]> gcc.gnu.org Git - gcc.git/blob - gcc/config/pa/pa.h
c-decl.c, [...]: Don't check TARGET_MEM_FUNCTIONS.
[gcc.git] / gcc / config / pa / pa.h
1 /* Definitions of target machine for GNU compiler, for the HP Spectrum.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) of Cygnus Support
5 and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
6 Software Science at the University of Utah.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 enum cmp_type /* comparison type */
26 {
27 CMP_SI, /* compare integers */
28 CMP_SF, /* compare single precision floats */
29 CMP_DF, /* compare double precision floats */
30 CMP_MAX /* max comparison type */
31 };
32
33 /* For long call handling. */
34 extern unsigned long total_code_bytes;
35
36 /* Which processor to schedule for. */
37
38 enum processor_type
39 {
40 PROCESSOR_700,
41 PROCESSOR_7100,
42 PROCESSOR_7100LC,
43 PROCESSOR_7200,
44 PROCESSOR_7300,
45 PROCESSOR_8000
46 };
47
48 /* For -mschedule= option. */
49 extern const char *pa_cpu_string;
50 extern enum processor_type pa_cpu;
51
52 #define pa_cpu_attr ((enum attr_cpu)pa_cpu)
53
54 /* Which architecture to generate code for. */
55
56 enum architecture_type
57 {
58 ARCHITECTURE_10,
59 ARCHITECTURE_11,
60 ARCHITECTURE_20
61 };
62
63 struct rtx_def;
64
65 /* For -march= option. */
66 extern const char *pa_arch_string;
67 extern enum architecture_type pa_arch;
68
69 /* Print subsidiary information on the compiler version in use. */
70
71 #define TARGET_VERSION fputs (" (hppa)", stderr);
72
73 /* Run-time compilation parameters selecting different hardware subsets. */
74
75 extern int target_flags;
76
77 /* compile code for HP-PA 1.1 ("Snake"). */
78
79 #define MASK_PA_11 1
80
81 /* Disable all FP registers (they all become fixed). This may be necessary
82 for compiling kernels which perform lazy context switching of FP regs.
83 Note if you use this option and try to perform floating point operations
84 the compiler will abort! */
85
86 #define MASK_DISABLE_FPREGS 2
87 #define TARGET_DISABLE_FPREGS (target_flags & MASK_DISABLE_FPREGS)
88
89 /* Generate code which assumes that all space register are equivalent.
90 Triggers aggressive unscaled index addressing and faster
91 builtin_return_address. */
92 #define MASK_NO_SPACE_REGS 4
93 #define TARGET_NO_SPACE_REGS (target_flags & MASK_NO_SPACE_REGS)
94
95 /* Allow unconditional jumps in the delay slots of call instructions. */
96 #define MASK_JUMP_IN_DELAY 8
97 #define TARGET_JUMP_IN_DELAY (target_flags & MASK_JUMP_IN_DELAY)
98
99 /* Disable indexed addressing modes. */
100 #define MASK_DISABLE_INDEXING 32
101 #define TARGET_DISABLE_INDEXING (target_flags & MASK_DISABLE_INDEXING)
102
103 /* Emit code which follows the new portable runtime calling conventions
104 HP wants everyone to use for ELF objects. If at all possible you want
105 to avoid this since it's a performance loss for non-prototyped code.
106
107 Note TARGET_PORTABLE_RUNTIME also forces all calls to use inline
108 long-call stubs which is quite expensive. */
109 #define MASK_PORTABLE_RUNTIME 64
110 #define TARGET_PORTABLE_RUNTIME (target_flags & MASK_PORTABLE_RUNTIME)
111
112 /* Emit directives only understood by GAS. This allows parameter
113 relocations to work for static functions. There is no way
114 to make them work the HP assembler at this time. */
115 #define MASK_GAS 128
116 #define TARGET_GAS (target_flags & MASK_GAS)
117
118 /* Emit code for processors which do not have an FPU. */
119 #define MASK_SOFT_FLOAT 256
120 #define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
121
122 /* Use 3-insn load/store sequences for access to large data segments
123 in shared libraries on hpux10. */
124 #define MASK_LONG_LOAD_STORE 512
125 #define TARGET_LONG_LOAD_STORE (target_flags & MASK_LONG_LOAD_STORE)
126
127 /* Use a faster sequence for indirect calls. This assumes that calls
128 through function pointers will never cross a space boundary, and
129 that the executable is not dynamically linked. Such assumptions
130 are generally safe for building kernels and statically linked
131 executables. Code compiled with this option will fail miserably if
132 the executable is dynamically linked or uses nested functions! */
133 #define MASK_FAST_INDIRECT_CALLS 1024
134 #define TARGET_FAST_INDIRECT_CALLS (target_flags & MASK_FAST_INDIRECT_CALLS)
135
136 /* Generate code with big switch statements to avoid out of range branches
137 occurring within the switch table. */
138 #define MASK_BIG_SWITCH 2048
139 #define TARGET_BIG_SWITCH (target_flags & MASK_BIG_SWITCH)
140
141 /* Generate code for the HPPA 2.0 architecture. TARGET_PA_11 should also be
142 true when this is true. */
143 #define MASK_PA_20 4096
144
145 /* Generate cpp defines for server I/O. */
146 #define MASK_SIO 8192
147 #define TARGET_SIO (target_flags & MASK_SIO)
148
149 /* Assume GNU linker by default. */
150 #define MASK_GNU_LD 16384
151 #ifndef TARGET_GNU_LD
152 #define TARGET_GNU_LD (target_flags & MASK_GNU_LD)
153 #endif
154
155 /* Force generation of long calls. */
156 #define MASK_LONG_CALLS 32768
157 #ifndef TARGET_LONG_CALLS
158 #define TARGET_LONG_CALLS (target_flags & MASK_LONG_CALLS)
159 #endif
160
161 #ifndef TARGET_PA_10
162 #define TARGET_PA_10 (target_flags & (MASK_PA_11 | MASK_PA_20) == 0)
163 #endif
164
165 #ifndef TARGET_PA_11
166 #define TARGET_PA_11 (target_flags & MASK_PA_11)
167 #endif
168
169 #ifndef TARGET_PA_20
170 #define TARGET_PA_20 (target_flags & MASK_PA_20)
171 #endif
172
173 /* Generate code for the HPPA 2.0 architecture in 64bit mode. */
174 #ifndef TARGET_64BIT
175 #define TARGET_64BIT 0
176 #endif
177
178 /* Generate code for ELF32 ABI. */
179 #ifndef TARGET_ELF32
180 #define TARGET_ELF32 0
181 #endif
182
183 /* Generate code for SOM 32bit ABI. */
184 #ifndef TARGET_SOM
185 #define TARGET_SOM 0
186 #endif
187
188 /* The following three defines are potential target switches. The current
189 defines are optimal given the current capabilities of GAS and GNU ld. */
190
191 /* Define to a C expression evaluating to true to use long absolute calls.
192 Currently, only the HP assembler and SOM linker support long absolute
193 calls. They are used only in non-pic code. */
194 #define TARGET_LONG_ABS_CALL (TARGET_SOM && !TARGET_GAS)
195
196 /* Define to a C expression evaluating to true to use long pic symbol
197 difference calls. This is a call variant similar to the long pic
198 pc-relative call. Long pic symbol difference calls are only used with
199 the HP SOM linker. Currently, only the HP assembler supports these
200 calls. GAS doesn't allow an arbitrary difference of two symbols. */
201 #define TARGET_LONG_PIC_SDIFF_CALL (!TARGET_GAS)
202
203 /* Define to a C expression evaluating to true to use long pic
204 pc-relative calls. Long pic pc-relative calls are only used with
205 GAS. Currently, they are usable for calls within a module but
206 not for external calls. */
207 #define TARGET_LONG_PIC_PCREL_CALL 0
208
209 /* Define to a C expression evaluating to true to use SOM secondary
210 definition symbols for weak support. Linker support for secondary
211 definition symbols is buggy prior to HP-UX 11.X. */
212 #define TARGET_SOM_SDEF 0
213
214 /* Define to a C expression evaluating to true to save the entry value
215 of SP in the current frame marker. This is normally unnecessary.
216 However, the HP-UX unwind library looks at the SAVE_SP callinfo flag.
217 HP compilers don't use this flag but it is supported by the assembler.
218 We set this flag to indicate that register %r3 has been saved at the
219 start of the frame. Thus, when the HP unwind library is used, we
220 need to generate additional code to save SP into the frame marker. */
221 #define TARGET_HPUX_UNWIND_LIBRARY 0
222
223 /* Macro to define tables used to set the flags. This is a
224 list in braces of target switches with each switch being
225 { "NAME", VALUE, "HELP_STRING" }. VALUE is the bits to set,
226 or minus the bits to clear. An empty string NAME is used to
227 identify the default VALUE. Do not mark empty strings for
228 translation. */
229
230 #define TARGET_SWITCHES \
231 {{ "snake", MASK_PA_11, \
232 N_("Generate PA1.1 code") }, \
233 { "nosnake", -(MASK_PA_11 | MASK_PA_20), \
234 N_("Generate PA1.0 code") }, \
235 { "pa-risc-1-0", -(MASK_PA_11 | MASK_PA_20), \
236 N_("Generate PA1.0 code") }, \
237 { "pa-risc-1-1", MASK_PA_11, \
238 N_("Generate PA1.1 code") }, \
239 { "pa-risc-2-0", MASK_PA_20, \
240 N_("Generate PA2.0 code (requires binutils 2.10 or later)") }, \
241 { "disable-fpregs", MASK_DISABLE_FPREGS, \
242 N_("Disable FP regs") }, \
243 { "no-disable-fpregs", -MASK_DISABLE_FPREGS, \
244 N_("Do not disable FP regs") }, \
245 { "no-space-regs", MASK_NO_SPACE_REGS, \
246 N_("Disable space regs") }, \
247 { "space-regs", -MASK_NO_SPACE_REGS, \
248 N_("Do not disable space regs") }, \
249 { "jump-in-delay", MASK_JUMP_IN_DELAY, \
250 N_("Put jumps in call delay slots") }, \
251 { "no-jump-in-delay", -MASK_JUMP_IN_DELAY, \
252 N_("Do not put jumps in call delay slots") }, \
253 { "disable-indexing", MASK_DISABLE_INDEXING, \
254 N_("Disable indexed addressing") }, \
255 { "no-disable-indexing", -MASK_DISABLE_INDEXING, \
256 N_("Do not disable indexed addressing") }, \
257 { "portable-runtime", MASK_PORTABLE_RUNTIME, \
258 N_("Use portable calling conventions") }, \
259 { "no-portable-runtime", -MASK_PORTABLE_RUNTIME, \
260 N_("Do not use portable calling conventions") }, \
261 { "gas", MASK_GAS, \
262 N_("Assume code will be assembled by GAS") }, \
263 { "no-gas", -MASK_GAS, \
264 N_("Do not assume code will be assembled by GAS") }, \
265 { "soft-float", MASK_SOFT_FLOAT, \
266 N_("Use software floating point") }, \
267 { "no-soft-float", -MASK_SOFT_FLOAT, \
268 N_("Do not use software floating point") }, \
269 { "long-load-store", MASK_LONG_LOAD_STORE, \
270 N_("Emit long load/store sequences") }, \
271 { "no-long-load-store", -MASK_LONG_LOAD_STORE, \
272 N_("Do not emit long load/store sequences") }, \
273 { "fast-indirect-calls", MASK_FAST_INDIRECT_CALLS, \
274 N_("Generate fast indirect calls") }, \
275 { "no-fast-indirect-calls", -MASK_FAST_INDIRECT_CALLS, \
276 N_("Do not generate fast indirect calls") }, \
277 { "big-switch", MASK_BIG_SWITCH, \
278 N_("Generate code for huge switch statements") }, \
279 { "no-big-switch", -MASK_BIG_SWITCH, \
280 N_("Do not generate code for huge switch statements") }, \
281 { "long-calls", MASK_LONG_CALLS, \
282 N_("Always generate long calls") }, \
283 { "no-long-calls", -MASK_LONG_CALLS, \
284 N_("Generate long calls only when needed") }, \
285 { "linker-opt", 0, \
286 N_("Enable linker optimizations") }, \
287 SUBTARGET_SWITCHES \
288 { "", TARGET_DEFAULT | TARGET_CPU_DEFAULT, \
289 NULL }}
290
291 #ifndef TARGET_DEFAULT
292 #define TARGET_DEFAULT (MASK_GAS | MASK_JUMP_IN_DELAY | MASK_BIG_SWITCH)
293 #endif
294
295 #ifndef TARGET_CPU_DEFAULT
296 #define TARGET_CPU_DEFAULT 0
297 #endif
298
299 #ifndef SUBTARGET_SWITCHES
300 #define SUBTARGET_SWITCHES
301 #endif
302
303 #ifndef TARGET_SCHED_DEFAULT
304 #define TARGET_SCHED_DEFAULT "8000"
305 #endif
306
307 #define TARGET_OPTIONS \
308 { \
309 { "schedule=", &pa_cpu_string, \
310 N_("Specify CPU for scheduling purposes"), 0}, \
311 { "arch=", &pa_arch_string, \
312 N_("Specify architecture for code generation. Values are 1.0, 1.1, and 2.0. 2.0 requires gas snapshot 19990413 or later."), 0}\
313 }
314
315 /* Support for a compile-time default CPU, et cetera. The rules are:
316 --with-schedule is ignored if -mschedule is specified.
317 --with-arch is ignored if -march is specified. */
318 #define OPTION_DEFAULT_SPECS \
319 {"arch", "%{!march=*:-march=%(VALUE)}" }, \
320 {"schedule", "%{!mschedule=*:-mschedule=%(VALUE)}" }
321
322 /* Specify the dialect of assembler to use. New mnemonics is dialect one
323 and the old mnemonics are dialect zero. */
324 #define ASSEMBLER_DIALECT (TARGET_PA_20 ? 1 : 0)
325
326 #define OVERRIDE_OPTIONS override_options ()
327
328 /* Override some settings from dbxelf.h. */
329
330 /* We do not have to be compatible with dbx, so we enable gdb extensions
331 by default. */
332 #define DEFAULT_GDB_EXTENSIONS 1
333
334 /* This used to be zero (no max length), but big enums and such can
335 cause huge strings which killed gas.
336
337 We also have to avoid lossage in dbxout.c -- it does not compute the
338 string size accurately, so we are real conservative here. */
339 #undef DBX_CONTIN_LENGTH
340 #define DBX_CONTIN_LENGTH 3000
341
342 /* Only labels should ever begin in column zero. */
343 #define ASM_STABS_OP "\t.stabs\t"
344 #define ASM_STABN_OP "\t.stabn\t"
345
346 /* GDB always assumes the current function's frame begins at the value
347 of the stack pointer upon entry to the current function. Accessing
348 local variables and parameters passed on the stack is done using the
349 base of the frame + an offset provided by GCC.
350
351 For functions which have frame pointers this method works fine;
352 the (frame pointer) == (stack pointer at function entry) and GCC provides
353 an offset relative to the frame pointer.
354
355 This loses for functions without a frame pointer; GCC provides an offset
356 which is relative to the stack pointer after adjusting for the function's
357 frame size. GDB would prefer the offset to be relative to the value of
358 the stack pointer at the function's entry. Yuk! */
359 #define DEBUGGER_AUTO_OFFSET(X) \
360 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
361 + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
362
363 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
364 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
365 + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
366
367 #define TARGET_CPU_CPP_BUILTINS() \
368 do { \
369 builtin_assert("cpu=hppa"); \
370 builtin_assert("machine=hppa"); \
371 builtin_define("__hppa"); \
372 builtin_define("__hppa__"); \
373 if (TARGET_PA_20) \
374 builtin_define("_PA_RISC2_0"); \
375 else if (TARGET_PA_11) \
376 builtin_define("_PA_RISC1_1"); \
377 else \
378 builtin_define("_PA_RISC1_0"); \
379 } while (0)
380
381 /* An old set of OS defines for various BSD-like systems. */
382 #define TARGET_OS_CPP_BUILTINS() \
383 do \
384 { \
385 builtin_define_std ("REVARGV"); \
386 builtin_define_std ("hp800"); \
387 builtin_define_std ("hp9000"); \
388 builtin_define_std ("hp9k8"); \
389 if (!c_dialect_cxx () && !flag_iso) \
390 builtin_define ("hppa"); \
391 builtin_define_std ("spectrum"); \
392 builtin_define_std ("unix"); \
393 builtin_assert ("system=bsd"); \
394 builtin_assert ("system=unix"); \
395 } \
396 while (0)
397
398 #define CC1_SPEC "%{pg:} %{p:}"
399
400 #define LINK_SPEC "%{mlinker-opt:-O} %{!shared:-u main} %{shared:-b}"
401
402 /* We don't want -lg. */
403 #ifndef LIB_SPEC
404 #define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
405 #endif
406
407 /* This macro defines command-line switches that modify the default
408 target name.
409
410 The definition is be an initializer for an array of structures. Each
411 array element has have three elements: the switch name, one of the
412 enumeration codes ADD or DELETE to indicate whether the string should be
413 inserted or deleted, and the string to be inserted or deleted. */
414 #define MODIFY_TARGET_NAME {{"-32", DELETE, "64"}, {"-64", ADD, "64"}}
415
416 /* Make gcc agree with <machine/ansi.h> */
417
418 #define SIZE_TYPE "unsigned int"
419 #define PTRDIFF_TYPE "int"
420 #define WCHAR_TYPE "unsigned int"
421 #define WCHAR_TYPE_SIZE 32
422
423 /* Show we can debug even without a frame pointer. */
424 #define CAN_DEBUG_WITHOUT_FP
425 \f
426 /* target machine storage layout */
427
428 /* Define this macro if it is advisable to hold scalars in registers
429 in a wider mode than that declared by the program. In such cases,
430 the value is constrained to be within the bounds of the declared
431 type, but kept valid in the wider mode. The signedness of the
432 extension may differ from that of the type. */
433
434 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
435 if (GET_MODE_CLASS (MODE) == MODE_INT \
436 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
437 (MODE) = word_mode;
438
439 /* Define this if most significant bit is lowest numbered
440 in instructions that operate on numbered bit-fields. */
441 #define BITS_BIG_ENDIAN 1
442
443 /* Define this if most significant byte of a word is the lowest numbered. */
444 /* That is true on the HP-PA. */
445 #define BYTES_BIG_ENDIAN 1
446
447 /* Define this if most significant word of a multiword number is lowest
448 numbered. */
449 #define WORDS_BIG_ENDIAN 1
450
451 #define MAX_BITS_PER_WORD 64
452
453 /* Width of a word, in units (bytes). */
454 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
455 #define MIN_UNITS_PER_WORD 4
456
457 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
458 #define PARM_BOUNDARY BITS_PER_WORD
459
460 /* Largest alignment required for any stack parameter, in bits.
461 Don't define this if it is equal to PARM_BOUNDARY */
462 #define MAX_PARM_BOUNDARY BIGGEST_ALIGNMENT
463
464 /* Boundary (in *bits*) on which stack pointer is always aligned;
465 certain optimizations in combine depend on this.
466
467 The HP-UX runtime documents mandate 64-byte and 16-byte alignment for
468 the stack on the 32 and 64-bit ports, respectively. However, we
469 are only guaranteed that the stack is aligned to BIGGEST_ALIGNMENT
470 in main. Thus, we treat the former as the preferred alignment. */
471 #define STACK_BOUNDARY BIGGEST_ALIGNMENT
472 #define PREFERRED_STACK_BOUNDARY (TARGET_64BIT ? 128 : 512)
473
474 /* Allocation boundary (in *bits*) for the code of a function. */
475 #define FUNCTION_BOUNDARY BITS_PER_WORD
476
477 /* Alignment of field after `int : 0' in a structure. */
478 #define EMPTY_FIELD_BOUNDARY 32
479
480 /* Every structure's size must be a multiple of this. */
481 #define STRUCTURE_SIZE_BOUNDARY 8
482
483 /* A bit-field declared as `int' forces `int' alignment for the struct. */
484 #define PCC_BITFIELD_TYPE_MATTERS 1
485
486 /* No data type wants to be aligned rounder than this. */
487 #define BIGGEST_ALIGNMENT (2 * BITS_PER_WORD)
488
489 /* Get around hp-ux assembler bug, and make strcpy of constants fast. */
490 #define CONSTANT_ALIGNMENT(CODE, TYPEALIGN) \
491 ((TYPEALIGN) < 32 ? 32 : (TYPEALIGN))
492
493 /* Make arrays of chars word-aligned for the same reasons. */
494 #define DATA_ALIGNMENT(TYPE, ALIGN) \
495 (TREE_CODE (TYPE) == ARRAY_TYPE \
496 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
497 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
498
499 /* Set this nonzero if move instructions will actually fail to work
500 when given unaligned data. */
501 #define STRICT_ALIGNMENT 1
502
503 /* Value is 1 if it is a good idea to tie two pseudo registers
504 when one has mode MODE1 and one has mode MODE2.
505 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
506 for any hard reg, then this must be 0 for correct output. */
507 #define MODES_TIEABLE_P(MODE1, MODE2) \
508 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
509
510 /* Specify the registers used for certain standard purposes.
511 The values of these macros are register numbers. */
512
513 /* The HP-PA pc isn't overloaded on a register that the compiler knows about. */
514 /* #define PC_REGNUM */
515
516 /* Register to use for pushing function arguments. */
517 #define STACK_POINTER_REGNUM 30
518
519 /* Base register for access to local variables of the function. */
520 #define FRAME_POINTER_REGNUM 3
521
522 /* Value should be nonzero if functions must have frame pointers. */
523 #define FRAME_POINTER_REQUIRED \
524 (current_function_calls_alloca)
525
526 /* C statement to store the difference between the frame pointer
527 and the stack pointer values immediately after the function prologue.
528
529 Note, we always pretend that this is a leaf function because if
530 it's not, there's no point in trying to eliminate the
531 frame pointer. If it is a leaf function, we guessed right! */
532 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
533 do {(VAR) = - compute_frame_size (get_frame_size (), 0);} while (0)
534
535 /* Base register for access to arguments of the function. */
536 #define ARG_POINTER_REGNUM 3
537
538 /* Register in which static-chain is passed to a function. */
539 #define STATIC_CHAIN_REGNUM 29
540
541 /* Register used to address the offset table for position-independent
542 data references. */
543 #define PIC_OFFSET_TABLE_REGNUM \
544 (flag_pic ? (TARGET_64BIT ? 27 : 19) : INVALID_REGNUM)
545
546 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
547
548 /* Function to return the rtx used to save the pic offset table register
549 across function calls. */
550 extern struct rtx_def *hppa_pic_save_rtx (void);
551
552 #define DEFAULT_PCC_STRUCT_RETURN 0
553
554 /* Register in which address to store a structure value
555 is passed to a function. */
556 #define PA_STRUCT_VALUE_REGNUM 28
557
558 /* Describe how we implement __builtin_eh_return. */
559 #define EH_RETURN_DATA_REGNO(N) \
560 ((N) < 3 ? (N) + 20 : (N) == 3 ? 31 : INVALID_REGNUM)
561 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 29)
562 #define EH_RETURN_HANDLER_RTX \
563 gen_rtx_MEM (word_mode, \
564 gen_rtx_PLUS (word_mode, frame_pointer_rtx, \
565 TARGET_64BIT ? GEN_INT (-16) : GEN_INT (-20)))
566
567
568 /* Offset from the argument pointer register value to the top of
569 stack. This is different from FIRST_PARM_OFFSET because of the
570 frame marker. */
571 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
572 \f
573 /* The letters I, J, K, L and M in a register constraint string
574 can be used to stand for particular ranges of immediate operands.
575 This macro defines what the ranges are.
576 C is the letter, and VALUE is a constant value.
577 Return 1 if VALUE is in the range specified by C.
578
579 `I' is used for the 11 bit constants.
580 `J' is used for the 14 bit constants.
581 `K' is used for values that can be moved with a zdepi insn.
582 `L' is used for the 5 bit constants.
583 `M' is used for 0.
584 `N' is used for values with the least significant 11 bits equal to zero
585 and when sign extended from 32 to 64 bits the
586 value does not change.
587 `O' is used for numbers n such that n+1 is a power of 2.
588 */
589
590 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
591 ((C) == 'I' ? VAL_11_BITS_P (VALUE) \
592 : (C) == 'J' ? VAL_14_BITS_P (VALUE) \
593 : (C) == 'K' ? zdepi_cint_p (VALUE) \
594 : (C) == 'L' ? VAL_5_BITS_P (VALUE) \
595 : (C) == 'M' ? (VALUE) == 0 \
596 : (C) == 'N' ? (((VALUE) & (((HOST_WIDE_INT) -1 << 31) | 0x7ff)) == 0 \
597 || (((VALUE) & (((HOST_WIDE_INT) -1 << 31) | 0x7ff)) \
598 == (HOST_WIDE_INT) -1 << 31)) \
599 : (C) == 'O' ? (((VALUE) & ((VALUE) + 1)) == 0) \
600 : (C) == 'P' ? and_mask_p (VALUE) \
601 : 0)
602
603 /* Similar, but for floating or large integer constants, and defining letters
604 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
605
606 For PA, `G' is the floating-point constant zero. `H' is undefined. */
607
608 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
609 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
610 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
611 : 0)
612
613 /* The class value for index registers, and the one for base regs. */
614 #define INDEX_REG_CLASS GENERAL_REGS
615 #define BASE_REG_CLASS GENERAL_REGS
616
617 #define FP_REG_CLASS_P(CLASS) \
618 ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS)
619
620 /* True if register is floating-point. */
621 #define FP_REGNO_P(N) ((N) >= FP_REG_FIRST && (N) <= FP_REG_LAST)
622
623 /* Given an rtx X being reloaded into a reg required to be
624 in class CLASS, return the class of reg to actually use.
625 In general this is just CLASS; but on some machines
626 in some cases it is preferable to use a more restrictive class. */
627 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
628
629 /* Return the register class of a scratch register needed to copy
630 IN into a register in CLASS in MODE, or a register in CLASS in MODE
631 to IN. If it can be done directly NO_REGS is returned.
632
633 Avoid doing any work for the common case calls. */
634 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
635 ((CLASS == BASE_REG_CLASS && GET_CODE (IN) == REG \
636 && REGNO (IN) < FIRST_PSEUDO_REGISTER) \
637 ? NO_REGS : secondary_reload_class (CLASS, MODE, IN))
638
639 #define MAYBE_FP_REG_CLASS_P(CLASS) \
640 reg_classes_intersect_p ((CLASS), FP_REGS)
641
642 /* On the PA it is not possible to directly move data between
643 GENERAL_REGS and FP_REGS. */
644 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
645 (MAYBE_FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2) \
646 || MAYBE_FP_REG_CLASS_P (CLASS2) != FP_REG_CLASS_P (CLASS1))
647
648 /* Return the stack location to use for secondary memory needed reloads. */
649 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
650 gen_rtx_MEM (MODE, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (-16)))
651
652 \f
653 /* Stack layout; function entry, exit and calling. */
654
655 /* Define this if pushing a word on the stack
656 makes the stack pointer a smaller address. */
657 /* #define STACK_GROWS_DOWNWARD */
658
659 /* Believe it or not. */
660 #define ARGS_GROW_DOWNWARD
661
662 /* Define this if the nominal address of the stack frame
663 is at the high-address end of the local variables;
664 that is, each additional local variable allocated
665 goes at a more negative offset in the frame. */
666 /* #define FRAME_GROWS_DOWNWARD */
667
668 /* Offset within stack frame to start allocating local variables at.
669 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
670 first local allocated. Otherwise, it is the offset to the BEGINNING
671 of the first local allocated.
672
673 On the 32-bit ports, we reserve one slot for the previous frame
674 pointer and one fill slot. The fill slot is for compatibility
675 with HP compiled programs. On the 64-bit ports, we reserve one
676 slot for the previous frame pointer. */
677 #define STARTING_FRAME_OFFSET 8
678
679 /* Define STACK_ALIGNMENT_NEEDED to zero to disable final alignment
680 of the stack. The default is to align it to STACK_BOUNDARY. */
681 #define STACK_ALIGNMENT_NEEDED 0
682
683 /* If we generate an insn to push BYTES bytes,
684 this says how many the stack pointer really advances by.
685 On the HP-PA, don't define this because there are no push insns. */
686 /* #define PUSH_ROUNDING(BYTES) */
687
688 /* Offset of first parameter from the argument pointer register value.
689 This value will be negated because the arguments grow down.
690 Also note that on STACK_GROWS_UPWARD machines (such as this one)
691 this is the distance from the frame pointer to the end of the first
692 argument, not it's beginning. To get the real offset of the first
693 argument, the size of the argument must be added. */
694
695 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_64BIT ? -64 : -32)
696
697 /* When a parameter is passed in a register, stack space is still
698 allocated for it. */
699 #define REG_PARM_STACK_SPACE(DECL) (TARGET_64BIT ? 64 : 16)
700
701 /* Define this if the above stack space is to be considered part of the
702 space allocated by the caller. */
703 #define OUTGOING_REG_PARM_STACK_SPACE
704
705 /* Keep the stack pointer constant throughout the function.
706 This is both an optimization and a necessity: longjmp
707 doesn't behave itself when the stack pointer moves within
708 the function! */
709 #define ACCUMULATE_OUTGOING_ARGS 1
710
711 /* The weird HPPA calling conventions require a minimum of 48 bytes on
712 the stack: 16 bytes for register saves, and 32 bytes for magic.
713 This is the difference between the logical top of stack and the
714 actual sp.
715
716 On the 64-bit port, the HP C compiler allocates a 48-byte frame
717 marker, although the runtime documentation only describes a 16
718 byte marker. For compatibility, we allocate 48 bytes. */
719 #define STACK_POINTER_OFFSET \
720 (TARGET_64BIT ? -(current_function_outgoing_args_size + 48): -32)
721
722 #define STACK_DYNAMIC_OFFSET(FNDECL) \
723 (TARGET_64BIT \
724 ? (STACK_POINTER_OFFSET) \
725 : ((STACK_POINTER_OFFSET) - current_function_outgoing_args_size))
726
727 /* Value is 1 if returning from a function call automatically
728 pops the arguments described by the number-of-args field in the call.
729 FUNDECL is the declaration node of the function (as a tree),
730 FUNTYPE is the data type of the function (as a tree),
731 or for a library call it is an identifier node for the subroutine name. */
732
733 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
734
735 /* Define how to find the value returned by a function.
736 VALTYPE is the data type of the value (as a tree).
737 If the precise function being called is known, FUNC is its FUNCTION_DECL;
738 otherwise, FUNC is 0. */
739
740 #define FUNCTION_VALUE(VALTYPE, FUNC) function_value (VALTYPE, FUNC)
741
742 /* Define how to find the value returned by a library function
743 assuming the value has mode MODE. */
744
745 #define LIBCALL_VALUE(MODE) \
746 gen_rtx_REG (MODE, \
747 (! TARGET_SOFT_FLOAT \
748 && ((MODE) == SFmode || (MODE) == DFmode) ? 32 : 28))
749
750 /* 1 if N is a possible register number for a function value
751 as seen by the caller. */
752
753 #define FUNCTION_VALUE_REGNO_P(N) \
754 ((N) == 28 || (! TARGET_SOFT_FLOAT && (N) == 32))
755
756 \f
757 /* Define a data type for recording info about an argument list
758 during the scan of that argument list. This data type should
759 hold all necessary information about the function itself
760 and about the args processed so far, enough to enable macros
761 such as FUNCTION_ARG to determine where the next arg should go.
762
763 On the HP-PA, the WORDS field holds the number of words
764 of arguments scanned so far (including the invisible argument,
765 if any, which holds the structure-value-address). Thus, 4 or
766 more means all following args should go on the stack.
767
768 The INCOMING field tracks whether this is an "incoming" or
769 "outgoing" argument.
770
771 The INDIRECT field indicates whether this is is an indirect
772 call or not.
773
774 The NARGS_PROTOTYPE field indicates that an argument does not
775 have a prototype when it less than or equal to 0. */
776
777 struct hppa_args {int words, nargs_prototype, incoming, indirect; };
778
779 #define CUMULATIVE_ARGS struct hppa_args
780
781 /* Initialize a variable CUM of type CUMULATIVE_ARGS
782 for a call to a function whose data type is FNTYPE.
783 For a library call, FNTYPE is 0. */
784
785 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
786 (CUM).words = 0, \
787 (CUM).incoming = 0, \
788 (CUM).indirect = (FNTYPE) && !(FNDECL), \
789 (CUM).nargs_prototype = (FNTYPE && TYPE_ARG_TYPES (FNTYPE) \
790 ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1 \
791 + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
792 || pa_return_in_memory (TREE_TYPE (FNTYPE), 0))) \
793 : 0)
794
795
796
797 /* Similar, but when scanning the definition of a procedure. We always
798 set NARGS_PROTOTYPE large so we never return a PARALLEL. */
799
800 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
801 (CUM).words = 0, \
802 (CUM).incoming = 1, \
803 (CUM).indirect = 0, \
804 (CUM).nargs_prototype = 1000
805
806 /* Figure out the size in words of the function argument. The size
807 returned by this macro should always be greater than zero because
808 we pass variable and zero sized objects by reference. */
809
810 #define FUNCTION_ARG_SIZE(MODE, TYPE) \
811 ((((MODE) != BLKmode \
812 ? (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \
813 : int_size_in_bytes (TYPE)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
814
815 /* Update the data in CUM to advance over an argument
816 of mode MODE and data type TYPE.
817 (TYPE is null for libcalls where that information may not be available.) */
818
819 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
820 { (CUM).nargs_prototype--; \
821 (CUM).words += FUNCTION_ARG_SIZE(MODE, TYPE) \
822 + (((CUM).words & 01) && (TYPE) != 0 \
823 && FUNCTION_ARG_SIZE(MODE, TYPE) > 1); \
824 }
825
826 /* Determine where to put an argument to a function.
827 Value is zero to push the argument on the stack,
828 or a hard register in which to store the argument.
829
830 MODE is the argument's machine mode.
831 TYPE is the data type of the argument (as a tree).
832 This is null for libcalls where that information may
833 not be available.
834 CUM is a variable of type CUMULATIVE_ARGS which gives info about
835 the preceding args and about the function being called.
836 NAMED is nonzero if this argument is a named parameter
837 (otherwise it is an extra parameter matching an ellipsis).
838
839 On the HP-PA the first four words of args are normally in registers
840 and the rest are pushed. But any arg that won't entirely fit in regs
841 is pushed.
842
843 Arguments passed in registers are either 1 or 2 words long.
844
845 The caller must make a distinction between calls to explicitly named
846 functions and calls through pointers to functions -- the conventions
847 are different! Calls through pointers to functions only use general
848 registers for the first four argument words.
849
850 Of course all this is different for the portable runtime model
851 HP wants everyone to use for ELF. Ugh. Here's a quick description
852 of how it's supposed to work.
853
854 1) callee side remains unchanged. It expects integer args to be
855 in the integer registers, float args in the float registers and
856 unnamed args in integer registers.
857
858 2) caller side now depends on if the function being called has
859 a prototype in scope (rather than if it's being called indirectly).
860
861 2a) If there is a prototype in scope, then arguments are passed
862 according to their type (ints in integer registers, floats in float
863 registers, unnamed args in integer registers.
864
865 2b) If there is no prototype in scope, then floating point arguments
866 are passed in both integer and float registers. egad.
867
868 FYI: The portable parameter passing conventions are almost exactly like
869 the standard parameter passing conventions on the RS6000. That's why
870 you'll see lots of similar code in rs6000.h. */
871
872 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding ((MODE), (TYPE))
873
874 /* Do not expect to understand this without reading it several times. I'm
875 tempted to try and simply it, but I worry about breaking something. */
876
877 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
878 function_arg (&CUM, MODE, TYPE, NAMED)
879
880 /* Nonzero if we do not know how to pass TYPE solely in registers. */
881 #define MUST_PASS_IN_STACK(MODE,TYPE) \
882 ((TYPE) != 0 \
883 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
884 || TREE_ADDRESSABLE (TYPE)))
885
886 /* For an arg passed partly in registers and partly in memory,
887 this is the number of registers used.
888 For args passed entirely in registers or entirely in memory, zero. */
889
890 /* For PA32 there are never split arguments. PA64, on the other hand, can
891 pass arguments partially in registers and partially in memory. */
892 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
893 (TARGET_64BIT ? function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED) : 0)
894
895 /* If defined, a C expression that gives the alignment boundary, in
896 bits, of an argument with the specified mode and type. If it is
897 not defined, `PARM_BOUNDARY' is used for all arguments. */
898
899 /* Arguments larger than one word are double word aligned. */
900
901 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
902 (((TYPE) \
903 ? (integer_zerop (TYPE_SIZE (TYPE)) \
904 || !TREE_CONSTANT (TYPE_SIZE (TYPE)) \
905 || int_size_in_bytes (TYPE) <= UNITS_PER_WORD) \
906 : GET_MODE_SIZE(MODE) <= UNITS_PER_WORD) \
907 ? PARM_BOUNDARY : MAX_PARM_BOUNDARY)
908
909 /* In the 32-bit runtime, arguments larger than eight bytes are passed
910 by invisible reference. As a GCC extension, we also pass anything
911 with a zero or variable size by reference.
912
913 The 64-bit runtime does not describe passing any types by invisible
914 reference. The internals of GCC can't currently handle passing
915 empty structures, and zero or variable length arrays when they are
916 not passed entirely on the stack or by reference. Thus, as a GCC
917 extension, we pass these types by reference. The HP compiler doesn't
918 support these types, so hopefully there shouldn't be any compatibility
919 issues. This may have to be revisited when HP releases a C99 compiler
920 or updates the ABI. */
921 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
922 (TARGET_64BIT \
923 ? ((TYPE) && int_size_in_bytes (TYPE) <= 0) \
924 : (((TYPE) && (int_size_in_bytes (TYPE) > 8 \
925 || int_size_in_bytes (TYPE) <= 0)) \
926 || ((MODE) && GET_MODE_SIZE (MODE) > 8)))
927
928 #define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
929 FUNCTION_ARG_PASS_BY_REFERENCE (CUM, MODE, TYPE, NAMED)
930
931 \f
932 extern GTY(()) rtx hppa_compare_op0;
933 extern GTY(()) rtx hppa_compare_op1;
934 extern enum cmp_type hppa_branch_type;
935
936 /* On HPPA, we emit profiling code as rtl via PROFILE_HOOK rather than
937 as assembly via FUNCTION_PROFILER. Just output a local label.
938 We can't use the function label because the GAS SOM target can't
939 handle the difference of a global symbol and a local symbol. */
940
941 #ifndef FUNC_BEGIN_PROLOG_LABEL
942 #define FUNC_BEGIN_PROLOG_LABEL "LFBP"
943 #endif
944
945 #define FUNCTION_PROFILER(FILE, LABEL) \
946 (*targetm.asm_out.internal_label) (FILE, FUNC_BEGIN_PROLOG_LABEL, LABEL)
947
948 #define PROFILE_HOOK(label_no) hppa_profile_hook (label_no)
949 void hppa_profile_hook (int label_no);
950
951 /* The profile counter if emitted must come before the prologue. */
952 #define PROFILE_BEFORE_PROLOGUE 1
953
954 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
955 the stack pointer does not matter. The value is tested only in
956 functions that have frame pointers.
957 No definition is equivalent to always zero. */
958
959 extern int may_call_alloca;
960
961 #define EXIT_IGNORE_STACK \
962 (get_frame_size () != 0 \
963 || current_function_calls_alloca || current_function_outgoing_args_size)
964
965 /* Output assembler code for a block containing the constant parts
966 of a trampoline, leaving space for the variable parts.\
967
968 The trampoline sets the static chain pointer to STATIC_CHAIN_REGNUM
969 and then branches to the specified routine.
970
971 This code template is copied from text segment to stack location
972 and then patched with INITIALIZE_TRAMPOLINE to contain
973 valid values, and then entered as a subroutine.
974
975 It is best to keep this as small as possible to avoid having to
976 flush multiple lines in the cache. */
977
978 #define TRAMPOLINE_TEMPLATE(FILE) \
979 { \
980 if (!TARGET_64BIT) \
981 { \
982 fputs ("\tldw 36(%r22),%r21\n", FILE); \
983 fputs ("\tbb,>=,n %r21,30,.+16\n", FILE); \
984 if (ASSEMBLER_DIALECT == 0) \
985 fputs ("\tdepi 0,31,2,%r21\n", FILE); \
986 else \
987 fputs ("\tdepwi 0,31,2,%r21\n", FILE); \
988 fputs ("\tldw 4(%r21),%r19\n", FILE); \
989 fputs ("\tldw 0(%r21),%r21\n", FILE); \
990 if (TARGET_PA_20) \
991 { \
992 fputs ("\tbve (%r21)\n", FILE); \
993 fputs ("\tldw 40(%r22),%r29\n", FILE); \
994 fputs ("\t.word 0\n", FILE); \
995 fputs ("\t.word 0\n", FILE); \
996 } \
997 else \
998 { \
999 fputs ("\tldsid (%r21),%r1\n", FILE); \
1000 fputs ("\tmtsp %r1,%sr0\n", FILE); \
1001 fputs ("\tbe 0(%sr0,%r21)\n", FILE); \
1002 fputs ("\tldw 40(%r22),%r29\n", FILE); \
1003 } \
1004 fputs ("\t.word 0\n", FILE); \
1005 fputs ("\t.word 0\n", FILE); \
1006 fputs ("\t.word 0\n", FILE); \
1007 fputs ("\t.word 0\n", FILE); \
1008 } \
1009 else \
1010 { \
1011 fputs ("\t.dword 0\n", FILE); \
1012 fputs ("\t.dword 0\n", FILE); \
1013 fputs ("\t.dword 0\n", FILE); \
1014 fputs ("\t.dword 0\n", FILE); \
1015 fputs ("\tmfia %r31\n", FILE); \
1016 fputs ("\tldd 24(%r31),%r1\n", FILE); \
1017 fputs ("\tldd 24(%r1),%r27\n", FILE); \
1018 fputs ("\tldd 16(%r1),%r1\n", FILE); \
1019 fputs ("\tbve (%r1)\n", FILE); \
1020 fputs ("\tldd 32(%r31),%r31\n", FILE); \
1021 fputs ("\t.dword 0 ; fptr\n", FILE); \
1022 fputs ("\t.dword 0 ; static link\n", FILE); \
1023 } \
1024 }
1025
1026 /* Length in units of the trampoline for entering a nested function. */
1027
1028 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 72 : 52)
1029
1030 /* Length in units of the trampoline instruction code. */
1031
1032 #define TRAMPOLINE_CODE_SIZE (TARGET_64BIT ? 24 : (TARGET_PA_20 ? 32 : 40))
1033
1034 /* Minimum length of a cache line. A length of 16 will work on all
1035 PA-RISC processors. All PA 1.1 processors have a cache line of
1036 32 bytes. Most but not all PA 2.0 processors have a cache line
1037 of 64 bytes. As cache flushes are expensive and we don't support
1038 PA 1.0, we use a minimum length of 32. */
1039
1040 #define MIN_CACHELINE_SIZE 32
1041
1042 /* Emit RTL insns to initialize the variable parts of a trampoline.
1043 FNADDR is an RTX for the address of the function's pure code.
1044 CXT is an RTX for the static chain value for the function.
1045
1046 Move the function address to the trampoline template at offset 36.
1047 Move the static chain value to trampoline template at offset 40.
1048 Move the trampoline address to trampoline template at offset 44.
1049 Move r19 to trampoline template at offset 48. The latter two
1050 words create a plabel for the indirect call to the trampoline.
1051
1052 A similar sequence is used for the 64-bit port but the plabel is
1053 at the beginning of the trampoline.
1054
1055 Finally, the cache entries for the trampoline code are flushed.
1056 This is necessary to ensure that the trampoline instruction sequence
1057 is written to memory prior to any attempts at prefetching the code
1058 sequence. */
1059
1060 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1061 { \
1062 rtx start_addr = gen_reg_rtx (Pmode); \
1063 rtx end_addr = gen_reg_rtx (Pmode); \
1064 rtx line_length = gen_reg_rtx (Pmode); \
1065 rtx tmp; \
1066 \
1067 if (!TARGET_64BIT) \
1068 { \
1069 tmp = memory_address (Pmode, plus_constant ((TRAMP), 36)); \
1070 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (FNADDR)); \
1071 tmp = memory_address (Pmode, plus_constant ((TRAMP), 40)); \
1072 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (CXT)); \
1073 \
1074 /* Create a fat pointer for the trampoline. */ \
1075 tmp = memory_address (Pmode, plus_constant ((TRAMP), 44)); \
1076 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (TRAMP)); \
1077 tmp = memory_address (Pmode, plus_constant ((TRAMP), 48)); \
1078 emit_move_insn (gen_rtx_MEM (Pmode, tmp), \
1079 gen_rtx_REG (Pmode, 19)); \
1080 \
1081 /* fdc and fic only use registers for the address to flush, \
1082 they do not accept integer displacements. We align the \
1083 start and end addresses to the beginning of their respective \
1084 cache lines to minimize the number of lines flushed. */ \
1085 tmp = force_reg (Pmode, (TRAMP)); \
1086 emit_insn (gen_andsi3 (start_addr, tmp, \
1087 GEN_INT (-MIN_CACHELINE_SIZE))); \
1088 tmp = force_reg (Pmode, \
1089 plus_constant (tmp, TRAMPOLINE_CODE_SIZE - 1)); \
1090 emit_insn (gen_andsi3 (end_addr, tmp, \
1091 GEN_INT (-MIN_CACHELINE_SIZE))); \
1092 emit_move_insn (line_length, GEN_INT (MIN_CACHELINE_SIZE)); \
1093 emit_insn (gen_dcacheflush (start_addr, end_addr, line_length)); \
1094 emit_insn (gen_icacheflush (start_addr, end_addr, line_length, \
1095 gen_reg_rtx (Pmode), \
1096 gen_reg_rtx (Pmode))); \
1097 } \
1098 else \
1099 { \
1100 tmp = memory_address (Pmode, plus_constant ((TRAMP), 56)); \
1101 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (FNADDR)); \
1102 tmp = memory_address (Pmode, plus_constant ((TRAMP), 64)); \
1103 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (CXT)); \
1104 \
1105 /* Create a fat pointer for the trampoline. */ \
1106 tmp = memory_address (Pmode, plus_constant ((TRAMP), 16)); \
1107 emit_move_insn (gen_rtx_MEM (Pmode, tmp), \
1108 force_reg (Pmode, plus_constant ((TRAMP), 32))); \
1109 tmp = memory_address (Pmode, plus_constant ((TRAMP), 24)); \
1110 emit_move_insn (gen_rtx_MEM (Pmode, tmp), \
1111 gen_rtx_REG (Pmode, 27)); \
1112 \
1113 /* fdc and fic only use registers for the address to flush, \
1114 they do not accept integer displacements. We align the \
1115 start and end addresses to the beginning of their respective \
1116 cache lines to minimize the number of lines flushed. */ \
1117 tmp = force_reg (Pmode, plus_constant ((TRAMP), 32)); \
1118 emit_insn (gen_anddi3 (start_addr, tmp, \
1119 GEN_INT (-MIN_CACHELINE_SIZE))); \
1120 tmp = force_reg (Pmode, \
1121 plus_constant (tmp, TRAMPOLINE_CODE_SIZE - 1)); \
1122 emit_insn (gen_anddi3 (end_addr, tmp, \
1123 GEN_INT (-MIN_CACHELINE_SIZE))); \
1124 emit_move_insn (line_length, GEN_INT (MIN_CACHELINE_SIZE)); \
1125 emit_insn (gen_dcacheflush (start_addr, end_addr, line_length)); \
1126 emit_insn (gen_icacheflush (start_addr, end_addr, line_length, \
1127 gen_reg_rtx (Pmode), \
1128 gen_reg_rtx (Pmode))); \
1129 } \
1130 }
1131
1132 /* Perform any machine-specific adjustment in the address of the trampoline.
1133 ADDR contains the address that was passed to INITIALIZE_TRAMPOLINE.
1134 Adjust the trampoline address to point to the plabel at offset 44. */
1135
1136 #define TRAMPOLINE_ADJUST_ADDRESS(ADDR) \
1137 if (!TARGET_64BIT) (ADDR) = memory_address (Pmode, plus_constant ((ADDR), 46))
1138
1139 /* Implement `va_start' for varargs and stdarg. */
1140
1141 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1142 hppa_va_start (valist, nextarg)
1143
1144 /* Implement `va_arg'. */
1145
1146 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1147 hppa_va_arg (valist, type)
1148 \f
1149 /* Addressing modes, and classification of registers for them.
1150
1151 Using autoincrement addressing modes on PA8000 class machines is
1152 not profitable. */
1153
1154 #define HAVE_POST_INCREMENT (pa_cpu < PROCESSOR_8000)
1155 #define HAVE_POST_DECREMENT (pa_cpu < PROCESSOR_8000)
1156
1157 #define HAVE_PRE_DECREMENT (pa_cpu < PROCESSOR_8000)
1158 #define HAVE_PRE_INCREMENT (pa_cpu < PROCESSOR_8000)
1159
1160 /* Macros to check register numbers against specific register classes. */
1161
1162 /* These assume that REGNO is a hard or pseudo reg number.
1163 They give nonzero only if REGNO is a hard reg of the suitable class
1164 or a pseudo reg currently allocated to a suitable hard reg.
1165 Since they use reg_renumber, they are safe only once reg_renumber
1166 has been allocated, which happens in local-alloc.c. */
1167
1168 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1169 ((REGNO) && ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
1170 #define REGNO_OK_FOR_BASE_P(REGNO) \
1171 ((REGNO) && ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
1172 #define REGNO_OK_FOR_FP_P(REGNO) \
1173 (FP_REGNO_P (REGNO) || FP_REGNO_P (reg_renumber[REGNO]))
1174
1175 /* Now macros that check whether X is a register and also,
1176 strictly, whether it is in a specified class.
1177
1178 These macros are specific to the HP-PA, and may be used only
1179 in code for printing assembler insns and in conditions for
1180 define_optimization. */
1181
1182 /* 1 if X is an fp register. */
1183
1184 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1185 \f
1186 /* Maximum number of registers that can appear in a valid memory address. */
1187
1188 #define MAX_REGS_PER_ADDRESS 2
1189
1190 /* Recognize any constant value that is a valid address except
1191 for symbolic addresses. We get better CSE by rejecting them
1192 here and allowing hppa_legitimize_address to break them up. We
1193 use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE. */
1194
1195 #define CONSTANT_ADDRESS_P(X) \
1196 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1197 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1198 || GET_CODE (X) == HIGH) \
1199 && (reload_in_progress || reload_completed || ! symbolic_expression_p (X)))
1200
1201 /* A C expression that is nonzero if we are using the new HP assembler. */
1202
1203 #ifndef NEW_HP_ASSEMBLER
1204 #define NEW_HP_ASSEMBLER 0
1205 #endif
1206
1207 /* The macros below define the immediate range for CONST_INTS on
1208 the 64-bit port. Constants in this range can be loaded in three
1209 instructions using a ldil/ldo/depdi sequence. Constants outside
1210 this range are forced to the constant pool prior to reload. */
1211
1212 #define MAX_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) 32 << 31)
1213 #define MIN_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) -32 << 31)
1214 #define LEGITIMATE_64BIT_CONST_INT_P(X) \
1215 ((X) >= MIN_LEGIT_64BIT_CONST_INT && (X) < MAX_LEGIT_64BIT_CONST_INT)
1216
1217 /* A C expression that is nonzero if X is a legitimate constant for an
1218 immediate operand.
1219
1220 We include all constant integers and constant doubles, but not
1221 floating-point, except for floating-point zero. We reject LABEL_REFs
1222 if we're not using gas or the new HP assembler.
1223
1224 In 64-bit mode, we reject CONST_DOUBLES. We also reject CONST_INTS
1225 that need more than three instructions to load prior to reload. This
1226 limit is somewhat arbitrary. It takes three instructions to load a
1227 CONST_INT from memory but two are memory accesses. It may be better
1228 to increase the allowed range for CONST_INTS. We may also be able
1229 to handle CONST_DOUBLES. */
1230
1231 #define LEGITIMATE_CONSTANT_P(X) \
1232 ((GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1233 || (X) == CONST0_RTX (GET_MODE (X))) \
1234 && (NEW_HP_ASSEMBLER || TARGET_GAS || GET_CODE (X) != LABEL_REF) \
1235 && !(TARGET_64BIT && GET_CODE (X) == CONST_DOUBLE) \
1236 && !(TARGET_64BIT && GET_CODE (X) == CONST_INT \
1237 && !(HOST_BITS_PER_WIDE_INT <= 32 \
1238 || (reload_in_progress || reload_completed) \
1239 || LEGITIMATE_64BIT_CONST_INT_P (INTVAL (X)) \
1240 || cint_ok_for_move (INTVAL (X)))) \
1241 && !function_label_operand (X, VOIDmode))
1242
1243 /* Subroutines for EXTRA_CONSTRAINT.
1244
1245 Return 1 iff OP is a pseudo which did not get a hard register and
1246 we are running the reload pass. */
1247 #define IS_RELOADING_PSEUDO_P(OP) \
1248 ((reload_in_progress \
1249 && GET_CODE (OP) == REG \
1250 && REGNO (OP) >= FIRST_PSEUDO_REGISTER \
1251 && reg_renumber [REGNO (OP)] < 0))
1252
1253 /* Return 1 iff OP is a scaled or unscaled index address. */
1254 #define IS_INDEX_ADDR_P(OP) \
1255 (GET_CODE (OP) == PLUS \
1256 && GET_MODE (OP) == Pmode \
1257 && (GET_CODE (XEXP (OP, 0)) == MULT \
1258 || GET_CODE (XEXP (OP, 1)) == MULT \
1259 || (REG_P (XEXP (OP, 0)) \
1260 && REG_P (XEXP (OP, 1)))))
1261
1262 /* Return 1 iff OP is a LO_SUM DLT address. */
1263 #define IS_LO_SUM_DLT_ADDR_P(OP) \
1264 (GET_CODE (OP) == LO_SUM \
1265 && GET_MODE (OP) == Pmode \
1266 && REG_P (XEXP (OP, 0)) \
1267 && REG_OK_FOR_BASE_P (XEXP (OP, 0)) \
1268 && GET_CODE (XEXP (OP, 1)) == UNSPEC)
1269
1270 /* Optional extra constraints for this machine. Borrowed from sparc.h.
1271
1272 `A' is a LO_SUM DLT memory operand.
1273
1274 `Q' is any memory operand that isn't a symbolic, indexed or lo_sum
1275 memory operand. Note that an unassigned pseudo register is such a
1276 memory operand. Needed because reload will generate these things
1277 and then not re-recognize the insn, causing constrain_operands to
1278 fail.
1279
1280 `R' is a scaled/unscaled indexed memory operand.
1281
1282 `S' is the constant 31.
1283
1284 `T' is for floating-point loads and stores.
1285
1286 `U' is the constant 63. */
1287
1288 #define EXTRA_CONSTRAINT(OP, C) \
1289 ((C) == 'Q' ? \
1290 (IS_RELOADING_PSEUDO_P (OP) \
1291 || (GET_CODE (OP) == MEM \
1292 && (reload_in_progress \
1293 || memory_address_p (GET_MODE (OP), XEXP (OP, 0))) \
1294 && !symbolic_memory_operand (OP, VOIDmode) \
1295 && !IS_LO_SUM_DLT_ADDR_P (XEXP (OP, 0)) \
1296 && !IS_INDEX_ADDR_P (XEXP (OP, 0)))) \
1297 : ((C) == 'A' ? \
1298 (GET_CODE (OP) == MEM \
1299 && IS_LO_SUM_DLT_ADDR_P (XEXP (OP, 0))) \
1300 : ((C) == 'R' ? \
1301 (GET_CODE (OP) == MEM \
1302 && IS_INDEX_ADDR_P (XEXP (OP, 0))) \
1303 : ((C) == 'T' ? \
1304 (GET_CODE (OP) == MEM \
1305 && !IS_LO_SUM_DLT_ADDR_P (XEXP (OP, 0)) \
1306 && !IS_INDEX_ADDR_P (XEXP (OP, 0)) \
1307 /* Floating-point loads and stores are used to load \
1308 integer values as well as floating-point values. \
1309 They don't have the same set of REG+D address modes \
1310 as integer loads and stores. PA 1.x supports only \
1311 short displacements. PA 2.0 supports long displacements \
1312 but the base register needs to be aligned. \
1313 \
1314 The checks in GO_IF_LEGITIMATE_ADDRESS for SFmode and \
1315 DFmode test the validity of an address for use in a \
1316 floating point load or store. So, we use SFmode/DFmode \
1317 to see if the address is valid for a floating-point \
1318 load/store operation. */ \
1319 && memory_address_p ((GET_MODE_SIZE (GET_MODE (OP)) == 4 \
1320 ? SFmode \
1321 : DFmode), \
1322 XEXP (OP, 0))) \
1323 : ((C) == 'S' ? \
1324 (GET_CODE (OP) == CONST_INT && INTVAL (OP) == 31) \
1325 : ((C) == 'U' ? \
1326 (GET_CODE (OP) == CONST_INT && INTVAL (OP) == 63) : 0))))))
1327
1328
1329 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1330 and check its validity for a certain class.
1331 We have two alternate definitions for each of them.
1332 The usual definition accepts all pseudo regs; the other rejects
1333 them unless they have been allocated suitable hard regs.
1334 The symbol REG_OK_STRICT causes the latter definition to be used.
1335
1336 Most source files want to accept pseudo regs in the hope that
1337 they will get allocated to the class that the insn wants them to be in.
1338 Source files for reload pass need to be strict.
1339 After reload, it makes no difference, since pseudo regs have
1340 been eliminated by then. */
1341
1342 #ifndef REG_OK_STRICT
1343
1344 /* Nonzero if X is a hard reg that can be used as an index
1345 or if it is a pseudo reg. */
1346 #define REG_OK_FOR_INDEX_P(X) \
1347 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1348 /* Nonzero if X is a hard reg that can be used as a base reg
1349 or if it is a pseudo reg. */
1350 #define REG_OK_FOR_BASE_P(X) \
1351 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1352
1353 #else
1354
1355 /* Nonzero if X is a hard reg that can be used as an index. */
1356 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1357 /* Nonzero if X is a hard reg that can be used as a base reg. */
1358 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1359
1360 #endif
1361 \f
1362 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
1363 valid memory address for an instruction. The MODE argument is the
1364 machine mode for the MEM expression that wants to use this address.
1365
1366 On HP PA-RISC, the legitimate address forms are REG+SMALLINT,
1367 REG+REG, and REG+(REG*SCALE). The indexed address forms are only
1368 available with floating point loads and stores, and integer loads.
1369 We get better code by allowing indexed addresses in the initial
1370 RTL generation.
1371
1372 The acceptance of indexed addresses as legitimate implies that we
1373 must provide patterns for doing indexed integer stores, or the move
1374 expanders must force the address of an indexed store to a register.
1375 We have adopted the latter approach.
1376
1377 Another function of GO_IF_LEGITIMATE_ADDRESS is to ensure that
1378 the base register is a valid pointer for indexed instructions.
1379 On targets that have non-equivalent space registers, we have to
1380 know at the time of assembler output which register in a REG+REG
1381 pair is the base register. The REG_POINTER flag is sometimes lost
1382 in reload and the following passes, so it can't be relied on during
1383 code generation. Thus, we either have to canonicalize the order
1384 of the registers in REG+REG indexed addresses, or treat REG+REG
1385 addresses separately and provide patterns for both permutations.
1386
1387 The latter approach requires several hundred additional lines of
1388 code in pa.md. The downside to canonicalizing is that a PLUS
1389 in the wrong order can't combine to form to make a scaled indexed
1390 memory operand. As we won't need to canonicalize the operands if
1391 the REG_POINTER lossage can be fixed, it seems better canonicalize.
1392
1393 We initially break out scaled indexed addresses in canonical order
1394 in emit_move_sequence. LEGITIMIZE_ADDRESS also canonicalizes
1395 scaled indexed addresses during RTL generation. However, fold_rtx
1396 has its own opinion on how the operands of a PLUS should be ordered.
1397 If one of the operands is equivalent to a constant, it will make
1398 that operand the second operand. As the base register is likely to
1399 be equivalent to a SYMBOL_REF, we have made it the second operand.
1400
1401 GO_IF_LEGITIMATE_ADDRESS accepts REG+REG as legitimate when the
1402 operands are in the order INDEX+BASE on targets with non-equivalent
1403 space registers, and in any order on targets with equivalent space
1404 registers. It accepts both MULT+BASE and BASE+MULT for scaled indexing.
1405
1406 We treat a SYMBOL_REF as legitimate if it is part of the current
1407 function's constant-pool, because such addresses can actually be
1408 output as REG+SMALLINT.
1409
1410 Note we only allow 5 bit immediates for access to a constant address;
1411 doing so avoids losing for loading/storing a FP register at an address
1412 which will not fit in 5 bits. */
1413
1414 #define VAL_5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x10 < 0x20)
1415 #define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
1416
1417 #define VAL_U5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x20)
1418 #define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
1419
1420 #define VAL_11_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x400 < 0x800)
1421 #define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
1422
1423 #define VAL_14_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x2000 < 0x4000)
1424 #define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
1425
1426 #if HOST_BITS_PER_WIDE_INT > 32
1427 #define VAL_32_BITS_P(X) \
1428 ((unsigned HOST_WIDE_INT)(X) + ((unsigned HOST_WIDE_INT) 1 << 31) \
1429 < (unsigned HOST_WIDE_INT) 2 << 31)
1430 #else
1431 #define VAL_32_BITS_P(X) 1
1432 #endif
1433 #define INT_32_BITS(X) VAL_32_BITS_P (INTVAL (X))
1434
1435 /* These are the modes that we allow for scaled indexing. */
1436 #define MODE_OK_FOR_SCALED_INDEXING_P(MODE) \
1437 ((TARGET_64BIT && (MODE) == DImode) \
1438 || (MODE) == SImode \
1439 || (MODE) == HImode \
1440 || (!TARGET_SOFT_FLOAT && ((MODE) == DFmode || (MODE) == SFmode)))
1441
1442 /* These are the modes that we allow for unscaled indexing. */
1443 #define MODE_OK_FOR_UNSCALED_INDEXING_P(MODE) \
1444 ((TARGET_64BIT && (MODE) == DImode) \
1445 || (MODE) == SImode \
1446 || (MODE) == HImode \
1447 || (MODE) == QImode \
1448 || (!TARGET_SOFT_FLOAT && ((MODE) == DFmode || (MODE) == SFmode)))
1449
1450 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1451 { \
1452 if ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1453 || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC \
1454 || GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC) \
1455 && REG_P (XEXP (X, 0)) \
1456 && REG_OK_FOR_BASE_P (XEXP (X, 0)))) \
1457 goto ADDR; \
1458 else if (GET_CODE (X) == PLUS) \
1459 { \
1460 rtx base = 0, index = 0; \
1461 if (REG_P (XEXP (X, 1)) \
1462 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
1463 base = XEXP (X, 1), index = XEXP (X, 0); \
1464 else if (REG_P (XEXP (X, 0)) \
1465 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
1466 base = XEXP (X, 0), index = XEXP (X, 1); \
1467 if (base \
1468 && GET_CODE (index) == CONST_INT \
1469 && ((INT_14_BITS (index) \
1470 && (((MODE) != DImode \
1471 && (MODE) != SFmode \
1472 && (MODE) != DFmode) \
1473 /* The base register for DImode loads and stores \
1474 with long displacements must be aligned because \
1475 the lower three bits in the displacement are \
1476 assumed to be zero. */ \
1477 || ((MODE) == DImode \
1478 && (!TARGET_64BIT \
1479 || (INTVAL (index) % 8) == 0)) \
1480 /* Similarly, the base register for SFmode/DFmode \
1481 loads and stores with long displacements must \
1482 be aligned. \
1483 \
1484 FIXME: the ELF32 linker clobbers the LSB of \
1485 the FP register number in PA 2.0 floating-point \
1486 insns with long displacements. This is because \
1487 R_PARISC_DPREL14WR and other relocations like \
1488 it are not supported. For now, we reject long \
1489 displacements on this target. */ \
1490 || (((MODE) == SFmode || (MODE) == DFmode) \
1491 && (TARGET_SOFT_FLOAT \
1492 || (TARGET_PA_20 \
1493 && !TARGET_ELF32 \
1494 && (INTVAL (index) \
1495 % GET_MODE_SIZE (MODE)) == 0))))) \
1496 || INT_5_BITS (index))) \
1497 goto ADDR; \
1498 if (!TARGET_DISABLE_INDEXING \
1499 /* Only accept the "canonical" INDEX+BASE operand order \
1500 on targets with non-equivalent space registers. */ \
1501 && (TARGET_NO_SPACE_REGS \
1502 ? (base && REG_P (index)) \
1503 : (base == XEXP (X, 1) && REG_P (index) \
1504 && REG_POINTER (base) && !REG_POINTER (index))) \
1505 && MODE_OK_FOR_UNSCALED_INDEXING_P (MODE) \
1506 && REG_OK_FOR_INDEX_P (index) \
1507 && borx_reg_operand (base, Pmode) \
1508 && borx_reg_operand (index, Pmode)) \
1509 goto ADDR; \
1510 if (!TARGET_DISABLE_INDEXING \
1511 && base \
1512 && GET_CODE (index) == MULT \
1513 && MODE_OK_FOR_SCALED_INDEXING_P (MODE) \
1514 && REG_P (XEXP (index, 0)) \
1515 && GET_MODE (XEXP (index, 0)) == Pmode \
1516 && REG_OK_FOR_INDEX_P (XEXP (index, 0)) \
1517 && GET_CODE (XEXP (index, 1)) == CONST_INT \
1518 && INTVAL (XEXP (index, 1)) \
1519 == (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \
1520 && borx_reg_operand (base, Pmode)) \
1521 goto ADDR; \
1522 } \
1523 else if (GET_CODE (X) == LO_SUM \
1524 && GET_CODE (XEXP (X, 0)) == REG \
1525 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1526 && CONSTANT_P (XEXP (X, 1)) \
1527 && (TARGET_SOFT_FLOAT \
1528 /* We can allow symbolic LO_SUM addresses for PA2.0. */ \
1529 || (TARGET_PA_20 \
1530 && !TARGET_ELF32 \
1531 && GET_CODE (XEXP (X, 1)) != CONST_INT) \
1532 || ((MODE) != SFmode \
1533 && (MODE) != DFmode))) \
1534 goto ADDR; \
1535 else if (GET_CODE (X) == LO_SUM \
1536 && GET_CODE (XEXP (X, 0)) == SUBREG \
1537 && GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG \
1538 && REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0))) \
1539 && CONSTANT_P (XEXP (X, 1)) \
1540 && (TARGET_SOFT_FLOAT \
1541 /* We can allow symbolic LO_SUM addresses for PA2.0. */ \
1542 || (TARGET_PA_20 \
1543 && !TARGET_ELF32 \
1544 && GET_CODE (XEXP (X, 1)) != CONST_INT) \
1545 || ((MODE) != SFmode \
1546 && (MODE) != DFmode))) \
1547 goto ADDR; \
1548 else if (GET_CODE (X) == LABEL_REF \
1549 || (GET_CODE (X) == CONST_INT \
1550 && INT_5_BITS (X))) \
1551 goto ADDR; \
1552 /* Needed for -fPIC */ \
1553 else if (GET_CODE (X) == LO_SUM \
1554 && GET_CODE (XEXP (X, 0)) == REG \
1555 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1556 && GET_CODE (XEXP (X, 1)) == UNSPEC \
1557 && (TARGET_SOFT_FLOAT \
1558 || (TARGET_PA_20 && !TARGET_ELF32) \
1559 || ((MODE) != SFmode \
1560 && (MODE) != DFmode))) \
1561 goto ADDR; \
1562 }
1563
1564 /* Look for machine dependent ways to make the invalid address AD a
1565 valid address.
1566
1567 For the PA, transform:
1568
1569 memory(X + <large int>)
1570
1571 into:
1572
1573 if (<large int> & mask) >= 16
1574 Y = (<large int> & ~mask) + mask + 1 Round up.
1575 else
1576 Y = (<large int> & ~mask) Round down.
1577 Z = X + Y
1578 memory (Z + (<large int> - Y));
1579
1580 This makes reload inheritance and reload_cse work better since Z
1581 can be reused.
1582
1583 There may be more opportunities to improve code with this hook. */
1584 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
1585 do { \
1586 long offset, newoffset, mask; \
1587 rtx new, temp = NULL_RTX; \
1588 \
1589 mask = (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1590 ? (TARGET_PA_20 && !TARGET_ELF32 ? 0x3fff : 0x1f) : 0x3fff); \
1591 \
1592 if (optimize && GET_CODE (AD) == PLUS) \
1593 temp = simplify_binary_operation (PLUS, Pmode, \
1594 XEXP (AD, 0), XEXP (AD, 1)); \
1595 \
1596 new = temp ? temp : AD; \
1597 \
1598 if (optimize \
1599 && GET_CODE (new) == PLUS \
1600 && GET_CODE (XEXP (new, 0)) == REG \
1601 && GET_CODE (XEXP (new, 1)) == CONST_INT) \
1602 { \
1603 offset = INTVAL (XEXP ((new), 1)); \
1604 \
1605 /* Choose rounding direction. Round up if we are >= halfway. */ \
1606 if ((offset & mask) >= ((mask + 1) / 2)) \
1607 newoffset = (offset & ~mask) + mask + 1; \
1608 else \
1609 newoffset = offset & ~mask; \
1610 \
1611 /* Ensure that long displacements are aligned. */ \
1612 if (!VAL_5_BITS_P (newoffset) \
1613 && GET_MODE_CLASS (MODE) == MODE_FLOAT) \
1614 newoffset &= ~(GET_MODE_SIZE (MODE) -1); \
1615 \
1616 if (newoffset != 0 && VAL_14_BITS_P (newoffset)) \
1617 { \
1618 temp = gen_rtx_PLUS (Pmode, XEXP (new, 0), \
1619 GEN_INT (newoffset)); \
1620 AD = gen_rtx_PLUS (Pmode, temp, GEN_INT (offset - newoffset));\
1621 push_reload (XEXP (AD, 0), 0, &XEXP (AD, 0), 0, \
1622 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, \
1623 (OPNUM), (TYPE)); \
1624 goto WIN; \
1625 } \
1626 } \
1627 } while (0)
1628
1629
1630
1631 \f
1632 /* Try machine-dependent ways of modifying an illegitimate address
1633 to be legitimate. If we find one, return the new, valid address.
1634 This macro is used in only one place: `memory_address' in explow.c.
1635
1636 OLDX is the address as it was before break_out_memory_refs was called.
1637 In some cases it is useful to look at this to decide what needs to be done.
1638
1639 MODE and WIN are passed so that this macro can use
1640 GO_IF_LEGITIMATE_ADDRESS.
1641
1642 It is always safe for this macro to do nothing. It exists to recognize
1643 opportunities to optimize the output. */
1644
1645 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1646 { rtx orig_x = (X); \
1647 (X) = hppa_legitimize_address (X, OLDX, MODE); \
1648 if ((X) != orig_x && memory_address_p (MODE, X)) \
1649 goto WIN; }
1650
1651 /* Go to LABEL if ADDR (a legitimate address expression)
1652 has an effect that depends on the machine mode it is used for. */
1653
1654 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1655 if (GET_CODE (ADDR) == PRE_DEC \
1656 || GET_CODE (ADDR) == POST_DEC \
1657 || GET_CODE (ADDR) == PRE_INC \
1658 || GET_CODE (ADDR) == POST_INC) \
1659 goto LABEL
1660 \f
1661 #define TARGET_ASM_SELECT_SECTION pa_select_section
1662
1663 /* Return a nonzero value if DECL has a section attribute. */
1664 #define IN_NAMED_SECTION_P(DECL) \
1665 ((TREE_CODE (DECL) == FUNCTION_DECL || TREE_CODE (DECL) == VAR_DECL) \
1666 && DECL_SECTION_NAME (DECL) != NULL_TREE)
1667
1668 /* Define this macro if references to a symbol must be treated
1669 differently depending on something about the variable or
1670 function named by the symbol (such as what section it is in).
1671
1672 The macro definition, if any, is executed immediately after the
1673 rtl for DECL or other node is created.
1674 The value of the rtl will be a `mem' whose address is a
1675 `symbol_ref'.
1676
1677 The usual thing for this macro to do is to a flag in the
1678 `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
1679 name string in the `symbol_ref' (if one bit is not enough
1680 information).
1681
1682 On the HP-PA we use this to indicate if a symbol is in text or
1683 data space. Also, function labels need special treatment. */
1684
1685 #define TEXT_SPACE_P(DECL)\
1686 (TREE_CODE (DECL) == FUNCTION_DECL \
1687 || (TREE_CODE (DECL) == VAR_DECL \
1688 && TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL) \
1689 && (! DECL_INITIAL (DECL) || ! reloc_needed (DECL_INITIAL (DECL))) \
1690 && !flag_pic) \
1691 || (TREE_CODE_CLASS (TREE_CODE (DECL)) == 'c'))
1692
1693 #define FUNCTION_NAME_P(NAME) (*(NAME) == '@')
1694
1695 /* Specify the machine mode that this machine uses for the index in the
1696 tablejump instruction. For small tables, an element consists of a
1697 ia-relative branch and its delay slot. When -mbig-switch is specified,
1698 we use a 32-bit absolute address for non-pic code, and a 32-bit offset
1699 for both 32 and 64-bit pic code. */
1700 #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : DImode)
1701
1702 /* Jump tables must be 32-bit aligned, no matter the size of the element. */
1703 #define ADDR_VEC_ALIGN(ADDR_VEC) 2
1704
1705 /* Define this as 1 if `char' should by default be signed; else as 0. */
1706 #define DEFAULT_SIGNED_CHAR 1
1707
1708 /* Max number of bytes we can move from memory to memory
1709 in one reasonably fast instruction. */
1710 #define MOVE_MAX 8
1711
1712 /* Higher than the default as we prefer to use simple move insns
1713 (better scheduling and delay slot filling) and because our
1714 built-in block move is really a 2X unrolled loop.
1715
1716 Believe it or not, this has to be big enough to allow for copying all
1717 arguments passed in registers to avoid infinite recursion during argument
1718 setup for a function call. Why? Consider how we copy the stack slots
1719 reserved for parameters when they may be trashed by a call. */
1720 #define MOVE_RATIO (TARGET_64BIT ? 8 : 4)
1721
1722 /* Define if operations between registers always perform the operation
1723 on the full register even if a narrower mode is specified. */
1724 #define WORD_REGISTER_OPERATIONS
1725
1726 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1727 will either zero-extend or sign-extend. The value of this macro should
1728 be the code that says which one of the two operations is implicitly
1729 done, NIL if none. */
1730 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1731
1732 /* Nonzero if access to memory by bytes is slow and undesirable. */
1733 #define SLOW_BYTE_ACCESS 1
1734
1735 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1736 is done just by pretending it is already truncated. */
1737 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1738
1739 /* Specify the machine mode that pointers have.
1740 After generation of rtl, the compiler makes no further distinction
1741 between pointers and any other objects of this machine mode. */
1742 #define Pmode word_mode
1743
1744 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1745 return the mode to be used for the comparison. For floating-point, CCFPmode
1746 should be used. CC_NOOVmode should be used when the first operand is a
1747 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1748 needed. */
1749 #define SELECT_CC_MODE(OP,X,Y) \
1750 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode) \
1751
1752 /* A function address in a call instruction
1753 is a byte address (for indexing purposes)
1754 so give the MEM rtx a byte's mode. */
1755 #define FUNCTION_MODE SImode
1756
1757 /* Define this if addresses of constant functions
1758 shouldn't be put through pseudo regs where they can be cse'd.
1759 Desirable on machines where ordinary constants are expensive
1760 but a CALL with constant address is cheap. */
1761 #define NO_FUNCTION_CSE
1762
1763 /* Define this to be nonzero if shift instructions ignore all but the low-order
1764 few bits. */
1765 #define SHIFT_COUNT_TRUNCATED 1
1766
1767 /* Compute extra cost of moving data between one register class
1768 and another.
1769
1770 Make moves from SAR so expensive they should never happen. We used to
1771 have 0xffff here, but that generates overflow in rare cases.
1772
1773 Copies involving a FP register and a non-FP register are relatively
1774 expensive because they must go through memory.
1775
1776 Other copies are reasonably cheap. */
1777 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1778 (CLASS1 == SHIFT_REGS ? 0x100 \
1779 : FP_REG_CLASS_P (CLASS1) && ! FP_REG_CLASS_P (CLASS2) ? 16 \
1780 : FP_REG_CLASS_P (CLASS2) && ! FP_REG_CLASS_P (CLASS1) ? 16 \
1781 : 2)
1782
1783 /* Adjust the cost of branches. */
1784 #define BRANCH_COST (pa_cpu == PROCESSOR_8000 ? 2 : 1)
1785
1786 /* Handling the special cases is going to get too complicated for a macro,
1787 just call `pa_adjust_insn_length' to do the real work. */
1788 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1789 LENGTH += pa_adjust_insn_length (INSN, LENGTH);
1790
1791 /* Millicode insns are actually function calls with some special
1792 constraints on arguments and register usage.
1793
1794 Millicode calls always expect their arguments in the integer argument
1795 registers, and always return their result in %r29 (ret1). They
1796 are expected to clobber their arguments, %r1, %r29, and the return
1797 pointer which is %r31 on 32-bit and %r2 on 64-bit, and nothing else.
1798
1799 This macro tells reorg that the references to arguments and
1800 millicode calls do not appear to happen until after the millicode call.
1801 This allows reorg to put insns which set the argument registers into the
1802 delay slot of the millicode call -- thus they act more like traditional
1803 CALL_INSNs.
1804
1805 Note we can not consider side effects of the insn to be delayed because
1806 the branch and link insn will clobber the return pointer. If we happened
1807 to use the return pointer in the delay slot of the call, then we lose.
1808
1809 get_attr_type will try to recognize the given insn, so make sure to
1810 filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1811 in particular. */
1812 #define INSN_REFERENCES_ARE_DELAYED(X) (insn_refs_are_delayed (X))
1813
1814 \f
1815 /* Control the assembler format that we output. */
1816
1817 /* A C string constant describing how to begin a comment in the target
1818 assembler language. The compiler assumes that the comment will end at
1819 the end of the line. */
1820
1821 #define ASM_COMMENT_START ";"
1822
1823 /* Output to assembler file text saying following lines
1824 may contain character constants, extra white space, comments, etc. */
1825
1826 #define ASM_APP_ON ""
1827
1828 /* Output to assembler file text saying following lines
1829 no longer contain unusual constructs. */
1830
1831 #define ASM_APP_OFF ""
1832
1833 /* This is how to output the definition of a user-level label named NAME,
1834 such as the label on a static function or variable NAME. */
1835
1836 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1837 do { assemble_name (FILE, NAME); \
1838 fputc ('\n', FILE); } while (0)
1839
1840 /* This is how to output a reference to a user-level label named NAME.
1841 `assemble_name' uses this. */
1842
1843 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1844 do { \
1845 const char *xname = (NAME); \
1846 if (FUNCTION_NAME_P (NAME)) \
1847 xname += 1; \
1848 if (xname[0] == '*') \
1849 xname += 1; \
1850 else \
1851 fputs (user_label_prefix, FILE); \
1852 fputs (xname, FILE); \
1853 } while (0)
1854
1855 /* This is how to store into the string LABEL
1856 the symbol_ref name of an internal numbered label where
1857 PREFIX is the class of label and NUM is the number within the class.
1858 This is suitable for output with `assemble_name'. */
1859
1860 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1861 sprintf (LABEL, "*%c$%s%04ld", (PREFIX)[0], (PREFIX) + 1, (long)(NUM))
1862
1863 #define TARGET_ASM_GLOBALIZE_LABEL pa_globalize_label
1864
1865 #define ASM_OUTPUT_ASCII(FILE, P, SIZE) \
1866 output_ascii ((FILE), (P), (SIZE))
1867
1868 /* Jump tables are always placed in the text section. Technically, it
1869 is possible to put them in the readonly data section when -mbig-switch
1870 is specified. This has the benefit of getting the table out of .text
1871 and reducing branch lengths as a result. The downside is that an
1872 additional insn (addil) is needed to access the table when generating
1873 PIC code. The address difference table also has to use 32-bit
1874 pc-relative relocations. Currently, GAS does not support these
1875 relocations, although it is easily modified to do this operation.
1876 The table entries need to look like "$L1+(.+8-$L0)-$PIC_pcrel$0"
1877 when using ELF GAS. A simple difference can be used when using
1878 SOM GAS or the HP assembler. The final downside is GDB complains
1879 about the nesting of the label for the table when debugging. */
1880
1881 #define JUMP_TABLES_IN_TEXT_SECTION 1
1882
1883 /* This is how to output an element of a case-vector that is absolute. */
1884
1885 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1886 if (TARGET_BIG_SWITCH) \
1887 fprintf (FILE, "\t.word L$%04d\n", VALUE); \
1888 else \
1889 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1890
1891 /* This is how to output an element of a case-vector that is relative.
1892 Since we always place jump tables in the text section, the difference
1893 is absolute and requires no relocation. */
1894
1895 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1896 if (TARGET_BIG_SWITCH) \
1897 fprintf (FILE, "\t.word L$%04d-L$%04d\n", VALUE, REL); \
1898 else \
1899 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1900
1901 /* This is how to output an assembler line that says to advance the
1902 location counter to a multiple of 2**LOG bytes. */
1903
1904 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1905 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1906
1907 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1908 fprintf (FILE, "\t.blockz "HOST_WIDE_INT_PRINT_UNSIGNED"\n", \
1909 (unsigned HOST_WIDE_INT)(SIZE))
1910
1911 /* This says how to output an assembler line to define a global common symbol
1912 with size SIZE (in bytes) and alignment ALIGN (in bits). */
1913
1914 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGNED) \
1915 { bss_section (); \
1916 assemble_name ((FILE), (NAME)); \
1917 fprintf ((FILE), "\t.comm "HOST_WIDE_INT_PRINT_UNSIGNED"\n", \
1918 MAX ((unsigned HOST_WIDE_INT)(SIZE), \
1919 ((unsigned HOST_WIDE_INT)(ALIGNED) / BITS_PER_UNIT)));}
1920
1921 /* This says how to output an assembler line to define a local common symbol
1922 with size SIZE (in bytes) and alignment ALIGN (in bits). */
1923
1924 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
1925 { bss_section (); \
1926 fprintf ((FILE), "\t.align %d\n", ((ALIGNED) / BITS_PER_UNIT)); \
1927 assemble_name ((FILE), (NAME)); \
1928 fprintf ((FILE), "\n\t.block "HOST_WIDE_INT_PRINT_UNSIGNED"\n", \
1929 (unsigned HOST_WIDE_INT)(SIZE));}
1930
1931 #define ASM_PN_FORMAT "%s___%lu"
1932
1933 /* All HP assemblers use "!" to separate logical lines. */
1934 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == '!')
1935
1936 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1937 ((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^')
1938
1939 /* Print operand X (an rtx) in assembler syntax to file FILE.
1940 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1941 For `%' followed by punctuation, CODE is the punctuation and X is null.
1942
1943 On the HP-PA, the CODE can be `r', meaning this is a register-only operand
1944 and an immediate zero should be represented as `r0'.
1945
1946 Several % codes are defined:
1947 O an operation
1948 C compare conditions
1949 N extract conditions
1950 M modifier to handle preincrement addressing for memory refs.
1951 F modifier to handle preincrement addressing for fp memory refs */
1952
1953 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1954
1955 \f
1956 /* Print a memory address as an operand to reference that memory location. */
1957
1958 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1959 { register rtx addr = ADDR; \
1960 register rtx base; \
1961 int offset; \
1962 switch (GET_CODE (addr)) \
1963 { \
1964 case REG: \
1965 fprintf (FILE, "0(%s)", reg_names [REGNO (addr)]); \
1966 break; \
1967 case PLUS: \
1968 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
1969 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1); \
1970 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1971 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0); \
1972 else \
1973 abort (); \
1974 fprintf (FILE, "%d(%s)", offset, reg_names [REGNO (base)]); \
1975 break; \
1976 case LO_SUM: \
1977 if (!symbolic_operand (XEXP (addr, 1), VOIDmode)) \
1978 fputs ("R'", FILE); \
1979 else if (flag_pic == 0) \
1980 fputs ("RR'", FILE); \
1981 else \
1982 fputs ("RT'", FILE); \
1983 output_global_address (FILE, XEXP (addr, 1), 0); \
1984 fputs ("(", FILE); \
1985 output_operand (XEXP (addr, 0), 0); \
1986 fputs (")", FILE); \
1987 break; \
1988 case CONST_INT: \
1989 fprintf (FILE, HOST_WIDE_INT_PRINT_DEC "(%%r0)", INTVAL (addr)); \
1990 break; \
1991 default: \
1992 output_addr_const (FILE, addr); \
1993 }}
1994
1995 \f
1996 /* Find the return address associated with the frame given by
1997 FRAMEADDR. */
1998 #define RETURN_ADDR_RTX(COUNT, FRAMEADDR) \
1999 (return_addr_rtx (COUNT, FRAMEADDR))
2000
2001 /* Used to mask out junk bits from the return address, such as
2002 processor state, interrupt status, condition codes and the like. */
2003 #define MASK_RETURN_ADDR \
2004 /* The privilege level is in the two low order bits, mask em out \
2005 of the return address. */ \
2006 (GEN_INT (-4))
2007
2008 /* The number of Pmode words for the setjmp buffer. */
2009 #define JMP_BUF_SIZE 50
2010
2011 #define PREDICATE_CODES \
2012 {"reg_or_0_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2013 {"call_operand_address", {LABEL_REF, SYMBOL_REF, CONST_INT, \
2014 CONST_DOUBLE, CONST, HIGH}}, \
2015 {"indexed_memory_operand", {SUBREG, MEM}}, \
2016 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
2017 {"symbolic_memory_operand", {SUBREG, MEM}}, \
2018 {"reg_before_reload_operand", {REG, MEM}}, \
2019 {"reg_or_0_or_nonsymb_mem_operand", {SUBREG, REG, MEM, CONST_INT, \
2020 CONST_DOUBLE}}, \
2021 {"move_dest_operand", {SUBREG, REG, MEM}}, \
2022 {"move_src_operand", {SUBREG, REG, CONST_INT, MEM}}, \
2023 {"prefetch_operand", {MEM}}, \
2024 {"reg_or_cint_move_operand", {SUBREG, REG, CONST_INT}}, \
2025 {"pic_label_operand", {LABEL_REF, CONST}}, \
2026 {"fp_reg_operand", {REG}}, \
2027 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
2028 {"arith11_operand", {SUBREG, REG, CONST_INT}}, \
2029 {"pre_cint_operand", {CONST_INT}}, \
2030 {"post_cint_operand", {CONST_INT}}, \
2031 {"arith_double_operand", {SUBREG, REG, CONST_DOUBLE}}, \
2032 {"ireg_or_int5_operand", {CONST_INT, REG}}, \
2033 {"int5_operand", {CONST_INT}}, \
2034 {"uint5_operand", {CONST_INT}}, \
2035 {"int11_operand", {CONST_INT}}, \
2036 {"uint32_operand", {CONST_INT, \
2037 HOST_BITS_PER_WIDE_INT > 32 ? 0 : CONST_DOUBLE}}, \
2038 {"arith5_operand", {SUBREG, REG, CONST_INT}}, \
2039 {"and_operand", {SUBREG, REG, CONST_INT}}, \
2040 {"ior_operand", {CONST_INT}}, \
2041 {"lhs_lshift_cint_operand", {CONST_INT}}, \
2042 {"lhs_lshift_operand", {SUBREG, REG, CONST_INT}}, \
2043 {"arith32_operand", {SUBREG, REG, CONST_INT}}, \
2044 {"pc_or_label_operand", {PC, LABEL_REF}}, \
2045 {"plus_xor_ior_operator", {PLUS, XOR, IOR}}, \
2046 {"shadd_operand", {CONST_INT}}, \
2047 {"div_operand", {REG, CONST_INT}}, \
2048 {"ireg_operand", {REG}}, \
2049 {"cmpib_comparison_operator", {EQ, NE, LT, LE, LEU, \
2050 GT, GTU, GE}}, \
2051 {"movb_comparison_operator", {EQ, NE, LT, GE}},
2052
2053 /* We need a libcall to canonicalize function pointers on TARGET_ELF32. */
2054 #define CANONICALIZE_FUNCPTR_FOR_COMPARE_LIBCALL \
2055 "__canonicalize_funcptr_for_compare"
This page took 0.130497 seconds and 5 git commands to generate.