]> gcc.gnu.org Git - gcc.git/blob - gcc/config/romp/romp.h
* (RETURN_IN_MEMORY): Handle BLKmode values.
[gcc.git] / gcc / config / romp / romp.h
1 /* Definitions of target machine for GNU compiler, for ROMP chip.
2 Copyright (C) 1989, 1991 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@nyu.edu)
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21
22 /* Names to predefine in the preprocessor for this target machine. */
23
24 #define CPP_PREDEFINES "-Dibm032 -Dunix"
25
26 /* Print subsidiary information on the compiler version in use. */
27 #define TARGET_VERSION ;
28
29 /* Add -lfp_p when running with -p or -pg. */
30 #define LIB_SPEC "%{pg:-lfp_p}%{p:-lfp_p} %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
31
32 /* Run-time compilation parameters selecting different hardware subsets. */
33
34 /* Flag to generate all multiplies as an in-line sequence of multiply-step
35 insns instead of calling a library routine. */
36 #define TARGET_IN_LINE_MUL (target_flags & 1)
37
38 /* Flag to generate padded floating-point data blocks. Otherwise, we generate
39 them the minimum size. This trades off execution speed against size. */
40 #define TARGET_FULL_FP_BLOCKS (target_flags & 2)
41
42 /* Flag to pass and return floating point values in floating point registers.
43 Since this violates the linkage convention, we feel free to destroy fr2
44 and fr3 on function calls.
45 fr1-fr3 are used to pass the arguments. */
46 #define TARGET_FP_REGS (target_flags & 4)
47
48 /* Flag to return structures of more than one word in memory. This is for
49 compatibility with the MetaWare HighC (hc) compiler. */
50 #define TARGET_HC_STRUCT_RETURN (target_flags & 010)
51
52 extern int target_flags;
53
54 /* Macro to define tables used to set the flags.
55 This is a list in braces of pairs in braces,
56 each pair being { "NAME", VALUE }
57 where VALUE is the bits to set or minus the bits to clear.
58 An empty string NAME is used to identify the default VALUE. */
59
60 #define TARGET_SWITCHES \
61 { {"in-line-mul", 1}, \
62 {"call-lib-mul", -1}, \
63 {"full-fp-blocks", 2}, \
64 {"minimum-fp-blocks", -2}, \
65 {"fp-arg-in-fpregs", 4}, \
66 {"fp-arg-in-gregs", -4}, \
67 {"hc-struct-return", 010}, \
68 {"nohc-struct-return", - 010}, \
69 { "", TARGET_DEFAULT}}
70
71 #define TARGET_DEFAULT 3
72
73 /* Define this to change the optimizations performed by default.
74
75 This used to depend on the value of write_symbols,
76 but that is contrary to the general plan for GCC options. */
77
78 #define OPTIMIZATION_OPTIONS(LEVEL) \
79 { \
80 if ((LEVEL) > 0) \
81 { \
82 flag_force_addr = 1; \
83 flag_force_mem = 1; \
84 } \
85 }
86
87 /* Match <sys/types.h>'s definition. */
88 #define SIZE_TYPE "long int"
89 \f
90 /* target machine storage layout */
91
92 /* Define this if most significant bit is lowest numbered
93 in instructions that operate on numbered bit-fields. */
94 /* That is true on ROMP. */
95 #define BITS_BIG_ENDIAN 1
96
97 /* Define this if most significant byte of a word is the lowest numbered. */
98 /* That is true on ROMP. */
99 #define BYTES_BIG_ENDIAN 1
100
101 /* Define this if most significant word of a multiword number is lowest
102 numbered.
103
104 For ROMP we can decide arbitrarily since there are no machine instructions
105 for them. Might as well be consistent with bits and bytes. */
106 #define WORDS_BIG_ENDIAN 1
107
108 /* number of bits in an addressable storage unit */
109 #define BITS_PER_UNIT 8
110
111 /* Width in bits of a "word", which is the contents of a machine register.
112 Note that this is not necessarily the width of data type `int';
113 if using 16-bit ints on a 68000, this would still be 32.
114 But on a machine with 16-bit registers, this would be 16. */
115 #define BITS_PER_WORD 32
116
117 /* Width of a word, in units (bytes). */
118 #define UNITS_PER_WORD 4
119
120 /* Width in bits of a pointer.
121 See also the macro `Pmode' defined below. */
122 #define POINTER_SIZE 32
123
124 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
125 #define PARM_BOUNDARY 32
126
127 /* Boundary (in *bits*) on which stack pointer should be aligned. */
128 #define STACK_BOUNDARY 32
129
130 /* Allocation boundary (in *bits*) for the code of a function. */
131 #define FUNCTION_BOUNDARY 16
132
133 /* No data type wants to be aligned rounder than this. */
134 #define BIGGEST_ALIGNMENT 32
135
136 /* Alignment of field after `int : 0' in a structure. */
137 #define EMPTY_FIELD_BOUNDARY 32
138
139 /* Every structure's size must be a multiple of this. */
140 #define STRUCTURE_SIZE_BOUNDARY 8
141
142 /* A bitfield declared as `int' forces `int' alignment for the struct. */
143 #define PCC_BITFIELD_TYPE_MATTERS 1
144
145 /* Make strings word-aligned so strcpy from constants will be faster. */
146 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
147 (TREE_CODE (EXP) == STRING_CST \
148 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
149
150 /* Make arrays of chars word-aligned for the same reasons. */
151 #define DATA_ALIGNMENT(TYPE, ALIGN) \
152 (TREE_CODE (TYPE) == ARRAY_TYPE \
153 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
154 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
155
156 /* Set this nonzero if move instructions will actually fail to work
157 when given unaligned data. */
158 #define STRICT_ALIGNMENT 1
159 \f
160 /* Standard register usage. */
161
162 /* Number of actual hardware registers.
163 The hardware registers are assigned numbers for the compiler
164 from 0 to just below FIRST_PSEUDO_REGISTER.
165 All registers that the compiler knows about must be given numbers,
166 even those that are not normally considered general registers.
167
168 ROMP has 16 fullword registers and 8 floating point registers.
169
170 In addition, the difference between the frame and argument pointers is
171 a function of the number of registers saved, so we need to have a register
172 to use for AP that will later be eliminated in favor of sp or fp. This is
173 a normal register, but it is fixed. */
174
175 #define FIRST_PSEUDO_REGISTER 25
176
177 /* 1 for registers that have pervasive standard uses
178 and are not available for the register allocator.
179
180 On ROMP, r1 is used for the stack and r14 is used for a
181 data area pointer.
182
183 HACK WARNING: On the RT, there is a bug in code generation for
184 the MC68881 when the first and third operands are the same floating-point
185 register. See the definition of the FINAL_PRESCAN_INSN macro for details.
186 Here we need to reserve fr0 for this purpose. */
187 #define FIXED_REGISTERS \
188 {0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
189 1, \
190 1, 0, 0, 0, 0, 0, 0, 0}
191
192 /* 1 for registers not available across function calls.
193 These must include the FIXED_REGISTERS and also any
194 registers that can be used without being saved.
195 The latter must include the registers where values are returned
196 and the register where structure-value addresses are passed.
197 Aside from that, you can include as many other registers as you like. */
198 #define CALL_USED_REGISTERS \
199 {1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
200 1, \
201 1, 1, 0, 0, 0, 0, 0, 0}
202
203 /* List the order in which to allocate registers. Each register must be
204 listed once, even those in FIXED_REGISTERS.
205
206 We allocate in the following order:
207 fr0, fr1 (not saved)
208 fr2 ... fr6
209 fr7 (more expensive for some FPA's)
210 r0 (not saved and won't conflict with parameter register)
211 r4, r3, r2 (not saved, highest used first to make less conflict)
212 r5 (not saved, but forces r6 to be saved if DI/DFmode)
213 r15, r14, r13, r12, r11, r10, r9, r8, r7, r6 (less to save)
214 r1, ap */
215
216 #define REG_ALLOC_ORDER \
217 {17, 18, \
218 19, 20, 21, 22, 23, \
219 24, \
220 0, \
221 4, 3, 2, \
222 5, \
223 15, 14, 13, 12, 11, 10, \
224 9, 8, 7, 6, \
225 1, 16}
226
227 /* True if register is floating-point. */
228 #define FP_REGNO_P(N) ((N) >= 17)
229
230 /* Return number of consecutive hard regs needed starting at reg REGNO
231 to hold something of mode MODE.
232 This is ordinarily the length in words of a value of mode MODE
233 but can be less for certain modes in special long registers.
234
235 On ROMP, ordinary registers hold 32 bits worth;
236 a single floating point register is always enough for
237 anything that can be stored in them at all. */
238 #define HARD_REGNO_NREGS(REGNO, MODE) \
239 (FP_REGNO_P (REGNO) ? GET_MODE_NUNITS (MODE) \
240 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
241
242 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
243 On ROMP, the cpu registers can hold any mode but the float registers
244 can hold only floating point. */
245 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
246 (! FP_REGNO_P (REGNO) || GET_MODE_CLASS (MODE) == MODE_FLOAT \
247 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)
248
249 /* Value is 1 if it is a good idea to tie two pseudo registers
250 when one has mode MODE1 and one has mode MODE2.
251 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
252 for any hard reg, then this must be 0 for correct output. */
253 #define MODES_TIEABLE_P(MODE1, MODE2) \
254 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT \
255 || GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
256 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT \
257 || GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
258
259 /* A C expression returning the cost of moving data from a register of class
260 CLASS1 to one of CLASS2.
261
262 On the ROMP, access to floating-point registers is expensive (even between
263 two FP regs.) */
264 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
265 (2 + 10 * ((CLASS1) == FP_REGS) + 10 * (CLASS2 == FP_REGS))
266
267 /* Specify the registers used for certain standard purposes.
268 The values of these macros are register numbers. */
269
270 /* ROMP pc isn't overloaded on a register that the compiler knows about. */
271 /* #define PC_REGNUM */
272
273 /* Register to use for pushing function arguments. */
274 #define STACK_POINTER_REGNUM 1
275
276 /* Base register for access to local variables of the function. */
277 #define FRAME_POINTER_REGNUM 13
278
279 /* Value should be nonzero if functions must have frame pointers.
280 Zero means the frame pointer need not be set up (and parms
281 may be accessed via the stack pointer) in functions that seem suitable.
282 This is computed in `reload', in reload1.c. */
283 #define FRAME_POINTER_REQUIRED 0
284
285 /* Base register for access to arguments of the function. */
286 #define ARG_POINTER_REGNUM 16
287
288 /* Place to put static chain when calling a function that requires it. */
289 #define STATIC_CHAIN \
290 gen_rtx (MEM, Pmode, gen_rtx (PLUS, Pmode, stack_pointer_rtx, \
291 gen_rtx (CONST_INT, VOIDmode, -36)))
292
293 /* Place where static chain is found upon entry to routine. */
294 #define STATIC_CHAIN_INCOMING \
295 gen_rtx (MEM, Pmode, gen_rtx (PLUS, Pmode, arg_pointer_rtx, \
296 gen_rtx (CONST_INT, VOIDmode, -20)))
297
298 /* Place that structure value return address is placed.
299
300 On the ROMP, it is passed as an extra parameter. */
301 #define STRUCT_VALUE 0
302 \f
303 /* Define the classes of registers for register constraints in the
304 machine description. Also define ranges of constants.
305
306 One of the classes must always be named ALL_REGS and include all hard regs.
307 If there is more than one class, another class must be named NO_REGS
308 and contain no registers.
309
310 The name GENERAL_REGS must be the name of a class (or an alias for
311 another name such as ALL_REGS). This is the class of registers
312 that is allowed by "g" or "r" in a register constraint.
313 Also, registers outside this class are allocated only when
314 instructions express preferences for them.
315
316 The classes must be numbered in nondecreasing order; that is,
317 a larger-numbered class must never be contained completely
318 in a smaller-numbered class.
319
320 For any two classes, it is very desirable that there be another
321 class that represents their union. */
322
323 /* The ROMP has two types of registers, general and floating-point.
324
325 However, r0 is special in that it cannot be used as a base register.
326 So make a class for registers valid as base registers.
327
328 For floating-point support, add classes that just consist of r0 and
329 r15, respectively. */
330
331 enum reg_class { NO_REGS, R0_REGS, R15_REGS, BASE_REGS, GENERAL_REGS,
332 FP_REGS, ALL_REGS, LIM_REG_CLASSES };
333
334 #define N_REG_CLASSES (int) LIM_REG_CLASSES
335
336 /* Give names of register classes as strings for dump file. */
337
338 #define REG_CLASS_NAMES \
339 {"NO_REGS", "R0_REGS", "R15_REGS", "BASE_REGS", "GENERAL_REGS", \
340 "FP_REGS", "ALL_REGS" }
341
342 /* Define which registers fit in which classes.
343 This is an initializer for a vector of HARD_REG_SET
344 of length N_REG_CLASSES. */
345
346 #define REG_CLASS_CONTENTS {0, 0x00001, 0x08000, 0x1fffe, 0x1ffff, \
347 0x1fe0000, 0x1ffffff }
348
349 /* The same information, inverted:
350 Return the class number of the smallest class containing
351 reg number REGNO. This could be a conditional expression
352 or could index an array. */
353
354 #define REGNO_REG_CLASS(REGNO) \
355 ((REGNO) == 0 ? GENERAL_REGS : FP_REGNO_P (REGNO) ? FP_REGS : BASE_REGS)
356
357 /* The class value for index registers, and the one for base regs. */
358 #define INDEX_REG_CLASS BASE_REGS
359 #define BASE_REG_CLASS BASE_REGS
360
361 /* Get reg_class from a letter such as appears in the machine description. */
362
363 #define REG_CLASS_FROM_LETTER(C) \
364 ((C) == 'f' ? FP_REGS \
365 : (C) == 'b' ? BASE_REGS \
366 : (C) == 'z' ? R0_REGS \
367 : (C) == 't' ? R15_REGS \
368 : NO_REGS)
369
370 /* The letters I, J, K, L, M, N, and P in a register constraint string
371 can be used to stand for particular ranges of immediate operands.
372 This macro defines what the ranges are.
373 C is the letter, and VALUE is a constant value.
374 Return 1 if VALUE is in the range specified by C.
375
376 `I' is constants less than 16
377 `J' is negative constants greater than -16
378 `K' is the range for a normal D insn.
379 `L' is a constant with only the low-order 16 bits set
380 `M' is a constant with only the high-order 16 bits set
381 `N' is a single-bit constant
382 `O' is a constant with either the high-order or low-order 16 bits all ones
383 `P' is the complement of a single-bit constant
384 */
385
386 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
387 ( (C) == 'I' ? (unsigned) (VALUE) < 0x10 \
388 : (C) == 'J' ? (VALUE) < 0 && (VALUE) > -16 \
389 : (C) == 'K' ? (unsigned) ((VALUE) + 0x8000) < 0x10000 \
390 : (C) == 'L' ? ((VALUE) & 0xffff0000) == 0 \
391 : (C) == 'M' ? ((VALUE) & 0xffff) == 0 \
392 : (C) == 'N' ? exact_log2 (VALUE) >= 0 \
393 : (C) == 'O' ? ((VALUE) & 0xffff) == 0xffff \
394 || ((VALUE) & 0xffff0000) == 0xffff0000 \
395 : (C) == 'P' ? exact_log2 (~ (VALUE)) >= 0 \
396 : 0)
397
398 /* Similar, but for floating constants, and defining letters G and H.
399 Here VALUE is the CONST_DOUBLE rtx itself.
400 No floating-point constants on ROMP. */
401
402 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0
403
404 /* Optional extra constraints for this machine.
405
406 For the ROMP, `Q' means that this is a memory operand but not a symbolic
407 memory operand. Note that an unassigned pseudo register is such a
408 memory operand. If register allocation has not been done, we reject
409 pseudos, since we assume (hope) that they will get hard registers.
410
411 `R' means that this is a constant pool reference to the current function.
412 This is just r14 and so can be treated as a register. We bother with this
413 just in move insns as that is the only place it is likely to occur.
414
415 `S' means that this is the address of a constant pool location. This is
416 equal to r14 plus a constant. We also only check for this in move insns. */
417
418 #define EXTRA_CONSTRAINT(OP, C) \
419 ((C) == 'Q' ? \
420 ((GET_CODE (OP) == REG \
421 && REGNO (OP) >= FIRST_PSEUDO_REGISTER \
422 && reg_renumber != 0 \
423 && reg_renumber[REGNO (OP)] < 0) \
424 || (GET_CODE (OP) == MEM \
425 && ! symbolic_memory_operand (OP, VOIDmode))) \
426 : (C) == 'R' ? current_function_operand (OP, VOIDmode) \
427 : (C) == 'S' ? constant_pool_address_operand (OP, VOIDmode) \
428 : 0)
429
430 /* Given an rtx X being reloaded into a reg required to be
431 in class CLASS, return the class of reg to actually use.
432 In general this is just CLASS; but on some machines
433 in some cases it is preferable to use a more restrictive class.
434
435 For the ROMP, if X is a memory reference that involves a symbol,
436 we must use a BASE_REGS register instead of GENERAL_REGS
437 to do the reload. The argument of MEM be either REG, PLUS, or SYMBOL_REF
438 to be valid, so we assume that this is the case.
439
440 Also, if X is an integer class, ensure that floating-point registers
441 aren't used. */
442
443 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
444 ((CLASS) == FP_REGS && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
445 ? GENERAL_REGS : \
446 (CLASS) != GENERAL_REGS ? (CLASS) : \
447 GET_CODE (X) != MEM ? GENERAL_REGS : \
448 GET_CODE (XEXP (X, 0)) == SYMBOL_REF ? BASE_REGS : \
449 GET_CODE (XEXP (X, 0)) == LABEL_REF ? BASE_REGS : \
450 GET_CODE (XEXP (X, 0)) == CONST ? BASE_REGS : \
451 GET_CODE (XEXP (X, 0)) == REG ? GENERAL_REGS : \
452 GET_CODE (XEXP (X, 0)) != PLUS ? GENERAL_REGS : \
453 GET_CODE (XEXP (XEXP (X, 0), 1)) == SYMBOL_REF ? BASE_REGS : \
454 GET_CODE (XEXP (XEXP (X, 0), 1)) == LABEL_REF ? BASE_REGS : \
455 GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST ? BASE_REGS : GENERAL_REGS)
456
457 /* Return the register class of a scratch register needed to store into
458 OUT from a register of class CLASS in MODE.
459
460 On the ROMP, we cannot store into a symbolic memory address from an
461 integer register; we need a BASE_REGS register as a scratch to do it. */
462
463 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
464 (GET_MODE_CLASS (MODE) == MODE_INT && symbolic_memory_operand (OUT, MODE) \
465 ? BASE_REGS : NO_REGS)
466
467 /* Return the maximum number of consecutive registers
468 needed to represent mode MODE in a register of class CLASS.
469
470 On ROMP, this is the size of MODE in words,
471 except in the FP regs, where a single reg is always enough. */
472 #define CLASS_MAX_NREGS(CLASS, MODE) \
473 ((CLASS) == FP_REGS ? 1 \
474 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
475 \f
476 /* Stack layout; function entry, exit and calling. */
477
478 /* Define this if pushing a word on the stack
479 makes the stack pointer a smaller address. */
480 #define STACK_GROWS_DOWNWARD
481
482 /* Define this if the nominal address of the stack frame
483 is at the high-address end of the local variables;
484 that is, each additional local variable allocated
485 goes at a more negative offset in the frame. */
486 #define FRAME_GROWS_DOWNWARD
487
488 /* Offset within stack frame to start allocating local variables at.
489 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
490 first local allocated. Otherwise, it is the offset to the BEGINNING
491 of the first local allocated.
492 On the ROMP, if we set the frame pointer to 15 words below the highest
493 address of the highest local variable, the first 16 words will be
494 addressable via D-short insns. */
495 #define STARTING_FRAME_OFFSET 64
496
497 /* If we generate an insn to push BYTES bytes,
498 this says how many the stack pointer really advances by.
499 On ROMP, don't define this because there are no push insns. */
500 /* #define PUSH_ROUNDING(BYTES) */
501
502 /* Offset of first parameter from the argument pointer register value.
503 On the ROMP, we define the argument pointer to the start of the argument
504 area. */
505 #define FIRST_PARM_OFFSET(FNDECL) 0
506
507 /* Define this if stack space is still allocated for a parameter passed
508 in a register. The value is the number of bytes. */
509 #define REG_PARM_STACK_SPACE(FNDECL) 16
510
511 /* This is the difference between the logical top of stack and the actual sp.
512
513 For the ROMP, sp points past the words allocated for the first four outgoing
514 arguments (they are part of the callee's frame). */
515 #define STACK_POINTER_OFFSET -16
516
517 /* Define this if the maximum size of all the outgoing args is to be
518 accumulated and pushed during the prologue. The amount can be
519 found in the variable current_function_outgoing_args_size. */
520 #define ACCUMULATE_OUTGOING_ARGS
521
522 /* Value is the number of bytes of arguments automatically
523 popped when returning from a subroutine call.
524 FUNTYPE is the data type of the function (as a tree),
525 or for a library call it is an identifier node for the subroutine name.
526 SIZE is the number of bytes of arguments passed on the stack. */
527
528 #define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
529
530 /* Define how to find the value returned by a function.
531 VALTYPE is the data type of the value (as a tree).
532 If the precise function being called is known, FUNC is its FUNCTION_DECL;
533 otherwise, FUNC is 0.
534
535 On ROMP the value is found in r2, unless the machine specific option
536 fp-arg-in-fpregs is selected, in which case FP return values are in fr1 */
537
538 #define FUNCTION_VALUE(VALTYPE, FUNC) \
539 gen_rtx (REG, TYPE_MODE (VALTYPE), \
540 (TARGET_FP_REGS && \
541 GET_MODE_CLASS (TYPE_MODE (VALTYPE)) == MODE_FLOAT) ? 18 : 2)
542
543 /* Define how to find the value returned by a library function
544 assuming the value has mode MODE. */
545
546 #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 2)
547
548 /* The definition of this macro implies that there are cases where
549 a scalar value cannot be returned in registers.
550
551 For the ROMP, if compatibility with HC is required, anything of
552 type DImode is returned in memory. */
553
554 #define RETURN_IN_MEMORY(type) \
555 (TYPE_MODE (type) == BLKmode \
556 || (TARGET_HC_STRUCT_RETURN && TYPE_MODE (type) == DImode))
557
558 /* 1 if N is a possible register number for a function value
559 as seen by the caller.
560
561 On ROMP, r2 is the only register thus used unless fp values are to be
562 returned in fp regs, in which case fr1 is also used. */
563
564 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 2 || ((N) == 18 && TARGET_FP_REGS))
565
566 /* 1 if N is a possible register number for function argument passing.
567 On ROMP, these are r2-r5 (and fr1-fr4 if fp regs are used). */
568
569 #define FUNCTION_ARG_REGNO_P(N) \
570 (((N) <= 5 && (N) >= 2) || (TARGET_FP_REGS && (N) > 17 && (N) < 21))
571 \f
572 /* Define a data type for recording info about an argument list
573 during the scan of that argument list. This data type should
574 hold all necessary information about the function itself
575 and about the args processed so far, enough to enable macros
576 such as FUNCTION_ARG to determine where the next arg should go.
577
578 On the ROMP, this is a structure. The first word is the number of
579 words of (integer only if -mfp-arg-in-fpregs is specified) arguments
580 scanned so far (including the invisible argument, if any, which holds
581 the structure-value-address). The second word hold the corresponding
582 value for floating-point arguments, except that both single and double
583 count as one register. */
584
585 struct rt_cargs {int gregs, fregs; };
586 #define CUMULATIVE_ARGS struct rt_cargs
587
588 #define USE_FP_REG(MODE,CUM) \
589 (TARGET_FP_REGS && GET_MODE_CLASS (MODE) == MODE_FLOAT \
590 && (CUM).fregs < 3)
591
592 /* Define intermediate macro to compute the size (in registers) of an argument
593 for the ROMP. */
594
595 #define ROMP_ARG_SIZE(MODE, TYPE, NAMED) \
596 (! (NAMED) ? 0 \
597 : (MODE) != BLKmode \
598 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
599 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
600
601 /* Initialize a variable CUM of type CUMULATIVE_ARGS
602 for a call to a function whose data type is FNTYPE.
603 For a library call, FNTYPE is 0.
604
605 On ROMP, the offset normally starts at 0, but starts at 4 bytes
606 when the function gets a structure-value-address as an
607 invisible first argument. */
608
609 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
610 (CUM).gregs = 0, \
611 (CUM).fregs = 0
612
613 /* Update the data in CUM to advance over an argument
614 of mode MODE and data type TYPE.
615 (TYPE is null for libcalls where that information may not be available.) */
616
617 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
618 { if (NAMED) \
619 { \
620 if (USE_FP_REG(MODE, CUM)) \
621 (CUM).fregs++; \
622 else \
623 (CUM).gregs += ROMP_ARG_SIZE (MODE, TYPE, NAMED); \
624 } \
625 }
626
627 /* Determine where to put an argument to a function.
628 Value is zero to push the argument on the stack,
629 or a hard register in which to store the argument.
630
631 MODE is the argument's machine mode.
632 TYPE is the data type of the argument (as a tree).
633 This is null for libcalls where that information may
634 not be available.
635 CUM is a variable of type CUMULATIVE_ARGS which gives info about
636 the preceding args and about the function being called.
637 NAMED is nonzero if this argument is a named parameter
638 (otherwise it is an extra parameter matching an ellipsis).
639
640 On ROMP the first four words of args are normally in registers
641 and the rest are pushed. */
642
643 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
644 (! (NAMED) ? 0 \
645 : ((TYPE) != 0 && TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST) ? 0 \
646 : USE_FP_REG(MODE,CUM) ? gen_rtx(REG, (MODE),(CUM.fregs) + 17) \
647 : (CUM).gregs < 4 ? gen_rtx(REG, (MODE), 2 + (CUM).gregs) : 0)
648
649 /* For an arg passed partly in registers and partly in memory,
650 this is the number of registers used.
651 For args passed entirely in registers or entirely in memory, zero. */
652
653 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
654 (! (NAMED) ? 0 \
655 : USE_FP_REG(MODE,CUM) ? 0 \
656 : (((CUM).gregs < 4 \
657 && 4 < ((CUM).gregs + ROMP_ARG_SIZE (MODE, TYPE, NAMED))) \
658 ? 4 - (CUM).gregs : 0))
659
660 /* Perform any needed actions needed for a function that is receiving a
661 variable number of arguments.
662
663 CUM is as above.
664
665 MODE and TYPE are the mode and type of the current parameter.
666
667 PRETEND_SIZE is a variable that should be set to the amount of stack
668 that must be pushed by the prolog to pretend that our caller pushed
669 it.
670
671 Normally, this macro will push all remaining incoming registers on the
672 stack and set PRETEND_SIZE to the length of the registers pushed. */
673
674 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
675 { if (TARGET_FP_REGS) \
676 error ("can't have varargs with -mfp-arg-in-fp-regs"); \
677 else if ((CUM).gregs < 4) \
678 { \
679 int first_reg_offset = (CUM).gregs; \
680 \
681 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
682 first_reg_offset += ROMP_ARG_SIZE (TYPE_MODE (TYPE), TYPE, 1); \
683 \
684 if (first_reg_offset > 4) \
685 first_reg_offset = 4; \
686 \
687 if (! NO_RTL && first_reg_offset != 4) \
688 move_block_from_reg \
689 (2 + first_reg_offset, \
690 gen_rtx (MEM, BLKmode, \
691 plus_constant (virtual_incoming_args_rtx, \
692 first_reg_offset * 4)), \
693 4 - first_reg_offset); \
694 PRETEND_SIZE = (4 - first_reg_offset) * UNITS_PER_WORD; \
695 } \
696 }
697
698 /* This macro produces the initial definition of a function name.
699 On the ROMP, we need to place an extra '.' in the function name. */
700
701 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
702 { if (TREE_PUBLIC(DECL)) \
703 fprintf (FILE, "\t.globl _.%s\n", NAME); \
704 fprintf (FILE, "_.%s:\n", NAME); \
705 }
706
707 /* This macro is used to output the start of the data area.
708
709 On the ROMP, the _name is a pointer to the data area. At that
710 location is the address of _.name, which is really the name of
711 the function. We need to set all this up here.
712
713 The global declaration of the data area, if needed, is done in
714 `assemble_function', where it thinks it is globalizing the function
715 itself. */
716
717 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, NAME, DECL, SIZE) \
718 { extern int data_offset; \
719 data_section (); \
720 fprintf (FILE, "\t.align 2\n"); \
721 ASM_OUTPUT_LABEL (FILE, NAME); \
722 fprintf (FILE, "\t.long _.%s, 0, ", NAME); \
723 if (current_function_calls_alloca) \
724 fprintf (FILE, "0x%x\n", \
725 0xf6900000 + current_function_outgoing_args_size); \
726 else \
727 fprintf (FILE, "0\n"); \
728 data_offset = ((SIZE) + 12 + 3) / 4; \
729 }
730
731 /* Select section for constant in constant pool.
732
733 On ROMP, all constants are in the data area. */
734
735 #define SELECT_RTX_SECTION(MODE, X) data_section ()
736
737 /* This macro generates the assembly code for function entry.
738 FILE is a stdio stream to output the code to.
739 SIZE is an int: how many units of temporary storage to allocate.
740 Refer to the array `regs_ever_live' to determine which registers
741 to save; `regs_ever_live[I]' is nonzero if register number I
742 is ever used in the function. This macro is responsible for
743 knowing which registers should not be saved even if used. */
744
745 #define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
746
747 /* Output assembler code to FILE to increment profiler label # LABELNO
748 for profiling a function entry. */
749
750 #define FUNCTION_PROFILER(FILE, LABELNO) \
751 fprintf(FILE, "\tcas r0,r15,r0\n\tbali r15,mcount\n");
752
753 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
754 the stack pointer does not matter. The value is tested only in
755 functions that have frame pointers.
756 No definition is equivalent to always zero. */
757 /* #define EXIT_IGNORE_STACK 1 */
758
759 /* This macro generates the assembly code for function exit,
760 on machines that need it. If FUNCTION_EPILOGUE is not defined
761 then individual return instructions are generated for each
762 return statement. Args are same as for FUNCTION_PROLOGUE.
763
764 The function epilogue should not depend on the current stack pointer!
765 It should use the frame pointer only. This is mandatory because
766 of alloca; we also take advantage of it to omit stack adjustments
767 before returning. */
768
769 #define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
770 \f
771 /* Output assembler code for a block containing the constant parts
772 of a trampoline, leaving space for the variable parts.
773
774 The trampoline should set the static chain pointer to value placed
775 into the trampoline and should branch to the specified routine.
776
777 On the ROMP, we have a problem. There are no free registers to use
778 to construct the static chain and function addresses. Hence we use
779 the following kludge: r15 (the return address) is first saved in mq.
780 Then we use r15 to form the function address. We then branch to the
781 function and restore r15 in the delay slot. This makes it appear that
782 the function was called directly from the caller.
783
784 (Note that the function address built is actually that of the data block.
785 This is passed in r0 and the actual routine address is loaded into r15.)
786
787 In addition, note that the address of the "called function", in this case
788 the trampoline, is actually the address of the data area. So we need to
789 make a fake data area that will contain the address of the trampoline.
790 Note that this must be defined as two half-words, since the trampoline
791 template (as opposed to the trampoline on the stack) is only half-word
792 aligned. */
793
794 #define TRAMPOLINE_TEMPLATE(FILE) \
795 { \
796 fprintf (FILE, "\t.short 0,0\n"); \
797 fprintf (FILE, "\tcau r0,0(r0)\n"); \
798 fprintf (FILE, "\toil r0,r0,0\n"); \
799 fprintf (FILE, "\tmts r10,r15\n"); \
800 fprintf (FILE, "\tst r0,-36(r1)\n"); \
801 fprintf (FILE, "\tcau r15,0(r0)\n"); \
802 fprintf (FILE, "\toil r15,r15,0\n"); \
803 fprintf (FILE, "\tcas r0,r15,r0\n"); \
804 fprintf (FILE, "\tls r15,0(r15)\n"); \
805 fprintf (FILE, "\tbrx r15\n"); \
806 fprintf (FILE, "\tmfs r10,r15\n"); \
807 }
808
809 /* Length in units of the trampoline for entering a nested function. */
810
811 #define TRAMPOLINE_SIZE 36
812
813 /* Emit RTL insns to initialize the variable parts of a trampoline.
814 FNADDR is an RTX for the address of the function's pure code.
815 CXT is an RTX for the static chain value for the function.
816
817 On the RT, the static chain and function addresses are written in
818 two 16-bit sections.
819
820 We also need to write the address of the first instruction in
821 the trampoline into the first word of the trampoline to simulate a
822 data area. */
823
824 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
825 { \
826 rtx _addr, _temp; \
827 rtx _val; \
828 \
829 _temp = expand_binop (SImode, add_optab, ADDR, \
830 gen_rtx (CONST_INT, VOIDmode, 4), \
831 0, 1, OPTAB_LIB_WIDEN); \
832 emit_move_insn (gen_rtx (MEM, SImode, \
833 memory_address (SImode, ADDR)), _temp); \
834 \
835 _val = force_reg (SImode, CXT); \
836 _addr = memory_address (HImode, plus_constant (ADDR, 10)); \
837 emit_move_insn (gen_rtx (MEM, HImode, _addr), \
838 gen_lowpart (HImode, _val)); \
839 _temp = expand_shift (RSHIFT_EXPR, SImode, _val, \
840 build_int_2 (16, 0), 0, 1); \
841 _addr = memory_address (HImode, plus_constant (ADDR, 6)); \
842 emit_move_insn (gen_rtx (MEM, HImode, _addr), \
843 gen_lowpart (HImode, _temp)); \
844 \
845 _val = force_reg (SImode, FNADDR); \
846 _addr = memory_address (HImode, plus_constant (ADDR, 24)); \
847 emit_move_insn (gen_rtx (MEM, HImode, _addr), \
848 gen_lowpart (HImode, _val)); \
849 _temp = expand_shift (RSHIFT_EXPR, SImode, _val, \
850 build_int_2 (16, 0), 0, 1); \
851 _addr = memory_address (HImode, plus_constant (ADDR, 20)); \
852 emit_move_insn (gen_rtx (MEM, HImode, _addr), \
853 gen_lowpart (HImode, _temp)); \
854 \
855 }
856 \f
857 /* Definitions for register eliminations.
858
859 We have two registers that can be eliminated on the ROMP. First, the
860 frame pointer register can often be eliminated in favor of the stack
861 pointer register. Secondly, the argument pointer register can always be
862 eliminated; it is replaced with either the stack or frame pointer.
863
864 In addition, we use the elimination mechanism to see if r14 is needed.
865 Initially we assume that it isn't. If it is, we spill it. This is done
866 by making it an eliminable register. It doesn't matter what we replace
867 it with, since it will never occur in the rtl at this point. */
868
869 /* This is an array of structures. Each structure initializes one pair
870 of eliminable registers. The "from" register number is given first,
871 followed by "to". Eliminations of the same "from" register are listed
872 in order of preference. */
873 #define ELIMINABLE_REGS \
874 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
875 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
876 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
877 { 14, 0}}
878
879 /* Given FROM and TO register numbers, say whether this elimination is allowed.
880 Frame pointer elimination is automatically handled.
881
882 For the ROMP, if frame pointer elimination is being done, we would like to
883 convert ap into fp, not sp.
884
885 We need r14 if various conditions (tested in romp_using_r14) are true.
886
887 All other eliminations are valid. */
888 #define CAN_ELIMINATE(FROM, TO) \
889 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
890 ? ! frame_pointer_needed \
891 : (FROM) == 14 ? ! romp_using_r14 () \
892 : 1)
893
894 /* Define the offset between two registers, one to be eliminated, and the other
895 its replacement, at the start of a routine. */
896 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
897 { if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
898 { \
899 if (romp_pushes_stack ()) \
900 (OFFSET) = ((get_frame_size () - 64) \
901 + current_function_outgoing_args_size); \
902 else \
903 (OFFSET) = - (romp_sa_size () + 64); \
904 } \
905 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
906 (OFFSET) = romp_sa_size () - 16 + 64; \
907 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
908 { \
909 if (romp_pushes_stack ()) \
910 (OFFSET) = (get_frame_size () + (romp_sa_size () - 16) \
911 + current_function_outgoing_args_size); \
912 else \
913 (OFFSET) = -16; \
914 } \
915 else if ((FROM) == 14) \
916 (OFFSET) = 0; \
917 else \
918 abort (); \
919 }
920 \f
921 /* Addressing modes, and classification of registers for them. */
922
923 /* #define HAVE_POST_INCREMENT */
924 /* #define HAVE_POST_DECREMENT */
925
926 /* #define HAVE_PRE_DECREMENT */
927 /* #define HAVE_PRE_INCREMENT */
928
929 /* Macros to check register numbers against specific register classes. */
930
931 /* These assume that REGNO is a hard or pseudo reg number.
932 They give nonzero only if REGNO is a hard reg of the suitable class
933 or a pseudo reg currently allocated to a suitable hard reg.
934 Since they use reg_renumber, they are safe only once reg_renumber
935 has been allocated, which happens in local-alloc.c. */
936
937 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
938 #define REGNO_OK_FOR_BASE_P(REGNO) \
939 ((REGNO) < FIRST_PSEUDO_REGISTER \
940 ? (REGNO) < 16 && (REGNO) != 0 && (REGNO) != 16 \
941 : (reg_renumber[REGNO] < 16 && reg_renumber[REGNO] >= 0 \
942 && reg_renumber[REGNO] != 16))
943 \f
944 /* Maximum number of registers that can appear in a valid memory address. */
945
946 #define MAX_REGS_PER_ADDRESS 1
947
948 /* Recognize any constant value that is a valid address. */
949
950 #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
951
952 /* Nonzero if the constant value X is a legitimate general operand.
953 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
954
955 On the ROMP, there is a bit of a hack here. Basically, we wish to
956 only issue instructions that are not `as' macros. However, in the
957 case of `get', `load', and `store', if the operand is a relocatable
958 symbol (possibly +/- an integer), there is no way to express the
959 resulting split-relocation except with the macro. Therefore, allow
960 either a constant valid in a normal (sign-extended) D-format insn or
961 a relocatable expression.
962
963 Also, for DFmode and DImode, we must ensure that both words are
964 addressable.
965
966 We define two macros: The first is given an offset (0 or 4) and indicates
967 that the operand is a CONST_INT that is valid for that offset. The second
968 indicates a valid non-CONST_INT constant. */
969
970 #define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \
971 (GET_CODE (X) == CONST_INT \
972 && (unsigned) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
973
974 #define LEGITIMATE_ADDRESS_CONSTANT_P(X) \
975 (GET_CODE (X) == SYMBOL_REF \
976 || GET_CODE (X) == LABEL_REF \
977 || (GET_CODE (X) == CONST \
978 && (GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
979 || GET_CODE (XEXP (XEXP (X, 0), 0)) == LABEL_REF) \
980 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT))
981
982 /* Include all constant integers and constant double, but exclude
983 SYMBOL_REFs that are to be obtained from the data area (see below). */
984 #define LEGITIMATE_CONSTANT_P(X) \
985 ((LEGITIMATE_ADDRESS_CONSTANT_P (X) \
986 || GET_CODE (X) == CONST_INT \
987 || GET_CODE (X) == CONST_DOUBLE) \
988 && ! (GET_CODE (X) == SYMBOL_REF && SYMBOL_REF_FLAG (X)))
989
990 /* For no good reason, we do the same as the other RT compilers and load
991 the addresses of data areas for a function from our data area. That means
992 that we need to mark such SYMBOL_REFs. We do so here. */
993 #define ENCODE_SECTION_INFO(DECL) \
994 if (TREE_CODE (TREE_TYPE (DECL)) == FUNCTION_TYPE) \
995 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
996
997 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
998 and check its validity for a certain class.
999 We have two alternate definitions for each of them.
1000 The usual definition accepts all pseudo regs; the other rejects
1001 them unless they have been allocated suitable hard regs.
1002 The symbol REG_OK_STRICT causes the latter definition to be used.
1003
1004 Most source files want to accept pseudo regs in the hope that
1005 they will get allocated to the class that the insn wants them to be in.
1006 Source files for reload pass need to be strict.
1007 After reload, it makes no difference, since pseudo regs have
1008 been eliminated by then. */
1009
1010 #ifndef REG_OK_STRICT
1011
1012 /* Nonzero if X is a hard reg that can be used as an index
1013 or if it is a pseudo reg. */
1014 #define REG_OK_FOR_INDEX_P(X) 0
1015 /* Nonzero if X is a hard reg that can be used as a base reg
1016 or if it is a pseudo reg. */
1017 #define REG_OK_FOR_BASE_P(X) \
1018 (REGNO (X) != 0 && (REGNO (X) < 17 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1019
1020 #else
1021
1022 /* Nonzero if X is a hard reg that can be used as an index. */
1023 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1024 /* Nonzero if X is a hard reg that can be used as a base reg. */
1025 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1026
1027 #endif
1028 \f
1029 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1030 that is a valid memory address for an instruction.
1031 The MODE argument is the machine mode for the MEM expression
1032 that wants to use this address.
1033
1034 On the ROMP, a legitimate address is either a legitimate constant,
1035 a register plus a legitimate constant, or a register. See the
1036 discussion at the LEGITIMATE_ADDRESS_CONSTANT_P macro. */
1037 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1038 { if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1039 goto ADDR; \
1040 if (GET_CODE (X) != CONST_INT && LEGITIMATE_ADDRESS_CONSTANT_P (X)) \
1041 goto ADDR; \
1042 if (GET_CODE (X) == PLUS \
1043 && GET_CODE (XEXP (X, 0)) == REG \
1044 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1045 && LEGITIMATE_ADDRESS_CONSTANT_P (XEXP (X, 1))) \
1046 goto ADDR; \
1047 if (GET_CODE (X) == PLUS \
1048 && GET_CODE (XEXP (X, 0)) == REG \
1049 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1050 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
1051 && (((MODE) != DFmode && (MODE) != DImode) \
1052 || (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4)))) \
1053 goto ADDR; \
1054 }
1055 \f
1056 /* Try machine-dependent ways of modifying an illegitimate address
1057 to be legitimate. If we find one, return the new, valid address.
1058 This macro is used in only one place: `memory_address' in explow.c.
1059
1060 OLDX is the address as it was before break_out_memory_refs was called.
1061 In some cases it is useful to look at this to decide what needs to be done.
1062
1063 MODE and WIN are passed so that this macro can use
1064 GO_IF_LEGITIMATE_ADDRESS.
1065
1066 It is always safe for this macro to do nothing. It exists to recognize
1067 opportunities to optimize the output.
1068
1069 On ROMP, check for the sum of a register with a constant
1070 integer that is out of range. If so, generate code to add the
1071 constant with the low-order 16 bits masked to the register and force
1072 this result into another register (this can be done with `cau').
1073 Then generate an address of REG+(CONST&0xffff), allowing for the
1074 possibility of bit 16 being a one.
1075
1076 If the register is not OK for a base register, abort. */
1077
1078 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1079 { if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1080 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1081 && (unsigned) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \
1082 { int high_int, low_int; \
1083 if (! REG_OK_FOR_BASE_P (XEXP (X, 0))) \
1084 abort (); \
1085 high_int = INTVAL (XEXP (X, 1)) >> 16; \
1086 low_int = INTVAL (XEXP (X, 1)) & 0xffff; \
1087 if (low_int & 0x8000) \
1088 high_int += 1, low_int |= 0xffff0000; \
1089 (X) = gen_rtx (PLUS, SImode, \
1090 force_operand \
1091 (gen_rtx (PLUS, SImode, XEXP (X, 0), \
1092 gen_rtx (CONST_INT, VOIDmode, \
1093 high_int << 16)), 0),\
1094 gen_rtx (CONST_INT, VOIDmode, low_int)); \
1095 } \
1096 }
1097
1098 /* Go to LABEL if ADDR (a legitimate address expression)
1099 has an effect that depends on the machine mode it is used for.
1100
1101 On the ROMP this is true only if the address is valid with a zero offset
1102 but not with an offset of four (this means it cannot be used as an
1103 address for DImode or DFmode). Since we know it is valid, we just check
1104 for an address that is not valid with an offset of four. */
1105
1106 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1107 { if (GET_CODE (ADDR) == PLUS \
1108 && ! LEGITIMATE_ADDRESS_CONSTANT_P (XEXP (ADDR, 1)) \
1109 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 4)) \
1110 goto LABEL; \
1111 }
1112 \f
1113 /* Define this if some processing needs to be done immediately before
1114 emitting code for an insn.
1115
1116 This is used on the ROMP, to compensate for a bug in the floating-point
1117 code. When a floating-point operation is done with the first and third
1118 operands both the same floating-point register, it will generate bad code
1119 for the MC68881. So we must detect this. If it occurs, we patch the
1120 first operand to be fr0 and insert a move insn to move it to the desired
1121 destination. */
1122 #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
1123 { rtx op0, op1, op2, operation, tem; \
1124 if (NOPERANDS >= 3 && get_attr_type (INSN) == TYPE_FP) \
1125 { \
1126 op0 = OPERANDS[0]; \
1127 operation = OPERANDS[1]; \
1128 if (float_conversion (operation, VOIDmode)) \
1129 operation = XEXP (operation, 0); \
1130 if (float_binary (operation, VOIDmode)) \
1131 { \
1132 op1 = XEXP (operation, 0), op2 = XEXP (operation, 1); \
1133 if (float_conversion (op1, VOIDmode)) \
1134 op1 = XEXP (op1, 0); \
1135 if (float_conversion (op2, VOIDmode)) \
1136 op2 = XEXP (op2, 0); \
1137 if (rtx_equal_p (op0, op2) \
1138 && (GET_CODE (operation) == PLUS \
1139 || GET_CODE (operation) == MULT)) \
1140 tem = op1, op1 = op2, op2 = tem; \
1141 if (GET_CODE (op0) == REG && FP_REGNO_P (REGNO (op0)) \
1142 && GET_CODE (op2) == REG && FP_REGNO_P (REGNO (op2)) \
1143 && REGNO (op0) == REGNO (op2)) \
1144 { \
1145 tem = gen_rtx (REG, GET_MODE (op0), 17); \
1146 emit_insn_after (gen_move_insn (op0, tem), INSN); \
1147 SET_DEST (XVECEXP (PATTERN (INSN), 0, 0)) = tem; \
1148 OPERANDS[0] = tem; \
1149 } \
1150 } \
1151 } \
1152 }
1153 \f
1154 /* Specify the machine mode that this machine uses
1155 for the index in the tablejump instruction. */
1156 #define CASE_VECTOR_MODE SImode
1157
1158 /* Define this if the tablejump instruction expects the table
1159 to contain offsets from the address of the table.
1160 Do not define this if the table should contain absolute addresses. */
1161 /* #define CASE_VECTOR_PC_RELATIVE */
1162
1163 /* Specify the tree operation to be used to convert reals to integers. */
1164 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1165
1166 /* This is the kind of divide that is easiest to do in the general case. */
1167 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1168
1169 /* Define this as 1 if `char' should by default be signed; else as 0. */
1170 #define DEFAULT_SIGNED_CHAR 0
1171
1172 /* This flag, if defined, says the same insns that convert to a signed fixnum
1173 also convert validly to an unsigned one.
1174
1175 We actually lie a bit here as overflow conditions are different. But
1176 they aren't being checked anyway. */
1177
1178 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1179
1180 /* Max number of bytes we can move from memory to memory
1181 in one reasonably fast instruction. */
1182 #define MOVE_MAX 4
1183
1184 /* Nonzero if access to memory by bytes is no faster than for words.
1185 Also non-zero if doing byte operations (specifically shifts) in registers
1186 is undesirable. */
1187 #define SLOW_BYTE_ACCESS 1
1188
1189 /* Define if normal loads of shorter-than-word items from memory clears
1190 the rest of the bigs in the register. */
1191 #define BYTE_LOADS_ZERO_EXTEND
1192
1193 /* This is BSD, so it wants DBX format. */
1194 #define DBX_DEBUGGING_INFO
1195
1196 /* We don't have GAS for the RT yet, so don't write out special
1197 .stabs in cc1plus. */
1198
1199 #define FASCIST_ASSEMBLER
1200
1201 /* Do not break .stabs pseudos into continuations. */
1202 #define DBX_CONTIN_LENGTH 0
1203
1204 /* Don't try to use the `x' type-cross-reference character in DBX data.
1205 Also has the consequence of putting each struct, union or enum
1206 into a separate .stabs, containing only cross-refs to the others. */
1207 #define DBX_NO_XREFS
1208
1209 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1210 is done just by pretending it is already truncated. */
1211 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1212
1213 /* Specify the machine mode that pointers have.
1214 After generation of rtl, the compiler makes no further distinction
1215 between pointers and any other objects of this machine mode. */
1216 #define Pmode SImode
1217
1218 /* Mode of a function address in a call instruction (for indexing purposes).
1219
1220 Doesn't matter on ROMP. */
1221 #define FUNCTION_MODE SImode
1222
1223 /* Define this if addresses of constant functions
1224 shouldn't be put through pseudo regs where they can be cse'd.
1225 Desirable on machines where ordinary constants are expensive
1226 but a CALL with constant address is cheap. */
1227 #define NO_FUNCTION_CSE
1228
1229 /* Define this if shift instructions ignore all but the low-order
1230 few bits.
1231
1232 This is not true on the RT since it uses the low-order 6, not 5, bits.
1233 At some point, this should be extended to see how to express that. */
1234
1235 /* #define SHIFT_COUNT_TRUNCATED */
1236
1237 /* Compute the cost of computing a constant rtl expression RTX whose
1238 rtx-code is CODE, contained within an expression of code OUTER_CODE.
1239 The body of this macro is a portion of a switch statement. If the
1240 code is computed here, return it with a return statement. Otherwise,
1241 break from the switch. */
1242
1243 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1244 case CONST_INT: \
1245 if ((OUTER_CODE) == IOR && exact_log2 (INTVAL (RTX)) >= 0 \
1246 || (OUTER_CODE) == AND && exact_log2 (~INTVAL (RTX)) >= 0 \
1247 || (((OUTER_CODE) == PLUS || (OUTER_CODE) == MINUS) \
1248 && (unsigned int) (INTVAL (RTX) + 15) < 31) \
1249 || ((OUTER_CODE) == SET && (unsigned int) INTVAL (RTX) < 16))\
1250 return 0; \
1251 return ((unsigned int) (INTVAL(RTX) + 0x8000) < 0x10000 \
1252 || (INTVAL (RTX) & 0xffff0000) == 0) ? 0 : COSTS_N_INSNS (2);\
1253 case CONST: \
1254 case LABEL_REF: \
1255 case SYMBOL_REF: \
1256 if (current_function_operand (RTX, Pmode)) return 0; \
1257 return COSTS_N_INSNS (2); \
1258 case CONST_DOUBLE: \
1259 if ((RTX) == CONST0_RTX (GET_MODE (RTX))) return 2; \
1260 return ((GET_MODE_CLASS (GET_MODE (RTX)) == MODE_FLOAT) \
1261 ? COSTS_N_INSNS (5) : COSTS_N_INSNS (4));
1262
1263 /* Provide the costs of a rtl expression. This is in the body of a
1264 switch on CODE.
1265
1266 References to our own data area are really references to r14, so they
1267 are very cheap. Multiples and divides are very expensive. */
1268
1269 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1270 case MEM: \
1271 return current_function_operand (X, Pmode) ? 0 : COSTS_N_INSNS (2); \
1272 case MULT: \
1273 return (TARGET_IN_LINE_MUL && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT)\
1274 ? COSTS_N_INSNS (19) : COSTS_N_INSNS (25); \
1275 case DIV: \
1276 case UDIV: \
1277 case MOD: \
1278 case UMOD: \
1279 return COSTS_N_INSNS (45);
1280
1281 /* Compute the cost of an address. This is meant to approximate the size
1282 and/or execution delay of an insn using that address. If the cost is
1283 approximated by the RTL complexity, including CONST_COSTS above, as
1284 is usually the case for CISC machines, this macro should not be defined.
1285 For aggressively RISCy machines, only one insn format is allowed, so
1286 this macro should be a constant. The value of this macro only matters
1287 for valid addresses.
1288
1289 For the ROMP, everything is cost 0 except for addresses involving
1290 symbolic constants, which are cost 1. */
1291
1292 #define ADDRESS_COST(RTX) \
1293 ((GET_CODE (RTX) == SYMBOL_REF \
1294 && ! CONSTANT_POOL_ADDRESS_P (RTX)) \
1295 || GET_CODE (RTX) == LABEL_REF \
1296 || (GET_CODE (RTX) == CONST \
1297 && ! constant_pool_address_operand (RTX, Pmode)) \
1298 || (GET_CODE (RTX) == PLUS \
1299 && ((GET_CODE (XEXP (RTX, 1)) == SYMBOL_REF \
1300 && ! CONSTANT_POOL_ADDRESS_P (XEXP (RTX, 0))) \
1301 || GET_CODE (XEXP (RTX, 1)) == LABEL_REF \
1302 || GET_CODE (XEXP (RTX, 1)) == CONST)))
1303
1304 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
1305 should be adjusted to reflect any required changes. This macro is used when
1306 there is some systematic length adjustment required that would be difficult
1307 to express in the length attribute.
1308
1309 On the ROMP, there are two adjustments: First, a 2-byte insn in the delay
1310 slot of a CALL (including floating-point operations) actually takes four
1311 bytes. Second, we have to make the worst-case alignment assumption for
1312 address vectors. */
1313
1314 #define ADJUST_INSN_LENGTH(X,LENGTH) \
1315 if (GET_CODE (X) == INSN && GET_CODE (PATTERN (X)) == SEQUENCE \
1316 && GET_CODE (XVECEXP (PATTERN (X), 0, 0)) != JUMP_INSN \
1317 && get_attr_length (XVECEXP (PATTERN (X), 0, 1)) == 2) \
1318 (LENGTH) += 2; \
1319 else if (GET_CODE (X) == JUMP_INSN && GET_CODE (PATTERN (X)) == ADDR_VEC) \
1320 (LENGTH) += 2;
1321 \f
1322 /* Tell final.c how to eliminate redundant test instructions. */
1323
1324 /* Here we define machine-dependent flags and fields in cc_status
1325 (see `conditions.h'). */
1326
1327 /* Set if condition code (really not-Z) is stored in `test bit'. */
1328 #define CC_IN_TB 01000
1329
1330 /* Set if condition code is set by an unsigned compare. */
1331 #define CC_UNSIGNED 02000
1332
1333 /* Store in cc_status the expressions
1334 that the condition codes will describe
1335 after execution of an instruction whose pattern is EXP.
1336 Do not alter them if the instruction would not alter the cc's. */
1337
1338 #define NOTICE_UPDATE_CC(BODY,INSN) \
1339 update_cc (BODY, INSN)
1340 \f
1341 /* Control the assembler format that we output. */
1342
1343 /* Output at beginning of assembler file. */
1344
1345 #define ASM_FILE_START(FILE) \
1346 { extern char *version_string; \
1347 char *p; \
1348 \
1349 fprintf (FILE, "\t.globl .oVncs\n\t.set .oVncs,0\n") ; \
1350 fprintf (FILE, "\t.globl .oVgcc"); \
1351 for (p = version_string; *p != ' ' && *p != 0; p++) \
1352 fprintf (FILE, "%c", *p); \
1353 fprintf (FILE, "\n\t.set .oVgcc"); \
1354 for (p = version_string; *p != ' ' && *p != 0; p++) \
1355 fprintf (FILE, "%c", *p); \
1356 fprintf (FILE, ",0\n"); \
1357 }
1358
1359 /* Output to assembler file text saying following lines
1360 may contain character constants, extra white space, comments, etc. */
1361
1362 #define ASM_APP_ON ""
1363
1364 /* Output to assembler file text saying following lines
1365 no longer contain unusual constructs. */
1366
1367 #define ASM_APP_OFF ""
1368
1369 /* Output before instructions and read-only data. */
1370
1371 #define TEXT_SECTION_ASM_OP ".text"
1372
1373 /* Output before writable data. */
1374
1375 #define DATA_SECTION_ASM_OP ".data"
1376
1377 /* How to refer to registers in assembler output.
1378 This sequence is indexed by compiler's hard-register-number (see above). */
1379
1380 #define REGISTER_NAMES \
1381 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \
1382 "r10", "r11", "r12", "r13", "r14", "r15", "ap", \
1383 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7" }
1384
1385 /* How to renumber registers for dbx and gdb. */
1386
1387 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1388
1389 /* This is how to output the definition of a user-level label named NAME,
1390 such as the label on a static function or variable NAME. */
1391
1392 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1393 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1394
1395 /* This is how to output a command to make the user-level label named NAME
1396 defined for reference from other files. */
1397
1398 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1399 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1400
1401 /* This is how to output a reference to a user-level label named NAME.
1402 `assemble_name' uses this. */
1403
1404 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1405 fprintf (FILE, "_%s", NAME)
1406
1407 /* This is how to output an internal numbered label where
1408 PREFIX is the class of label and NUM is the number within the class. */
1409
1410 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1411 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1412
1413 /* This is how to output a label for a jump table. Arguments are the same as
1414 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1415 passed. */
1416
1417 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1418 { ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1419
1420 /* This is how to store into the string LABEL
1421 the symbol_ref name of an internal numbered label where
1422 PREFIX is the class of label and NUM is the number within the class.
1423 This is suitable for output with `assemble_name'. */
1424
1425 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1426 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1427
1428 /* This is how to output an assembler line defining a `double' constant. */
1429
1430 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1431 fprintf (FILE, "\t.double 0d%.20e\n", (VALUE))
1432
1433 /* This is how to output an assembler line defining a `float' constant.
1434
1435 WARNING: Believe it or not, the ROMP assembler has a bug in its
1436 handling of single-precision floating-point values making it impossible
1437 to output such values in the expected way. Therefore, it must be output
1438 in hex. THIS WILL NOT WORK IF CROSS-COMPILING FROM A MACHINE THAT DOES
1439 NOT USE IEEE-FORMAT FLOATING-POINT, but there is nothing that can be done
1440 about it short of fixing the assembler. */
1441
1442 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1443 do { union { int i; float f; } u_i_f; \
1444 u_i_f.f = (VALUE); \
1445 fprintf (FILE, "\t.long 0x%x\n", u_i_f.i);\
1446 } while (0)
1447
1448 /* This is how to output an assembler line defining an `int' constant. */
1449
1450 #define ASM_OUTPUT_INT(FILE,VALUE) \
1451 ( fprintf (FILE, "\t.long "), \
1452 output_addr_const (FILE, (VALUE)), \
1453 fprintf (FILE, "\n"))
1454
1455 /* Likewise for `char' and `short' constants. */
1456
1457 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1458 ( fprintf (FILE, "\t.short "), \
1459 output_addr_const (FILE, (VALUE)), \
1460 fprintf (FILE, "\n"))
1461
1462 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1463 ( fprintf (FILE, "\t.byte "), \
1464 output_addr_const (FILE, (VALUE)), \
1465 fprintf (FILE, "\n"))
1466
1467 /* This is how to output an assembler line for a numeric constant byte. */
1468
1469 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1470 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1471
1472 /* This is how to output code to push a register on the stack.
1473 It need not be very fast code. */
1474
1475 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1476 fprintf (FILE, "\tsis r1,4\n\tsts %s,0(r1)\n", reg_names[REGNO])
1477
1478 /* This is how to output an insn to pop a register from the stack.
1479 It need not be very fast code. */
1480
1481 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1482 fprintf (FILE, "\tls r1,0(r1)\n\tais r1,4\n", reg_names[REGNO])
1483
1484 /* This is how to output an element of a case-vector that is absolute. */
1485
1486 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1487 fprintf (FILE, "\t.long L%d\n", VALUE)
1488
1489 /* This is how to output an element of a case-vector that is relative.
1490 (ROMP does not use such vectors,
1491 but we must define this macro anyway.) */
1492
1493 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) abort ()
1494
1495 /* This is how to output an assembler line
1496 that says to advance the location counter
1497 to a multiple of 2**LOG bytes. */
1498
1499 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1500 if ((LOG) != 0) \
1501 fprintf (FILE, "\t.align %d\n", (LOG))
1502
1503 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1504 fprintf (FILE, "\t.space %d\n", (SIZE))
1505
1506 /* This says how to output an assembler line
1507 to define a global common symbol. */
1508
1509 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1510 ( fputs (".comm ", (FILE)), \
1511 assemble_name ((FILE), (NAME)), \
1512 fprintf ((FILE), ",%d\n", (SIZE)))
1513
1514 /* This says how to output an assembler line
1515 to define a local common symbol. */
1516
1517 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1518 ( fputs (".lcomm ", (FILE)), \
1519 assemble_name ((FILE), (NAME)), \
1520 fprintf ((FILE), ",%d\n", (SIZE)))
1521
1522 /* Store in OUTPUT a string (made with alloca) containing
1523 an assembler-name for a local static variable named NAME.
1524 LABELNO is an integer which is different for each call. */
1525
1526 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1527 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1528 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1529
1530 /* Define the parentheses used to group arithmetic operations
1531 in assembler code. */
1532
1533 #define ASM_OPEN_PAREN "("
1534 #define ASM_CLOSE_PAREN ")"
1535
1536 /* Define results of standard character escape sequences. */
1537 #define TARGET_BELL 007
1538 #define TARGET_BS 010
1539 #define TARGET_TAB 011
1540 #define TARGET_NEWLINE 012
1541 #define TARGET_VT 013
1542 #define TARGET_FF 014
1543 #define TARGET_CR 015
1544
1545 /* Print operand X (an rtx) in assembler syntax to file FILE.
1546 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1547 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1548
1549 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1550
1551 /* Define which CODE values are valid. */
1552
1553 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1554 ((CODE) == '.' || (CODE) == '#')
1555 \f
1556 /* Print a memory address as an operand to reference that memory location. */
1557
1558 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1559 { register rtx addr = ADDR; \
1560 register rtx base = 0, offset = addr; \
1561 if (GET_CODE (addr) == REG) \
1562 base = addr, offset = const0_rtx; \
1563 else if (GET_CODE (addr) == PLUS \
1564 && GET_CODE (XEXP (addr, 0)) == REG) \
1565 base = XEXP (addr, 0), offset = XEXP (addr, 1); \
1566 else if (GET_CODE (addr) == SYMBOL_REF \
1567 && CONSTANT_POOL_ADDRESS_P (addr)) \
1568 { \
1569 offset = gen_rtx (CONST_INT, VOIDmode, get_pool_offset (addr) + 12); \
1570 base = gen_rtx (REG, SImode, 14); \
1571 } \
1572 else if (GET_CODE (addr) == CONST \
1573 && GET_CODE (XEXP (addr, 0)) == PLUS \
1574 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT \
1575 && GET_CODE (XEXP (XEXP (addr, 0), 0)) == SYMBOL_REF \
1576 && CONSTANT_POOL_ADDRESS_P (XEXP (XEXP (addr, 0), 0))) \
1577 { \
1578 offset = plus_constant (XEXP (XEXP (addr, 0), 1), \
1579 (get_pool_offset (XEXP (XEXP (addr, 0), 0)) \
1580 + 12)); \
1581 base = gen_rtx (REG, SImode, 14); \
1582 } \
1583 output_addr_const (FILE, offset); \
1584 if (base) \
1585 fprintf (FILE, "(%s)", reg_names [REGNO (base)]); \
1586 }
1587
1588 /* Define the codes that are matched by predicates in aux-output.c. */
1589
1590 #define PREDICATE_CODES \
1591 {"zero_memory_operand", {SUBREG, MEM}}, \
1592 {"short_memory_operand", {SUBREG, MEM}}, \
1593 {"symbolic_memory_operand", {SUBREG, MEM}}, \
1594 {"current_function_operand", {MEM}}, \
1595 {"constant_pool_address_operand", {SUBREG, CONST}}, \
1596 {"romp_symbolic_operand", {LABEL_REF, SYMBOL_REF, CONST}}, \
1597 {"constant_operand", {LABEL_REF, SYMBOL_REF, PLUS, CONST, CONST_INT}}, \
1598 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
1599 {"reg_or_any_cint_operand", {SUBREG, REG, CONST_INT}}, \
1600 {"short_cint_operand", {CONST_INT}}, \
1601 {"reg_or_D_operand", {SUBREG, REG, CONST_INT}}, \
1602 {"reg_or_add_operand", {SUBREG, REG, LABEL_REF, SYMBOL_REF, \
1603 PLUS, CONST, CONST_INT}}, \
1604 {"reg_or_and_operand", {SUBREG, REG, CONST_INT}}, \
1605 {"reg_or_mem_operand", {SUBREG, REG, MEM}}, \
1606 {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \
1607 {"romp_operand", {SUBREG, MEM, REG, CONST_INT, CONST, LABEL_REF, \
1608 SYMBOL_REF, CONST_DOUBLE}}, \
1609 {"reg_0_operand", {REG}}, \
1610 {"reg_15_operand", {REG}}, \
1611 {"float_binary", {PLUS, MINUS, MULT, DIV}}, \
1612 {"float_unary", {NEG, ABS}}, \
1613 {"float_conversion", {FLOAT_TRUNCATE, FLOAT_EXTEND, FLOAT, FIX}},
1614
1615 /* Define functions defined in aux-output.c and used in templates. */
1616
1617 extern char *output_in_line_mul ();
1618 extern char *output_fpop ();
This page took 0.110541 seconds and 5 git commands to generate.