]> gcc.gnu.org Git - gcc.git/blob - gcc/config/romp/romp.h
entered into RCS
[gcc.git] / gcc / config / romp / romp.h
1 /* Definitions of target machine for GNU compiler, for ROMP chip.
2 Copyright (C) 1989, 1991 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@nyu.edu)
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21
22 /* Names to predefine in the preprocessor for this target machine. */
23
24 #define CPP_PREDEFINES "-Dibm032 -Dunix"
25
26 /* Print subsidiary information on the compiler version in use. */
27 #define TARGET_VERSION ;
28
29 /* Add -lfp_p when running with -p or -pg. */
30 #define LIB_SPEC "%{pg:-lfp_p}%{p:-lfp_p} %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
31
32 /* Run-time compilation parameters selecting different hardware subsets. */
33
34 /* Flag to generate all multiplies as an in-line sequence of multiply-step
35 insns instead of calling a library routine. */
36 #define TARGET_IN_LINE_MUL (target_flags & 1)
37
38 /* Flag to generate padded floating-point data blocks. Otherwise, we generate
39 them the minimum size. This trades off execution speed against size. */
40 #define TARGET_FULL_FP_BLOCKS (target_flags & 2)
41
42 /* Flag to pass and return floating point values in floating point registers.
43 Since this violates the linkage convention, we feel free to destroy fr2
44 and fr3 on function calls.
45 fr1-fr3 are used to pass the arguments. */
46 #define TARGET_FP_REGS (target_flags & 4)
47
48 /* Flag to return structures of more than one word in memory. This is for
49 compatibility with the MetaWare HighC (hc) compiler. */
50 #define TARGET_HC_STRUCT_RETURN (target_flags & 010)
51
52 extern int target_flags;
53
54 /* Macro to define tables used to set the flags.
55 This is a list in braces of pairs in braces,
56 each pair being { "NAME", VALUE }
57 where VALUE is the bits to set or minus the bits to clear.
58 An empty string NAME is used to identify the default VALUE. */
59
60 #define TARGET_SWITCHES \
61 { {"in-line-mul", 1}, \
62 {"call-lib-mul", -1}, \
63 {"full-fp-blocks", 2}, \
64 {"minimum-fp-blocks", -2}, \
65 {"fp-arg-in-fpregs", 4}, \
66 {"fp-arg-in-gregs", -4}, \
67 {"hc-struct-return", 010}, \
68 {"nohc-struct-return", - 010}, \
69 { "", TARGET_DEFAULT}}
70
71 #define TARGET_DEFAULT 3
72
73 /* Define this to change the optimizations performed by default.
74
75 This used to depend on the value of write_symbols,
76 but that is contrary to the general plan for GCC options. */
77
78 #define OPTIMIZATION_OPTIONS(LEVEL) \
79 { \
80 if ((LEVEL) > 0) \
81 { \
82 flag_force_addr = 1; \
83 flag_force_mem = 1; \
84 } \
85 }
86 \f
87 /* target machine storage layout */
88
89 /* Define this if most significant bit is lowest numbered
90 in instructions that operate on numbered bit-fields. */
91 /* That is true on ROMP. */
92 #define BITS_BIG_ENDIAN 1
93
94 /* Define this if most significant byte of a word is the lowest numbered. */
95 /* That is true on ROMP. */
96 #define BYTES_BIG_ENDIAN 1
97
98 /* Define this if most significant word of a multiword number is lowest
99 numbered.
100
101 For ROMP we can decide arbitrarily since there are no machine instructions
102 for them. Might as well be consistent with bits and bytes. */
103 #define WORDS_BIG_ENDIAN 1
104
105 /* number of bits in an addressable storage unit */
106 #define BITS_PER_UNIT 8
107
108 /* Width in bits of a "word", which is the contents of a machine register.
109 Note that this is not necessarily the width of data type `int';
110 if using 16-bit ints on a 68000, this would still be 32.
111 But on a machine with 16-bit registers, this would be 16. */
112 #define BITS_PER_WORD 32
113
114 /* Width of a word, in units (bytes). */
115 #define UNITS_PER_WORD 4
116
117 /* Width in bits of a pointer.
118 See also the macro `Pmode' defined below. */
119 #define POINTER_SIZE 32
120
121 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
122 #define PARM_BOUNDARY 32
123
124 /* Boundary (in *bits*) on which stack pointer should be aligned. */
125 #define STACK_BOUNDARY 32
126
127 /* Allocation boundary (in *bits*) for the code of a function. */
128 #define FUNCTION_BOUNDARY 16
129
130 /* No data type wants to be aligned rounder than this. */
131 #define BIGGEST_ALIGNMENT 32
132
133 /* Alignment of field after `int : 0' in a structure. */
134 #define EMPTY_FIELD_BOUNDARY 32
135
136 /* Every structure's size must be a multiple of this. */
137 #define STRUCTURE_SIZE_BOUNDARY 8
138
139 /* A bitfield declared as `int' forces `int' alignment for the struct. */
140 #define PCC_BITFIELD_TYPE_MATTERS 1
141
142 /* Make strings word-aligned so strcpy from constants will be faster. */
143 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
144 (TREE_CODE (EXP) == STRING_CST \
145 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
146
147 /* Make arrays of chars word-aligned for the same reasons. */
148 #define DATA_ALIGNMENT(TYPE, ALIGN) \
149 (TREE_CODE (TYPE) == ARRAY_TYPE \
150 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
151 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
152
153 /* Set this nonzero if move instructions will actually fail to work
154 when given unaligned data. */
155 #define STRICT_ALIGNMENT 1
156 \f
157 /* Standard register usage. */
158
159 /* Number of actual hardware registers.
160 The hardware registers are assigned numbers for the compiler
161 from 0 to just below FIRST_PSEUDO_REGISTER.
162 All registers that the compiler knows about must be given numbers,
163 even those that are not normally considered general registers.
164
165 ROMP has 16 fullword registers and 8 floating point registers.
166
167 In addition, the difference between the frame and argument pointers is
168 a function of the number of registers saved, so we need to have a register
169 to use for AP that will later be eliminated in favor of sp or fp. This is
170 a normal register, but it is fixed. */
171
172 #define FIRST_PSEUDO_REGISTER 25
173
174 /* 1 for registers that have pervasive standard uses
175 and are not available for the register allocator.
176
177 On ROMP, r1 is used for the stack and r14 is used for a
178 data area pointer.
179
180 HACK WARNING: On the RT, there is a bug in code generation for
181 the MC68881 when the first and third operands are the same floating-point
182 register. See the definition of the FINAL_PRESCAN_INSN macro for details.
183 Here we need to reserve fr0 for this purpose. */
184 #define FIXED_REGISTERS \
185 {0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
186 1, \
187 1, 0, 0, 0, 0, 0, 0, 0}
188
189 /* 1 for registers not available across function calls.
190 These must include the FIXED_REGISTERS and also any
191 registers that can be used without being saved.
192 The latter must include the registers where values are returned
193 and the register where structure-value addresses are passed.
194 Aside from that, you can include as many other registers as you like. */
195 #define CALL_USED_REGISTERS \
196 {1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
197 1, \
198 1, 1, 0, 0, 0, 0, 0, 0}
199
200 /* List the order in which to allocate registers. Each register must be
201 listed once, even those in FIXED_REGISTERS.
202
203 We allocate in the following order:
204 fr0, fr1 (not saved)
205 fr2 ... fr6
206 fr7 (more expensive for some FPA's)
207 r0 (not saved and won't conflict with parameter register)
208 r4, r3, r2 (not saved, highest used first to make less conflict)
209 r5 (not saved, but forces r6 to be saved if DI/DFmode)
210 r15, r14, r13, r12, r11, r10, r9, r8, r7, r6 (less to save)
211 r1, ap */
212
213 #define REG_ALLOC_ORDER \
214 {17, 18, \
215 19, 20, 21, 22, 23, \
216 24, \
217 0, \
218 4, 3, 2, \
219 5, \
220 15, 14, 13, 12, 11, 10, \
221 9, 8, 7, 6, \
222 1, 16}
223
224 /* True if register is floating-point. */
225 #define FP_REGNO_P(N) ((N) >= 17)
226
227 /* Return number of consecutive hard regs needed starting at reg REGNO
228 to hold something of mode MODE.
229 This is ordinarily the length in words of a value of mode MODE
230 but can be less for certain modes in special long registers.
231
232 On ROMP, ordinary registers hold 32 bits worth;
233 a single floating point register is always enough for
234 anything that can be stored in them at all. */
235 #define HARD_REGNO_NREGS(REGNO, MODE) \
236 (FP_REGNO_P (REGNO) ? GET_MODE_NUNITS (MODE) \
237 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
238
239 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
240 On ROMP, the cpu registers can hold any mode but the float registers
241 can hold only floating point. */
242 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
243 (! FP_REGNO_P (REGNO) || GET_MODE_CLASS (MODE) == MODE_FLOAT \
244 || GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)
245
246 /* Value is 1 if it is a good idea to tie two pseudo registers
247 when one has mode MODE1 and one has mode MODE2.
248 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
249 for any hard reg, then this must be 0 for correct output. */
250 #define MODES_TIEABLE_P(MODE1, MODE2) \
251 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT \
252 || GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
253 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT \
254 || GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
255
256 /* A C expression returning the cost of moving data from a register of class
257 CLASS1 to one of CLASS2.
258
259 On the ROMP, access to floating-point registers is expensive (even between
260 two FP regs.) */
261 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
262 (2 + 10 * ((CLASS1) == FP_REGS) + 10 * (CLASS2 == FP_REGS))
263
264 /* Specify the registers used for certain standard purposes.
265 The values of these macros are register numbers. */
266
267 /* ROMP pc isn't overloaded on a register that the compiler knows about. */
268 /* #define PC_REGNUM */
269
270 /* Register to use for pushing function arguments. */
271 #define STACK_POINTER_REGNUM 1
272
273 /* Base register for access to local variables of the function. */
274 #define FRAME_POINTER_REGNUM 13
275
276 /* Value should be nonzero if functions must have frame pointers.
277 Zero means the frame pointer need not be set up (and parms
278 may be accessed via the stack pointer) in functions that seem suitable.
279 This is computed in `reload', in reload1.c. */
280 #define FRAME_POINTER_REQUIRED 0
281
282 /* Base register for access to arguments of the function. */
283 #define ARG_POINTER_REGNUM 16
284
285 /* Place to put static chain when calling a function that requires it. */
286 #define STATIC_CHAIN \
287 gen_rtx (MEM, Pmode, gen_rtx (PLUS, Pmode, stack_pointer_rtx, \
288 gen_rtx (CONST_INT, VOIDmode, -36)))
289
290 /* Place where static chain is found upon entry to routine. */
291 #define STATIC_CHAIN_INCOMING \
292 gen_rtx (MEM, Pmode, gen_rtx (PLUS, Pmode, arg_pointer_rtx, \
293 gen_rtx (CONST_INT, VOIDmode, -20)))
294
295 /* Place that structure value return address is placed.
296
297 On the ROMP, it is passed as an extra parameter. */
298 #define STRUCT_VALUE 0
299 \f
300 /* Define the classes of registers for register constraints in the
301 machine description. Also define ranges of constants.
302
303 One of the classes must always be named ALL_REGS and include all hard regs.
304 If there is more than one class, another class must be named NO_REGS
305 and contain no registers.
306
307 The name GENERAL_REGS must be the name of a class (or an alias for
308 another name such as ALL_REGS). This is the class of registers
309 that is allowed by "g" or "r" in a register constraint.
310 Also, registers outside this class are allocated only when
311 instructions express preferences for them.
312
313 The classes must be numbered in nondecreasing order; that is,
314 a larger-numbered class must never be contained completely
315 in a smaller-numbered class.
316
317 For any two classes, it is very desirable that there be another
318 class that represents their union. */
319
320 /* The ROMP has two types of registers, general and floating-point.
321
322 However, r0 is special in that it cannot be used as a base register.
323 So make a class for registers valid as base registers.
324
325 For floating-point support, add classes that just consist of r0 and
326 r15, respectively. */
327
328 enum reg_class { NO_REGS, R0_REGS, R15_REGS, BASE_REGS, GENERAL_REGS,
329 FP_REGS, ALL_REGS, LIM_REG_CLASSES };
330
331 #define N_REG_CLASSES (int) LIM_REG_CLASSES
332
333 /* Give names of register classes as strings for dump file. */
334
335 #define REG_CLASS_NAMES \
336 {"NO_REGS", "R0_REGS", "R15_REGS", "BASE_REGS", "GENERAL_REGS", \
337 "FP_REGS", "ALL_REGS" }
338
339 /* Define which registers fit in which classes.
340 This is an initializer for a vector of HARD_REG_SET
341 of length N_REG_CLASSES. */
342
343 #define REG_CLASS_CONTENTS {0, 0x00001, 0x08000, 0x1fffe, 0x1ffff, \
344 0x1fe0000, 0x1ffffff }
345
346 /* The same information, inverted:
347 Return the class number of the smallest class containing
348 reg number REGNO. This could be a conditional expression
349 or could index an array. */
350
351 #define REGNO_REG_CLASS(REGNO) \
352 ((REGNO) == 0 ? GENERAL_REGS : FP_REGNO_P (REGNO) ? FP_REGS : BASE_REGS)
353
354 /* The class value for index registers, and the one for base regs. */
355 #define INDEX_REG_CLASS BASE_REGS
356 #define BASE_REG_CLASS BASE_REGS
357
358 /* Get reg_class from a letter such as appears in the machine description. */
359
360 #define REG_CLASS_FROM_LETTER(C) \
361 ((C) == 'f' ? FP_REGS \
362 : (C) == 'b' ? BASE_REGS \
363 : (C) == 'z' ? R0_REGS \
364 : (C) == 't' ? R15_REGS \
365 : NO_REGS)
366
367 /* The letters I, J, K, L, M, N, and P in a register constraint string
368 can be used to stand for particular ranges of immediate operands.
369 This macro defines what the ranges are.
370 C is the letter, and VALUE is a constant value.
371 Return 1 if VALUE is in the range specified by C.
372
373 `I' is constants less than 16
374 `J' is negative constants greater than -16
375 `K' is the range for a normal D insn.
376 `L' is a constant with only the low-order 16 bits set
377 `M' is a constant with only the high-order 16 bits set
378 `N' is a single-bit constant
379 `O' is a constant with either the high-order or low-order 16 bits all ones
380 `P' is the complement of a single-bit constant
381 */
382
383 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
384 ( (C) == 'I' ? (unsigned) (VALUE) < 0x10 \
385 : (C) == 'J' ? (VALUE) < 0 && (VALUE) > -16 \
386 : (C) == 'K' ? (unsigned) ((VALUE) + 0x8000) < 0x10000 \
387 : (C) == 'L' ? ((VALUE) & 0xffff0000) == 0 \
388 : (C) == 'M' ? ((VALUE) & 0xffff) == 0 \
389 : (C) == 'N' ? exact_log2 (VALUE) >= 0 \
390 : (C) == 'O' ? ((VALUE) & 0xffff) == 0xffff \
391 || ((VALUE) & 0xffff0000) == 0xffff0000 \
392 : (C) == 'P' ? exact_log2 (~ (VALUE)) >= 0 \
393 : 0)
394
395 /* Similar, but for floating constants, and defining letters G and H.
396 Here VALUE is the CONST_DOUBLE rtx itself.
397 No floating-point constants on ROMP. */
398
399 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0
400
401 /* Optional extra constraints for this machine.
402
403 For the ROMP, `Q' means that this is a memory operand but not a symbolic
404 memory operand. Note that an unassigned pseudo register is such a
405 memory operand. If register allocation has not been done, we reject
406 pseudos, since we assume (hope) that they will get hard registers.
407
408 `R' means that this is a constant pool reference to the current function.
409 This is just r14 and so can be treated as a register. We bother with this
410 just in move insns as that is the only place it is likely to occur.
411
412 `S' means that this is the address of a constant pool location. This is
413 equal to r14 plus a constant. We also only check for this in move insns. */
414
415 #define EXTRA_CONSTRAINT(OP, C) \
416 ((C) == 'Q' ? \
417 ((GET_CODE (OP) == REG \
418 && REGNO (OP) >= FIRST_PSEUDO_REGISTER \
419 && reg_renumber != 0 \
420 && reg_renumber[REGNO (OP)] < 0) \
421 || (memory_operand (OP, VOIDmode) \
422 && ! symbolic_memory_operand (OP, VOIDmode))) \
423 : (C) == 'R' ? current_function_operand (OP, VOIDmode) \
424 : (C) == 'S' ? constant_pool_address_operand (OP, VOIDmode) \
425 : 0)
426
427 /* Given an rtx X being reloaded into a reg required to be
428 in class CLASS, return the class of reg to actually use.
429 In general this is just CLASS; but on some machines
430 in some cases it is preferable to use a more restrictive class.
431
432 For the ROMP, if X is a memory reference that involves a symbol,
433 we must use a BASE_REGS register instead of GENERAL_REGS
434 to do the reload. The argument of MEM be either REG, PLUS, or SYMBOL_REF
435 to be valid, so we assume that this is the case.
436
437 Also, if X is an integer class, ensure that floating-point registers
438 aren't used. */
439
440 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
441 ((CLASS) == FP_REGS && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
442 ? GENERAL_REGS : \
443 (CLASS) != GENERAL_REGS ? (CLASS) : \
444 GET_CODE (X) != MEM ? GENERAL_REGS : \
445 GET_CODE (XEXP (X, 0)) == SYMBOL_REF ? BASE_REGS : \
446 GET_CODE (XEXP (X, 0)) == LABEL_REF ? BASE_REGS : \
447 GET_CODE (XEXP (X, 0)) == CONST ? BASE_REGS : \
448 GET_CODE (XEXP (X, 0)) == REG ? GENERAL_REGS : \
449 GET_CODE (XEXP (X, 0)) != PLUS ? GENERAL_REGS : \
450 GET_CODE (XEXP (XEXP (X, 0), 1)) == SYMBOL_REF ? BASE_REGS : \
451 GET_CODE (XEXP (XEXP (X, 0), 1)) == LABEL_REF ? BASE_REGS : \
452 GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST ? BASE_REGS : GENERAL_REGS)
453
454 /* Return the register class of a scratch register needed to store into
455 OUT from a register of class CLASS in MODE.
456
457 On the ROMP, we cannot store into a symbolic memory address from an
458 integer register; we need a BASE_REGS register as a scratch to do it. */
459
460 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
461 (GET_MODE_CLASS (MODE) == MODE_INT && symbolic_memory_operand (OUT, MODE) \
462 ? BASE_REGS : NO_REGS)
463
464 /* Return the maximum number of consecutive registers
465 needed to represent mode MODE in a register of class CLASS.
466
467 On ROMP, this is the size of MODE in words,
468 except in the FP regs, where a single reg is always enough. */
469 #define CLASS_MAX_NREGS(CLASS, MODE) \
470 ((CLASS) == FP_REGS ? 1 \
471 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
472 \f
473 /* Stack layout; function entry, exit and calling. */
474
475 /* Define this if pushing a word on the stack
476 makes the stack pointer a smaller address. */
477 #define STACK_GROWS_DOWNWARD
478
479 /* Define this if the nominal address of the stack frame
480 is at the high-address end of the local variables;
481 that is, each additional local variable allocated
482 goes at a more negative offset in the frame. */
483 #define FRAME_GROWS_DOWNWARD
484
485 /* Offset within stack frame to start allocating local variables at.
486 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
487 first local allocated. Otherwise, it is the offset to the BEGINNING
488 of the first local allocated.
489 On the ROMP, if we set the frame pointer to 15 words below the highest
490 address of the highest local variable, the first 16 words will be
491 addressable via D-short insns. */
492 #define STARTING_FRAME_OFFSET 64
493
494 /* If we generate an insn to push BYTES bytes,
495 this says how many the stack pointer really advances by.
496 On ROMP, don't define this because there are no push insns. */
497 /* #define PUSH_ROUNDING(BYTES) */
498
499 /* Offset of first parameter from the argument pointer register value.
500 On the ROMP, we define the argument pointer to the start of the argument
501 area. */
502 #define FIRST_PARM_OFFSET(FNDECL) 0
503
504 /* Define this if stack space is still allocated for a parameter passed
505 in a register. The value is the number of bytes. */
506 #define REG_PARM_STACK_SPACE(FNDECL) 16
507
508 /* This is the difference between the logical top of stack and the actual sp.
509
510 For the ROMP, sp points past the words allocated for the first four outgoing
511 arguments (they are part of the callee's frame). */
512 #define STACK_POINTER_OFFSET -16
513
514 /* Define this if the maximum size of all the outgoing args is to be
515 accumulated and pushed during the prologue. The amount can be
516 found in the variable current_function_outgoing_args_size. */
517 #define ACCUMULATE_OUTGOING_ARGS
518
519 /* Value is the number of bytes of arguments automatically
520 popped when returning from a subroutine call.
521 FUNTYPE is the data type of the function (as a tree),
522 or for a library call it is an identifier node for the subroutine name.
523 SIZE is the number of bytes of arguments passed on the stack. */
524
525 #define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
526
527 /* Define how to find the value returned by a function.
528 VALTYPE is the data type of the value (as a tree).
529 If the precise function being called is known, FUNC is its FUNCTION_DECL;
530 otherwise, FUNC is 0.
531
532 On ROMP the value is found in r2, unless the machine specific option
533 fp-arg-in-fpregs is selected, in which case FP return values are in fr1 */
534
535 #define FUNCTION_VALUE(VALTYPE, FUNC) \
536 gen_rtx (REG, TYPE_MODE (VALTYPE), \
537 (TARGET_FP_REGS && \
538 GET_MODE_CLASS (TYPE_MODE (VALTYPE)) == MODE_FLOAT) ? 18 : 2)
539
540 /* Define how to find the value returned by a library function
541 assuming the value has mode MODE. */
542
543 #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 2)
544
545 /* The definition of this macro implies that there are cases where
546 a scalar value cannot be returned in registers.
547
548 For the ROMP, if compatibility with HC is required, anything of
549 type DImode is returned in memory. */
550
551 #define RETURN_IN_MEMORY(type) \
552 (TARGET_HC_STRUCT_RETURN && TYPE_MODE (type) == DImode)
553
554 /* 1 if N is a possible register number for a function value
555 as seen by the caller.
556
557 On ROMP, r2 is the only register thus used unless fp values are to be
558 returned in fp regs, in which case fr1 is also used. */
559
560 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 2 || ((N) == 18 && TARGET_FP_REGS))
561
562 /* 1 if N is a possible register number for function argument passing.
563 On ROMP, these are r2-r5 (and fr1-fr4 if fp regs are used). */
564
565 #define FUNCTION_ARG_REGNO_P(N) \
566 (((N) <= 5 && (N) >= 2) || (TARGET_FP_REGS && (N) > 17 && (N) < 21))
567 \f
568 /* Define a data type for recording info about an argument list
569 during the scan of that argument list. This data type should
570 hold all necessary information about the function itself
571 and about the args processed so far, enough to enable macros
572 such as FUNCTION_ARG to determine where the next arg should go.
573
574 On the ROMP, this is a structure. The first word is the number of
575 words of (integer only if -mfp-arg-in-fpregs is specified) arguments
576 scanned so far (including the invisible argument, if any, which holds
577 the structure-value-address). The second word hold the corresponding
578 value for floating-point arguments, except that both single and double
579 count as one register. */
580
581 struct rt_cargs {int gregs, fregs; };
582 #define CUMULATIVE_ARGS struct rt_cargs
583
584 #define USE_FP_REG(MODE,CUM) \
585 (TARGET_FP_REGS && GET_MODE_CLASS (MODE) == MODE_FLOAT \
586 && (CUM).fregs < 3)
587
588 /* Define intermediate macro to compute the size (in registers) of an argument
589 for the ROMP. */
590
591 #define ROMP_ARG_SIZE(MODE, TYPE, NAMED) \
592 (! (NAMED) ? 0 \
593 : (MODE) != BLKmode \
594 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
595 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
596
597 /* Initialize a variable CUM of type CUMULATIVE_ARGS
598 for a call to a function whose data type is FNTYPE.
599 For a library call, FNTYPE is 0.
600
601 On ROMP, the offset normally starts at 0, but starts at 4 bytes
602 when the function gets a structure-value-address as an
603 invisible first argument. */
604
605 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
606 (CUM).gregs = 0, \
607 (CUM).fregs = 0
608
609 /* Update the data in CUM to advance over an argument
610 of mode MODE and data type TYPE.
611 (TYPE is null for libcalls where that information may not be available.) */
612
613 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
614 { if (NAMED) \
615 { \
616 if (USE_FP_REG(MODE, CUM)) \
617 (CUM).fregs++; \
618 else \
619 (CUM).gregs += ROMP_ARG_SIZE (MODE, TYPE, NAMED); \
620 } \
621 }
622
623 /* Determine where to put an argument to a function.
624 Value is zero to push the argument on the stack,
625 or a hard register in which to store the argument.
626
627 MODE is the argument's machine mode.
628 TYPE is the data type of the argument (as a tree).
629 This is null for libcalls where that information may
630 not be available.
631 CUM is a variable of type CUMULATIVE_ARGS which gives info about
632 the preceding args and about the function being called.
633 NAMED is nonzero if this argument is a named parameter
634 (otherwise it is an extra parameter matching an ellipsis).
635
636 On ROMP the first four words of args are normally in registers
637 and the rest are pushed. */
638
639 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
640 (! (NAMED) ? 0 \
641 : ((TYPE) != 0 && TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST) ? 0 \
642 : USE_FP_REG(MODE,CUM) ? gen_rtx(REG, (MODE),(CUM.fregs) + 17) \
643 : (CUM).gregs < 4 ? gen_rtx(REG, (MODE), 2 + (CUM).gregs) : 0)
644
645 /* For an arg passed partly in registers and partly in memory,
646 this is the number of registers used.
647 For args passed entirely in registers or entirely in memory, zero. */
648
649 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
650 (! (NAMED) ? 0 \
651 : USE_FP_REG(MODE,CUM) ? 0 \
652 : (((CUM).gregs < 4 \
653 && 4 < ((CUM).gregs + ROMP_ARG_SIZE (MODE, TYPE, NAMED))) \
654 ? 4 - (CUM).gregs : 0))
655
656 /* Perform any needed actions needed for a function that is receiving a
657 variable number of arguments.
658
659 CUM is as above.
660
661 MODE and TYPE are the mode and type of the current parameter.
662
663 PRETEND_SIZE is a variable that should be set to the amount of stack
664 that must be pushed by the prolog to pretend that our caller pushed
665 it.
666
667 Normally, this macro will push all remaining incoming registers on the
668 stack and set PRETEND_SIZE to the length of the registers pushed. */
669
670 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
671 { if (TARGET_FP_REGS) \
672 error ("can't have varargs with -mfp-arg-in-fp-regs"); \
673 else if ((CUM).gregs < 4) \
674 { \
675 int first_reg_offset = (CUM).gregs; \
676 \
677 if (MUST_PASS_IN_STACK (MODE, TYPE)) \
678 first_reg_offset += ROMP_ARG_SIZE (TYPE_MODE (TYPE), TYPE, 1); \
679 \
680 if (first_reg_offset > 4) \
681 first_reg_offset = 4; \
682 \
683 if (! NO_RTL && first_reg_offset != 4) \
684 move_block_from_reg \
685 (2 + first_reg_offset, \
686 gen_rtx (MEM, BLKmode, \
687 plus_constant (virtual_incoming_args_rtx, \
688 first_reg_offset * 4)), \
689 4 - first_reg_offset); \
690 PRETEND_SIZE = (4 - first_reg_offset) * UNITS_PER_WORD; \
691 } \
692 }
693
694 /* This macro produces the initial definition of a function name.
695 On the ROMP, we need to place an extra '.' in the function name. */
696
697 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
698 { if (TREE_PUBLIC(DECL)) \
699 fprintf (FILE, "\t.globl _.%s\n", NAME); \
700 fprintf (FILE, "_.%s:\n", NAME); \
701 }
702
703 /* This macro is used to output the start of the data area.
704
705 On the ROMP, the _name is a pointer to the data area. At that
706 location is the address of _.name, which is really the name of
707 the function. We need to set all this up here.
708
709 The global declaration of the data area, if needed, is done in
710 `assemble_function', where it thinks it is globalizing the function
711 itself. */
712
713 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, NAME, DECL, SIZE) \
714 { extern int data_offset; \
715 data_section (); \
716 fprintf (FILE, "\t.align 2\n"); \
717 ASM_OUTPUT_LABEL (FILE, NAME); \
718 fprintf (FILE, "\t.long _.%s, 0, ", NAME); \
719 if (current_function_calls_alloca) \
720 fprintf (FILE, "0x%x\n", \
721 0xf6900000 + current_function_outgoing_args_size); \
722 else \
723 fprintf (FILE, "0\n"); \
724 data_offset = ((SIZE) + 12 + 3) / 4; \
725 }
726
727 /* Select section for constant in constant pool.
728
729 On ROMP, all constants are in the data area. */
730
731 #define SELECT_RTX_SECTION(MODE, X) data_section ()
732
733 /* This macro generates the assembly code for function entry.
734 FILE is a stdio stream to output the code to.
735 SIZE is an int: how many units of temporary storage to allocate.
736 Refer to the array `regs_ever_live' to determine which registers
737 to save; `regs_ever_live[I]' is nonzero if register number I
738 is ever used in the function. This macro is responsible for
739 knowing which registers should not be saved even if used. */
740
741 #define FUNCTION_PROLOGUE(FILE, SIZE) output_prolog (FILE, SIZE)
742
743 /* Output assembler code to FILE to increment profiler label # LABELNO
744 for profiling a function entry. */
745
746 #define FUNCTION_PROFILER(FILE, LABELNO) \
747 fprintf(FILE, "\tcas r0,r15,r0\n\tbali r15,mcount\n");
748
749 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
750 the stack pointer does not matter. The value is tested only in
751 functions that have frame pointers.
752 No definition is equivalent to always zero. */
753 /* #define EXIT_IGNORE_STACK 1 */
754
755 /* This macro generates the assembly code for function exit,
756 on machines that need it. If FUNCTION_EPILOGUE is not defined
757 then individual return instructions are generated for each
758 return statement. Args are same as for FUNCTION_PROLOGUE.
759
760 The function epilogue should not depend on the current stack pointer!
761 It should use the frame pointer only. This is mandatory because
762 of alloca; we also take advantage of it to omit stack adjustments
763 before returning. */
764
765 #define FUNCTION_EPILOGUE(FILE, SIZE) output_epilog (FILE, SIZE)
766 \f
767 /* Output assembler code for a block containing the constant parts
768 of a trampoline, leaving space for the variable parts.
769
770 The trampoline should set the static chain pointer to value placed
771 into the trampoline and should branch to the specified routine.
772
773 On the ROMP, we have a problem. There are no free registers to use
774 to construct the static chain and function addresses. Hence we use
775 the following kludge: r15 (the return address) is first saved in mq.
776 Then we use r15 to form the function address. We then branch to the
777 function and restore r15 in the delay slot. This makes it appear that
778 the function was called directly from the caller.
779
780 (Note that the function address built is actually that of the data block.
781 This is passed in r0 and the actual routine address is loaded into r15.)
782
783 In addition, note that the address of the "called function", in this case
784 the trampoline, is actually the address of the data area. So we need to
785 make a fake data area that will contain the address of the trampoline.
786 Note that this must be defined as two half-words, since the trampoline
787 template (as opposed to the trampoline on the stack) is only half-word
788 aligned. */
789
790 #define TRAMPOLINE_TEMPLATE(FILE) \
791 { \
792 fprintf (FILE, "\t.short 0,0\n"); \
793 fprintf (FILE, "\tcau r0,0(r0)\n"); \
794 fprintf (FILE, "\toil r0,r0,0\n"); \
795 fprintf (FILE, "\tmts r10,r15\n"); \
796 fprintf (FILE, "\tst r0,-36(r1)\n"); \
797 fprintf (FILE, "\tcau r15,0(r0)\n"); \
798 fprintf (FILE, "\toil r15,r15,0\n"); \
799 fprintf (FILE, "\tcas r0,r15,r0\n"); \
800 fprintf (FILE, "\tls r15,0(r15)\n"); \
801 fprintf (FILE, "\tbrx r15\n"); \
802 fprintf (FILE, "\tmfs r10,r15\n"); \
803 }
804
805 /* Length in units of the trampoline for entering a nested function. */
806
807 #define TRAMPOLINE_SIZE 36
808
809 /* Emit RTL insns to initialize the variable parts of a trampoline.
810 FNADDR is an RTX for the address of the function's pure code.
811 CXT is an RTX for the static chain value for the function.
812
813 On the RT, the static chain and function addresses are written in
814 two 16-bit sections.
815
816 We also need to write the address of the first instruction in
817 the trampoline into the first word of the trampoline to simulate a
818 data area. */
819
820 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
821 { \
822 rtx _addr, _temp; \
823 rtx _val; \
824 \
825 _temp = expand_binop (SImode, add_optab, ADDR, \
826 gen_rtx (CONST_INT, VOIDmode, 4), \
827 0, 1, OPTAB_LIB_WIDEN); \
828 emit_move_insn (gen_rtx (MEM, SImode, \
829 memory_address (SImode, ADDR)), _temp); \
830 \
831 _val = force_reg (SImode, CXT); \
832 _addr = memory_address (HImode, plus_constant (ADDR, 10)); \
833 emit_move_insn (gen_rtx (MEM, HImode, _addr), \
834 gen_lowpart (HImode, _val)); \
835 _temp = expand_shift (RSHIFT_EXPR, SImode, _val, \
836 build_int_2 (16, 0), 0, 1); \
837 _addr = memory_address (HImode, plus_constant (ADDR, 6)); \
838 emit_move_insn (gen_rtx (MEM, HImode, _addr), \
839 gen_lowpart (HImode, _temp)); \
840 \
841 _val = force_reg (SImode, FNADDR); \
842 _addr = memory_address (HImode, plus_constant (ADDR, 24)); \
843 emit_move_insn (gen_rtx (MEM, HImode, _addr), \
844 gen_lowpart (HImode, _val)); \
845 _temp = expand_shift (RSHIFT_EXPR, SImode, _val, \
846 build_int_2 (16, 0), 0, 1); \
847 _addr = memory_address (HImode, plus_constant (ADDR, 20)); \
848 emit_move_insn (gen_rtx (MEM, HImode, _addr), \
849 gen_lowpart (HImode, _temp)); \
850 \
851 }
852 \f
853 /* Definitions for register eliminations.
854
855 We have two registers that can be eliminated on the ROMP. First, the
856 frame pointer register can often be eliminated in favor of the stack
857 pointer register. Secondly, the argument pointer register can always be
858 eliminated; it is replaced with either the stack or frame pointer.
859
860 In addition, we use the elimination mechanism to see if r14 is needed.
861 Initially we assume that it isn't. If it is, we spill it. This is done
862 by making it an eliminable register. It doesn't matter what we replace
863 it with, since it will never occur in the rtl at this point. */
864
865 /* This is an array of structures. Each structure initializes one pair
866 of eliminable registers. The "from" register number is given first,
867 followed by "to". Eliminations of the same "from" register are listed
868 in order of preference. */
869 #define ELIMINABLE_REGS \
870 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
871 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
872 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
873 { 14, 0}}
874
875 /* Given FROM and TO register numbers, say whether this elimination is allowed.
876 Frame pointer elimination is automatically handled.
877
878 For the ROMP, if frame pointer elimination is being done, we would like to
879 convert ap into fp, not sp.
880
881 We need r14 if various conditions (tested in romp_using_r14) are true.
882
883 All other eliminations are valid. */
884 #define CAN_ELIMINATE(FROM, TO) \
885 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
886 ? ! frame_pointer_needed \
887 : (FROM) == 14 ? ! romp_using_r14 () \
888 : 1)
889
890 /* Define the offset between two registers, one to be eliminated, and the other
891 its replacement, at the start of a routine. */
892 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
893 { if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
894 { \
895 if (romp_pushes_stack ()) \
896 (OFFSET) = ((get_frame_size () - 64) \
897 + current_function_outgoing_args_size); \
898 else \
899 (OFFSET) = - (romp_sa_size () + 64); \
900 } \
901 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
902 (OFFSET) = romp_sa_size () - 16 + 64; \
903 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
904 { \
905 if (romp_pushes_stack ()) \
906 (OFFSET) = (get_frame_size () + (romp_sa_size () - 16) \
907 + current_function_outgoing_args_size); \
908 else \
909 (OFFSET) = -16; \
910 } \
911 else if ((FROM) == 14) \
912 (OFFSET) = 0; \
913 else \
914 abort (); \
915 }
916 \f
917 /* Addressing modes, and classification of registers for them. */
918
919 /* #define HAVE_POST_INCREMENT */
920 /* #define HAVE_POST_DECREMENT */
921
922 /* #define HAVE_PRE_DECREMENT */
923 /* #define HAVE_PRE_INCREMENT */
924
925 /* Macros to check register numbers against specific register classes. */
926
927 /* These assume that REGNO is a hard or pseudo reg number.
928 They give nonzero only if REGNO is a hard reg of the suitable class
929 or a pseudo reg currently allocated to a suitable hard reg.
930 Since they use reg_renumber, they are safe only once reg_renumber
931 has been allocated, which happens in local-alloc.c. */
932
933 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
934 #define REGNO_OK_FOR_BASE_P(REGNO) \
935 ((REGNO) < FIRST_PSEUDO_REGISTER \
936 ? (REGNO) < 16 && (REGNO) != 0 && (REGNO) != 16 \
937 : (reg_renumber[REGNO] < 16 && reg_renumber[REGNO] >= 0 \
938 && reg_renumber[REGNO] != 16))
939 \f
940 /* Maximum number of registers that can appear in a valid memory address. */
941
942 #define MAX_REGS_PER_ADDRESS 1
943
944 /* Recognize any constant value that is a valid address. */
945
946 #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
947
948 /* Nonzero if the constant value X is a legitimate general operand.
949 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
950
951 On the ROMP, there is a bit of a hack here. Basically, we wish to
952 only issue instructions that are not `as' macros. However, in the
953 case of `get', `load', and `store', if the operand is a relocatable
954 symbol (possibly +/- an integer), there is no way to express the
955 resulting split-relocation except with the macro. Therefore, allow
956 either a constant valid in a normal (sign-extended) D-format insn or
957 a relocatable expression.
958
959 Also, for DFmode and DImode, we must ensure that both words are
960 addressable.
961
962 We define two macros: The first is given an offset (0 or 4) and indicates
963 that the operand is a CONST_INT that is valid for that offset. The second
964 indicates a valid non-CONST_INT constant. */
965
966 #define LEGITIMATE_ADDRESS_INTEGER_P(X,OFFSET) \
967 (GET_CODE (X) == CONST_INT \
968 && (unsigned) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
969
970 #define LEGITIMATE_ADDRESS_CONSTANT_P(X) \
971 (GET_CODE (X) == SYMBOL_REF \
972 || GET_CODE (X) == LABEL_REF \
973 || (GET_CODE (X) == CONST \
974 && (GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
975 || GET_CODE (XEXP (XEXP (X, 0), 0)) == LABEL_REF) \
976 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT))
977
978 /* Include all constant integers and constant double, but exclude
979 SYMBOL_REFs that are to be obtained from the data area (see below). */
980 #define LEGITIMATE_CONSTANT_P(X) \
981 ((LEGITIMATE_ADDRESS_CONSTANT_P (X) \
982 || GET_CODE (X) == CONST_INT \
983 || GET_CODE (X) == CONST_DOUBLE) \
984 && ! (GET_CODE (X) == SYMBOL_REF && SYMBOL_REF_FLAG (X)))
985
986 /* For no good reason, we do the same as the other RT compilers and load
987 the addresses of data areas for a function from our data area. That means
988 that we need to mark such SYMBOL_REFs. We do so here. */
989 #define ENCODE_SECTION_INFO(DECL) \
990 if (TREE_CODE (TREE_TYPE (DECL)) == FUNCTION_TYPE) \
991 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1;
992
993 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
994 and check its validity for a certain class.
995 We have two alternate definitions for each of them.
996 The usual definition accepts all pseudo regs; the other rejects
997 them unless they have been allocated suitable hard regs.
998 The symbol REG_OK_STRICT causes the latter definition to be used.
999
1000 Most source files want to accept pseudo regs in the hope that
1001 they will get allocated to the class that the insn wants them to be in.
1002 Source files for reload pass need to be strict.
1003 After reload, it makes no difference, since pseudo regs have
1004 been eliminated by then. */
1005
1006 #ifndef REG_OK_STRICT
1007
1008 /* Nonzero if X is a hard reg that can be used as an index
1009 or if it is a pseudo reg. */
1010 #define REG_OK_FOR_INDEX_P(X) 0
1011 /* Nonzero if X is a hard reg that can be used as a base reg
1012 or if it is a pseudo reg. */
1013 #define REG_OK_FOR_BASE_P(X) \
1014 (REGNO (X) != 0 && (REGNO (X) < 17 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1015
1016 #else
1017
1018 /* Nonzero if X is a hard reg that can be used as an index. */
1019 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1020 /* Nonzero if X is a hard reg that can be used as a base reg. */
1021 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1022
1023 #endif
1024 \f
1025 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1026 that is a valid memory address for an instruction.
1027 The MODE argument is the machine mode for the MEM expression
1028 that wants to use this address.
1029
1030 On the ROMP, a legitimate address is either a legitimate constant,
1031 a register plus a legitimate constant, or a register. See the
1032 discussion at the LEGITIMATE_ADDRESS_CONSTANT_P macro. */
1033 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1034 { if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
1035 goto ADDR; \
1036 if (GET_CODE (X) != CONST_INT && LEGITIMATE_ADDRESS_CONSTANT_P (X)) \
1037 goto ADDR; \
1038 if (GET_CODE (X) == PLUS \
1039 && GET_CODE (XEXP (X, 0)) == REG \
1040 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1041 && LEGITIMATE_ADDRESS_CONSTANT_P (XEXP (X, 1))) \
1042 goto ADDR; \
1043 if (GET_CODE (X) == PLUS \
1044 && GET_CODE (XEXP (X, 0)) == REG \
1045 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1046 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
1047 && (((MODE) != DFmode && (MODE) != DImode) \
1048 || (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4)))) \
1049 goto ADDR; \
1050 }
1051 \f
1052 /* Try machine-dependent ways of modifying an illegitimate address
1053 to be legitimate. If we find one, return the new, valid address.
1054 This macro is used in only one place: `memory_address' in explow.c.
1055
1056 OLDX is the address as it was before break_out_memory_refs was called.
1057 In some cases it is useful to look at this to decide what needs to be done.
1058
1059 MODE and WIN are passed so that this macro can use
1060 GO_IF_LEGITIMATE_ADDRESS.
1061
1062 It is always safe for this macro to do nothing. It exists to recognize
1063 opportunities to optimize the output.
1064
1065 On ROMP, check for the sum of a register with a constant
1066 integer that is out of range. If so, generate code to add the
1067 constant with the low-order 16 bits masked to the register and force
1068 this result into another register (this can be done with `cau').
1069 Then generate an address of REG+(CONST&0xffff), allowing for the
1070 possibility of bit 16 being a one.
1071
1072 If the register is not OK for a base register, abort. */
1073
1074 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1075 { if (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 0)) == REG \
1076 && GET_CODE (XEXP (X, 1)) == CONST_INT \
1077 && (unsigned) (INTVAL (XEXP (X, 1)) + 0x8000) >= 0x10000) \
1078 { int high_int, low_int; \
1079 if (! REG_OK_FOR_BASE_P (XEXP (X, 0))) \
1080 abort (); \
1081 high_int = INTVAL (XEXP (X, 1)) >> 16; \
1082 low_int = INTVAL (XEXP (X, 1)) & 0xffff; \
1083 if (low_int & 0x8000) \
1084 high_int += 1, low_int |= 0xffff0000; \
1085 (X) = gen_rtx (PLUS, SImode, \
1086 force_operand \
1087 (gen_rtx (PLUS, SImode, XEXP (X, 0), \
1088 gen_rtx (CONST_INT, VOIDmode, \
1089 high_int << 16)), 0),\
1090 gen_rtx (CONST_INT, VOIDmode, low_int)); \
1091 } \
1092 }
1093
1094 /* Go to LABEL if ADDR (a legitimate address expression)
1095 has an effect that depends on the machine mode it is used for.
1096
1097 On the ROMP this is true only if the address is valid with a zero offset
1098 but not with an offset of four (this means it cannot be used as an
1099 address for DImode or DFmode). Since we know it is valid, we just check
1100 for an address that is not valid with an offset of four. */
1101
1102 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1103 { if (GET_CODE (ADDR) == PLUS \
1104 && ! LEGITIMATE_ADDRESS_CONSTANT_P (XEXP (ADDR, 1)) \
1105 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 4)) \
1106 goto LABEL; \
1107 }
1108 \f
1109 /* Define this if some processing needs to be done immediately before
1110 emitting code for an insn.
1111
1112 This is used on the ROMP, to compensate for a bug in the floating-point
1113 code. When a floating-point operation is done with the first and third
1114 operands both the same floating-point register, it will generate bad code
1115 for the MC68881. So we must detect this. If it occurs, we patch the
1116 first operand to be fr0 and insert a move insn to move it to the desired
1117 destination. */
1118 #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
1119 { rtx op0, op1, op2, operation, tem; \
1120 if (NOPERANDS >= 3 && get_attr_type (INSN) == TYPE_FP) \
1121 { \
1122 op0 = OPERANDS[0]; \
1123 operation = OPERANDS[1]; \
1124 if (float_conversion (operation, VOIDmode)) \
1125 operation = XEXP (operation, 0); \
1126 if (float_binary (operation, VOIDmode)) \
1127 { \
1128 op1 = XEXP (operation, 0), op2 = XEXP (operation, 1); \
1129 if (float_conversion (op1, VOIDmode)) \
1130 op1 = XEXP (op1, 0); \
1131 if (float_conversion (op2, VOIDmode)) \
1132 op2 = XEXP (op2, 0); \
1133 if (rtx_equal_p (op0, op2) \
1134 && (GET_CODE (operation) == PLUS \
1135 || GET_CODE (operation) == MULT)) \
1136 tem = op1, op1 = op2, op2 = tem; \
1137 if (GET_CODE (op0) == REG && FP_REGNO_P (REGNO (op0)) \
1138 && GET_CODE (op2) == REG && FP_REGNO_P (REGNO (op2)) \
1139 && REGNO (op0) == REGNO (op2)) \
1140 { \
1141 tem = gen_rtx (REG, GET_MODE (op0), 17); \
1142 emit_insn_after (gen_move_insn (op0, tem), INSN); \
1143 SET_DEST (XVECEXP (PATTERN (INSN), 0, 0)) = tem; \
1144 OPERANDS[0] = tem; \
1145 } \
1146 } \
1147 } \
1148 }
1149 \f
1150 /* Specify the machine mode that this machine uses
1151 for the index in the tablejump instruction. */
1152 #define CASE_VECTOR_MODE SImode
1153
1154 /* Define this if the tablejump instruction expects the table
1155 to contain offsets from the address of the table.
1156 Do not define this if the table should contain absolute addresses. */
1157 /* #define CASE_VECTOR_PC_RELATIVE */
1158
1159 /* Specify the tree operation to be used to convert reals to integers. */
1160 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1161
1162 /* This is the kind of divide that is easiest to do in the general case. */
1163 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1164
1165 /* Define this as 1 if `char' should by default be signed; else as 0. */
1166 #define DEFAULT_SIGNED_CHAR 0
1167
1168 /* This flag, if defined, says the same insns that convert to a signed fixnum
1169 also convert validly to an unsigned one.
1170
1171 We actually lie a bit here as overflow conditions are different. But
1172 they aren't being checked anyway. */
1173
1174 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1175
1176 /* Max number of bytes we can move from memory to memory
1177 in one reasonably fast instruction. */
1178 #define MOVE_MAX 4
1179
1180 /* Nonzero if access to memory by bytes is no faster than for words.
1181 Also non-zero if doing byte operations (specifically shifts) in registers
1182 is undesirable. */
1183 #define SLOW_BYTE_ACCESS 1
1184
1185 /* Define if normal loads of shorter-than-word items from memory clears
1186 the rest of the bigs in the register. */
1187 #define BYTE_LOADS_ZERO_EXTEND
1188
1189 /* This is BSD, so it wants DBX format. */
1190 #define DBX_DEBUGGING_INFO
1191
1192 /* We don't have GAS for the RT yet, so don't write out special
1193 .stabs in cc1plus. */
1194
1195 #define FASCIST_ASSEMBLER
1196
1197 /* Do not break .stabs pseudos into continuations. */
1198 #define DBX_CONTIN_LENGTH 0
1199
1200 /* Don't try to use the `x' type-cross-reference character in DBX data.
1201 Also has the consequence of putting each struct, union or enum
1202 into a separate .stabs, containing only cross-refs to the others. */
1203 #define DBX_NO_XREFS
1204
1205 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1206 is done just by pretending it is already truncated. */
1207 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1208
1209 /* Specify the machine mode that pointers have.
1210 After generation of rtl, the compiler makes no further distinction
1211 between pointers and any other objects of this machine mode. */
1212 #define Pmode SImode
1213
1214 /* Mode of a function address in a call instruction (for indexing purposes).
1215
1216 Doesn't matter on ROMP. */
1217 #define FUNCTION_MODE SImode
1218
1219 /* Define this if addresses of constant functions
1220 shouldn't be put through pseudo regs where they can be cse'd.
1221 Desirable on machines where ordinary constants are expensive
1222 but a CALL with constant address is cheap. */
1223 #define NO_FUNCTION_CSE
1224
1225 /* Define this if shift instructions ignore all but the low-order
1226 few bits. */
1227 #define SHIFT_COUNT_TRUNCATED
1228
1229 /* Compute the cost of computing a constant rtl expression RTX whose
1230 rtx-code is CODE, contained within an expression of code OUTER_CODE.
1231 The body of this macro is a portion of a switch statement. If the
1232 code is computed here, return it with a return statement. Otherwise,
1233 break from the switch. */
1234
1235 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1236 case CONST_INT: \
1237 if ((OUTER_CODE) == IOR && exact_log2 (INTVAL (RTX)) >= 0 \
1238 || (OUTER_CODE) == AND && exact_log2 (~INTVAL (RTX)) >= 0 \
1239 || (((OUTER_CODE) == PLUS || (OUTER_CODE) == MINUS) \
1240 && (unsigned int) (INTVAL (RTX) + 15) < 31) \
1241 || ((OUTER_CODE) == SET && (unsigned int) INTVAL (RTX) < 16))\
1242 return 0; \
1243 return ((unsigned int) (INTVAL(RTX) + 0x8000) < 0x10000 \
1244 || (INTVAL (RTX) & 0xffff0000) == 0) ? 0 : COSTS_N_INSNS (2);\
1245 case CONST: \
1246 case LABEL_REF: \
1247 case SYMBOL_REF: \
1248 if (current_function_operand (RTX, Pmode)) return 0; \
1249 return COSTS_N_INSNS (2); \
1250 case CONST_DOUBLE: \
1251 if ((RTX) == CONST0_RTX (GET_MODE (RTX))) return 2; \
1252 return ((GET_MODE_CLASS (GET_MODE (RTX)) == MODE_FLOAT) \
1253 ? COSTS_N_INSNS (5) : COSTS_N_INSNS (4));
1254
1255 /* Provide the costs of a rtl expression. This is in the body of a
1256 switch on CODE.
1257
1258 References to our own data area are really references to r14, so they
1259 are very cheap. Multiples and divides are very expensive. */
1260
1261 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1262 case MEM: \
1263 return current_function_operand (X, Pmode) ? 0 : COSTS_N_INSNS (2); \
1264 case MULT: \
1265 return (TARGET_IN_LINE_MUL && GET_MODE_CLASS (GET_MODE (X)) == MODE_INT)\
1266 ? COSTS_N_INSNS (19) : COSTS_N_INSNS (25); \
1267 case DIV: \
1268 case UDIV: \
1269 case MOD: \
1270 case UMOD: \
1271 return COSTS_N_INSNS (45);
1272
1273 /* Compute the cost of an address. This is meant to approximate the size
1274 and/or execution delay of an insn using that address. If the cost is
1275 approximated by the RTL complexity, including CONST_COSTS above, as
1276 is usually the case for CISC machines, this macro should not be defined.
1277 For aggressively RISCy machines, only one insn format is allowed, so
1278 this macro should be a constant. The value of this macro only matters
1279 for valid addresses.
1280
1281 For the ROMP, everything is cost 0 except for addresses involving
1282 symbolic constants, which are cost 1. */
1283
1284 #define ADDRESS_COST(RTX) \
1285 ((GET_CODE (RTX) == SYMBOL_REF \
1286 && ! CONSTANT_POOL_ADDRESS_P (RTX)) \
1287 || GET_CODE (RTX) == LABEL_REF \
1288 || (GET_CODE (RTX) == CONST \
1289 && ! constant_pool_address_operand (RTX, Pmode)) \
1290 || (GET_CODE (RTX) == PLUS \
1291 && ((GET_CODE (XEXP (RTX, 1)) == SYMBOL_REF \
1292 && ! CONSTANT_POOL_ADDRESS_P (XEXP (RTX, 0))) \
1293 || GET_CODE (XEXP (RTX, 1)) == LABEL_REF \
1294 || GET_CODE (XEXP (RTX, 1)) == CONST)))
1295
1296 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
1297 should be adjusted to reflect any required changes. This macro is used when
1298 there is some systematic length adjustment required that would be difficult
1299 to express in the length attribute.
1300
1301 On the ROMP, there are two adjustments: First, a 2-byte insn in the delay
1302 slot of a CALL (including floating-point operations) actually takes four
1303 bytes. Second, we have to make the worst-case alignment assumption for
1304 address vectors. */
1305
1306 #define ADJUST_INSN_LENGTH(X,LENGTH) \
1307 if (GET_CODE (X) == INSN && GET_CODE (PATTERN (X)) == SEQUENCE \
1308 && GET_CODE (XVECEXP (PATTERN (X), 0, 0)) != JUMP_INSN \
1309 && get_attr_length (XVECEXP (PATTERN (X), 0, 1)) == 2) \
1310 (LENGTH) += 2; \
1311 else if (GET_CODE (X) == JUMP_INSN && GET_CODE (PATTERN (X)) == ADDR_VEC) \
1312 (LENGTH) += 2;
1313 \f
1314 /* Tell final.c how to eliminate redundant test instructions. */
1315
1316 /* Here we define machine-dependent flags and fields in cc_status
1317 (see `conditions.h'). */
1318
1319 /* Set if condition code (really not-Z) is stored in `test bit'. */
1320 #define CC_IN_TB 01000
1321
1322 /* Set if condition code is set by an unsigned compare. */
1323 #define CC_UNSIGNED 02000
1324
1325 /* Store in cc_status the expressions
1326 that the condition codes will describe
1327 after execution of an instruction whose pattern is EXP.
1328 Do not alter them if the instruction would not alter the cc's. */
1329
1330 #define NOTICE_UPDATE_CC(BODY,INSN) \
1331 update_cc (BODY, INSN)
1332 \f
1333 /* Control the assembler format that we output. */
1334
1335 /* Output at beginning of assembler file. */
1336
1337 #define ASM_FILE_START(FILE) \
1338 { extern char *version_string; \
1339 fprintf (FILE, "\t.globl .oVncs\n\t.set .oVncs,0\n") ; \
1340 fprintf (FILE, "\t.globl .oVgcc%s\n\t.set .oVgcc%s,0\n", \
1341 version_string, version_string); \
1342 }
1343
1344 /* Output to assembler file text saying following lines
1345 may contain character constants, extra white space, comments, etc. */
1346
1347 #define ASM_APP_ON ""
1348
1349 /* Output to assembler file text saying following lines
1350 no longer contain unusual constructs. */
1351
1352 #define ASM_APP_OFF ""
1353
1354 /* Output before instructions and read-only data. */
1355
1356 #define TEXT_SECTION_ASM_OP ".text"
1357
1358 /* Output before writable data. */
1359
1360 #define DATA_SECTION_ASM_OP ".data"
1361
1362 /* How to refer to registers in assembler output.
1363 This sequence is indexed by compiler's hard-register-number (see above). */
1364
1365 #define REGISTER_NAMES \
1366 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \
1367 "r10", "r11", "r12", "r13", "r14", "r15", "ap", \
1368 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7" }
1369
1370 /* How to renumber registers for dbx and gdb. */
1371
1372 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1373
1374 /* This is how to output the definition of a user-level label named NAME,
1375 such as the label on a static function or variable NAME. */
1376
1377 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1378 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1379
1380 /* This is how to output a command to make the user-level label named NAME
1381 defined for reference from other files. */
1382
1383 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1384 do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1385
1386 /* This is how to output a reference to a user-level label named NAME.
1387 `assemble_name' uses this. */
1388
1389 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1390 fprintf (FILE, "_%s", NAME)
1391
1392 /* This is how to output an internal numbered label where
1393 PREFIX is the class of label and NUM is the number within the class. */
1394
1395 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1396 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1397
1398 /* This is how to output a label for a jump table. Arguments are the same as
1399 for ASM_OUTPUT_INTERNAL_LABEL, except the insn for the jump table is
1400 passed. */
1401
1402 #define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLEINSN) \
1403 { ASM_OUTPUT_ALIGN (FILE, 2); ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); }
1404
1405 /* This is how to store into the string LABEL
1406 the symbol_ref name of an internal numbered label where
1407 PREFIX is the class of label and NUM is the number within the class.
1408 This is suitable for output with `assemble_name'. */
1409
1410 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1411 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1412
1413 /* This is how to output an assembler line defining a `double' constant. */
1414
1415 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1416 fprintf (FILE, "\t.double 0d%.20e\n", (VALUE))
1417
1418 /* This is how to output an assembler line defining a `float' constant.
1419
1420 WARNING: Believe it or not, the ROMP assembler has a bug in its
1421 handling of single-precision floating-point values making it impossible
1422 to output such values in the expected way. Therefore, it must be output
1423 in hex. THIS WILL NOT WORK IF CROSS-COMPILING FROM A MACHINE THAT DOES
1424 NOT USE IEEE-FORMAT FLOATING-POINT, but there is nothing that can be done
1425 about it short of fixing the assembler. */
1426
1427 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1428 do { union { int i; float f; } u_i_f; \
1429 u_i_f.f = (VALUE); \
1430 fprintf (FILE, "\t.long 0x%x\n", u_i_f.i);\
1431 } while (0)
1432
1433 /* This is how to output an assembler line defining an `int' constant. */
1434
1435 #define ASM_OUTPUT_INT(FILE,VALUE) \
1436 ( fprintf (FILE, "\t.long "), \
1437 output_addr_const (FILE, (VALUE)), \
1438 fprintf (FILE, "\n"))
1439
1440 /* Likewise for `char' and `short' constants. */
1441
1442 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1443 ( fprintf (FILE, "\t.short "), \
1444 output_addr_const (FILE, (VALUE)), \
1445 fprintf (FILE, "\n"))
1446
1447 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1448 ( fprintf (FILE, "\t.byte "), \
1449 output_addr_const (FILE, (VALUE)), \
1450 fprintf (FILE, "\n"))
1451
1452 /* This is how to output an assembler line for a numeric constant byte. */
1453
1454 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1455 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1456
1457 /* This is how to output code to push a register on the stack.
1458 It need not be very fast code. */
1459
1460 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1461 fprintf (FILE, "\tsis r1,4\n\tsts %s,0(r1)\n", reg_names[REGNO])
1462
1463 /* This is how to output an insn to pop a register from the stack.
1464 It need not be very fast code. */
1465
1466 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1467 fprintf (FILE, "\tls r1,0(r1)\n\tais r1,4\n", reg_names[REGNO])
1468
1469 /* This is how to output an element of a case-vector that is absolute. */
1470
1471 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1472 fprintf (FILE, "\t.long L%d\n", VALUE)
1473
1474 /* This is how to output an element of a case-vector that is relative.
1475 (ROMP does not use such vectors,
1476 but we must define this macro anyway.) */
1477
1478 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) abort ()
1479
1480 /* This is how to output an assembler line
1481 that says to advance the location counter
1482 to a multiple of 2**LOG bytes. */
1483
1484 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1485 if ((LOG) != 0) \
1486 fprintf (FILE, "\t.align %d\n", (LOG))
1487
1488 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1489 fprintf (FILE, "\t.space %d\n", (SIZE))
1490
1491 /* This says how to output an assembler line
1492 to define a global common symbol. */
1493
1494 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1495 ( fputs (".comm ", (FILE)), \
1496 assemble_name ((FILE), (NAME)), \
1497 fprintf ((FILE), ",%d\n", (SIZE)))
1498
1499 /* This says how to output an assembler line
1500 to define a local common symbol. */
1501
1502 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED) \
1503 ( fputs (".lcomm ", (FILE)), \
1504 assemble_name ((FILE), (NAME)), \
1505 fprintf ((FILE), ",%d\n", (SIZE)))
1506
1507 /* Store in OUTPUT a string (made with alloca) containing
1508 an assembler-name for a local static variable named NAME.
1509 LABELNO is an integer which is different for each call. */
1510
1511 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1512 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1513 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1514
1515 /* Define the parentheses used to group arithmetic operations
1516 in assembler code. */
1517
1518 #define ASM_OPEN_PAREN "("
1519 #define ASM_CLOSE_PAREN ")"
1520
1521 /* Define results of standard character escape sequences. */
1522 #define TARGET_BELL 007
1523 #define TARGET_BS 010
1524 #define TARGET_TAB 011
1525 #define TARGET_NEWLINE 012
1526 #define TARGET_VT 013
1527 #define TARGET_FF 014
1528 #define TARGET_CR 015
1529
1530 /* Print operand X (an rtx) in assembler syntax to file FILE.
1531 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1532 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1533
1534 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1535
1536 /* Define which CODE values are valid. */
1537
1538 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1539 ((CODE) == '.' || (CODE) == '#')
1540 \f
1541 /* Print a memory address as an operand to reference that memory location. */
1542
1543 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1544 { register rtx addr = ADDR; \
1545 register rtx base = 0, offset = addr; \
1546 if (GET_CODE (addr) == REG) \
1547 base = addr, offset = const0_rtx; \
1548 else if (GET_CODE (addr) == PLUS \
1549 && GET_CODE (XEXP (addr, 0)) == REG) \
1550 base = XEXP (addr, 0), offset = XEXP (addr, 1); \
1551 else if (GET_CODE (addr) == SYMBOL_REF \
1552 && CONSTANT_POOL_ADDRESS_P (addr)) \
1553 { \
1554 offset = gen_rtx (CONST_INT, VOIDmode, get_pool_offset (addr) + 12); \
1555 base = gen_rtx (REG, SImode, 14); \
1556 } \
1557 else if (GET_CODE (addr) == CONST \
1558 && GET_CODE (XEXP (addr, 0)) == PLUS \
1559 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT \
1560 && GET_CODE (XEXP (XEXP (addr, 0), 0)) == SYMBOL_REF \
1561 && CONSTANT_POOL_ADDRESS_P (XEXP (XEXP (addr, 0), 0))) \
1562 { \
1563 offset = plus_constant (XEXP (XEXP (addr, 0), 1), \
1564 (get_pool_offset (XEXP (XEXP (addr, 0), 0)) \
1565 + 12)); \
1566 base = gen_rtx (REG, SImode, 14); \
1567 } \
1568 output_addr_const (FILE, offset); \
1569 if (base) \
1570 fprintf (FILE, "(%s)", reg_names [REGNO (base)]); \
1571 }
1572
1573 /* Define the codes that are matched by predicates in aux-output.c. */
1574
1575 #define PREDICATE_CODES \
1576 {"zero_memory_operand", {SUBREG, MEM}}, \
1577 {"short_memory_operand", {SUBREG, MEM}}, \
1578 {"symbolic_memory_operand", {SUBREG, MEM}}, \
1579 {"current_function_operand", {MEM}}, \
1580 {"constant_pool_address_operand", {SUBREG, CONST}}, \
1581 {"romp_symbolic_operand", {LABEL_REF, SYMBOL_REF, CONST}}, \
1582 {"constant_operand", {LABEL_REF, SYMBOL_REF, PLUS, CONST, CONST_INT}}, \
1583 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
1584 {"reg_or_any_cint_operand", {SUBREG, REG, CONST_INT}}, \
1585 {"short_cint_operand", {CONST_INT}}, \
1586 {"reg_or_D_operand", {SUBREG, REG, CONST_INT}}, \
1587 {"reg_or_add_operand", {SUBREG, REG, LABEL_REF, SYMBOL_REF, \
1588 PLUS, CONST, CONST_INT}}, \
1589 {"reg_or_and_operand", {SUBREG, REG, CONST_INT}}, \
1590 {"reg_or_mem_operand", {SUBREG, REG, MEM}}, \
1591 {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \
1592 {"romp_operand", {SUBREG, MEM, REG, CONST_INT, CONST, LABEL_REF, \
1593 SYMBOL_REF, CONST_DOUBLE}}, \
1594 {"reg_0_operand", {REG}}, \
1595 {"reg_15_operand", {REG}}, \
1596 {"float_binary", {PLUS, MINUS, MULT, DIV}}, \
1597 {"float_unary", {NEG, ABS}}, \
1598 {"float_conversion", {FLOAT_TRUNCATE, FLOAT_EXTEND, FLOAT, FIX}},
1599
1600 /* Define functions defined in aux-output.c and used in templates. */
1601
1602 extern char *output_in_line_mul ();
1603 extern char *output_fpop ();
This page took 0.118298 seconds and 5 git commands to generate.