]> gcc.gnu.org Git - gcc.git/blob - gcc/config/rs6000/rs6000.h
PowerPC: Add -mcpu=future.
[gcc.git] / gcc / config / rs6000 / rs6000.h
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992-2023 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
25
26 /* Note that some other tm.h files include this one and then override
27 many of the definitions. */
28
29 #ifndef RS6000_OPTS_H
30 #include "config/rs6000/rs6000-opts.h"
31 #endif
32
33 /* 128-bit floating point precision values. */
34 #ifndef RS6000_MODES_H
35 #include "config/rs6000/rs6000-modes.h"
36 #endif
37
38 /* Definitions for the object file format. These are set at
39 compile-time. */
40
41 #define OBJECT_XCOFF 1
42 #define OBJECT_ELF 2
43 #define OBJECT_MACHO 4
44
45 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
46 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
47 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
48
49 #ifndef TARGET_AIX
50 #define TARGET_AIX 0
51 #endif
52
53 #ifndef TARGET_AIX_OS
54 #define TARGET_AIX_OS 0
55 #endif
56
57 /* Turn off TOC support if pc-relative addressing is used. */
58 #define TARGET_TOC (TARGET_HAS_TOC && !TARGET_PCREL)
59
60 /* On 32-bit systems without a TOC or pc-relative addressing, we need to use
61 ADDIS/ADDI to load up the address of a symbol. */
62 #define TARGET_NO_TOC_OR_PCREL (!TARGET_HAS_TOC && !TARGET_PCREL)
63
64 /* Control whether function entry points use a "dot" symbol when
65 ABI_AIX. */
66 #define DOT_SYMBOLS 1
67
68 /* Default string to use for cpu if not specified. */
69 #ifndef TARGET_CPU_DEFAULT
70 #define TARGET_CPU_DEFAULT ((char *)0)
71 #endif
72
73 /* If configured for PPC405, support PPC405CR Erratum77. */
74 #ifdef CONFIG_PPC405CR
75 #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
76 #else
77 #define PPC405_ERRATUM77 0
78 #endif
79
80 #ifndef SUBTARGET_DRIVER_SELF_SPECS
81 # define SUBTARGET_DRIVER_SELF_SPECS ""
82 #endif
83
84 /* Only for use in the testsuite: -mdejagnu-cpu=<value> filters out all
85 -mcpu= as well as -mtune= options then simply adds -mcpu=<value>,
86 while -mdejagnu-tune=<value> filters out all -mtune= options then
87 simply adds -mtune=<value>.
88 With older versions of Dejagnu the command line arguments you set in
89 RUNTESTFLAGS override those set in the testcases; with these options,
90 the testcase will always win. */
91 #define DRIVER_SELF_SPECS \
92 "%{mdejagnu-cpu=*: %<mcpu=* %<mtune=* -mcpu=%*}", \
93 "%{mdejagnu-tune=*: %<mtune=* -mtune=%*}", \
94 "%{mdejagnu-*: %<mdejagnu-*}", \
95 SUBTARGET_DRIVER_SELF_SPECS
96
97 #if CHECKING_P
98 #define ASM_OPT_ANY ""
99 #else
100 #define ASM_OPT_ANY " -many"
101 #endif
102
103 /* Common ASM definitions used by ASM_SPEC among the various targets for
104 handling -mcpu=xxx switches. There is a parallel list in driver-rs6000.cc to
105 provide the default assembler options if the user uses -mcpu=native, so if
106 you make changes here, make them also there. PR63177: Do not pass -mpower8
107 to the assembler if -mpower9-vector was also used. */
108 #define ASM_CPU_SPEC \
109 "%{mcpu=native: %(asm_cpu_native); \
110 mcpu=power10: -mpower10; \
111 mcpu=power9: -mpower9; \
112 mcpu=power8|mcpu=powerpc64le: %{mpower9-vector: -mpower9;: -mpower8}; \
113 mcpu=power7: -mpower7; \
114 mcpu=power6x: -mpower6 %{!mvsx:%{!maltivec:-maltivec}}; \
115 mcpu=power6: -mpower6 %{!mvsx:%{!maltivec:-maltivec}}; \
116 mcpu=power5+: -mpower5; \
117 mcpu=power5: -mpower5; \
118 mcpu=power4: -mpower4; \
119 mcpu=power3: -mppc64; \
120 mcpu=powerpc: -mppc; \
121 mcpu=powerpc64: -mppc64; \
122 mcpu=a2: -ma2; \
123 mcpu=cell: -mcell; \
124 mcpu=rs64: -mppc64; \
125 mcpu=401: -mppc; \
126 mcpu=403: -m403; \
127 mcpu=405: -m405; \
128 mcpu=405fp: -m405; \
129 mcpu=440: -m440; \
130 mcpu=440fp: -m440; \
131 mcpu=464: -m440; \
132 mcpu=464fp: -m440; \
133 mcpu=476: -m476; \
134 mcpu=476fp: -m476; \
135 mcpu=505: -mppc; \
136 mcpu=601: -m601; \
137 mcpu=602: -mppc; \
138 mcpu=603: -mppc; \
139 mcpu=603e: -mppc; \
140 mcpu=ec603e: -mppc; \
141 mcpu=604: -mppc; \
142 mcpu=604e: -mppc; \
143 mcpu=620: -mppc64; \
144 mcpu=630: -mppc64; \
145 mcpu=740: -mppc; \
146 mcpu=750: -mppc; \
147 mcpu=G3: -mppc; \
148 mcpu=7400: -mppc %{!mvsx:%{!maltivec:-maltivec}}; \
149 mcpu=7450: -mppc %{!mvsx:%{!maltivec:-maltivec}}; \
150 mcpu=G4: -mppc %{!mvsx:%{!maltivec:-maltivec}}; \
151 mcpu=801: -mppc; \
152 mcpu=821: -mppc; \
153 mcpu=823: -mppc; \
154 mcpu=860: -mppc; \
155 mcpu=970: -mpower4 %{!mvsx:%{!maltivec:-maltivec}}; \
156 mcpu=G5: -mpower4 %{!mvsx:%{!maltivec:-maltivec}}; \
157 mcpu=8540: -me500; \
158 mcpu=8548: -me500; \
159 mcpu=e300c2: -me300; \
160 mcpu=e300c3: -me300; \
161 mcpu=e500mc: -me500mc; \
162 mcpu=e500mc64: -me500mc64; \
163 mcpu=e5500: -me5500; \
164 mcpu=e6500: -me6500; \
165 mcpu=titan: -mtitan; \
166 mcpu=future: -mfuture; \
167 !mcpu*: %{mpower9-vector: -mpower9; \
168 mpower8-vector|mcrypto|mdirect-move|mhtm: -mpower8; \
169 mvsx: -mpower7; \
170 mpowerpc64: -mppc64;: %(asm_default)}; \
171 :%eMissing -mcpu option in ASM_CPU_SPEC?\n} \
172 %{mvsx: -mvsx -maltivec; maltivec: -maltivec}" \
173 ASM_OPT_ANY
174
175 #define CPP_DEFAULT_SPEC ""
176
177 #define ASM_DEFAULT_SPEC ""
178 #define ASM_DEFAULT_EXTRA ""
179
180 /* This macro defines names of additional specifications to put in the specs
181 that can be used in various specifications like CC1_SPEC. Its definition
182 is an initializer with a subgrouping for each command option.
183
184 Each subgrouping contains a string constant, that defines the
185 specification name, and a string constant that used by the GCC driver
186 program.
187
188 Do not define this macro if it does not need to do anything. */
189
190 #define SUBTARGET_EXTRA_SPECS
191
192 #define EXTRA_SPECS \
193 { "cpp_default", CPP_DEFAULT_SPEC }, \
194 { "asm_cpu", ASM_CPU_SPEC }, \
195 { "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \
196 { "asm_default", ASM_DEFAULT_SPEC ASM_DEFAULT_EXTRA }, \
197 { "cc1_cpu", CC1_CPU_SPEC }, \
198 SUBTARGET_EXTRA_SPECS
199
200 /* -mcpu=native handling only makes sense with compiler running on
201 an PowerPC chip. If changing this condition, also change
202 the condition in driver-rs6000.cc. */
203 #if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
204 /* In driver-rs6000.cc. */
205 extern const char *host_detect_local_cpu (int argc, const char **argv);
206 #define EXTRA_SPEC_FUNCTIONS \
207 { "local_cpu_detect", host_detect_local_cpu },
208 #define HAVE_LOCAL_CPU_DETECT
209 #define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
210
211 #else
212 #define ASM_CPU_NATIVE_SPEC "%(asm_default)"
213 #endif
214
215 #ifndef CC1_CPU_SPEC
216 #ifdef HAVE_LOCAL_CPU_DETECT
217 #define CC1_CPU_SPEC \
218 "%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
219 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
220 #else
221 #define CC1_CPU_SPEC ""
222 #endif
223 #endif
224
225 /* Architecture type. */
226
227 /* Define TARGET_MFCRF if the target assembler does not support the
228 optional field operand for mfcr. */
229
230 #ifndef HAVE_AS_MFCRF
231 #undef TARGET_MFCRF
232 #define TARGET_MFCRF 0
233 #endif
234
235 #ifndef TARGET_SECURE_PLT
236 #define TARGET_SECURE_PLT 0
237 #endif
238
239 #ifndef TARGET_CMODEL
240 #define TARGET_CMODEL CMODEL_SMALL
241 #endif
242
243 #define TARGET_32BIT (! TARGET_64BIT)
244
245 #ifndef HAVE_AS_TLS
246 #define HAVE_AS_TLS 0
247 #endif
248
249 #ifndef HAVE_AS_PLTSEQ
250 #define HAVE_AS_PLTSEQ 0
251 #endif
252
253 #ifndef TARGET_PLTSEQ
254 #define TARGET_PLTSEQ 0
255 #endif
256
257 #ifndef TARGET_LINK_STACK
258 #define TARGET_LINK_STACK 0
259 #endif
260
261 #ifndef SET_TARGET_LINK_STACK
262 #define SET_TARGET_LINK_STACK(X) do { } while (0)
263 #endif
264
265 #ifndef TARGET_FLOAT128_ENABLE_TYPE
266 #define TARGET_FLOAT128_ENABLE_TYPE 0
267 #endif
268
269 /* Return 1 for a symbol ref for a thread-local storage symbol. */
270 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
271 (SYMBOL_REF_P (RTX) && SYMBOL_REF_TLS_MODEL (RTX) != 0)
272
273 #ifdef IN_LIBGCC2
274 /* For libgcc2 we make sure this is a compile time constant */
275 #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
276 #undef TARGET_POWERPC64
277 #define TARGET_POWERPC64 1
278 #else
279 #undef TARGET_POWERPC64
280 #define TARGET_POWERPC64 0
281 #endif
282 #else
283 /* The option machinery will define this. */
284 #endif
285
286 #define TARGET_DEFAULT (OPTION_MASK_MULTIPLE)
287
288 /* Define generic processor types based upon current deployment. */
289 #define PROCESSOR_COMMON PROCESSOR_PPC601
290 #define PROCESSOR_POWERPC PROCESSOR_PPC604
291 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
292
293 /* Define the default processor. This is overridden by other tm.h files. */
294 #define PROCESSOR_DEFAULT PROCESSOR_PPC603
295 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
296
297 /* Specify the dialect of assembler to use. Only new mnemonics are supported
298 starting with GCC 4.8, i.e. just one dialect, but for backwards
299 compatibility with older inline asm ASSEMBLER_DIALECT needs to be
300 defined. */
301 #define ASSEMBLER_DIALECT 1
302
303 /* Debug support */
304 #define MASK_DEBUG_STACK 0x01 /* debug stack applications */
305 #define MASK_DEBUG_ARG 0x02 /* debug argument handling */
306 #define MASK_DEBUG_REG 0x04 /* debug register handling */
307 #define MASK_DEBUG_ADDR 0x08 /* debug memory addressing */
308 #define MASK_DEBUG_COST 0x10 /* debug rtx codes */
309 #define MASK_DEBUG_TARGET 0x20 /* debug target attribute/pragma */
310 #define MASK_DEBUG_BUILTIN 0x40 /* debug builtins */
311 #define MASK_DEBUG_ALL (MASK_DEBUG_STACK \
312 | MASK_DEBUG_ARG \
313 | MASK_DEBUG_REG \
314 | MASK_DEBUG_ADDR \
315 | MASK_DEBUG_COST \
316 | MASK_DEBUG_TARGET \
317 | MASK_DEBUG_BUILTIN)
318
319 #define TARGET_DEBUG_STACK (rs6000_debug & MASK_DEBUG_STACK)
320 #define TARGET_DEBUG_ARG (rs6000_debug & MASK_DEBUG_ARG)
321 #define TARGET_DEBUG_REG (rs6000_debug & MASK_DEBUG_REG)
322 #define TARGET_DEBUG_ADDR (rs6000_debug & MASK_DEBUG_ADDR)
323 #define TARGET_DEBUG_COST (rs6000_debug & MASK_DEBUG_COST)
324 #define TARGET_DEBUG_TARGET (rs6000_debug & MASK_DEBUG_TARGET)
325 #define TARGET_DEBUG_BUILTIN (rs6000_debug & MASK_DEBUG_BUILTIN)
326
327 /* Helper macros for TFmode. Quad floating point (TFmode) can be either IBM
328 long double format that uses a pair of doubles, or IEEE 128-bit floating
329 point. KFmode was added as a way to represent IEEE 128-bit floating point,
330 even if the default for long double is the IBM long double format.
331 Similarly IFmode is the IBM long double format even if the default is IEEE
332 128-bit. Don't allow IFmode if -msoft-float. */
333 #define FLOAT128_IEEE_P(MODE) \
334 ((TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128 \
335 && ((MODE) == TFmode || (MODE) == TCmode)) \
336 || ((MODE) == KFmode) || ((MODE) == KCmode))
337
338 #define FLOAT128_IBM_P(MODE) \
339 ((!TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128 \
340 && ((MODE) == TFmode || (MODE) == TCmode)) \
341 || (TARGET_HARD_FLOAT && ((MODE) == IFmode || (MODE) == ICmode)))
342
343 /* Helper macros to say whether a 128-bit floating point type can go in a
344 single vector register, or whether it needs paired scalar values. */
345 #define FLOAT128_VECTOR_P(MODE) (TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE))
346
347 #define FLOAT128_2REG_P(MODE) \
348 (FLOAT128_IBM_P (MODE) \
349 || ((MODE) == TDmode) \
350 || (!TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE)))
351
352 /* Return true for floating point that does not use a vector register. */
353 #define SCALAR_FLOAT_MODE_NOT_VECTOR_P(MODE) \
354 (SCALAR_FLOAT_MODE_P (MODE) && !FLOAT128_VECTOR_P (MODE))
355
356 /* Describe the vector unit used for arithmetic operations. */
357 extern enum rs6000_vector rs6000_vector_unit[];
358
359 #define VECTOR_UNIT_NONE_P(MODE) \
360 (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
361
362 #define VECTOR_UNIT_VSX_P(MODE) \
363 (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
364
365 #define VECTOR_UNIT_P8_VECTOR_P(MODE) \
366 (rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR)
367
368 #define VECTOR_UNIT_ALTIVEC_P(MODE) \
369 (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
370
371 #define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE) \
372 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
373 (int)VECTOR_VSX, \
374 (int)VECTOR_P8_VECTOR))
375
376 /* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either
377 altivec (VMX) or VSX vector instructions. P8 vector support is upwards
378 compatible, so allow it as well, rather than changing all of the uses of the
379 macro. */
380 #define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \
381 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
382 (int)VECTOR_ALTIVEC, \
383 (int)VECTOR_P8_VECTOR))
384
385 /* Describe whether to use VSX loads or Altivec loads. For now, just use the
386 same unit as the vector unit we are using, but we may want to migrate to
387 using VSX style loads even for types handled by altivec. */
388 extern enum rs6000_vector rs6000_vector_mem[];
389
390 #define VECTOR_MEM_NONE_P(MODE) \
391 (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
392
393 #define VECTOR_MEM_VSX_P(MODE) \
394 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
395
396 #define VECTOR_MEM_P8_VECTOR_P(MODE) \
397 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
398
399 #define VECTOR_MEM_ALTIVEC_P(MODE) \
400 (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
401
402 #define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE) \
403 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
404 (int)VECTOR_VSX, \
405 (int)VECTOR_P8_VECTOR))
406
407 #define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \
408 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
409 (int)VECTOR_ALTIVEC, \
410 (int)VECTOR_P8_VECTOR))
411
412 /* Return the alignment of a given vector type, which is set based on the
413 vector unit use. VSX for instance can load 32 or 64 bit aligned words
414 without problems, while Altivec requires 128-bit aligned vectors. */
415 extern int rs6000_vector_align[];
416
417 #define VECTOR_ALIGN(MODE) \
418 ((rs6000_vector_align[(MODE)] != 0) \
419 ? rs6000_vector_align[(MODE)] \
420 : (int)GET_MODE_BITSIZE ((MODE)))
421
422 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
423 with scalar instructions. */
424 #define VECTOR_ELEMENT_SCALAR_64BIT ((BYTES_BIG_ENDIAN) ? 0 : 1)
425
426 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
427 with the ISA 3.0 MFVSRLD instructions. */
428 #define VECTOR_ELEMENT_MFVSRLD_64BIT ((BYTES_BIG_ENDIAN) ? 1 : 0)
429
430 /* Alignment options for fields in structures for sub-targets following
431 AIX-like ABI.
432 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
433 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
434
435 Override the macro definitions when compiling libobjc to avoid undefined
436 reference to rs6000_alignment_flags due to library's use of GCC alignment
437 macros which use the macros below. */
438
439 #ifndef IN_TARGET_LIBS
440 #define MASK_ALIGN_POWER 0x00000000
441 #define MASK_ALIGN_NATURAL 0x00000001
442 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
443 #else
444 #define TARGET_ALIGN_NATURAL 0
445 #endif
446
447 /* We use values 126..128 to pick the appropriate long double type (IFmode,
448 KFmode, TFmode). */
449 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size > 64)
450 #define TARGET_IEEEQUAD rs6000_ieeequad
451 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
452 #define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
453
454 /* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
455 Enable 32-bit fcfid's on any of the switches for newer ISA machines. */
456 #define TARGET_FCFID (TARGET_POWERPC64 \
457 || TARGET_PPC_GPOPT /* 970/power4 */ \
458 || TARGET_POPCNTB /* ISA 2.02 */ \
459 || TARGET_CMPB /* ISA 2.05 */ \
460 || TARGET_POPCNTD) /* ISA 2.06 */
461
462 #define TARGET_FCTIDZ TARGET_FCFID
463 #define TARGET_STFIWX TARGET_PPC_GFXOPT
464 #define TARGET_LFIWAX TARGET_CMPB
465 #define TARGET_LFIWZX TARGET_POPCNTD
466 #define TARGET_FCFIDS TARGET_POPCNTD
467 #define TARGET_FCFIDU TARGET_POPCNTD
468 #define TARGET_FCFIDUS TARGET_POPCNTD
469 #define TARGET_FCTIDUZ TARGET_POPCNTD
470 #define TARGET_FCTIWUZ TARGET_POPCNTD
471 #define TARGET_CTZ TARGET_MODULO
472 #define TARGET_EXTSWSLI (TARGET_MODULO && TARGET_POWERPC64)
473 #define TARGET_MADDLD TARGET_MODULO
474
475 #define TARGET_XSCVDPSPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
476 #define TARGET_XSCVSPDPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
477 #define TARGET_VADDUQM (TARGET_P8_VECTOR && TARGET_POWERPC64)
478 #define TARGET_DIRECT_MOVE_128 (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
479 && TARGET_POWERPC64)
480 #define TARGET_VEXTRACTUB (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
481 && TARGET_POWERPC64)
482
483 /* Whether we should avoid (SUBREG:SI (REG:SF) and (SUBREG:SF (REG:SI). */
484 #define TARGET_NO_SF_SUBREG TARGET_DIRECT_MOVE_64BIT
485 #define TARGET_ALLOW_SF_SUBREG (!TARGET_DIRECT_MOVE_64BIT)
486
487 /* This wants to be set for p8 and newer. On p7, overlapping unaligned
488 loads are slow. */
489 #define TARGET_EFFICIENT_OVERLAPPING_UNALIGNED TARGET_EFFICIENT_UNALIGNED_VSX
490
491 /* Byte/char syncs were added as phased in for ISA 2.06B, but are not present
492 in power7, so conditionalize them on p8 features. TImode syncs need quad
493 memory support. */
494 #define TARGET_SYNC_HI_QI (TARGET_QUAD_MEMORY \
495 || TARGET_QUAD_MEMORY_ATOMIC \
496 || TARGET_DIRECT_MOVE)
497
498 #define TARGET_SYNC_TI TARGET_QUAD_MEMORY_ATOMIC
499
500 /* Power7 has both 32-bit load and store integer for the FPRs, so we don't need
501 to allocate the SDmode stack slot to get the value into the proper location
502 in the register. */
503 #define TARGET_NO_SDMODE_STACK (TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP)
504
505 /* ISA 3.0 has new min/max functions that don't need fast math that are being
506 phased in. Min/max using FSEL or XSMAXDP/XSMINDP do not return the correct
507 answers if the arguments are not in the normal range. */
508 #define TARGET_MINMAX (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
509 && (TARGET_P9_MINMAX || !flag_trapping_math))
510
511 /* In switching from using target_flags to using rs6000_isa_flags, the options
512 machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>. The MASK_<xxxx>
513 options that have not yet been replaced by their OPTION_MASK_<xxx>
514 equivalents are defined here. */
515
516 #define MASK_STRICT_ALIGN OPTION_MASK_STRICT_ALIGN
517
518 #ifndef IN_LIBGCC2
519 #define MASK_POWERPC64 OPTION_MASK_POWERPC64
520 #endif
521
522 #ifdef TARGET_64BIT
523 #define MASK_64BIT OPTION_MASK_64BIT
524 #endif
525
526 #ifdef TARGET_LITTLE_ENDIAN
527 #define MASK_LITTLE_ENDIAN OPTION_MASK_LITTLE_ENDIAN
528 #endif
529
530 /* For power systems, we want to enable Altivec and VSX builtins even if the
531 user did not use -maltivec or -mvsx to allow the builtins to be used inside
532 of #pragma GCC target or the target attribute to change the code level for a
533 given system. */
534
535 #define TARGET_EXTRA_BUILTINS (TARGET_POWERPC64 \
536 || TARGET_PPC_GPOPT /* 970/power4 */ \
537 || TARGET_POPCNTB /* ISA 2.02 */ \
538 || TARGET_CMPB /* ISA 2.05 */ \
539 || TARGET_POPCNTD /* ISA 2.06 */ \
540 || TARGET_ALTIVEC \
541 || TARGET_VSX \
542 || TARGET_HARD_FLOAT)
543
544 /* E500 cores only support plain "sync", not lwsync. */
545 #define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
546 || rs6000_cpu == PROCESSOR_PPC8548)
547
548
549 /* Which machine supports the various reciprocal estimate instructions. */
550 #define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT)
551
552 #define TARGET_FRE (TARGET_HARD_FLOAT \
553 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
554
555 #define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \
556 && TARGET_PPC_GFXOPT)
557
558 #define TARGET_FRSQRTE (TARGET_HARD_FLOAT \
559 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
560
561 /* Macro to say whether we can do optimizations where we need to do parts of
562 the calculation in 64-bit GPRs and then is transfered to the vector
563 registers. */
564 #define TARGET_DIRECT_MOVE_64BIT (TARGET_DIRECT_MOVE \
565 && TARGET_P8_VECTOR \
566 && TARGET_POWERPC64)
567
568 /* Inlining allows targets to define the meanings of bits in target_info
569 field of ipa_fn_summary by itself, the used bits for rs6000 are listed
570 below. */
571 #define RS6000_FN_TARGET_INFO_HTM 1
572
573 /* Whether the various reciprocal divide/square root estimate instructions
574 exist, and whether we should automatically generate code for the instruction
575 by default. */
576 #define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */
577 #define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */
578 #define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */
579 #define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */
580
581 extern unsigned char rs6000_recip_bits[];
582
583 #define RS6000_RECIP_HAVE_RE_P(MODE) \
584 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
585
586 #define RS6000_RECIP_AUTO_RE_P(MODE) \
587 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
588
589 #define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
590 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
591
592 #define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
593 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
594
595 /* The default CPU for TARGET_OPTION_OVERRIDE. */
596 #define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
597
598 /* Target pragma. */
599 #define REGISTER_TARGET_PRAGMAS() do { \
600 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
601 targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
602 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
603 rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
604 } while (0)
605
606 /* Target #defines. */
607 #define TARGET_CPU_CPP_BUILTINS() \
608 rs6000_cpu_cpp_builtins (pfile)
609
610 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
611 we're compiling for. Some configurations may need to override it. */
612 #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
613 do \
614 { \
615 if (BYTES_BIG_ENDIAN) \
616 { \
617 builtin_define ("__BIG_ENDIAN__"); \
618 builtin_define ("_BIG_ENDIAN"); \
619 builtin_assert ("machine=bigendian"); \
620 } \
621 else \
622 { \
623 builtin_define ("__LITTLE_ENDIAN__"); \
624 builtin_define ("_LITTLE_ENDIAN"); \
625 builtin_assert ("machine=littleendian"); \
626 } \
627 } \
628 while (0)
629 \f
630 /* Target machine storage layout. */
631
632 /* Define this if most significant bit is lowest numbered
633 in instructions that operate on numbered bit-fields. */
634 /* That is true on RS/6000. */
635 #define BITS_BIG_ENDIAN 1
636
637 /* Define this if most significant byte of a word is the lowest numbered. */
638 /* That is true on RS/6000. */
639 #define BYTES_BIG_ENDIAN 1
640
641 /* Define this if most significant word of a multiword number is lowest
642 numbered.
643
644 For RS/6000 we can decide arbitrarily since there are no machine
645 instructions for them. Might as well be consistent with bits and bytes. */
646 #define WORDS_BIG_ENDIAN 1
647
648 /* This says that for the IBM long double the larger magnitude double
649 comes first. It's really a two element double array, and arrays
650 don't index differently between little- and big-endian. */
651 #define LONG_DOUBLE_LARGE_FIRST 1
652
653 #define MAX_BITS_PER_WORD 64
654
655 /* Width of a word, in units (bytes). */
656 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
657 #ifdef IN_LIBGCC2
658 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
659 #else
660 #define MIN_UNITS_PER_WORD 4
661 #endif
662 #define UNITS_PER_FP_WORD 8
663 #define UNITS_PER_ALTIVEC_WORD 16
664 #define UNITS_PER_VSX_WORD 16
665
666 /* Type used for ptrdiff_t, as a string used in a declaration. */
667 #define PTRDIFF_TYPE "int"
668
669 /* Type used for size_t, as a string used in a declaration. */
670 #define SIZE_TYPE "long unsigned int"
671
672 /* Type used for wchar_t, as a string used in a declaration. */
673 #define WCHAR_TYPE "short unsigned int"
674
675 /* Width of wchar_t in bits. */
676 #define WCHAR_TYPE_SIZE 16
677
678 /* A C expression for the size in bits of the type `short' on the
679 target machine. If you don't define this, the default is half a
680 word. (If this would be less than one storage unit, it is
681 rounded up to one unit.) */
682 #define SHORT_TYPE_SIZE 16
683
684 /* A C expression for the size in bits of the type `int' on the
685 target machine. If you don't define this, the default is one
686 word. */
687 #define INT_TYPE_SIZE 32
688
689 /* A C expression for the size in bits of the type `long' on the
690 target machine. If you don't define this, the default is one
691 word. */
692 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
693
694 /* A C expression for the size in bits of the type `long long' on the
695 target machine. If you don't define this, the default is two
696 words. */
697 #define LONG_LONG_TYPE_SIZE 64
698
699 /* A C expression for the size in bits of the type `float' on the
700 target machine. If you don't define this, the default is one
701 word. */
702 #define FLOAT_TYPE_SIZE 32
703
704 /* A C expression for the size in bits of the type `double' on the
705 target machine. If you don't define this, the default is two
706 words. */
707 #define DOUBLE_TYPE_SIZE 64
708
709 /* A C expression for the size in bits of the type `long double' on the target
710 machine. If you don't define this, the default is two words. */
711 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
712
713 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.cc. */
714 #define WIDEST_HARDWARE_FP_SIZE 64
715
716 /* Width in bits of a pointer.
717 See also the macro `Pmode' defined below. */
718 extern unsigned rs6000_pointer_size;
719 #define POINTER_SIZE rs6000_pointer_size
720
721 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
722 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
723
724 /* Boundary (in *bits*) on which stack pointer should be aligned. */
725 #define STACK_BOUNDARY \
726 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
727 ? 64 : 128)
728
729 /* Allocation boundary (in *bits*) for the code of a function. */
730 #define FUNCTION_BOUNDARY 32
731
732 /* No data type is required to be aligned rounder than this. Warning, if
733 BIGGEST_ALIGNMENT is changed, then this may be an ABI break. An example
734 of where this can break an ABI is in GLIBC's struct _Unwind_Exception. */
735 #define BIGGEST_ALIGNMENT 128
736
737 /* Alignment of field after `int : 0' in a structure. */
738 #define EMPTY_FIELD_BOUNDARY 32
739
740 /* Every structure's size must be a multiple of this. */
741 #define STRUCTURE_SIZE_BOUNDARY 8
742
743 /* A bit-field declared as `int' forces `int' alignment for the struct. */
744 #define PCC_BITFIELD_TYPE_MATTERS 1
745
746 enum data_align { align_abi, align_opt, align_both };
747
748 /* A C expression to compute the alignment for a variables in the
749 local store. TYPE is the data type, and ALIGN is the alignment
750 that the object would ordinarily have. */
751 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
752 rs6000_data_alignment (TYPE, ALIGN, align_both)
753
754 /* Make arrays of chars word-aligned for the same reasons. */
755 #define DATA_ALIGNMENT(TYPE, ALIGN) \
756 rs6000_data_alignment (TYPE, ALIGN, align_opt)
757
758 /* Align vectors to 128 bits. */
759 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
760 rs6000_data_alignment (TYPE, ALIGN, align_abi)
761
762 /* Nonzero if move instructions will actually fail to work
763 when given unaligned data. */
764 #define STRICT_ALIGNMENT 0
765 \f
766 /* Standard register usage. */
767
768 /* Number of actual hardware registers.
769 The hardware registers are assigned numbers for the compiler
770 from 0 to just below FIRST_PSEUDO_REGISTER.
771 All registers that the compiler knows about must be given numbers,
772 even those that are not normally considered general registers.
773
774 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
775 a count register, a link register, and 8 condition register fields,
776 which we view here as separate registers. AltiVec adds 32 vector
777 registers and a VRsave register.
778
779 In addition, the difference between the frame and argument pointers is
780 a function of the number of registers saved, so we need to have a
781 register for AP that will later be eliminated in favor of SP or FP.
782 This is a normal register, but it is fixed.
783
784 We also create a pseudo register for float/int conversions, that will
785 really represent the memory location used. It is represented here as
786 a register, in order to work around problems in allocating stack storage
787 in inline functions.
788
789 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
790 pointer, which is eventually eliminated in favor of SP or FP. */
791
792 #define FIRST_PSEUDO_REGISTER 111
793
794 /* Use standard DWARF numbering for DWARF debugging information. */
795 #define DEBUGGER_REGNO(REGNO) rs6000_debugger_regno ((REGNO), 0)
796
797 /* Use gcc hard register numbering for eh_frame. */
798 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
799
800 /* Map register numbers held in the call frame info that gcc has
801 collected using DWARF_FRAME_REGNUM to those that should be output in
802 .debug_frame and .eh_frame. */
803 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
804 rs6000_debugger_regno ((REGNO), (FOR_EH) ? 2 : 1)
805
806 /* 1 for registers that have pervasive standard uses
807 and are not available for the register allocator.
808
809 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
810 as a local register; for all other OS's r2 is the TOC pointer.
811
812 On System V implementations, r13 is fixed and not available for use. */
813
814 #define FIXED_REGISTERS \
815 {/* GPRs */ \
816 0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
817 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
818 /* FPRs */ \
819 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
820 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
821 /* VRs */ \
822 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
823 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
824 /* lr ctr ca ap */ \
825 0, 0, 1, 1, \
826 /* cr0..cr7 */ \
827 0, 0, 0, 0, 0, 0, 0, 0, \
828 /* vrsave vscr sfp */ \
829 1, 1, 1 \
830 }
831
832 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
833 the entire set of `FIXED_REGISTERS' be included.
834 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
835 This macro is optional. If not specified, it defaults to the value
836 of `CALL_USED_REGISTERS'. */
837
838 #define CALL_REALLY_USED_REGISTERS \
839 {/* GPRs */ \
840 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
841 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
842 /* FPRs */ \
843 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
844 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
845 /* VRs */ \
846 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
847 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
848 /* lr ctr ca ap */ \
849 1, 1, 1, 1, \
850 /* cr0..cr7 */ \
851 1, 1, 0, 0, 0, 1, 1, 1, \
852 /* vrsave vscr sfp */ \
853 0, 0, 0 \
854 }
855
856 #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
857
858 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
859 #define FIRST_SAVED_FP_REGNO (14+32)
860 #define FIRST_SAVED_GP_REGNO (FIXED_R13 ? 14 : 13)
861
862 /* List the order in which to allocate registers. Each register must be
863 listed once, even those in FIXED_REGISTERS.
864
865 We allocate in the following order:
866 fp0 (not saved or used for anything)
867 fp13 - fp2 (not saved; incoming fp arg registers)
868 fp1 (not saved; return value)
869 fp31 - fp14 (saved; order given to save least number)
870 cr7, cr5 (not saved or special)
871 cr6 (not saved, but used for vector operations)
872 cr1 (not saved, but used for FP operations)
873 cr0 (not saved, but used for arithmetic operations)
874 cr4, cr3, cr2 (saved)
875 r9 (not saved; best for TImode)
876 r10, r8-r4 (not saved; highest first for less conflict with params)
877 r3 (not saved; return value register)
878 r11 (not saved; later alloc to help shrink-wrap)
879 r0 (not saved; cannot be base reg)
880 r31 - r13 (saved; order given to save least number)
881 r12 (not saved; if used for DImode or DFmode would use r13)
882 ctr (not saved; when we have the choice ctr is better)
883 lr (saved)
884 r1, r2, ap, ca (fixed)
885 v0 - v1 (not saved or used for anything)
886 v13 - v3 (not saved; incoming vector arg registers)
887 v2 (not saved; incoming vector arg reg; return value)
888 v19 - v14 (not saved or used for anything)
889 v31 - v20 (saved; order given to save least number)
890 vrsave, vscr (fixed)
891 sfp (fixed)
892 */
893
894 #if FIXED_R2 == 1
895 #define MAYBE_R2_AVAILABLE
896 #define MAYBE_R2_FIXED 2,
897 #else
898 #define MAYBE_R2_AVAILABLE 2,
899 #define MAYBE_R2_FIXED
900 #endif
901
902 #if FIXED_R13 == 1
903 #define EARLY_R12 12,
904 #define LATE_R12
905 #else
906 #define EARLY_R12
907 #define LATE_R12 12,
908 #endif
909
910 #define REG_ALLOC_ORDER \
911 {32, \
912 /* move fr13 (ie 45) later, so if we need TFmode, it does */ \
913 /* not use fr14 which is a saved register. */ \
914 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45, \
915 33, \
916 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
917 50, 49, 48, 47, 46, \
918 100, 107, 105, 106, 101, 104, 103, 102, \
919 MAYBE_R2_AVAILABLE \
920 9, 10, 8, 7, 6, 5, 4, \
921 3, EARLY_R12 11, 0, \
922 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
923 18, 17, 16, 15, 14, 13, LATE_R12 \
924 97, 96, \
925 1, MAYBE_R2_FIXED 99, 98, \
926 /* AltiVec registers. */ \
927 64, 65, \
928 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, \
929 66, \
930 83, 82, 81, 80, 79, 78, \
931 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, \
932 108, 109, \
933 110 \
934 }
935
936 /* True if register is floating-point. */
937 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
938
939 /* True if register is a condition register. */
940 #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
941
942 /* True if register is a condition register, but not cr0. */
943 #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
944
945 /* True if register is an integer register. */
946 #define INT_REGNO_P(N) \
947 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
948
949 /* True if register is the CA register. */
950 #define CA_REGNO_P(N) ((N) == CA_REGNO)
951
952 /* True if register is an AltiVec register. */
953 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
954
955 /* True if register is a VSX register. */
956 #define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
957
958 /* Alternate name for any vector register supporting floating point, no matter
959 which instruction set(s) are available. */
960 #define VFLOAT_REGNO_P(N) \
961 (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
962
963 /* Alternate name for any vector register supporting integer, no matter which
964 instruction set(s) are available. */
965 #define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
966
967 /* Alternate name for any vector register supporting logical operations, no
968 matter which instruction set(s) are available. Allow GPRs as well as the
969 vector registers. */
970 #define VLOGICAL_REGNO_P(N) \
971 (INT_REGNO_P (N) || ALTIVEC_REGNO_P (N) \
972 || (TARGET_VSX && FP_REGNO_P (N))) \
973
974 /* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
975 enough space to account for vectors in FP regs. However, TFmode/TDmode
976 should not use VSX instructions to do a caller save. */
977 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
978 ((NREGS) <= rs6000_hard_regno_nregs[MODE][REGNO] \
979 ? (MODE) \
980 : TARGET_VSX \
981 && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \
982 && FP_REGNO_P (REGNO) \
983 ? V2DFmode \
984 : FLOAT128_IBM_P (MODE) && FP_REGNO_P (REGNO) \
985 ? DFmode \
986 : (MODE) == TDmode && FP_REGNO_P (REGNO) \
987 ? DImode \
988 : choose_hard_reg_mode ((REGNO), (NREGS), NULL))
989
990 #define VSX_VECTOR_MODE(MODE) \
991 ((MODE) == V4SFmode \
992 || (MODE) == V2DFmode) \
993
994 /* Modes that are not vectors, but require vector alignment. Treat these like
995 vectors in terms of loads and stores. */
996 #define VECTOR_ALIGNMENT_P(MODE) \
997 (FLOAT128_VECTOR_P (MODE) || (MODE) == OOmode || (MODE) == XOmode)
998
999 #define ALTIVEC_VECTOR_MODE(MODE) \
1000 ((MODE) == V16QImode \
1001 || (MODE) == V8HImode \
1002 || (MODE) == V4SFmode \
1003 || (MODE) == V4SImode \
1004 || VECTOR_ALIGNMENT_P (MODE))
1005
1006 #define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \
1007 (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \
1008 || (MODE) == V2DImode || (MODE) == V1TImode)
1009
1010 /* Post-reload, we can't use any new AltiVec registers, as we already
1011 emitted the vrsave mask. */
1012
1013 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1014 (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
1015
1016 /* Specify the cost of a branch insn; roughly the number of extra insns that
1017 should be added to avoid a branch.
1018
1019 Set this to 3 on the RS/6000 since that is roughly the average cost of an
1020 unscheduled conditional branch. */
1021
1022 #define BRANCH_COST(speed_p, predictable_p) 3
1023
1024 /* Override BRANCH_COST heuristic which empirically produces worse
1025 performance for removing short circuiting from the logical ops. */
1026
1027 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1028
1029 /* Specify the registers used for certain standard purposes.
1030 The values of these macros are register numbers. */
1031
1032 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1033 /* #define PC_REGNUM */
1034
1035 /* Register to use for pushing function arguments. */
1036 #define STACK_POINTER_REGNUM 1
1037
1038 /* Base register for access to local variables of the function. */
1039 #define HARD_FRAME_POINTER_REGNUM 31
1040
1041 /* Base register for access to local variables of the function. */
1042 #define FRAME_POINTER_REGNUM 110
1043
1044 /* Base register for access to arguments of the function. */
1045 #define ARG_POINTER_REGNUM 99
1046
1047 /* Place to put static chain when calling a function that requires it. */
1048 #define STATIC_CHAIN_REGNUM 11
1049
1050 /* Base register for access to thread local storage variables. */
1051 #define TLS_REGNUM ((TARGET_64BIT) ? 13 : 2)
1052
1053 \f
1054 /* Define the classes of registers for register constraints in the
1055 machine description. Also define ranges of constants.
1056
1057 One of the classes must always be named ALL_REGS and include all hard regs.
1058 If there is more than one class, another class must be named NO_REGS
1059 and contain no registers.
1060
1061 The name GENERAL_REGS must be the name of a class (or an alias for
1062 another name such as ALL_REGS). This is the class of registers
1063 that is allowed by "g" or "r" in a register constraint.
1064 Also, registers outside this class are allocated only when
1065 instructions express preferences for them.
1066
1067 The classes must be numbered in nondecreasing order; that is,
1068 a larger-numbered class must never be contained completely
1069 in a smaller-numbered class.
1070
1071 For any two classes, it is very desirable that there be another
1072 class that represents their union. */
1073
1074 /* The RS/6000 has three types of registers, fixed-point, floating-point, and
1075 condition registers, plus three special registers, CTR, and the link
1076 register. AltiVec adds a vector register class. VSX registers overlap the
1077 FPR registers and the Altivec registers.
1078
1079 However, r0 is special in that it cannot be used as a base register.
1080 So make a class for registers valid as base registers.
1081
1082 Also, cr0 is the only condition code register that can be used in
1083 arithmetic insns, so make a separate class for it. */
1084
1085 enum reg_class
1086 {
1087 NO_REGS,
1088 BASE_REGS,
1089 GENERAL_REGS,
1090 FLOAT_REGS,
1091 ALTIVEC_REGS,
1092 VSX_REGS,
1093 VRSAVE_REGS,
1094 VSCR_REGS,
1095 GEN_OR_FLOAT_REGS,
1096 GEN_OR_VSX_REGS,
1097 LINK_REGS,
1098 CTR_REGS,
1099 LINK_OR_CTR_REGS,
1100 SPECIAL_REGS,
1101 SPEC_OR_GEN_REGS,
1102 CR0_REGS,
1103 CR_REGS,
1104 NON_FLOAT_REGS,
1105 CA_REGS,
1106 ALL_REGS,
1107 LIM_REG_CLASSES
1108 };
1109
1110 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1111
1112 /* Give names of register classes as strings for dump file. */
1113
1114 #define REG_CLASS_NAMES \
1115 { \
1116 "NO_REGS", \
1117 "BASE_REGS", \
1118 "GENERAL_REGS", \
1119 "FLOAT_REGS", \
1120 "ALTIVEC_REGS", \
1121 "VSX_REGS", \
1122 "VRSAVE_REGS", \
1123 "VSCR_REGS", \
1124 "GEN_OR_FLOAT_REGS", \
1125 "GEN_OR_VSX_REGS", \
1126 "LINK_REGS", \
1127 "CTR_REGS", \
1128 "LINK_OR_CTR_REGS", \
1129 "SPECIAL_REGS", \
1130 "SPEC_OR_GEN_REGS", \
1131 "CR0_REGS", \
1132 "CR_REGS", \
1133 "NON_FLOAT_REGS", \
1134 "CA_REGS", \
1135 "ALL_REGS" \
1136 }
1137
1138 /* Define which registers fit in which classes.
1139 This is an initializer for a vector of HARD_REG_SET
1140 of length N_REG_CLASSES. */
1141
1142 #define REG_CLASS_CONTENTS \
1143 { \
1144 /* NO_REGS. */ \
1145 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1146 /* BASE_REGS. */ \
1147 { 0xfffffffe, 0x00000000, 0x00000000, 0x00004008 }, \
1148 /* GENERAL_REGS. */ \
1149 { 0xffffffff, 0x00000000, 0x00000000, 0x00004008 }, \
1150 /* FLOAT_REGS. */ \
1151 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, \
1152 /* ALTIVEC_REGS. */ \
1153 { 0x00000000, 0x00000000, 0xffffffff, 0x00000000 }, \
1154 /* VSX_REGS. */ \
1155 { 0x00000000, 0xffffffff, 0xffffffff, 0x00000000 }, \
1156 /* VRSAVE_REGS. */ \
1157 { 0x00000000, 0x00000000, 0x00000000, 0x00001000 }, \
1158 /* VSCR_REGS. */ \
1159 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, \
1160 /* GEN_OR_FLOAT_REGS. */ \
1161 { 0xffffffff, 0xffffffff, 0x00000000, 0x00004008 }, \
1162 /* GEN_OR_VSX_REGS. */ \
1163 { 0xffffffff, 0xffffffff, 0xffffffff, 0x00004008 }, \
1164 /* LINK_REGS. */ \
1165 { 0x00000000, 0x00000000, 0x00000000, 0x00000001 }, \
1166 /* CTR_REGS. */ \
1167 { 0x00000000, 0x00000000, 0x00000000, 0x00000002 }, \
1168 /* LINK_OR_CTR_REGS. */ \
1169 { 0x00000000, 0x00000000, 0x00000000, 0x00000003 }, \
1170 /* SPECIAL_REGS. */ \
1171 { 0x00000000, 0x00000000, 0x00000000, 0x00001003 }, \
1172 /* SPEC_OR_GEN_REGS. */ \
1173 { 0xffffffff, 0x00000000, 0x00000000, 0x0000500b }, \
1174 /* CR0_REGS. */ \
1175 { 0x00000000, 0x00000000, 0x00000000, 0x00000010 }, \
1176 /* CR_REGS. */ \
1177 { 0x00000000, 0x00000000, 0x00000000, 0x00000ff0 }, \
1178 /* NON_FLOAT_REGS. */ \
1179 { 0xffffffff, 0x00000000, 0x00000000, 0x00004ffb }, \
1180 /* CA_REGS. */ \
1181 { 0x00000000, 0x00000000, 0x00000000, 0x00000004 }, \
1182 /* ALL_REGS. */ \
1183 { 0xffffffff, 0xffffffff, 0xffffffff, 0x00007fff } \
1184 }
1185
1186 /* The same information, inverted:
1187 Return the class number of the smallest class containing
1188 reg number REGNO. This could be a conditional expression
1189 or could index an array. */
1190
1191 extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1192
1193 #define REGNO_REG_CLASS(REGNO) \
1194 (gcc_checking_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)),\
1195 rs6000_regno_regclass[(REGNO)])
1196
1197 /* Register classes for various constraints that are based on the target
1198 switches. */
1199 enum r6000_reg_class_enum {
1200 RS6000_CONSTRAINT_d, /* FPR registers */
1201 RS6000_CONSTRAINT_v, /* Altivec registers */
1202 RS6000_CONSTRAINT_wa, /* Any VSX register */
1203 RS6000_CONSTRAINT_we, /* VSX register if ISA 3.0 vector. */
1204 RS6000_CONSTRAINT_wr, /* GPR register if 64-bit */
1205 RS6000_CONSTRAINT_wx, /* FPR register for STFIWX */
1206 RS6000_CONSTRAINT_wA, /* BASE_REGS if 64-bit. */
1207 RS6000_CONSTRAINT_MAX
1208 };
1209
1210 extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
1211
1212 /* The class value for index registers, and the one for base regs. */
1213 #define INDEX_REG_CLASS GENERAL_REGS
1214 #define BASE_REG_CLASS BASE_REGS
1215
1216 /* Return whether a given register class can hold VSX objects. */
1217 #define VSX_REG_CLASS_P(CLASS) \
1218 ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1219
1220 /* Return whether a given register class targets general purpose registers. */
1221 #define GPR_REG_CLASS_P(CLASS) ((CLASS) == GENERAL_REGS || (CLASS) == BASE_REGS)
1222
1223 /* Given an rtx X being reloaded into a reg required to be
1224 in class CLASS, return the class of reg to actually use.
1225 In general this is just CLASS; but on some machines
1226 in some cases it is preferable to use a more restrictive class.
1227
1228 On the RS/6000, we have to return NO_REGS when we want to reload a
1229 floating-point CONST_DOUBLE to force it to be copied to memory.
1230
1231 We also don't want to reload integer values into floating-point
1232 registers if we can at all help it. In fact, this can
1233 cause reload to die, if it tries to generate a reload of CTR
1234 into a FP register and discovers it doesn't have the memory location
1235 required.
1236
1237 ??? Would it be a good idea to have reload do the converse, that is
1238 try to reload floating modes into FP registers if possible?
1239 */
1240
1241 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1242 rs6000_preferred_reload_class_ptr (X, CLASS)
1243
1244 /* Return the register class of a scratch register needed to copy IN into
1245 or out of a register in CLASS in MODE. If it can be done directly,
1246 NO_REGS is returned. */
1247
1248 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1249 rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
1250
1251 /* Return the maximum number of consecutive registers
1252 needed to represent mode MODE in a register of class CLASS.
1253
1254 On RS/6000, this is the size of MODE in words, except in the FP regs, where
1255 a single reg is enough for two words, unless we have VSX, where the FP
1256 registers can hold 128 bits. */
1257 #define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
1258
1259 /* Stack layout; function entry, exit and calling. */
1260
1261 /* Define this if pushing a word on the stack
1262 makes the stack pointer a smaller address. */
1263 #define STACK_GROWS_DOWNWARD 1
1264
1265 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
1266 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1267
1268 /* Define this to nonzero if the nominal address of the stack frame
1269 is at the high-address end of the local variables;
1270 that is, each additional local variable allocated
1271 goes at a more negative offset in the frame.
1272
1273 On the RS/6000, we grow upwards, from the area after the outgoing
1274 arguments. */
1275 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0 \
1276 || (flag_sanitize & SANITIZE_ADDRESS) != 0)
1277
1278 /* Size of the fixed area on the stack */
1279 #define RS6000_SAVE_AREA \
1280 ((DEFAULT_ABI == ABI_V4 ? 8 : DEFAULT_ABI == ABI_ELFv2 ? 16 : 24) \
1281 << (TARGET_64BIT ? 1 : 0))
1282
1283 /* Stack offset for toc save slot. */
1284 #define RS6000_TOC_SAVE_SLOT \
1285 ((DEFAULT_ABI == ABI_ELFv2 ? 12 : 20) << (TARGET_64BIT ? 1 : 0))
1286
1287 /* Align an address */
1288 #define RS6000_ALIGN(n,a) ROUND_UP ((n), (a))
1289
1290 /* Offset within stack frame to start allocating local variables at.
1291 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1292 first local allocated. Otherwise, it is the offset to the BEGINNING
1293 of the first local allocated.
1294
1295 On the RS/6000, the frame pointer is the same as the stack pointer,
1296 except for dynamic allocations. So we start after the fixed area and
1297 outgoing parameter area.
1298
1299 If the function uses dynamic stack space (CALLS_ALLOCA is set), that
1300 space needs to be aligned to STACK_BOUNDARY, i.e. the sum of the
1301 sizes of the fixed area and the parameter area must be a multiple of
1302 STACK_BOUNDARY. */
1303
1304 #define RS6000_STARTING_FRAME_OFFSET \
1305 (cfun->calls_alloca \
1306 ? (RS6000_ALIGN (crtl->outgoing_args_size + RS6000_SAVE_AREA, \
1307 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8 )) \
1308 : (RS6000_ALIGN (crtl->outgoing_args_size, \
1309 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
1310 + RS6000_SAVE_AREA))
1311
1312 /* Offset from the stack pointer register to an item dynamically
1313 allocated on the stack, e.g., by `alloca'.
1314
1315 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1316 length of the outgoing arguments. The default is correct for most
1317 machines. See `function.cc' for details.
1318
1319 This value must be a multiple of STACK_BOUNDARY (hard coded in
1320 `emit-rtl.cc'). */
1321 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1322 RS6000_ALIGN (crtl->outgoing_args_size.to_constant () \
1323 + STACK_POINTER_OFFSET, \
1324 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)
1325
1326 /* If we generate an insn to push BYTES bytes,
1327 this says how many the stack pointer really advances by.
1328 On RS/6000, don't define this because there are no push insns. */
1329 /* #define PUSH_ROUNDING(BYTES) */
1330
1331 /* Offset of first parameter from the argument pointer register value.
1332 On the RS/6000, we define the argument pointer to the start of the fixed
1333 area. */
1334 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1335
1336 /* Offset from the argument pointer register value to the top of
1337 stack. This is different from FIRST_PARM_OFFSET because of the
1338 register save area. */
1339 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1340
1341 /* Define this if stack space is still allocated for a parameter passed
1342 in a register. The value is the number of bytes allocated to this
1343 area. */
1344 #define REG_PARM_STACK_SPACE(FNDECL) \
1345 rs6000_reg_parm_stack_space ((FNDECL), false)
1346
1347 /* Define this macro if space guaranteed when compiling a function body
1348 is different to space required when making a call, a situation that
1349 can arise with K&R style function definitions. */
1350 #define INCOMING_REG_PARM_STACK_SPACE(FNDECL) \
1351 rs6000_reg_parm_stack_space ((FNDECL), true)
1352
1353 /* Define this if the above stack space is to be considered part of the
1354 space allocated by the caller. */
1355 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1356
1357 /* This is the difference between the logical top of stack and the actual sp.
1358
1359 For the RS/6000, sp points past the fixed area. */
1360 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1361
1362 /* Define this if the maximum size of all the outgoing args is to be
1363 accumulated and pushed during the prologue. The amount can be
1364 found in the variable crtl->outgoing_args_size. */
1365 #define ACCUMULATE_OUTGOING_ARGS 1
1366
1367 /* Define how to find the value returned by a library function
1368 assuming the value has mode MODE. */
1369
1370 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1371
1372 /* DRAFT_V4_STRUCT_RET defaults off. */
1373 #define DRAFT_V4_STRUCT_RET 0
1374
1375 /* Let TARGET_RETURN_IN_MEMORY control what happens. */
1376 #define DEFAULT_PCC_STRUCT_RETURN 0
1377
1378 /* Mode of stack savearea.
1379 FUNCTION is VOIDmode because calling convention maintains SP.
1380 BLOCK needs Pmode for SP.
1381 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1382 #define STACK_SAVEAREA_MODE(LEVEL) \
1383 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1384 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode)
1385
1386 /* Minimum and maximum general purpose registers used to hold arguments. */
1387 #define GP_ARG_MIN_REG 3
1388 #define GP_ARG_MAX_REG 10
1389 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1390
1391 /* Minimum and maximum floating point registers used to hold arguments. */
1392 #define FP_ARG_MIN_REG 33
1393 #define FP_ARG_AIX_MAX_REG 45
1394 #define FP_ARG_V4_MAX_REG 40
1395 #define FP_ARG_MAX_REG (DEFAULT_ABI == ABI_V4 \
1396 ? FP_ARG_V4_MAX_REG : FP_ARG_AIX_MAX_REG)
1397 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1398
1399 /* Minimum and maximum AltiVec registers used to hold arguments. */
1400 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1401 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1402 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1403
1404 /* Maximum number of registers per ELFv2 homogeneous aggregate argument. */
1405 #define AGGR_ARG_NUM_REG 8
1406
1407 /* Return registers */
1408 #define GP_ARG_RETURN GP_ARG_MIN_REG
1409 #define FP_ARG_RETURN FP_ARG_MIN_REG
1410 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1411 #define FP_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? FP_ARG_RETURN \
1412 : (FP_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1413 #define ALTIVEC_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 \
1414 ? (ALTIVEC_ARG_RETURN \
1415 + (TARGET_FLOAT128_TYPE ? 1 : 0)) \
1416 : (ALTIVEC_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1417
1418 /* Flags for the call/call_value rtl operations set up by function_arg */
1419 #define CALL_NORMAL 0x00000000 /* no special processing */
1420 /* Bits in 0x00000001 are unused. */
1421 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1422 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1423 #define CALL_LONG 0x00000008 /* always call indirect */
1424 #define CALL_LIBCALL 0x00000010 /* libcall */
1425
1426 /* Identify PLT sequence for rs6000_pltseq_template. */
1427 enum rs6000_pltseq_enum {
1428 RS6000_PLTSEQ_TOCSAVE,
1429 RS6000_PLTSEQ_PLT16_HA,
1430 RS6000_PLTSEQ_PLT16_LO,
1431 RS6000_PLTSEQ_MTCTR,
1432 RS6000_PLTSEQ_PLT_PCREL34
1433 };
1434
1435 #define IS_V4_FP_ARGS(OP) \
1436 ((INTVAL (OP) & (CALL_V4_CLEAR_FP_ARGS | CALL_V4_SET_FP_ARGS)) != 0)
1437
1438 /* We don't have prologue and epilogue functions to save/restore
1439 everything for most ABIs. */
1440 #define WORLD_SAVE_P(INFO) 0
1441
1442 /* 1 if N is a possible register number for a function value
1443 as seen by the caller.
1444
1445 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1446 #define FUNCTION_VALUE_REGNO_P(N) \
1447 ((N) == GP_ARG_RETURN \
1448 || (IN_RANGE ((N), FP_ARG_RETURN, FP_ARG_MAX_RETURN) \
1449 && TARGET_HARD_FLOAT) \
1450 || (IN_RANGE ((N), ALTIVEC_ARG_RETURN, ALTIVEC_ARG_MAX_RETURN) \
1451 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1452
1453 /* 1 if N is a possible register number for function argument passing.
1454 On RS/6000, these are r3-r10 and fp1-fp13.
1455 On AltiVec, v2 - v13 are used for passing vectors. */
1456 #define FUNCTION_ARG_REGNO_P(N) \
1457 (IN_RANGE ((N), GP_ARG_MIN_REG, GP_ARG_MAX_REG) \
1458 || (IN_RANGE ((N), ALTIVEC_ARG_MIN_REG, ALTIVEC_ARG_MAX_REG) \
1459 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
1460 || (IN_RANGE ((N), FP_ARG_MIN_REG, FP_ARG_MAX_REG) \
1461 && TARGET_HARD_FLOAT))
1462 \f
1463 /* Define a data type for recording info about an argument list
1464 during the scan of that argument list. This data type should
1465 hold all necessary information about the function itself
1466 and about the args processed so far, enough to enable macros
1467 such as FUNCTION_ARG to determine where the next arg should go.
1468
1469 On the RS/6000, this is a structure. The first element is the number of
1470 total argument words, the second is used to store the next
1471 floating-point register number, and the third says how many more args we
1472 have prototype types for.
1473
1474 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1475 the next available GP register, `fregno' is the next available FP
1476 register, and `words' is the number of words used on the stack.
1477
1478 The varargs/stdarg support requires that this structure's size
1479 be a multiple of sizeof(int). */
1480
1481 typedef struct rs6000_args
1482 {
1483 int words; /* # words used for passing GP registers */
1484 int fregno; /* next available FP register */
1485 int vregno; /* next available AltiVec register */
1486 int nargs_prototype; /* # args left in the current prototype */
1487 int prototype; /* Whether a prototype was defined */
1488 int stdarg; /* Whether function is a stdarg function. */
1489 int call_cookie; /* Do special things for this call */
1490 int sysv_gregno; /* next available GP register */
1491 int intoffset; /* running offset in struct (darwin64) */
1492 int use_stack; /* any part of struct on stack (darwin64) */
1493 int floats_in_gpr; /* count of SFmode floats taking up
1494 GPR space (darwin64) */
1495 int named; /* false for varargs params */
1496 int escapes; /* if function visible outside tu */
1497 int libcall; /* If this is a compiler generated call. */
1498 } CUMULATIVE_ARGS;
1499
1500 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1501 for a call to a function whose data type is FNTYPE.
1502 For a library call, FNTYPE is 0. */
1503
1504 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1505 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1506 N_NAMED_ARGS, FNDECL, VOIDmode)
1507
1508 /* Similar, but when scanning the definition of a procedure. We always
1509 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1510
1511 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1512 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1513 1000, current_function_decl, VOIDmode)
1514
1515 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1516
1517 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1518 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1519 0, NULL_TREE, MODE)
1520
1521 #define PAD_VARARGS_DOWN \
1522 (targetm.calls.function_arg_padding (TYPE_MODE (type), type) == PAD_DOWNWARD)
1523
1524 /* Output assembler code to FILE to increment profiler label # LABELNO
1525 for profiling a function entry. */
1526
1527 #define FUNCTION_PROFILER(FILE, LABELNO) \
1528 output_function_profiler ((FILE), (LABELNO));
1529
1530 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1531 the stack pointer does not matter. No definition is equivalent to
1532 always zero.
1533
1534 On the RS/6000, this is nonzero because we can restore the stack from
1535 its backpointer, which we maintain. */
1536 #define EXIT_IGNORE_STACK 1
1537
1538 /* Define this macro as a C expression that is nonzero for registers
1539 that are used by the epilogue or the return' pattern. The stack
1540 and frame pointer registers are already be assumed to be used as
1541 needed. */
1542
1543 #define EPILOGUE_USES(REGNO) \
1544 ((reload_completed && (REGNO) == LR_REGNO) \
1545 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
1546 || (crtl->calls_eh_return \
1547 && TARGET_AIX \
1548 && (REGNO) == 2))
1549
1550 \f
1551 /* Length in units of the trampoline for entering a nested function. */
1552
1553 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1554 \f
1555 /* Definitions for __builtin_return_address and __builtin_frame_address.
1556 __builtin_return_address (0) should give link register (LR_REGNO), enable
1557 this. */
1558 /* This should be uncommented, so that the link register is used, but
1559 currently this would result in unmatched insns and spilling fixed
1560 registers so we'll leave it for another day. When these problems are
1561 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1562 (mrs) */
1563 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1564
1565 /* Number of bytes into the frame return addresses can be found. See
1566 rs6000_stack_info in rs6000.cc for more information on how the different
1567 abi's store the return address. */
1568 #define RETURN_ADDRESS_OFFSET \
1569 ((DEFAULT_ABI == ABI_V4 ? 4 : 8) << (TARGET_64BIT ? 1 : 0))
1570
1571 /* The current return address is in the link register. The return address
1572 of anything farther back is accessed normally at an offset of 8 from the
1573 frame pointer. */
1574 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1575 (rs6000_return_addr (COUNT, FRAME))
1576
1577 \f
1578 /* Definitions for register eliminations.
1579
1580 We have two registers that can be eliminated on the RS/6000. First, the
1581 frame pointer register can often be eliminated in favor of the stack
1582 pointer register. Secondly, the argument pointer register can always be
1583 eliminated; it is replaced with either the stack or frame pointer.
1584
1585 In addition, we use the elimination mechanism to see if r30 is needed
1586 Initially we assume that it isn't. If it is, we spill it. This is done
1587 by making it an eliminable register. We replace it with itself so that
1588 if it isn't needed, then existing uses won't be modified. */
1589
1590 /* This is an array of structures. Each structure initializes one pair
1591 of eliminable registers. The "from" register number is given first,
1592 followed by "to". Eliminations of the same "from" register are listed
1593 in order of preference. */
1594 #define ELIMINABLE_REGS \
1595 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1596 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1597 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1598 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1599 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1600 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1601
1602 /* Define the offset between two registers, one to be eliminated, and the other
1603 its replacement, at the start of a routine. */
1604 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1605 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1606 \f
1607 /* Addressing modes, and classification of registers for them. */
1608
1609 #define HAVE_PRE_DECREMENT 1
1610 #define HAVE_PRE_INCREMENT 1
1611 #define HAVE_PRE_MODIFY_DISP 1
1612 #define HAVE_PRE_MODIFY_REG 1
1613
1614 /* Macros to check register numbers against specific register classes. */
1615
1616 /* These assume that REGNO is a hard or pseudo reg number.
1617 They give nonzero only if REGNO is a hard reg of the suitable class
1618 or a pseudo reg currently allocated to a suitable hard reg.
1619 Since they use reg_renumber, they are safe only once reg_renumber
1620 has been allocated, which happens in reginfo.cc during register
1621 allocation. */
1622
1623 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1624 (HARD_REGISTER_NUM_P (REGNO) \
1625 ? (REGNO) <= 31 \
1626 || (REGNO) == ARG_POINTER_REGNUM \
1627 || (REGNO) == FRAME_POINTER_REGNUM \
1628 : (reg_renumber[REGNO] >= 0 \
1629 && (reg_renumber[REGNO] <= 31 \
1630 || reg_renumber[REGNO] == ARG_POINTER_REGNUM \
1631 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1632
1633 #define REGNO_OK_FOR_BASE_P(REGNO) \
1634 (HARD_REGISTER_NUM_P (REGNO) \
1635 ? ((REGNO) > 0 && (REGNO) <= 31) \
1636 || (REGNO) == ARG_POINTER_REGNUM \
1637 || (REGNO) == FRAME_POINTER_REGNUM \
1638 : (reg_renumber[REGNO] > 0 \
1639 && (reg_renumber[REGNO] <= 31 \
1640 || reg_renumber[REGNO] == ARG_POINTER_REGNUM \
1641 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1642
1643 /* Nonzero if X is a hard reg that can be used as an index
1644 or if it is a pseudo reg in the non-strict case. */
1645 #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1646 ((!(STRICT) && !HARD_REGISTER_P (X)) \
1647 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1648
1649 /* Nonzero if X is a hard reg that can be used as a base reg
1650 or if it is a pseudo reg in the non-strict case. */
1651 #define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1652 ((!(STRICT) && !HARD_REGISTER_P (X)) \
1653 || REGNO_OK_FOR_BASE_P (REGNO (X)))
1654
1655 \f
1656 /* Maximum number of registers that can appear in a valid memory address. */
1657
1658 #define MAX_REGS_PER_ADDRESS 2
1659
1660 /* Recognize any constant value that is a valid address. */
1661
1662 #define CONSTANT_ADDRESS_P(X) \
1663 (GET_CODE (X) == LABEL_REF || SYMBOL_REF_P (X) \
1664 || CONST_INT_P (X) || GET_CODE (X) == CONST \
1665 || GET_CODE (X) == HIGH)
1666
1667 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1668 #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
1669 && EASY_VECTOR_15((n) >> 1) \
1670 && ((n) & 1) == 0)
1671
1672 #define EASY_VECTOR_MSB(n,mode) \
1673 ((((unsigned HOST_WIDE_INT) (n)) & GET_MODE_MASK (mode)) == \
1674 ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
1675
1676 \f
1677 #define FIND_BASE_TERM rs6000_find_base_term
1678 \f
1679 /* The register number of the register used to address a table of
1680 static data addresses in memory. In some cases this register is
1681 defined by a processor's "application binary interface" (ABI).
1682 When this macro is defined, RTL is generated for this register
1683 once, as with the stack pointer and frame pointer registers. If
1684 this macro is not defined, it is up to the machine-dependent files
1685 to allocate such a register (if necessary). */
1686
1687 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1688 #define PIC_OFFSET_TABLE_REGNUM \
1689 (TARGET_TOC ? TOC_REGISTER \
1690 : flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM \
1691 : INVALID_REGNUM)
1692
1693 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1694
1695 /* Define this macro if the register defined by
1696 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
1697 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
1698
1699 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1700
1701 /* A C expression that is nonzero if X is a legitimate immediate
1702 operand on the target machine when generating position independent
1703 code. You can assume that X satisfies `CONSTANT_P', so you need
1704 not check this. You can also assume FLAG_PIC is true, so you need
1705 not check it either. You need not define this macro if all
1706 constants (including `SYMBOL_REF') can be immediate operands when
1707 generating position independent code. */
1708
1709 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
1710 \f
1711 /* Define as C expression which evaluates to nonzero if the tablejump
1712 instruction expects the table to contain offsets from the address of the
1713 table.
1714 Do not define this if the table should contain absolute addresses. */
1715 #define CASE_VECTOR_PC_RELATIVE rs6000_relative_jumptables
1716
1717 /* Specify the machine mode that this machine uses
1718 for the index in the tablejump instruction. */
1719 #define CASE_VECTOR_MODE (rs6000_relative_jumptables ? SImode : Pmode)
1720
1721 /* Define this as 1 if `char' should by default be signed; else as 0. */
1722 #define DEFAULT_SIGNED_CHAR 0
1723
1724 /* An integer expression for the size in bits of the largest integer machine
1725 mode that should actually be used. */
1726
1727 /* Allow pairs of registers to be used, which is the intent of the default. */
1728 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1729
1730 /* Max number of bytes we can move from memory to memory
1731 in one reasonably fast instruction. */
1732 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
1733 #define MAX_MOVE_MAX 8
1734
1735 /* Nonzero if access to memory by bytes is no faster than for words.
1736 Also nonzero if doing byte operations (specifically shifts) in registers
1737 is undesirable. */
1738 #define SLOW_BYTE_ACCESS 1
1739
1740 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1741 will either zero-extend or sign-extend. The value of this macro should
1742 be the code that says which one of the two operations is implicitly
1743 done, UNKNOWN if none. */
1744 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1745
1746 /* Define if loading short immediate values into registers sign extends. */
1747 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
1748 \f
1749 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
1750 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1751 ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
1752
1753 /* The CTZ patterns that are implemented in terms of CLZ return -1 for input of
1754 zero. The hardware instructions added in Power9 and the sequences using
1755 popcount return 32 or 64. */
1756 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1757 (TARGET_CTZ || TARGET_POPCNTD \
1758 ? ((VALUE) = GET_MODE_BITSIZE (MODE), 2) \
1759 : ((VALUE) = -1, 2))
1760
1761 /* Specify the machine mode that pointers have.
1762 After generation of rtl, the compiler makes no further distinction
1763 between pointers and any other objects of this machine mode. */
1764 extern scalar_int_mode rs6000_pmode;
1765 #define Pmode rs6000_pmode
1766
1767 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
1768 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
1769
1770 /* Mode of a function address in a call instruction (for indexing purposes).
1771 Doesn't matter on RS/6000. */
1772 #define FUNCTION_MODE SImode
1773
1774 /* Define this if addresses of constant functions
1775 shouldn't be put through pseudo regs where they can be cse'd.
1776 Desirable on machines where ordinary constants are expensive
1777 but a CALL with constant address is cheap. */
1778 #define NO_FUNCTION_CSE 1
1779
1780 /* Define this to be nonzero if shift instructions ignore all but the low-order
1781 few bits.
1782
1783 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
1784 have been dropped from the PowerPC architecture. */
1785 #define SHIFT_COUNT_TRUNCATED 0
1786
1787 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
1788 should be adjusted to reflect any required changes. This macro is used when
1789 there is some systematic length adjustment required that would be difficult
1790 to express in the length attribute.
1791
1792 In the PowerPC, we use this to adjust the length of an instruction if one or
1793 more prefixed instructions are generated, using the attribute
1794 num_prefixed_insns. A prefixed instruction is 8 bytes instead of 4, but the
1795 hardware requires that a prefied instruciton does not cross a 64-byte
1796 boundary. This means the compiler has to assume the length of the first
1797 prefixed instruction is 12 bytes instead of 8 bytes. Since the length is
1798 already set for the non-prefixed instruction, we just need to udpate for the
1799 difference. */
1800
1801 #define ADJUST_INSN_LENGTH(INSN,LENGTH) \
1802 (LENGTH) = rs6000_adjust_insn_length ((INSN), (LENGTH))
1803
1804 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
1805 COMPARE, return the mode to be used for the comparison. For
1806 floating-point, CCFPmode should be used. CCUNSmode should be used
1807 for unsigned comparisons. CCEQmode should be used when we are
1808 doing an inequality comparison on the result of a
1809 comparison. CCmode should be used in all other cases. */
1810
1811 #define SELECT_CC_MODE(OP,X,Y) \
1812 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
1813 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
1814 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
1815 ? CCEQmode : CCmode))
1816
1817 /* Can the condition code MODE be safely reversed? This is safe in
1818 all cases on this port, because at present it doesn't use the
1819 trapping FP comparisons (fcmpo). */
1820 #define REVERSIBLE_CC_MODE(MODE) 1
1821
1822 /* Given a condition code and a mode, return the inverse condition. */
1823 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
1824
1825 \f
1826 /* Target cpu costs. */
1827
1828 struct processor_costs {
1829 const int mulsi; /* cost of SImode multiplication. */
1830 const int mulsi_const; /* cost of SImode multiplication by constant. */
1831 const int mulsi_const9; /* cost of SImode mult by short constant. */
1832 const int muldi; /* cost of DImode multiplication. */
1833 const int divsi; /* cost of SImode division. */
1834 const int divdi; /* cost of DImode division. */
1835 const int fp; /* cost of simple SFmode and DFmode insns. */
1836 const int dmul; /* cost of DFmode multiplication (and fmadd). */
1837 const int sdiv; /* cost of SFmode division (fdivs). */
1838 const int ddiv; /* cost of DFmode division (fdiv). */
1839 const int cache_line_size; /* cache line size in bytes. */
1840 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
1841 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
1842 const int simultaneous_prefetches; /* number of parallel prefetch
1843 operations. */
1844 const int sfdf_convert; /* cost of SF->DF conversion. */
1845 };
1846
1847 extern const struct processor_costs *rs6000_cost;
1848 \f
1849 /* Control the assembler format that we output. */
1850
1851 /* A C string constant describing how to begin a comment in the target
1852 assembler language. The compiler assumes that the comment will end at
1853 the end of the line. */
1854 #define ASM_COMMENT_START " #"
1855
1856 /* Flag to say the TOC is initialized */
1857 extern int toc_initialized;
1858
1859 /* Macro to output a special constant pool entry. Go to WIN if we output
1860 it. Otherwise, it is written the usual way.
1861
1862 On the RS/6000, toc entries are handled this way. */
1863
1864 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
1865 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
1866 { \
1867 output_toc (FILE, X, LABELNO, MODE); \
1868 goto WIN; \
1869 } \
1870 }
1871
1872 #ifdef HAVE_GAS_WEAK
1873 #define RS6000_WEAK 1
1874 #else
1875 #define RS6000_WEAK 0
1876 #endif
1877
1878 #if RS6000_WEAK
1879 /* Used in lieu of ASM_WEAKEN_LABEL. */
1880 #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
1881 rs6000_asm_weaken_decl ((FILE), (DECL), (NAME), (VAL))
1882 #endif
1883
1884 #if HAVE_GAS_WEAKREF
1885 #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
1886 do \
1887 { \
1888 fputs ("\t.weakref\t", (FILE)); \
1889 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1890 fputs (", ", (FILE)); \
1891 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
1892 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
1893 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
1894 { \
1895 fputs ("\n\t.weakref\t.", (FILE)); \
1896 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1897 fputs (", .", (FILE)); \
1898 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
1899 } \
1900 fputc ('\n', (FILE)); \
1901 } while (0)
1902 #endif
1903
1904 /* This implements the `alias' attribute. */
1905 #undef ASM_OUTPUT_DEF_FROM_DECLS
1906 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
1907 do \
1908 { \
1909 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
1910 const char *name = IDENTIFIER_POINTER (TARGET); \
1911 if (TREE_CODE (DECL) == FUNCTION_DECL \
1912 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
1913 { \
1914 if (TREE_PUBLIC (DECL)) \
1915 { \
1916 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
1917 { \
1918 fputs ("\t.globl\t.", FILE); \
1919 RS6000_OUTPUT_BASENAME (FILE, alias); \
1920 putc ('\n', FILE); \
1921 } \
1922 } \
1923 else if (TARGET_XCOFF) \
1924 { \
1925 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
1926 { \
1927 fputs ("\t.lglobl\t.", FILE); \
1928 RS6000_OUTPUT_BASENAME (FILE, alias); \
1929 putc ('\n', FILE); \
1930 fputs ("\t.lglobl\t", FILE); \
1931 RS6000_OUTPUT_BASENAME (FILE, alias); \
1932 putc ('\n', FILE); \
1933 } \
1934 } \
1935 fputs ("\t.set\t.", FILE); \
1936 RS6000_OUTPUT_BASENAME (FILE, alias); \
1937 fputs (",.", FILE); \
1938 RS6000_OUTPUT_BASENAME (FILE, name); \
1939 fputc ('\n', FILE); \
1940 } \
1941 ASM_OUTPUT_DEF (FILE, alias, name); \
1942 } \
1943 while (0)
1944
1945 #define TARGET_ASM_FILE_START rs6000_file_start
1946
1947 /* Output to assembler file text saying following lines
1948 may contain character constants, extra white space, comments, etc. */
1949
1950 #define ASM_APP_ON ""
1951
1952 /* Output to assembler file text saying following lines
1953 no longer contain unusual constructs. */
1954
1955 #define ASM_APP_OFF ""
1956
1957 /* How to refer to registers in assembler output.
1958 This sequence is indexed by compiler's hard-register-number (see above). */
1959
1960 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
1961
1962 #define REGISTER_NAMES \
1963 { \
1964 &rs6000_reg_names[ 0][0], /* r0 */ \
1965 &rs6000_reg_names[ 1][0], /* r1 */ \
1966 &rs6000_reg_names[ 2][0], /* r2 */ \
1967 &rs6000_reg_names[ 3][0], /* r3 */ \
1968 &rs6000_reg_names[ 4][0], /* r4 */ \
1969 &rs6000_reg_names[ 5][0], /* r5 */ \
1970 &rs6000_reg_names[ 6][0], /* r6 */ \
1971 &rs6000_reg_names[ 7][0], /* r7 */ \
1972 &rs6000_reg_names[ 8][0], /* r8 */ \
1973 &rs6000_reg_names[ 9][0], /* r9 */ \
1974 &rs6000_reg_names[10][0], /* r10 */ \
1975 &rs6000_reg_names[11][0], /* r11 */ \
1976 &rs6000_reg_names[12][0], /* r12 */ \
1977 &rs6000_reg_names[13][0], /* r13 */ \
1978 &rs6000_reg_names[14][0], /* r14 */ \
1979 &rs6000_reg_names[15][0], /* r15 */ \
1980 &rs6000_reg_names[16][0], /* r16 */ \
1981 &rs6000_reg_names[17][0], /* r17 */ \
1982 &rs6000_reg_names[18][0], /* r18 */ \
1983 &rs6000_reg_names[19][0], /* r19 */ \
1984 &rs6000_reg_names[20][0], /* r20 */ \
1985 &rs6000_reg_names[21][0], /* r21 */ \
1986 &rs6000_reg_names[22][0], /* r22 */ \
1987 &rs6000_reg_names[23][0], /* r23 */ \
1988 &rs6000_reg_names[24][0], /* r24 */ \
1989 &rs6000_reg_names[25][0], /* r25 */ \
1990 &rs6000_reg_names[26][0], /* r26 */ \
1991 &rs6000_reg_names[27][0], /* r27 */ \
1992 &rs6000_reg_names[28][0], /* r28 */ \
1993 &rs6000_reg_names[29][0], /* r29 */ \
1994 &rs6000_reg_names[30][0], /* r30 */ \
1995 &rs6000_reg_names[31][0], /* r31 */ \
1996 \
1997 &rs6000_reg_names[32][0], /* fr0 */ \
1998 &rs6000_reg_names[33][0], /* fr1 */ \
1999 &rs6000_reg_names[34][0], /* fr2 */ \
2000 &rs6000_reg_names[35][0], /* fr3 */ \
2001 &rs6000_reg_names[36][0], /* fr4 */ \
2002 &rs6000_reg_names[37][0], /* fr5 */ \
2003 &rs6000_reg_names[38][0], /* fr6 */ \
2004 &rs6000_reg_names[39][0], /* fr7 */ \
2005 &rs6000_reg_names[40][0], /* fr8 */ \
2006 &rs6000_reg_names[41][0], /* fr9 */ \
2007 &rs6000_reg_names[42][0], /* fr10 */ \
2008 &rs6000_reg_names[43][0], /* fr11 */ \
2009 &rs6000_reg_names[44][0], /* fr12 */ \
2010 &rs6000_reg_names[45][0], /* fr13 */ \
2011 &rs6000_reg_names[46][0], /* fr14 */ \
2012 &rs6000_reg_names[47][0], /* fr15 */ \
2013 &rs6000_reg_names[48][0], /* fr16 */ \
2014 &rs6000_reg_names[49][0], /* fr17 */ \
2015 &rs6000_reg_names[50][0], /* fr18 */ \
2016 &rs6000_reg_names[51][0], /* fr19 */ \
2017 &rs6000_reg_names[52][0], /* fr20 */ \
2018 &rs6000_reg_names[53][0], /* fr21 */ \
2019 &rs6000_reg_names[54][0], /* fr22 */ \
2020 &rs6000_reg_names[55][0], /* fr23 */ \
2021 &rs6000_reg_names[56][0], /* fr24 */ \
2022 &rs6000_reg_names[57][0], /* fr25 */ \
2023 &rs6000_reg_names[58][0], /* fr26 */ \
2024 &rs6000_reg_names[59][0], /* fr27 */ \
2025 &rs6000_reg_names[60][0], /* fr28 */ \
2026 &rs6000_reg_names[61][0], /* fr29 */ \
2027 &rs6000_reg_names[62][0], /* fr30 */ \
2028 &rs6000_reg_names[63][0], /* fr31 */ \
2029 \
2030 &rs6000_reg_names[64][0], /* vr0 */ \
2031 &rs6000_reg_names[65][0], /* vr1 */ \
2032 &rs6000_reg_names[66][0], /* vr2 */ \
2033 &rs6000_reg_names[67][0], /* vr3 */ \
2034 &rs6000_reg_names[68][0], /* vr4 */ \
2035 &rs6000_reg_names[69][0], /* vr5 */ \
2036 &rs6000_reg_names[70][0], /* vr6 */ \
2037 &rs6000_reg_names[71][0], /* vr7 */ \
2038 &rs6000_reg_names[72][0], /* vr8 */ \
2039 &rs6000_reg_names[73][0], /* vr9 */ \
2040 &rs6000_reg_names[74][0], /* vr10 */ \
2041 &rs6000_reg_names[75][0], /* vr11 */ \
2042 &rs6000_reg_names[76][0], /* vr12 */ \
2043 &rs6000_reg_names[77][0], /* vr13 */ \
2044 &rs6000_reg_names[78][0], /* vr14 */ \
2045 &rs6000_reg_names[79][0], /* vr15 */ \
2046 &rs6000_reg_names[80][0], /* vr16 */ \
2047 &rs6000_reg_names[81][0], /* vr17 */ \
2048 &rs6000_reg_names[82][0], /* vr18 */ \
2049 &rs6000_reg_names[83][0], /* vr19 */ \
2050 &rs6000_reg_names[84][0], /* vr20 */ \
2051 &rs6000_reg_names[85][0], /* vr21 */ \
2052 &rs6000_reg_names[86][0], /* vr22 */ \
2053 &rs6000_reg_names[87][0], /* vr23 */ \
2054 &rs6000_reg_names[88][0], /* vr24 */ \
2055 &rs6000_reg_names[89][0], /* vr25 */ \
2056 &rs6000_reg_names[90][0], /* vr26 */ \
2057 &rs6000_reg_names[91][0], /* vr27 */ \
2058 &rs6000_reg_names[92][0], /* vr28 */ \
2059 &rs6000_reg_names[93][0], /* vr29 */ \
2060 &rs6000_reg_names[94][0], /* vr30 */ \
2061 &rs6000_reg_names[95][0], /* vr31 */ \
2062 \
2063 &rs6000_reg_names[96][0], /* lr */ \
2064 &rs6000_reg_names[97][0], /* ctr */ \
2065 &rs6000_reg_names[98][0], /* ca */ \
2066 &rs6000_reg_names[99][0], /* ap */ \
2067 \
2068 &rs6000_reg_names[100][0], /* cr0 */ \
2069 &rs6000_reg_names[101][0], /* cr1 */ \
2070 &rs6000_reg_names[102][0], /* cr2 */ \
2071 &rs6000_reg_names[103][0], /* cr3 */ \
2072 &rs6000_reg_names[104][0], /* cr4 */ \
2073 &rs6000_reg_names[105][0], /* cr5 */ \
2074 &rs6000_reg_names[106][0], /* cr6 */ \
2075 &rs6000_reg_names[107][0], /* cr7 */ \
2076 \
2077 &rs6000_reg_names[108][0], /* vrsave */ \
2078 &rs6000_reg_names[109][0], /* vscr */ \
2079 \
2080 &rs6000_reg_names[110][0] /* sfp */ \
2081 }
2082
2083 /* Table of additional register names to use in user input. */
2084
2085 #define ADDITIONAL_REGISTER_NAMES \
2086 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2087 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2088 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2089 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2090 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2091 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2092 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2093 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2094 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2095 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2096 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2097 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2098 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2099 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2100 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2101 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2102 {"v0", 64}, {"v1", 65}, {"v2", 66}, {"v3", 67}, \
2103 {"v4", 68}, {"v5", 69}, {"v6", 70}, {"v7", 71}, \
2104 {"v8", 72}, {"v9", 73}, {"v10", 74}, {"v11", 75}, \
2105 {"v12", 76}, {"v13", 77}, {"v14", 78}, {"v15", 79}, \
2106 {"v16", 80}, {"v17", 81}, {"v18", 82}, {"v19", 83}, \
2107 {"v20", 84}, {"v21", 85}, {"v22", 86}, {"v23", 87}, \
2108 {"v24", 88}, {"v25", 89}, {"v26", 90}, {"v27", 91}, \
2109 {"v28", 92}, {"v29", 93}, {"v30", 94}, {"v31", 95}, \
2110 {"vrsave", 108}, {"vscr", 109}, \
2111 /* no additional names for: lr, ctr, ap */ \
2112 {"cr0", 100},{"cr1", 101},{"cr2", 102},{"cr3", 103}, \
2113 {"cr4", 104},{"cr5", 105},{"cr6", 106},{"cr7", 107}, \
2114 {"cc", 100},{"sp", 1}, {"toc", 2}, \
2115 /* CA is only part of XER, but we do not model the other parts (yet). */ \
2116 {"xer", 98}, \
2117 /* VSX registers overlaid on top of FR, Altivec registers */ \
2118 {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \
2119 {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \
2120 {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \
2121 {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \
2122 {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \
2123 {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \
2124 {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \
2125 {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \
2126 {"vs32", 64}, {"vs33", 65}, {"vs34", 66}, {"vs35", 67}, \
2127 {"vs36", 68}, {"vs37", 69}, {"vs38", 70}, {"vs39", 71}, \
2128 {"vs40", 72}, {"vs41", 73}, {"vs42", 74}, {"vs43", 75}, \
2129 {"vs44", 76}, {"vs45", 77}, {"vs46", 78}, {"vs47", 79}, \
2130 {"vs48", 80}, {"vs49", 81}, {"vs50", 82}, {"vs51", 83}, \
2131 {"vs52", 84}, {"vs53", 85}, {"vs54", 86}, {"vs55", 87}, \
2132 {"vs56", 88}, {"vs57", 89}, {"vs58", 90}, {"vs59", 91}, \
2133 {"vs60", 92}, {"vs61", 93}, {"vs62", 94}, {"vs63", 95}, \
2134 }
2135
2136 /* This is how to output an element of a case-vector that is relative. */
2137
2138 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2139 do { char buf[100]; \
2140 fputs ("\t.long ", FILE); \
2141 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2142 assemble_name (FILE, buf); \
2143 putc ('-', FILE); \
2144 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2145 assemble_name (FILE, buf); \
2146 putc ('\n', FILE); \
2147 } while (0)
2148
2149 /* This is how to output an element of a case-vector
2150 that is non-relative. */
2151 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
2152 rs6000_output_addr_vec_elt ((FILE), (VALUE))
2153
2154 /* This is how to output an assembler line
2155 that says to advance the location counter
2156 to a multiple of 2**LOG bytes. */
2157
2158 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2159 if ((LOG) != 0) \
2160 fprintf (FILE, "\t.align %d\n", (LOG))
2161
2162 /* How to align the given loop. */
2163 #define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL)
2164
2165 /* Alignment guaranteed by __builtin_malloc. */
2166 /* FIXME: 128-bit alignment is guaranteed by glibc for TARGET_64BIT.
2167 However, specifying the stronger guarantee currently leads to
2168 a regression in SPEC CPU2006 437.leslie3d. The stronger
2169 guarantee should be implemented here once that's fixed. */
2170 #define MALLOC_ABI_ALIGNMENT (64)
2171
2172 /* Pick up the return address upon entry to a procedure. Used for
2173 dwarf2 unwind information. This also enables the table driven
2174 mechanism. */
2175
2176 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
2177 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
2178
2179 /* Describe how we implement __builtin_eh_return. */
2180 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2181 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2182
2183 /* Print operand X (an rtx) in assembler syntax to file FILE.
2184 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2185 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2186
2187 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2188
2189 /* Define which CODE values are valid. */
2190
2191 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '&')
2192
2193 /* Print a memory address as an operand to reference that memory location. */
2194
2195 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2196
2197 /* For switching between functions with different target attributes. */
2198 #define SWITCHABLE_TARGET 1
2199
2200 /* uncomment for disabling the corresponding default options */
2201 /* #define MACHINE_no_sched_interblock */
2202 /* #define MACHINE_no_sched_speculative */
2203 /* #define MACHINE_no_sched_speculative_load */
2204
2205 /* General flags. */
2206 extern int frame_pointer_needed;
2207
2208 enum rs6000_builtin_type_index
2209 {
2210 RS6000_BTI_NOT_OPAQUE,
2211 RS6000_BTI_opaque_V4SI,
2212 RS6000_BTI_V16QI, /* __vector signed char */
2213 RS6000_BTI_V1TI,
2214 RS6000_BTI_V2DI,
2215 RS6000_BTI_V2DF,
2216 RS6000_BTI_V4HI,
2217 RS6000_BTI_V4SI,
2218 RS6000_BTI_V4SF,
2219 RS6000_BTI_V8HI,
2220 RS6000_BTI_unsigned_V16QI, /* __vector unsigned char */
2221 RS6000_BTI_unsigned_V1TI,
2222 RS6000_BTI_unsigned_V8HI,
2223 RS6000_BTI_unsigned_V4SI,
2224 RS6000_BTI_unsigned_V2DI,
2225 RS6000_BTI_bool_char, /* __bool char */
2226 RS6000_BTI_bool_short, /* __bool short */
2227 RS6000_BTI_bool_int, /* __bool int */
2228 RS6000_BTI_bool_long_long, /* __bool long long */
2229 RS6000_BTI_pixel, /* __pixel (16 bits arranged as 4
2230 channels of 1, 5, 5, and 5 bits
2231 respectively as packed with the
2232 vpkpx insn. __pixel is only
2233 meaningful as a vector type.
2234 There is no corresponding scalar
2235 __pixel data type.) */
2236 RS6000_BTI_bool_V16QI, /* __vector __bool char */
2237 RS6000_BTI_bool_V8HI, /* __vector __bool short */
2238 RS6000_BTI_bool_V4SI, /* __vector __bool int */
2239 RS6000_BTI_bool_V2DI, /* __vector __bool long */
2240 RS6000_BTI_bool_V1TI, /* __vector __bool 128-bit */
2241 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
2242 RS6000_BTI_long, /* long_integer_type_node */
2243 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
2244 RS6000_BTI_long_long, /* long_long_integer_type_node */
2245 RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
2246 RS6000_BTI_INTQI, /* (signed) intQI_type_node */
2247 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
2248 RS6000_BTI_INTHI, /* intHI_type_node */
2249 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
2250 RS6000_BTI_INTSI, /* intSI_type_node (signed) */
2251 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
2252 RS6000_BTI_INTDI, /* intDI_type_node */
2253 RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */
2254 RS6000_BTI_INTTI, /* intTI_type_node */
2255 RS6000_BTI_UINTTI, /* unsigned_intTI_type_node */
2256 RS6000_BTI_float, /* float_type_node */
2257 RS6000_BTI_double, /* double_type_node */
2258 RS6000_BTI_long_double, /* long_double_type_node */
2259 RS6000_BTI_dfloat64, /* dfloat64_type_node */
2260 RS6000_BTI_dfloat128, /* dfloat128_type_node */
2261 RS6000_BTI_void, /* void_type_node */
2262 RS6000_BTI_ieee128_float, /* ieee 128-bit floating point */
2263 RS6000_BTI_ibm128_float, /* IBM 128-bit floating point */
2264 RS6000_BTI_const_str, /* pointer to const char * */
2265 RS6000_BTI_vector_pair, /* unsigned 256-bit types (vector pair). */
2266 RS6000_BTI_vector_quad, /* unsigned 512-bit types (vector quad). */
2267 RS6000_BTI_const_ptr_void, /* const pointer to void */
2268 RS6000_BTI_ptr_V16QI,
2269 RS6000_BTI_ptr_V1TI,
2270 RS6000_BTI_ptr_V2DI,
2271 RS6000_BTI_ptr_V2DF,
2272 RS6000_BTI_ptr_V4SI,
2273 RS6000_BTI_ptr_V4SF,
2274 RS6000_BTI_ptr_V8HI,
2275 RS6000_BTI_ptr_unsigned_V16QI,
2276 RS6000_BTI_ptr_unsigned_V1TI,
2277 RS6000_BTI_ptr_unsigned_V8HI,
2278 RS6000_BTI_ptr_unsigned_V4SI,
2279 RS6000_BTI_ptr_unsigned_V2DI,
2280 RS6000_BTI_ptr_bool_V16QI,
2281 RS6000_BTI_ptr_bool_V8HI,
2282 RS6000_BTI_ptr_bool_V4SI,
2283 RS6000_BTI_ptr_bool_V2DI,
2284 RS6000_BTI_ptr_bool_V1TI,
2285 RS6000_BTI_ptr_pixel_V8HI,
2286 RS6000_BTI_ptr_INTQI,
2287 RS6000_BTI_ptr_UINTQI,
2288 RS6000_BTI_ptr_INTHI,
2289 RS6000_BTI_ptr_UINTHI,
2290 RS6000_BTI_ptr_INTSI,
2291 RS6000_BTI_ptr_UINTSI,
2292 RS6000_BTI_ptr_INTDI,
2293 RS6000_BTI_ptr_UINTDI,
2294 RS6000_BTI_ptr_INTTI,
2295 RS6000_BTI_ptr_UINTTI,
2296 RS6000_BTI_ptr_long_integer,
2297 RS6000_BTI_ptr_long_unsigned,
2298 RS6000_BTI_ptr_float,
2299 RS6000_BTI_ptr_double,
2300 RS6000_BTI_ptr_long_double,
2301 RS6000_BTI_ptr_dfloat64,
2302 RS6000_BTI_ptr_dfloat128,
2303 RS6000_BTI_ptr_vector_pair,
2304 RS6000_BTI_ptr_vector_quad,
2305 RS6000_BTI_ptr_long_long,
2306 RS6000_BTI_ptr_long_long_unsigned,
2307 RS6000_BTI_MAX
2308 };
2309
2310
2311 #define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2312 #define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
2313 #define V1TI_type_node (rs6000_builtin_types[RS6000_BTI_V1TI])
2314 #define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI])
2315 #define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF])
2316 #define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
2317 #define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
2318 #define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
2319 #define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
2320 #define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
2321 #define unsigned_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V1TI])
2322 #define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2323 #define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
2324 #define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
2325 #define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
2326 #define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
2327 #define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
2328 #define bool_long_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long_long])
2329 #define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
2330 #define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2331 #define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2332 #define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
2333 #define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
2334 #define bool_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V1TI])
2335 #define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2336
2337 #define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long])
2338 #define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
2339 #define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
2340 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2341 #define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
2342 #define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
2343 #define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
2344 #define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
2345 #define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
2346 #define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
2347 #define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI])
2348 #define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI])
2349 #define intTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTTI])
2350 #define uintTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTTI])
2351 #define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
2352 #define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double])
2353 #define long_double_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_double])
2354 #define dfloat64_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat64])
2355 #define dfloat128_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat128])
2356 #define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
2357 #define ieee128_float_type_node (rs6000_builtin_types[RS6000_BTI_ieee128_float])
2358 #define ibm128_float_type_node (rs6000_builtin_types[RS6000_BTI_ibm128_float])
2359 #define const_str_type_node (rs6000_builtin_types[RS6000_BTI_const_str])
2360 #define vector_pair_type_node (rs6000_builtin_types[RS6000_BTI_vector_pair])
2361 #define vector_quad_type_node (rs6000_builtin_types[RS6000_BTI_vector_quad])
2362 #define pcvoid_type_node (rs6000_builtin_types[RS6000_BTI_const_ptr_void])
2363 #define ptr_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V16QI])
2364 #define ptr_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V1TI])
2365 #define ptr_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V2DI])
2366 #define ptr_V2DF_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V2DF])
2367 #define ptr_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V4SI])
2368 #define ptr_V4SF_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V4SF])
2369 #define ptr_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_V8HI])
2370 #define ptr_unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V16QI])
2371 #define ptr_unsigned_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V1TI])
2372 #define ptr_unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V8HI])
2373 #define ptr_unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V4SI])
2374 #define ptr_unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_unsigned_V2DI])
2375 #define ptr_bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_bool_V16QI])
2376 #define ptr_bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_bool_V8HI])
2377 #define ptr_bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_bool_V4SI])
2378 #define ptr_bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_bool_V2DI])
2379 #define ptr_bool_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_bool_V1TI])
2380 #define ptr_pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_pixel_V8HI])
2381 #define ptr_intQI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_INTQI])
2382 #define ptr_uintQI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_UINTQI])
2383 #define ptr_intHI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_INTHI])
2384 #define ptr_uintHI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_UINTHI])
2385 #define ptr_intSI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_INTSI])
2386 #define ptr_uintSI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_UINTSI])
2387 #define ptr_intDI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_INTDI])
2388 #define ptr_uintDI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_UINTDI])
2389 #define ptr_intTI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_INTTI])
2390 #define ptr_uintTI_type_node (rs6000_builtin_types[RS6000_BTI_ptr_UINTTI])
2391 #define ptr_long_integer_type_node (rs6000_builtin_types[RS6000_BTI_ptr_long_integer])
2392 #define ptr_long_unsigned_type_node (rs6000_builtin_types[RS6000_BTI_ptr_long_unsigned])
2393 #define ptr_float_type_node (rs6000_builtin_types[RS6000_BTI_ptr_float])
2394 #define ptr_double_type_node (rs6000_builtin_types[RS6000_BTI_ptr_double])
2395 #define ptr_long_double_type_node (rs6000_builtin_types[RS6000_BTI_ptr_long_double])
2396 #define ptr_dfloat64_type_node (rs6000_builtin_types[RS6000_BTI_ptr_dfloat64])
2397 #define ptr_dfloat128_type_node (rs6000_builtin_types[RS6000_BTI_ptr_dfloat128])
2398 #define ptr_vector_pair_type_node (rs6000_builtin_types[RS6000_BTI_ptr_vector_pair])
2399 #define ptr_vector_quad_type_node (rs6000_builtin_types[RS6000_BTI_ptr_vector_quad])
2400 #define ptr_long_long_integer_type_node (rs6000_builtin_types[RS6000_BTI_ptr_long_long])
2401 #define ptr_long_long_unsigned_type_node (rs6000_builtin_types[RS6000_BTI_ptr_long_long_unsigned])
2402
2403 extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2404
2405 #ifndef USED_FOR_TARGET
2406 extern GTY(()) tree altivec_builtin_mask_for_load;
2407 extern GTY(()) section *toc_section;
2408
2409 /* A C structure for machine-specific, per-function data.
2410 This is added to the cfun structure. */
2411 typedef struct GTY(()) machine_function
2412 {
2413 /* Flags if __builtin_return_address (n) with n >= 1 was used. */
2414 int ra_needs_full_frame;
2415 /* Flags if __builtin_return_address (0) was used. */
2416 int ra_need_lr;
2417 /* Cache lr_save_p after expansion of builtin_eh_return. */
2418 int lr_save_state;
2419 /* Whether we need to save the TOC to the reserved stack location in the
2420 function prologue. */
2421 bool save_toc_in_prologue;
2422 /* Offset from virtual_stack_vars_rtx to the start of the ABI_V4
2423 varargs save area. */
2424 HOST_WIDE_INT varargs_save_offset;
2425 /* Alternative internal arg pointer for -fsplit-stack. */
2426 rtx split_stack_arg_pointer;
2427 bool split_stack_argp_used;
2428 /* Flag if r2 setup is needed with ELFv2 ABI. */
2429 bool r2_setup_needed;
2430 /* The number of components we use for separate shrink-wrapping. */
2431 int n_components;
2432 /* The components already handled by separate shrink-wrapping, which should
2433 not be considered by the prologue and epilogue. */
2434 bool gpr_is_wrapped_separately[32];
2435 bool fpr_is_wrapped_separately[32];
2436 bool lr_is_wrapped_separately;
2437 bool toc_is_wrapped_separately;
2438 bool mma_return_type_error;
2439 /* Indicate global entry is emitted, only useful when the function requires
2440 global entry. It helps to control the patchable area before and after
2441 local entry. */
2442 bool global_entry_emitted;
2443 } machine_function;
2444 #endif
2445
2446
2447 #define TARGET_SUPPORTS_WIDE_INT 1
2448
2449 #if (GCC_VERSION >= 3000)
2450 #pragma GCC poison TARGET_FLOAT128 OPTION_MASK_FLOAT128 MASK_FLOAT128
2451 #endif
2452
2453 /* Whether a given VALUE is a valid 16 or 34-bit signed integer. */
2454 #define SIGNED_INTEGER_NBIT_P(VALUE, N) \
2455 IN_RANGE ((VALUE), \
2456 -(HOST_WIDE_INT_1 << ((N)-1)), \
2457 (HOST_WIDE_INT_1 << ((N)-1)) - 1)
2458
2459 #define SIGNED_INTEGER_16BIT_P(VALUE) SIGNED_INTEGER_NBIT_P (VALUE, 16)
2460 #define SIGNED_INTEGER_34BIT_P(VALUE) SIGNED_INTEGER_NBIT_P (VALUE, 34)
2461
2462 /* Like SIGNED_INTEGER_16BIT_P and SIGNED_INTEGER_34BIT_P, but with an extra
2463 argument that gives a length to validate a range of addresses, to allow for
2464 splitting insns into several insns, each of which has an offsettable
2465 address. */
2466 #define SIGNED_16BIT_OFFSET_EXTRA_P(VALUE, EXTRA) \
2467 IN_RANGE ((VALUE), \
2468 -(HOST_WIDE_INT_1 << 15), \
2469 (HOST_WIDE_INT_1 << 15) - 1 - (EXTRA))
2470
2471 #define SIGNED_34BIT_OFFSET_EXTRA_P(VALUE, EXTRA) \
2472 IN_RANGE ((VALUE), \
2473 -(HOST_WIDE_INT_1 << 33), \
2474 (HOST_WIDE_INT_1 << 33) - 1 - (EXTRA))
2475
2476 /* Define this if some processing needs to be done before outputting the
2477 assembler code. On the PowerPC, we remember if the current insn is a normal
2478 prefixed insn where we need to emit a 'p' before the insn. */
2479 #define FINAL_PRESCAN_INSN(INSN, OPERANDS, NOPERANDS) \
2480 do \
2481 { \
2482 if (TARGET_PREFIXED) \
2483 rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS); \
2484 } \
2485 while (0)
2486
2487 /* Do anything special before emitting an opcode. We use it to emit a 'p' for
2488 prefixed insns that is set in FINAL_PRESCAN_INSN. */
2489 #define ASM_OUTPUT_OPCODE(STREAM, OPCODE) \
2490 do \
2491 { \
2492 if (TARGET_PREFIXED) \
2493 rs6000_asm_output_opcode (STREAM); \
2494 } \
2495 while (0)
This page took 0.154253 seconds and 5 git commands to generate.