]> gcc.gnu.org Git - gcc.git/blob - gcc/config/romp/romp.h
(EXTRA_CONSTRAINT, case 'Q'): Check for MEM instead of calling memory_operand.
[gcc.git] / gcc / config / romp / romp.h
1 /* Definitions of target machine for GNU compiler, for ROMP chip.
2 Copyright (C) 1989, 1991 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@nyu.edu)
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21
22 /* Names to predefine in the preprocessor for this target machine. */
23
24 #define CPP_PREDEFINES "-Dibm032 -Dunix"
25
26 /* Print subsidiary information on the compiler version in use. */
27 #define TARGET_VERSION ;
28
29 /* Add -lfp_p when running with -p or -pg. */
30 #define LIB_SPEC "%{pg:-lfp_p}%{p:-lfp_p} %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
31
32 /* Run-time compilation parameters selecting different hardware subsets. */
33
34 /* Flag to generate all multiplies as an in-line sequence of multiply-step
35 insns instead of calling a library routine. */
36 #define TARGET_IN_LINE_MUL (target_flags & 1)
37
38 /* Flag to generate padded floating-point data blocks. Otherwise, we generate
39 them the minimum size. This trades off execution speed against size. */
40 #define TARGET_FULL_FP_BLOCKS (target_flags & 2)
41
42 /* Flag to pass and return floating point values in floating point registers.
43 Since this violates the linkage convention, we feel free to destroy fr2
44 and fr3 on function calls.
45 fr1-fr3 are used to pass the arguments. */
46 #define TARGET_FP_REGS (target_flags & 4)
47
48 /* Flag to return structures of more than one word in memory. This is for
49 compatibility with the MetaWare HighC (hc) compiler. */
50 #define TARGET_HC_STRUCT_RETURN (target_flags & 010)
51
52 extern int target_flags;
53
54 /* Macro to define tables used to set the flags.
55 This is a list in braces of pairs in braces,
56 each pair being { "NAME", VALUE }
57 where VALUE is the bits to set or minus the bits to clear.
58 An empty string NAME is used to identify the default VALUE. */
59
60 #define TARGET_SWITCHES \
61 { {"in-line-mul", 1}, \
62 {"call-lib-mul", -1}, \
63 {"full-fp-blocks", 2}, \
64 {"minimum-fp-blocks", -2}, \
65 {"fp-arg-in-fpregs", 4}, \
66 {"fp-arg-in-gregs", -4}, \
67 {"hc-struct-return", 010}, \
68 {"nohc-struct-return", - 010}, \
69 { "", TARGET_DEFAULT}}
70
71 #define TARGET_DEFAULT 3
72
73 /* Define this to change the optimizations performed by default.
74
75 This used to depend on the value of write_symbols,
76 but that is contrary to the general plan for GCC options. */
77
78 #define OPTIMIZATION_OPTIONS(LEVEL) \
79 { \
80 if ((LEVEL) > 0) \
81 { \
82 flag_force_addr = 1; \
83 flag_force_mem = 1; \
84 } \
85 }
86
87 /* Match <sys/types.h>'s definition. */
88 #define SIZE_TYPE "long int"
89 \f
90 /* target machine storage layout */
91
92 /* Define this if most significant bit is lowest numbered
93 in instructions that operate on numbered bit-fields. */
94 /* That is true on ROMP. */
95 #define BITS_BIG_ENDIAN 1
96
97 /* Define this if most significant byte of a word is the lowest numbered. */
98 /* That is true on ROMP. */
99 #define BYTES_BIG_ENDIAN 1
100
101 /* Define this if most significant word of a multiword number is lowest
102 numbered.
103
104 For ROMP we can decide arbitrarily since there are no machine instructions
105 for them. Might as well be consistent with bits and bytes. */
106 #define WORDS_BIG_ENDIAN 1
107
108 /* number of bits in an addressable storage unit */
109 #define BITS_PER_UNIT 8
110
111 /* Width in bits of a "word", which is the contents of a machine register.
112 Note that this is not necessarily the width of data type `int';
113 if using 16-bit ints on a 68000, this would still be 32.
114 But on a machine with 16-bit registers, this would be 16. */
115 #define BITS_PER_WORD 32
116
117 /* Width of a word, in units (bytes). */
118 #define UNITS_PER_WORD 4
119
120 /* Width in bits of a pointer.
121 See also the macro `Pmode' defined below. */
122 #define POINTER_SIZE 32
123
124 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
125 #define PARM_BOUNDARY 32
126
127 /* Boundary (in *bits*) on which stack pointer should be aligned. */
128 #define STACK_BOUNDARY 32
129
130 /* Allocation boundary (in *bits*) for the code of a function. */
131 #define FUNCTION_BOUNDARY 16
132
133 /* No data type wants to be aligned rounder than this. */
134 #define BIGGEST_ALIGNMENT 32
135
136 /* Alignment of field after `int : 0' in a structure. */
137 #define EMPTY_FIELD_BOUNDARY 32
138
139 /* Every structure's size must be a multiple of this. */
140 #define STRUCTURE_SIZE_BOUNDARY 8
141
142 /* A bitfield declared as `int' forces `int' alignment for the struct. */
143 #define PCC_BITFIELD_TYPE_MATTERS 1
144
145 /* Make strings word-aligned so strcpy from constants will be faster. */
146 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
147 (TREE_CODE (EXP) == STRING_CST \
148 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
149
150 /* Make arrays of chars word-aligned for the same reasons. */
151 #define DATA_ALIGNMENT(TYPE, ALIGN) \
152 (TREE_CODE (TYPE) == ARRAY_TYPE \
153 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
154 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
155
156 /* Set this nonzero if move instructions will actually fail to work
157 when given unaligned data. */
158 #define STRICT_ALIGNMENT 1
159 \f
160 /* Standard register usage. */
161
162 /* Number of actual hardware registers.
163 The hardware registers are assigned numbers for the compiler
164 from 0 to just below FIRST_PSEUDO_REGISTER.
165 All registers that the compiler knows about must be given numbers,
166 even those that are not normally considered general registers.
167
168 ROMP has 16 fullword registers and 8 floating point registers.
169
170 In addition, the difference between the frame and argument pointers is
171 a function of the number of registers saved, so we need to have a register
172 to use for AP that will later be eliminated in favor of sp or fp. This is
173 a normal register, but it is fixed. */
174
175 #define FIRST_PSEUDO_REGISTER 25
176
177 /* 1 for registers that have pervasive standard uses
178 and are not available for the register allocator.
179
180 On ROMP, r1 is used for the stack and r14 is used for a
181 data area pointer.
182
183 HACK WARNING: On the RT, there is a bug in code generation for
184 the MC68881 when the first and third operands are the same floating-point
185 register. See the definition of the FINAL_PRESCAN_INSN macro for details.
186 Here we need to reserve fr0 for this purpose. */
187 #define FIXED_REGISTERS \
188 {0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
189 1, \
190 1, 0, 0, 0, 0, 0, 0, 0}
191
192 /* 1 for registers not available across function calls.
193 These must include the FIXED_REGISTERS and also any
194 registers that can be used without being saved.
195 The latter must include the registers where values are returned
196 and the register where structure-value addresses are passed.
197 Aside from that, you can include as many other registers as you like. */
198 #define CALL_USED_REGISTERS \
199 {1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
200 1, \
201 1, 1, 0, 0, 0, 0, 0, 0}
202
203 /* List the order in which to allocate registers. Each register must be
204 listed once, even those in FIXED_REGISTERS.
205
206 We allocate in the following order:
207 fr0, fr1 (not saved)
208 fr2 ... fr6
209 fr7 (more expensive for some FPA's)
210 r0 (not saved and won't conflict with parameter register)
211 r4, r3, r2 (not saved, highest used first to make less conflict)
212 r5 (not saved, but forces r6 to be saved if DI/DFmode)
213 r15, r14, r13, r12, r11, r10, r9, r8, r7, r6 (less to save)
214 r1, ap */
215
216 #define REG_ALLOC_ORDER \
217 {17, 18, \
218 19, 20, 21, 22, 23, \
219 24, \
220 0, \
221 4, 3, 2, \
222 5, \
223 15, 14, 13, 12, 11, 10, \
224 9, 8, 7, 6, \
225 1, 16}
226
227 /* True if register is floating-point. */
228 #define FP_REGNO_P(N) ((N) >= 17)
229
230 /* Return number of consecutive hard regs needed starting at reg REGNO
231 to hold something of mode MODE.
232 This is ordinarily the length in words of a value of mode MODE
233 but can be less for certain modes in special long registers.
234
235 On ROMP, ordinary registers hold 32 bits worth;
236 a single floating point register is always enough for
237 anything that can be stored in them at all. */
238 #define HARD_REGNO_NREGS(REGNO, MODE) \
239 (FP_REGNO_P (REGNO) ? GET_MODE_NUNITS (MODE) \
240 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
241
242 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
243 On ROMP, the cpu registers can hold any mode but the float registers
244 can hold only floating point. */
245 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
246 (! FP_REGNO_P (REGNO) || GET_MODE_CLASS (MODE) == MODE_FLOAT \
247 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)
248
249 /* Value is 1 if it is a good idea to tie two pseudo registers
250 when one has mode MODE1 and one has mode MODE2.
251 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
252 for any hard reg, then this must be 0 for correct output. */
253 #define MODES_TIEABLE_P(MODE1, MODE2) \
254 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT \
255 || GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
256 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT \
257 || GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
258
259 /* A C expression returning the cost of moving data from a register of class
260 CLASS1 to one of CLASS2.
261
262 On the ROMP, access to floating-point registers is expensive (even between
263 two FP regs.) */
264 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
265 (2 + 10 * ((CLASS1) == FP_REGS) + 10 * (CLASS2 == FP_REGS))
266
267 /* Specify the registers used for certain standard purposes.
268 The values of these macros are register numbers. */
269
270 /* ROMP pc isn't overloaded on a register that the compiler knows about. */
271 /* #define PC_REGNUM */
272
273 /* Register to use for pushing function arguments. */
274 #define STACK_POINTER_REGNUM 1
275
276 /* Base register for access to local variables of the function. */
277 #define FRAME_POINTER_REGNUM 13
278
279 /* Value should be nonzero if functions must have frame pointers.
280 Zero means the frame pointer need not be set up (and parms
281 may be accessed via the stack pointer) in functions that seem suitable.
282 This is computed in `reload', in reload1.c. */
283 #define FRAME_POINTER_REQUIRED 0
284
285 /* Base register for access to arguments of the function. */
286 #define ARG_POINTER_REGNUM 16
287
288 /* Place to put static chain when calling a function that requires it. */
289 #define STATIC_CHAIN \
290 gen_rtx (MEM, Pmode, gen_rtx (PLUS, Pmode, stack_pointer_rtx, \
291 gen_rtx (CONST_INT, VOIDmode, -36)))
292
293 /* Place where static chain is found upon entry to routine. */
294 #define STATIC_CHAIN_INCOMING \
295 gen_rtx (MEM, Pmode, gen_rtx (PLUS, Pmode, arg_pointer_rtx, \
296 gen_rtx (CONST_INT, VOIDmode, -20)))
297
298 /* Place that structure value return address is placed.
299
300 On the ROMP, it is passed as an extra parameter. */
301 #define STRUCT_VALUE 0
302 \f
303 /* Define the classes of registers for register constraints in the
304 machine description. Also define ranges of constants.
305
306 One of the classes must always be named ALL_REGS and include all hard regs.
307 If there is more than one class, another class must be named NO_REGS
308 and contain no registers.
309
310 The name GENERAL_REGS must be the name of a class (or an alias for
311 another name such as ALL_REGS). This is the class of registers
312 that is allowed by "g" or "r" in a register constraint.
313 Also, registers outside this class are allocated only when
314 instructions express preferences for them.
315
316 The classes must be numbered in nondecreasing order; that is,
317 a larger-numbered class must never be contained completely
318 in a smaller-numbered class.
319
320 For any two classes, it is very desirable that there be another
321 class that represents their union. */
322
323 /* The ROMP has two types of registers, general and floating-point.
324
325 However, r0 is special in that it cannot be used as a base register.
326 So make a class for registers valid as base registers.
327
328 For floating-point support, add classes that just consist of r0 and
329 r15, respectively. */
330
331 enum reg_class { NO_REGS, R0_REGS, R15_REGS, BASE_REGS, GENERAL_REGS,
332 FP_REGS, ALL_REGS, LIM_REG_CLASSES };
333
334 #define N_REG_CLASSES (int) LIM_REG_CLASSES
335
336 /* Give names of register classes as strings for dump file. */
337
338 #define REG_CLASS_NAMES \
339 {"NO_REGS", "R0_REGS", "R15_REGS", "BASE_REGS", "GENERAL_REGS", \
340 "FP_REGS", "ALL_REGS" }
341
342 /* Define which registers fit in which classes.
343 This is an initializer for a vector of HARD_REG_SET
344 of length N_REG_CLASSES. */
345
346 #define REG_CLASS_CONTENTS {0, 0x00001, 0x08000, 0x1fffe, 0x1ffff, \
347 0x1fe0000, 0x1ffffff }
348
349 /* The same information, inverted:
350 Return the class number of the smallest class containing
351 reg number REGNO. This could be a conditional expression
352 or could index an array. */
353
354 #define REGNO_REG_CLASS(REGNO) \
355 ((REGNO) == 0 ? GENERAL_REGS : FP_REGNO_P (REGNO) ? FP_REGS : BASE_REGS)
356
357 /* The class value for index registers, and the one for base regs. */
358 #define INDEX_REG_CLASS BASE_REGS
359 #define BASE_REG_CLASS BASE_REGS
360
361 /* Get reg_class from a letter such as appears in the machine description. */
362
363 #define REG_CLASS_FROM_LETTER(C) \
364 ((C) == 'f' ? FP_REGS \
365 : (C) == 'b' ? BASE_REGS \
366 : (C) == 'z' ? R0_REGS \
367 : (C) == 't' ? R15_REGS \
368 : NO_REGS)
369
370 /* The letters I, J, K, L, M, N, and P in a register constraint string
371 can be used to stand for particular ranges of immediate operands.
372 This macro defines what the ranges are.
373 C is the letter, and VALUE is a constant value.
374 Return 1 if VALUE is in the range specified by C.
375
376 `I' is constants less than 16
377 `J' is negative constants greater than -16
378 `K' is the range for a normal D insn.
379 `L' is a constant with only the low-order 16 bits set
380 `M' is a constant with only the high-order 16 bits set
381 `N' is a single-bit constant
382 `O' is a constant with either the high-order or low-order 16 bits all ones
383 `P' is the complement of a single-bit constant
384 */
385
386 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
387 ( (C) == 'I' ? (unsigned) (VALUE) < 0x10 \
388 : (C) == 'J' ? (VALUE) < 0 && (VALUE) > -16 \
389 : (C) == 'K' ? (unsigned) ((VALUE) + 0x8000) < 0x10000 \
390 : (C) == 'L' ? ((VALUE) & 0xffff0000) == 0 \
391 : (C) == 'M' ? ((VALUE) & 0xffff) == 0 \
392 : (C) == 'N' ? exact_log2 (VALUE) >= 0 \
393 : (C) == 'O' ? ((VALUE) & 0xffff) == 0xffff \
394 || ((VALUE) & 0xffff0000) == 0xffff0000 \
395 : (C) == 'P' ? exact_log2 (~ (VALUE)) >= 0 \
396 : 0)
397
398 /* Similar, but for floating constants, and defining letters G and H.
399 Here VALUE is the CONST_DOUBLE rtx itself.
400 No floating-point constants on ROMP. */
401
402 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0
403
404 /* Optional extra constraints for this machine.
405
406 For the ROMP, `Q' means that this is a memory operand but not a symbolic
407 memory operand. Note that an unassigned pseudo register is such a
408 memory operand. If register allocation has not been done, we reject
409 pseudos, since we assume (hope) that they will get hard registers.
410
411 `R' means that this is a constant pool reference to the current function.
412 This is just r14 and so can be treated as a register. We bother with this
413 just in move insns as that is the only place it is likely to occur.
414
415 `S' means that this is the address of a constant pool location. This is
416 equal to r14 plus a constant. We also only check for this in move insns. */
417
418 #define EXTRA_CONSTRAINT(OP, C) \
419 ((C) == 'Q' ? \
420 ((GET_CODE (OP) == REG \
421 && REGNO (OP) >= FIRST_PSEUDO_REGISTER \
422 && reg_renumber != 0 \
423 && reg_renumber[REGNO (OP)] < 0) \
424 || (GET_CODE (OP) == MEM \
425 && ! symbolic_memory_operand (OP, VOIDmode))) \
426 : (C) == 'R' ? current_function_operand (OP, VOIDmode) \
427 : (C) == 'S' ? constant_pool_address_operand (OP, VOIDmode) \
428 : 0)
429
430 /* Given an rtx X being reloaded into a reg required to be
431 in class CLASS, return the class of reg to actually use.
432 In general this is just CLASS; but on some machines
433 in some cases it is preferable to use a more restrictive class.
434
435 For the ROMP, if X is a memory reference that involves a symbol,
436 we must use a BASE_REGS register instead of GENERAL_REGS
437 to do the reload. The argument of MEM be either REG, PLUS, or SYMBOL_REF
438 to be valid, so we assume that this is the case.
439
440 Also, if X is an integer class, ensure that floating-point registers
441 aren't used. */
442
443 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
444 ((CLASS) == FP_REGS && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
445 ? GENERAL_REGS : \
446 (CLASS) != GENERAL_REGS ? (CLASS) : \
447 GET_CODE (X) != MEM ? GENERAL_REGS : \
448 GET_CODE (XEXP (X, 0)) == SYMBOL_REF ? BASE_REGS : \
449 GET_CODE (XEXP (X, 0)) == LABEL_REF ? BASE_REGS : \
450 GET_CODE (XEXP (X, 0)) == CONST ? BASE_REGS : \
451 GET_CODE (XEXP (X, 0)) == REG ? GENERAL_REGS : \
452 GET_CODE (XEXP (X, 0)) != PLUS ? GENERAL_REGS : \
453 GET_CODE (XEXP (XEXP (X, 0), 1)) == SYMBOL_REF ? BASE_REGS : \
454 GET_CODE (XEXP (XEXP (X, 0), 1)) == LABEL_REF ? BASE_REGS : \
455 GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST ? BASE_REGS : GENERAL_REGS)
456
457 /* Return the register class of a scratch register needed to store into
458 OUT from a register of class CLASS in MODE.
459
460 On the ROMP, we cannot store into a symbolic memory address from an
461 integer register; we need a BASE_REGS register as a scratch to do it. */
462
463 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
464 (GET_MODE_CLASS (MODE) == MODE_INT && symbolic_memory_operand (OUT, MODE) \
465 ? BASE_REGS : NO_REGS)
466
467 /* Return the maximum number of consecutive registers
468 needed to represent mode MODE in a register of class CLASS.
469
470 On ROMP, this is the size of MODE in words,
471 except in the FP regs, where a single reg is always enough. */
472 #define CLASS_MAX_NREGS(CLASS, MODE) \
473 ((CLASS) == FP_REGS ? 1 \
474 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
475 \f
476 /* Stack layout; function entry, exit and calling. */
477
478 /* Define this if pushing a word on the stack
479 makes the stack pointer a smaller address. */
480 #define STACK_GROWS_DOWNWARD
481
482 /* Define this if the nominal address of the stack frame
483 is at the high-address end of the local variables;
484 that is, each additional local variable allocated
485 goes at a more negative offset in the frame. */
486 #define FRAME_GROWS_DOWNWARD
487
488 /* Offset within stack frame to start allocating local variables at.
489 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
490 first local allocated. Otherwise, it is the offset to the BEGINNING
491 of the first local allocated.
492 On the ROMP, if we set the frame pointer to 15 words below the highest
493 address of the highest local variable, the first 16 words will be
494 addressable via D-short insns. */
495 #define STARTING_FRAME_OFFSET 64
496
497 /* If we generate an insn to push BYTES bytes,
498 this says how many the stack pointer really advances by.
499 On ROMP, don't define this because there are no push insns. */
500 /* #define PUSH_ROUNDING(BYTES) */
501
502 /* Offset of first parameter from the argument pointer register value.
503 On the ROMP, we define the argument pointer to the start of the argument
504 area. */
505 #define FIRST_PARM_OFFSET(FNDECL) 0
506
507 /* Define this if stack space is still allocated for a parameter passed
508 in a register. The value is the number of bytes. */
509 #define REG_PARM_STACK_SPACE(FNDECL) 16
510
511 /* This is the difference between the logical top of stack and the actual sp.
512
513 For the ROMP, sp points past the words allocated for the first four outgoing
514 arguments (they are part of the callee's frame). */
515 #define STACK_POINTER_OFFSET -16
516
517 /* Define this if the maximum size of all the outgoing args is to be
518 accumulated and pushed during the prologue. The amount can be
519 found in the variable current_function_outgoing_args_size. */
520 #define ACCUMULATE_OUTGOING_ARGS
521
522 /* Value is the number of bytes of arguments automatically
523 popped when returning from a subroutine call.
524 FUNTYPE is the data type of the function (as a tree),
525 or for a library call it is an identifier node for the subroutine name.
526 SIZE is the number of bytes of arguments passed on the stack. */
527
528 #define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
529
530 /* Define how to find the value returned by a function.
531 VALTYPE is the data type of the value (as a tree).
532 If the precise function being called is known, FUNC is its FUNCTION_DECL;
533 otherwise, FUNC is 0.
534
535 On ROMP the value is found in r2, unless the machine specific option
536 fp-arg-in-fpregs is selected, in which case FP return values are in fr1 */
537
538 #define FUNCTION_VALUE(VALTYPE, FUNC) \
539 gen_rtx (REG, TYPE_MODE (VALTYPE), \
540 (TARGET_FP_REGS && \
541 GET_MODE_CLASS (TYPE_MODE (VALTYPE)) == MODE_FLOAT) ? 18 : 2)
542
543 /* Define how to find the value returned by a library function
544 assuming the value has mode MODE. */
545
546 #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 2)
547
548 /* The definition of this macro implies that there are cases where
549 a scalar value cannot be returned in registers.
550
551 For the ROMP, if compatibility with HC is required, anything of
552 type DImode is returned in memory. */
553
554 #define RETURN_IN_MEMORY(type) \
555 (TARGET_HC_STRUCT_RETURN && TYPE_MODE (type) == DImode)
556
557 /* 1 if N is a possible register number for a function value
558 as seen by the caller.
559
560 On ROMP, r2 is the only register thus used unless fp values are to be
561 returned in fp regs, in which case fr1 is also used. */
562
563 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 2 || ((N) == 18 && TARGET_FP_REGS))
564
565 /* 1 if N is a possible register number for function argument passing.
566 On ROMP, these are r2-r5 (and fr1-fr4 if fp regs are used). */
567
568 #define FUNCTION_ARG_REGNO_P(N) \
569 (((N) <= 5 && (N) >= 2) || (TARGET_FP_REGS && (N) > 17 && (N) < 21))
570 \f
571 /* Define a data type for recording info about an argument list
572 during the scan of that argument list. This data type should
573 hold all necessary information about the function itself
574 and about the args processed so far, enough to enable macros
575 such as FUNCTION_ARG to determine where the next arg should go.
576
577 On the ROMP, this is a structure. The first word is the number of
578 words of (integer only if -mfp-arg-in-fpregs is specified) arguments
579 scanned so far (including the invisible argument, if any, which holds
580 the structure-value-address). The second word hold the corresponding
581 value for floating-point arguments, except that both single and double
582 count as one register. */
583
584 struct rt_cargs {int gregs, fregs; };
585 #define CUMULATIVE_ARGS struct rt_cargs
586
587 #define USE_FP_REG(MODE,CUM) \
588 (TARGET_FP_REGS && GET_MODE_CLASS (MODE) == MODE_FLOAT \
589 && (CUM).fregs < 3)
590
591 /* Define intermediate macro to compute the size (in registers) of an argument
592 for the ROMP. */
593
594 #define ROMP_ARG_SIZE(MODE, TYPE, NAMED) \
595 (! (NAMED) ? 0 \
596 : (MODE) != BLKmode \
597 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
598 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
599
600 /* Initialize a variable CUM of type CUMULATIVE_ARGS
601 for a call to a function whose data type is FNTYPE.
602 For a library call, FNTYPE is 0.
603
604 On ROMP, the offset normally starts at 0, but starts at 4 bytes
605 when the function gets a structure-value-address as an
606 invisible first argument. */
607
608 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
609 (CUM).gregs = 0, \
610 (CUM).fregs = 0
611
612 /* Update the data in CUM to advance over an argument
613 of mode MODE and data type TYPE.
614 (TYPE is null for libcalls where that information may not be available.) */
615
616 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
617 { if (NAMED) \
618 { \
619 if (USE_FP_REG(MODE, CUM)) \
620 (CUM).fregs++; \
621 else \
622 (CUM).gregs += ROMP_ARG_SIZE (MODE, TYPE, NAMED); \
623 } \
624 }
625
626 /* Determine where to put an argument to a function.
627 Value is zero to push the argument on the stack,
628 or a hard register in which to store the argument.
629
630 MODE is the argument's machine mode.
631 TYPE is the data type of the argument (as a tree).
632 This is null for libcalls where that information may
633 not be available.
634 CUM is a variable of type CUMULATIVE_ARGS which gives info about
635 the preceding args and about the function being called.
636 NAMED is nonzero if this argument is a named parameter
637 (otherwise it is an extra parameter matching an ellipsis).
638
639 On ROMP the first four words of args are normally in registers
640 and the rest are pushed. */
641
642 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
643 (! (NAMED) ? 0 \
644 : ((TYPE) != 0 && TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST) ? 0 \
645 : USE_FP_REG(MODE,CUM) ? gen_rtx(REG, (MODE),(CUM.fregs) + 17) \
646 : (CUM).gregs < 4 ? gen_rtx(REG, (MODE), 2 + (CUM).gregs) : 0)
647
648 /* For an arg passed partly in registers and partly in memory,
649 this is the number of registers used.
650 For args passed entirely in registers or entirely in memory, zero. */
651
652 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
653 (! (NAMED) ? 0 \
654 : USE_FP_REG(MODE,CUM) ? 0 \
655 : (((CUM).gregs < 4 \
656 && 4 < ((CUM).gregs + ROMP_ARG_SIZE (MODE, TYPE, NAMED))) \
657 ? 4 - (CUM).gregs : 0))
658
659 /* Perform any needed actions needed for a function that is receiving a
660 variable number of arguments.
661
662 CUM is as above.
663
664 MODE and TYPE are the mode and type of the current parameter.
665
666 PRETEND_SIZE is a variable that should be set to the amount of stack
667 that must be pushed by the prolog to pretend that our caller pushed
668 it.
669
670 Normally, this macro will push all remaining incoming registers on the
671 stack and set PRETEND_SIZE to the length of the registers pushed. */
672
673 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
674 { if (TARGET_FP_REGS) \
675 error ("can't have varargs with -mfp-arg-in-fp-regs"); \
676 else if ((CUM).gregs < 4) \
677 { \
678 int first_reg_offset = (CUM).gregs; \
679 \
680 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
681 first_reg_offset += ROMP_ARG_SIZE (TYPE_MODE (TYPE), TYPE, 1); \
682 \
683 if (first_reg_offset > 4) \
684 first_reg_offset = 4; \
685 \
686 if (! NO_RTL && first_reg_offset != 4) \
687 move_block_from_reg \
688 (2 + first_reg_offset, \
689 gen_rtx (MEM, BLKmode, \
690 plus_constant (virtual_incoming_args_rtx, \
691 first_reg_offset * 4)), \
692 4 - first_reg_offset); \
693 PRETEND_SIZE = (4 - first_reg_offset) * UNITS_PER_WORD; \
694 } \
695 }
696
697 /* This macro produces the initial definition of a function name.
698 On the ROMP, we need to place an extra '.' in the function name. */
699
700 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
701 { if (TREE_PUBLIC(DECL)) \
702 fprintf (FILE, "\t.globl _.%s\n", NAME); \
703 fprintf (FILE, "_.%s:\n", NAME); \
704 }
705
706 /* This macro is used to output the start of the data area.
707
708 On the ROMP, the _name is a pointer to the data area. At that
709 location is the address of _.name, which is really the name of
710 the function. We need to set all this up here.
711
712 The global declaration of the data area, if needed, is done in
713 `assemble_function', where it thinks it is globalizing the function
714 itself. */
715
716 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, NAME, DECL, SIZE) \
717 { extern int data_offset; \
718 data_section (); \
719 fprintf (FILE, "\t.align 2\n"); \
720 ASM_OUTPUT_LABEL (FILE, NAME); \
721 fprintf (FILE, "\t.long _.%s, 0, ", NAME); \
722 if (current_function_calls_alloca) \
723 fprintf (FILE, "0x%x\n", \
724 0xf6900000 + current_function_outgoing_args_size); \
725 else \
726 fprintf (FILE, "0\n"); \
727 data_offset = ((SIZE) + 12 + 3) / 4; \
728 }
729
730 /* Select section for constant in constant pool.
731
732 On ROMP, all constants are in the data area. */
733
734 #define SELECT_RTX_SECTION(MODE, X) data_section ()
735
736 /* This macro generates the assembly code for function entry.
737 FILE is a stdio stream to output the code to.
738 SIZE is an int: how many units of temporary storage to allocate.
739 Refer to the array `regs_ever_live' to determine which registers
740 to save; `regs_ever_live[I]' is nonzero if register number I
741 is ever used in the function. This macro is responsible for
742 knowing which registers should not be saved even if used. */
743
744 #define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
745
746 /* Output assembler code to FILE to increment profiler label # LABELNO
747 for profiling a function entry. */
748
749 #define FUNCTION_PROFILER(FILE, LABELNO) \
750 fprintf(FILE, "\tcas r0,r15,r0\n\tbali r15,mcount\n");
751
752 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
753 the stack pointer does not matter. The value is tested only in
754 functions that have frame pointers.
755 No definition is equivalent to always zero. */
756 /* #define EXIT_IGNORE_STACK 1 */
757
758 /* This macro generates the assembly code for function exit,
759 on machines that need it. If FUNCTION_EPILOGUE is not defined
760 then individual return instructions are generated for each
761 return statement. Args are same as for FUNCTION_PROLOGUE.
762
763 The function epilogue should not depend on the current stack pointer!
764 It should use the frame pointer only. This is mandatory because
765 of alloca; we also take advantage of it to omit stack adjustments
766 before returning. */
767
768 #define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
769 \f
770 /* Output assembler code for a block containing the constant parts
771 of a trampoline, leaving space for the variable parts.
772
773 The trampoline should set the static chain pointer to value placed
774 into the trampoline and should branch to the specified routine.
775
776 On the ROMP, we have a problem. There are no free registers to use
777 to construct the static chain and function addresses. Hence we use
778 the following kludge: r15 (the return address) is first saved in mq.
779 Then we use r15 to form the function address. We then branch to the
780 function and restore r15 in the delay slot. This makes it appear that
781 the function was called directly from the caller.
782
783 (Note that the function address built is actually that of the data block.
784 This is passed in r0 and the actual routine address is loaded into r15.)
785
786 In addition, note that the address of the "called function", in this case
787 the trampoline, is actually the address of the data area. So we need to
788 make a fake data area that will contain the address of the trampoline.
789 Note that this must be defined as two half-words, since the trampoline
790 template (as opposed to the trampoline on the stack) is only half-word
791 aligned. */
792
793 #define TRAMPOLINE_TEMPLATE(FILE) \
794 { \
795 fprintf (FILE, "\t.short 0,0\n"); \
796 fprintf (FILE, "\tcau r0,0(r0)\n"); \
797 fprintf (FILE, "\toil r0,r0,0\n"); \
798 fprintf (FILE, "\tmts r10,r15\n"); \
799 fprintf (FILE, "\tst r0,-36(r1)\n"); \
800 fprintf (FILE, "\tcau r15,0(r0)\n"); \
801 fprintf (FILE, "\toil r15,r15,0\n"); \
802 fprintf (FILE, "\tcas r0,r15,r0\n"); \
803 fprintf (FILE, "\tls r15,0(r15)\n"); \
804 fprintf (FILE, "\tbrx r15\n"); \
805 fprintf (FILE, "\tmfs r10,r15\n"); \
806 }
807
808 /* Length in units of the trampoline for entering a nested function. */
809
810 #define TRAMPOLINE_SIZE 36
811
812 /* Emit RTL insns to initialize the variable parts of a trampoline.
813 FNADDR is an RTX for the address of the function's pure code.
814 CXT is an RTX for the static chain value for the function.
815
816 On the RT, the static chain and function addresses are written in
817 two 16-bit sections.
818
819 We also need to write the address of the first instruction in
820 the trampoline into the first word of the trampoline to simulate a
821 data area. */
822
823 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
824 { \
825 rtx _addr, _temp; \
826 rtx _val; \
827 \
828 _temp = expand_binop (SImode, add_optab, ADDR, \
829 gen_rtx (CONST_INT, VOIDmode, 4), \
830 0, 1, OPTAB_LIB_WIDEN); \
831 emit_move_insn (gen_rtx (MEM, SImode, \
832 memory_address (SImode, ADDR)), _temp); \
833 \
834 _val = force_reg (SImode, CXT); \
835 _addr = memory_address (HImode, plus_constant (ADDR, 10)); \
836 emit_move_insn (gen_rtx (MEM, HImode, _addr), \
837 gen_lowpart (HImode, _val)); \
838 _temp = expand_shift (RSHIFT_EXPR, SImode, _val, \
839 build_int_2 (16, 0), 0, 1); \
840 _addr = memory_address (HImode, plus_constant (ADDR, 6)); \
841 emit_move_insn (gen_rtx (MEM, HImode, _addr), \
842 gen_lowpart (HImode, _temp)); \
843 \
844 _val = force_reg (SImode, FNADDR); \
845 _addr = memory_address (HImode, plus_constant (ADDR, 24)); \
846 emit_move_insn (gen_rtx (MEM, HImode, _addr), \
847 gen_lowpart (HImode, _val)); \
848 _temp = expand_shift (RSHIFT_EXPR, SImode, _val, \
849 build_int_2 (16, 0), 0, 1); \
850 _addr = memory_address (HImode, plus_constant (ADDR, 20)); \
851 emit_move_insn (gen_rtx (MEM, HImode, _addr), \
852 gen_lowpart (HImode, _temp)); \
853 \
854 }
855 \f
856 /* Definitions for register eliminations.
857
858 We have two registers that can be eliminated on the ROMP. First, the
859 frame pointer register can often be eliminated in favor of the stack
860 pointer register. Secondly, the argument pointer register can always be
861 eliminated; it is replaced with either the stack or frame pointer.
862
863 In addition, we use the elimination mechanism to see if r14 is needed.
864 Initially we assume that it isn't. If it is, we spill it. This is done
865 by making it an eliminable register. It doesn't matter what we replace
866 it with, since it will never occur in the rtl at this point. */
867
868 /* This is an array of structures. Each structure initializes one pair
869 of eliminable registers. The "from" register number is given first,
870 followed by "to". Eliminations of the same "from" register are listed
871 in order of preference. */
872 #define ELIMINABLE_REGS \
873 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
874 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
875 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
876 { 14, 0}}
877
878 /* Given FROM and TO register numbers, say whether this elimination is allowed.
879 Frame pointer elimination is automatically handled.
880
881 For the ROMP, if frame pointer elimination is being done, we would like to
882 convert ap into fp, not sp.
883
884 We need r14 if various conditions (tested in romp_using_r14) are true.
885
886 All other eliminations are valid. */
887 #define CAN_ELIMINATE(FROM, TO) \
888 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
889 ? ! frame_pointer_needed \
890 : (FROM) == 14 ? ! romp_using_r14 () \
891 : 1)
892
893 /* Define the offset between two registers, one to be eliminated, and the other
894 its replacement, at the start of a routine. */
895 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
896 { if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
897 { \
898 if (romp_pushes_stack ()) \
899 (OFFSET) = ((get_frame_size () - 64) \
900 + current_function_outgoing_args_size); \
901 else \
902 (OFFSET) = - (romp_sa_size () + 64); \
903 } \
904 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
905 (OFFSET) = romp_sa_size () - 16 + 64; \
906 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
907 { \
908 if (romp_pushes_stack ()) \
909 (OFFSET) = (get_frame_size () + (romp_sa_size () - 16) \
910 + current_function_outgoing_args_size); \
911 else \
912 (OFFSET) = -16; \
913 } \
914 else if ((FROM) == 14) \
915 (OFFSET) = 0; \
916 else \
917 abort (); \
918 }
919 \f
920 /* Addressing modes, and classification of registers for them. */
921
922 /* #define HAVE_POST_INCREMENT */
923 /* #define HAVE_POST_DECREMENT */
924
925 /* #define HAVE_PRE_DECREMENT */
926 /* #define HAVE_PRE_INCREMENT */
927
928 /* Macros to check register numbers against specific register classes. */
929
930 /* These assume that REGNO is a hard or pseudo reg number.
931 They give nonzero only if REGNO is a hard reg of the suitable class
932 or a pseudo reg currently allocated to a suitable hard reg.
933 Since they use reg_renumber, they are safe only once reg_renumber
934 has been allocated, which happens in local-alloc.c. */
935
936 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
937 #define REGNO_OK_FOR_BASE_P(REGNO) \
938 ((REGNO) < FIRST_PSEUDO_REGISTER \
939 ? (REGNO) < 16 && (REGNO) != 0 && (REGNO) != 16 \
940 : (reg_renumber[REGNO] < 16 && reg_renumber[REGNO] >= 0 \
941 && reg_renumber[REGNO] != 16))
942 \f
943 /* Maximum number of registers that can appear in a valid memory address. */
944
945 #define MAX_REGS_PER_ADDRESS 1
946
947 /* Recognize any constant value that is a valid address. */
948
949 #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
950
951 /* Nonzero if the constant value X is a legitimate general operand.
952 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
953
954 On the ROMP, there is a bit of a hack here. Basically, we wish to
955 only issue instructions that are not `as' macros. However, in the
956 case of `get', `load', and `store', if the operand is a relocatable
957 symbol (possibly +/- an integer), there is no way to express the
958 resulting split-relocation except with the macro. Therefore, allow
959 either a constant valid in a normal (sign-extended) D-format insn or
960 a relocatable expression.
961
962 Also, for DFmode and DImode, we must ensure that both words are
963 addressable.
964
965 We define two macros: The first is given an offset (0 or 4) and indicates
966 that the operand is a CONST_INT that is valid for that offset. The second
967 indicates a valid non-CONST_INT constant. */
968
969 #define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \
970 (GET_CODE (X) == CONST_INT \
971 && (unsigned) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
972
973 #define LEGITIMATE_ADDRESS_CONSTANT_P(X) \
974 (GET_CODE (X) == SYMBOL_REF \
975 || GET_CODE (X) == LABEL_REF \
976 || (GET_CODE (X) == CONST \
977 && (GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
978 || GET_CODE (XEXP (XEXP (X, 0), 0)) == LABEL_REF) \
979 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT))
980
981 /* Include all constant integers and constant double, but exclude
982 SYMBOL_REFs that are to be obtained from the data area (see below). */
983 #define LEGITIMATE_CONSTANT_P(X) \
984 ((LEGITIMATE_ADDRESS_CONSTANT_P (X) \
985 || GET_CODE (X) == CONST_INT \
986 || GET_CODE (X) == CONST_DOUBLE) \
987 && ! (GET_CODE (X) == SYMBOL_REF && SYMBOL_REF_FLAG (X)))
988
989 /* For no good reason, we do the same as the other RT compilers and load
990 the addresses of data areas for a function from our data area. That means
991 that we need to mark such SYMBOL_REFs. We do so here. */
992 #define ENCODE_SECTION_INFO(DECL) \
993 if (TREE_CODE (TREE_TYPE (DECL)) == FUNCTION_TYPE) \
994 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
995
996 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
997 and check its validity for a certain class.
998 We have two alternate definitions for each of them.
999 The usual definition accepts all pseudo regs; the other rejects
1000 them unless they have been allocated suitable hard regs.
1001 The symbol REG_OK_STRICT causes the latter definition to be used.
1002
1003 Most source files want to accept pseudo regs in the hope that
1004 they will get allocated to the class that the insn wants them to be in.
1005 Source files for reload pass need to be strict.
1006 After reload, it makes no difference, since pseudo regs have
1007 been eliminated by then. */
1008
1009 #ifndef REG_OK_STRICT
1010
1011 /* Nonzero if X is a hard reg that can be used as an index
1012 or if it is a pseudo reg. */
1013 #define REG_OK_FOR_INDEX_P(X) 0
1014 /* Nonzero if X is a hard reg that can be used as a base reg
1015 or if it is a pseudo reg. */
1016 #define REG_OK_FOR_BASE_P(X) \
1017 (REGNO (X) != 0 && (REGNO (X) < 17 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1018
1019 #else
1020
1021 /* Nonzero if X is a hard reg that can be used as an index. */
1022 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1023 /* Nonzero if X is a hard reg that can be used as a base reg. */
1024 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1025
1026 #endif
1027 \f
1028 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1029 that is a valid memory address for an instruction.
1030 The MODE argument is the machine mode for the MEM expression
1031 that wants to use this address.
1032
1033 On the ROMP, a legitimate address is either a legitimate constant,
1034 a register plus a legitimate constant, or a register. See the
1035 discussion at the LEGITIMATE_ADDRESS_CONSTANT_P macro. */
1036 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1037 { if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1038 goto ADDR; \
1039 if (GET_CODE (X) != CONST_INT && LEGITIMATE_ADDRESS_CONSTANT_P (X)) \
1040 goto ADDR; \
1041 if (GET_CODE (X) == PLUS \
1042 && GET_CODE (XEXP (X, 0)) == REG \
1043 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1044 && LEGITIMATE_ADDRESS_CONSTANT_P (XEXP (X, 1))) \
1045 goto ADDR; \
1046 if (GET_CODE (X) == PLUS \
1047 && GET_CODE (XEXP (X, 0)) == REG \
1048 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1049 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
1050 && (((MODE) != DFmode && (MODE) != DImode) \
1051 || (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4)))) \
1052 goto ADDR; \
1053 }
1054 \f
1055 /* Try machine-dependent ways of modifying an illegitimate address
1056 to be legitimate. If we find one, return the new, valid address.
1057 This macro is used in only one place: `memory_address' in explow.c.
1058
1059 OLDX is the address as it was before break_out_memory_refs was called.
1060 In some cases it is useful to look at this to decide what needs to be done.
1061
1062 MODE and WIN are passed so that this macro can use
1063 GO_IF_LEGITIMATE_ADDRESS.
1064
1065 It is always safe for this macro to do nothing. It exists to recognize
1066 opportunities to optimize the output.
1067
1068 On ROMP, check for the sum of a register with a constant
1069 integer that is out of range. If so, generate code to add the
1070 constant with the low-order 16 bits masked to the register and force
1071 this result into another register (this can be done with `cau').
1072 Then generate an address of REG+(CONST&0xffff), allowing for the
1073 possibility of bit 16 being a one.
1074
1075 If the register is not OK for a base register, abort. */
1076
1077 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1078 { if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1079 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1080 && (unsigned) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \
1081 { int high_int, low_int; \
1082 if (! REG_OK_FOR_BASE_P (XEXP (X, 0))) \
1083 abort (); \
1084 high_int = INTVAL (XEXP (X, 1)) >> 16; \
1085 low_int = INTVAL (XEXP (X, 1)) & 0xffff; \
1086 if (low_int & 0x8000) \
1087 high_int += 1, low_int |= 0xffff0000; \
1088 (X) = gen_rtx (PLUS, SImode, \
1089 force_operand \
1090 (gen_rtx (PLUS, SImode, XEXP (X, 0), \
1091 gen_rtx (CONST_INT, VOIDmode, \
1092 high_int << 16)), 0),\
1093 gen_rtx (CONST_INT, VOIDmode, low_int)); \
1094 } \
1095 }
1096
1097 /* Go to LABEL if ADDR (a legitimate address expression)
1098 has an effect that depends on the machine mode it is used for.
1099
1100 On the ROMP this is true only if the address is valid with a zero offset
1101 but not with an offset of four (this means it cannot be used as an
1102 address for DImode or DFmode). Since we know it is valid, we just check
1103 for an address that is not valid with an offset of four. */
1104
1105 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1106 { if (GET_CODE (ADDR) == PLUS \
1107 && ! LEGITIMATE_ADDRESS_CONSTANT_P (XEXP (ADDR, 1)) \
1108 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 4)) \
1109 goto LABEL; \
1110 }
1111 \f
1112 /* Define this if some processing needs to be done immediately before
1113 emitting code for an insn.
1114
1115 This is used on the ROMP, to compensate for a bug in the floating-point
1116 code. When a floating-point operation is done with the first and third
1117 operands both the same floating-point register, it will generate bad code
1118 for the MC68881. So we must detect this. If it occurs, we patch the
1119 first operand to be fr0 and insert a move insn to move it to the desired
1120 destination. */
1121 #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
1122 { rtx op0, op1, op2, operation, tem; \
1123 if (NOPERANDS >= 3 && get_attr_type (INSN) == TYPE_FP) \
1124 { \
1125 op0 = OPERANDS[0]; \
1126 operation = OPERANDS[1]; \
1127 if (float_conversion (operation, VOIDmode)) \
1128 operation = XEXP (operation, 0); \
1129 if (float_binary (operation, VOIDmode)) \
1130 { \
1131 op1 = XEXP (operation, 0), op2 = XEXP (operation, 1); \
1132 if (float_conversion (op1, VOIDmode)) \
1133 op1 = XEXP (op1, 0); \
1134 if (float_conversion (op2, VOIDmode)) \
1135 op2 = XEXP (op2, 0); \
1136 if (rtx_equal_p (op0, op2) \
1137 && (GET_CODE (operation) == PLUS \
1138 || GET_CODE (operation) == MULT)) \
1139 tem = op1, op1 = op2, op2 = tem; \
1140 if (GET_CODE (op0) == REG && FP_REGNO_P (REGNO (op0)) \
1141 && GET_CODE (op2) == REG && FP_REGNO_P (REGNO (op2)) \
1142 && REGNO (op0) == REGNO (op2)) \
1143 { \
1144 tem = gen_rtx (REG, GET_MODE (op0), 17); \
1145 emit_insn_after (gen_move_insn (op0, tem), INSN); \
1146 SET_DEST (XVECEXP (PATTERN (INSN), 0, 0)) = tem; \
1147 OPERANDS[0] = tem; \
1148 } \
1149 } \
1150 } \
1151 }
1152 \f
1153 /* Specify the machine mode that this machine uses
1154 for the index in the tablejump instruction. */
1155 #define CASE_VECTOR_MODE SImode
1156
1157 /* Define this if the tablejump instruction expects the table
1158 to contain offsets from the address of the table.
1159 Do not define this if the table should contain absolute addresses. */
1160 /* #define CASE_VECTOR_PC_RELATIVE */
1161
1162 /* Specify the tree operation to be used to convert reals to integers. */
1163 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1164
1165 /* This is the kind of divide that is easiest to do in the general case. */
1166 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1167
1168 /* Define this as 1 if `char' should by default be signed; else as 0. */
1169 #define DEFAULT_SIGNED_CHAR 0
1170
1171 /* This flag, if defined, says the same insns that convert to a signed fixnum
1172 also convert validly to an unsigned one.
1173
1174 We actually lie a bit here as overflow conditions are different. But
1175 they aren't being checked anyway. */
1176
1177 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1178
1179 /* Max number of bytes we can move from memory to memory
1180 in one reasonably fast instruction. */
1181 #define MOVE_MAX 4
1182
1183 /* Nonzero if access to memory by bytes is no faster than for words.
1184 Also non-zero if doing byte operations (specifically shifts) in registers
1185 is undesirable. */
1186 #define SLOW_BYTE_ACCESS 1
1187
1188 /* Define if normal loads of shorter-than-word items from memory clears
1189 the rest of the bigs in the register. */
1190 #define BYTE_LOADS_ZERO_EXTEND
1191
1192 /* This is BSD, so it wants DBX format. */
1193 #define DBX_DEBUGGING_INFO
1194
1195 /* We don't have GAS for the RT yet, so don't write out special
1196 .stabs in cc1plus. */
1197
1198 #define FASCIST_ASSEMBLER
1199
1200 /* Do not break .stabs pseudos into continuations. */
1201 #define DBX_CONTIN_LENGTH 0
1202
1203 /* Don't try to use the `x' type-cross-reference character in DBX data.
1204 Also has the consequence of putting each struct, union or enum
1205 into a separate .stabs, containing only cross-refs to the others. */
1206 #define DBX_NO_XREFS
1207
1208 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1209 is done just by pretending it is already truncated. */
1210 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1211
1212 /* Specify the machine mode that pointers have.
1213 After generation of rtl, the compiler makes no further distinction
1214 between pointers and any other objects of this machine mode. */
1215 #define Pmode SImode
1216
1217 /* Mode of a function address in a call instruction (for indexing purposes).
1218
1219 Doesn't matter on ROMP. */
1220 #define FUNCTION_MODE SImode
1221
1222 /* Define this if addresses of constant functions
1223 shouldn't be put through pseudo regs where they can be cse'd.
1224 Desirable on machines where ordinary constants are expensive
1225 but a CALL with constant address is cheap. */
1226 #define NO_FUNCTION_CSE
1227
1228 /* Define this if shift instructions ignore all but the low-order
1229 few bits.
1230
1231 This is not true on the RT since it uses the low-order 6, not 5, bits.
1232 At some point, this should be extended to see how to express that. */
1233
1234 /* #define SHIFT_COUNT_TRUNCATED */
1235
1236 /* Compute the cost of computing a constant rtl expression RTX whose
1237 rtx-code is CODE, contained within an expression of code OUTER_CODE.
1238 The body of this macro is a portion of a switch statement. If the
1239 code is computed here, return it with a return statement. Otherwise,
1240 break from the switch. */
1241
1242 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1243 case CONST_INT: \
1244 if ((OUTER_CODE) == IOR && exact_log2 (INTVAL (RTX)) >= 0 \
1245 || (OUTER_CODE) == AND && exact_log2 (~INTVAL (RTX)) >= 0 \
1246 || (((OUTER_CODE) == PLUS || (OUTER_CODE) == MINUS) \
1247 && (unsigned int) (INTVAL (RTX) + 15) < 31) \
1248 || ((OUTER_CODE) == SET && (unsigned int) INTVAL (RTX) < 16))\
1249 return 0; \
1250 return ((unsigned int) (INTVAL(RTX) + 0x8000) < 0x10000 \
1251 || (INTVAL (RTX) & 0xffff0000) == 0) ? 0 : COSTS_N_INSNS (2);\
1252 case CONST: \
1253 case LABEL_REF: \
1254 case SYMBOL_REF: \
1255 if (current_function_operand (RTX, Pmode)) return 0; \
1256 return COSTS_N_INSNS (2); \
1257 case CONST_DOUBLE: \
1258 if ((RTX) == CONST0_RTX (GET_MODE (RTX))) return 2; \
1259 return ((GET_MODE_CLASS (GET_MODE (RTX)) == MODE_FLOAT) \
1260 ? COSTS_N_INSNS (5) : COSTS_N_INSNS (4));
1261
1262 /* Provide the costs of a rtl expression. This is in the body of a
1263 switch on CODE.
1264
1265 References to our own data area are really references to r14, so they
1266 are very cheap. Multiples and divides are very expensive. */
1267
1268 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1269 case MEM: \
1270 return current_function_operand (X, Pmode) ? 0 : COSTS_N_INSNS (2); \
1271 case MULT: \
1272 return (TARGET_IN_LINE_MUL && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT)\
1273 ? COSTS_N_INSNS (19) : COSTS_N_INSNS (25); \
1274 case DIV: \
1275 case UDIV: \
1276 case MOD: \
1277 case UMOD: \
1278 return COSTS_N_INSNS (45);
1279
1280 /* Compute the cost of an address. This is meant to approximate the size
1281 and/or execution delay of an insn using that address. If the cost is
1282 approximated by the RTL complexity, including CONST_COSTS above, as
1283 is usually the case for CISC machines, this macro should not be defined.
1284 For aggressively RISCy machines, only one insn format is allowed, so
1285 this macro should be a constant. The value of this macro only matters
1286 for valid addresses.
1287
1288 For the ROMP, everything is cost 0 except for addresses involving
1289 symbolic constants, which are cost 1. */
1290
1291 #define ADDRESS_COST(RTX) \
1292 ((GET_CODE (RTX) == SYMBOL_REF \
1293 && ! CONSTANT_POOL_ADDRESS_P (RTX)) \
1294 || GET_CODE (RTX) == LABEL_REF \
1295 || (GET_CODE (RTX) == CONST \
1296 && ! constant_pool_address_operand (RTX, Pmode)) \
1297 || (GET_CODE (RTX) == PLUS \
1298 && ((GET_CODE (XEXP (RTX, 1)) == SYMBOL_REF \
1299 && ! CONSTANT_POOL_ADDRESS_P (XEXP (RTX, 0))) \
1300 || GET_CODE (XEXP (RTX, 1)) == LABEL_REF \
1301 || GET_CODE (XEXP (RTX, 1)) == CONST)))
1302
1303 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
1304 should be adjusted to reflect any required changes. This macro is used when
1305 there is some systematic length adjustment required that would be difficult
1306 to express in the length attribute.
1307
1308 On the ROMP, there are two adjustments: First, a 2-byte insn in the delay
1309 slot of a CALL (including floating-point operations) actually takes four
1310 bytes. Second, we have to make the worst-case alignment assumption for
1311 address vectors. */
1312
1313 #define ADJUST_INSN_LENGTH(X,LENGTH) \
1314 if (GET_CODE (X) == INSN && GET_CODE (PATTERN (X)) == SEQUENCE \
1315 && GET_CODE (XVECEXP (PATTERN (X), 0, 0)) != JUMP_INSN \
1316 && get_attr_length (XVECEXP (PATTERN (X), 0, 1)) == 2) \
1317 (LENGTH) += 2; \
1318 else if (GET_CODE (X) == JUMP_INSN && GET_CODE (PATTERN (X)) == ADDR_VEC) \
1319 (LENGTH) += 2;
1320 \f
1321 /* Tell final.c how to eliminate redundant test instructions. */
1322
1323 /* Here we define machine-dependent flags and fields in cc_status
1324 (see `conditions.h'). */
1325
1326 /* Set if condition code (really not-Z) is stored in `test bit'. */
1327 #define CC_IN_TB 01000
1328
1329 /* Set if condition code is set by an unsigned compare. */
1330 #define CC_UNSIGNED 02000
1331
1332 /* Store in cc_status the expressions
1333 that the condition codes will describe
1334 after execution of an instruction whose pattern is EXP.
1335 Do not alter them if the instruction would not alter the cc's. */
1336
1337 #define NOTICE_UPDATE_CC(BODY,INSN) \
1338 update_cc (BODY, INSN)
1339 \f
1340 /* Control the assembler format that we output. */
1341
1342 /* Output at beginning of assembler file. */
1343
1344 #define ASM_FILE_START(FILE) \
1345 { extern char *version_string; \
1346 fprintf (FILE, "\t.globl .oVncs\n\t.set .oVncs,0\n") ; \
1347 fprintf (FILE, "\t.globl .oVgcc%s\n\t.set .oVgcc%s,0\n", \
1348 version_string, version_string); \
1349 }
1350
1351 /* Output to assembler file text saying following lines
1352 may contain character constants, extra white space, comments, etc. */
1353
1354 #define ASM_APP_ON ""
1355
1356 /* Output to assembler file text saying following lines
1357 no longer contain unusual constructs. */
1358
1359 #define ASM_APP_OFF ""
1360
1361 /* Output before instructions and read-only data. */
1362
1363 #define TEXT_SECTION_ASM_OP ".text"
1364
1365 /* Output before writable data. */
1366
1367 #define DATA_SECTION_ASM_OP ".data"
1368
1369 /* How to refer to registers in assembler output.
1370 This sequence is indexed by compiler's hard-register-number (see above). */
1371
1372 #define REGISTER_NAMES \
1373 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \
1374 "r10", "r11", "r12", "r13", "r14", "r15", "ap", \
1375 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7" }
1376
1377 /* How to renumber registers for dbx and gdb. */
1378
1379 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1380
1381 /* This is how to output the definition of a user-level label named NAME,
1382 such as the label on a static function or variable NAME. */
1383
1384 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1385 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1386
1387 /* This is how to output a command to make the user-level label named NAME
1388 defined for reference from other files. */
1389
1390 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1391 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1392
1393 /* This is how to output a reference to a user-level label named NAME.
1394 `assemble_name' uses this. */
1395
1396 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1397 fprintf (FILE, "_%s", NAME)
1398
1399 /* This is how to output an internal numbered label where
1400 PREFIX is the class of label and NUM is the number within the class. */
1401
1402 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1403 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1404
1405 /* This is how to output a label for a jump table. Arguments are the same as
1406 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1407 passed. */
1408
1409 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1410 { ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1411
1412 /* This is how to store into the string LABEL
1413 the symbol_ref name of an internal numbered label where
1414 PREFIX is the class of label and NUM is the number within the class.
1415 This is suitable for output with `assemble_name'. */
1416
1417 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1418 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1419
1420 /* This is how to output an assembler line defining a `double' constant. */
1421
1422 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1423 fprintf (FILE, "\t.double 0d%.20e\n", (VALUE))
1424
1425 /* This is how to output an assembler line defining a `float' constant.
1426
1427 WARNING: Believe it or not, the ROMP assembler has a bug in its
1428 handling of single-precision floating-point values making it impossible
1429 to output such values in the expected way. Therefore, it must be output
1430 in hex. THIS WILL NOT WORK IF CROSS-COMPILING FROM A MACHINE THAT DOES
1431 NOT USE IEEE-FORMAT FLOATING-POINT, but there is nothing that can be done
1432 about it short of fixing the assembler. */
1433
1434 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1435 do { union { int i; float f; } u_i_f; \
1436 u_i_f.f = (VALUE); \
1437 fprintf (FILE, "\t.long 0x%x\n", u_i_f.i);\
1438 } while (0)
1439
1440 /* This is how to output an assembler line defining an `int' constant. */
1441
1442 #define ASM_OUTPUT_INT(FILE,VALUE) \
1443 ( fprintf (FILE, "\t.long "), \
1444 output_addr_const (FILE, (VALUE)), \
1445 fprintf (FILE, "\n"))
1446
1447 /* Likewise for `char' and `short' constants. */
1448
1449 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1450 ( fprintf (FILE, "\t.short "), \
1451 output_addr_const (FILE, (VALUE)), \
1452 fprintf (FILE, "\n"))
1453
1454 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1455 ( fprintf (FILE, "\t.byte "), \
1456 output_addr_const (FILE, (VALUE)), \
1457 fprintf (FILE, "\n"))
1458
1459 /* This is how to output an assembler line for a numeric constant byte. */
1460
1461 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1462 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1463
1464 /* This is how to output code to push a register on the stack.
1465 It need not be very fast code. */
1466
1467 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1468 fprintf (FILE, "\tsis r1,4\n\tsts %s,0(r1)\n", reg_names[REGNO])
1469
1470 /* This is how to output an insn to pop a register from the stack.
1471 It need not be very fast code. */
1472
1473 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1474 fprintf (FILE, "\tls r1,0(r1)\n\tais r1,4\n", reg_names[REGNO])
1475
1476 /* This is how to output an element of a case-vector that is absolute. */
1477
1478 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1479 fprintf (FILE, "\t.long L%d\n", VALUE)
1480
1481 /* This is how to output an element of a case-vector that is relative.
1482 (ROMP does not use such vectors,
1483 but we must define this macro anyway.) */
1484
1485 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) abort ()
1486
1487 /* This is how to output an assembler line
1488 that says to advance the location counter
1489 to a multiple of 2**LOG bytes. */
1490
1491 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1492 if ((LOG) != 0) \
1493 fprintf (FILE, "\t.align %d\n", (LOG))
1494
1495 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1496 fprintf (FILE, "\t.space %d\n", (SIZE))
1497
1498 /* This says how to output an assembler line
1499 to define a global common symbol. */
1500
1501 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1502 ( fputs (".comm ", (FILE)), \
1503 assemble_name ((FILE), (NAME)), \
1504 fprintf ((FILE), ",%d\n", (SIZE)))
1505
1506 /* This says how to output an assembler line
1507 to define a local common symbol. */
1508
1509 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1510 ( fputs (".lcomm ", (FILE)), \
1511 assemble_name ((FILE), (NAME)), \
1512 fprintf ((FILE), ",%d\n", (SIZE)))
1513
1514 /* Store in OUTPUT a string (made with alloca) containing
1515 an assembler-name for a local static variable named NAME.
1516 LABELNO is an integer which is different for each call. */
1517
1518 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1519 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1520 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1521
1522 /* Define the parentheses used to group arithmetic operations
1523 in assembler code. */
1524
1525 #define ASM_OPEN_PAREN "("
1526 #define ASM_CLOSE_PAREN ")"
1527
1528 /* Define results of standard character escape sequences. */
1529 #define TARGET_BELL 007
1530 #define TARGET_BS 010
1531 #define TARGET_TAB 011
1532 #define TARGET_NEWLINE 012
1533 #define TARGET_VT 013
1534 #define TARGET_FF 014
1535 #define TARGET_CR 015
1536
1537 /* Print operand X (an rtx) in assembler syntax to file FILE.
1538 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1539 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1540
1541 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1542
1543 /* Define which CODE values are valid. */
1544
1545 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1546 ((CODE) == '.' || (CODE) == '#')
1547 \f
1548 /* Print a memory address as an operand to reference that memory location. */
1549
1550 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1551 { register rtx addr = ADDR; \
1552 register rtx base = 0, offset = addr; \
1553 if (GET_CODE (addr) == REG) \
1554 base = addr, offset = const0_rtx; \
1555 else if (GET_CODE (addr) == PLUS \
1556 && GET_CODE (XEXP (addr, 0)) == REG) \
1557 base = XEXP (addr, 0), offset = XEXP (addr, 1); \
1558 else if (GET_CODE (addr) == SYMBOL_REF \
1559 && CONSTANT_POOL_ADDRESS_P (addr)) \
1560 { \
1561 offset = gen_rtx (CONST_INT, VOIDmode, get_pool_offset (addr) + 12); \
1562 base = gen_rtx (REG, SImode, 14); \
1563 } \
1564 else if (GET_CODE (addr) == CONST \
1565 && GET_CODE (XEXP (addr, 0)) == PLUS \
1566 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT \
1567 && GET_CODE (XEXP (XEXP (addr, 0), 0)) == SYMBOL_REF \
1568 && CONSTANT_POOL_ADDRESS_P (XEXP (XEXP (addr, 0), 0))) \
1569 { \
1570 offset = plus_constant (XEXP (XEXP (addr, 0), 1), \
1571 (get_pool_offset (XEXP (XEXP (addr, 0), 0)) \
1572 + 12)); \
1573 base = gen_rtx (REG, SImode, 14); \
1574 } \
1575 output_addr_const (FILE, offset); \
1576 if (base) \
1577 fprintf (FILE, "(%s)", reg_names [REGNO (base)]); \
1578 }
1579
1580 /* Define the codes that are matched by predicates in aux-output.c. */
1581
1582 #define PREDICATE_CODES \
1583 {"zero_memory_operand", {SUBREG, MEM}}, \
1584 {"short_memory_operand", {SUBREG, MEM}}, \
1585 {"symbolic_memory_operand", {SUBREG, MEM}}, \
1586 {"current_function_operand", {MEM}}, \
1587 {"constant_pool_address_operand", {SUBREG, CONST}}, \
1588 {"romp_symbolic_operand", {LABEL_REF, SYMBOL_REF, CONST}}, \
1589 {"constant_operand", {LABEL_REF, SYMBOL_REF, PLUS, CONST, CONST_INT}}, \
1590 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
1591 {"reg_or_any_cint_operand", {SUBREG, REG, CONST_INT}}, \
1592 {"short_cint_operand", {CONST_INT}}, \
1593 {"reg_or_D_operand", {SUBREG, REG, CONST_INT}}, \
1594 {"reg_or_add_operand", {SUBREG, REG, LABEL_REF, SYMBOL_REF, \
1595 PLUS, CONST, CONST_INT}}, \
1596 {"reg_or_and_operand", {SUBREG, REG, CONST_INT}}, \
1597 {"reg_or_mem_operand", {SUBREG, REG, MEM}}, \
1598 {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \
1599 {"romp_operand", {SUBREG, MEM, REG, CONST_INT, CONST, LABEL_REF, \
1600 SYMBOL_REF, CONST_DOUBLE}}, \
1601 {"reg_0_operand", {REG}}, \
1602 {"reg_15_operand", {REG}}, \
1603 {"float_binary", {PLUS, MINUS, MULT, DIV}}, \
1604 {"float_unary", {NEG, ABS}}, \
1605 {"float_conversion", {FLOAT_TRUNCATE, FLOAT_EXTEND, FLOAT, FIX}},
1606
1607 /* Define functions defined in aux-output.c and used in templates. */
1608
1609 extern char *output_in_line_mul ();
1610 extern char *output_fpop ();
This page took 0.10812 seconds and 5 git commands to generate.