbitrarily since there are no machine
397 instructions for them. Might as well be consistent with bits and bytes. */
398 #define WORDS_BIG_ENDIAN 1
399
400 #define MAX_BITS_PER_WORD 64
401
402 /* Width of a word, in units (bytes). */
403 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
404 #ifdef IN_LIBGCC2
405 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
406 #else
407 #define MIN_UNITS_PER_WORD 4
408 #endif
409 #define UNITS_PER_FP_WORD 8
410 #define UNITS_PER_ALTIVEC_WORD 16
411 #define UNITS_PER_SPE_WORD 8
412
413 /* Type used for ptrdiff_t, as a string used in a declaration. */
414 #define PTRDIFF_TYPE "int"
415
416 /* Type used for size_t, as a string used in a declaration. */
417 #define SIZE_TYPE "long unsigned int"
418
419 /* Type used for wchar_t, as a string used in a declaration. */
420 #define WCHAR_TYPE "short unsigned int"
421
422 /* Width of wchar_t in bits. */
423 #define WCHAR_TYPE_SIZE 16
424
425 /* A C expression for the size in bits of the type `short' on the
426 target machine. If you don't define this, the default is half a
427 word. (If this would be less than one storage unit, it is
428 rounded up to one unit.) */
429 #define SHORT_TYPE_SIZE 16
430
431 /* A C expression for the size in bits of the type `int' on the
432 target machine. If you don't define this, the default is one
433 word. */
434 #define INT_TYPE_SIZE 32
435
436 /* A C expression for the size in bits of the type `long' on the
437 target machine. If you don't define this, the default is one
438 word. */
439 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
440
441 /* A C expression for the size in bits of the type `long long' on the
442 target machine. If you don't define this, the default is two
443 words. */
444 #define LONG_LONG_TYPE_SIZE 64
445
446 /* A C expression for the size in bits of the type `float' on the
447 target machine. If you don't define this, the default is one
448 word. */
449 #define FLOAT_TYPE_SIZE 32
450
451 /* A C expression for the size in bits of the type `double' on the
452 target machine. If you don't define this, the default is two
453 words. */
454 #define DOUBLE_TYPE_SIZE 64
455
456 /* A C expression for the size in bits of the type `long double' on
457 the target machine. If you don't define this, the default is two
458 words. */
459 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
460
461 /* Define this to set long double type size to use in libgcc2.c, which can
462 not depend on target_flags. */
463 #ifdef __LONG_DOUBLE_128__
464 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
465 #else
466 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
467 #endif
468
469 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
470 #define WIDEST_HARDWARE_FP_SIZE 64
471
472 /* Width in bits of a pointer.
473 See also the macro `Pmode' defined below. */
474 #define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
475
476 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
477 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
478
479 /* Boundary (in *bits*) on which stack pointer should be aligned. */
480 #define STACK_BOUNDARY \
481 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI) ? 64 : 128)
482
483 /* Allocation boundary (in *bits*) for the code of a function. */
484 #define FUNCTION_BOUNDARY 32
485
486 /* No data type wants to be aligned rounder than this. */
487 #define BIGGEST_ALIGNMENT 128
488
489 /* A C expression to compute the alignment for a variables in the
490 local store. TYPE is the data type, and ALIGN is the alignment
491 that the object would ordinarily have. */
492 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
493 ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 : \
494 (TARGET_E500_DOUBLE && TYPE_MODE (TYPE) == DFmode) ? 64 : \
495 (TARGET_SPE && TREE_CODE (TYPE) == VECTOR_TYPE) ? 64 : ALIGN)
496
497 /* Alignment of field after `int : 0' in a structure. */
498 #define EMPTY_FIELD_BOUNDARY 32
499
500 /* Every structure's size must be a multiple of this. */
501 #define STRUCTURE_SIZE_BOUNDARY 8
502
503 /* Return 1 if a structure or array containing FIELD should be
504 accessed using `BLKMODE'.
505
506 For the SPE, simd types are V2SI, and gcc can be tempted to put the
507 entire thing in a DI and use subregs to access the internals.
508 store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
509 back-end. Because a single GPR can hold a V2SI, but not a DI, the
510 best thing to do is set structs to BLKmode and avoid Severe Tire
511 Damage.
512
513 On e500 v2, DF and DI modes suffer from the same anomaly. DF can
514 fit into 1, whereas DI still needs two. */
515 #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
516 ((TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE) \
517 || (TARGET_E500_DOUBLE && (MODE) == DFmode))
518
519 /* A bit-field declared as `int' forces `int' alignment for the struct. */
520 #define PCC_BITFIELD_TYPE_MATTERS 1
521
522 /* Make strings word-aligned so strcpy from constants will be faster.
523 Make vector constants quadword aligned. */
524 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
525 (TREE_CODE (EXP) == STRING_CST \
526 && (ALIGN) < BITS_PER_WORD \
527 ? BITS_PER_WORD \
528 : (ALIGN))
529
530 /* Make arrays of chars word-aligned for the same reasons.
531 Align vectors to 128 bits. Align SPE vectors and E500 v2 doubles to
532 64 bits. */
533 #define DATA_ALIGNMENT(TYPE, ALIGN) \
534 (TREE_CODE (TYPE) == VECTOR_TYPE ? (TARGET_SPE_ABI ? 64 : 128) \
535 : (TARGET_E500_DOUBLE && TYPE_MODE (TYPE) == DFmode) ? 64 \
536 : TREE_CODE (TYPE) == ARRAY_TYPE \
537 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
538 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
539
540 /* Nonzero if move instructions will actually fail to work
541 when given unaligned data. */
542 #define STRICT_ALIGNMENT 0
543
544 /* Define this macro to be the value 1 if unaligned accesses have a cost
545 many times greater than aligned accesses, for example if they are
546 emulated in a trap handler. */
547 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
548 (STRICT_ALIGNMENT \
549 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
550 || (MODE) == DImode) \
551 && (ALIGN) < 32))
552 \f
553 /* Standard register usage. */
554
555 /* Number of actual hardware registers.
556 The hardware registers are assigned numbers for the compiler
557 from 0 to just below FIRST_PSEUDO_REGISTER.
558 All registers that the compiler knows about must be given numbers,
559 even those that are not normally considered general registers.
560
561 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
562 an MQ register, a count register, a link register, and 8 condition
563 register fields, which we view here as separate registers. AltiVec
564 adds 32 vector registers and a VRsave register.
565
566 In addition, the difference between the frame and argument pointers is
567 a function of the number of registers saved, so we need to have a
568 register for AP that will later be eliminated in favor of SP or FP.
569 This is a normal register, but it is fixed.
570
571 We also create a pseudo register for float/int conversions, that will
572 really represent the memory location used. It is represented here as
573 a register, in order to work around problems in allocating stack storage
574 in inline functions. */
575
576 #define FIRST_PSEUDO_REGISTER 113
577
578 /* This must be included for pre gcc 3.0 glibc compatibility. */
579 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
580
581 /* Add 32 dwarf columns for synthetic SPE registers. */
582 #define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER + 32)
583
584 /* The SPE has an additional 32 synthetic registers, with DWARF debug
585 info numbering for these registers starting at 1200. While eh_frame
586 register numbering need not be the same as the debug info numbering,
587 we choose to number these regs for eh_frame at 1200 too. This allows
588 future versions of the rs6000 backend to add hard registers and
589 continue to use the gcc hard register numbering for eh_frame. If the
590 extra SPE registers in eh_frame were numbered starting from the
591 current value of FIRST_PSEUDO_REGISTER, then if FIRST_PSEUDO_REGISTER
592 changed we'd need to introduce a mapping in DWARF_FRAME_REGNUM to
593 avoid invalidating older SPE eh_frame info.
594
595 We must map them here to avoid huge unwinder tables mostly consisting
596 of unused space. */
597 #define DWARF_REG_TO_UNWIND_COLUMN(r) \
598 ((r) > 1200 ? ((r) - 1200 + FIRST_PSEUDO_REGISTER) : (r))
599
600 /* Use gcc hard register numbering for eh_frame. */
601 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
602
603 /* 1 for registers that have pervasive standard uses
604 and are not available for the register allocator.
605
606 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
607 as a local register; for all other OS's r2 is the TOC pointer.
608
609 cr5 is not supposed to be used.
610
611 On System V implementations, r13 is fixed and not available for use. */
612
613 #define FIXED_REGISTERS \
614 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
615 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
616 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
617 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
618 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
619 /* AltiVec registers. */ \
620 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
621 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
622 1, 1 \
623 , 1, 1 \
624 }
625
626 /* 1 for registers not available across function calls.
627 These must include the FIXED_REGISTERS and also any
628 registers that can be used without being saved.
629 The latter must include the registers where values are returned
630 and the register where structure-value addresses are passed.
631 Aside from that, you can include as many other registers as you like. */
632
633 #define CALL_USED_REGISTERS \
634 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
635 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
636 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
637 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
638 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
639 /* AltiVec registers. */ \
640 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
641 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
642 1, 1 \
643 , 1, 1 \
644 }
645
646 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
647 the entire set of `FIXED_REGISTERS' be included.
648 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
649 This macro is optional. If not specified, it defaults to the value
650 of `CALL_USED_REGISTERS'. */
651
652 #define CALL_REALLY_USED_REGISTERS \
653 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
654 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
655 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
656 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
657 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
658 /* AltiVec registers. */ \
659 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
660 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
661 0, 0 \
662 , 0, 0 \
663 }
664
665 #define MQ_REGNO 64
666 #define CR0_REGNO 68
667 #define CR1_REGNO 69
668 #define CR2_REGNO 70
669 #define CR3_REGNO 71
670 #define CR4_REGNO 72
671 #define MAX_CR_REGNO 75
672 #define XER_REGNO 76
673 #define FIRST_ALTIVEC_REGNO 77
674 #define LAST_ALTIVEC_REGNO 108
675 #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
676 #define VRSAVE_REGNO 109
677 #define VSCR_REGNO 110
678 #define SPE_ACC_REGNO 111
679 #define SPEFSCR_REGNO 112
680
681 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
682 #define FIRST_SAVED_FP_REGNO (14+32)
683 #define FIRST_SAVED_GP_REGNO 13
684
685 /* List the order in which to allocate registers. Each register must be
686 listed once, even those in FIXED_REGISTERS.
687
688 We allocate in the following order:
689 fp0 (not saved or used for anything)
690 fp13 - fp2 (not saved; incoming fp arg registers)
691 fp1 (not saved; return value)
692 fp31 - fp14 (saved; order given to save least number)
693 cr7, cr6 (not saved or special)
694 cr1 (not saved, but used for FP operations)
695 cr0 (not saved, but used for arithmetic operations)
696 cr4, cr3, cr2 (saved)
697 r0 (not saved; cannot be base reg)
698 r9 (not saved; best for TImode)
699 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
700 r3 (not saved; return value register)
701 r31 - r13 (saved; order given to save least number)
702 r12 (not saved; if used for DImode or DFmode would use r13)
703 mq (not saved; best to use it if we can)
704 ctr (not saved; when we have the choice ctr is better)
705 lr (saved)
706 cr5, r1, r2, ap, xer (fixed)
707 v0 - v1 (not saved or used for anything)
708 v13 - v3 (not saved; incoming vector arg registers)
709 v2 (not saved; incoming vector arg reg; return value)
710 v19 - v14 (not saved or used for anything)
711 v31 - v20 (saved; order given to save least number)
712 vrsave, vscr (fixed)
713 spe_acc, spefscr (fixed)
714 */
715
716 #if FIXED_R2 == 1
717 #define MAYBE_R2_AVAILABLE
718 #define MAYBE_R2_FIXED 2,
719 #else
720 #define MAYBE_R2_AVAILABLE 2,
721 #define MAYBE_R2_FIXED
722 #endif
723
724 #define REG_ALLOC_ORDER \
725 {32, \
726 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
727 33, \
728 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
729 50, 49, 48, 47, 46, \
730 75, 74, 69, 68, 72, 71, 70, \
731 0, MAYBE_R2_AVAILABLE \
732 9, 11, 10, 8, 7, 6, 5, 4, \
733 3, \
734 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
735 18, 17, 16, 15, 14, 13, 12, \
736 64, 66, 65, \
737 73, 1, MAYBE_R2_FIXED 67, 76, \
738 /* AltiVec registers. */ \
739 77, 78, \
740 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
741 79, \
742 96, 95, 94, 93, 92, 91, \
743 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
744 109, 110, \
745 111, 112 \
746 }
747
748 /* True if register is floating-point. */
749 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
750
751 /* True if register is a condition register. */
752 #define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
753
754 /* True if register is a condition register, but not cr0. */
755 #define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
756
757 /* True if register is an integer register. */
758 #define INT_REGNO_P(N) ((N) <= 31 || (N) == ARG_POINTER_REGNUM)
759
760 /* SPE SIMD registers are just the GPRs. */
761 #define SPE_SIMD_REGNO_P(N) ((N) <= 31)
762
763 /* True if register is the XER register. */
764 #define XER_REGNO_P(N) ((N) == XER_REGNO)
765
766 /* True if register is an AltiVec register. */
767 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
768
769 /* Return number of consecutive hard regs needed starting at reg REGNO
770 to hold something of mode MODE. */
771
772 #define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs ((REGNO), (MODE))
773
774 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
775 ((TARGET_32BIT && TARGET_POWERPC64 \
776 && (GET_MODE_SIZE (MODE) > 4) \
777 && INT_REGNO_P (REGNO)) ? 1 : 0)
778
779 #define ALTIVEC_VECTOR_MODE(MODE) \
780 ((MODE) == V16QImode \
781 || (MODE) == V8HImode \
782 || (MODE) == V4SFmode \
783 || (MODE) == V4SImode)
784
785 #define SPE_VECTOR_MODE(MODE) \
786 ((MODE) == V4HImode \
787 || (MODE) == V2SFmode \
788 || (MODE) == V1DImode \
789 || (MODE) == V2SImode)
790
791 #define UNITS_PER_SIMD_WORD \
792 (TARGET_ALTIVEC ? UNITS_PER_ALTIVEC_WORD \
793 : (TARGET_SPE ? UNITS_PER_SPE_WORD : UNITS_PER_WORD))
794
795 /* Value is TRUE if hard register REGNO can hold a value of
796 machine-mode MODE. */
797 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
798 rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
799
800 /* Value is 1 if it is a good idea to tie two pseudo registers
801 when one has mode MODE1 and one has mode MODE2.
802 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
803 for any hard reg, then this must be 0 for correct output. */
804 #define MODES_TIEABLE_P(MODE1, MODE2) \
805 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
806 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
807 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
808 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
809 : GET_MODE_CLASS (MODE1) == MODE_CC \
810 ? GET_MODE_CLASS (MODE2) == MODE_CC \
811 : GET_MODE_CLASS (MODE2) == MODE_CC \
812 ? GET_MODE_CLASS (MODE1) == MODE_CC \
813 : SPE_VECTOR_MODE (MODE1) \
814 ? SPE_VECTOR_MODE (MODE2) \
815 : SPE_VECTOR_MODE (MODE2) \
816 ? SPE_VECTOR_MODE (MODE1) \
817 : ALTIVEC_VECTOR_MODE (MODE1) \
818 ? ALTIVEC_VECTOR_MODE (MODE2) \
819 : ALTIVEC_VECTOR_MODE (MODE2) \
820 ? ALTIVEC_VECTOR_MODE (MODE1) \
821 : 1)
822
823 /* Post-reload, we can't use any new AltiVec registers, as we already
824 emitted the vrsave mask. */
825
826 #define HARD_REGNO_RENAME_OK(SRC, DST) \
827 (! ALTIVEC_REGNO_P (DST) || regs_ever_live[DST])
828
829 /* A C expression returning the cost of moving data from a register of class
830 CLASS1 to one of CLASS2. */
831
832 #define REGISTER_MOVE_COST rs6000_register_move_cost
833
834 /* A C expressions returning the cost of moving data of MODE from a register to
835 or from memory. */
836
837 #define MEMORY_MOVE_COST rs6000_memory_move_cost
838
839 /* Specify the cost of a branch insn; roughly the number of extra insns that
840 should be added to avoid a branch.
841
842 Set this to 3 on the RS/6000 since that is roughly the average cost of an
843 unscheduled conditional branch. */
844
845 #define BRANCH_COST 3
846
847 /* Override BRANCH_COST heuristic which empirically produces worse
848 performance for removing short circuiting from the logical ops. */
849
850 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
851
852 /* A fixed register used at prologue and epilogue generation to fix
853 addressing modes. The SPE needs heavy addressing fixes at the last
854 minute, and it's best to save a register for it.
855
856 AltiVec also needs fixes, but we've gotten around using r11, which
857 is actually wrong because when use_backchain_to_restore_sp is true,
858 we end up clobbering r11.
859
860 The AltiVec case needs to be fixed. Dunno if we should break ABI
861 compatibility and reserve a register for it as well.. */
862
863 #define FIXED_SCRATCH (TARGET_SPE ? 14 : 11)
864
865 /* Define this macro to change register usage conditional on target
866 flags. */
867
868 #define CONDITIONAL_REGISTER_USAGE rs6000_conditional_register_usage ()
869
870 /* Specify the registers used for certain standard purposes.
871 The values of these macros are register numbers. */
872
873 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
874 /* #define PC_REGNUM */
875
876 /* Register to use for pushing function arguments. */
877 #define STACK_POINTER_REGNUM 1
878
879 /* Base register for access to local variables of the function. */
880 #define FRAME_POINTER_REGNUM 31
881
882 /* Value should be nonzero if functions must have frame pointers.
883 Zero means the frame pointer need not be set up (and parms
884 may be accessed via the stack pointer) in functions that seem suitable.
885 This is computed in `reload', in reload1.c. */
886 #define FRAME_POINTER_REQUIRED 0
887
888 /* Base register for access to arguments of the function. */
889 #define ARG_POINTER_REGNUM 67
890
891 /* Place to put static chain when calling a function that requires it. */
892 #define STATIC_CHAIN_REGNUM 11
893
894 /* Link register number. */
895 #define LINK_REGISTER_REGNUM 65
896
897 /* Count register number. */
898 #define COUNT_REGISTER_REGNUM 66
899 \f
900 /* Define the classes of registers for register constraints in the
901 machine description. Also define ranges of constants.
902
903 One of the classes must always be named ALL_REGS and include all hard regs.
904 If there is more than one class, another class must be named NO_REGS
905 and contain no registers.
906
907 The name GENERAL_REGS must be the name of a class (or an alias for
908 another name such as ALL_REGS). This is the class of registers
909 that is allowed by "g" or "r" in a register constraint.
910 Also, registers outside this class are allocated only when
911 instructions express preferences for them.
912
913 The classes must be numbered in nondecreasing order; that is,
914 a larger-numbered class must never be contained completely
915 in a smaller-numbered class.
916
917 For any two classes, it is very desirable that there be another
918 class that represents their union. */
919
920 /* The RS/6000 has three types of registers, fixed-point, floating-point,
921 and condition registers, plus three special registers, MQ, CTR, and the
922 link register. AltiVec adds a vector register class.
923
924 However, r0 is special in that it cannot be used as a base register.
925 So make a class for registers valid as base registers.
926
927 Also, cr0 is the only condition code register that can be used in
928 arithmetic insns, so make a separate class for it. */
929
930 enum reg_class
931 {
932 NO_REGS,
933 BASE_REGS,
934 GENERAL_REGS,
935 FLOAT_REGS,
936 ALTIVEC_REGS,
937 VRSAVE_REGS,
938 VSCR_REGS,
939 SPE_ACC_REGS,
940 SPEFSCR_REGS,
941 NON_SPECIAL_REGS,
942 MQ_REGS,
943 LINK_REGS,
944 CTR_REGS,
945 LINK_OR_CTR_REGS,
946 SPECIAL_REGS,
947 SPEC_OR_GEN_REGS,
948 CR0_REGS,
949 CR_REGS,
950 NON_FLOAT_REGS,
951 XER_REGS,
952 ALL_REGS,
953 LIM_REG_CLASSES
954 };
955
956 #define N_REG_CLASSES (int) LIM_REG_CLASSES
957
958 /* Give names of register classes as strings for dump file. */
959
960 #define REG_CLASS_NAMES \
961 { \
962 "NO_REGS", \
963 "BASE_REGS", \
964 "GENERAL_REGS", \
965 "FLOAT_REGS", \
966 "ALTIVEC_REGS", \
967 "VRSAVE_REGS", \
968 "VSCR_REGS", \
969 "SPE_ACC_REGS", \
970 "SPEFSCR_REGS", \
971 "NON_SPECIAL_REGS", \
972 "MQ_REGS", \
973 "LINK_REGS", \
974 "CTR_REGS", \
975 "LINK_OR_CTR_REGS", \
976 "SPECIAL_REGS", \
977 "SPEC_OR_GEN_REGS", \
978 "CR0_REGS", \
979 "CR_REGS", \
980 "NON_FLOAT_REGS", \
981 "XER_REGS", \
982 "ALL_REGS" \
983 }
984
985 /* Define which registers fit in which classes.
986 This is an initializer for a vector of HARD_REG_SET
987 of length N_REG_CLASSES. */
988
989 #define REG_CLASS_CONTENTS \
990 { \
991 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
992 { 0xfffffffe, 0x00000000, 0x00000008, 0x00000000 }, /* BASE_REGS */ \
993 { 0xffffffff, 0x00000000, 0x00000008, 0x00000000 }, /* GENERAL_REGS */ \
994 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
995 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
996 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
997 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \
998 { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \
999 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \
1000 { 0xffffffff, 0xffffffff, 0x00000008, 0x00000000 }, /* NON_SPECIAL_REGS */ \
1001 { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \
1002 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
1003 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
1004 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
1005 { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \
1006 { 0xffffffff, 0x00000000, 0x0000000f, 0x00002000 }, /* SPEC_OR_GEN_REGS */ \
1007 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
1008 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
1009 { 0xffffffff, 0x00000000, 0x0000efff, 0x00000000 }, /* NON_FLOAT_REGS */ \
1010 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */ \
1011 { 0xffffffff, 0xffffffff, 0xffffffff, 0x0001ffff } /* ALL_REGS */ \
1012 }
1013
1014 /* The same information, inverted:
1015 Return the class number of the smallest class containing
1016 reg number REGNO. This could be a conditional expression
1017 or could index an array. */
1018
1019 #define REGNO_REG_CLASS(REGNO) \
1020 ((REGNO) == 0 ? GENERAL_REGS \
1021 : (REGNO) < 32 ? BASE_REGS \
1022 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
1023 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS \
1024 : (REGNO) == CR0_REGNO ? CR0_REGS \
1025 : CR_REGNO_P (REGNO) ? CR_REGS \
1026 : (REGNO) == MQ_REGNO ? MQ_REGS \
1027 : (REGNO) == LINK_REGISTER_REGNUM ? LINK_REGS \
1028 : (REGNO) == COUNT_REGISTER_REGNUM ? CTR_REGS \
1029 : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS \
1030 : (REGNO) == XER_REGNO ? XER_REGS \
1031 : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS \
1032 : (REGNO) == VSCR_REGNO ? VRSAVE_REGS \
1033 : (REGNO) == SPE_ACC_REGNO ? SPE_ACC_REGS \
1034 : (REGNO) == SPEFSCR_REGNO ? SPEFSCR_REGS \
1035 : NO_REGS)
1036
1037 /* The class value for index registers, and the one for base regs. */
1038 #define INDEX_REG_CLASS GENERAL_REGS
1039 #define BASE_REG_CLASS BASE_REGS
1040
1041 /* Get reg_class from a letter such as appears in the machine description. */
1042
1043 #define REG_CLASS_FROM_LETTER(C) \
1044 ((C) == 'f' ? ((TARGET_HARD_FLOAT && TARGET_FPRS) ? FLOAT_REGS : NO_REGS) \
1045 : (C) == 'b' ? BASE_REGS \
1046 : (C) == 'h' ? SPECIAL_REGS \
1047 : (C) == 'q' ? MQ_REGS \
1048 : (C) == 'c' ? CTR_REGS \
1049 : (C) == 'l' ? LINK_REGS \
1050 : (C) == 'v' ? ALTIVEC_REGS \
1051 : (C) == 'x' ? CR0_REGS \
1052 : (C) == 'y' ? CR_REGS \
1053 : (C) == 'z' ? XER_REGS \
1054 : NO_REGS)
1055
1056 /* The letters I, J, K, L, M, N, and P in a register constraint string
1057 can be used to stand for particular ranges of immediate operands.
1058 This macro defines what the ranges are.
1059 C is the letter, and VALUE is a constant value.
1060 Return 1 if VALUE is in the range specified by C.
1061
1062 `I' is a signed 16-bit constant
1063 `J' is a constant with only the high-order 16 bits nonzero
1064 `K' is a constant with only the low-order 16 bits nonzero
1065 `L' is a signed 16-bit constant shifted left 16 bits
1066 `M' is a constant that is greater than 31
1067 `N' is a positive constant that is an exact power of two
1068 `O' is the constant zero
1069 `P' is a constant whose negation is a signed 16-bit constant */
1070
1071 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1072 ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
1073 : (C) == 'J' ? ((VALUE) & (~ (unsigned HOST_WIDE_INT) 0xffff0000)) == 0 \
1074 : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0 \
1075 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
1076 && ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0)) \
1077 : (C) == 'M' ? (VALUE) > 31 \
1078 : (C) == 'N' ? (VALUE) > 0 && exact_log2 (VALUE) >= 0 \
1079 : (C) == 'O' ? (VALUE) == 0 \
1080 : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \
1081 : 0)
1082
1083 /* Similar, but for floating constants, and defining letters G and H.
1084 Here VALUE is the CONST_DOUBLE rtx itself.
1085
1086 We flag for special constants when we can copy the constant into
1087 a general register in two insns for DF/DI and one insn for SF.
1088
1089 'H' is used for DI/DF constants that take 3 insns. */
1090
1091 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1092 ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
1093 == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
1094 : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
1095 : 0)
1096
1097 /* Optional extra constraints for this machine.
1098
1099 'Q' means that is a memory operand that is just an offset from a reg.
1100 'R' is for AIX TOC entries.
1101 'S' is a constant that can be placed into a 64-bit mask operand
1102 'T' is a constant that can be placed into a 32-bit mask operand
1103 'U' is for V.4 small data references.
1104 'W' is a vector constant that can be easily generated (no mem refs).
1105 'Y' is a indexed or word-aligned displacement memory operand.
1106 'Z' is an indexed or indirect memory operand.
1107 't' is for AND masks that can be performed by two rldic{l,r} insns. */
1108
1109 #define EXTRA_CONSTRAINT(OP, C) \
1110 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
1111 : (C) == 'R' ? legitimate_constant_pool_address_p (OP) \
1112 : (C) == 'S' ? mask64_operand (OP, DImode) \
1113 : (C) == 'T' ? mask_operand (OP, SImode) \
1114 : (C) == 'U' ? (DEFAULT_ABI == ABI_V4 \
1115 && small_data_operand (OP, GET_MODE (OP))) \
1116 : (C) == 't' ? (mask64_2_operand (OP, DImode) \
1117 && (fixed_regs[CR0_REGNO] \
1118 || !logical_operand (OP, DImode)) \
1119 && !mask64_operand (OP, DImode)) \
1120 : (C) == 'W' ? (easy_vector_constant (OP, GET_MODE (OP))) \
1121 : (C) == 'Y' ? (word_offset_memref_operand (OP, GET_MODE (OP))) \
1122 : (C) == 'Z' ? (indexed_or_indirect_operand (OP, GET_MODE (OP))) \
1123 : 0)
1124
1125 /* Define which constraints are memory constraints. Tell reload
1126 that any memory address can be reloaded by copying the
1127 memory address into a base register if required. */
1128
1129 #define EXTRA_MEMORY_CONSTRAINT(C, STR) \
1130 ((C) == 'Q' || (C) == 'Y' || (C) == 'Z')
1131
1132 /* Given an rtx X being reloaded into a reg required to be
1133 in class CLASS, return the class of reg to actually use.
1134 In general this is just CLASS; but on some machines
1135 in some cases it is preferable to use a more restrictive class.
1136
1137 On the RS/6000, we have to return NO_REGS when we want to reload a
1138 floating-point CONST_DOUBLE to force it to be copied to memory.
1139
1140 We also don't want to reload integer values into floating-point
1141 registers if we can at all help it. In fact, this can
1142 cause reload to die, if it tries to generate a reload of CTR
1143 into a FP register and discovers it doesn't have the memory location
1144 required.
1145
1146 ??? Would it be a good idea to have reload do the converse, that is
1147 try to reload floating modes into FP registers if possible?
1148 */
1149
1150 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1151 ((CONSTANT_P (X) \
1152 && reg_classes_intersect_p ((CLASS), FLOAT_REGS)) \
1153 ? NO_REGS \
1154 : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
1155 && (CLASS) == NON_SPECIAL_REGS) \
1156 ? GENERAL_REGS \
1157 : (CLASS))
1158
1159 /* Return the register class of a scratch register needed to copy IN into
1160 or out of a register in CLASS in MODE. If it can be done directly,
1161 NO_REGS is returned. */
1162
1163 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1164 secondary_reload_class (CLASS, MODE, IN)
1165
1166 /* If we are copying between FP or AltiVec registers and anything
1167 else, we need a memory location. */
1168
1169 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1170 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS \
1171 || (CLASS2) == FLOAT_REGS \
1172 || (CLASS1) == ALTIVEC_REGS \
1173 || (CLASS2) == ALTIVEC_REGS))
1174
1175 /* Return the maximum number of consecutive registers
1176 needed to represent mode MODE in a register of class CLASS.
1177
1178 On RS/6000, this is the size of MODE in words,
1179 except in the FP regs, where a single reg is enough for two words. */
1180 #define CLASS_MAX_NREGS(CLASS, MODE) \
1181 (((CLASS) == FLOAT_REGS) \
1182 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
1183 : (TARGET_E500_DOUBLE && (CLASS) == GENERAL_REGS && (MODE) == DFmode) \
1184 ? 1 \
1185 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1186
1187
1188 /* Return a class of registers that cannot change FROM mode to TO mode. */
1189
1190 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1191 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) \
1192 && GET_MODE_SIZE (FROM) >= 8 && GET_MODE_SIZE (TO) >= 8) \
1193 ? 0 \
1194 : GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1195 ? reg_classes_intersect_p (FLOAT_REGS, CLASS) \
1196 : (TARGET_E500_DOUBLE && (((TO) == DFmode) + ((FROM) == DFmode)) == 1) \
1197 ? reg_classes_intersect_p (GENERAL_REGS, CLASS) \
1198 : (TARGET_E500_DOUBLE && (((TO) == DImode) + ((FROM) == DImode)) == 1) \
1199 ? reg_classes_intersect_p (GENERAL_REGS, CLASS) \
1200 : (TARGET_SPE && (SPE_VECTOR_MODE (FROM) + SPE_VECTOR_MODE (TO)) == 1) \
1201 ? reg_classes_intersect_p (GENERAL_REGS, CLASS) \
1202 : 0)
1203
1204 /* Stack layout; function entry, exit and calling. */
1205
1206 /* Enumeration to give which calling sequence to use. */
1207 enum rs6000_abi {
1208 ABI_NONE,
1209 ABI_AIX, /* IBM's AIX */
1210 ABI_V4, /* System V.4/eabi */
1211 ABI_DARWIN /* Apple's Darwin (OS X kernel) */
1212 };
1213
1214 extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1215
1216 /* Define this if pushing a word on the stack
1217 makes the stack pointer a smaller address. */
1218 #define STACK_GROWS_DOWNWARD
1219
1220 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
1221 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1222
1223 /* Define this if the nominal address of the stack frame
1224 is at the high-address end of the local variables;
1225 that is, each additional local variable allocated
1226 goes at a more negative offset in the frame.
1227
1228 On the RS/6000, we grow upwards, from the area after the outgoing
1229 arguments. */
1230 /* #define FRAME_GROWS_DOWNWARD */
1231
1232 /* Size of the outgoing register save area */
1233 #define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
1234 || DEFAULT_ABI == ABI_DARWIN) \
1235 ? (TARGET_64BIT ? 64 : 32) \
1236 : 0)
1237
1238 /* Size of the fixed area on the stack */
1239 #define RS6000_SAVE_AREA \
1240 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
1241 << (TARGET_64BIT ? 1 : 0))
1242
1243 /* MEM representing address to save the TOC register */
1244 #define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1245 plus_constant (stack_pointer_rtx, \
1246 (TARGET_32BIT ? 20 : 40)))
1247
1248 /* Size of the V.4 varargs area if needed */
1249 #define RS6000_VARARGS_AREA 0
1250
1251 /* Align an address */
1252 #define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1253
1254 /* Size of V.4 varargs area in bytes */
1255 #define RS6000_VARARGS_SIZE \
1256 ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
1257
1258 /* Offset within stack frame to start allocating local variables at.
1259 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1260 first local allocated. Otherwise, it is the offset to the BEGINNING
1261 of the first local allocated.
1262
1263 On the RS/6000, the frame pointer is the same as the stack pointer,
1264 except for dynamic allocations. So we start after the fixed area and
1265 outgoing parameter area. */
1266
1267 #define STARTING_FRAME_OFFSET \
1268 (RS6000_ALIGN (current_function_outgoing_args_size, \
1269 TARGET_ALTIVEC ? 16 : 8) \
1270 + RS6000_VARARGS_AREA \
1271 + RS6000_SAVE_AREA)
1272
1273 /* Offset from the stack pointer register to an item dynamically
1274 allocated on the stack, e.g., by `alloca'.
1275
1276 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1277 length of the outgoing arguments. The default is correct for most
1278 machines. See `function.c' for details. */
1279 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1280 (RS6000_ALIGN (current_function_outgoing_args_size, \
1281 TARGET_ALTIVEC ? 16 : 8) \
1282 + (STACK_POINTER_OFFSET))
1283
1284 /* If we generate an insn to push BYTES bytes,
1285 this says how many the stack pointer really advances by.
1286 On RS/6000, don't define this because there are no push insns. */
1287 /* #define PUSH_ROUNDING(BYTES) */
1288
1289 /* Offset of first parameter from the argument pointer register value.
1290 On the RS/6000, we define the argument pointer to the start of the fixed
1291 area. */
1292 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1293
1294 /* Offset from the argument pointer register value to the top of
1295 stack. This is different from FIRST_PARM_OFFSET because of the
1296 register save area. */
1297 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1298
1299 /* Define this if stack space is still allocated for a parameter passed
1300 in a register. The value is the number of bytes allocated to this
1301 area. */
1302 #define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
1303
1304 /* Define this if the above stack space is to be considered part of the
1305 space allocated by the caller. */
1306 #define OUTGOING_REG_PARM_STACK_SPACE
1307
1308 /* This is the difference between the logical top of stack and the actual sp.
1309
1310 For the RS/6000, sp points past the fixed area. */
1311 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1312
1313 /* Define this if the maximum size of all the outgoing args is to be
1314 accumulated and pushed during the prologue. The amount can be
1315 found in the variable current_function_outgoing_args_size. */
1316 #define ACCUMULATE_OUTGOING_ARGS 1
1317
1318 /* Value is the number of bytes of arguments automatically
1319 popped when returning from a subroutine call.
1320 FUNDECL is the declaration node of the function (as a tree),
1321 FUNTYPE is the data type of the function (as a tree),
1322 or for a library call it is an identifier node for the subroutine name.
1323 SIZE is the number of bytes of arguments passed on the stack. */
1324
1325 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1326
1327 /* Define how to find the value returned by a function.
1328 VALTYPE is the data type of the value (as a tree).
1329 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1330 otherwise, FUNC is 0. */
1331
1332 #define FUNCTION_VALUE(VALTYPE, FUNC) rs6000_function_value ((VALTYPE), (FUNC))
1333
1334 /* Define how to find the value returned by a library function
1335 assuming the value has mode MODE. */
1336
1337 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1338
1339 /* DRAFT_V4_STRUCT_RET defaults off. */
1340 #define DRAFT_V4_STRUCT_RET 0
1341
1342 /* Let TARGET_RETURN_IN_MEMORY control what happens. */
1343 #define DEFAULT_PCC_STRUCT_RETURN 0
1344
1345 /* Mode of stack savearea.
1346 FUNCTION is VOIDmode because calling convention maintains SP.
1347 BLOCK needs Pmode for SP.
1348 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1349 #define STACK_SAVEAREA_MODE(LEVEL) \
1350 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1351 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
1352
1353 /* Minimum and maximum general purpose registers used to hold arguments. */
1354 #define GP_ARG_MIN_REG 3
1355 #define GP_ARG_MAX_REG 10
1356 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1357
1358 /* Minimum and maximum floating point registers used to hold arguments. */
1359 #define FP_ARG_MIN_REG 33
1360 #define FP_ARG_AIX_MAX_REG 45
1361 #define FP_ARG_V4_MAX_REG 40
1362 #define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
1363 || DEFAULT_ABI == ABI_DARWIN) \
1364 ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
1365 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1366
1367 /* Minimum and maximum AltiVec registers used to hold arguments. */
1368 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1369 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1370 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1371
1372 /* Return registers */
1373 #define GP_ARG_RETURN GP_ARG_MIN_REG
1374 #define FP_ARG_RETURN FP_ARG_MIN_REG
1375 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1376
1377 /* Flags for the call/call_value rtl operations set up by function_arg */
1378 #define CALL_NORMAL 0x00000000 /* no special processing */
1379 /* Bits in 0x00000001 are unused. */
1380 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1381 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1382 #define CALL_LONG 0x00000008 /* always call indirect */
1383 #define CALL_LIBCALL 0x00000010 /* libcall */
1384
1385 /* We don't have prologue and epilogue functions to save/restore
1386 everything for most ABIs. */
1387 #define WORLD_SAVE_P(INFO) 0
1388
1389 /* 1 if N is a possible register number for a function value
1390 as seen by the caller.
1391
1392 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1393 #define FUNCTION_VALUE_REGNO_P(N) \
1394 ((N) == GP_ARG_RETURN \
1395 || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT && TARGET_FPRS) \
1396 || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1397
1398 /* 1 if N is a possible register number for function argument passing.
1399 On RS/6000, these are r3-r10 and fp1-fp13.
1400 On AltiVec, v2 - v13 are used for passing vectors. */
1401 #define FUNCTION_ARG_REGNO_P(N) \
1402 ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \
1403 || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \
1404 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
1405 || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \
1406 && TARGET_HARD_FLOAT && TARGET_FPRS))
1407 \f
1408 /* A C structure for machine-specific, per-function data.
1409 This is added to the cfun structure. */
1410 typedef struct machine_function GTY(())
1411 {
1412 /* Flags if __builtin_return_address (n) with n >= 1 was used. */
1413 int ra_needs_full_frame;
1414 /* Some local-dynamic symbol. */
1415 const char *some_ld_name;
1416 /* Whether the instruction chain has been scanned already. */
1417 int insn_chain_scanned_p;
1418 /* Flags if __builtin_return_address (0) was used. */
1419 int ra_need_lr;
1420 } machine_function;
1421
1422 /* Define a data type for recording info about an argument list
1423 during the scan of that argument list. This data type should
1424 hold all necessary information about the function itself
1425 and about the args processed so far, enough to enable macros
1426 such as FUNCTION_ARG to determine where the next arg should go.
1427
1428 On the RS/6000, this is a structure. The first element is the number of
1429 total argument words, the second is used to store the next
1430 floating-point register number, and the third says how many more args we
1431 have prototype types for.
1432
1433 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1434 the next available GP register, `fregno' is the next available FP
1435 register, and `words' is the number of words used on the stack.
1436
1437 The varargs/stdarg support requires that this structure's size
1438 be a multiple of sizeof(int). */
1439
1440 typedef struct rs6000_args
1441 {
1442 int words; /* # words used for passing GP registers */
1443 int fregno; /* next available FP register */
1444 int vregno; /* next available AltiVec register */
1445 int nargs_prototype; /* # args left in the current prototype */
1446 int prototype; /* Whether a prototype was defined */
1447 int stdarg; /* Whether function is a stdarg function. */
1448 int call_cookie; /* Do special things for this call */
1449 int sysv_gregno; /* next available GP register */
1450 int intoffset; /* running offset in struct (darwin64) */
1451 int use_stack; /* any part of struct on stack (darwin64) */
1452 int named; /* false for varargs params */
1453 } CUMULATIVE_ARGS;
1454
1455 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1456 for a call to a function whose data type is FNTYPE.
1457 For a library call, FNTYPE is 0. */
1458
1459 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1460 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, N_NAMED_ARGS)
1461
1462 /* Similar, but when scanning the definition of a procedure. We always
1463 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1464
1465 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1466 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, 1000)
1467
1468 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1469
1470 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1471 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, 0)
1472
1473 /* Update the data in CUM to advance over an argument
1474 of mode MODE and data type TYPE.
1475 (TYPE is null for libcalls where that information may not be available.) */
1476
1477 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1478 function_arg_advance (&CUM, MODE, TYPE, NAMED, 0)
1479
1480 /* Determine where to put an argument to a function.
1481 Value is zero to push the argument on the stack,
1482 or a hard register in which to store the argument.
1483
1484 MODE is the argument's machine mode.
1485 TYPE is the data type of the argument (as a tree).
1486 This is null for libcalls where that information may
1487 not be available.
1488 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1489 the preceding args and about the function being called.
1490 NAMED is nonzero if this argument is a named parameter
1491 (otherwise it is an extra parameter matching an ellipsis).
1492
1493 On RS/6000 the first eight words of non-FP are normally in registers
1494 and the rest are pushed. The first 13 FP args are in registers.
1495
1496 If this is floating-point and no prototype is specified, we use
1497 both an FP and integer register (or possibly FP reg and stack). Library
1498 functions (when TYPE is zero) always have the proper types for args,
1499 so we can pass the FP value just in one register. emit_library_function
1500 doesn't support EXPR_LIST anyway. */
1501
1502 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1503 function_arg (&CUM, MODE, TYPE, NAMED)
1504
1505 /* If defined, a C expression which determines whether, and in which
1506 direction, to pad out an argument with extra space. The value
1507 should be of type `enum direction': either `upward' to pad above
1508 the argument, `downward' to pad below, or `none' to inhibit
1509 padding. */
1510
1511 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1512
1513 /* If defined, a C expression that gives the alignment boundary, in bits,
1514 of an argument with the specified mode and type. If it is not defined,
1515 PARM_BOUNDARY is used for all arguments. */
1516
1517 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1518 function_arg_boundary (MODE, TYPE)
1519
1520 /* Implement `va_start' for varargs and stdarg. */
1521 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1522 rs6000_va_start (valist, nextarg)
1523
1524 #define PAD_VARARGS_DOWN \
1525 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1526
1527 /* Output assembler code to FILE to increment profiler label # LABELNO
1528 for profiling a function entry. */
1529
1530 #define FUNCTION_PROFILER(FILE, LABELNO) \
1531 output_function_profiler ((FILE), (LABELNO));
1532
1533 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1534 the stack pointer does not matter. No definition is equivalent to
1535 always zero.
1536
1537 On the RS/6000, this is nonzero because we can restore the stack from
1538 its backpointer, which we maintain. */
1539 #define EXIT_IGNORE_STACK 1
1540
1541 /* Define this macro as a C expression that is nonzero for registers
1542 that are used by the epilogue or the return' pattern. The stack
1543 and frame pointer registers are already be assumed to be used as
1544 needed. */
1545
1546 #define EPILOGUE_USES(REGNO) \
1547 ((reload_completed && (REGNO) == LINK_REGISTER_REGNUM) \
1548 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
1549 || (current_function_calls_eh_return \
1550 && TARGET_AIX \
1551 && (REGNO) == 2))
1552
1553 \f
1554 /* TRAMPOLINE_TEMPLATE deleted */
1555
1556 /* Length in units of the trampoline for entering a nested function. */
1557
1558 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1559
1560 /* Emit RTL insns to initialize the variable parts of a trampoline.
1561 FNADDR is an RTX for the address of the function's pure code.
1562 CXT is an RTX for the static chain value for the function. */
1563
1564 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
1565 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
1566 \f
1567 /* Definitions for __builtin_return_address and __builtin_frame_address.
1568 __builtin_return_address (0) should give link register (65), enable
1569 this. */
1570 /* This should be uncommented, so that the link register is used, but
1571 currently this would result in unmatched insns and spilling fixed
1572 registers so we'll leave it for another day. When these problems are
1573 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1574 (mrs) */
1575 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1576
1577 /* Number of bytes into the frame return addresses can be found. See
1578 rs6000_stack_info in rs6000.c for more information on how the different
1579 abi's store the return address. */
1580 #define RETURN_ADDRESS_OFFSET \
1581 ((DEFAULT_ABI == ABI_AIX \
1582 || DEFAULT_ABI == ABI_DARWIN) ? (TARGET_32BIT ? 8 : 16) : \
1583 (DEFAULT_ABI == ABI_V4) ? 4 : \
1584 (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
1585
1586 /* The current return address is in link register (65). The return address
1587 of anything farther back is accessed normally at an offset of 8 from the
1588 frame pointer. */
1589 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1590 (rs6000_return_addr (COUNT, FRAME))
1591
1592 \f
1593 /* Definitions for register eliminations.
1594
1595 We have two registers that can be eliminated on the RS/6000. First, the
1596 frame pointer register can often be eliminated in favor of the stack
1597 pointer register. Secondly, the argument pointer register can always be
1598 eliminated; it is replaced with either the stack or frame pointer.
1599
1600 In addition, we use the elimination mechanism to see if r30 is needed
1601 Initially we assume that it isn't. If it is, we spill it. This is done
1602 by making it an eliminable register. We replace it with itself so that
1603 if it isn't needed, then existing uses won't be modified. */
1604
1605 /* This is an array of structures. Each structure initializes one pair
1606 of eliminable registers. The "from" register number is given first,
1607 followed by "to". Eliminations of the same "from" register are listed
1608 in order of preference. */
1609 #define ELIMINABLE_REGS \
1610 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1611 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1612 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1613 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1614
1615 /* Given FROM and TO register numbers, say whether this elimination is allowed.
1616 Frame pointer elimination is automatically handled.
1617
1618 For the RS/6000, if frame pointer elimination is being done, we would like
1619 to convert ap into fp, not sp.
1620
1621 We need r30 if -mminimal-toc was specified, and there are constant pool
1622 references. */
1623
1624 #define CAN_ELIMINATE(FROM, TO) \
1625 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1626 ? ! frame_pointer_needed \
1627 : (FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM \
1628 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
1629 : 1)
1630
1631 /* Define the offset between two registers, one to be eliminated, and the other
1632 its replacement, at the start of a routine. */
1633 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1634 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1635 \f
1636 /* Addressing modes, and classification of registers for them. */
1637
1638 #define HAVE_PRE_DECREMENT 1
1639 #define HAVE_PRE_INCREMENT 1
1640
1641 /* Macros to check register numbers against specific register classes. */
1642
1643 /* These assume that REGNO is a hard or pseudo reg number.
1644 They give nonzero only if REGNO is a hard reg of the suitable class
1645 or a pseudo reg currently allocated to a suitable hard reg.
1646 Since they use reg_renumber, they are safe only once reg_renumber
1647 has been allocated, which happens in local-alloc.c. */
1648
1649 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1650 ((REGNO) < FIRST_PSEUDO_REGISTER \
1651 ? (REGNO) <= 31 || (REGNO) == 67 \
1652 : (reg_renumber[REGNO] >= 0 \
1653 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1654
1655 #define REGNO_OK_FOR_BASE_P(REGNO) \
1656 ((REGNO) < FIRST_PSEUDO_REGISTER \
1657 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1658 : (reg_renumber[REGNO] > 0 \
1659 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1660 \f
1661 /* Maximum number of registers that can appear in a valid memory address. */
1662
1663 #define MAX_REGS_PER_ADDRESS 2
1664
1665 /* Recognize any constant value that is a valid address. */
1666
1667 #define CONSTANT_ADDRESS_P(X) \
1668 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1669 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1670 || GET_CODE (X) == HIGH)
1671
1672 /* Nonzero if the constant value X is a legitimate general operand.
1673 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1674
1675 On the RS/6000, all integer constants are acceptable, most won't be valid
1676 for particular insns, though. Only easy FP constants are
1677 acceptable. */
1678
1679 #define LEGITIMATE_CONSTANT_P(X) \
1680 (((GET_CODE (X) != CONST_DOUBLE \
1681 && GET_CODE (X) != CONST_VECTOR) \
1682 || GET_MODE (X) == VOIDmode \
1683 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
1684 || easy_fp_constant (X, GET_MODE (X)) \
1685 || easy_vector_constant (X, GET_MODE (X))) \
1686 && !rs6000_tls_referenced_p (X))
1687
1688 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1689 #define EASY_VECTOR_15_ADD_SELF(n) ((n) >= 0x10 && (n) <= 0x1e && !((n) & 1))
1690
1691 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1692 and check its validity for a certain class.
1693 We have two alternate definitions for each of them.
1694 The usual definition accepts all pseudo regs; the other rejects
1695 them unless they have been allocated suitable hard regs.
1696 The symbol REG_OK_STRICT causes the latter definition to be used.
1697
1698 Most source files want to accept pseudo regs in the hope that
1699 they will get allocated to the class that the insn wants them to be in.
1700 Source files for reload pass need to be strict.
1701 After reload, it makes no difference, since pseudo regs have
1702 been eliminated by then. */
1703
1704 #ifdef REG_OK_STRICT
1705 # define REG_OK_STRICT_FLAG 1
1706 #else
1707 # define REG_OK_STRICT_FLAG 0
1708 #endif
1709
1710 /* Nonzero if X is a hard reg that can be used as an index
1711 or if it is a pseudo reg in the non-strict case. */
1712 #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1713 ((! (STRICT) \
1714 && (REGNO (X) <= 31 \
1715 || REGNO (X) == ARG_POINTER_REGNUM \
1716 || REGNO (X) >= FIRST_PSEUDO_REGISTER)) \
1717 || ((STRICT) && REGNO_OK_FOR_INDEX_P (REGNO (X))))
1718
1719 /* Nonzero if X is a hard reg that can be used as a base reg
1720 or if it is a pseudo reg in the non-strict case. */
1721 #define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1722 (REGNO (X) > 0 && INT_REG_OK_FOR_INDEX_P (X, (STRICT)))
1723
1724 #define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
1725 #define REG_OK_FOR_BASE_P(X) INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
1726 \f
1727 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1728 that is a valid memory address for an instruction.
1729 The MODE argument is the machine mode for the MEM expression
1730 that wants to use this address.
1731
1732 On the RS/6000, there are four valid address: a SYMBOL_REF that
1733 refers to a constant pool entry of an address (or the sum of it
1734 plus a constant), a short (16-bit signed) constant plus a register,
1735 the sum of two registers, or a register indirect, possibly with an
1736 auto-increment. For DFmode and DImode with a constant plus register,
1737 we must ensure that both words are addressable or PowerPC64 with offset
1738 word aligned.
1739
1740 For modes spanning multiple registers (DFmode in 32-bit GPRs,
1741 32-bit DImode, TImode), indexed addressing cannot be used because
1742 adjacent memory cells are accessed by adding word-sized offsets
1743 during assembly output. */
1744
1745 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1746 { if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG)) \
1747 goto ADDR; \
1748 }
1749 \f
1750 /* Try machine-dependent ways of modifying an illegitimate address
1751 to be legitimate. If we find one, return the new, valid address.
1752 This macro is used in only one place: `memory_address' in explow.c.
1753
1754 OLDX is the address as it was before break_out_memory_refs was called.
1755 In some cases it is useful to look at this to decide what needs to be done.
1756
1757 MODE and WIN are passed so that this macro can use
1758 GO_IF_LEGITIMATE_ADDRESS.
1759
1760 It is always safe for this macro to do nothing. It exists to recognize
1761 opportunities to optimize the output.
1762
1763 On RS/6000, first check for the sum of a register with a constant
1764 integer that is out of range. If so, generate code to add the
1765 constant with the low-order 16 bits masked to the register and force
1766 this result into another register (this can be done with `cau').
1767 Then generate an address of REG+(CONST&0xffff), allowing for the
1768 possibility of bit 16 being a one.
1769
1770 Then check for the sum of a register and something not constant, try to
1771 load the other things into a register and return the sum. */
1772
1773 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1774 { rtx result = rs6000_legitimize_address (X, OLDX, MODE); \
1775 if (result != NULL_RTX) \
1776 { \
1777 (X) = result; \
1778 goto WIN; \
1779 } \
1780 }
1781
1782 /* Try a machine-dependent way of reloading an illegitimate address
1783 operand. If we find one, push the reload and jump to WIN. This
1784 macro is used in only one place: `find_reloads_address' in reload.c.
1785
1786 Implemented on rs6000 by rs6000_legitimize_reload_address.
1787 Note that (X) is evaluated twice; this is safe in current usage. */
1788
1789 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1790 do { \
1791 int win; \
1792 (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM), \
1793 (int)(TYPE), (IND_LEVELS), &win); \
1794 if ( win ) \
1795 goto WIN; \
1796 } while (0)
1797
1798 /* Go to LABEL if ADDR (a legitimate address expression)
1799 has an effect that depends on the machine mode it is used for. */
1800
1801 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1802 do { \
1803 if (rs6000_mode_dependent_address (ADDR)) \
1804 goto LABEL; \
1805 } while (0)
1806 \f
1807 /* The register number of the register used to address a table of
1808 static data addresses in memory. In some cases this register is
1809 defined by a processor's "application binary interface" (ABI).
1810 When this macro is defined, RTL is generated for this register
1811 once, as with the stack pointer and frame pointer registers. If
1812 this macro is not defined, it is up to the machine-dependent files
1813 to allocate such a register (if necessary). */
1814
1815 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1816 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
1817
1818 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1819
1820 /* Define this macro if the register defined by
1821 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
1822 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
1823
1824 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1825
1826 /* By generating position-independent code, when two different
1827 programs (A and B) share a common library (libC.a), the text of
1828 the library can be shared whether or not the library is linked at
1829 the same address for both programs. In some of these
1830 environments, position-independent code requires not only the use
1831 of different addressing modes, but also special code to enable the
1832 use of these addressing modes.
1833
1834 The `FINALIZE_PIC' macro serves as a hook to emit these special
1835 codes once the function is being compiled into assembly code, but
1836 not before. (It is not done before, because in the case of
1837 compiling an inline function, it would lead to multiple PIC
1838 prologues being included in functions which used inline functions
1839 and were compiled to assembly language.) */
1840
1841 /* #define FINALIZE_PIC */
1842
1843 /* A C expression that is nonzero if X is a legitimate immediate
1844 operand on the target machine when generating position independent
1845 code. You can assume that X satisfies `CONSTANT_P', so you need
1846 not check this. You can also assume FLAG_PIC is true, so you need
1847 not check it either. You need not define this macro if all
1848 constants (including `SYMBOL_REF') can be immediate operands when
1849 generating position independent code. */
1850
1851 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
1852 \f
1853 /* Define this if some processing needs to be done immediately before
1854 emitting code for an insn. */
1855
1856 /* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
1857
1858 /* Specify the machine mode that this machine uses
1859 for the index in the tablejump instruction. */
1860 #define CASE_VECTOR_MODE SImode
1861
1862 /* Define as C expression which evaluates to nonzero if the tablejump
1863 instruction expects the table to contain offsets from the address of the
1864 table.
1865 Do not define this if the table should contain absolute addresses. */
1866 #define CASE_VECTOR_PC_RELATIVE 1
1867
1868 /* Define this as 1 if `char' should by default be signed; else as 0. */
1869 #define DEFAULT_SIGNED_CHAR 0
1870
1871 /* This flag, if defined, says the same insns that convert to a signed fixnum
1872 also convert validly to an unsigned one. */
1873
1874 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
1875
1876 /* An integer expression for the size in bits of the largest integer machine
1877 mode that should actually be used. */
1878
1879 /* Allow pairs of registers to be used, which is the intent of the default. */
1880 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1881
1882 /* Max number of bytes we can move from memory to memory
1883 in one reasonably fast instruction. */
1884 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
1885 #define MAX_MOVE_MAX 8
1886
1887 /* Nonzero if access to memory by bytes is no faster than for words.
1888 Also nonzero if doing byte operations (specifically shifts) in registers
1889 is undesirable. */
1890 #define SLOW_BYTE_ACCESS 1
1891
1892 /* Define if operations between registers always perform the operation
1893 on the full register even if a narrower mode is specified. */
1894 #define WORD_REGISTER_OPERATIONS
1895
1896 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1897 will either zero-extend or sign-extend. The value of this macro should
1898 be the code that says which one of the two operations is implicitly
1899 done, UNKNOWN if none. */
1900 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1901
1902 /* Define if loading short immediate values into registers sign extends. */
1903 #define SHORT_IMMEDIATES_SIGN_EXTEND
1904 \f
1905 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1906 is done just by pretending it is already truncated. */
1907 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1908
1909 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
1910 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1911 ((VALUE) = ((MODE) == SImode ? 32 : 64))
1912
1913 /* The CTZ patterns return -1 for input of zero. */
1914 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1)
1915
1916 /* Specify the machine mode that pointers have.
1917 After generation of rtl, the compiler makes no further distinction
1918 between pointers and any other objects of this machine mode. */
1919 #define Pmode (TARGET_32BIT ? SImode : DImode)
1920
1921 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
1922 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
1923
1924 /* Mode of a function address in a call instruction (for indexing purposes).
1925 Doesn't matter on RS/6000. */
1926 #define FUNCTION_MODE SImode
1927
1928 /* Define this if addresses of constant functions
1929 shouldn't be put through pseudo regs where they can be cse'd.
1930 Desirable on machines where ordinary constants are expensive
1931 but a CALL with constant address is cheap. */
1932 #define NO_FUNCTION_CSE
1933
1934 /* Define this to be nonzero if shift instructions ignore all but the low-order
1935 few bits.
1936
1937 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
1938 have been dropped from the PowerPC architecture. */
1939
1940 #define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
1941
1942 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
1943 should be adjusted to reflect any required changes. This macro is used when
1944 there is some systematic length adjustment required that would be difficult
1945 to express in the length attribute. */
1946
1947 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
1948
1949 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
1950 COMPARE, return the mode to be used for the comparison. For
1951 floating-point, CCFPmode should be used. CCUNSmode should be used
1952 for unsigned comparisons. CCEQmode should be used when we are
1953 doing an inequality comparison on the result of a
1954 comparison. CCmode should be used in all other cases. */
1955
1956 #define SELECT_CC_MODE(OP,X,Y) \
1957 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
1958 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
1959 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
1960 ? CCEQmode : CCmode))
1961
1962 /* Can the condition code MODE be safely reversed? This is safe in
1963 all cases on this port, because at present it doesn't use the
1964 trapping FP comparisons (fcmpo). */
1965 #define REVERSIBLE_CC_MODE(MODE) 1
1966
1967 /* Given a condition code and a mode, return the inverse condition. */
1968 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
1969
1970 /* Define the information needed to generate branch and scc insns. This is
1971 stored from the compare operation. */
1972
1973 extern GTY(()) rtx rs6000_compare_op0;
1974 extern GTY(()) rtx rs6000_compare_op1;
1975 extern int rs6000_compare_fp_p;
1976 \f
1977 /* Control the assembler format that we output. */
1978
1979 /* A C string constant describing how to begin a comment in the target
1980 assembler language. The compiler assumes that the comment will end at
1981 the end of the line. */
1982 #define ASM_COMMENT_START " #"
1983
1984 /* Flag to say the TOC is initialized */
1985 extern int toc_initialized;
1986
1987 /* Macro to output a special constant pool entry. Go to WIN if we output
1988 it. Otherwise, it is written the usual way.
1989
1990 On the RS/6000, toc entries are handled this way. */
1991
1992 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
1993 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
1994 { \
1995 output_toc (FILE, X, LABELNO, MODE); \
1996 goto WIN; \
1997 } \
1998 }
1999
2000 #ifdef HAVE_GAS_WEAK
2001 #define RS6000_WEAK 1
2002 #else
2003 #define RS6000_WEAK 0
2004 #endif
2005
2006 #if RS6000_WEAK
2007 /* Used in lieu of ASM_WEAKEN_LABEL. */
2008 #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2009 do \
2010 { \
2011 fputs ("\t.weak\t", (FILE)); \
2012 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2013 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2014 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2015 { \
2016 if (TARGET_XCOFF) \
2017 fputs ("[DS]", (FILE)); \
2018 fputs ("\n\t.weak\t.", (FILE)); \
2019 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2020 } \
2021 fputc ('\n', (FILE)); \
2022 if (VAL) \
2023 { \
2024 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
2025 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2026 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2027 { \
2028 fputs ("\t.set\t.", (FILE)); \
2029 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2030 fputs (",.", (FILE)); \
2031 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
2032 fputc ('\n', (FILE)); \
2033 } \
2034 } \
2035 } \
2036 while (0)
2037 #endif
2038
2039 /* This implements the `alias' attribute. */
2040 #undef ASM_OUTPUT_DEF_FROM_DECLS
2041 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2042 do \
2043 { \
2044 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2045 const char *name = IDENTIFIER_POINTER (TARGET); \
2046 if (TREE_CODE (DECL) == FUNCTION_DECL \
2047 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2048 { \
2049 if (TREE_PUBLIC (DECL)) \
2050 { \
2051 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2052 { \
2053 fputs ("\t.globl\t.", FILE); \
2054 RS6000_OUTPUT_BASENAME (FILE, alias); \
2055 putc ('\n', FILE); \
2056 } \
2057 } \
2058 else if (TARGET_XCOFF) \
2059 { \
2060 fputs ("\t.lglobl\t.", FILE); \
2061 RS6000_OUTPUT_BASENAME (FILE, alias); \
2062 putc ('\n', FILE); \
2063 } \
2064 fputs ("\t.set\t.", FILE); \
2065 RS6000_OUTPUT_BASENAME (FILE, alias); \
2066 fputs (",.", FILE); \
2067 RS6000_OUTPUT_BASENAME (FILE, name); \
2068 fputc ('\n', FILE); \
2069 } \
2070 ASM_OUTPUT_DEF (FILE, alias, name); \
2071 } \
2072 while (0)
2073
2074 #define TARGET_ASM_FILE_START rs6000_file_start
2075
2076 /* Output to assembler file text saying following lines
2077 may contain character constants, extra white space, comments, etc. */
2078
2079 #define ASM_APP_ON ""
2080
2081 /* Output to assembler file text saying following lines
2082 no longer contain unusual constructs. */
2083
2084 #define ASM_APP_OFF ""
2085
2086 /* How to refer to registers in assembler output.
2087 This sequence is indexed by compiler's hard-register-number (see above). */
2088
2089 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2090
2091 #define REGISTER_NAMES \
2092 { \
2093 &rs6000_reg_names[ 0][0], /* r0 */ \
2094 &rs6000_reg_names[ 1][0], /* r1 */ \
2095 &rs6000_reg_names[ 2][0], /* r2 */ \
2096 &rs6000_reg_names[ 3][0], /* r3 */ \
2097 &rs6000_reg_names[ 4][0], /* r4 */ \
2098 &rs6000_reg_names[ 5][0], /* r5 */ \
2099 &rs6000_reg_names[ 6][0], /* r6 */ \
2100 &rs6000_reg_names[ 7][0], /* r7 */ \
2101 &rs6000_reg_names[ 8][0], /* r8 */ \
2102 &rs6000_reg_names[ 9][0], /* r9 */ \
2103 &rs6000_reg_names[10][0], /* r10 */ \
2104 &rs6000_reg_names[11][0], /* r11 */ \
2105 &rs6000_reg_names[12][0], /* r12 */ \
2106 &rs6000_reg_names[13][0], /* r13 */ \
2107 &rs6000_reg_names[14][0], /* r14 */ \
2108 &rs6000_reg_names[15][0], /* r15 */ \
2109 &rs6000_reg_names[16][0], /* r16 */ \
2110 &rs6000_reg_names[17][0], /* r17 */ \
2111 &rs6000_reg_names[18][0], /* r18 */ \
2112 &rs6000_reg_names[19][0], /* r19 */ \
2113 &rs6000_reg_names[20][0], /* r20 */ \
2114 &rs6000_reg_names[21][0], /* r21 */ \
2115 &rs6000_reg_names[22][0], /* r22 */ \
2116 &rs6000_reg_names[23][0], /* r23 */ \
2117 &rs6000_reg_names[24][0], /* r24 */ \
2118 &rs6000_reg_names[25][0], /* r25 */ \
2119 &rs6000_reg_names[26][0], /* r26 */ \
2120 &rs6000_reg_names[27][0], /* r27 */ \
2121 &rs6000_reg_names[28][0], /* r28 */ \
2122 &rs6000_reg_names[29][0], /* r29 */ \
2123 &rs6000_reg_names[30][0], /* r30 */ \
2124 &rs6000_reg_names[31][0], /* r31 */ \
2125 \
2126 &rs6000_reg_names[32][0], /* fr0 */ \
2127 &rs6000_reg_names[33][0], /* fr1 */ \
2128 &rs6000_reg_names[34][0], /* fr2 */ \
2129 &rs6000_reg_names[35][0], /* fr3 */ \
2130 &rs6000_reg_names[36][0], /* fr4 */ \
2131 &rs6000_reg_names[37][0], /* fr5 */ \
2132 &rs6000_reg_names[38][0], /* fr6 */ \
2133 &rs6000_reg_names[39][0], /* fr7 */ \
2134 &rs6000_reg_names[40][0], /* fr8 */ \
2135 &rs6000_reg_names[41][0], /* fr9 */ \
2136 &rs6000_reg_names[42][0], /* fr10 */ \
2137 &rs6000_reg_names[43][0], /* fr11 */ \
2138 &rs6000_reg_names[44][0], /* fr12 */ \
2139 &rs6000_reg_names[45][0], /* fr13 */ \
2140 &rs6000_reg_names[46][0], /* fr14 */ \
2141 &rs6000_reg_names[47][0], /* fr15 */ \
2142 &rs6000_reg_names[48][0], /* fr16 */ \
2143 &rs6000_reg_names[49][0], /* fr17 */ \
2144 &rs6000_reg_names[50][0], /* fr18 */ \
2145 &rs6000_reg_names[51][0], /* fr19 */ \
2146 &rs6000_reg_names[52][0], /* fr20 */ \
2147 &rs6000_reg_names[53][0], /* fr21 */ \
2148 &rs6000_reg_names[54][0], /* fr22 */ \
2149 &rs6000_reg_names[55][0], /* fr23 */ \
2150 &rs6000_reg_names[56][0], /* fr24 */ \
2151 &rs6000_reg_names[57][0], /* fr25 */ \
2152 &rs6000_reg_names[58][0], /* fr26 */ \
2153 &rs6000_reg_names[59][0], /* fr27 */ \
2154 &rs6000_reg_names[60][0], /* fr28 */ \
2155 &rs6000_reg_names[61][0], /* fr29 */ \
2156 &rs6000_reg_names[62][0], /* fr30 */ \
2157 &rs6000_reg_names[63][0], /* fr31 */ \
2158 \
2159 &rs6000_reg_names[64][0], /* mq */ \
2160 &rs6000_reg_names[65][0], /* lr */ \
2161 &rs6000_reg_names[66][0], /* ctr */ \
2162 &rs6000_reg_names[67][0], /* ap */ \
2163 \
2164 &rs6000_reg_names[68][0], /* cr0 */ \
2165 &rs6000_reg_names[69][0], /* cr1 */ \
2166 &rs6000_reg_names[70][0], /* cr2 */ \
2167 &rs6000_reg_names[71][0], /* cr3 */ \
2168 &rs6000_reg_names[72][0], /* cr4 */ \
2169 &rs6000_reg_names[73][0], /* cr5 */ \
2170 &rs6000_reg_names[74][0], /* cr6 */ \
2171 &rs6000_reg_names[75][0], /* cr7 */ \
2172 \
2173 &rs6000_reg_names[76][0], /* xer */ \
2174 \
2175 &rs6000_reg_names[77][0], /* v0 */ \
2176 &rs6000_reg_names[78][0], /* v1 */ \
2177 &rs6000_reg_names[79][0], /* v2 */ \
2178 &rs6000_reg_names[80][0], /* v3 */ \
2179 &rs6000_reg_names[81][0], /* v4 */ \
2180 &rs6000_reg_names[82][0], /* v5 */ \
2181 &rs6000_reg_names[83][0], /* v6 */ \
2182 &rs6000_reg_names[84][0], /* v7 */ \
2183 &rs6000_reg_names[85][0], /* v8 */ \
2184 &rs6000_reg_names[86][0], /* v9 */ \
2185 &rs6000_reg_names[87][0], /* v10 */ \
2186 &rs6000_reg_names[88][0], /* v11 */ \
2187 &rs6000_reg_names[89][0], /* v12 */ \
2188 &rs6000_reg_names[90][0], /* v13 */ \
2189 &rs6000_reg_names[91][0], /* v14 */ \
2190 &rs6000_reg_names[92][0], /* v15 */ \
2191 &rs6000_reg_names[93][0], /* v16 */ \
2192 &rs6000_reg_names[94][0], /* v17 */ \
2193 &rs6000_reg_names[95][0], /* v18 */ \
2194 &rs6000_reg_names[96][0], /* v19 */ \
2195 &rs6000_reg_names[97][0], /* v20 */ \
2196 &rs6000_reg_names[98][0], /* v21 */ \
2197 &rs6000_reg_names[99][0], /* v22 */ \
2198 &rs6000_reg_names[100][0], /* v23 */ \
2199 &rs6000_reg_names[101][0], /* v24 */ \
2200 &rs6000_reg_names[102][0], /* v25 */ \
2201 &rs6000_reg_names[103][0], /* v26 */ \
2202 &rs6000_reg_names[104][0], /* v27 */ \
2203 &rs6000_reg_names[105][0], /* v28 */ \
2204 &rs6000_reg_names[106][0], /* v29 */ \
2205 &rs6000_reg_names[107][0], /* v30 */ \
2206 &rs6000_reg_names[108][0], /* v31 */ \
2207 &rs6000_reg_names[109][0], /* vrsave */ \
2208 &rs6000_reg_names[110][0], /* vscr */ \
2209 &rs6000_reg_names[111][0], /* spe_acc */ \
2210 &rs6000_reg_names[112][0], /* spefscr */ \
2211 }
2212
2213 /* Table of additional register names to use in user input. */
2214
2215 #define ADDITIONAL_REGISTER_NAMES \
2216 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2217 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2218 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2219 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2220 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2221 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2222 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2223 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2224 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2225 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2226 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2227 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2228 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2229 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2230 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2231 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2232 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2233 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2234 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2235 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2236 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2237 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2238 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2239 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
2240 {"vrsave", 109}, {"vscr", 110}, \
2241 {"spe_acc", 111}, {"spefscr", 112}, \
2242 /* no additional names for: mq, lr, ctr, ap */ \
2243 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2244 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2245 {"cc", 68}, {"sp", 1}, {"toc", 2} }
2246
2247 /* Text to write out after a CALL that may be replaced by glue code by
2248 the loader. This depends on the AIX version. */
2249 #define RS6000_CALL_GLUE "cror 31,31,31"
2250
2251 /* This is how to output an element of a case-vector that is relative. */
2252
2253 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2254 do { char buf[100]; \
2255 fputs ("\t.long ", FILE); \
2256 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2257 assemble_name (FILE, buf); \
2258 putc ('-', FILE); \
2259 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2260 assemble_name (FILE, buf); \
2261 putc ('\n', FILE); \
2262 } while (0)
2263
2264 /* This is how to output an assembler line
2265 that says to advance the location counter
2266 to a multiple of 2**LOG bytes. */
2267
2268 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2269 if ((LOG) != 0) \
2270 fprintf (FILE, "\t.align %d\n", (LOG))
2271
2272 /* Pick up the return address upon entry to a procedure. Used for
2273 dwarf2 unwind information. This also enables the table driven
2274 mechanism. */
2275
2276 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)
2277 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LINK_REGISTER_REGNUM)
2278
2279 /* Describe how we implement __builtin_eh_return. */
2280 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2281 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2282
2283 /* Print operand X (an rtx) in assembler syntax to file FILE.
2284 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2285 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2286
2287 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2288
2289 /* Define which CODE values are valid. */
2290
2291 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2292 ((CODE) == '.' || (CODE) == '&')
2293
2294 /* Print a memory address as an operand to reference that memory location. */
2295
2296 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2297
2298 /* uncomment for disabling the corresponding default options */
2299 /* #define MACHINE_no_sched_interblock */
2300 /* #define MACHINE_no_sched_speculative */
2301 /* #define MACHINE_no_sched_speculative_load */
2302
2303 /* General flags. */
2304 extern int flag_pic;
2305 extern int optimize;
2306 extern int flag_expensive_optimizations;
2307 extern int frame_pointer_needed;
2308
2309 enum rs6000_builtins
2310 {
2311 /* AltiVec builtins. */
2312 ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2313 ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2314 ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2315 ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2316 ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2317 ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2318 ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2319 ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
2320 ALTIVEC_BUILTIN_VADDUBM,
2321 ALTIVEC_BUILTIN_VADDUHM,
2322 ALTIVEC_BUILTIN_VADDUWM,
2323 ALTIVEC_BUILTIN_VADDFP,
2324 ALTIVEC_BUILTIN_VADDCUW,
2325 ALTIVEC_BUILTIN_VADDUBS,
2326 ALTIVEC_BUILTIN_VADDSBS,
2327 ALTIVEC_BUILTIN_VADDUHS,
2328 ALTIVEC_BUILTIN_VADDSHS,
2329 ALTIVEC_BUILTIN_VADDUWS,
2330 ALTIVEC_BUILTIN_VADDSWS,
2331 ALTIVEC_BUILTIN_VAND,
2332 ALTIVEC_BUILTIN_VANDC,
2333 ALTIVEC_BUILTIN_VAVGUB,
2334 ALTIVEC_BUILTIN_VAVGSB,
2335 ALTIVEC_BUILTIN_VAVGUH,
2336 ALTIVEC_BUILTIN_VAVGSH,
2337 ALTIVEC_BUILTIN_VAVGUW,
2338 ALTIVEC_BUILTIN_VAVGSW,
2339 ALTIVEC_BUILTIN_VCFUX,
2340 ALTIVEC_BUILTIN_VCFSX,
2341 ALTIVEC_BUILTIN_VCTSXS,
2342 ALTIVEC_BUILTIN_VCTUXS,
2343 ALTIVEC_BUILTIN_VCMPBFP,
2344 ALTIVEC_BUILTIN_VCMPEQUB,
2345 ALTIVEC_BUILTIN_VCMPEQUH,
2346 ALTIVEC_BUILTIN_VCMPEQUW,
2347 ALTIVEC_BUILTIN_VCMPEQFP,
2348 ALTIVEC_BUILTIN_VCMPGEFP,
2349 ALTIVEC_BUILTIN_VCMPGTUB,
2350 ALTIVEC_BUILTIN_VCMPGTSB,
2351 ALTIVEC_BUILTIN_VCMPGTUH,
2352 ALTIVEC_BUILTIN_VCMPGTSH,
2353 ALTIVEC_BUILTIN_VCMPGTUW,
2354 ALTIVEC_BUILTIN_VCMPGTSW,
2355 ALTIVEC_BUILTIN_VCMPGTFP,
2356 ALTIVEC_BUILTIN_VEXPTEFP,
2357 ALTIVEC_BUILTIN_VLOGEFP,
2358 ALTIVEC_BUILTIN_VMADDFP,
2359 ALTIVEC_BUILTIN_VMAXUB,
2360 ALTIVEC_BUILTIN_VMAXSB,
2361 ALTIVEC_BUILTIN_VMAXUH,
2362 ALTIVEC_BUILTIN_VMAXSH,
2363 ALTIVEC_BUILTIN_VMAXUW,
2364 ALTIVEC_BUILTIN_VMAXSW,
2365 ALTIVEC_BUILTIN_VMAXFP,
2366 ALTIVEC_BUILTIN_VMHADDSHS,
2367 ALTIVEC_BUILTIN_VMHRADDSHS,
2368 ALTIVEC_BUILTIN_VMLADDUHM,
2369 ALTIVEC_BUILTIN_VMRGHB,
2370 ALTIVEC_BUILTIN_VMRGHH,
2371 ALTIVEC_BUILTIN_VMRGHW,
2372 ALTIVEC_BUILTIN_VMRGLB,
2373 ALTIVEC_BUILTIN_VMRGLH,
2374 ALTIVEC_BUILTIN_VMRGLW,
2375 ALTIVEC_BUILTIN_VMSUMUBM,
2376 ALTIVEC_BUILTIN_VMSUMMBM,
2377 ALTIVEC_BUILTIN_VMSUMUHM,
2378 ALTIVEC_BUILTIN_VMSUMSHM,
2379 ALTIVEC_BUILTIN_VMSUMUHS,
2380 ALTIVEC_BUILTIN_VMSUMSHS,
2381 ALTIVEC_BUILTIN_VMINUB,
2382 ALTIVEC_BUILTIN_VMINSB,
2383 ALTIVEC_BUILTIN_VMINUH,
2384 ALTIVEC_BUILTIN_VMINSH,
2385 ALTIVEC_BUILTIN_VMINUW,
2386 ALTIVEC_BUILTIN_VMINSW,
2387 ALTIVEC_BUILTIN_VMINFP,
2388 ALTIVEC_BUILTIN_VMULEUB,
2389 ALTIVEC_BUILTIN_VMULESB,
2390 ALTIVEC_BUILTIN_VMULEUH,
2391 ALTIVEC_BUILTIN_VMULESH,
2392 ALTIVEC_BUILTIN_VMULOUB,
2393 ALTIVEC_BUILTIN_VMULOSB,
2394 ALTIVEC_BUILTIN_VMULOUH,
2395 ALTIVEC_BUILTIN_VMULOSH,
2396 ALTIVEC_BUILTIN_VNMSUBFP,
2397 ALTIVEC_BUILTIN_VNOR,
2398 ALTIVEC_BUILTIN_VOR,
2399 ALTIVEC_BUILTIN_VSEL_4SI,
2400 ALTIVEC_BUILTIN_VSEL_4SF,
2401 ALTIVEC_BUILTIN_VSEL_8HI,
2402 ALTIVEC_BUILTIN_VSEL_16QI,
2403 ALTIVEC_BUILTIN_VPERM_4SI,
2404 ALTIVEC_BUILTIN_VPERM_4SF,
2405 ALTIVEC_BUILTIN_VPERM_8HI,
2406 ALTIVEC_BUILTIN_VPERM_16QI,
2407 ALTIVEC_BUILTIN_VPKUHUM,
2408 ALTIVEC_BUILTIN_VPKUWUM,
2409 ALTIVEC_BUILTIN_VPKPX,
2410 ALTIVEC_BUILTIN_VPKUHSS,
2411 ALTIVEC_BUILTIN_VPKSHSS,
2412 ALTIVEC_BUILTIN_VPKUWSS,
2413 ALTIVEC_BUILTIN_VPKSWSS,
2414 ALTIVEC_BUILTIN_VPKUHUS,
2415 ALTIVEC_BUILTIN_VPKSHUS,
2416 ALTIVEC_BUILTIN_VPKUWUS,
2417 ALTIVEC_BUILTIN_VPKSWUS,
2418 ALTIVEC_BUILTIN_VREFP,
2419 ALTIVEC_BUILTIN_VRFIM,
2420 ALTIVEC_BUILTIN_VRFIN,
2421 ALTIVEC_BUILTIN_VRFIP,
2422 ALTIVEC_BUILTIN_VRFIZ,
2423 ALTIVEC_BUILTIN_VRLB,
2424 ALTIVEC_BUILTIN_VRLH,
2425 ALTIVEC_BUILTIN_VRLW,
2426 ALTIVEC_BUILTIN_VRSQRTEFP,
2427 ALTIVEC_BUILTIN_VSLB,
2428 ALTIVEC_BUILTIN_VSLH,
2429 ALTIVEC_BUILTIN_VSLW,
2430 ALTIVEC_BUILTIN_VSL,
2431 ALTIVEC_BUILTIN_VSLO,
2432 ALTIVEC_BUILTIN_VSPLTB,
2433 ALTIVEC_BUILTIN_VSPLTH,
2434 ALTIVEC_BUILTIN_VSPLTW,
2435 ALTIVEC_BUILTIN_VSPLTISB,
2436 ALTIVEC_BUILTIN_VSPLTISH,
2437 ALTIVEC_BUILTIN_VSPLTISW,
2438 ALTIVEC_BUILTIN_VSRB,
2439 ALTIVEC_BUILTIN_VSRH,
2440 ALTIVEC_BUILTIN_VSRW,
2441 ALTIVEC_BUILTIN_VSRAB,
2442 ALTIVEC_BUILTIN_VSRAH,
2443 ALTIVEC_BUILTIN_VSRAW,
2444 ALTIVEC_BUILTIN_VSR,
2445 ALTIVEC_BUILTIN_VSRO,
2446 ALTIVEC_BUILTIN_VSUBUBM,
2447 ALTIVEC_BUILTIN_VSUBUHM,
2448 ALTIVEC_BUILTIN_VSUBUWM,
2449 ALTIVEC_BUILTIN_VSUBFP,
2450 ALTIVEC_BUILTIN_VSUBCUW,
2451 ALTIVEC_BUILTIN_VSUBUBS,
2452 ALTIVEC_BUILTIN_VSUBSBS,
2453 ALTIVEC_BUILTIN_VSUBUHS,
2454 ALTIVEC_BUILTIN_VSUBSHS,
2455 ALTIVEC_BUILTIN_VSUBUWS,
2456 ALTIVEC_BUILTIN_VSUBSWS,
2457 ALTIVEC_BUILTIN_VSUM4UBS,
2458 ALTIVEC_BUILTIN_VSUM4SBS,
2459 ALTIVEC_BUILTIN_VSUM4SHS,
2460 ALTIVEC_BUILTIN_VSUM2SWS,
2461 ALTIVEC_BUILTIN_VSUMSWS,
2462 ALTIVEC_BUILTIN_VXOR,
2463 ALTIVEC_BUILTIN_VSLDOI_16QI,
2464 ALTIVEC_BUILTIN_VSLDOI_8HI,
2465 ALTIVEC_BUILTIN_VSLDOI_4SI,
2466 ALTIVEC_BUILTIN_VSLDOI_4SF,
2467 ALTIVEC_BUILTIN_VUPKHSB,
2468 ALTIVEC_BUILTIN_VUPKHPX,
2469 ALTIVEC_BUILTIN_VUPKHSH,
2470 ALTIVEC_BUILTIN_VUPKLSB,
2471 ALTIVEC_BUILTIN_VUPKLPX,
2472 ALTIVEC_BUILTIN_VUPKLSH,
2473 ALTIVEC_BUILTIN_MTVSCR,
2474 ALTIVEC_BUILTIN_MFVSCR,
2475 ALTIVEC_BUILTIN_DSSALL,
2476 ALTIVEC_BUILTIN_DSS,
2477 ALTIVEC_BUILTIN_LVSL,
2478 ALTIVEC_BUILTIN_LVSR,
2479 ALTIVEC_BUILTIN_DSTT,
2480 ALTIVEC_BUILTIN_DSTST,
2481 ALTIVEC_BUILTIN_DSTSTT,
2482 ALTIVEC_BUILTIN_DST,
2483 ALTIVEC_BUILTIN_LVEBX,
2484 ALTIVEC_BUILTIN_LVEHX,
2485 ALTIVEC_BUILTIN_LVEWX,
2486 ALTIVEC_BUILTIN_LVXL,
2487 ALTIVEC_BUILTIN_LVX,
2488 ALTIVEC_BUILTIN_STVX,
2489 ALTIVEC_BUILTIN_STVEBX,
2490 ALTIVEC_BUILTIN_STVEHX,
2491 ALTIVEC_BUILTIN_STVEWX,
2492 ALTIVEC_BUILTIN_STVXL,
2493 ALTIVEC_BUILTIN_VCMPBFP_P,
2494 ALTIVEC_BUILTIN_VCMPEQFP_P,
2495 ALTIVEC_BUILTIN_VCMPEQUB_P,
2496 ALTIVEC_BUILTIN_VCMPEQUH_P,
2497 ALTIVEC_BUILTIN_VCMPEQUW_P,
2498 ALTIVEC_BUILTIN_VCMPGEFP_P,
2499 ALTIVEC_BUILTIN_VCMPGTFP_P,
2500 ALTIVEC_BUILTIN_VCMPGTSB_P,
2501 ALTIVEC_BUILTIN_VCMPGTSH_P,
2502 ALTIVEC_BUILTIN_VCMPGTSW_P,
2503 ALTIVEC_BUILTIN_VCMPGTUB_P,
2504 ALTIVEC_BUILTIN_VCMPGTUH_P,
2505 ALTIVEC_BUILTIN_VCMPGTUW_P,
2506 ALTIVEC_BUILTIN_ABSS_V4SI,
2507 ALTIVEC_BUILTIN_ABSS_V8HI,
2508 ALTIVEC_BUILTIN_ABSS_V16QI,
2509 ALTIVEC_BUILTIN_ABS_V4SI,
2510 ALTIVEC_BUILTIN_ABS_V4SF,
2511 ALTIVEC_BUILTIN_ABS_V8HI,
2512 ALTIVEC_BUILTIN_ABS_V16QI,
2513 ALTIVEC_BUILTIN_MASK_FOR_LOAD,
2514 ALTIVEC_BUILTIN_MASK_FOR_STORE,
2515
2516 /* Altivec overloaded builtins. */
2517 ALTIVEC_BUILTIN_VCMPEQ_P,
2518 ALTIVEC_BUILTIN_OVERLOADED_FIRST = ALTIVEC_BUILTIN_VCMPEQ_P,
2519 ALTIVEC_BUILTIN_VCMPGT_P,
2520 ALTIVEC_BUILTIN_VCMPGE_P,
2521 ALTIVEC_BUILTIN_VEC_ABS,
2522 ALTIVEC_BUILTIN_VEC_ABSS,
2523 ALTIVEC_BUILTIN_VEC_ADD,
2524 ALTIVEC_BUILTIN_VEC_ADDC,
2525 ALTIVEC_BUILTIN_VEC_ADDS,
2526 ALTIVEC_BUILTIN_VEC_AND,
2527 ALTIVEC_BUILTIN_VEC_ANDC,
2528 ALTIVEC_BUILTIN_VEC_AVG,
2529 ALTIVEC_BUILTIN_VEC_CEIL,
2530 ALTIVEC_BUILTIN_VEC_CMPB,
2531 ALTIVEC_BUILTIN_VEC_CMPEQ,
2532 ALTIVEC_BUILTIN_VEC_CMPEQUB,
2533 ALTIVEC_BUILTIN_VEC_CMPEQUH,
2534 ALTIVEC_BUILTIN_VEC_CMPEQUW,
2535 ALTIVEC_BUILTIN_VEC_CMPGE,
2536 ALTIVEC_BUILTIN_VEC_CMPGT,
2537 ALTIVEC_BUILTIN_VEC_CMPLE,
2538 ALTIVEC_BUILTIN_VEC_CMPLT,
2539 ALTIVEC_BUILTIN_VEC_CTF,
2540 ALTIVEC_BUILTIN_VEC_CTS,
2541 ALTIVEC_BUILTIN_VEC_CTU,
2542 ALTIVEC_BUILTIN_VEC_DST,
2543 ALTIVEC_BUILTIN_VEC_DSTST,
2544 ALTIVEC_BUILTIN_VEC_DSTSTT,
2545 ALTIVEC_BUILTIN_VEC_DSTT,
2546 ALTIVEC_BUILTIN_VEC_EXPTE,
2547 ALTIVEC_BUILTIN_VEC_FLOOR,
2548 ALTIVEC_BUILTIN_VEC_LD,
2549 ALTIVEC_BUILTIN_VEC_LDE,
2550 ALTIVEC_BUILTIN_VEC_LDL,
2551 ALTIVEC_BUILTIN_VEC_LOGE,
2552 ALTIVEC_BUILTIN_VEC_LVEBX,
2553 ALTIVEC_BUILTIN_VEC_LVEHX,
2554 ALTIVEC_BUILTIN_VEC_LVEWX,
2555 ALTIVEC_BUILTIN_VEC_LVSL,
2556 ALTIVEC_BUILTIN_VEC_LVSR,
2557 ALTIVEC_BUILTIN_VEC_MADD,
2558 ALTIVEC_BUILTIN_VEC_MADDS,
2559 ALTIVEC_BUILTIN_VEC_MAX,
2560 ALTIVEC_BUILTIN_VEC_MERGEH,
2561 ALTIVEC_BUILTIN_VEC_MERGEL,
2562 ALTIVEC_BUILTIN_VEC_MIN,
2563 ALTIVEC_BUILTIN_VEC_MLADD,
2564 ALTIVEC_BUILTIN_VEC_MPERM,
2565 ALTIVEC_BUILTIN_VEC_MRADDS,
2566 ALTIVEC_BUILTIN_VEC_MRGHB,
2567 ALTIVEC_BUILTIN_VEC_MRGHH,
2568 ALTIVEC_BUILTIN_VEC_MRGHW,
2569 ALTIVEC_BUILTIN_VEC_MRGLB,
2570 ALTIVEC_BUILTIN_VEC_MRGLH,
2571 ALTIVEC_BUILTIN_VEC_MRGLW,
2572 ALTIVEC_BUILTIN_VEC_MSUM,
2573 ALTIVEC_BUILTIN_VEC_MSUMS,
2574 ALTIVEC_BUILTIN_VEC_MTVSCR,
2575 ALTIVEC_BUILTIN_VEC_MULE,
2576 ALTIVEC_BUILTIN_VEC_MULO,
2577 ALTIVEC_BUILTIN_VEC_NMSUB,
2578 ALTIVEC_BUILTIN_VEC_NOR,
2579 ALTIVEC_BUILTIN_VEC_OR,
2580 ALTIVEC_BUILTIN_VEC_PACK,
2581 ALTIVEC_BUILTIN_VEC_PACKPX,
2582 ALTIVEC_BUILTIN_VEC_PACKS,
2583 ALTIVEC_BUILTIN_VEC_PACKSU,
2584 ALTIVEC_BUILTIN_VEC_PERM,
2585 ALTIVEC_BUILTIN_VEC_RE,
2586 ALTIVEC_BUILTIN_VEC_RL,
2587 ALTIVEC_BUILTIN_VEC_ROUND,
2588 ALTIVEC_BUILTIN_VEC_RSQRTE,
2589 ALTIVEC_BUILTIN_VEC_SEL,
2590 ALTIVEC_BUILTIN_VEC_SL,
2591 ALTIVEC_BUILTIN_VEC_SLD,
2592 ALTIVEC_BUILTIN_VEC_SLL,
2593 ALTIVEC_BUILTIN_VEC_SLO,
2594 ALTIVEC_BUILTIN_VEC_SPLAT,
2595 ALTIVEC_BUILTIN_VEC_SPLAT_S16,
2596 ALTIVEC_BUILTIN_VEC_SPLAT_S32,
2597 ALTIVEC_BUILTIN_VEC_SPLAT_S8,
2598 ALTIVEC_BUILTIN_VEC_SPLAT_U16,
2599 ALTIVEC_BUILTIN_VEC_SPLAT_U32,
2600 ALTIVEC_BUILTIN_VEC_SPLAT_U8,
2601 ALTIVEC_BUILTIN_VEC_SPLTB,
2602 ALTIVEC_BUILTIN_VEC_SPLTH,
2603 ALTIVEC_BUILTIN_VEC_SPLTW,
2604 ALTIVEC_BUILTIN_VEC_SR,
2605 ALTIVEC_BUILTIN_VEC_SRA,
2606 ALTIVEC_BUILTIN_VEC_SRL,
2607 ALTIVEC_BUILTIN_VEC_SRO,
2608 ALTIVEC_BUILTIN_VEC_ST,
2609 ALTIVEC_BUILTIN_VEC_STE,
2610 ALTIVEC_BUILTIN_VEC_STL,
2611 ALTIVEC_BUILTIN_VEC_STVEBX,
2612 ALTIVEC_BUILTIN_VEC_STVEHX,
2613 ALTIVEC_BUILTIN_VEC_STVEWX,
2614 ALTIVEC_BUILTIN_VEC_SUB,
2615 ALTIVEC_BUILTIN_VEC_SUBC,
2616 ALTIVEC_BUILTIN_VEC_SUBS,
2617 ALTIVEC_BUILTIN_VEC_SUM2S,
2618 ALTIVEC_BUILTIN_VEC_SUM4S,
2619 ALTIVEC_BUILTIN_VEC_SUMS,
2620 ALTIVEC_BUILTIN_VEC_TRUNC,
2621 ALTIVEC_BUILTIN_VEC_UNPACKH,
2622 ALTIVEC_BUILTIN_VEC_UNPACKL,
2623 ALTIVEC_BUILTIN_VEC_VADDFP,
2624 ALTIVEC_BUILTIN_VEC_VADDSBS,
2625 ALTIVEC_BUILTIN_VEC_VADDSHS,
2626 ALTIVEC_BUILTIN_VEC_VADDSWS,
2627 ALTIVEC_BUILTIN_VEC_VADDUBM,
2628 ALTIVEC_BUILTIN_VEC_VADDUBS,
2629 ALTIVEC_BUILTIN_VEC_VADDUHM,
2630 ALTIVEC_BUILTIN_VEC_VADDUHS,
2631 ALTIVEC_BUILTIN_VEC_VADDUWM,
2632 ALTIVEC_BUILTIN_VEC_VADDUWS,
2633 ALTIVEC_BUILTIN_VEC_VAVGSB,
2634 ALTIVEC_BUILTIN_VEC_VAVGSH,
2635 ALTIVEC_BUILTIN_VEC_VAVGSW,
2636 ALTIVEC_BUILTIN_VEC_VAVGUB,
2637 ALTIVEC_BUILTIN_VEC_VAVGUH,
2638 ALTIVEC_BUILTIN_VEC_VAVGUW,
2639 ALTIVEC_BUILTIN_VEC_VCFSX,
2640 ALTIVEC_BUILTIN_VEC_VCFUX,
2641 ALTIVEC_BUILTIN_VEC_VCMPEQFP,
2642 ALTIVEC_BUILTIN_VEC_VCMPEQUB,
2643 ALTIVEC_BUILTIN_VEC_VCMPEQUH,
2644 ALTIVEC_BUILTIN_VEC_VCMPEQUW,
2645 ALTIVEC_BUILTIN_VEC_VCMPGTFP,
2646 ALTIVEC_BUILTIN_VEC_VCMPGTSB,
2647 ALTIVEC_BUILTIN_VEC_VCMPGTSH,
2648 ALTIVEC_BUILTIN_VEC_VCMPGTSW,
2649 ALTIVEC_BUILTIN_VEC_VCMPGTUB,
2650 ALTIVEC_BUILTIN_VEC_VCMPGTUH,
2651 ALTIVEC_BUILTIN_VEC_VCMPGTUW,
2652 ALTIVEC_BUILTIN_VEC_VMAXFP,
2653 ALTIVEC_BUILTIN_VEC_VMAXSB,
2654 ALTIVEC_BUILTIN_VEC_VMAXSH,
2655 ALTIVEC_BUILTIN_VEC_VMAXSW,
2656 ALTIVEC_BUILTIN_VEC_VMAXUB,
2657 ALTIVEC_BUILTIN_VEC_VMAXUH,
2658 ALTIVEC_BUILTIN_VEC_VMAXUW,
2659 ALTIVEC_BUILTIN_VEC_VMINFP,
2660 ALTIVEC_BUILTIN_VEC_VMINSB,
2661 ALTIVEC_BUILTIN_VEC_VMINSH,
2662 ALTIVEC_BUILTIN_VEC_VMINSW,
2663 ALTIVEC_BUILTIN_VEC_VMINUB,
2664 ALTIVEC_BUILTIN_VEC_VMINUH,
2665 ALTIVEC_BUILTIN_VEC_VMINUW,
2666 ALTIVEC_BUILTIN_VEC_VMRGHB,
2667 ALTIVEC_BUILTIN_VEC_VMRGHH,
2668 ALTIVEC_BUILTIN_VEC_VMRGHW,
2669 ALTIVEC_BUILTIN_VEC_VMRGLB,
2670 ALTIVEC_BUILTIN_VEC_VMRGLH,
2671 ALTIVEC_BUILTIN_VEC_VMRGLW,
2672 ALTIVEC_BUILTIN_VEC_VMSUMMBM,
2673 ALTIVEC_BUILTIN_VEC_VMSUMSHM,
2674 ALTIVEC_BUILTIN_VEC_VMSUMSHS,
2675 ALTIVEC_BUILTIN_VEC_VMSUMUBM,
2676 ALTIVEC_BUILTIN_VEC_VMSUMUHM,
2677 ALTIVEC_BUILTIN_VEC_VMSUMUHS,
2678 ALTIVEC_BUILTIN_VEC_VMULESB,
2679 ALTIVEC_BUILTIN_VEC_VMULESH,
2680 ALTIVEC_BUILTIN_VEC_VMULEUB,
2681 ALTIVEC_BUILTIN_VEC_VMULEUH,
2682 ALTIVEC_BUILTIN_VEC_VMULOSB,
2683 ALTIVEC_BUILTIN_VEC_VMULOSH,
2684 ALTIVEC_BUILTIN_VEC_VMULOUB,
2685 ALTIVEC_BUILTIN_VEC_VMULOUH,
2686 ALTIVEC_BUILTIN_VEC_VPKSHSS,
2687 ALTIVEC_BUILTIN_VEC_VPKSHUS,
2688 ALTIVEC_BUILTIN_VEC_VPKSWSS,
2689 ALTIVEC_BUILTIN_VEC_VPKSWUS,
2690 ALTIVEC_BUILTIN_VEC_VPKUHUM,
2691 ALTIVEC_BUILTIN_VEC_VPKUHUS,
2692 ALTIVEC_BUILTIN_VEC_VPKUWUM,
2693 ALTIVEC_BUILTIN_VEC_VPKUWUS,
2694 ALTIVEC_BUILTIN_VEC_VRLB,
2695 ALTIVEC_BUILTIN_VEC_VRLH,
2696 ALTIVEC_BUILTIN_VEC_VRLW,
2697 ALTIVEC_BUILTIN_VEC_VSLB,
2698 ALTIVEC_BUILTIN_VEC_VSLH,
2699 ALTIVEC_BUILTIN_VEC_VSLW,
2700 ALTIVEC_BUILTIN_VEC_VSPLTB,
2701 ALTIVEC_BUILTIN_VEC_VSPLTH,
2702 ALTIVEC_BUILTIN_VEC_VSPLTW,
2703 ALTIVEC_BUILTIN_VEC_VSRAB,
2704 ALTIVEC_BUILTIN_VEC_VSRAH,
2705 ALTIVEC_BUILTIN_VEC_VSRAW,
2706 ALTIVEC_BUILTIN_VEC_VSRB,
2707 ALTIVEC_BUILTIN_VEC_VSRH,
2708 ALTIVEC_BUILTIN_VEC_VSRW,
2709 ALTIVEC_BUILTIN_VEC_VSUBFP,
2710 ALTIVEC_BUILTIN_VEC_VSUBSBS,
2711 ALTIVEC_BUILTIN_VEC_VSUBSHS,
2712 ALTIVEC_BUILTIN_VEC_VSUBSWS,
2713 ALTIVEC_BUILTIN_VEC_VSUBUBM,
2714 ALTIVEC_BUILTIN_VEC_VSUBUBS,
2715 ALTIVEC_BUILTIN_VEC_VSUBUHM,
2716 ALTIVEC_BUILTIN_VEC_VSUBUHS,
2717 ALTIVEC_BUILTIN_VEC_VSUBUWM,
2718 ALTIVEC_BUILTIN_VEC_VSUBUWS,
2719 ALTIVEC_BUILTIN_VEC_VSUM4SBS,
2720 ALTIVEC_BUILTIN_VEC_VSUM4SHS,
2721 ALTIVEC_BUILTIN_VEC_VSUM4UBS,
2722 ALTIVEC_BUILTIN_VEC_VUPKHPX,
2723 ALTIVEC_BUILTIN_VEC_VUPKHSB,
2724 ALTIVEC_BUILTIN_VEC_VUPKHSH,
2725 ALTIVEC_BUILTIN_VEC_VUPKLPX,
2726 ALTIVEC_BUILTIN_VEC_VUPKLSB,
2727 ALTIVEC_BUILTIN_VEC_VUPKLSH,
2728 ALTIVEC_BUILTIN_VEC_XOR,
2729 ALTIVEC_BUILTIN_VEC_STEP,
2730 ALTIVEC_BUILTIN_OVERLOADED_LAST = ALTIVEC_BUILTIN_VEC_STEP,
2731
2732 /* SPE builtins. */
2733 SPE_BUILTIN_EVADDW,
2734 SPE_BUILTIN_EVAND,
2735 SPE_BUILTIN_EVANDC,
2736 SPE_BUILTIN_EVDIVWS,
2737 SPE_BUILTIN_EVDIVWU,
2738 SPE_BUILTIN_EVEQV,
2739 SPE_BUILTIN_EVFSADD,
2740 SPE_BUILTIN_EVFSDIV,
2741 SPE_BUILTIN_EVFSMUL,
2742 SPE_BUILTIN_EVFSSUB,
2743 SPE_BUILTIN_EVLDDX,
2744 SPE_BUILTIN_EVLDHX,
2745 SPE_BUILTIN_EVLDWX,
2746 SPE_BUILTIN_EVLHHESPLATX,
2747 SPE_BUILTIN_EVLHHOSSPLATX,
2748 SPE_BUILTIN_EVLHHOUSPLATX,
2749 SPE_BUILTIN_EVLWHEX,
2750 SPE_BUILTIN_EVLWHOSX,
2751 SPE_BUILTIN_EVLWHOUX,
2752 SPE_BUILTIN_EVLWHSPLATX,
2753 SPE_BUILTIN_EVLWWSPLATX,
2754 SPE_BUILTIN_EVMERGEHI,
2755 SPE_BUILTIN_EVMERGEHILO,
2756 SPE_BUILTIN_EVMERGELO,
2757 SPE_BUILTIN_EVMERGELOHI,
2758 SPE_BUILTIN_EVMHEGSMFAA,
2759 SPE_BUILTIN_EVMHEGSMFAN,
2760 SPE_BUILTIN_EVMHEGSMIAA,
2761 SPE_BUILTIN_EVMHEGSMIAN,
2762 SPE_BUILTIN_EVMHEGUMIAA,
2763 SPE_BUILTIN_EVMHEGUMIAN,
2764 SPE_BUILTIN_EVMHESMF,
2765 SPE_BUILTIN_EVMHESMFA,
2766 SPE_BUILTIN_EVMHESMFAAW,
2767 SPE_BUILTIN_EVMHESMFANW,
2768 SPE_BUILTIN_EVMHESMI,
2769 SPE_BUILTIN_EVMHESMIA,
2770 SPE_BUILTIN_EVMHESMIAAW,
2771 SPE_BUILTIN_EVMHESMIANW,
2772 SPE_BUILTIN_EVMHESSF,
2773 SPE_BUILTIN_EVMHESSFA,
2774 SPE_BUILTIN_EVMHESSFAAW,
2775 SPE_BUILTIN_EVMHESSFANW,
2776 SPE_BUILTIN_EVMHESSIAAW,
2777 SPE_BUILTIN_EVMHESSIANW,
2778 SPE_BUILTIN_EVMHEUMI,
2779 SPE_BUILTIN_EVMHEUMIA,
2780 SPE_BUILTIN_EVMHEUMIAAW,
2781 SPE_BUILTIN_EVMHEUMIANW,
2782 SPE_BUILTIN_EVMHEUSIAAW,
2783 SPE_BUILTIN_EVMHEUSIANW,
2784 SPE_BUILTIN_EVMHOGSMFAA,
2785 SPE_BUILTIN_EVMHOGSMFAN,
2786 SPE_BUILTIN_EVMHOGSMIAA,
2787 SPE_BUILTIN_EVMHOGSMIAN,
2788 SPE_BUILTIN_EVMHOGUMIAA,
2789 SPE_BUILTIN_EVMHOGUMIAN,
2790 SPE_BUILTIN_EVMHOSMF,
2791 SPE_BUILTIN_EVMHOSMFA,
2792 SPE_BUILTIN_EVMHOSMFAAW,
2793 SPE_BUILTIN_EVMHOSMFANW,
2794 SPE_BUILTIN_EVMHOSMI,
2795 SPE_BUILTIN_EVMHOSMIA,
2796 SPE_BUILTIN_EVMHOSMIAAW,
2797 SPE_BUILTIN_EVMHOSMIANW,
2798 SPE_BUILTIN_EVMHOSSF,
2799 SPE_BUILTIN_EVMHOSSFA,
2800 SPE_BUILTIN_EVMHOSSFAAW,
2801 SPE_BUILTIN_EVMHOSSFANW,
2802 SPE_BUILTIN_EVMHOSSIAAW,
2803 SPE_BUILTIN_EVMHOSSIANW,
2804 SPE_BUILTIN_EVMHOUMI,
2805 SPE_BUILTIN_EVMHOUMIA,
2806 SPE_BUILTIN_EVMHOUMIAAW,
2807 SPE_BUILTIN_EVMHOUMIANW,
2808 SPE_BUILTIN_EVMHOUSIAAW,
2809 SPE_BUILTIN_EVMHOUSIANW,
2810 SPE_BUILTIN_EVMWHSMF,
2811 SPE_BUILTIN_EVMWHSMFA,
2812 SPE_BUILTIN_EVMWHSMI,
2813 SPE_BUILTIN_EVMWHSMIA,
2814 SPE_BUILTIN_EVMWHSSF,
2815 SPE_BUILTIN_EVMWHSSFA,
2816 SPE_BUILTIN_EVMWHUMI,
2817 SPE_BUILTIN_EVMWHUMIA,
2818 SPE_BUILTIN_EVMWLSMIAAW,
2819 SPE_BUILTIN_EVMWLSMIANW,
2820 SPE_BUILTIN_EVMWLSSIAAW,
2821 SPE_BUILTIN_EVMWLSSIANW,
2822 SPE_BUILTIN_EVMWLUMI,
2823 SPE_BUILTIN_EVMWLUMIA,
2824 SPE_BUILTIN_EVMWLUMIAAW,
2825 SPE_BUILTIN_EVMWLUMIANW,
2826 SPE_BUILTIN_EVMWLUSIAAW,
2827 SPE_BUILTIN_EVMWLUSIANW,
2828 SPE_BUILTIN_EVMWSMF,
2829 SPE_BUILTIN_EVMWSMFA,
2830 SPE_BUILTIN_EVMWSMFAA,
2831 SPE_BUILTIN_EVMWSMFAN,
2832 SPE_BUILTIN_EVMWSMI,
2833 SPE_BUILTIN_EVMWSMIA,
2834 SPE_BUILTIN_EVMWSMIAA,
2835 SPE_BUILTIN_EVMWSMIAN,
2836 SPE_BUILTIN_EVMWHSSFAA,
2837 SPE_BUILTIN_EVMWSSF,
2838 SPE_BUILTIN_EVMWSSFA,
2839 SPE_BUILTIN_EVMWSSFAA,
2840 SPE_BUILTIN_EVMWSSFAN,
2841 SPE_BUILTIN_EVMWUMI,
2842 SPE_BUILTIN_EVMWUMIA,
2843 SPE_BUILTIN_EVMWUMIAA,
2844 SPE_BUILTIN_EVMWUMIAN,
2845 SPE_BUILTIN_EVNAND,
2846 SPE_BUILTIN_EVNOR,
2847 SPE_BUILTIN_EVOR,
2848 SPE_BUILTIN_EVORC,
2849 SPE_BUILTIN_EVRLW,
2850 SPE_BUILTIN_EVSLW,
2851 SPE_BUILTIN_EVSRWS,
2852 SPE_BUILTIN_EVSRWU,
2853 SPE_BUILTIN_EVSTDDX,
2854 SPE_BUILTIN_EVSTDHX,
2855 SPE_BUILTIN_EVSTDWX,
2856 SPE_BUILTIN_EVSTWHEX,
2857 SPE_BUILTIN_EVSTWHOX,
2858 SPE_BUILTIN_EVSTWWEX,
2859 SPE_BUILTIN_EVSTWWOX,
2860 SPE_BUILTIN_EVSUBFW,
2861 SPE_BUILTIN_EVXOR,
2862 SPE_BUILTIN_EVABS,
2863 SPE_BUILTIN_EVADDSMIAAW,
2864 SPE_BUILTIN_EVADDSSIAAW,
2865 SPE_BUILTIN_EVADDUMIAAW,
2866 SPE_BUILTIN_EVADDUSIAAW,
2867 SPE_BUILTIN_EVCNTLSW,
2868 SPE_BUILTIN_EVCNTLZW,
2869 SPE_BUILTIN_EVEXTSB,
2870 SPE_BUILTIN_EVEXTSH,
2871 SPE_BUILTIN_EVFSABS,
2872 SPE_BUILTIN_EVFSCFSF,
2873 SPE_BUILTIN_EVFSCFSI,
2874 SPE_BUILTIN_EVFSCFUF,
2875 SPE_BUILTIN_EVFSCFUI,
2876 SPE_BUILTIN_EVFSCTSF,
2877 SPE_BUILTIN_EVFSCTSI,
2878 SPE_BUILTIN_EVFSCTSIZ,
2879 SPE_BUILTIN_EVFSCTUF,
2880 SPE_BUILTIN_EVFSCTUI,
2881 SPE_BUILTIN_EVFSCTUIZ,
2882 SPE_BUILTIN_EVFSNABS,
2883 SPE_BUILTIN_EVFSNEG,
2884 SPE_BUILTIN_EVMRA,
2885 SPE_BUILTIN_EVNEG,
2886 SPE_BUILTIN_EVRNDW,
2887 SPE_BUILTIN_EVSUBFSMIAAW,
2888 SPE_BUILTIN_EVSUBFSSIAAW,
2889 SPE_BUILTIN_EVSUBFUMIAAW,
2890 SPE_BUILTIN_EVSUBFUSIAAW,
2891 SPE_BUILTIN_EVADDIW,
2892 SPE_BUILTIN_EVLDD,
2893 SPE_BUILTIN_EVLDH,
2894 SPE_BUILTIN_EVLDW,
2895 SPE_BUILTIN_EVLHHESPLAT,
2896 SPE_BUILTIN_EVLHHOSSPLAT,
2897 SPE_BUILTIN_EVLHHOUSPLAT,
2898 SPE_BUILTIN_EVLWHE,
2899 SPE_BUILTIN_EVLWHOS,
2900 SPE_BUILTIN_EVLWHOU,
2901 SPE_BUILTIN_EVLWHSPLAT,
2902 SPE_BUILTIN_EVLWWSPLAT,
2903 SPE_BUILTIN_EVRLWI,
2904 SPE_BUILTIN_EVSLWI,
2905 SPE_BUILTIN_EVSRWIS,
2906 SPE_BUILTIN_EVSRWIU,
2907 SPE_BUILTIN_EVSTDD,
2908 SPE_BUILTIN_EVSTDH,
2909 SPE_BUILTIN_EVSTDW,
2910 SPE_BUILTIN_EVSTWHE,
2911 SPE_BUILTIN_EVSTWHO,
2912 SPE_BUILTIN_EVSTWWE,
2913 SPE_BUILTIN_EVSTWWO,
2914 SPE_BUILTIN_EVSUBIFW,
2915
2916 /* Compares. */
2917 SPE_BUILTIN_EVCMPEQ,
2918 SPE_BUILTIN_EVCMPGTS,
2919 SPE_BUILTIN_EVCMPGTU,
2920 SPE_BUILTIN_EVCMPLTS,
2921 SPE_BUILTIN_EVCMPLTU,
2922 SPE_BUILTIN_EVFSCMPEQ,
2923 SPE_BUILTIN_EVFSCMPGT,
2924 SPE_BUILTIN_EVFSCMPLT,
2925 SPE_BUILTIN_EVFSTSTEQ,
2926 SPE_BUILTIN_EVFSTSTGT,
2927 SPE_BUILTIN_EVFSTSTLT,
2928
2929 /* EVSEL compares. */
2930 SPE_BUILTIN_EVSEL_CMPEQ,
2931 SPE_BUILTIN_EVSEL_CMPGTS,
2932 SPE_BUILTIN_EVSEL_CMPGTU,
2933 SPE_BUILTIN_EVSEL_CMPLTS,
2934 SPE_BUILTIN_EVSEL_CMPLTU,
2935 SPE_BUILTIN_EVSEL_FSCMPEQ,
2936 SPE_BUILTIN_EVSEL_FSCMPGT,
2937 SPE_BUILTIN_EVSEL_FSCMPLT,
2938 SPE_BUILTIN_EVSEL_FSTSTEQ,
2939 SPE_BUILTIN_EVSEL_FSTSTGT,
2940 SPE_BUILTIN_EVSEL_FSTSTLT,
2941
2942 SPE_BUILTIN_EVSPLATFI,
2943 SPE_BUILTIN_EVSPLATI,
2944 SPE_BUILTIN_EVMWHSSMAA,
2945 SPE_BUILTIN_EVMWHSMFAA,
2946 SPE_BUILTIN_EVMWHSMIAA,
2947 SPE_BUILTIN_EVMWHUSIAA,
2948 SPE_BUILTIN_EVMWHUMIAA,
2949 SPE_BUILTIN_EVMWHSSFAN,
2950 SPE_BUILTIN_EVMWHSSIAN,
2951 SPE_BUILTIN_EVMWHSMFAN,
2952 SPE_BUILTIN_EVMWHSMIAN,
2953 SPE_BUILTIN_EVMWHUSIAN,
2954 SPE_BUILTIN_EVMWHUMIAN,
2955 SPE_BUILTIN_EVMWHGSSFAA,
2956 SPE_BUILTIN_EVMWHGSMFAA,
2957 SPE_BUILTIN_EVMWHGSMIAA,
2958 SPE_BUILTIN_EVMWHGUMIAA,
2959 SPE_BUILTIN_EVMWHGSSFAN,
2960 SPE_BUILTIN_EVMWHGSMFAN,
2961 SPE_BUILTIN_EVMWHGSMIAN,
2962 SPE_BUILTIN_EVMWHGUMIAN,
2963 SPE_BUILTIN_MTSPEFSCR,
2964 SPE_BUILTIN_MFSPEFSCR,
2965 SPE_BUILTIN_BRINC,
2966
2967 RS6000_BUILTIN_COUNT
2968 };
2969
2970 enum rs6000_builtin_type_index
2971 {
2972 RS6000_BTI_NOT_OPAQUE,
2973 RS6000_BTI_opaque_V2SI,
2974 RS6000_BTI_opaque_V2SF,
2975 RS6000_BTI_opaque_p_V2SI,
2976 RS6000_BTI_opaque_V4SI,
2977 RS6000_BTI_V16QI,
2978 RS6000_BTI_V2SI,
2979 RS6000_BTI_V2SF,
2980 RS6000_BTI_V4HI,
2981 RS6000_BTI_V4SI,
2982 RS6000_BTI_V4SF,
2983 RS6000_BTI_V8HI,
2984 RS6000_BTI_unsigned_V16QI,
2985 RS6000_BTI_unsigned_V8HI,
2986 RS6000_BTI_unsigned_V4SI,
2987 RS6000_BTI_bool_char, /* __bool char */
2988 RS6000_BTI_bool_short, /* __bool short */
2989 RS6000_BTI_bool_int, /* __bool int */
2990 RS6000_BTI_pixel, /* __pixel */
2991 RS6000_BTI_bool_V16QI, /* __vector __bool char */
2992 RS6000_BTI_bool_V8HI, /* __vector __bool short */
2993 RS6000_BTI_bool_V4SI, /* __vector __bool int */
2994 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
2995 RS6000_BTI_long, /* long_integer_type_node */
2996 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
2997 RS6000_BTI_INTQI, /* intQI_type_node */
2998 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
2999 RS6000_BTI_INTHI, /* intHI_type_node */
3000 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
3001 RS6000_BTI_INTSI, /* intSI_type_node */
3002 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
3003 RS6000_BTI_float, /* float_type_node */
3004 RS6000_BTI_void, /* void_type_node */
3005 RS6000_BTI_MAX
3006 };
3007
3008
3009 #define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
3010 #define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
3011 #define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
3012 #define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
3013 #define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
3014 #define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI])
3015 #define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF])
3016 #define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
3017 #define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
3018 #define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
3019 #define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
3020 #define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
3021 #define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
3022 #define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
3023 #define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
3024 #define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
3025 #define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
3026 #define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
3027 #define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
3028 #define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
3029 #define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
3030 #define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
3031
3032 #define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
3033 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
3034 #define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
3035 #define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
3036 #define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
3037 #define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
3038 #define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
3039 #define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
3040 #define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
3041 #define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
3042
3043 extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
3044 extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
3045
This page took 0.179537 seconds and 4 git commands to generate.