]> gcc.gnu.org Git - gcc.git/blob - gcc/config/romp/romp.h
721058a3202e9eddcef3d4baa9892d8d2e8a1c2e
[gcc.git] / gcc / config / romp / romp.h
1 /* Definitions of target machine for GNU compiler, for ROMP chip.
2 Copyright (C) 1989, 1991, 1993 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@nyu.edu)
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21
22 /* Names to predefine in the preprocessor for this target machine. */
23
24 #define CPP_PREDEFINES "-Dibm032 -Dunix -Asystem(unix) -Asystem(bsd) -Acpu(ibm032) -Amachine(ibm032)"
25
26 /* Print subsidiary information on the compiler version in use. */
27 #define TARGET_VERSION ;
28
29 /* Add -lfp_p when running with -p or -pg. */
30 #define LIB_SPEC "%{pg:-lfp_p}%{p:-lfp_p} %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
31
32 /* Run-time compilation parameters selecting different hardware subsets. */
33
34 /* Flag to generate all multiplies as an in-line sequence of multiply-step
35 insns instead of calling a library routine. */
36 #define TARGET_IN_LINE_MUL (target_flags & 1)
37
38 /* Flag to generate padded floating-point data blocks. Otherwise, we generate
39 them the minimum size. This trades off execution speed against size. */
40 #define TARGET_FULL_FP_BLOCKS (target_flags & 2)
41
42 /* Flag to pass and return floating point values in floating point registers.
43 Since this violates the linkage convention, we feel free to destroy fr2
44 and fr3 on function calls.
45 fr1-fr3 are used to pass the arguments. */
46 #define TARGET_FP_REGS (target_flags & 4)
47
48 /* Flag to return structures of more than one word in memory. This is for
49 compatibility with the MetaWare HighC (hc) compiler. */
50 #define TARGET_HC_STRUCT_RETURN (target_flags & 010)
51
52 extern int target_flags;
53
54 /* Macro to define tables used to set the flags.
55 This is a list in braces of pairs in braces,
56 each pair being { "NAME", VALUE }
57 where VALUE is the bits to set or minus the bits to clear.
58 An empty string NAME is used to identify the default VALUE. */
59
60 #define TARGET_SWITCHES \
61 { {"in-line-mul", 1}, \
62 {"call-lib-mul", -1}, \
63 {"full-fp-blocks", 2}, \
64 {"minimum-fp-blocks", -2}, \
65 {"fp-arg-in-fpregs", 4}, \
66 {"fp-arg-in-gregs", -4}, \
67 {"hc-struct-return", 010}, \
68 {"nohc-struct-return", - 010}, \
69 { "", TARGET_DEFAULT}}
70
71 #define TARGET_DEFAULT 3
72 \f
73 /* target machine storage layout */
74
75 /* Define this if most significant bit is lowest numbered
76 in instructions that operate on numbered bit-fields. */
77 /* That is true on ROMP. */
78 #define BITS_BIG_ENDIAN 1
79
80 /* Define this if most significant byte of a word is the lowest numbered. */
81 /* That is true on ROMP. */
82 #define BYTES_BIG_ENDIAN 1
83
84 /* Define this if most significant word of a multiword number is lowest
85 numbered.
86
87 For ROMP we can decide arbitrarily since there are no machine instructions
88 for them. Might as well be consistent with bits and bytes. */
89 #define WORDS_BIG_ENDIAN 1
90
91 /* number of bits in an addressable storage unit */
92 #define BITS_PER_UNIT 8
93
94 /* Width in bits of a "word", which is the contents of a machine register.
95 Note that this is not necessarily the width of data type `int';
96 if using 16-bit ints on a 68000, this would still be 32.
97 But on a machine with 16-bit registers, this would be 16. */
98 #define BITS_PER_WORD 32
99
100 /* Width of a word, in units (bytes). */
101 #define UNITS_PER_WORD 4
102
103 /* Width in bits of a pointer.
104 See also the macro `Pmode' defined below. */
105 #define POINTER_SIZE 32
106
107 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
108 #define PARM_BOUNDARY 32
109
110 /* Boundary (in *bits*) on which stack pointer should be aligned. */
111 #define STACK_BOUNDARY 32
112
113 /* Allocation boundary (in *bits*) for the code of a function. */
114 #define FUNCTION_BOUNDARY 16
115
116 /* No data type wants to be aligned rounder than this. */
117 #define BIGGEST_ALIGNMENT 32
118
119 /* Alignment of field after `int : 0' in a structure. */
120 #define EMPTY_FIELD_BOUNDARY 32
121
122 /* Every structure's size must be a multiple of this. */
123 #define STRUCTURE_SIZE_BOUNDARY 8
124
125 /* A bitfield declared as `int' forces `int' alignment for the struct. */
126 #define PCC_BITFIELD_TYPE_MATTERS 1
127
128 /* Make strings word-aligned so strcpy from constants will be faster. */
129 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
130 (TREE_CODE (EXP) == STRING_CST \
131 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
132
133 /* Make arrays of chars word-aligned for the same reasons. */
134 #define DATA_ALIGNMENT(TYPE, ALIGN) \
135 (TREE_CODE (TYPE) == ARRAY_TYPE \
136 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
137 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
138
139 /* Set this nonzero if move instructions will actually fail to work
140 when given unaligned data. */
141 #define STRICT_ALIGNMENT 1
142 \f
143 /* Standard register usage. */
144
145 /* Number of actual hardware registers.
146 The hardware registers are assigned numbers for the compiler
147 from 0 to just below FIRST_PSEUDO_REGISTER.
148 All registers that the compiler knows about must be given numbers,
149 even those that are not normally considered general registers.
150
151 ROMP has 16 fullword registers and 8 floating point registers.
152
153 In addition, the difference between the frame and argument pointers is
154 a function of the number of registers saved, so we need to have a register
155 to use for AP that will later be eliminated in favor of sp or fp. This is
156 a normal register, but it is fixed. */
157
158 #define FIRST_PSEUDO_REGISTER 25
159
160 /* 1 for registers that have pervasive standard uses
161 and are not available for the register allocator.
162
163 On ROMP, r1 is used for the stack and r14 is used for a
164 data area pointer.
165
166 HACK WARNING: On the RT, there is a bug in code generation for
167 the MC68881 when the first and third operands are the same floating-point
168 register. See the definition of the FINAL_PRESCAN_INSN macro for details.
169 Here we need to reserve fr0 for this purpose. */
170 #define FIXED_REGISTERS \
171 {0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
172 1, \
173 1, 0, 0, 0, 0, 0, 0, 0}
174
175 /* 1 for registers not available across function calls.
176 These must include the FIXED_REGISTERS and also any
177 registers that can be used without being saved.
178 The latter must include the registers where values are returned
179 and the register where structure-value addresses are passed.
180 Aside from that, you can include as many other registers as you like. */
181 #define CALL_USED_REGISTERS \
182 {1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
183 1, \
184 1, 1, 0, 0, 0, 0, 0, 0}
185
186 /* List the order in which to allocate registers. Each register must be
187 listed once, even those in FIXED_REGISTERS.
188
189 We allocate in the following order:
190 fr0, fr1 (not saved)
191 fr2 ... fr6
192 fr7 (more expensive for some FPA's)
193 r0 (not saved and won't conflict with parameter register)
194 r4, r3, r2 (not saved, highest used first to make less conflict)
195 r5 (not saved, but forces r6 to be saved if DI/DFmode)
196 r15, r14, r13, r12, r11, r10, r9, r8, r7, r6 (less to save)
197 r1, ap */
198
199 #define REG_ALLOC_ORDER \
200 {17, 18, \
201 19, 20, 21, 22, 23, \
202 24, \
203 0, \
204 4, 3, 2, \
205 5, \
206 15, 14, 13, 12, 11, 10, \
207 9, 8, 7, 6, \
208 1, 16}
209
210 /* True if register is floating-point. */
211 #define FP_REGNO_P(N) ((N) >= 17)
212
213 /* Return number of consecutive hard regs needed starting at reg REGNO
214 to hold something of mode MODE.
215 This is ordinarily the length in words of a value of mode MODE
216 but can be less for certain modes in special long registers.
217
218 On ROMP, ordinary registers hold 32 bits worth;
219 a single floating point register is always enough for
220 anything that can be stored in them at all. */
221 #define HARD_REGNO_NREGS(REGNO, MODE) \
222 (FP_REGNO_P (REGNO) ? GET_MODE_NUNITS (MODE) \
223 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
224
225 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
226 On ROMP, the cpu registers can hold any mode but the float registers
227 can hold only floating point. */
228 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
229 (! FP_REGNO_P (REGNO) || GET_MODE_CLASS (MODE) == MODE_FLOAT \
230 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)
231
232 /* Value is 1 if it is a good idea to tie two pseudo registers
233 when one has mode MODE1 and one has mode MODE2.
234 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
235 for any hard reg, then this must be 0 for correct output. */
236 #define MODES_TIEABLE_P(MODE1, MODE2) \
237 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT \
238 || GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
239 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT \
240 || GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
241
242 /* A C expression returning the cost of moving data from a register of class
243 CLASS1 to one of CLASS2.
244
245 On the ROMP, access to floating-point registers is expensive (even between
246 two FP regs.) */
247 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
248 (2 + 10 * ((CLASS1) == FP_REGS) + 10 * (CLASS2 == FP_REGS))
249
250 /* Specify the registers used for certain standard purposes.
251 The values of these macros are register numbers. */
252
253 /* ROMP pc isn't overloaded on a register that the compiler knows about. */
254 /* #define PC_REGNUM */
255
256 /* Register to use for pushing function arguments. */
257 #define STACK_POINTER_REGNUM 1
258
259 /* Base register for access to local variables of the function. */
260 #define FRAME_POINTER_REGNUM 13
261
262 /* Value should be nonzero if functions must have frame pointers.
263 Zero means the frame pointer need not be set up (and parms
264 may be accessed via the stack pointer) in functions that seem suitable.
265 This is computed in `reload', in reload1.c. */
266 #define FRAME_POINTER_REQUIRED 0
267
268 /* Base register for access to arguments of the function. */
269 #define ARG_POINTER_REGNUM 16
270
271 /* Place to put static chain when calling a function that requires it. */
272 #define STATIC_CHAIN \
273 gen_rtx (MEM, Pmode, gen_rtx (PLUS, Pmode, stack_pointer_rtx, \
274 gen_rtx (CONST_INT, VOIDmode, -36)))
275
276 /* Place where static chain is found upon entry to routine. */
277 #define STATIC_CHAIN_INCOMING \
278 gen_rtx (MEM, Pmode, gen_rtx (PLUS, Pmode, arg_pointer_rtx, \
279 gen_rtx (CONST_INT, VOIDmode, -20)))
280
281 /* Place that structure value return address is placed.
282
283 On the ROMP, it is passed as an extra parameter. */
284 #define STRUCT_VALUE 0
285 \f
286 /* Define the classes of registers for register constraints in the
287 machine description. Also define ranges of constants.
288
289 One of the classes must always be named ALL_REGS and include all hard regs.
290 If there is more than one class, another class must be named NO_REGS
291 and contain no registers.
292
293 The name GENERAL_REGS must be the name of a class (or an alias for
294 another name such as ALL_REGS). This is the class of registers
295 that is allowed by "g" or "r" in a register constraint.
296 Also, registers outside this class are allocated only when
297 instructions express preferences for them.
298
299 The classes must be numbered in nondecreasing order; that is,
300 a larger-numbered class must never be contained completely
301 in a smaller-numbered class.
302
303 For any two classes, it is very desirable that there be another
304 class that represents their union. */
305
306 /* The ROMP has two types of registers, general and floating-point.
307
308 However, r0 is special in that it cannot be used as a base register.
309 So make a class for registers valid as base registers.
310
311 For floating-point support, add classes that just consist of r0 and
312 r15, respectively. */
313
314 enum reg_class { NO_REGS, R0_REGS, R15_REGS, BASE_REGS, GENERAL_REGS,
315 FP_REGS, ALL_REGS, LIM_REG_CLASSES };
316
317 #define N_REG_CLASSES (int) LIM_REG_CLASSES
318
319 /* Give names of register classes as strings for dump file. */
320
321 #define REG_CLASS_NAMES \
322 {"NO_REGS", "R0_REGS", "R15_REGS", "BASE_REGS", "GENERAL_REGS", \
323 "FP_REGS", "ALL_REGS" }
324
325 /* Define which registers fit in which classes.
326 This is an initializer for a vector of HARD_REG_SET
327 of length N_REG_CLASSES. */
328
329 #define REG_CLASS_CONTENTS {0, 0x00001, 0x08000, 0x1fffe, 0x1ffff, \
330 0x1fe0000, 0x1ffffff }
331
332 /* The same information, inverted:
333 Return the class number of the smallest class containing
334 reg number REGNO. This could be a conditional expression
335 or could index an array. */
336
337 #define REGNO_REG_CLASS(REGNO) \
338 ((REGNO) == 0 ? GENERAL_REGS : FP_REGNO_P (REGNO) ? FP_REGS : BASE_REGS)
339
340 /* The class value for index registers, and the one for base regs. */
341 #define INDEX_REG_CLASS BASE_REGS
342 #define BASE_REG_CLASS BASE_REGS
343
344 /* Get reg_class from a letter such as appears in the machine description. */
345
346 #define REG_CLASS_FROM_LETTER(C) \
347 ((C) == 'f' ? FP_REGS \
348 : (C) == 'b' ? BASE_REGS \
349 : (C) == 'z' ? R0_REGS \
350 : (C) == 't' ? R15_REGS \
351 : NO_REGS)
352
353 /* The letters I, J, K, L, M, N, and P in a register constraint string
354 can be used to stand for particular ranges of immediate operands.
355 This macro defines what the ranges are.
356 C is the letter, and VALUE is a constant value.
357 Return 1 if VALUE is in the range specified by C.
358
359 `I' is constants less than 16
360 `J' is negative constants greater than -16
361 `K' is the range for a normal D insn.
362 `L' is a constant with only the low-order 16 bits set
363 `M' is a constant with only the high-order 16 bits set
364 `N' is a single-bit constant
365 `O' is a constant with either the high-order or low-order 16 bits all ones
366 `P' is the complement of a single-bit constant
367 */
368
369 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
370 ( (C) == 'I' ? (unsigned) (VALUE) < 0x10 \
371 : (C) == 'J' ? (VALUE) < 0 && (VALUE) > -16 \
372 : (C) == 'K' ? (unsigned) ((VALUE) + 0x8000) < 0x10000 \
373 : (C) == 'L' ? ((VALUE) & 0xffff0000) == 0 \
374 : (C) == 'M' ? ((VALUE) & 0xffff) == 0 \
375 : (C) == 'N' ? exact_log2 (VALUE) >= 0 \
376 : (C) == 'O' ? ((VALUE) & 0xffff) == 0xffff \
377 || ((VALUE) & 0xffff0000) == 0xffff0000 \
378 : (C) == 'P' ? exact_log2 (~ (VALUE)) >= 0 \
379 : 0)
380
381 /* Similar, but for floating constants, and defining letters G and H.
382 Here VALUE is the CONST_DOUBLE rtx itself.
383 No floating-point constants on ROMP. */
384
385 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0
386
387 /* Optional extra constraints for this machine.
388
389 For the ROMP, `Q' means that this is a memory operand but not a symbolic
390 memory operand. Note that an unassigned pseudo register is such a
391 memory operand. If register allocation has not been done, we reject
392 pseudos, since we assume (hope) that they will get hard registers.
393
394 `R' means that this is a constant pool reference to the current function.
395 This is just r14 and so can be treated as a register. We bother with this
396 just in move insns as that is the only place it is likely to occur.
397
398 `S' means that this is the address of a constant pool location. This is
399 equal to r14 plus a constant. We also only check for this in move insns. */
400
401 #define EXTRA_CONSTRAINT(OP, C) \
402 ((C) == 'Q' ? \
403 ((GET_CODE (OP) == REG \
404 && REGNO (OP) >= FIRST_PSEUDO_REGISTER \
405 && reg_renumber != 0 \
406 && reg_renumber[REGNO (OP)] < 0) \
407 || (GET_CODE (OP) == MEM \
408 && ! symbolic_memory_operand (OP, VOIDmode))) \
409 : (C) == 'R' ? current_function_operand (OP, VOIDmode) \
410 : (C) == 'S' ? constant_pool_address_operand (OP, VOIDmode) \
411 : 0)
412
413 /* Given an rtx X being reloaded into a reg required to be
414 in class CLASS, return the class of reg to actually use.
415 In general this is just CLASS; but on some machines
416 in some cases it is preferable to use a more restrictive class.
417
418 For the ROMP, if X is a memory reference that involves a symbol,
419 we must use a BASE_REGS register instead of GENERAL_REGS
420 to do the reload. The argument of MEM be either REG, PLUS, or SYMBOL_REF
421 to be valid, so we assume that this is the case.
422
423 Also, if X is an integer class, ensure that floating-point registers
424 aren't used. */
425
426 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
427 ((CLASS) == FP_REGS && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
428 ? GENERAL_REGS : \
429 (CLASS) != GENERAL_REGS ? (CLASS) : \
430 GET_CODE (X) != MEM ? GENERAL_REGS : \
431 GET_CODE (XEXP (X, 0)) == SYMBOL_REF ? BASE_REGS : \
432 GET_CODE (XEXP (X, 0)) == LABEL_REF ? BASE_REGS : \
433 GET_CODE (XEXP (X, 0)) == CONST ? BASE_REGS : \
434 GET_CODE (XEXP (X, 0)) == REG ? GENERAL_REGS : \
435 GET_CODE (XEXP (X, 0)) != PLUS ? GENERAL_REGS : \
436 GET_CODE (XEXP (XEXP (X, 0), 1)) == SYMBOL_REF ? BASE_REGS : \
437 GET_CODE (XEXP (XEXP (X, 0), 1)) == LABEL_REF ? BASE_REGS : \
438 GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST ? BASE_REGS : GENERAL_REGS)
439
440 /* Return the register class of a scratch register needed to store into
441 OUT from a register of class CLASS in MODE.
442
443 On the ROMP, we cannot store into a symbolic memory address from an
444 integer register; we need a BASE_REGS register as a scratch to do it. */
445
446 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
447 (GET_MODE_CLASS (MODE) == MODE_INT && symbolic_memory_operand (OUT, MODE) \
448 ? BASE_REGS : NO_REGS)
449
450 /* Return the maximum number of consecutive registers
451 needed to represent mode MODE in a register of class CLASS.
452
453 On ROMP, this is the size of MODE in words,
454 except in the FP regs, where a single reg is always enough. */
455 #define CLASS_MAX_NREGS(CLASS, MODE) \
456 ((CLASS) == FP_REGS ? 1 \
457 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
458 \f
459 /* Stack layout; function entry, exit and calling. */
460
461 /* Define this if pushing a word on the stack
462 makes the stack pointer a smaller address. */
463 #define STACK_GROWS_DOWNWARD
464
465 /* Define this if the nominal address of the stack frame
466 is at the high-address end of the local variables;
467 that is, each additional local variable allocated
468 goes at a more negative offset in the frame. */
469 #define FRAME_GROWS_DOWNWARD
470
471 /* Offset within stack frame to start allocating local variables at.
472 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
473 first local allocated. Otherwise, it is the offset to the BEGINNING
474 of the first local allocated.
475 On the ROMP, if we set the frame pointer to 15 words below the highest
476 address of the highest local variable, the first 16 words will be
477 addressable via D-short insns. */
478 #define STARTING_FRAME_OFFSET 64
479
480 /* If we generate an insn to push BYTES bytes,
481 this says how many the stack pointer really advances by.
482 On ROMP, don't define this because there are no push insns. */
483 /* #define PUSH_ROUNDING(BYTES) */
484
485 /* Offset of first parameter from the argument pointer register value.
486 On the ROMP, we define the argument pointer to the start of the argument
487 area. */
488 #define FIRST_PARM_OFFSET(FNDECL) 0
489
490 /* Define this if stack space is still allocated for a parameter passed
491 in a register. The value is the number of bytes. */
492 #define REG_PARM_STACK_SPACE(FNDECL) 16
493
494 /* This is the difference between the logical top of stack and the actual sp.
495
496 For the ROMP, sp points past the words allocated for the first four outgoing
497 arguments (they are part of the callee's frame). */
498 #define STACK_POINTER_OFFSET -16
499
500 /* Define this if the maximum size of all the outgoing args is to be
501 accumulated and pushed during the prologue. The amount can be
502 found in the variable current_function_outgoing_args_size. */
503 #define ACCUMULATE_OUTGOING_ARGS
504
505 /* Value is the number of bytes of arguments automatically
506 popped when returning from a subroutine call.
507 FUNTYPE is the data type of the function (as a tree),
508 or for a library call it is an identifier node for the subroutine name.
509 SIZE is the number of bytes of arguments passed on the stack. */
510
511 #define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
512
513 /* Define how to find the value returned by a function.
514 VALTYPE is the data type of the value (as a tree).
515 If the precise function being called is known, FUNC is its FUNCTION_DECL;
516 otherwise, FUNC is 0.
517
518 On ROMP the value is found in r2, unless the machine specific option
519 fp-arg-in-fpregs is selected, in which case FP return values are in fr1 */
520
521 #define FUNCTION_VALUE(VALTYPE, FUNC) \
522 gen_rtx (REG, TYPE_MODE (VALTYPE), \
523 (TARGET_FP_REGS && \
524 GET_MODE_CLASS (TYPE_MODE (VALTYPE)) == MODE_FLOAT) ? 18 : 2)
525
526 /* Define how to find the value returned by a library function
527 assuming the value has mode MODE. */
528
529 #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 2)
530
531 /* The definition of this macro implies that there are cases where
532 a scalar value cannot be returned in registers.
533
534 For the ROMP, if compatibility with HC is required, anything of
535 type DImode is returned in memory. */
536
537 #define RETURN_IN_MEMORY(type) \
538 (TYPE_MODE (type) == BLKmode \
539 || (TARGET_HC_STRUCT_RETURN && TYPE_MODE (type) == DImode))
540
541 /* 1 if N is a possible register number for a function value
542 as seen by the caller.
543
544 On ROMP, r2 is the only register thus used unless fp values are to be
545 returned in fp regs, in which case fr1 is also used. */
546
547 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 2 || ((N) == 18 && TARGET_FP_REGS))
548
549 /* 1 if N is a possible register number for function argument passing.
550 On ROMP, these are r2-r5 (and fr1-fr4 if fp regs are used). */
551
552 #define FUNCTION_ARG_REGNO_P(N) \
553 (((N) <= 5 && (N) >= 2) || (TARGET_FP_REGS && (N) > 17 && (N) < 21))
554 \f
555 /* Define a data type for recording info about an argument list
556 during the scan of that argument list. This data type should
557 hold all necessary information about the function itself
558 and about the args processed so far, enough to enable macros
559 such as FUNCTION_ARG to determine where the next arg should go.
560
561 On the ROMP, this is a structure. The first word is the number of
562 words of (integer only if -mfp-arg-in-fpregs is specified) arguments
563 scanned so far (including the invisible argument, if any, which holds
564 the structure-value-address). The second word hold the corresponding
565 value for floating-point arguments, except that both single and double
566 count as one register. */
567
568 struct rt_cargs {int gregs, fregs; };
569 #define CUMULATIVE_ARGS struct rt_cargs
570
571 #define USE_FP_REG(MODE,CUM) \
572 (TARGET_FP_REGS && GET_MODE_CLASS (MODE) == MODE_FLOAT \
573 && (CUM).fregs < 3)
574
575 /* Define intermediate macro to compute the size (in registers) of an argument
576 for the ROMP. */
577
578 #define ROMP_ARG_SIZE(MODE, TYPE, NAMED) \
579 (! (NAMED) ? 0 \
580 : (MODE) != BLKmode \
581 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
582 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
583
584 /* Initialize a variable CUM of type CUMULATIVE_ARGS
585 for a call to a function whose data type is FNTYPE.
586 For a library call, FNTYPE is 0.
587
588 On ROMP, the offset normally starts at 0, but starts at 4 bytes
589 when the function gets a structure-value-address as an
590 invisible first argument. */
591
592 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
593 (CUM).gregs = 0, \
594 (CUM).fregs = 0
595
596 /* Update the data in CUM to advance over an argument
597 of mode MODE and data type TYPE.
598 (TYPE is null for libcalls where that information may not be available.) */
599
600 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
601 { if (NAMED) \
602 { \
603 if (USE_FP_REG(MODE, CUM)) \
604 (CUM).fregs++; \
605 else \
606 (CUM).gregs += ROMP_ARG_SIZE (MODE, TYPE, NAMED); \
607 } \
608 }
609
610 /* Determine where to put an argument to a function.
611 Value is zero to push the argument on the stack,
612 or a hard register in which to store the argument.
613
614 MODE is the argument's machine mode.
615 TYPE is the data type of the argument (as a tree).
616 This is null for libcalls where that information may
617 not be available.
618 CUM is a variable of type CUMULATIVE_ARGS which gives info about
619 the preceding args and about the function being called.
620 NAMED is nonzero if this argument is a named parameter
621 (otherwise it is an extra parameter matching an ellipsis).
622
623 On ROMP the first four words of args are normally in registers
624 and the rest are pushed. */
625
626 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
627 (! (NAMED) ? 0 \
628 : ((TYPE) != 0 && TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST) ? 0 \
629 : USE_FP_REG(MODE,CUM) ? gen_rtx(REG, (MODE),(CUM.fregs) + 17) \
630 : (CUM).gregs < 4 ? gen_rtx(REG, (MODE), 2 + (CUM).gregs) : 0)
631
632 /* For an arg passed partly in registers and partly in memory,
633 this is the number of registers used.
634 For args passed entirely in registers or entirely in memory, zero. */
635
636 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
637 (! (NAMED) ? 0 \
638 : USE_FP_REG(MODE,CUM) ? 0 \
639 : (((CUM).gregs < 4 \
640 && 4 < ((CUM).gregs + ROMP_ARG_SIZE (MODE, TYPE, NAMED))) \
641 ? 4 - (CUM).gregs : 0))
642
643 /* Perform any needed actions needed for a function that is receiving a
644 variable number of arguments.
645
646 CUM is as above.
647
648 MODE and TYPE are the mode and type of the current parameter.
649
650 PRETEND_SIZE is a variable that should be set to the amount of stack
651 that must be pushed by the prolog to pretend that our caller pushed
652 it.
653
654 Normally, this macro will push all remaining incoming registers on the
655 stack and set PRETEND_SIZE to the length of the registers pushed. */
656
657 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
658 { if (TARGET_FP_REGS) \
659 error ("can't have varargs with -mfp-arg-in-fp-regs"); \
660 else if ((CUM).gregs < 4) \
661 { \
662 int first_reg_offset = (CUM).gregs; \
663 \
664 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
665 first_reg_offset += ROMP_ARG_SIZE (TYPE_MODE (TYPE), TYPE, 1); \
666 \
667 if (first_reg_offset > 4) \
668 first_reg_offset = 4; \
669 \
670 if (! NO_RTL && first_reg_offset != 4) \
671 move_block_from_reg \
672 (2 + first_reg_offset, \
673 gen_rtx (MEM, BLKmode, \
674 plus_constant (virtual_incoming_args_rtx, \
675 first_reg_offset * 4)), \
676 4 - first_reg_offset, (4 - first_reg_offset) * UNITS_PER_WORD); \
677 PRETEND_SIZE = (4 - first_reg_offset) * UNITS_PER_WORD; \
678 } \
679 }
680
681 /* This macro produces the initial definition of a function name.
682 On the ROMP, we need to place an extra '.' in the function name. */
683
684 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
685 { if (TREE_PUBLIC(DECL)) \
686 fprintf (FILE, "\t.globl _.%s\n", NAME); \
687 fprintf (FILE, "_.%s:\n", NAME); \
688 }
689
690 /* This macro is used to output the start of the data area.
691
692 On the ROMP, the _name is a pointer to the data area. At that
693 location is the address of _.name, which is really the name of
694 the function. We need to set all this up here.
695
696 The global declaration of the data area, if needed, is done in
697 `assemble_function', where it thinks it is globalizing the function
698 itself. */
699
700 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, NAME, DECL, SIZE) \
701 { extern int data_offset; \
702 data_section (); \
703 fprintf (FILE, "\t.align 2\n"); \
704 ASM_OUTPUT_LABEL (FILE, NAME); \
705 fprintf (FILE, "\t.long _.%s, 0, ", NAME); \
706 if (current_function_calls_alloca) \
707 fprintf (FILE, "0x%x\n", \
708 0xf6900000 + current_function_outgoing_args_size); \
709 else \
710 fprintf (FILE, "0\n"); \
711 data_offset = ((SIZE) + 12 + 3) / 4; \
712 }
713
714 /* Select section for constant in constant pool.
715
716 On ROMP, all constants are in the data area. */
717
718 #define SELECT_RTX_SECTION(MODE, X) data_section ()
719
720 /* This macro generates the assembly code for function entry.
721 FILE is a stdio stream to output the code to.
722 SIZE is an int: how many units of temporary storage to allocate.
723 Refer to the array `regs_ever_live' to determine which registers
724 to save; `regs_ever_live[I]' is nonzero if register number I
725 is ever used in the function. This macro is responsible for
726 knowing which registers should not be saved even if used. */
727
728 #define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
729
730 /* Output assembler code to FILE to increment profiler label # LABELNO
731 for profiling a function entry. */
732
733 #define FUNCTION_PROFILER(FILE, LABELNO) \
734 fprintf(FILE, "\tcas r0,r15,r0\n\tbali r15,mcount\n");
735
736 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
737 the stack pointer does not matter. The value is tested only in
738 functions that have frame pointers.
739 No definition is equivalent to always zero. */
740 /* #define EXIT_IGNORE_STACK 1 */
741
742 /* This macro generates the assembly code for function exit,
743 on machines that need it. If FUNCTION_EPILOGUE is not defined
744 then individual return instructions are generated for each
745 return statement. Args are same as for FUNCTION_PROLOGUE.
746
747 The function epilogue should not depend on the current stack pointer!
748 It should use the frame pointer only. This is mandatory because
749 of alloca; we also take advantage of it to omit stack adjustments
750 before returning. */
751
752 #define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
753 \f
754 /* Output assembler code for a block containing the constant parts
755 of a trampoline, leaving space for the variable parts.
756
757 The trampoline should set the static chain pointer to value placed
758 into the trampoline and should branch to the specified routine.
759
760 On the ROMP, we have a problem. There are no free registers to use
761 to construct the static chain and function addresses. Hence we use
762 the following kludge: r15 (the return address) is first saved in mq.
763 Then we use r15 to form the function address. We then branch to the
764 function and restore r15 in the delay slot. This makes it appear that
765 the function was called directly from the caller.
766
767 (Note that the function address built is actually that of the data block.
768 This is passed in r0 and the actual routine address is loaded into r15.)
769
770 In addition, note that the address of the "called function", in this case
771 the trampoline, is actually the address of the data area. So we need to
772 make a fake data area that will contain the address of the trampoline.
773 Note that this must be defined as two half-words, since the trampoline
774 template (as opposed to the trampoline on the stack) is only half-word
775 aligned. */
776
777 #define TRAMPOLINE_TEMPLATE(FILE) \
778 { \
779 fprintf (FILE, "\t.short 0,0\n"); \
780 fprintf (FILE, "\tcau r0,0(r0)\n"); \
781 fprintf (FILE, "\toil r0,r0,0\n"); \
782 fprintf (FILE, "\tmts r10,r15\n"); \
783 fprintf (FILE, "\tst r0,-36(r1)\n"); \
784 fprintf (FILE, "\tcau r15,0(r0)\n"); \
785 fprintf (FILE, "\toil r15,r15,0\n"); \
786 fprintf (FILE, "\tcas r0,r15,r0\n"); \
787 fprintf (FILE, "\tls r15,0(r15)\n"); \
788 fprintf (FILE, "\tbrx r15\n"); \
789 fprintf (FILE, "\tmfs r10,r15\n"); \
790 }
791
792 /* Length in units of the trampoline for entering a nested function. */
793
794 #define TRAMPOLINE_SIZE 36
795
796 /* Emit RTL insns to initialize the variable parts of a trampoline.
797 FNADDR is an RTX for the address of the function's pure code.
798 CXT is an RTX for the static chain value for the function.
799
800 On the RT, the static chain and function addresses are written in
801 two 16-bit sections.
802
803 We also need to write the address of the first instruction in
804 the trampoline into the first word of the trampoline to simulate a
805 data area. */
806
807 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
808 { \
809 rtx _addr, _temp; \
810 rtx _val; \
811 \
812 _temp = expand_binop (SImode, add_optab, ADDR, \
813 gen_rtx (CONST_INT, VOIDmode, 4), \
814 0, 1, OPTAB_LIB_WIDEN); \
815 emit_move_insn (gen_rtx (MEM, SImode, \
816 memory_address (SImode, ADDR)), _temp); \
817 \
818 _val = force_reg (SImode, CXT); \
819 _addr = memory_address (HImode, plus_constant (ADDR, 10)); \
820 emit_move_insn (gen_rtx (MEM, HImode, _addr), \
821 gen_lowpart (HImode, _val)); \
822 _temp = expand_shift (RSHIFT_EXPR, SImode, _val, \
823 build_int_2 (16, 0), 0, 1); \
824 _addr = memory_address (HImode, plus_constant (ADDR, 6)); \
825 emit_move_insn (gen_rtx (MEM, HImode, _addr), \
826 gen_lowpart (HImode, _temp)); \
827 \
828 _val = force_reg (SImode, FNADDR); \
829 _addr = memory_address (HImode, plus_constant (ADDR, 24)); \
830 emit_move_insn (gen_rtx (MEM, HImode, _addr), \
831 gen_lowpart (HImode, _val)); \
832 _temp = expand_shift (RSHIFT_EXPR, SImode, _val, \
833 build_int_2 (16, 0), 0, 1); \
834 _addr = memory_address (HImode, plus_constant (ADDR, 20)); \
835 emit_move_insn (gen_rtx (MEM, HImode, _addr), \
836 gen_lowpart (HImode, _temp)); \
837 \
838 }
839 \f
840 /* Definitions for register eliminations.
841
842 We have two registers that can be eliminated on the ROMP. First, the
843 frame pointer register can often be eliminated in favor of the stack
844 pointer register. Secondly, the argument pointer register can always be
845 eliminated; it is replaced with either the stack or frame pointer.
846
847 In addition, we use the elimination mechanism to see if r14 is needed.
848 Initially we assume that it isn't. If it is, we spill it. This is done
849 by making it an eliminable register. It doesn't matter what we replace
850 it with, since it will never occur in the rtl at this point. */
851
852 /* This is an array of structures. Each structure initializes one pair
853 of eliminable registers. The "from" register number is given first,
854 followed by "to". Eliminations of the same "from" register are listed
855 in order of preference. */
856 #define ELIMINABLE_REGS \
857 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
858 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
859 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
860 { 14, 0}}
861
862 /* Given FROM and TO register numbers, say whether this elimination is allowed.
863 Frame pointer elimination is automatically handled.
864
865 For the ROMP, if frame pointer elimination is being done, we would like to
866 convert ap into fp, not sp.
867
868 We need r14 if various conditions (tested in romp_using_r14) are true.
869
870 All other eliminations are valid. */
871 #define CAN_ELIMINATE(FROM, TO) \
872 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
873 ? ! frame_pointer_needed \
874 : (FROM) == 14 ? ! romp_using_r14 () \
875 : 1)
876
877 /* Define the offset between two registers, one to be eliminated, and the other
878 its replacement, at the start of a routine. */
879 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
880 { if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
881 { \
882 if (romp_pushes_stack ()) \
883 (OFFSET) = ((get_frame_size () - 64) \
884 + current_function_outgoing_args_size); \
885 else \
886 (OFFSET) = - (romp_sa_size () + 64); \
887 } \
888 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
889 (OFFSET) = romp_sa_size () - 16 + 64; \
890 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
891 { \
892 if (romp_pushes_stack ()) \
893 (OFFSET) = (get_frame_size () + (romp_sa_size () - 16) \
894 + current_function_outgoing_args_size); \
895 else \
896 (OFFSET) = -16; \
897 } \
898 else if ((FROM) == 14) \
899 (OFFSET) = 0; \
900 else \
901 abort (); \
902 }
903 \f
904 /* Addressing modes, and classification of registers for them. */
905
906 /* #define HAVE_POST_INCREMENT */
907 /* #define HAVE_POST_DECREMENT */
908
909 /* #define HAVE_PRE_DECREMENT */
910 /* #define HAVE_PRE_INCREMENT */
911
912 /* Macros to check register numbers against specific register classes. */
913
914 /* These assume that REGNO is a hard or pseudo reg number.
915 They give nonzero only if REGNO is a hard reg of the suitable class
916 or a pseudo reg currently allocated to a suitable hard reg.
917 Since they use reg_renumber, they are safe only once reg_renumber
918 has been allocated, which happens in local-alloc.c. */
919
920 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
921 #define REGNO_OK_FOR_BASE_P(REGNO) \
922 ((REGNO) < FIRST_PSEUDO_REGISTER \
923 ? (REGNO) < 16 && (REGNO) != 0 && (REGNO) != 16 \
924 : (reg_renumber[REGNO] < 16 && reg_renumber[REGNO] >= 0 \
925 && reg_renumber[REGNO] != 16))
926 \f
927 /* Maximum number of registers that can appear in a valid memory address. */
928
929 #define MAX_REGS_PER_ADDRESS 1
930
931 /* Recognize any constant value that is a valid address. */
932
933 #define CONSTANT_ADDRESS_P(X) \
934 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
935 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
936 || GET_CODE (X) == HIGH)
937
938 /* Nonzero if the constant value X is a legitimate general operand.
939 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
940
941 On the ROMP, there is a bit of a hack here. Basically, we wish to
942 only issue instructions that are not `as' macros. However, in the
943 case of `get', `load', and `store', if the operand is a relocatable
944 symbol (possibly +/- an integer), there is no way to express the
945 resulting split-relocation except with the macro. Therefore, allow
946 either a constant valid in a normal (sign-extended) D-format insn or
947 a relocatable expression.
948
949 Also, for DFmode and DImode, we must ensure that both words are
950 addressable.
951
952 We define two macros: The first is given an offset (0 or 4) and indicates
953 that the operand is a CONST_INT that is valid for that offset. The second
954 indicates a valid non-CONST_INT constant. */
955
956 #define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \
957 (GET_CODE (X) == CONST_INT \
958 && (unsigned) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
959
960 #define LEGITIMATE_ADDRESS_CONSTANT_P(X) \
961 (GET_CODE (X) == SYMBOL_REF \
962 || GET_CODE (X) == LABEL_REF \
963 || (GET_CODE (X) == CONST \
964 && (GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
965 || GET_CODE (XEXP (XEXP (X, 0), 0)) == LABEL_REF) \
966 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT))
967
968 /* Include all constant integers and constant double, but exclude
969 SYMBOL_REFs that are to be obtained from the data area (see below). */
970 #define LEGITIMATE_CONSTANT_P(X) \
971 ((LEGITIMATE_ADDRESS_CONSTANT_P (X) \
972 || GET_CODE (X) == CONST_INT \
973 || GET_CODE (X) == CONST_DOUBLE) \
974 && ! (GET_CODE (X) == SYMBOL_REF && SYMBOL_REF_FLAG (X)))
975
976 /* For no good reason, we do the same as the other RT compilers and load
977 the addresses of data areas for a function from our data area. That means
978 that we need to mark such SYMBOL_REFs. We do so here. */
979 #define ENCODE_SECTION_INFO(DECL) \
980 if (TREE_CODE (TREE_TYPE (DECL)) == FUNCTION_TYPE) \
981 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
982
983 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
984 and check its validity for a certain class.
985 We have two alternate definitions for each of them.
986 The usual definition accepts all pseudo regs; the other rejects
987 them unless they have been allocated suitable hard regs.
988 The symbol REG_OK_STRICT causes the latter definition to be used.
989
990 Most source files want to accept pseudo regs in the hope that
991 they will get allocated to the class that the insn wants them to be in.
992 Source files for reload pass need to be strict.
993 After reload, it makes no difference, since pseudo regs have
994 been eliminated by then. */
995
996 #ifndef REG_OK_STRICT
997
998 /* Nonzero if X is a hard reg that can be used as an index
999 or if it is a pseudo reg. */
1000 #define REG_OK_FOR_INDEX_P(X) 0
1001 /* Nonzero if X is a hard reg that can be used as a base reg
1002 or if it is a pseudo reg. */
1003 #define REG_OK_FOR_BASE_P(X) \
1004 (REGNO (X) != 0 && (REGNO (X) < 17 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1005
1006 #else
1007
1008 /* Nonzero if X is a hard reg that can be used as an index. */
1009 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1010 /* Nonzero if X is a hard reg that can be used as a base reg. */
1011 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1012
1013 #endif
1014 \f
1015 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1016 that is a valid memory address for an instruction.
1017 The MODE argument is the machine mode for the MEM expression
1018 that wants to use this address.
1019
1020 On the ROMP, a legitimate address is either a legitimate constant,
1021 a register plus a legitimate constant, or a register. See the
1022 discussion at the LEGITIMATE_ADDRESS_CONSTANT_P macro. */
1023 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1024 { if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1025 goto ADDR; \
1026 if (GET_CODE (X) != CONST_INT && LEGITIMATE_ADDRESS_CONSTANT_P (X)) \
1027 goto ADDR; \
1028 if (GET_CODE (X) == PLUS \
1029 && GET_CODE (XEXP (X, 0)) == REG \
1030 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1031 && LEGITIMATE_ADDRESS_CONSTANT_P (XEXP (X, 1))) \
1032 goto ADDR; \
1033 if (GET_CODE (X) == PLUS \
1034 && GET_CODE (XEXP (X, 0)) == REG \
1035 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1036 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
1037 && (((MODE) != DFmode && (MODE) != DImode) \
1038 || (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4)))) \
1039 goto ADDR; \
1040 }
1041 \f
1042 /* Try machine-dependent ways of modifying an illegitimate address
1043 to be legitimate. If we find one, return the new, valid address.
1044 This macro is used in only one place: `memory_address' in explow.c.
1045
1046 OLDX is the address as it was before break_out_memory_refs was called.
1047 In some cases it is useful to look at this to decide what needs to be done.
1048
1049 MODE and WIN are passed so that this macro can use
1050 GO_IF_LEGITIMATE_ADDRESS.
1051
1052 It is always safe for this macro to do nothing. It exists to recognize
1053 opportunities to optimize the output.
1054
1055 On ROMP, check for the sum of a register with a constant
1056 integer that is out of range. If so, generate code to add the
1057 constant with the low-order 16 bits masked to the register and force
1058 this result into another register (this can be done with `cau').
1059 Then generate an address of REG+(CONST&0xffff), allowing for the
1060 possibility of bit 16 being a one.
1061
1062 If the register is not OK for a base register, abort. */
1063
1064 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1065 { if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1066 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1067 && (unsigned) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \
1068 { int high_int, low_int; \
1069 if (! REG_OK_FOR_BASE_P (XEXP (X, 0))) \
1070 abort (); \
1071 high_int = INTVAL (XEXP (X, 1)) >> 16; \
1072 low_int = INTVAL (XEXP (X, 1)) & 0xffff; \
1073 if (low_int & 0x8000) \
1074 high_int += 1, low_int |= 0xffff0000; \
1075 (X) = gen_rtx (PLUS, SImode, \
1076 force_operand \
1077 (gen_rtx (PLUS, SImode, XEXP (X, 0), \
1078 gen_rtx (CONST_INT, VOIDmode, \
1079 high_int << 16)), 0),\
1080 gen_rtx (CONST_INT, VOIDmode, low_int)); \
1081 } \
1082 }
1083
1084 /* Go to LABEL if ADDR (a legitimate address expression)
1085 has an effect that depends on the machine mode it is used for.
1086
1087 On the ROMP this is true only if the address is valid with a zero offset
1088 but not with an offset of four (this means it cannot be used as an
1089 address for DImode or DFmode). Since we know it is valid, we just check
1090 for an address that is not valid with an offset of four. */
1091
1092 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1093 { if (GET_CODE (ADDR) == PLUS \
1094 && ! LEGITIMATE_ADDRESS_CONSTANT_P (XEXP (ADDR, 1)) \
1095 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 4)) \
1096 goto LABEL; \
1097 }
1098 \f
1099 /* Define this if some processing needs to be done immediately before
1100 emitting code for an insn.
1101
1102 This is used on the ROMP, to compensate for a bug in the floating-point
1103 code. When a floating-point operation is done with the first and third
1104 operands both the same floating-point register, it will generate bad code
1105 for the MC68881. So we must detect this. If it occurs, we patch the
1106 first operand to be fr0 and insert a move insn to move it to the desired
1107 destination. */
1108 #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
1109 { rtx op0, op1, op2, operation, tem; \
1110 if (NOPERANDS >= 3 && get_attr_type (INSN) == TYPE_FP) \
1111 { \
1112 op0 = OPERANDS[0]; \
1113 operation = OPERANDS[1]; \
1114 if (float_conversion (operation, VOIDmode)) \
1115 operation = XEXP (operation, 0); \
1116 if (float_binary (operation, VOIDmode)) \
1117 { \
1118 op1 = XEXP (operation, 0), op2 = XEXP (operation, 1); \
1119 if (float_conversion (op1, VOIDmode)) \
1120 op1 = XEXP (op1, 0); \
1121 if (float_conversion (op2, VOIDmode)) \
1122 op2 = XEXP (op2, 0); \
1123 if (rtx_equal_p (op0, op2) \
1124 && (GET_CODE (operation) == PLUS \
1125 || GET_CODE (operation) == MULT)) \
1126 tem = op1, op1 = op2, op2 = tem; \
1127 if (GET_CODE (op0) == REG && FP_REGNO_P (REGNO (op0)) \
1128 && GET_CODE (op2) == REG && FP_REGNO_P (REGNO (op2)) \
1129 && REGNO (op0) == REGNO (op2)) \
1130 { \
1131 tem = gen_rtx (REG, GET_MODE (op0), 17); \
1132 emit_insn_after (gen_move_insn (op0, tem), INSN); \
1133 SET_DEST (XVECEXP (PATTERN (INSN), 0, 0)) = tem; \
1134 OPERANDS[0] = tem; \
1135 } \
1136 } \
1137 } \
1138 }
1139 \f
1140 /* Specify the machine mode that this machine uses
1141 for the index in the tablejump instruction. */
1142 #define CASE_VECTOR_MODE SImode
1143
1144 /* Define this if the tablejump instruction expects the table
1145 to contain offsets from the address of the table.
1146 Do not define this if the table should contain absolute addresses. */
1147 /* #define CASE_VECTOR_PC_RELATIVE */
1148
1149 /* Specify the tree operation to be used to convert reals to integers. */
1150 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1151
1152 /* This is the kind of divide that is easiest to do in the general case. */
1153 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1154
1155 /* Define this as 1 if `char' should by default be signed; else as 0. */
1156 #define DEFAULT_SIGNED_CHAR 0
1157
1158 /* This flag, if defined, says the same insns that convert to a signed fixnum
1159 also convert validly to an unsigned one.
1160
1161 We actually lie a bit here as overflow conditions are different. But
1162 they aren't being checked anyway. */
1163
1164 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1165
1166 /* Max number of bytes we can move from memory to memory
1167 in one reasonably fast instruction. */
1168 #define MOVE_MAX 4
1169
1170 /* Nonzero if access to memory by bytes is no faster than for words.
1171 Also non-zero if doing byte operations (specifically shifts) in registers
1172 is undesirable. */
1173 #define SLOW_BYTE_ACCESS 1
1174
1175 /* Define if operations between registers always perform the operation
1176 on the full register even if a narrower mode is specified. */
1177 #define WORD_REGISTER_OPERATIONS
1178
1179 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1180 will either zero-extend or sign-extend. The value of this macro should
1181 be the code that says which one of the two operations is implicitly
1182 done, NIL if none. */
1183 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1184
1185 /* This is BSD, so it wants DBX format. */
1186 #define DBX_DEBUGGING_INFO
1187
1188 /* Define the letter code used in a stabs entry for parameters passed
1189 with the register attribute.
1190
1191 GCC's default value, 'P', is used by dbx to refers to an external
1192 procedure. The section 5 manual page for dbx implies that 'R' would be the
1193 right letter, but dbx 1.5 has a bug in it that precludes its use.
1194 Probably that is why neither hc or pcc use this. pcc puts in two
1195 stabs entries: one for the parameter location and one for the register
1196 location. The letter `r' (register)
1197 would be okay, but it loses parameter attribute of the stabs entry. */
1198 #define DBX_REGPARM_STABS_LETTER 'R'
1199
1200 /* A C expression for the integer offset value of an automatic variable
1201 (N_LSYM) having address X (an RTX). This gets used in .stabs entries
1202 for the local variables. Compare with the default definition. */
1203 extern int romp_debugger_auto_correction();
1204 #define DEBUGGER_AUTO_OFFSET(X) \
1205 (GET_CODE (X) == PLUS \
1206 ? romp_debugger_auto_correction (INTVAL (XEXP (X, 1)) ) \
1207 : 0 )
1208
1209 /* A C expression for the integer offset value of an argument (N_PSYM)
1210 having address X (an RTX). The nominal offset is OFFSET. */
1211 extern int romp_debugger_arg_correction();
1212 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1213 romp_debugger_arg_correction (OFFSET);
1214
1215 /* We don't have GAS for the RT yet, so don't write out special
1216 .stabs in cc1plus. */
1217
1218 #define FASCIST_ASSEMBLER
1219
1220 /* Do not break .stabs pseudos into continuations. */
1221 #define DBX_CONTIN_LENGTH 0
1222
1223 /* Don't try to use the `x' type-cross-reference character in DBX data.
1224 Also has the consequence of putting each struct, union or enum
1225 into a separate .stabs, containing only cross-refs to the others. */
1226 #define DBX_NO_XREFS
1227
1228 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1229 is done just by pretending it is already truncated. */
1230 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1231
1232 /* Specify the machine mode that pointers have.
1233 After generation of rtl, the compiler makes no further distinction
1234 between pointers and any other objects of this machine mode. */
1235 #define Pmode SImode
1236
1237 /* Mode of a function address in a call instruction (for indexing purposes).
1238
1239 Doesn't matter on ROMP. */
1240 #define FUNCTION_MODE SImode
1241
1242 /* Define this if addresses of constant functions
1243 shouldn't be put through pseudo regs where they can be cse'd.
1244 Desirable on machines where ordinary constants are expensive
1245 but a CALL with constant address is cheap. */
1246 #define NO_FUNCTION_CSE
1247
1248 /* Define this if shift instructions ignore all but the low-order
1249 few bits.
1250
1251 This is not true on the RT since it uses the low-order 6, not 5, bits.
1252 At some point, this should be extended to see how to express that. */
1253
1254 /* #define SHIFT_COUNT_TRUNCATED */
1255
1256 /* Compute the cost of computing a constant rtl expression RTX whose
1257 rtx-code is CODE, contained within an expression of code OUTER_CODE.
1258 The body of this macro is a portion of a switch statement. If the
1259 code is computed here, return it with a return statement. Otherwise,
1260 break from the switch. */
1261
1262 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1263 case CONST_INT: \
1264 if ((OUTER_CODE) == IOR && exact_log2 (INTVAL (RTX)) >= 0 \
1265 || (OUTER_CODE) == AND && exact_log2 (~INTVAL (RTX)) >= 0 \
1266 || (((OUTER_CODE) == PLUS || (OUTER_CODE) == MINUS) \
1267 && (unsigned int) (INTVAL (RTX) + 15) < 31) \
1268 || ((OUTER_CODE) == SET && (unsigned int) INTVAL (RTX) < 16))\
1269 return 0; \
1270 return ((unsigned int) (INTVAL(RTX) + 0x8000) < 0x10000 \
1271 || (INTVAL (RTX) & 0xffff0000) == 0) ? 0 : COSTS_N_INSNS (2);\
1272 case CONST: \
1273 case LABEL_REF: \
1274 case SYMBOL_REF: \
1275 if (current_function_operand (RTX, Pmode)) return 0; \
1276 return COSTS_N_INSNS (2); \
1277 case CONST_DOUBLE: \
1278 if ((RTX) == CONST0_RTX (GET_MODE (RTX))) return 2; \
1279 return ((GET_MODE_CLASS (GET_MODE (RTX)) == MODE_FLOAT) \
1280 ? COSTS_N_INSNS (5) : COSTS_N_INSNS (4));
1281
1282 /* Provide the costs of a rtl expression. This is in the body of a
1283 switch on CODE.
1284
1285 References to our own data area are really references to r14, so they
1286 are very cheap. Multiples and divides are very expensive. */
1287
1288 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1289 case MEM: \
1290 return current_function_operand (X, Pmode) ? 0 : COSTS_N_INSNS (2); \
1291 case MULT: \
1292 return (TARGET_IN_LINE_MUL && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT)\
1293 ? COSTS_N_INSNS (19) : COSTS_N_INSNS (25); \
1294 case DIV: \
1295 case UDIV: \
1296 case MOD: \
1297 case UMOD: \
1298 return COSTS_N_INSNS (45);
1299
1300 /* Compute the cost of an address. This is meant to approximate the size
1301 and/or execution delay of an insn using that address. If the cost is
1302 approximated by the RTL complexity, including CONST_COSTS above, as
1303 is usually the case for CISC machines, this macro should not be defined.
1304 For aggressively RISCy machines, only one insn format is allowed, so
1305 this macro should be a constant. The value of this macro only matters
1306 for valid addresses.
1307
1308 For the ROMP, everything is cost 0 except for addresses involving
1309 symbolic constants, which are cost 1. */
1310
1311 #define ADDRESS_COST(RTX) \
1312 ((GET_CODE (RTX) == SYMBOL_REF \
1313 && ! CONSTANT_POOL_ADDRESS_P (RTX)) \
1314 || GET_CODE (RTX) == LABEL_REF \
1315 || (GET_CODE (RTX) == CONST \
1316 && ! constant_pool_address_operand (RTX, Pmode)) \
1317 || (GET_CODE (RTX) == PLUS \
1318 && ((GET_CODE (XEXP (RTX, 1)) == SYMBOL_REF \
1319 && ! CONSTANT_POOL_ADDRESS_P (XEXP (RTX, 0))) \
1320 || GET_CODE (XEXP (RTX, 1)) == LABEL_REF \
1321 || GET_CODE (XEXP (RTX, 1)) == CONST)))
1322
1323 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
1324 should be adjusted to reflect any required changes. This macro is used when
1325 there is some systematic length adjustment required that would be difficult
1326 to express in the length attribute.
1327
1328 On the ROMP, there are two adjustments: First, a 2-byte insn in the delay
1329 slot of a CALL (including floating-point operations) actually takes four
1330 bytes. Second, we have to make the worst-case alignment assumption for
1331 address vectors. */
1332
1333 #define ADJUST_INSN_LENGTH(X,LENGTH) \
1334 if (GET_CODE (X) == INSN && GET_CODE (PATTERN (X)) == SEQUENCE \
1335 && GET_CODE (XVECEXP (PATTERN (X), 0, 0)) != JUMP_INSN \
1336 && get_attr_length (XVECEXP (PATTERN (X), 0, 1)) == 2) \
1337 (LENGTH) += 2; \
1338 else if (GET_CODE (X) == JUMP_INSN && GET_CODE (PATTERN (X)) == ADDR_VEC) \
1339 (LENGTH) += 2;
1340 \f
1341 /* Tell final.c how to eliminate redundant test instructions. */
1342
1343 /* Here we define machine-dependent flags and fields in cc_status
1344 (see `conditions.h'). */
1345
1346 /* Set if condition code (really not-Z) is stored in `test bit'. */
1347 #define CC_IN_TB 01000
1348
1349 /* Set if condition code is set by an unsigned compare. */
1350 #define CC_UNSIGNED 02000
1351
1352 /* Store in cc_status the expressions
1353 that the condition codes will describe
1354 after execution of an instruction whose pattern is EXP.
1355 Do not alter them if the instruction would not alter the cc's. */
1356
1357 #define NOTICE_UPDATE_CC(BODY,INSN) \
1358 update_cc (BODY, INSN)
1359 \f
1360 /* Control the assembler format that we output. */
1361
1362 /* Output at beginning of assembler file. */
1363
1364 #define ASM_FILE_START(FILE) \
1365 { extern char *version_string; \
1366 char *p; \
1367 \
1368 fprintf (FILE, "\t.globl .oVncs\n\t.set .oVncs,0\n") ; \
1369 fprintf (FILE, "\t.globl .oVgcc"); \
1370 for (p = version_string; *p != ' ' && *p != 0; p++) \
1371 fprintf (FILE, "%c", *p); \
1372 fprintf (FILE, "\n\t.set .oVgcc"); \
1373 for (p = version_string; *p != ' ' && *p != 0; p++) \
1374 fprintf (FILE, "%c", *p); \
1375 fprintf (FILE, ",0\n"); \
1376 }
1377
1378 /* Output to assembler file text saying following lines
1379 may contain character constants, extra white space, comments, etc. */
1380
1381 #define ASM_APP_ON ""
1382
1383 /* Output to assembler file text saying following lines
1384 no longer contain unusual constructs. */
1385
1386 #define ASM_APP_OFF ""
1387
1388 /* Output before instructions and read-only data. */
1389
1390 #define TEXT_SECTION_ASM_OP ".text"
1391
1392 /* Output before writable data. */
1393
1394 #define DATA_SECTION_ASM_OP ".data"
1395
1396 /* How to refer to registers in assembler output.
1397 This sequence is indexed by compiler's hard-register-number (see above). */
1398
1399 #define REGISTER_NAMES \
1400 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \
1401 "r10", "r11", "r12", "r13", "r14", "r15", "ap", \
1402 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7" }
1403
1404 /* How to renumber registers for dbx and gdb. */
1405
1406 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1407
1408 /* This is how to output the definition of a user-level label named NAME,
1409 such as the label on a static function or variable NAME. */
1410
1411 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1412 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1413
1414 /* This is how to output a command to make the user-level label named NAME
1415 defined for reference from other files. */
1416
1417 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1418 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1419
1420 /* This is how to output a reference to a user-level label named NAME.
1421 `assemble_name' uses this. */
1422
1423 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1424 fprintf (FILE, "_%s", NAME)
1425
1426 /* This is how to output an internal numbered label where
1427 PREFIX is the class of label and NUM is the number within the class. */
1428
1429 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1430 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1431
1432 /* This is how to output a label for a jump table. Arguments are the same as
1433 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1434 passed. */
1435
1436 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1437 { ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1438
1439 /* This is how to store into the string LABEL
1440 the symbol_ref name of an internal numbered label where
1441 PREFIX is the class of label and NUM is the number within the class.
1442 This is suitable for output with `assemble_name'. */
1443
1444 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1445 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1446
1447 /* This is how to output an assembler line defining a `double' constant. */
1448
1449 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1450 fprintf (FILE, "\t.double 0d%.20e\n", (VALUE))
1451
1452 /* This is how to output an assembler line defining a `float' constant.
1453
1454 WARNING: Believe it or not, the ROMP assembler has a bug in its
1455 handling of single-precision floating-point values making it impossible
1456 to output such values in the expected way. Therefore, it must be output
1457 in hex. THIS WILL NOT WORK IF CROSS-COMPILING FROM A MACHINE THAT DOES
1458 NOT USE IEEE-FORMAT FLOATING-POINT, but there is nothing that can be done
1459 about it short of fixing the assembler. */
1460
1461 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1462 do { union { int i; float f; } u_i_f; \
1463 u_i_f.f = (VALUE); \
1464 fprintf (FILE, "\t.long 0x%x\n", u_i_f.i);\
1465 } while (0)
1466
1467 /* This is how to output an assembler line defining an `int' constant. */
1468
1469 #define ASM_OUTPUT_INT(FILE,VALUE) \
1470 ( fprintf (FILE, "\t.long "), \
1471 output_addr_const (FILE, (VALUE)), \
1472 fprintf (FILE, "\n"))
1473
1474 /* Likewise for `char' and `short' constants. */
1475
1476 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1477 ( fprintf (FILE, "\t.short "), \
1478 output_addr_const (FILE, (VALUE)), \
1479 fprintf (FILE, "\n"))
1480
1481 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1482 ( fprintf (FILE, "\t.byte "), \
1483 output_addr_const (FILE, (VALUE)), \
1484 fprintf (FILE, "\n"))
1485
1486 /* This is how to output an assembler line for a numeric constant byte. */
1487
1488 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1489 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1490
1491 /* This is how to output code to push a register on the stack.
1492 It need not be very fast code. */
1493
1494 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1495 fprintf (FILE, "\tsis r1,4\n\tsts %s,0(r1)\n", reg_names[REGNO])
1496
1497 /* This is how to output an insn to pop a register from the stack.
1498 It need not be very fast code. */
1499
1500 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1501 fprintf (FILE, "\tls r1,0(r1)\n\tais r1,4\n", reg_names[REGNO])
1502
1503 /* This is how to output an element of a case-vector that is absolute. */
1504
1505 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1506 fprintf (FILE, "\t.long L%d\n", VALUE)
1507
1508 /* This is how to output an element of a case-vector that is relative.
1509 (ROMP does not use such vectors,
1510 but we must define this macro anyway.) */
1511
1512 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) abort ()
1513
1514 /* This is how to output an assembler line
1515 that says to advance the location counter
1516 to a multiple of 2**LOG bytes. */
1517
1518 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1519 if ((LOG) != 0) \
1520 fprintf (FILE, "\t.align %d\n", (LOG))
1521
1522 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1523 fprintf (FILE, "\t.space %d\n", (SIZE))
1524
1525 /* This says how to output an assembler line
1526 to define a global common symbol. */
1527
1528 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1529 ( fputs (".comm ", (FILE)), \
1530 assemble_name ((FILE), (NAME)), \
1531 fprintf ((FILE), ",%d\n", (SIZE)))
1532
1533 /* This says how to output an assembler line
1534 to define a local common symbol. */
1535
1536 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1537 ( fputs (".lcomm ", (FILE)), \
1538 assemble_name ((FILE), (NAME)), \
1539 fprintf ((FILE), ",%d\n", (SIZE)))
1540
1541 /* Store in OUTPUT a string (made with alloca) containing
1542 an assembler-name for a local static variable named NAME.
1543 LABELNO is an integer which is different for each call. */
1544
1545 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1546 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1547 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1548
1549 /* Define the parentheses used to group arithmetic operations
1550 in assembler code. */
1551
1552 #define ASM_OPEN_PAREN "("
1553 #define ASM_CLOSE_PAREN ")"
1554
1555 /* Define results of standard character escape sequences. */
1556 #define TARGET_BELL 007
1557 #define TARGET_BS 010
1558 #define TARGET_TAB 011
1559 #define TARGET_NEWLINE 012
1560 #define TARGET_VT 013
1561 #define TARGET_FF 014
1562 #define TARGET_CR 015
1563
1564 /* Print operand X (an rtx) in assembler syntax to file FILE.
1565 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1566 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1567
1568 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1569
1570 /* Define which CODE values are valid. */
1571
1572 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1573 ((CODE) == '.' || (CODE) == '#')
1574 \f
1575 /* Print a memory address as an operand to reference that memory location. */
1576
1577 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1578 { register rtx addr = ADDR; \
1579 register rtx base = 0, offset = addr; \
1580 if (GET_CODE (addr) == REG) \
1581 base = addr, offset = const0_rtx; \
1582 else if (GET_CODE (addr) == PLUS \
1583 && GET_CODE (XEXP (addr, 0)) == REG) \
1584 base = XEXP (addr, 0), offset = XEXP (addr, 1); \
1585 else if (GET_CODE (addr) == SYMBOL_REF \
1586 && CONSTANT_POOL_ADDRESS_P (addr)) \
1587 { \
1588 offset = gen_rtx (CONST_INT, VOIDmode, get_pool_offset (addr) + 12); \
1589 base = gen_rtx (REG, SImode, 14); \
1590 } \
1591 else if (GET_CODE (addr) == CONST \
1592 && GET_CODE (XEXP (addr, 0)) == PLUS \
1593 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT \
1594 && GET_CODE (XEXP (XEXP (addr, 0), 0)) == SYMBOL_REF \
1595 && CONSTANT_POOL_ADDRESS_P (XEXP (XEXP (addr, 0), 0))) \
1596 { \
1597 offset = plus_constant (XEXP (XEXP (addr, 0), 1), \
1598 (get_pool_offset (XEXP (XEXP (addr, 0), 0)) \
1599 + 12)); \
1600 base = gen_rtx (REG, SImode, 14); \
1601 } \
1602 output_addr_const (FILE, offset); \
1603 if (base) \
1604 fprintf (FILE, "(%s)", reg_names [REGNO (base)]); \
1605 }
1606
1607 /* Define the codes that are matched by predicates in aux-output.c. */
1608
1609 #define PREDICATE_CODES \
1610 {"zero_memory_operand", {SUBREG, MEM}}, \
1611 {"short_memory_operand", {SUBREG, MEM}}, \
1612 {"symbolic_memory_operand", {SUBREG, MEM}}, \
1613 {"current_function_operand", {MEM}}, \
1614 {"constant_pool_address_operand", {SUBREG, CONST}}, \
1615 {"romp_symbolic_operand", {LABEL_REF, SYMBOL_REF, CONST}}, \
1616 {"constant_operand", {LABEL_REF, SYMBOL_REF, PLUS, CONST, CONST_INT}}, \
1617 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
1618 {"reg_or_any_cint_operand", {SUBREG, REG, CONST_INT}}, \
1619 {"short_cint_operand", {CONST_INT}}, \
1620 {"reg_or_D_operand", {SUBREG, REG, CONST_INT}}, \
1621 {"reg_or_add_operand", {SUBREG, REG, LABEL_REF, SYMBOL_REF, \
1622 PLUS, CONST, CONST_INT}}, \
1623 {"reg_or_and_operand", {SUBREG, REG, CONST_INT}}, \
1624 {"reg_or_mem_operand", {SUBREG, REG, MEM}}, \
1625 {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \
1626 {"romp_operand", {SUBREG, MEM, REG, CONST_INT, CONST, LABEL_REF, \
1627 SYMBOL_REF, CONST_DOUBLE}}, \
1628 {"reg_0_operand", {REG}}, \
1629 {"reg_15_operand", {REG}}, \
1630 {"float_binary", {PLUS, MINUS, MULT, DIV}}, \
1631 {"float_unary", {NEG, ABS}}, \
1632 {"float_conversion", {FLOAT_TRUNCATE, FLOAT_EXTEND, FLOAT, FIX}},
1633
1634 /* Define functions defined in aux-output.c and used in templates. */
1635
1636 extern char *output_in_line_mul ();
1637 extern char *output_fpop ();
This page took 0.115536 seconds and 4 git commands to generate.