]> gcc.gnu.org Git - gcc.git/blob - gcc/config/pa/pa.h
b6f5b57531ae74164b953fb0e9522ac9bf8e2031
[gcc.git] / gcc / config / pa / pa.h
1 /* Definitions of target machine for GNU compiler, for the HP Spectrum.
2 Copyright (C) 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@mcc.com)
4 and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
5 Software Science at the University of Utah.
6
7 This file is part of GNU CC.
8
9 GNU CC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 1, or (at your option)
12 any later version.
13
14 GNU CC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GNU CC; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 enum cmp_type /* comparison type */
24 {
25 CMP_SI, /* compare integers */
26 CMP_SF, /* compare single precision floats */
27 CMP_DF, /* compare double precision floats */
28 CMP_MAX /* max comparison type */
29 };
30
31 /* For long call handling. */
32 extern unsigned int total_code_bytes;
33
34 /* Which processor to schedule for. */
35
36 enum processor_type
37 {
38 PROCESSOR_700,
39 PROCESSOR_7100,
40 PROCESSOR_7100LC,
41 };
42
43 #define pa_cpu_attr ((enum attr_cpu)pa_cpu)
44
45 /* For -mschedule= option. */
46 extern char *pa_cpu_string;
47 extern enum processor_type pa_cpu;
48
49 /* Print subsidiary information on the compiler version in use. */
50
51 #define TARGET_VERSION fprintf (stderr, " (hppa)");
52
53 /* Run-time compilation parameters selecting different hardware subsets. */
54
55 extern int target_flags;
56
57 /* compile code for HP-PA 1.1 ("Snake") */
58
59 #define TARGET_SNAKE (target_flags & 1)
60
61 /* Disable all FP registers (they all become fixed). This may be necessary
62 for compiling kernels which perform lazy context switching of FP regs.
63 Note if you use this option and try to perform floating point operations
64 the compiler will abort! */
65
66 #define TARGET_DISABLE_FPREGS (target_flags & 2)
67
68 /* Generate code which assumes that calls through function pointers will
69 never cross a space boundary. Such assumptions are generally safe for
70 building kernels and statically linked executables. Code compiled with
71 this option will fail miserably if the executable is dynamically linked
72 or uses nested functions! */
73 #define TARGET_FAST_INDIRECT_CALLS (target_flags & 4)
74
75 /* Allow unconditional jumps in the delay slots of call instructions. */
76 #define TARGET_JUMP_IN_DELAY (target_flags & 8)
77
78 /* In rare cases, a millicode call via "bl" can not be turned into
79 a millicode call using "ble" (when SHLIB_INFO subspace is very large).
80
81 This option forces just millicode calls to use inline long-calls
82 This is far more efficient than the old long-call option which forced
83 every function to be called indirectly (as is still the case for
84 TARGET_PORTABLE_RUNTIME).
85
86 ??? What about simple jumps, they can suffer from the same problem.
87 Would require significant surgery in pa.md. */
88
89 #define TARGET_MILLICODE_LONG_CALLS (target_flags & 16)
90
91 /* Disable indexed addressing modes. */
92
93 #define TARGET_DISABLE_INDEXING (target_flags & 32)
94
95 /* Emit code which follows the new portable runtime calling conventions
96 HP wants everyone to use for ELF objects. If at all possible you want
97 to avoid this since it's a performance loss for non-prototyped code.
98
99 Note TARGET_PORTABLE_RUNTIME also forces all calls to use inline
100 long-call stubs which is quite expensive. */
101
102 #define TARGET_PORTABLE_RUNTIME (target_flags & 64)
103
104 /* Emit directives only understood by GAS. This allows parameter
105 relocations to work for static functions. There is no way
106 to make them work the HP assembler at this time. */
107
108 #define TARGET_GAS (target_flags & 128)
109
110 /* Emit code for processors which do not have an FPU. */
111
112 #define TARGET_SOFT_FLOAT (target_flags & 256)
113
114 /* Macro to define tables used to set the flags.
115 This is a list in braces of pairs in braces,
116 each pair being { "NAME", VALUE }
117 where VALUE is the bits to set or minus the bits to clear.
118 An empty string NAME is used to identify the default VALUE. */
119
120 #define TARGET_SWITCHES \
121 {{"snake", 1}, \
122 {"nosnake", -1}, \
123 {"pa-risc-1-0", -1}, \
124 {"pa-risc-1-1", 1}, \
125 {"disable-fpregs", 2}, \
126 {"no-disable-fpregs", 2}, \
127 {"fast-indirect-calls", 4}, \
128 {"no-fast-indirect-calls", -4},\
129 {"jump-in-delay", 8}, \
130 {"no-jump-in-delay", -8}, \
131 {"millicode-long-calls", 16},\
132 {"no-millicode-long-calls", -16},\
133 {"disable-indexing", 32}, \
134 {"no-disable-indexing", -32},\
135 {"portable-runtime", 64+16},\
136 {"no-portable-runtime", -(64+16)},\
137 {"gas", 128}, \
138 {"no-gas", -128}, \
139 {"soft-float", 256}, \
140 {"no-soft-float", -256}, \
141 { "", TARGET_DEFAULT}}
142
143 #ifndef TARGET_DEFAULT
144 #define TARGET_DEFAULT 0x88 /* TARGET_GAS + TARGET_JUMP_IN_DELAY */
145 #endif
146
147 #define TARGET_OPTIONS \
148 { \
149 { "schedule=", &pa_cpu_string }\
150 }
151
152 #define OVERRIDE_OPTIONS override_options ()
153
154 #define DBX_DEBUGGING_INFO
155 #define DEFAULT_GDB_EXTENSIONS 1
156
157 /* This is the way other stabs-in-XXX tools do things. We will be
158 compatable. */
159 #define DBX_BLOCKS_FUNCTION_RELATIVE 1
160
161 /* Likewise for linenos.
162
163 We make the first line stab special to avoid adding several
164 gross hacks to GAS. */
165 #undef ASM_OUTPUT_SOURCE_LINE
166 #define ASM_OUTPUT_SOURCE_LINE(file, line) \
167 { static int sym_lineno = 1; \
168 static tree last_function_decl = NULL; \
169 if (current_function_decl == last_function_decl) \
170 fprintf (file, "\t.stabn 68,0,%d,L$M%d-%s\nL$M%d:\n", \
171 line, sym_lineno, \
172 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0) + 1, \
173 sym_lineno); \
174 else \
175 fprintf (file, "\t.stabn 68,0,%d,0\n", line); \
176 last_function_decl = current_function_decl; \
177 sym_lineno += 1; }
178
179 /* But, to make this work, we have to output the stabs for the function
180 name *first*... */
181 #define DBX_FUNCTION_FIRST
182
183 /* Only lables should ever begin in colunm zero. */
184 #define ASM_STABS_OP "\t.stabs"
185 #define ASM_STABN_OP "\t.stabn"
186
187 /* GDB always assumes the current function's frame begins at the value
188 of the stack pointer upon entry to the current function. Accessing
189 local variables and parameters passed on the stack is done using the
190 base of the frame + an offset provided by GCC.
191
192 For functions which have frame pointers this method works fine;
193 the (frame pointer) == (stack pointer at function entry) and GCC provides
194 an offset relative to the frame pointer.
195
196 This loses for functions without a frame pointer; GCC provides an offset
197 which is relative to the stack pointer after adjusting for the function's
198 frame size. GDB would prefer the offset to be relative to the value of
199 the stack pointer at the function's entry. Yuk! */
200 #define DEBUGGER_AUTO_OFFSET(X) \
201 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
202 + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
203
204 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
205 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
206 + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
207
208 /* gdb needs a null N_SO at the end of each file for scattered loading. */
209
210 #undef DBX_OUTPUT_MAIN_SOURCE_FILE_END
211 #define DBX_OUTPUT_MAIN_SOURCE_FILE_END(FILE, FILENAME) \
212 fprintf (FILE, \
213 "%s\n\t.stabs \"%s\",%d,0,0,L$text_end\nL$text_end:\n",\
214 TEXT_SECTION_ASM_OP, "" , N_SO)
215
216 #if (TARGET_DEFAULT & 1) == 0
217 #define CPP_SPEC "%{msnake:-D__hp9000s700 -D_PA_RISC1_1}\
218 %{mpa-risc-1-1:-D__hp9000s700 -D_PA_RISC1_1}"
219 #else
220 #define CPP_SPEC "%{!mpa-risc-1-0:%{!mnosnake:%{!msoft-float:-D__hp9000s700 -D_PA_RISC1_1}}}"
221 #endif
222
223 /* Defines for a K&R CC */
224
225 #define CC1_SPEC "%{pg:} %{p:}"
226
227 #define LINK_SPEC "%{!shared:-u main} %{shared:-b}"
228
229 /* Allow $ in identifiers. */
230 #define DOLLARS_IN_IDENTIFIERS 2
231
232 /* Make gcc agree with <machine/ansi.h> */
233
234 #define SIZE_TYPE "unsigned int"
235 #define PTRDIFF_TYPE "int"
236 #define WCHAR_TYPE "unsigned int"
237 #define WCHAR_TYPE_SIZE 32
238
239 /* Show we can debug even without a frame pointer. */
240 #define CAN_DEBUG_WITHOUT_FP
241
242 /* Names to predefine in the preprocessor for this target machine. */
243
244 #define CPP_PREDEFINES "-Dhppa -Dhp9000s800 -D__hp9000s800 -Dhp9k8 -Dunix -D_HPUX_SOURCE -Dhp9000 -Dhp800 -Dspectrum -DREVARGV -Asystem(unix) -Asystem(bsd) -Acpu(hppa) -Amachine(hppa)"
245
246 /* HPUX has a program 'chatr' to list the dependencies of dynamically
247 linked executables and shared libraries. */
248 #define LDD_SUFFIX "chatr"
249 /* look for lines like "dynamic /usr/lib/X11R5/libX11.sl". */
250 #define PARSE_LDD_OUTPUT(PTR) \
251 do { \
252 while (*PTR == ' ') PTR++; \
253 if (strncmp (PTR, "dynamic", sizeof ("dynamic") - 1) == 0) \
254 { \
255 PTR += sizeof ("dynamic") - 1; \
256 while (*p == ' ') PTR++; \
257 } \
258 else \
259 PTR = 0; \
260 } while (0)
261 \f
262 /* target machine storage layout */
263
264 /* Define for cross-compilation from a host with a different float format
265 or endianess (e.g. VAX, x86). */
266 #define REAL_ARITHMETIC
267
268 /* Define this if most significant bit is lowest numbered
269 in instructions that operate on numbered bit-fields. */
270 #define BITS_BIG_ENDIAN 1
271
272 /* Define this if most significant byte of a word is the lowest numbered. */
273 /* That is true on the HP-PA. */
274 #define BYTES_BIG_ENDIAN 1
275
276 /* Define this if most significant word of a multiword number is lowest
277 numbered. */
278 #define WORDS_BIG_ENDIAN 1
279
280 /* number of bits in an addressable storage unit */
281 #define BITS_PER_UNIT 8
282
283 /* Width in bits of a "word", which is the contents of a machine register.
284 Note that this is not necessarily the width of data type `int';
285 if using 16-bit ints on a 68000, this would still be 32.
286 But on a machine with 16-bit registers, this would be 16. */
287 #define BITS_PER_WORD 32
288
289 /* Width of a word, in units (bytes). */
290 #define UNITS_PER_WORD 4
291
292 /* Width in bits of a pointer.
293 See also the macro `Pmode' defined below. */
294 #define POINTER_SIZE 32
295
296 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
297 #define PARM_BOUNDARY 32
298
299 /* Largest alignment required for any stack parameter, in bits.
300 Don't define this if it is equal to PARM_BOUNDARY */
301 #define MAX_PARM_BOUNDARY 64
302
303 /* Boundary (in *bits*) on which stack pointer should be aligned. */
304 #define STACK_BOUNDARY 512
305
306 /* Allocation boundary (in *bits*) for the code of a function. */
307 #define FUNCTION_BOUNDARY 32
308
309 /* Alignment of field after `int : 0' in a structure. */
310 #define EMPTY_FIELD_BOUNDARY 32
311
312 /* Every structure's size must be a multiple of this. */
313 #define STRUCTURE_SIZE_BOUNDARY 8
314
315 /* A bitfield declared as `int' forces `int' alignment for the struct. */
316 #define PCC_BITFIELD_TYPE_MATTERS 1
317
318 /* No data type wants to be aligned rounder than this. */
319 #define BIGGEST_ALIGNMENT 64
320
321 /* The .align directive in the HP assembler allows up to a 32 alignment. */
322 #define MAX_OFILE_ALIGNMENT 32768
323
324 /* Get around hp-ux assembler bug, and make strcpy of constants fast. */
325 #define CONSTANT_ALIGNMENT(CODE, TYPEALIGN) \
326 ((TYPEALIGN) < 32 ? 32 : (TYPEALIGN))
327
328 /* Make arrays of chars word-aligned for the same reasons. */
329 #define DATA_ALIGNMENT(TYPE, ALIGN) \
330 (TREE_CODE (TYPE) == ARRAY_TYPE \
331 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
332 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
333
334
335 /* Set this nonzero if move instructions will actually fail to work
336 when given unaligned data. */
337 #define STRICT_ALIGNMENT 1
338
339 /* Generate calls to memcpy, memcmp and memset. */
340 #define TARGET_MEM_FUNCTIONS
341 \f
342 /* Standard register usage. */
343
344 /* Number of actual hardware registers.
345 The hardware registers are assigned numbers for the compiler
346 from 0 to just below FIRST_PSEUDO_REGISTER.
347 All registers that the compiler knows about must be given numbers,
348 even those that are not normally considered general registers.
349
350 HP-PA 1.0 has 32 fullword registers and 16 floating point
351 registers. The floating point registers hold either word or double
352 word values.
353
354 16 additional registers are reserved.
355
356 HP-PA 1.1 has 32 fullword registers and 32 floating point
357 registers. However, the floating point registers behave
358 differently: the left and right halves of registers are addressable
359 as 32 bit registers. So, we will set things up like the 68k which
360 has different fp units: define separate register sets for the 1.0
361 and 1.1 fp units. */
362
363 #define FIRST_PSEUDO_REGISTER 89 /* 32 general regs + 56 fp regs +
364 + 1 shift reg */
365
366 /* 1 for registers that have pervasive standard uses
367 and are not available for the register allocator.
368
369 On the HP-PA, these are:
370 Reg 0 = 0 (hardware). However, 0 is used for condition code,
371 so is not fixed.
372 Reg 1 = ADDIL target/Temporary (hardware).
373 Reg 2 = Return Pointer
374 Reg 3 = Frame Pointer
375 Reg 4 = Frame Pointer (>8k varying frame with HP compilers only)
376 Reg 4-18 = Preserved Registers
377 Reg 19 = Linkage Table Register in HPUX 8.0 shared library scheme.
378 Reg 20-22 = Temporary Registers
379 Reg 23-26 = Temporary/Parameter Registers
380 Reg 27 = Global Data Pointer (hp)
381 Reg 28 = Temporary/???/Return Value register
382 Reg 29 = Temporary/Static Chain/Return Value register #2
383 Reg 30 = stack pointer
384 Reg 31 = Temporary/Millicode Return Pointer (hp)
385
386 Freg 0-3 = Status Registers -- Not known to the compiler.
387 Freg 4-7 = Arguments/Return Value
388 Freg 8-11 = Temporary Registers
389 Freg 12-15 = Preserved Registers
390
391 Freg 16-31 = Reserved
392
393 On the Snake, fp regs are
394
395 Freg 0-3 = Status Registers -- Not known to the compiler.
396 Freg 4L-7R = Arguments/Return Value
397 Freg 8L-11R = Temporary Registers
398 Freg 12L-21R = Preserved Registers
399 Freg 22L-31R = Temporary Registers
400
401 */
402
403 #define FIXED_REGISTERS \
404 {0, 0, 0, 0, 0, 0, 0, 0, \
405 0, 0, 0, 0, 0, 0, 0, 0, \
406 0, 0, 0, 0, 0, 0, 0, 0, \
407 0, 0, 0, 1, 0, 0, 1, 0, \
408 /* fp registers */ \
409 0, 0, 0, 0, 0, 0, 0, 0, \
410 0, 0, 0, 0, 0, 0, 0, 0, \
411 0, 0, 0, 0, 0, 0, 0, 0, \
412 0, 0, 0, 0, 0, 0, 0, 0, \
413 0, 0, 0, 0, 0, 0, 0, 0, \
414 0, 0, 0, 0, 0, 0, 0, 0, \
415 0, 0, 0, 0, 0, 0, 0, 0, \
416 0}
417
418 /* 1 for registers not available across function calls.
419 These must include the FIXED_REGISTERS and also any
420 registers that can be used without being saved.
421 The latter must include the registers where values are returned
422 and the register where structure-value addresses are passed.
423 Aside from that, you can include as many other registers as you like. */
424 #define CALL_USED_REGISTERS \
425 {1, 1, 1, 0, 0, 0, 0, 0, \
426 0, 0, 0, 0, 0, 0, 0, 0, \
427 0, 0, 0, 1, 1, 1, 1, 1, \
428 1, 1, 1, 1, 1, 1, 1, 1, \
429 /* fp registers */ \
430 1, 1, 1, 1, 1, 1, 1, 1, \
431 1, 1, 1, 1, 1, 1, 1, 1, \
432 0, 0, 0, 0, 0, 0, 0, 0, \
433 0, 0, 0, 0, 0, 0, 0, 0, \
434 0, 0, 0, 0, 1, 1, 1, 1, \
435 1, 1, 1, 1, 1, 1, 1, 1, \
436 1, 1, 1, 1, 1, 1, 1, 1, \
437 1}
438
439 #define CONDITIONAL_REGISTER_USAGE \
440 { \
441 if (!TARGET_SNAKE) \
442 { \
443 for (i = 56; i < 88; i++) \
444 fixed_regs[i] = call_used_regs[i] = 1; \
445 for (i = 33; i < 88; i += 2) \
446 fixed_regs[i] = call_used_regs[i] = 1; \
447 } \
448 else if (TARGET_DISABLE_FPREGS \
449 || TARGET_SOFT_FLOAT) \
450 { \
451 for (i = 32; i < 88; i++) \
452 fixed_regs[i] = call_used_regs[i] = 1; \
453 } \
454 if (flag_pic) \
455 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
456 }
457
458 /* Allocate the call used registers first. This should minimize
459 the number of registers that need to be saved (as call used
460 registers will generally not be allocated across a call).
461
462 Experimentation has shown slightly better results by allocating
463 FP registers first. */
464
465 #define REG_ALLOC_ORDER \
466 { \
467 /* caller-saved fp regs. */ \
468 40, 41, 42, 43, 44, 45, 46, 47, \
469 68, 69, 70, 71, 72, 73, 74, 75, \
470 76, 77, 78, 79, 80, 81, 82, 83, \
471 84, 85, 86, 87, \
472 32, 33, 34, 35, 36, 37, 38, 39, \
473 /* caller-saved general regs. */ \
474 19, 20, 21, 22, 23, 24, 25, 26, \
475 27, 28, 29, 31, 2, \
476 /* callee-saved fp regs. */ \
477 48, 49, 50, 51, 52, 53, 54, 55, \
478 56, 57, 58, 59, 60, 61, 62, 63, \
479 64, 65, 66, 67, \
480 /* callee-saved general regs. */ \
481 3, 4, 5, 6, 7, 8, 9, 10, \
482 11, 12, 13, 14, 15, 16, 17, 18, \
483 /* special registers. */ \
484 1, 30, 0, 88}
485
486
487 /* True if register is floating-point. */
488 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 87)
489
490 /* Return number of consecutive hard regs needed starting at reg REGNO
491 to hold something of mode MODE.
492 This is ordinarily the length in words of a value of mode MODE
493 but can be less for certain modes in special long registers.
494
495 On the HP-PA, ordinary registers hold 32 bits worth;
496 The floating point registers are 64 bits wide. Snake fp regs are 32
497 bits wide */
498 #define HARD_REGNO_NREGS(REGNO, MODE) \
499 (!TARGET_SNAKE && FP_REGNO_P (REGNO) ? 1 \
500 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
501
502 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
503 On the HP-PA, the cpu registers can hold any mode. We
504 force this to be an even register is it cannot hold the full mode. */
505 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
506 ((REGNO) == 0 ? (MODE) == CCmode || (MODE) == CCFPmode \
507 /* On 1.0 machines, don't allow wide non-fp modes in fp regs. */ \
508 : !TARGET_SNAKE && FP_REGNO_P (REGNO) \
509 ? GET_MODE_SIZE (MODE) <= 4 || GET_MODE_CLASS (MODE) == MODE_FLOAT \
510 /* Make wide modes be in aligned registers. */ \
511 : GET_MODE_SIZE (MODE) <= 4 || ((REGNO) & 1) == 0)
512
513 /* Value is 1 if it is a good idea to tie two pseudo registers
514 when one has mode MODE1 and one has mode MODE2.
515 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
516 for any hard reg, then this must be 0 for correct output. */
517 #define MODES_TIEABLE_P(MODE1, MODE2) \
518 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
519
520 /* Specify the registers used for certain standard purposes.
521 The values of these macros are register numbers. */
522
523 /* The HP-PA pc isn't overloaded on a register that the compiler knows about. */
524 /* #define PC_REGNUM */
525
526 /* Register to use for pushing function arguments. */
527 #define STACK_POINTER_REGNUM 30
528
529 /* Base register for access to local variables of the function. */
530 #define FRAME_POINTER_REGNUM 3
531
532 /* Value should be nonzero if functions must have frame pointers. */
533 #define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
534
535
536 /* C statement to store the difference between the frame pointer
537 and the stack pointer values immediately after the function prologue.
538
539 Note, we always pretend that this is a leaf function because if
540 it's not, there's no point in trying to eliminate the
541 frame pointer. If it is a leaf function, we guessed right! */
542 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
543 do {(VAR) = - compute_frame_size (get_frame_size (), 0);} while (0)
544
545 /* Base register for access to arguments of the function. */
546 #define ARG_POINTER_REGNUM 3
547
548 /* Register in which static-chain is passed to a function. */
549 /* ??? */
550 #define STATIC_CHAIN_REGNUM 29
551
552 /* Register which holds offset table for position-independent
553 data references. */
554
555 #define PIC_OFFSET_TABLE_REGNUM 19
556 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
557
558 /* Initialize hppa_save_pic_table_rtx before RTL generation for
559 each function. We used to do this in FINALIZE_PIC, but FINALIZE_PIC
560 isn't always called for static inline functions. */
561 #define INIT_EXPANDERS hppa_save_pic_table_rtx = 0;
562
563 /* SOM ABI says that objects larger than 64 bits are returned in memory. */
564 #define DEFAULT_PCC_STRUCT_RETURN 0
565 #define RETURN_IN_MEMORY(TYPE) \
566 (int_size_in_bytes (TYPE) > 8 || TREE_ADDRESSABLE (TYPE))
567
568 /* Register in which address to store a structure value
569 is passed to a function. */
570 #define STRUCT_VALUE_REGNUM 28
571 \f
572 /* Define the classes of registers for register constraints in the
573 machine description. Also define ranges of constants.
574
575 One of the classes must always be named ALL_REGS and include all hard regs.
576 If there is more than one class, another class must be named NO_REGS
577 and contain no registers.
578
579 The name GENERAL_REGS must be the name of a class (or an alias for
580 another name such as ALL_REGS). This is the class of registers
581 that is allowed by "g" or "r" in a register constraint.
582 Also, registers outside this class are allocated only when
583 instructions express preferences for them.
584
585 The classes must be numbered in nondecreasing order; that is,
586 a larger-numbered class must never be contained completely
587 in a smaller-numbered class.
588
589 For any two classes, it is very desirable that there be another
590 class that represents their union. */
591
592 /* The HP-PA has four kinds of registers: general regs, 1.0 fp regs,
593 1.1 fp regs, and the high 1.1 fp regs, to which the operands of
594 fmpyadd and fmpysub are restricted. */
595
596 enum reg_class { NO_REGS, R1_REGS, GENERAL_REGS, FP_REGS, GENERAL_OR_FP_REGS,
597 SHIFT_REGS, ALL_REGS, LIM_REG_CLASSES};
598
599 #define N_REG_CLASSES (int) LIM_REG_CLASSES
600
601 /* Give names of register classes as strings for dump file. */
602
603 #define REG_CLASS_NAMES \
604 {"NO_REGS", "R1_REGS", "GENERAL_REGS", "FP_REGS", \
605 "GENERAL_OR_FP_REGS", "SHIFT_REGS", "ALL_REGS"}
606
607 /* Define which registers fit in which classes.
608 This is an initializer for a vector of HARD_REG_SET
609 of length N_REG_CLASSES. Register 0, the "condition code" register,
610 is in no class. */
611
612 #define REG_CLASS_CONTENTS \
613 {{0x00000000, 0x00000000, 0x00000000}, /* NO_REGS */ \
614 {0x00000002, 0x00000000, 0x00000000}, /* R1_REGS */ \
615 {0xfffffffe, 0x00000000, 0x00000000}, /* GENERAL_REGS */ \
616 {0x00000000, 0xffffffff, 0x00ffffff}, /* FP_REGS */ \
617 {0xfffffffe, 0xffffffff, 0x00ffffff}, /* GENERAL_OR_FP_REGS */ \
618 {0x00000000, 0x00000000, 0x01000000}, /* SHIFT_REGS */ \
619 {0xfffffffe, 0xffffffff, 0x01ffffff}} /* ALL_REGS */
620
621 /* The same information, inverted:
622 Return the class number of the smallest class containing
623 reg number REGNO. This could be a conditional expression
624 or could index an array. */
625
626 #define REGNO_REG_CLASS(REGNO) \
627 ((REGNO) == 0 ? NO_REGS \
628 : (REGNO) == 1 ? R1_REGS \
629 : (REGNO) < 32 ? GENERAL_REGS \
630 : (REGNO) < 88 ? FP_REGS \
631 : SHIFT_REGS)
632
633 /* The class value for index registers, and the one for base regs. */
634 #define INDEX_REG_CLASS GENERAL_REGS
635 #define BASE_REG_CLASS GENERAL_REGS
636
637 #define FP_REG_CLASS_P(CLASS) \
638 ((CLASS) == FP_REGS)
639
640 /* Get reg_class from a letter such as appears in the machine description. */
641 /* Keep 'x' for backward compatibility with user asm. */
642 #define REG_CLASS_FROM_LETTER(C) \
643 ((C) == 'f' ? FP_REGS : \
644 (C) == 'x' ? FP_REGS : \
645 (C) == 'q' ? SHIFT_REGS : \
646 (C) == 'a' ? R1_REGS : \
647 (C) == 'Z' ? ALL_REGS : NO_REGS)
648
649 /* The letters I, J, K, L and M in a register constraint string
650 can be used to stand for particular ranges of immediate operands.
651 This macro defines what the ranges are.
652 C is the letter, and VALUE is a constant value.
653 Return 1 if VALUE is in the range specified by C.
654
655 `I' is used for the 11 bit constants.
656 `J' is used for the 14 bit constants.
657 `K' is used for values that can be moved with a zdepi insn.
658 `L' is used for the 5 bit constants.
659 `M' is used for 0.
660 `N' is used for values with the least significant 11 bits equal to zero.
661 `O' is used for numbers n such that n+1 is a power of 2.
662 */
663
664 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
665 ((C) == 'I' ? VAL_11_BITS_P (VALUE) \
666 : (C) == 'J' ? VAL_14_BITS_P (VALUE) \
667 : (C) == 'K' ? zdepi_cint_p (VALUE) \
668 : (C) == 'L' ? VAL_5_BITS_P (VALUE) \
669 : (C) == 'M' ? (VALUE) == 0 \
670 : (C) == 'N' ? ((VALUE) & 0x7ff) == 0 \
671 : (C) == 'O' ? (((VALUE) & ((VALUE) + 1)) == 0) \
672 : (C) == 'P' ? and_mask_p (VALUE) \
673 : 0)
674
675 /* Similar, but for floating or large integer constants, and defining letters
676 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
677
678 For PA, `G' is the floating-point constant zero. `H' is undefined. */
679
680 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
681 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
682 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
683 : 0)
684
685 /* Given an rtx X being reloaded into a reg required to be
686 in class CLASS, return the class of reg to actually use.
687 In general this is just CLASS; but on some machines
688 in some cases it is preferable to use a more restrictive class. */
689 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
690
691 /* Return the register class of a scratch register needed to copy IN into
692 or out of a register in CLASS in MODE. If it can be done directly,
693 NO_REGS is returned. */
694
695 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
696 secondary_reload_class (CLASS, MODE, IN)
697
698 /* On the PA it is not possible to directly move data between
699 GENERAL_REGS and FP_REGS. */
700 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
701 (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
702
703 /* Return the stack location to use for secondary memory needed reloads. */
704 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
705 gen_rtx (MEM, MODE, gen_rtx (PLUS, Pmode, stack_pointer_rtx, GEN_INT (-16)))
706
707 /* Return the maximum number of consecutive registers
708 needed to represent mode MODE in a register of class CLASS. */
709 #define CLASS_MAX_NREGS(CLASS, MODE) \
710 (!TARGET_SNAKE && (CLASS) == FP_REGS ? 1 : \
711 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
712 \f
713 /* Stack layout; function entry, exit and calling. */
714
715 /* Define this if pushing a word on the stack
716 makes the stack pointer a smaller address. */
717 /* #define STACK_GROWS_DOWNWARD */
718
719 /* Believe it or not. */
720 #define ARGS_GROW_DOWNWARD
721
722 /* Define this if the nominal address of the stack frame
723 is at the high-address end of the local variables;
724 that is, each additional local variable allocated
725 goes at a more negative offset in the frame. */
726 /* #define FRAME_GROWS_DOWNWARD */
727
728 /* Offset within stack frame to start allocating local variables at.
729 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
730 first local allocated. Otherwise, it is the offset to the BEGINNING
731 of the first local allocated. */
732 #define STARTING_FRAME_OFFSET 8
733
734 /* If we generate an insn to push BYTES bytes,
735 this says how many the stack pointer really advances by.
736 On the HP-PA, don't define this because there are no push insns. */
737 /* #define PUSH_ROUNDING(BYTES) */
738
739 /* Offset of first parameter from the argument pointer register value.
740 This value will be negated because the arguments grow down.
741 Also note that on STACK_GROWS_UPWARD machines (such as this one)
742 this is the distance from the frame pointer to the end of the first
743 argument, not it's beginning. To get the real offset of the first
744 argument, the size of the argument must be added.
745
746 ??? Have to check on this.*/
747
748 #define FIRST_PARM_OFFSET(FNDECL) -32
749
750 /* Absolute value of offset from top-of-stack address to location to store the
751 function parameter if it can't go in a register.
752 Addresses for following parameters are computed relative to this one. */
753 #define FIRST_PARM_CALLER_OFFSET(FNDECL) -32
754
755
756 /* When a parameter is passed in a register, stack space is still
757 allocated for it. */
758 #define REG_PARM_STACK_SPACE(DECL) 16
759
760 /* Define this if the above stack space is to be considered part of the
761 space allocated by the caller. */
762 #define OUTGOING_REG_PARM_STACK_SPACE
763
764 /* Keep the stack pointer constant throughout the function.
765 This is both an optimization and a necessity: longjmp
766 doesn't behave itself when the stack pointer moves within
767 the function! */
768 #define ACCUMULATE_OUTGOING_ARGS
769
770 /* The weird HPPA calling conventions require a minimum of 48 bytes on
771 the stack: 16 bytes for register saves, and 32 bytes for magic.
772 This is the difference between the logical top of stack and the
773 actual sp. */
774 #define STACK_POINTER_OFFSET -32
775
776 #define STACK_DYNAMIC_OFFSET(FNDECL) \
777 ((STACK_POINTER_OFFSET) - current_function_outgoing_args_size)
778
779 /* Value is 1 if returning from a function call automatically
780 pops the arguments described by the number-of-args field in the call.
781 FUNTYPE is the data type of the function (as a tree),
782 or for a library call it is an identifier node for the subroutine name. */
783
784 #define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
785
786 /* Define how to find the value returned by a function.
787 VALTYPE is the data type of the value (as a tree).
788 If the precise function being called is known, FUNC is its FUNCTION_DECL;
789 otherwise, FUNC is 0. */
790
791 /* On the HP-PA the value is found in register(s) 28(-29), unless
792 the mode is SF or DF. Then the value is returned in fr4 (32, ) */
793
794
795 #define FUNCTION_VALUE(VALTYPE, FUNC) \
796 gen_rtx (REG, TYPE_MODE (VALTYPE), ((! TARGET_SOFT_FLOAT \
797 && (TYPE_MODE (VALTYPE) == SFmode || \
798 TYPE_MODE (VALTYPE) == DFmode)) ? \
799 32 : 28))
800
801 /* Define how to find the value returned by a library function
802 assuming the value has mode MODE. */
803
804 #define LIBCALL_VALUE(MODE) \
805 gen_rtx (REG, MODE, \
806 (! TARGET_SOFT_FLOAT \
807 && ((MODE) == SFmode || (MODE) == DFmode) ? 32 : 28))
808
809 /* 1 if N is a possible register number for a function value
810 as seen by the caller. */
811
812 #define FUNCTION_VALUE_REGNO_P(N) \
813 ((N) == 28 || (! TARGET_SOFT_FLOAT && (N) == 32))
814
815 /* 1 if N is a possible register number for function argument passing. */
816
817 #define FUNCTION_ARG_REGNO_P(N) \
818 (((N) >= 23 && (N) <= 26) || (! TARGET_SOFT_FLOAT && (N) >= 32 && (N) <= 39))
819 \f
820 /* Define a data type for recording info about an argument list
821 during the scan of that argument list. This data type should
822 hold all necessary information about the function itself
823 and about the args processed so far, enough to enable macros
824 such as FUNCTION_ARG to determine where the next arg should go.
825
826 On the HP-PA, this is a single integer, which is a number of words
827 of arguments scanned so far (including the invisible argument,
828 if any, which holds the structure-value-address).
829 Thus 4 or more means all following args should go on the stack. */
830
831 struct hppa_args {int words, nargs_prototype; };
832
833 #define CUMULATIVE_ARGS struct hppa_args
834
835 /* Initialize a variable CUM of type CUMULATIVE_ARGS
836 for a call to a function whose data type is FNTYPE.
837 For a library call, FNTYPE is 0. */
838
839 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
840 (CUM).words = 0, \
841 (CUM).nargs_prototype = (FNTYPE && TYPE_ARG_TYPES (FNTYPE) \
842 ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1 \
843 + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
844 || RETURN_IN_MEMORY (TREE_TYPE (FNTYPE)))) \
845 : 0)
846
847
848
849 /* Similar, but when scanning the definition of a procedure. We always
850 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
851
852 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
853 (CUM).words = 0, \
854 (CUM).nargs_prototype = 1000
855
856 /* Figure out the size in words of the function argument. */
857
858 #define FUNCTION_ARG_SIZE(MODE, TYPE) \
859 ((((MODE) != BLKmode ? GET_MODE_SIZE (MODE) : int_size_in_bytes (TYPE))+3)/4)
860
861 /* Update the data in CUM to advance over an argument
862 of mode MODE and data type TYPE.
863 (TYPE is null for libcalls where that information may not be available.) */
864
865 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
866 { (CUM).nargs_prototype--; \
867 ((((CUM).words & 01) && (TYPE) != 0 \
868 && FUNCTION_ARG_SIZE(MODE, TYPE) > 1) \
869 && (CUM).words++), \
870 (CUM).words += FUNCTION_ARG_SIZE(MODE, TYPE); \
871 }
872
873 /* Determine where to put an argument to a function.
874 Value is zero to push the argument on the stack,
875 or a hard register in which to store the argument.
876
877 MODE is the argument's machine mode.
878 TYPE is the data type of the argument (as a tree).
879 This is null for libcalls where that information may
880 not be available.
881 CUM is a variable of type CUMULATIVE_ARGS which gives info about
882 the preceding args and about the function being called.
883 NAMED is nonzero if this argument is a named parameter
884 (otherwise it is an extra parameter matching an ellipsis).
885
886 On the HP-PA the first four words of args are normally in registers
887 and the rest are pushed. But any arg that won't entirely fit in regs
888 is pushed.
889
890 Arguments passed in registers are either 1 or 2 words long.
891
892 The caller must make a distinction between calls to explicitly named
893 functions and calls through pointers to functions -- the conventions
894 are different! Calls through pointers to functions only use general
895 registers for the first four argument words.
896
897 Of course all this is different for the portable runtime model
898 HP wants everyone to use for ELF. Ugh. Here's a quick description
899 of how it's supposed to work.
900
901 1) callee side remains unchanged. It expects integer args to be
902 in the integer registers, float args in the float registers and
903 unnamed args in integer registers.
904
905 2) caller side now depends on if the function being called has
906 a prototype in scope (rather than if it's being called indirectly).
907
908 2a) If there is a prototype in scope, then arguments are passed
909 according to their type (ints in integer registers, floats in float
910 registers, unnamed args in integer registers.
911
912 2b) If there is no prototype in scope, then floating point arguments
913 are passed in both integer and float registers. egad.
914
915 FYI: The portable parameter passing conventions are almost exactly like
916 the standard parameter passing conventions on the RS6000. That's why
917 you'll see lots of similar code in rs6000.h. */
918
919 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding ((MODE), (TYPE))
920
921 /* Do not expect to understand this without reading it several times. I'm
922 tempted to try and simply it, but I worry about breaking something. */
923
924 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
925 (4 >= ((CUM).words + FUNCTION_ARG_SIZE ((MODE), (TYPE))) \
926 ? (!TARGET_PORTABLE_RUNTIME || (TYPE) == 0 \
927 || !FLOAT_MODE_P (MODE) || TARGET_SOFT_FLOAT \
928 || (CUM).nargs_prototype > 0) \
929 ? gen_rtx (REG, (MODE), \
930 (FUNCTION_ARG_SIZE ((MODE), (TYPE)) > 1 \
931 ? (((!current_call_is_indirect \
932 || TARGET_PORTABLE_RUNTIME) \
933 && (MODE) == DFmode \
934 && ! TARGET_SOFT_FLOAT) \
935 ? ((CUM).words ? 38 : 34) \
936 : ((CUM).words ? 23 : 25)) \
937 : (((!current_call_is_indirect \
938 || TARGET_PORTABLE_RUNTIME) \
939 && (MODE) == SFmode \
940 && ! TARGET_SOFT_FLOAT) \
941 ? (32 + 2 * (CUM).words) \
942 : (27 - (CUM).words - FUNCTION_ARG_SIZE ((MODE), \
943 (TYPE))))))\
944 /* We are calling a non-prototyped function with floating point \
945 arguments using the portable conventions. */ \
946 : gen_rtx (EXPR_LIST, VOIDmode, \
947 gen_rtx (REG, (MODE), \
948 (FUNCTION_ARG_SIZE ((MODE), (TYPE)) > 1 \
949 ? ((CUM).words ? 38 : 34) \
950 : (32 + 2 * (CUM).words))), \
951 gen_rtx (REG, (MODE), \
952 (FUNCTION_ARG_SIZE ((MODE), (TYPE)) > 1 \
953 ? ((CUM).words ? 23 : 25) \
954 : (27 - (CUM).words - FUNCTION_ARG_SIZE ((MODE),\
955 (TYPE)))))) \
956 /* Pass this parameter in the stack. */ \
957 : 0)
958
959 /* For an arg passed partly in registers and partly in memory,
960 this is the number of registers used.
961 For args passed entirely in registers or entirely in memory, zero. */
962
963 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
964
965 /* If defined, a C expression that gives the alignment boundary, in
966 bits, of an argument with the specified mode and type. If it is
967 not defined, `PARM_BOUNDARY' is used for all arguments. */
968
969 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
970 (((TYPE) != 0) \
971 ? (((int_size_in_bytes (TYPE)) + 3) / 4) * BITS_PER_WORD \
972 : ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY) \
973 ? PARM_BOUNDARY \
974 : GET_MODE_ALIGNMENT(MODE)))
975
976 /* Arguments larger than eight bytes are passed by invisible reference */
977
978 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
979 ((TYPE) && int_size_in_bytes (TYPE) > 8)
980 \f
981 extern struct rtx_def *hppa_compare_op0, *hppa_compare_op1;
982 extern enum cmp_type hppa_branch_type;
983
984 /* Output the label for a function definition. */
985 #ifndef HP_FP_ARG_DESCRIPTOR_REVERSED
986 #define ASM_DOUBLE_ARG_DESCRIPTORS(FILE, ARG0, ARG1) \
987 do { fprintf (FILE, ",ARGW%d=FR", (ARG0)); \
988 fprintf (FILE, ",ARGW%d=FU", (ARG1));} while (0)
989 #else
990 #define ASM_DOUBLE_ARG_DESCRIPTORS(FILE, ARG0, ARG1) \
991 do { fprintf (FILE, ",ARGW%d=FU", (ARG0)); \
992 fprintf (FILE, ",ARGW%d=FR", (ARG1));} while (0)
993 #endif
994
995 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
996 do { tree fntype = TREE_TYPE (TREE_TYPE (DECL)); \
997 tree tree_type = TREE_TYPE (DECL); \
998 tree parm; \
999 int i; \
1000 if (TREE_PUBLIC (DECL) || TARGET_GAS) \
1001 { extern int current_function_varargs; \
1002 if (TREE_PUBLIC (DECL)) \
1003 { \
1004 fputs ("\t.EXPORT ", FILE); \
1005 assemble_name (FILE, NAME); \
1006 fputs (",ENTRY,PRIV_LEV=3", FILE); \
1007 } \
1008 else \
1009 { \
1010 fputs ("\t.PARAM ", FILE); \
1011 assemble_name (FILE, NAME); \
1012 } \
1013 if (TARGET_PORTABLE_RUNTIME) \
1014 { \
1015 fputs (",ARGW0=NO,ARGW1=NO,ARGW2=NO,ARGW3=NO,", FILE); \
1016 fputs ("RTNVAL=NO\n", FILE); \
1017 break; \
1018 } \
1019 for (parm = DECL_ARGUMENTS (DECL), i = 0; parm && i < 4; \
1020 parm = TREE_CHAIN (parm)) \
1021 { \
1022 if (TYPE_MODE (DECL_ARG_TYPE (parm)) == SFmode \
1023 && ! TARGET_SOFT_FLOAT) \
1024 fprintf (FILE, ",ARGW%d=FR", i++); \
1025 else if (TYPE_MODE (DECL_ARG_TYPE (parm)) == DFmode \
1026 && ! TARGET_SOFT_FLOAT) \
1027 { \
1028 if (i <= 2) \
1029 { \
1030 if (i == 1) i++; \
1031 ASM_DOUBLE_ARG_DESCRIPTORS (FILE, i++, i++); \
1032 } \
1033 else \
1034 break; \
1035 } \
1036 else \
1037 { \
1038 int arg_size = \
1039 FUNCTION_ARG_SIZE (TYPE_MODE (DECL_ARG_TYPE (parm)),\
1040 DECL_ARG_TYPE (parm)); \
1041 if (arg_size == 2 && i <= 2) \
1042 { \
1043 if (i == 1) i++; \
1044 fprintf (FILE, ",ARGW%d=GR", i++); \
1045 fprintf (FILE, ",ARGW%d=GR", i++); \
1046 } \
1047 else if (arg_size == 1) \
1048 fprintf (FILE, ",ARGW%d=GR", i++); \
1049 else \
1050 i += arg_size; \
1051 } \
1052 } \
1053 /* anonymous args */ \
1054 if ((TYPE_ARG_TYPES (tree_type) != 0 \
1055 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (tree_type)))\
1056 != void_type_node)) \
1057 || current_function_varargs) \
1058 { \
1059 for (; i < 4; i++) \
1060 fprintf (FILE, ",ARGW%d=GR", i); \
1061 } \
1062 if (TYPE_MODE (fntype) == DFmode && ! TARGET_SOFT_FLOAT) \
1063 fprintf (FILE, ",RTNVAL=FR"); \
1064 else if (TYPE_MODE (fntype) == SFmode && ! TARGET_SOFT_FLOAT) \
1065 fprintf (FILE, ",RTNVAL=FU"); \
1066 else if (fntype != void_type_node) \
1067 fprintf (FILE, ",RTNVAL=GR"); \
1068 fputs ("\n", FILE); \
1069 }} while (0)
1070
1071 /* This macro generates the assembly code for function entry.
1072 FILE is a stdio stream to output the code to.
1073 SIZE is an int: how many units of temporary storage to allocate.
1074 Refer to the array `regs_ever_live' to determine which registers
1075 to save; `regs_ever_live[I]' is nonzero if register number I
1076 is ever used in the function. This macro is responsible for
1077 knowing which registers should not be saved even if used. */
1078
1079 /* On HP-PA, move-double insns between fpu and cpu need an 8-byte block
1080 of memory. If any fpu reg is used in the function, we allocate
1081 such a block here, at the bottom of the frame, just in case it's needed.
1082
1083 If this function is a leaf procedure, then we may choose not
1084 to do a "save" insn. The decision about whether or not
1085 to do this is made in regclass.c. */
1086
1087 #define FUNCTION_PROLOGUE(FILE, SIZE) \
1088 output_function_prologue (FILE, SIZE)
1089
1090 /* Output assembler code to FILE to increment profiler label # LABELNO
1091 for profiling a function entry.
1092
1093 Because HPUX _mcount is so different, we actually emit the
1094 profiling code in function_prologue. This just stores LABELNO for
1095 that. */
1096
1097 #define PROFILE_BEFORE_PROLOGUE
1098 #define FUNCTION_PROFILER(FILE, LABELNO) \
1099 { extern int hp_profile_labelno; hp_profile_labelno = (LABELNO);}
1100
1101 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1102 the stack pointer does not matter. The value is tested only in
1103 functions that have frame pointers.
1104 No definition is equivalent to always zero. */
1105
1106 extern int may_call_alloca;
1107 extern int current_function_pretend_args_size;
1108
1109 #define EXIT_IGNORE_STACK \
1110 (get_frame_size () != 0 \
1111 || current_function_calls_alloca || current_function_outgoing_args_size)
1112
1113
1114 /* This macro generates the assembly code for function exit,
1115 on machines that need it. If FUNCTION_EPILOGUE is not defined
1116 then individual return instructions are generated for each
1117 return statement. Args are same as for FUNCTION_PROLOGUE.
1118
1119 The function epilogue should not depend on the current stack pointer!
1120 It should use the frame pointer only. This is mandatory because
1121 of alloca; we also take advantage of it to omit stack adjustments
1122 before returning. */
1123
1124 /* This declaration is needed due to traditional/ANSI
1125 incompatibilities which cannot be #ifdefed away
1126 because they occur inside of macros. Sigh. */
1127 extern union tree_node *current_function_decl;
1128
1129 #define FUNCTION_EPILOGUE(FILE, SIZE) \
1130 output_function_epilogue (FILE, SIZE)
1131
1132 /* Output assembler code for a block containing the constant parts
1133 of a trampoline, leaving space for the variable parts.\
1134
1135 The trampoline sets the static chain pointer to STATIC_CHAIN_REGNUM
1136 and then branches to the specified routine.
1137
1138 This code template is copied from text segment to stack location
1139 and then patched with INITIALIZE_TRAMPOLINE to contain
1140 valid values, and then entered as a subroutine.
1141
1142 It is best to keep this as small as possible to avoid having to
1143 flush multiple lines in the cache. */
1144
1145 #define TRAMPOLINE_TEMPLATE(FILE) \
1146 { \
1147 fprintf (FILE, "\tldw 36(0,%%r22),%%r21\n"); \
1148 fprintf (FILE, "\tbb,>=,n %%r21,30,.+16\n"); \
1149 fprintf (FILE, "\tdepi 0,31,2,%%r21\n"); \
1150 fprintf (FILE, "\tldw 4(0,%%r21),%%r19\n"); \
1151 fprintf (FILE, "\tldw 0(0,%%r21),%%r21\n"); \
1152 fprintf (FILE, "\tldsid (0,%%r21),%%r1\n"); \
1153 fprintf (FILE, "\tmtsp %%r1,%%sr0\n"); \
1154 fprintf (FILE, "\tbe 0(%%sr0,%%r21)\n"); \
1155 fprintf (FILE, "\tldw 40(0,%%r22),%%r29\n"); \
1156 fprintf (FILE, "\t.word 0\n"); \
1157 fprintf (FILE, "\t.word 0\n"); \
1158 }
1159
1160 /* Length in units of the trampoline for entering a nested function.
1161
1162 Flush the cache entries corresponding to the first and last addresses
1163 of the trampoline. This is necessary as the trampoline may cross two
1164 cache lines.
1165
1166 If the code part of the trampoline ever grows to > 32 bytes, then it
1167 will become necessary to hack on the cacheflush pattern in pa.md. */
1168
1169 #define TRAMPOLINE_SIZE (11 * 4)
1170
1171 /* Emit RTL insns to initialize the variable parts of a trampoline.
1172 FNADDR is an RTX for the address of the function's pure code.
1173 CXT is an RTX for the static chain value for the function.
1174
1175 Move the function address to the trampoline template at offset 12.
1176 Move the static chain value to trampoline template at offset 16. */
1177
1178 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1179 { \
1180 rtx start_addr, end_addr; \
1181 \
1182 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 36)); \
1183 emit_move_insn (gen_rtx (MEM, Pmode, start_addr), (FNADDR)); \
1184 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 40)); \
1185 emit_move_insn (gen_rtx (MEM, Pmode, start_addr), (CXT)); \
1186 /* fdc and fic only use registers for the address to flush, \
1187 they do not accept integer displacements. */ \
1188 start_addr = force_reg (SImode, (TRAMP)); \
1189 end_addr = force_reg (SImode, plus_constant ((TRAMP), 32)); \
1190 emit_insn (gen_dcacheflush (start_addr, end_addr)); \
1191 end_addr = force_reg (SImode, plus_constant (start_addr, 32)); \
1192 emit_insn (gen_icacheflush (start_addr, end_addr, start_addr, \
1193 gen_reg_rtx (SImode), gen_reg_rtx (SImode)));\
1194 }
1195
1196 /* Emit code for a call to builtin_saveregs. We must emit USE insns which
1197 reference the 4 integer arg registers and 4 fp arg registers.
1198 Ordinarily they are not call used registers, but they are for
1199 _builtin_saveregs, so we must make this explicit. */
1200
1201 #define EXPAND_BUILTIN_SAVEREGS(ARGLIST) (rtx)hppa_builtin_saveregs (ARGLIST)
1202
1203 \f
1204 /* Addressing modes, and classification of registers for them. */
1205
1206 #define HAVE_POST_INCREMENT
1207 #define HAVE_POST_DECREMENT
1208
1209 #define HAVE_PRE_DECREMENT
1210 #define HAVE_PRE_INCREMENT
1211
1212 /* Macros to check register numbers against specific register classes. */
1213
1214 /* These assume that REGNO is a hard or pseudo reg number.
1215 They give nonzero only if REGNO is a hard reg of the suitable class
1216 or a pseudo reg currently allocated to a suitable hard reg.
1217 Since they use reg_renumber, they are safe only once reg_renumber
1218 has been allocated, which happens in local-alloc.c. */
1219
1220 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1221 ((REGNO) && ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
1222 #define REGNO_OK_FOR_BASE_P(REGNO) \
1223 ((REGNO) && ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
1224 #define REGNO_OK_FOR_FP_P(REGNO) \
1225 (FP_REGNO_P (REGNO) || FP_REGNO_P (reg_renumber[REGNO]))
1226
1227 /* Now macros that check whether X is a register and also,
1228 strictly, whether it is in a specified class.
1229
1230 These macros are specific to the the HP-PA, and may be used only
1231 in code for printing assembler insns and in conditions for
1232 define_optimization. */
1233
1234 /* 1 if X is an fp register. */
1235
1236 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1237 \f
1238 /* Maximum number of registers that can appear in a valid memory address. */
1239
1240 #define MAX_REGS_PER_ADDRESS 2
1241
1242 /* Recognize any constant value that is a valid address except
1243 for symbolic addresses. We get better CSE by rejecting them
1244 here and allowing hppa_legitimize_address to break them up. We
1245 use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE. */
1246
1247 #define CONSTANT_ADDRESS_P(X) \
1248 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1249 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1250 || GET_CODE (X) == HIGH) \
1251 && (reload_in_progress || reload_completed || ! symbolic_expression_p (X)))
1252
1253 /* Include all constant integers and constant doubles, but not
1254 floating-point, except for floating-point zero. */
1255
1256 #define LEGITIMATE_CONSTANT_P(X) \
1257 ((GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1258 || (X) == CONST0_RTX (GET_MODE (X))) \
1259 && !(flag_pic && function_label_operand (X, VOIDmode)))
1260
1261 /* Subroutine for EXTRA_CONSTRAINT.
1262
1263 Return 1 iff OP is a pseudo which did not get a hard register and
1264 we are running the reload pass. */
1265
1266 #define IS_RELOADING_PSEUDO_P(OP) \
1267 ((reload_in_progress \
1268 && GET_CODE (OP) == REG \
1269 && REGNO (OP) >= FIRST_PSEUDO_REGISTER \
1270 && reg_renumber [REGNO (OP)] < 0))
1271
1272 /* Optional extra constraints for this machine. Borrowed from sparc.h.
1273
1274 For the HPPA, `Q' means that this is a memory operand but not a
1275 symbolic memory operand. Note that an unassigned pseudo register
1276 is such a memory operand. Needed because reload will generate
1277 these things in insns and then not re-recognize the insns, causing
1278 constrain_operands to fail.
1279
1280 Also note `Q' accepts any memory operand during the reload pass.
1281 This includes out-of-range displacements in reg+d addressing.
1282 This makes for better code. (??? For 2.5 address this issue).
1283
1284 `R' is unused.
1285
1286 `S' is unused.
1287
1288 `T' is for fp loads and stores. */
1289 #define EXTRA_CONSTRAINT(OP, C) \
1290 ((C) == 'Q' ? \
1291 (IS_RELOADING_PSEUDO_P (OP) \
1292 || (GET_CODE (OP) == MEM \
1293 && reload_in_progress) \
1294 || (GET_CODE (OP) == MEM \
1295 && memory_address_p (GET_MODE (OP), XEXP (OP, 0))\
1296 && ! symbolic_memory_operand (OP, VOIDmode))) \
1297 : ((C) == 'T' ? \
1298 (GET_CODE (OP) == MEM \
1299 /* Using DFmode forces only short displacements \
1300 to be recognized as valid in reg+d addresses. */\
1301 && memory_address_p (DFmode, XEXP (OP, 0))) : 0))
1302
1303 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1304 and check its validity for a certain class.
1305 We have two alternate definitions for each of them.
1306 The usual definition accepts all pseudo regs; the other rejects
1307 them unless they have been allocated suitable hard regs.
1308 The symbol REG_OK_STRICT causes the latter definition to be used.
1309
1310 Most source files want to accept pseudo regs in the hope that
1311 they will get allocated to the class that the insn wants them to be in.
1312 Source files for reload pass need to be strict.
1313 After reload, it makes no difference, since pseudo regs have
1314 been eliminated by then. */
1315
1316 #ifndef REG_OK_STRICT
1317
1318 /* Nonzero if X is a hard reg that can be used as an index
1319 or if it is a pseudo reg. */
1320 #define REG_OK_FOR_INDEX_P(X) \
1321 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1322 /* Nonzero if X is a hard reg that can be used as a base reg
1323 or if it is a pseudo reg. */
1324 #define REG_OK_FOR_BASE_P(X) \
1325 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1326
1327 #else
1328
1329 /* Nonzero if X is a hard reg that can be used as an index. */
1330 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1331 /* Nonzero if X is a hard reg that can be used as a base reg. */
1332 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1333
1334 #endif
1335 \f
1336 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1337 that is a valid memory address for an instruction.
1338 The MODE argument is the machine mode for the MEM expression
1339 that wants to use this address.
1340
1341 On the HP-PA, the actual legitimate addresses must be
1342 REG+REG, REG+(REG*SCALE) or REG+SMALLINT.
1343 But we can treat a SYMBOL_REF as legitimate if it is part of this
1344 function's constant-pool, because such addresses can actually
1345 be output as REG+SMALLINT.
1346
1347 Note we only allow 5 bit immediates for access to a constant address;
1348 doing so avoids losing for loading/storing a FP register at an address
1349 which will not fit in 5 bits. */
1350
1351 #define VAL_5_BITS_P(X) ((unsigned)(X) + 0x10 < 0x20)
1352 #define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
1353
1354 #define VAL_U5_BITS_P(X) ((unsigned)(X) < 0x20)
1355 #define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
1356
1357 #define VAL_11_BITS_P(X) ((unsigned)(X) + 0x400 < 0x800)
1358 #define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
1359
1360 #define VAL_14_BITS_P(X) ((unsigned)(X) + 0x2000 < 0x4000)
1361 #define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
1362
1363 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1364 { \
1365 if ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1366 || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC \
1367 || GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC) \
1368 && REG_P (XEXP (X, 0)) \
1369 && REG_OK_FOR_BASE_P (XEXP (X, 0)))) \
1370 goto ADDR; \
1371 else if (GET_CODE (X) == PLUS) \
1372 { \
1373 rtx base = 0, index; \
1374 if (flag_pic && XEXP (X, 0) == pic_offset_table_rtx)\
1375 { \
1376 if (GET_CODE (XEXP (X, 1)) == REG \
1377 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
1378 goto ADDR; \
1379 else if (flag_pic == 1 \
1380 && GET_CODE (XEXP (X, 1)) == SYMBOL_REF)\
1381 goto ADDR; \
1382 } \
1383 else if (REG_P (XEXP (X, 0)) \
1384 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
1385 base = XEXP (X, 0), index = XEXP (X, 1); \
1386 else if (REG_P (XEXP (X, 1)) \
1387 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
1388 base = XEXP (X, 1), index = XEXP (X, 0); \
1389 if (base != 0) \
1390 if (GET_CODE (index) == CONST_INT \
1391 && ((INT_14_BITS (index) \
1392 && (TARGET_SOFT_FLOAT \
1393 || ((MODE) != SFmode && (MODE) != DFmode))) \
1394 || INT_5_BITS (index))) \
1395 goto ADDR; \
1396 } \
1397 else if (GET_CODE (X) == LO_SUM \
1398 && GET_CODE (XEXP (X, 0)) == REG \
1399 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1400 && CONSTANT_P (XEXP (X, 1)) \
1401 && (TARGET_SOFT_FLOAT \
1402 || ((MODE) != SFmode \
1403 && (MODE) != DFmode))) \
1404 goto ADDR; \
1405 else if (GET_CODE (X) == LO_SUM \
1406 && GET_CODE (XEXP (X, 0)) == SUBREG \
1407 && GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG\
1408 && REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0)))\
1409 && CONSTANT_P (XEXP (X, 1)) \
1410 && (TARGET_SOFT_FLOAT \
1411 || ((MODE) != SFmode \
1412 && (MODE) != DFmode))) \
1413 goto ADDR; \
1414 else if (GET_CODE (X) == LABEL_REF \
1415 || (GET_CODE (X) == CONST_INT \
1416 && INT_5_BITS (X))) \
1417 goto ADDR; \
1418 /* Needed for -fPIC */ \
1419 else if (GET_CODE (X) == LO_SUM \
1420 && GET_CODE (XEXP (X, 0)) == REG \
1421 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1422 && GET_CODE (XEXP (X, 1)) == UNSPEC) \
1423 goto ADDR; \
1424 }
1425 \f
1426 /* Try machine-dependent ways of modifying an illegitimate address
1427 to be legitimate. If we find one, return the new, valid address.
1428 This macro is used in only one place: `memory_address' in explow.c.
1429
1430 OLDX is the address as it was before break_out_memory_refs was called.
1431 In some cases it is useful to look at this to decide what needs to be done.
1432
1433 MODE and WIN are passed so that this macro can use
1434 GO_IF_LEGITIMATE_ADDRESS.
1435
1436 It is always safe for this macro to do nothing. It exists to recognize
1437 opportunities to optimize the output. */
1438
1439 extern struct rtx_def *hppa_legitimize_address ();
1440 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1441 { rtx orig_x = (X); \
1442 (X) = hppa_legitimize_address (X, OLDX, MODE); \
1443 if ((X) != orig_x && memory_address_p (MODE, X)) \
1444 goto WIN; }
1445
1446 /* Go to LABEL if ADDR (a legitimate address expression)
1447 has an effect that depends on the machine mode it is used for. */
1448
1449 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1450 if (GET_CODE (ADDR) == PRE_DEC \
1451 || GET_CODE (ADDR) == POST_DEC \
1452 || GET_CODE (ADDR) == PRE_INC \
1453 || GET_CODE (ADDR) == POST_INC) \
1454 goto LABEL
1455 \f
1456 /* Define this macro if references to a symbol must be treated
1457 differently depending on something about the variable or
1458 function named by the symbol (such as what section it is in).
1459
1460 The macro definition, if any, is executed immediately after the
1461 rtl for DECL or other node is created.
1462 The value of the rtl will be a `mem' whose address is a
1463 `symbol_ref'.
1464
1465 The usual thing for this macro to do is to a flag in the
1466 `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
1467 name string in the `symbol_ref' (if one bit is not enough
1468 information).
1469
1470 On the HP-PA we use this to indicate if a symbol is in text or
1471 data space. Also, function labels need special treatment. */
1472
1473 #define TEXT_SPACE_P(DECL)\
1474 (TREE_CODE (DECL) == FUNCTION_DECL \
1475 || (TREE_CODE (DECL) == VAR_DECL \
1476 && TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL) \
1477 && !flag_pic) \
1478 || (*tree_code_type[(int) TREE_CODE (DECL)] == 'c' \
1479 && !(TREE_CODE (DECL) == STRING_CST && flag_writable_strings)))
1480
1481 #define FUNCTION_NAME_P(NAME) \
1482 (*(NAME) == '@' || (*(NAME) == '*' && *((NAME) + 1) == '@'))
1483
1484 #define ENCODE_SECTION_INFO(DECL)\
1485 do \
1486 { if (TEXT_SPACE_P (DECL)) \
1487 { rtx _rtl; \
1488 if (TREE_CODE (DECL) == FUNCTION_DECL \
1489 || TREE_CODE (DECL) == VAR_DECL) \
1490 _rtl = DECL_RTL (DECL); \
1491 else \
1492 _rtl = TREE_CST_RTL (DECL); \
1493 SYMBOL_REF_FLAG (XEXP (_rtl, 0)) = 1; \
1494 if (TREE_CODE (DECL) == FUNCTION_DECL) \
1495 hppa_encode_label (XEXP (DECL_RTL (DECL), 0));\
1496 } \
1497 } \
1498 while (0)
1499
1500 /* Store the user-specified part of SYMBOL_NAME in VAR.
1501 This is sort of inverse to ENCODE_SECTION_INFO. */
1502
1503 #define STRIP_NAME_ENCODING(VAR,SYMBOL_NAME) \
1504 (VAR) = ((SYMBOL_NAME) + ((SYMBOL_NAME)[0] == '*' ? \
1505 1 + (SYMBOL_NAME)[1] == '@'\
1506 : (SYMBOL_NAME)[0] == '@'))
1507
1508 /* Arghh. This is used for stuff in the constant pool; this may include
1509 function addresses on the PA, which during PIC code generation must
1510 reside in the data space. Unfortuantely, there's no way to determine
1511 if a particular label in the constant pool refers to a function address.
1512 So just force everything into the data space during PIC generation. */
1513 #define SELECT_RTX_SECTION(RTX,MODE) \
1514 if (flag_pic) \
1515 data_section (); \
1516 else \
1517 readonly_data_section ();
1518
1519 /* Specify the machine mode that this machine uses
1520 for the index in the tablejump instruction. */
1521 #define CASE_VECTOR_MODE DImode
1522
1523 /* Define this if the tablejump instruction expects the table
1524 to contain offsets from the address of the table.
1525 Do not define this if the table should contain absolute addresses. */
1526 /* #define CASE_VECTOR_PC_RELATIVE */
1527
1528 #define CASE_DROPS_THROUGH
1529 /* Specify the tree operation to be used to convert reals to integers. */
1530 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1531
1532 /* This is the kind of divide that is easiest to do in the general case. */
1533 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1534
1535 /* Define this as 1 if `char' should by default be signed; else as 0. */
1536 #define DEFAULT_SIGNED_CHAR 1
1537
1538 /* Max number of bytes we can move from memory to memory
1539 in one reasonably fast instruction. */
1540 #define MOVE_MAX 8
1541
1542 /* Define if operations between registers always perform the operation
1543 on the full register even if a narrower mode is specified. */
1544 #define WORD_REGISTER_OPERATIONS
1545
1546 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1547 will either zero-extend or sign-extend. The value of this macro should
1548 be the code that says which one of the two operations is implicitly
1549 done, NIL if none. */
1550 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1551
1552 /* Nonzero if access to memory by bytes is slow and undesirable. */
1553 #define SLOW_BYTE_ACCESS 1
1554
1555 /* Do not break .stabs pseudos into continuations. */
1556 #define DBX_CONTIN_LENGTH 0
1557
1558 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1559 is done just by pretending it is already truncated. */
1560 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1561
1562 /* We assume that the store-condition-codes instructions store 0 for false
1563 and some other value for true. This is the value stored for true. */
1564
1565 #define STORE_FLAG_VALUE 1
1566
1567 /* When a prototype says `char' or `short', really pass an `int'. */
1568 #define PROMOTE_PROTOTYPES
1569
1570 /* Specify the machine mode that pointers have.
1571 After generation of rtl, the compiler makes no further distinction
1572 between pointers and any other objects of this machine mode. */
1573 #define Pmode SImode
1574
1575 /* Add any extra modes needed to represent the condition code.
1576
1577 HPPA floating comparisons produce condition codes. */
1578 #define EXTRA_CC_MODES CCFPmode
1579
1580 /* Define the names for the modes specified above. */
1581 #define EXTRA_CC_NAMES "CCFP"
1582
1583 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1584 return the mode to be used for the comparison. For floating-point, CCFPmode
1585 should be used. CC_NOOVmode should be used when the first operand is a
1586 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1587 needed. */
1588 #define SELECT_CC_MODE(OP,X,Y) \
1589 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode) \
1590
1591 /* A function address in a call instruction
1592 is a byte address (for indexing purposes)
1593 so give the MEM rtx a byte's mode. */
1594 #define FUNCTION_MODE SImode
1595
1596 /* Define this if addresses of constant functions
1597 shouldn't be put through pseudo regs where they can be cse'd.
1598 Desirable on machines where ordinary constants are expensive
1599 but a CALL with constant address is cheap. */
1600 #define NO_FUNCTION_CSE
1601
1602 /* Define this to be nonzero if shift instructions ignore all but the low-order
1603 few bits. */
1604 #define SHIFT_COUNT_TRUNCATED 1
1605
1606 /* Use atexit for static constructors/destructors, instead of defining
1607 our own exit function. */
1608 #define HAVE_ATEXIT
1609
1610 /* Compute the cost of computing a constant rtl expression RTX
1611 whose rtx-code is CODE. The body of this macro is a portion
1612 of a switch statement. If the code is computed here,
1613 return it with a return statement. Otherwise, break from the switch. */
1614
1615 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1616 case CONST_INT: \
1617 if (INTVAL (RTX) == 0) return 0; \
1618 if (INT_14_BITS (RTX)) return 1; \
1619 case HIGH: \
1620 return 2; \
1621 case CONST: \
1622 case LABEL_REF: \
1623 case SYMBOL_REF: \
1624 return 4; \
1625 case CONST_DOUBLE: \
1626 if (RTX == CONST0_RTX (DFmode) || RTX == CONST0_RTX (SFmode)\
1627 && OUTER_CODE != SET) \
1628 return 0; \
1629 else \
1630 return 8;
1631
1632 #define ADDRESS_COST(RTX) \
1633 (GET_CODE (RTX) == REG ? 1 : hppa_address_cost (RTX))
1634
1635 /* Compute extra cost of moving data between one register class
1636 and another.
1637
1638 Make moves from SAR so expensive they should never happen. We used to
1639 have 0xffff here, but that generates overflow in rare cases.
1640
1641 Copies involving a FP register and a non-FP register are relatively
1642 expensive because they must go through memory.
1643
1644 Other copies are reasonably cheap. */
1645 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
1646 (CLASS1 == SHIFT_REGS ? 0x100 \
1647 : FP_REG_CLASS_P (CLASS1) && ! FP_REG_CLASS_P (CLASS2) ? 16 \
1648 : FP_REG_CLASS_P (CLASS2) && ! FP_REG_CLASS_P (CLASS1) ? 16 \
1649 : 2)
1650
1651
1652 /* Provide the costs of a rtl expression. This is in the body of a
1653 switch on CODE. The purpose for the cost of MULT is to encourage
1654 `synth_mult' to find a synthetic multiply when reasonable. */
1655
1656 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1657 case MULT: \
1658 return (TARGET_SNAKE && ! TARGET_DISABLE_FPREGS \
1659 && ! TARGET_SOFT_FLOAT \
1660 ? COSTS_N_INSNS (8) : COSTS_N_INSNS (20)); \
1661 case DIV: \
1662 case UDIV: \
1663 case MOD: \
1664 case UMOD: \
1665 return COSTS_N_INSNS (60); \
1666 case PLUS: \
1667 if (GET_CODE (XEXP (X, 0)) == MULT \
1668 && shadd_operand (XEXP (XEXP (X, 0), 1), VOIDmode)) \
1669 return (2 + rtx_cost (XEXP (XEXP (X, 0), 0), OUTER_CODE) \
1670 + rtx_cost (XEXP (X, 1), OUTER_CODE)); \
1671 break;
1672
1673 /* Adjust the cost of dependencies. */
1674
1675 #define ADJUST_COST(INSN,LINK,DEP,COST) \
1676 (COST) = pa_adjust_cost (INSN, LINK, DEP, COST)
1677
1678 /* Handling the special cases is going to get too complicated for a macro,
1679 just call `pa_adjust_insn_length' to do the real work. */
1680 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1681 LENGTH += pa_adjust_insn_length (INSN, LENGTH);
1682
1683 /* Enable a bug fix. (This is for extra caution.) */
1684 #define SHORTEN_WITH_ADJUST_INSN_LENGTH
1685
1686 /* Millicode insns are actually function calls with some special
1687 constraints on arguments and register usage.
1688
1689 Millicode calls always expect their arguments in the integer argument
1690 registers, and always return their result in %r29 (ret1). They
1691 are expected to clobber their arguments, %r1, %r29, and %r31 and
1692 nothing else.
1693
1694 These macros tell reorg that the references to arguments and
1695 register clobbers for millicode calls do not appear to happen
1696 until after the millicode call. This allows reorg to put insns
1697 which set the argument registers into the delay slot of the millicode
1698 call -- thus they act more like traditional CALL_INSNs.
1699
1700 get_attr_type will try to recognize the given insn, so make sure to
1701 filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1702 in particular. */
1703 #define INSN_SETS_ARE_DELAYED(X) \
1704 ((GET_CODE (X) == INSN \
1705 && GET_CODE (PATTERN (X)) != SEQUENCE \
1706 && GET_CODE (PATTERN (X)) != USE \
1707 && GET_CODE (PATTERN (X)) != CLOBBER \
1708 && get_attr_type (X) == TYPE_MILLI))
1709
1710 #define INSN_REFERENCES_ARE_DELAYED(X) \
1711 ((GET_CODE (X) == INSN \
1712 && GET_CODE (PATTERN (X)) != SEQUENCE \
1713 && GET_CODE (PATTERN (X)) != USE \
1714 && GET_CODE (PATTERN (X)) != CLOBBER \
1715 && get_attr_type (X) == TYPE_MILLI))
1716
1717 \f
1718 /* Control the assembler format that we output. */
1719
1720 /* Output at beginning of assembler file. */
1721
1722 #define ASM_FILE_START(FILE) \
1723 do { fprintf (FILE, "\t.SPACE $PRIVATE$\n\
1724 \t.SUBSPA $DATA$,QUAD=1,ALIGN=8,ACCESS=31\n\
1725 \t.SUBSPA $BSS$,QUAD=1,ALIGN=8,ACCESS=31,ZERO,SORT=82\n\
1726 \t.SPACE $TEXT$\n\
1727 \t.SUBSPA $LIT$,QUAD=0,ALIGN=8,ACCESS=44\n\
1728 \t.SUBSPA $CODE$,QUAD=0,ALIGN=8,ACCESS=44,CODE_ONLY\n\
1729 \t.IMPORT $global$,DATA\n\
1730 \t.IMPORT $$dyncall,MILLICODE\n");\
1731 if (profile_flag)\
1732 fprintf (FILE, "\t.IMPORT _mcount, CODE\n");\
1733 if (write_symbols != NO_DEBUG) \
1734 output_file_directive ((FILE), main_input_filename); \
1735 } while (0)
1736
1737 /* Output to assembler file text saying following lines
1738 may contain character constants, extra white space, comments, etc. */
1739
1740 #define ASM_APP_ON ""
1741
1742 /* Output to assembler file text saying following lines
1743 no longer contain unusual constructs. */
1744
1745 #define ASM_APP_OFF ""
1746
1747 /* We don't yet know how to identify GCC to HP-PA machines. */
1748 #define ASM_IDENTIFY_GCC(FILE) fprintf (FILE, "; gcc_compiled.:\n")
1749
1750 /* Output before code. */
1751
1752 /* Supposedly the assembler rejects the command if there is no tab! */
1753 #define TEXT_SECTION_ASM_OP "\t.SPACE $TEXT$\n\t.SUBSPA $CODE$\n"
1754
1755 /* Output before read-only data. */
1756
1757 /* Supposedly the assembler rejects the command if there is no tab! */
1758 #define READONLY_DATA_ASM_OP "\t.SPACE $TEXT$\n\t.SUBSPA $LIT$\n"
1759
1760 #define READONLY_DATA_SECTION readonly_data
1761
1762 /* Output before writable data. */
1763
1764 /* Supposedly the assembler rejects the command if there is no tab! */
1765 #define DATA_SECTION_ASM_OP "\t.SPACE $PRIVATE$\n\t.SUBSPA $DATA$\n"
1766
1767 /* Output before uninitialized data. */
1768
1769 #define BSS_SECTION_ASM_OP "\t.SPACE $PRIVATE$\n\t.SUBSPA $BSS$\n"
1770
1771 /* Define the .bss section for ASM_OUTPUT_LOCAL to use. */
1772
1773 #define EXTRA_SECTIONS in_bss, in_readonly_data
1774
1775 /* FIXME: HPUX ld generates incorrect GOT entries for "T" fixups
1776 which reference data within the $TEXT$ space (for example constant
1777 strings in the $LIT$ subspace).
1778
1779 The assemblers (GAS and HP as) both have problems with handling
1780 the difference of two symbols which is the other correct way to
1781 reference constant data during PIC code generation.
1782
1783 So, there's no way to reference constant data which is in the
1784 $TEXT$ space during PIC generation. Instead place all constant
1785 data into the $PRIVATE$ subspace (this reduces sharing, but it
1786 works correctly). */
1787
1788 #define EXTRA_SECTION_FUNCTIONS \
1789 void \
1790 bss_section () \
1791 { \
1792 if (in_section != in_bss) \
1793 { \
1794 fprintf (asm_out_file, "%s\n", BSS_SECTION_ASM_OP); \
1795 in_section = in_bss; \
1796 } \
1797 } \
1798 void \
1799 readonly_data () \
1800 { \
1801 if (in_section != in_readonly_data) \
1802 { \
1803 if (flag_pic) \
1804 fprintf (asm_out_file, "%s\n", DATA_SECTION_ASM_OP); \
1805 else \
1806 fprintf (asm_out_file, "%s\n", READONLY_DATA_ASM_OP); \
1807 in_section = in_readonly_data; \
1808 } \
1809 }
1810
1811
1812 /* How to refer to registers in assembler output.
1813 This sequence is indexed by compiler's hard-register-number (see above). */
1814
1815 #define REGISTER_NAMES \
1816 {"%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
1817 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
1818 "%r16", "%r17", "%r18", "%r19", "%r20", "%r21", "%r22", "%r23", \
1819 "%r24", "%r25", "%r26", "%r27", "%r28", "%r29", "%r30", "%r31", \
1820 "%fr4", "%fr4R", "%fr5", "%fr5R", "%fr6", "%fr6R", "%fr7", "%fr7R", \
1821 "%fr8", "%fr8R", "%fr9", "%fr9R", "%fr10", "%fr10R", "%fr11", "%fr11R", \
1822 "%fr12", "%fr12R", "%fr13", "%fr13R", "%fr14", "%fr14R", "%fr15", "%fr15R", \
1823 "%fr16", "%fr16R", "%fr17", "%fr17R", "%fr18", "%fr18R", "%fr19", "%fr19R", \
1824 "%fr20", "%fr20R", "%fr21", "%fr21R", "%fr22", "%fr22R", "%fr23", "%fr23R", \
1825 "%fr24", "%fr24R", "%fr25", "%fr25R", "%fr26", "%fr26R", "%fr27", "%fr27R", \
1826 "%fr28", "%fr28R", "%fr29", "%fr29R", "%fr30", "%fr30R", "%fr31", "%fr31R", \
1827 "SAR"}
1828
1829 #define ADDITIONAL_REGISTER_NAMES \
1830 {{"%fr4L",32}, {"%fr5L",34}, {"%fr6L",36}, {"%fr7L",38}, \
1831 {"%fr8L",40}, {"%fr9L",42}, {"%fr10L",44}, {"%fr11L",46}, \
1832 {"%fr12L",48}, {"%fr13L",50}, {"%fr14L",52}, {"%fr15L",54}, \
1833 {"%fr16L",56}, {"%fr17L",58}, {"%fr18L",60}, {"%fr19L",62}, \
1834 {"%fr20L",64}, {"%fr21L",66}, {"%fr22L",68}, {"%fr23L",70}, \
1835 {"%fr24L",72}, {"%fr25L",74}, {"%fr26L",76}, {"%fr27L",78}, \
1836 {"%fr28L",80}, {"%fr29L",82}, {"%fr30L",84}, {"%fr31R",86}, \
1837 {"%cr11",88}}
1838
1839 /* How to renumber registers for dbx and gdb.
1840
1841 Registers 0 - 31 remain unchanged.
1842
1843 Registers 32 - 87 are mapped to 72 - 127
1844
1845 Register 88 is mapped to 32. */
1846
1847 #define DBX_REGISTER_NUMBER(REGNO) \
1848 ((REGNO) <= 31 ? (REGNO) : \
1849 ((REGNO) > 31 && (REGNO) <= 87 ? (REGNO) + 40 : 32))
1850
1851 /* This is how to output the definition of a user-level label named NAME,
1852 such as the label on a static function or variable NAME. */
1853
1854 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1855 do { assemble_name (FILE, NAME); \
1856 fputc ('\n', FILE); } while (0)
1857
1858 /* This is how to output a command to make the user-level label named NAME
1859 defined for reference from other files. */
1860
1861 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1862 do { fputs ("\t.IMPORT ", FILE); \
1863 assemble_name (FILE, NAME); \
1864 if (FUNCTION_NAME_P (NAME)) \
1865 fputs (",CODE\n", FILE); \
1866 else \
1867 fputs (",DATA\n", FILE); \
1868 } while (0)
1869
1870 /* The bogus HP assembler requires ALL external references to be
1871 "imported", even library calls. They look a bit different, so
1872 here's this macro. */
1873
1874 #define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, RTL) \
1875 do { fputs ("\t.IMPORT ", FILE); \
1876 assemble_name (FILE, XSTR ((RTL), 0)); \
1877 fputs (",CODE\n", FILE); \
1878 } while (0)
1879
1880 #define ASM_GLOBALIZE_LABEL(FILE, NAME) \
1881 do { \
1882 /* We only handle DATA objects here, functions are globalized in \
1883 ASM_DECLARE_FUNCTION_NAME. */ \
1884 if (! FUNCTION_NAME_P (NAME)) \
1885 { \
1886 fputs ("\t.EXPORT ", FILE); \
1887 assemble_name (FILE, NAME); \
1888 fputs (",DATA\n", FILE); \
1889 } \
1890 } while (0)
1891
1892 /* This is how to output a reference to a user-level label named NAME.
1893 `assemble_name' uses this. */
1894
1895 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1896 fprintf ((FILE), "%s", (NAME) + (FUNCTION_NAME_P (NAME) ? 1 : 0))
1897
1898 /* This is how to output an internal numbered label where
1899 PREFIX is the class of label and NUM is the number within the class. */
1900
1901 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1902 {fprintf (FILE, "%c$%s%04d\n", (PREFIX)[0], (PREFIX) + 1, NUM);}
1903
1904 /* This is how to store into the string LABEL
1905 the symbol_ref name of an internal numbered label where
1906 PREFIX is the class of label and NUM is the number within the class.
1907 This is suitable for output with `assemble_name'. */
1908
1909 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1910 sprintf (LABEL, "*%c$%s%04d", (PREFIX)[0], (PREFIX) + 1, NUM)
1911
1912 /* This is how to output an assembler line defining a `double' constant. */
1913
1914 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1915 do { long l[2]; \
1916 REAL_VALUE_TO_TARGET_DOUBLE (VALUE, l); \
1917 fprintf (FILE, "\t.word 0x%lx\n\t.word 0x%lx\n", l[0], l[1]); \
1918 } while (0)
1919
1920 /* This is how to output an assembler line defining a `float' constant. */
1921
1922 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1923 do { long l; \
1924 REAL_VALUE_TO_TARGET_SINGLE (VALUE, l); \
1925 fprintf (FILE, "\t.word 0x%lx\n", l); \
1926 } while (0)
1927
1928 /* This is how to output an assembler line defining an `int' constant. */
1929
1930 #define ASM_OUTPUT_INT(FILE,VALUE) \
1931 { fprintf (FILE, "\t.word "); \
1932 if (function_label_operand (VALUE, VOIDmode) \
1933 && !TARGET_PORTABLE_RUNTIME) \
1934 fprintf (FILE, "P%%"); \
1935 output_addr_const (FILE, (VALUE)); \
1936 fprintf (FILE, "\n");}
1937
1938 /* Likewise for `short' and `char' constants. */
1939
1940 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1941 ( fprintf (FILE, "\t.half "), \
1942 output_addr_const (FILE, (VALUE)), \
1943 fprintf (FILE, "\n"))
1944
1945 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1946 ( fprintf (FILE, "\t.byte "), \
1947 output_addr_const (FILE, (VALUE)), \
1948 fprintf (FILE, "\n"))
1949
1950 /* This is how to output an assembler line for a numeric constant byte. */
1951
1952 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1953 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1954
1955 #define ASM_OUTPUT_ASCII(FILE, P, SIZE) \
1956 output_ascii ((FILE), (P), (SIZE))
1957
1958 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
1959 #define ASM_OUTPUT_REG_POP(FILE,REGNO)
1960 /* This is how to output an element of a case-vector that is absolute.
1961 Note that this method makes filling these branch delay slots
1962 impossible. */
1963
1964 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1965 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1966
1967 /* Jump tables are executable code and live in the TEXT section on the PA. */
1968 #define JUMP_TABLES_IN_TEXT_SECTION
1969
1970 /* This is how to output an element of a case-vector that is relative.
1971 This must be defined correctly as it is used when generating PIC code.
1972
1973 I belive it safe to use the same definition as ASM_OUTPUT_ADDR_VEC_ELT
1974 on the PA since ASM_OUTPUT_ADDR_VEC_ELT uses pc-relative jump instructions
1975 rather than a table of absolute addresses. */
1976
1977 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1978 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1979
1980 /* This is how to output an assembler line
1981 that says to advance the location counter
1982 to a multiple of 2**LOG bytes. */
1983
1984 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1985 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1986
1987 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1988 fprintf (FILE, "\t.blockz %d\n", (SIZE))
1989
1990 /* This says how to output an assembler line to define a global common symbol
1991 with size SIZE (in bytes) and alignment ALIGN (in bits). */
1992
1993 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGNED) \
1994 { bss_section (); \
1995 assemble_name ((FILE), (NAME)); \
1996 fputs ("\t.comm ", (FILE)); \
1997 fprintf ((FILE), "%d\n", MAX ((SIZE), ((ALIGNED) / BITS_PER_UNIT)));}
1998
1999 /* This says how to output an assembler line to define a local common symbol
2000 with size SIZE (in bytes) and alignment ALIGN (in bits). */
2001
2002 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
2003 { bss_section (); \
2004 fprintf ((FILE), "\t.align %d\n", ((ALIGNED) / BITS_PER_UNIT)); \
2005 assemble_name ((FILE), (NAME)); \
2006 fprintf ((FILE), "\n\t.block %d\n", (SIZE));}
2007
2008 /* Store in OUTPUT a string (made with alloca) containing
2009 an assembler-name for a local static variable named NAME.
2010 LABELNO is an integer which is different for each call. */
2011
2012 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2013 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 12), \
2014 sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
2015
2016 /* Define the parentheses used to group arithmetic operations
2017 in assembler code. */
2018
2019 #define ASM_OPEN_PAREN "("
2020 #define ASM_CLOSE_PAREN ")"
2021
2022 /* All HP assemblers use "!" to separate logical lines. */
2023 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == '!')
2024
2025 /* Define results of standard character escape sequences. */
2026 #define TARGET_BELL 007
2027 #define TARGET_BS 010
2028 #define TARGET_TAB 011
2029 #define TARGET_NEWLINE 012
2030 #define TARGET_VT 013
2031 #define TARGET_FF 014
2032 #define TARGET_CR 015
2033
2034 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2035 ((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^')
2036
2037 /* Print operand X (an rtx) in assembler syntax to file FILE.
2038 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2039 For `%' followed by punctuation, CODE is the punctuation and X is null.
2040
2041 On the HP-PA, the CODE can be `r', meaning this is a register-only operand
2042 and an immediate zero should be represented as `r0'.
2043
2044 Several % codes are defined:
2045 O an operation
2046 C compare conditions
2047 N extract conditions
2048 M modifier to handle preincrement addressing for memory refs.
2049 F modifier to handle preincrement addressing for fp memory refs */
2050
2051 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2052
2053 \f
2054 /* Print a memory address as an operand to reference that memory location. */
2055
2056 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2057 { register rtx addr = ADDR; \
2058 register rtx base; \
2059 int offset; \
2060 switch (GET_CODE (addr)) \
2061 { \
2062 case REG: \
2063 fprintf (FILE, "0(0,%s)", reg_names [REGNO (addr)]); \
2064 break; \
2065 case PLUS: \
2066 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
2067 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1); \
2068 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
2069 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0); \
2070 else \
2071 abort (); \
2072 fprintf (FILE, "%d(0,%s)", offset, reg_names [REGNO (base)]); \
2073 break; \
2074 case LO_SUM: \
2075 if (flag_pic == 0 || !symbolic_operand (XEXP (addr, 1))) \
2076 fputs ("R'", FILE); \
2077 else if (flag_pic == 1) \
2078 abort (); \
2079 else if (flag_pic == 2) \
2080 fputs ("RT'", FILE); \
2081 output_global_address (FILE, XEXP (addr, 1)); \
2082 fputs ("(", FILE); \
2083 output_operand (XEXP (addr, 0), 0); \
2084 fputs (")", FILE); \
2085 break; \
2086 case CONST_INT: \
2087 fprintf (FILE, "%d(0,0)", INTVAL (addr)); \
2088 break; \
2089 default: \
2090 output_addr_const (FILE, addr); \
2091 }}
2092
2093 \f
2094 /* Define functions in pa.c and used in insn-output.c. */
2095
2096 extern char *output_and ();
2097 extern char *output_ior ();
2098 extern char *output_move_double ();
2099 extern char *output_fp_move_double ();
2100 extern char *output_block_move ();
2101 extern char *output_cbranch ();
2102 extern char *output_bb ();
2103 extern char *output_dbra ();
2104 extern char *output_movb ();
2105 extern char *output_return ();
2106 extern char *output_call ();
2107 extern char *output_mul_insn ();
2108 extern char *output_div_insn ();
2109 extern char *output_mod_insn ();
2110 extern char *singlemove_string ();
2111 extern void output_arg_descriptor ();
2112 extern void output_global_address ();
2113 extern struct rtx_def *legitimize_pic_address ();
2114 extern struct rtx_def *gen_cmp_fp ();
2115 extern void hppa_encode_label ();
2116
2117 extern struct rtx_def *hppa_save_pic_table_rtx;
2118
2119 #if 0
2120 #define PREDICATE_CODES \
2121 {"reg_or_0_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2122 {"reg_or_cint_move_operand", {SUBREG, REG, CONST_INT}}, \
2123 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
2124 {"arith32_operand", {SUBREG, REG, CONST_INT}}, \
2125 {"arith11_operand", {SUBREG, REG, CONST_INT}}, \
2126 {"arith5_operand", {SUBREG, REG, CONST_INT}}, \
2127 {"pre_cint_operand", {CONST_INT}}, \
2128 {"post_cint_operand", {CONST_INT}}, \
2129 {"int5_operand", {CONST_INT}}, \
2130 {"uint5_operand", {CONST_INT}}, \
2131 {"uint32_operand", {CONST_INT}}, \
2132 {"int11_operand", {CONST_INT}}, \
2133 {"and_operand", {SUBREG, REG, CONST_INT}}, \
2134 {"ior_operand", {CONST_INT}}, \
2135 {"lhs_lshift_operand", {SUBREG, REG, CONST_INT}}, \
2136 {"lhs_lshift_cint_operand", {CONST_INT}}, \
2137 {"plus_xor_ior_operator", {PLUS, XOR, IOR}}, \
2138 {"shadd_operand", {CONST_INT}}, \
2139 {"eq_neq_comparison_operator", {EQ, NE}}, \
2140 {"movb_comparison_operator", {EQ, NE, LT, GE}}, \
2141 {"pc_or_label_operand", {LABEL_REF, PC}}, \
2142 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
2143 {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \
2144 {"move_operand", {SUBREG, REG, CONST_INT, MEM}}, \
2145 {"pic_label_operand", {LABEL_REF, CONST}}, \
2146 {"function_label_operand", {SYMBOL_REF}}, \
2147 {"reg_or_0_or_nonsymb_mem_operand", {SUBREG, REG, CONST_INT, \
2148 CONST_DOUBLE, MEM}}, \
2149 {"div_operand", {REG, CONST_INT}}, \
2150 {"call_operand_address", {SYMBOL_REF, LABEL_REF, CONST_INT, \
2151 CONST_DOUBLE, CONST, HIGH}},
2152 #endif
2153
2154 #define DO_GLOBAL_DTORS_BODY \
2155 do { \
2156 extern void __gcc_plt_call (); \
2157 volatile int reference = &__gcc_plt_call; \
2158 func_ptr *p; \
2159 for (p = __DTOR_LIST__ + 1; *p; ) \
2160 (*p++) (); \
2161 } while (0)
2162
This page took 0.142517 seconds and 4 git commands to generate.