1 /* Definitions of target machine for GNU compiler, for the HP Spectrum.
2 Copyright (C) 1992, 1993 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@mcc.com)
4 and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
5 Software Science at the University of Utah.
7 This file is part of GNU CC.
9 GNU CC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 1, or (at your option)
14 GNU CC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GNU CC; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
23 enum cmp_type
/* comparison type */
25 CMP_SI
, /* compare integers */
26 CMP_SF
, /* compare single precision floats */
27 CMP_DF
, /* compare double precision floats */
28 CMP_MAX
/* max comparison type */
31 /* Print subsidiary information on the compiler version in use. */
33 #define TARGET_VERSION fprintf (stderr, " (hppa)");
35 /* Run-time compilation parameters selecting different hardware subsets. */
37 extern int target_flags
;
39 /* compile code for HP-PA 1.1 ("Snake") */
41 #define TARGET_SNAKE (target_flags & 1)
43 /* Disable all FP registers (they all become fixed). This may be necessary
44 for compiling kernels which perform lazy context switching of FP regs.
45 Note if you use this option and try to perform floating point operations
46 the compiler will abort! */
48 #define TARGET_DISABLE_FPREGS (target_flags & 2)
50 /* Force gcc to only use instructions which are safe when compiling kernels.
51 Specifically, avoid using add instructions with dp (r27) as an argument.
52 Use addil instructions instead. Doing so avoids a nasty bug in the
53 HPUX linker. When HP fixes their linker take this option out. */
55 #define TARGET_KERNEL (target_flags & 4)
57 /* Allow unconditional jumps in the delay slots of call instructions. */
58 #define TARGET_JUMP_IN_DELAY (target_flags & 8)
60 /* Force all function calls to indirect addressing via a register. This
61 avoids lossage when the function is very far away from the current PC.
63 ??? What about simple jumps, they can suffer from the same problem.
64 Would require significant surgery in pa.md. */
66 #define TARGET_LONG_CALLS (target_flags & 16)
68 /* Disable indexed addressing modes. */
70 #define TARGET_DISABLE_INDEXING (target_flags & 32)
72 /* Force a colon to be tacked onto the end of local and global
73 labels. An option because the HP assembler croaks on them. */
75 #define TARGET_TRAILING_COLON (target_flags & 64)
77 /* Emit directives only understood by GAS. This allows parameter
78 relocations to work for static functions. There is no way
79 to make them work the HP assembler at this time. */
81 #define TARGET_GAS (target_flags & 128)
83 /* Macro to define tables used to set the flags.
84 This is a list in braces of pairs in braces,
85 each pair being { "NAME", VALUE }
86 where VALUE is the bits to set or minus the bits to clear.
87 An empty string NAME is used to identify the default VALUE. */
89 #define TARGET_SWITCHES \
92 {"pa-risc-1-0", -1}, \
94 {"disable-fpregs", 2}, \
95 {"no-disable-fpregs", 2}, \
98 {"jump-in-delay", 8}, \
99 {"no-jump-in-delay", -8}, \
100 {"long-calls", 16}, \
101 {"no-long-calls", -16}, \
102 {"disable-indexing", 32}, \
103 {"no-disable-indexing", -32},\
104 {"trailing-colon", 64}, \
105 {"no-trailing-colon", -64}, \
108 { "", TARGET_DEFAULT}}
110 #ifndef TARGET_DEFAULT
111 #define TARGET_DEFAULT 128 /* TARGET_GAS + TARGET_JUMP_IN_DELAY */
114 #define DBX_DEBUGGING_INFO
115 #define DEFAULT_GDB_EXTENSIONS 1
117 #if (TARGET_DEFAULT & 1) == 0
118 #define CPP_SPEC "%{msnake:-D__hp9000s700 -D_PA_RISC1_1}\
119 %{mpa-risc-1-1:-D__hp9000s700 -D_PA_RISC1_1}"
121 #define CPP_SPEC "%{!mpa-risc-1-0:%{!mnosnake:-D__hp9000s700 -D_PA_RISC1_1}}"
124 /* Defines for a K&R CC */
126 #define CC1_SPEC "%{pg:} %{p:}"
128 #define LINK_SPEC "-u main"
130 /* Allow $ in identifiers. */
131 #define DOLLARS_IN_IDENTIFIERS 2
133 /* Make gcc agree with <machine/ansi.h> */
135 #define SIZE_TYPE "unsigned int"
136 #define PTRDIFF_TYPE "int"
137 #define WCHAR_TYPE "short unsigned int"
138 #define WCHAR_TYPE_SIZE 16
140 /* Sometimes certain combinations of command options do not make sense
141 on a particular target machine. You can define a macro
142 `OVERRIDE_OPTIONS' to take account of this. This macro, if
143 defined, is executed once just after all the command options have
146 On the PA, it is used to explicitly warn the user that -fpic and -fPIC
149 #define OVERRIDE_OPTIONS \
152 warning ("-fpic and -fPIC are not supported on the PA."); \
155 /* Omit frame pointer at high optimization levels. */
157 #define OPTIMIZATION_OPTIONS(OPTIMIZE) \
160 flag_omit_frame_pointer = 1; \
163 /* Names to predefine in the preprocessor for this target machine. */
165 #define CPP_PREDEFINES "-Dhppa -Dhp9000s800 -D__hp9000s800 -Dhp9k8 -Dunix -D_HPUX_SOURCE -Dhp9000 -Dhp800 -Dspectrum -DREVARGV"
167 /* target machine storage layout */
169 /* Define this if most significant bit is lowest numbered
170 in instructions that operate on numbered bit-fields. */
171 #define BITS_BIG_ENDIAN 1
173 /* Define this if most significant byte of a word is the lowest numbered. */
174 /* That is true on the HP-PA. */
175 #define BYTES_BIG_ENDIAN 1
177 /* Define this if most significant word of a multiword number is lowest
179 /* For the HP-PA we can decide arbitrarily
180 since there are no machine instructions for them. */
181 #define WORDS_BIG_ENDIAN 1
183 /* number of bits in an addressable storage unit */
184 #define BITS_PER_UNIT 8
186 /* Width in bits of a "word", which is the contents of a machine register.
187 Note that this is not necessarily the width of data type `int';
188 if using 16-bit ints on a 68000, this would still be 32.
189 But on a machine with 16-bit registers, this would be 16. */
190 #define BITS_PER_WORD 32
192 /* Width of a word, in units (bytes). */
193 #define UNITS_PER_WORD 4
195 /* Width in bits of a pointer.
196 See also the macro `Pmode' defined below. */
197 #define POINTER_SIZE 32
199 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
200 #define PARM_BOUNDARY 32
202 /* Largest alignment required for any stack parameter, in bits.
203 Don't define this if it is equal to PARM_BOUNDARY */
204 #define MAX_PARM_BOUNDARY 64
206 /* Boundary (in *bits*) on which stack pointer should be aligned. */
207 #define STACK_BOUNDARY (TARGET_SNAKE ? 512 : 64)
209 /* Allocation boundary (in *bits*) for the code of a function. */
210 #define FUNCTION_BOUNDARY 32
212 /* Alignment of field after `int : 0' in a structure. */
213 #define EMPTY_FIELD_BOUNDARY 32
215 /* Every structure's size must be a multiple of this. */
216 #define STRUCTURE_SIZE_BOUNDARY 8
218 /* A bitfield declared as `int' forces `int' alignment for the struct. */
219 #define PCC_BITFIELD_TYPE_MATTERS 1
221 /* No data type wants to be aligned rounder than this. */
222 #define BIGGEST_ALIGNMENT 64
224 /* Get around hp-ux assembler bug, and make strcpy of constants fast. */
225 #define CONSTANT_ALIGNMENT(CODE, TYPEALIGN) \
226 ((TYPEALIGN) < 32 ? 32 : (TYPEALIGN))
228 /* Make arrays of chars word-aligned for the same reasons. */
229 #define DATA_ALIGNMENT(TYPE, ALIGN) \
230 (TREE_CODE (TYPE) == ARRAY_TYPE \
231 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
232 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
235 /* Set this nonzero if move instructions will actually fail to work
236 when given unaligned data. */
237 #define STRICT_ALIGNMENT 1
239 /* Generate calls to memcpy, memcmp and memset. */
240 #define TARGET_MEM_FUNCTIONS
242 /* Standard register usage. */
244 /* Number of actual hardware registers.
245 The hardware registers are assigned numbers for the compiler
246 from 0 to just below FIRST_PSEUDO_REGISTER.
247 All registers that the compiler knows about must be given numbers,
248 even those that are not normally considered general registers.
250 HP-PA 1.0 has 32 fullword registers and 16 floating point
251 registers. The floating point registers hold either word or double
254 16 additional registers are reserved.
256 HP-PA 1.1 has 32 fullword registers and 32 floating point
257 registers. However, the floating point registers behave
258 differently: the left and right halves of registers are addressable
259 as 32 bit registers. So, we will set things up like the 68k which
260 has different fp units: define separate register sets for the 1.0
263 #define FIRST_PSEUDO_REGISTER 101 /* 32 + 12 1.0 regs + 56 1.1 regs + */
266 /* 1 for registers that have pervasive standard uses
267 and are not available for the register allocator.
269 On the HP-PA, these are:
270 Reg 0 = 0 (hardware). However, 0 is used for condition code,
272 Reg 1 = ADDIL target/Temporary (hardware).
273 Reg 2 = Return Pointer
274 Reg 3 = Preserved Register (Gnu). Frame Pointer (> 8k frames HP.)
275 Reg 4 = Frame Pointer (Gnu)
276 Reg 5-18 = Preserved Registers
277 Reg 19 = Linkage Table Register in HPUX 8.0 shared library scheme.
278 Reg 20-22 = Temporary Registers
279 Reg 23-26 = Temporary/Parameter Registers
280 Reg 27 = Global Data Pointer (hp)
281 Reg 28 = Temporary/???/Return Value register
282 Reg 29 = Temporary/Static Chain/Return Value register
283 Reg 30 = stack pointer
284 Reg 31 = Temporary/Millicode Return Pointer (hp)
286 Freg 0-3 = Status Registers -- Not known to the compiler.
287 Freg 4-7 = Arguments/Return Value
288 Freg 8-11 = Temporary Registers
289 Freg 12-15 = Preserved Registers
291 Freg 16-31 = Reserved
293 On the Snake, fp regs are
295 Freg 0-3 = Status Registers -- Not known to the compiler.
296 Freg 4L-7R = Arguments/Return Value
297 Freg 8L-11R = Temporary Registers
298 Freg 12L-21R = Preserved Registers
299 Freg 22L-31R = Temporary Registers
304 #define FIXED_REGISTERS \
305 {0, 0, 0, 0, 0, 0, 0, 0, \
306 0, 0, 0, 0, 0, 0, 0, 0, \
307 0, 0, 0, 0, 0, 0, 0, 0, \
308 0, 0, 0, 1, 0, 0, 1, 0, \
309 /* 1.0 fp registers */ \
311 0, 0, 0, 0, 0, 0, 0, 0, \
312 /* 1.1 fp registers */ \
313 0, 0, 0, 0, 0, 0, 0, 0, \
314 0, 0, 0, 0, 0, 0, 0, 0, \
315 0, 0, 0, 0, 0, 0, 0, 0, \
316 0, 0, 0, 0, 0, 0, 0, 0, \
317 0, 0, 0, 0, 0, 0, 0, 0, \
318 0, 0, 0, 0, 0, 0, 0, 0, \
319 0, 0, 0, 0, 0, 0, 0, 0, \
322 /* 1 for registers not available across function calls.
323 These must include the FIXED_REGISTERS and also any
324 registers that can be used without being saved.
325 The latter must include the registers where values are returned
326 and the register where structure-value addresses are passed.
327 Aside from that, you can include as many other registers as you like. */
328 #define CALL_USED_REGISTERS \
329 {1, 1, 1, 0, 0, 0, 0, 0, \
330 0, 0, 0, 0, 0, 0, 0, 0, \
331 0, 0, 0, 1, 1, 1, 1, 1, \
332 1, 1, 1, 1, 1, 1, 1, 1, \
333 /* 1.0 fp registers */ \
335 1, 1, 1, 1, 0, 0, 0, 0, \
336 /* 1.1 fp registers */ \
337 1, 1, 1, 1, 1, 1, 1, 1, \
338 1, 1, 1, 1, 1, 1, 1, 1, \
339 0, 0, 0, 0, 0, 0, 0, 0, \
340 0, 0, 0, 0, 0, 0, 0, 0, \
341 0, 0, 0, 0, 1, 1, 1, 1, \
342 1, 1, 1, 1, 1, 1, 1, 1, \
343 1, 1, 1, 1, 1, 1, 1, 1, \
346 /* Make sure everything's fine if we *don't* have a given processor.
347 This assumes that putting a register in fixed_regs will keep the
348 compiler's mitts completely off it. We don't bother to zero it out
349 of register classes. */
351 #define CONDITIONAL_REGISTER_USAGE \
357 COPY_HARD_REG_SET (x, reg_class_contents[(int)SNAKE_FP_REGS]);\
358 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
359 if (TEST_HARD_REG_BIT (x, i)) \
360 fixed_regs[i] = call_used_regs[i] = 1; \
362 else if (TARGET_DISABLE_FPREGS) \
364 COPY_HARD_REG_SET (x, reg_class_contents[(int)FP_REGS]);\
365 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
366 if (TEST_HARD_REG_BIT (x, i)) \
367 fixed_regs[i] = call_used_regs[i] = 1; \
368 COPY_HARD_REG_SET (x, reg_class_contents[(int)SNAKE_FP_REGS]);\
369 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
370 if (TEST_HARD_REG_BIT (x, i)) \
371 fixed_regs[i] = call_used_regs[i] = 1; \
375 COPY_HARD_REG_SET (x, reg_class_contents[(int)FP_REGS]); \
376 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
377 if (TEST_HARD_REG_BIT (x, i)) \
378 fixed_regs[i] = call_used_regs[i] = 1; \
381 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
384 /* Allocated the call used registers first. This should minimize
385 the number of registers that need to be saved (as call used
386 registers will generally not be allocated across a call).
388 Experimentation has shown slightly better results by allocating
389 FP registers first. */
391 #define REG_ALLOC_ORDER \
392 /* 1.0 caller-saved fp regs. */ \
393 {36, 37, 38, 39, 32, 33, 34, 35, \
394 /* 1.1 caller-saved fp regs. */ \
395 52, 53, 54, 55, 56, 57, 58, 59, \
396 80, 81, 82, 83, 84, 85, 86, 87, \
397 88, 89, 90, 91, 92, 93, 94, 95, \
399 44, 45, 46, 47, 48, 49, 50, 51, \
400 /* caller-saved general regs. */ \
401 19, 20, 21, 22, 23, 24, 25, 26, \
403 /* 1.0 callee-saved fp regs. */ \
405 /* 1.1 callee-saved fp regs. */ \
406 60, 61, 62, 63, 64, 65, 66, 67, \
407 68, 69, 70, 71, 72, 73, 74, 75, \
409 /* callee-saved general regs. */ \
410 3, 4, 5, 6, 7, 8, 9, 10, \
411 11, 12, 13, 14, 15, 16, 17, 18, \
412 /* special registers. */ \
416 /* Return number of consecutive hard regs needed starting at reg REGNO
417 to hold something of mode MODE.
418 This is ordinarily the length in words of a value of mode MODE
419 but can be less for certain modes in special long registers.
421 On the HP-PA, ordinary registers hold 32 bits worth;
422 The floating point registers are 64 bits wide. Snake fp regs are 32
424 #define HARD_REGNO_NREGS(REGNO, MODE) \
425 (((REGNO) < 32 || (REGNO) >= 44) \
426 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) : 1)
428 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
429 On the HP-PA, the cpu registers can hold any mode. We
430 force this to be an even register is it cannot hold the full mode. */
431 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
432 ((REGNO) == 0 ? (MODE) == CCmode || (MODE) == CCFPmode \
433 : (REGNO) < 32 ? ((GET_MODE_SIZE (MODE) <= 4) ? 1 : ((REGNO) & 1) == 0)\
434 : (REGNO) < 44 ? (GET_MODE_SIZE (MODE) <= 4 \
435 || (GET_MODE_SIZE (MODE) > 4 \
436 && GET_MODE_CLASS (MODE) == MODE_FLOAT)) \
437 : (GET_MODE_SIZE (MODE) > 4 ? ((REGNO) & 1) == 0 \
440 /* Value is 1 if it is a good idea to tie two pseudo registers
441 when one has mode MODE1 and one has mode MODE2.
442 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
443 for any hard reg, then this must be 0 for correct output. */
444 #define MODES_TIEABLE_P(MODE1, MODE2) \
445 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
447 /* Specify the registers used for certain standard purposes.
448 The values of these macros are register numbers. */
450 /* The HP-PA pc isn't overloaded on a register that the compiler knows about. */
451 /* #define PC_REGNUM */
453 /* Register to use for pushing function arguments. */
454 #define STACK_POINTER_REGNUM 30
456 /* Base register for access to local variables of the function. */
457 #define FRAME_POINTER_REGNUM 4
459 /* Value should be nonzero if functions must have frame pointers. */
460 #define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
463 /* C statement to store the difference between the frame pointer
464 and the stack pointer values immediately after the function prologue.
466 Note, we always pretend that this is a leaf function because if
467 it's not, there's no point in trying to eliminate the
468 frame pointer. If it is a leaf function, we guessed right! */
469 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
470 do {(VAR) = - compute_frame_size (get_frame_size (), 0);} while (0)
472 /* Base register for access to arguments of the function. */
473 #define ARG_POINTER_REGNUM 4
475 /* Register in which static-chain is passed to a function. */
477 #define STATIC_CHAIN_REGNUM 29
479 /* Register which holds offset table for position-independent
482 #define PIC_OFFSET_TABLE_REGNUM 19
484 #define INITIALIZE_PIC initialize_pic ()
485 #define FINALIZE_PIC finalize_pic ()
487 /* Register in which address to store a structure value
488 is passed to a function. */
489 #define STRUCT_VALUE_REGNUM 28
491 /* Define the classes of registers for register constraints in the
492 machine description. Also define ranges of constants.
494 One of the classes must always be named ALL_REGS and include all hard regs.
495 If there is more than one class, another class must be named NO_REGS
496 and contain no registers.
498 The name GENERAL_REGS must be the name of a class (or an alias for
499 another name such as ALL_REGS). This is the class of registers
500 that is allowed by "g" or "r" in a register constraint.
501 Also, registers outside this class are allocated only when
502 instructions express preferences for them.
504 The classes must be numbered in nondecreasing order; that is,
505 a larger-numbered class must never be contained completely
506 in a smaller-numbered class.
508 For any two classes, it is very desirable that there be another
509 class that represents their union. */
511 /* The HP-PA has four kinds of registers: general regs, 1.0 fp regs,
512 1.1 fp regs, and the high 1.1 fp regs, to which the operands of
513 fmpyadd and fmpysub are restricted.
515 FP_OR_SNAKE_FP_REGS is for reload_{in,out}di only and isn't used
518 enum reg_class
{ NO_REGS
, R1_REGS
, GENERAL_REGS
, FP_REGS
, GENERAL_OR_FP_REGS
,
519 HI_SNAKE_FP_REGS
, SNAKE_FP_REGS
, GENERAL_OR_SNAKE_FP_REGS
,
520 FP_OR_SNAKE_FP_REGS
, NON_SHIFT_REGS
, SHIFT_REGS
, ALL_REGS
, LIM_REG_CLASSES
};
522 #define N_REG_CLASSES (int) LIM_REG_CLASSES
524 /* Give names of register classes as strings for dump file. */
526 #define REG_CLASS_NAMES \
527 { "NO_REGS", "R1_REGS", "GENERAL_REGS", "FP_REGS", "GENERAL_OR_FP_REGS",\
528 "HI_SNAKE_FP_REGS", "SNAKE_FP_REGS", "GENERAL_OR_SNAKE_FP_REGS",\
529 "FP_OR_SNAKE_FP_REGS", "NON_SHIFT_REGS", "SHIFT_REGS", "ALL_REGS"}
531 /* Define which registers fit in which classes.
532 This is an initializer for a vector of HARD_REG_SET
533 of length N_REG_CLASSES. Register 0, the "condition code" register,
536 #define REG_CLASS_CONTENTS \
537 { {0, 0, 0, 0}, /* NO_REGS */ \
538 {0x2, 0, 0, 0}, /* R1_REGS */ \
539 {-2, 0, 0, 0}, /* GENERAL_REGS */ \
540 {0, 0xfff, 0, 0}, /* FP_REGS */ \
541 {-2, 0xfff, 0, 0}, /* GENERAL_OR_FP_REGS */\
542 {0, 0, 0xfffffff0, 0xf}, /* HI_SNAKE_FP_REGS */ \
543 {0, 0xfffff000, ~0, 0xf}, /* SNAKE_FP_REGS */ \
544 {-2, 0xfffff000, ~0, 0xf}, /* GENERAL_OR_SNAKE_FP_REGS */\
545 {0, ~0, ~0, 0xf}, /* FP_OR_SNAKE_FP_REGS */\
546 {-2, ~0, ~0, ~0x10}, /* NON_SHIFT_REGS */ \
547 {0, 0, 0, 0x10}, /* SHIFT_REGS */ \
548 {-2, ~0, ~0, 0x1f}} /* ALL_REGS */
550 /* The same information, inverted:
551 Return the class number of the smallest class containing
552 reg number REGNO. This could be a conditional expression
553 or could index an array. */
555 #define REGNO_REG_CLASS(REGNO) \
556 ((REGNO) == 0 ? NO_REGS \
557 : (REGNO) == 1 ? R1_REGS \
558 : (REGNO) < 32 ? GENERAL_REGS \
559 : (REGNO) < 44 ? FP_REGS \
560 : (REGNO) < 68 ? SNAKE_FP_REGS \
561 : (REGNO) < 100 ? HI_SNAKE_FP_REGS \
564 /* The class value for index registers, and the one for base regs. */
565 #define INDEX_REG_CLASS GENERAL_REGS
566 #define BASE_REG_CLASS GENERAL_REGS
568 #define FP_REG_CLASS_P(CLASS) \
569 (CLASS == FP_REGS || CLASS == SNAKE_FP_REGS || CLASS == HI_SNAKE_FP_REGS)
571 /* Get reg_class from a letter such as appears in the machine description.
572 Note 'Z' is not the same as 'r' since SHIFT_REGS is not part of
575 #define REG_CLASS_FROM_LETTER(C) \
576 ((C) == 'f' ? (!TARGET_SNAKE ? FP_REGS : NO_REGS) : \
577 ((C) == 'x' ? (TARGET_SNAKE ? SNAKE_FP_REGS : NO_REGS) : \
578 ((C) == 'y' ? (TARGET_SNAKE ? HI_SNAKE_FP_REGS : NO_REGS) : \
579 ((C) == 'q' ? SHIFT_REGS : \
580 ((C) == 'a' ? R1_REGS : \
581 ((C) == 'z' ? FP_OR_SNAKE_FP_REGS : \
582 ((C) == 'Z' ? ALL_REGS : NO_REGS)))))))
584 /* The letters I, J, K, L and M in a register constraint string
585 can be used to stand for particular ranges of immediate operands.
586 This macro defines what the ranges are.
587 C is the letter, and VALUE is a constant value.
588 Return 1 if VALUE is in the range specified by C.
590 `I' is used for the 11 bit constants.
591 `J' is used for the 14 bit constants.
592 `K' is used for values that can be moved with a zdepi insn.
593 `L' is used for the 5 bit constants.
595 `N' is used for values with the least significant 11 bits equal to zero.
596 `O' is used for numbers n such that n+1 is a power of 2.
599 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
600 ((C) == 'I' ? VAL_11_BITS_P (VALUE) \
601 : (C) == 'J' ? VAL_14_BITS_P (VALUE) \
602 : (C) == 'K' ? zdepi_cint_p (VALUE) \
603 : (C) == 'L' ? VAL_5_BITS_P (VALUE) \
604 : (C) == 'M' ? (VALUE) == 0 \
605 : (C) == 'N' ? ((VALUE) & 0x7ff) == 0 \
606 : (C) == 'O' ? (((VALUE) & ((VALUE) + 1)) == 0) \
607 : (C) == 'P' ? and_mask_p (VALUE) \
610 /* Similar, but for floating or large integer constants, and defining letters
611 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
613 For PA, `G' is the floating-point constant zero. `H' is undefined. */
615 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
616 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
617 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
620 /* Given an rtx X being reloaded into a reg required to be
621 in class CLASS, return the class of reg to actually use.
622 In general this is just CLASS; but on some machines
623 in some cases it is preferable to use a more restrictive class. */
624 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
626 /* Return the register class of a scratch register needed to copy IN into
627 or out of a register in CLASS in MODE. If it can be done directly,
628 NO_REGS is returned. */
630 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
631 secondary_reload_class (CLASS, MODE, IN)
633 /* On the PA it is not possible to directly move data between
634 GENERAL_REGS and FP_REGS. */
635 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
636 ((FP_REG_CLASS_P (CLASS1) && ! FP_REG_CLASS_P (CLASS2)) \
637 || (! FP_REG_CLASS_P (CLASS1) && FP_REG_CLASS_P (CLASS2)))
639 /* Return the stack location to use for secondary memory needed reloads. */
640 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
641 gen_rtx (MEM, MODE, gen_rtx (PLUS, Pmode, stack_pointer_rtx, GEN_INT (-16)))
643 /* Return the maximum number of consecutive registers
644 needed to represent mode MODE in a register of class CLASS. */
645 #define CLASS_MAX_NREGS(CLASS, MODE) \
646 ((CLASS) == FP_REGS ? 1 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
648 /* Stack layout; function entry, exit and calling. */
650 /* Define this if pushing a word on the stack
651 makes the stack pointer a smaller address. */
652 /* #define STACK_GROWS_DOWNWARD */
654 /* Believe it or not. */
655 #define ARGS_GROW_DOWNWARD
657 /* Define this if the nominal address of the stack frame
658 is at the high-address end of the local variables;
659 that is, each additional local variable allocated
660 goes at a more negative offset in the frame. */
661 /* #define FRAME_GROWS_DOWNWARD */
663 /* Offset within stack frame to start allocating local variables at.
664 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
665 first local allocated. Otherwise, it is the offset to the BEGINNING
666 of the first local allocated. */
667 #define STARTING_FRAME_OFFSET 8
669 /* If we generate an insn to push BYTES bytes,
670 this says how many the stack pointer really advances by.
671 On the HP-PA, don't define this because there are no push insns. */
672 /* #define PUSH_ROUNDING(BYTES) */
674 /* Offset of first parameter from the argument pointer register value.
675 This value will be negated because the arguments grow down.
676 Also note that on STACK_GROWS_UPWARD machines (such as this one)
677 this is the distance from the frame pointer to the end of the first
678 argument, not it's beginning. To get the real offset of the first
679 argument, the size of the argument must be added.
681 ??? Have to check on this.*/
683 #define FIRST_PARM_OFFSET(FNDECL) -32
685 /* Absolute value of offset from top-of-stack address to location to store the
686 function parameter if it can't go in a register.
687 Addresses for following parameters are computed relative to this one. */
688 #define FIRST_PARM_CALLER_OFFSET(FNDECL) -32
691 /* When a parameter is passed in a register, stack space is still
693 #define REG_PARM_STACK_SPACE(DECL) 16
695 /* Define this if the above stack space is to be considered part of the
696 space allocated by the caller. */
697 #define OUTGOING_REG_PARM_STACK_SPACE
699 /* Keep the stack pointer constant throughout the function.
700 This is both an optimization and a necessity: longjmp
701 doesn't behave itself when the stack pointer moves within
703 #define ACCUMULATE_OUTGOING_ARGS
705 /* The weird HPPA calling conventions require a minimum of 48 bytes on
706 the stack: 16 bytes for register saves, and 32 bytes for magic.
707 This is the difference between the logical top of stack and the
709 #define STACK_POINTER_OFFSET -32
711 #define STACK_DYNAMIC_OFFSET(FNDECL) \
712 ((STACK_POINTER_OFFSET) - current_function_outgoing_args_size)
714 /* Value is 1 if returning from a function call automatically
715 pops the arguments described by the number-of-args field in the call.
716 FUNTYPE is the data type of the function (as a tree),
717 or for a library call it is an identifier node for the subroutine name. */
719 #define RETURN_POPS_ARGS(FUNTYPE,SIZE) 0
721 /* Define how to find the value returned by a function.
722 VALTYPE is the data type of the value (as a tree).
723 If the precise function being called is known, FUNC is its FUNCTION_DECL;
724 otherwise, FUNC is 0. */
726 /* On the HP-PA the value is found in register(s) 28(-29), unless
727 the mode is SF or DF. Then the value is returned in fr4 (32, ) */
730 #define FUNCTION_VALUE(VALTYPE, FUNC) \
731 gen_rtx (REG, TYPE_MODE (VALTYPE), ((TYPE_MODE (VALTYPE) == SFmode ||\
732 TYPE_MODE (VALTYPE) == DFmode) ? \
733 (TARGET_SNAKE ? 44 : 32) : 28))
735 /* Define how to find the value returned by a library function
736 assuming the value has mode MODE. */
738 #define LIBCALL_VALUE(MODE) \
739 gen_rtx (REG, MODE, (MODE == SFmode || MODE == DFmode ?\
740 (TARGET_SNAKE ? 44 : 32) : 28))
742 /* 1 if N is a possible register number for a function value
743 as seen by the caller. */
745 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 28 || (N) == (TARGET_SNAKE ? 44 : 32))
747 /* 1 if N is a possible register number for function argument passing. */
749 #define FUNCTION_ARG_REGNO_P(N) \
750 (((N) >= 23 && (N) <= 26) \
751 || ((N) >= 32 && (N) <= 35 && ! TARGET_SNAKE) \
752 || ((N) >= 44 && (N) <= 51 && TARGET_SNAKE))
754 /* Define a data type for recording info about an argument list
755 during the scan of that argument list. This data type should
756 hold all necessary information about the function itself
757 and about the args processed so far, enough to enable macros
758 such as FUNCTION_ARG to determine where the next arg should go.
760 On the HP-PA, this is a single integer, which is a number of words
761 of arguments scanned so far (including the invisible argument,
762 if any, which holds the structure-value-address).
763 Thus 4 or more means all following args should go on the stack. */
765 #define CUMULATIVE_ARGS int
767 /* Initialize a variable CUM of type CUMULATIVE_ARGS
768 for a call to a function whose data type is FNTYPE.
769 For a library call, FNTYPE is 0.
772 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) ((CUM) = 0)
774 /* Figure out the size in words of the function argument. */
776 #define FUNCTION_ARG_SIZE(MODE, TYPE) \
777 ((((MODE) != BLKmode ? GET_MODE_SIZE (MODE) : int_size_in_bytes (TYPE))+3)/4)
779 /* Update the data in CUM to advance over an argument
780 of mode MODE and data type TYPE.
781 (TYPE is null for libcalls where that information may not be available.) */
783 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
784 (((((CUM) & 01) && (TYPE) != 0 && FUNCTION_ARG_SIZE(MODE, TYPE) > 1)\
785 && (CUM)++), (CUM) += FUNCTION_ARG_SIZE(MODE, TYPE))
787 /* Determine where to put an argument to a function.
788 Value is zero to push the argument on the stack,
789 or a hard register in which to store the argument.
791 MODE is the argument's machine mode.
792 TYPE is the data type of the argument (as a tree).
793 This is null for libcalls where that information may
795 CUM is a variable of type CUMULATIVE_ARGS which gives info about
796 the preceding args and about the function being called.
797 NAMED is nonzero if this argument is a named parameter
798 (otherwise it is an extra parameter matching an ellipsis). */
800 /* On the HP-PA the first four words of args are normally in registers
801 and the rest are pushed. But any arg that won't entirely fit in regs
804 Arguments passed in registers are either 1 or 2 words long.
806 The caller must make a distinction between calls to explicitly named
807 functions and calls through pointers to functions -- the conventions
808 are different! Calls through pointers to functions only use general
809 registers for the first four argument words. */
811 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding ((MODE), (TYPE))
813 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
814 (4 >= ((CUM) + FUNCTION_ARG_SIZE ((MODE), (TYPE))) \
815 ? gen_rtx (REG, (MODE), \
816 (FUNCTION_ARG_SIZE ((MODE), (TYPE)) > 1 \
817 ? ((! current_call_is_indirect \
818 && (MODE) == DFmode) \
819 ? ((CUM) ? (TARGET_SNAKE ? 50 : 35) \
820 : (TARGET_SNAKE ? 46 : 33)) \
821 : ((CUM) ? 23 : 25)) \
822 : ((! current_call_is_indirect \
823 && (MODE) == SFmode) \
824 ? (TARGET_SNAKE ? 44 + 2 * (CUM) : 32 + (CUM)) \
825 : (27 - (CUM) - FUNCTION_ARG_SIZE ((MODE), (TYPE))))))\
828 /* Define where a function finds its arguments.
829 This would be different from FUNCTION_ARG if we had register windows. */
831 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
832 FUNCTION_ARG (CUM, MODE, TYPE, NAMED)
834 /* For an arg passed partly in registers and partly in memory,
835 this is the number of registers used.
836 For args passed entirely in registers or entirely in memory, zero. */
838 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
840 /* If defined, a C expression that gives the alignment boundary, in
841 bits, of an argument with the specified mode and type. If it is
842 not defined, `PARM_BOUNDARY' is used for all arguments. */
844 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
846 ? ((TYPE_ALIGN(TYPE) <= PARM_BOUNDARY) \
848 : TYPE_ALIGN(TYPE)) \
849 : ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY) \
851 : GET_MODE_ALIGNMENT(MODE)))
853 /* Arguments larger than eight bytes are passed by invisible reference */
855 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
856 ((TYPE) && int_size_in_bytes (TYPE) > 8)
858 extern struct rtx_def
*hppa_compare_op0
, *hppa_compare_op1
;
859 extern enum cmp_type hppa_branch_type
;
861 /* Output the label for a function definition. */
862 #ifndef HP_FP_ARG_DESCRIPTOR_REVERSED
863 #define ASM_DOUBLE_ARG_DESCRIPTORS(FILE, ARG0, ARG1) \
864 do { fprintf (FILE, ",ARGW%d=FR", (ARG0)); \
865 fprintf (FILE, ",ARGW%d=FU", (ARG1));} while (0)
867 #define ASM_DOUBLE_ARG_DESCRIPTORS(FILE, ARG0, ARG1) \
868 do { fprintf (FILE, ",ARGW%d=FU", (ARG0)); \
869 fprintf (FILE, ",ARGW%d=FR", (ARG1));} while (0)
872 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
873 do { tree fntype = TREE_TYPE (TREE_TYPE (DECL)); \
874 tree tree_type = TREE_TYPE (DECL); \
877 if (TREE_PUBLIC (DECL) || TARGET_GAS) \
878 { extern int current_function_varargs; \
879 if (TREE_PUBLIC (DECL)) \
881 fputs ("\t.EXPORT ", FILE); \
882 assemble_name (FILE, NAME); \
883 fputs (",ENTRY,PRIV_LEV=3", FILE); \
887 fputs ("\t.PARAM ", FILE); \
888 assemble_name (FILE, NAME); \
890 for (parm = DECL_ARGUMENTS (DECL), i = 0; parm && i < 4; \
891 parm = TREE_CHAIN (parm)) \
893 if (TYPE_MODE (DECL_ARG_TYPE (parm)) == SFmode) \
894 fprintf (FILE, ",ARGW%d=FR", i++); \
895 else if (TYPE_MODE (DECL_ARG_TYPE (parm)) == DFmode) \
900 ASM_DOUBLE_ARG_DESCRIPTORS (FILE, i++, i++); \
908 FUNCTION_ARG_SIZE (TYPE_MODE (DECL_ARG_TYPE (parm)),\
909 DECL_ARG_TYPE (parm)); \
910 if (arg_size == 2 && i <= 2) \
913 fprintf (FILE, ",ARGW%d=GR", i++); \
914 fprintf (FILE, ",ARGW%d=GR", i++); \
916 else if (arg_size == 1) \
917 fprintf (FILE, ",ARGW%d=GR", i++); \
922 /* anonymous args */ \
923 if ((TYPE_ARG_TYPES (tree_type) != 0 \
924 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (tree_type)))\
925 != void_type_node)) \
926 || current_function_varargs) \
929 fprintf (FILE, ",ARGW%d=GR", i); \
931 if (TYPE_MODE (fntype) == DFmode) \
932 fprintf (FILE, ",RTNVAL=FR"); \
933 else if (TYPE_MODE (fntype) == SFmode) \
934 fprintf (FILE, ",RTNVAL=FU"); \
935 else if (fntype != void_type_node) \
936 fprintf (FILE, ",RTNVAL=GR"); \
937 fputs ("\n", FILE); \
939 ASM_OUTPUT_LABEL (FILE, NAME);} while (0)
941 /* This macro generates the assembly code for function entry.
942 FILE is a stdio stream to output the code to.
943 SIZE is an int: how many units of temporary storage to allocate.
944 Refer to the array `regs_ever_live' to determine which registers
945 to save; `regs_ever_live[I]' is nonzero if register number I
946 is ever used in the function. This macro is responsible for
947 knowing which registers should not be saved even if used. */
949 /* On HP-PA, move-double insns between fpu and cpu need an 8-byte block
950 of memory. If any fpu reg is used in the function, we allocate
951 such a block here, at the bottom of the frame, just in case it's needed.
953 If this function is a leaf procedure, then we may choose not
954 to do a "save" insn. The decision about whether or not
955 to do this is made in regclass.c. */
957 #define FUNCTION_PROLOGUE(FILE, SIZE) \
958 output_function_prologue (FILE, SIZE)
960 /* Output assembler code to FILE to increment profiler label # LABELNO
961 for profiling a function entry.
963 Because HPUX _mcount is so different, we actually emit the
964 profiling code in function_prologue. This just stores LABELNO for
967 #define PROFILE_BEFORE_PROLOGUE
968 #define FUNCTION_PROFILER(FILE, LABELNO) \
969 { extern int hp_profile_labelno; hp_profile_labelno = (LABELNO);}
971 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
972 the stack pointer does not matter. The value is tested only in
973 functions that have frame pointers.
974 No definition is equivalent to always zero. */
976 extern int may_call_alloca
;
977 extern int current_function_pretend_args_size
;
979 #define EXIT_IGNORE_STACK \
980 (get_frame_size () != 0 \
981 || current_function_calls_alloca || current_function_outgoing_args_size)
984 /* This macro generates the assembly code for function exit,
985 on machines that need it. If FUNCTION_EPILOGUE is not defined
986 then individual return instructions are generated for each
987 return statement. Args are same as for FUNCTION_PROLOGUE.
989 The function epilogue should not depend on the current stack pointer!
990 It should use the frame pointer only. This is mandatory because
991 of alloca; we also take advantage of it to omit stack adjustments
994 /* This declaration is needed due to traditional/ANSI
995 incompatibilities which cannot be #ifdefed away
996 because they occur inside of macros. Sigh. */
997 extern union tree_node
*current_function_decl
;
999 #define FUNCTION_EPILOGUE(FILE, SIZE) \
1000 output_function_epilogue (FILE, SIZE)
1002 /* Output assembler code for a block containing the constant parts
1003 of a trampoline, leaving space for the variable parts.\
1005 The trampoline sets the static chain pointer to STATIC_CHAIN_REGNUM
1006 and then branches to the specified routine.
1008 This code template is copied from text segment to stack location
1009 and then patched with INITIALIZE_TRAMPOLINE to contain
1010 valid values, and then entered as a subroutine.
1012 It is best to keep this as small as possible to avoid having to
1013 flush multiple lines in the cache. */
1015 #define TRAMPOLINE_TEMPLATE(FILE) \
1017 fprintf (FILE, "\tldw 12(0,%%r22),%%r21\n"); \
1018 fprintf (FILE, "\tbe 0(4,%%r21)\n"); \
1019 fprintf (FILE, "\tldw 16(0,%%r22),%%r29\n"); \
1020 fprintf (FILE, "\t.word 0\n"); \
1021 fprintf (FILE, "\t.word 0\n"); \
1024 /* Length in units of the trampoline for entering a nested function.
1026 Flush the cache entries corresponding to the first and last addresses
1027 of the trampoline. This is necessary as the trampoline may cross two
1030 If the trampoline ever grows to > 32 bytes, then it will become
1031 necessary to hack on the cacheflush pattern in pa.md. */
1033 #define TRAMPOLINE_SIZE (5 * 4)
1035 /* Emit RTL insns to initialize the variable parts of a trampoline.
1036 FNADDR is an RTX for the address of the function's pure code.
1037 CXT is an RTX for the static chain value for the function.
1039 Move the function address to the trampoline template at offset 12.
1040 Move the static chain value to trampoline template at offset 16. */
1042 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1044 rtx start_addr, end_addr, mem; \
1046 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 12));\
1047 emit_move_insn (gen_rtx (MEM, Pmode, start_addr), (FNADDR)); \
1048 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 16));\
1049 emit_move_insn (gen_rtx (MEM, Pmode, start_addr), (CXT)); \
1050 /* fdc and fic only use registers for the address to flush, \
1051 they do not accept integer displacements. */ \
1052 start_addr = force_reg (SImode, (TRAMP)); \
1053 end_addr = force_reg (SImode, plus_constant ((TRAMP), 8)); \
1054 emit_insn (gen_cacheflush (start_addr, end_addr)); \
1057 /* Emit code for a call to builtin_saveregs. We must emit USE insns which
1058 reference the 4 integer arg registers and 4 fp arg registers.
1059 Ordinarily they are not call used registers, but they are for
1060 _builtin_saveregs, so we must make this explicit. */
1062 #define EXPAND_BUILTIN_SAVEREGS(ARGLIST) (rtx)hppa_builtin_saveregs (ARGLIST)
1065 /* Addressing modes, and classification of registers for them. */
1067 #define HAVE_POST_INCREMENT
1068 #define HAVE_POST_DECREMENT
1070 #define HAVE_PRE_DECREMENT
1071 #define HAVE_PRE_INCREMENT
1073 /* Macros to check register numbers against specific register classes. */
1075 /* These assume that REGNO is a hard or pseudo reg number.
1076 They give nonzero only if REGNO is a hard reg of the suitable class
1077 or a pseudo reg currently allocated to a suitable hard reg.
1078 Since they use reg_renumber, they are safe only once reg_renumber
1079 has been allocated, which happens in local-alloc.c. */
1081 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1082 ((REGNO) && ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
1083 #define REGNO_OK_FOR_BASE_P(REGNO) \
1084 ((REGNO) && ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
1085 #define REGNO_OK_FOR_FP_P(REGNO) \
1086 (((REGNO) >= 32 && (REGNO) <= 99)\
1087 || (reg_renumber[REGNO] >= 32 && reg_renumber[REGNO] <= 99))
1089 /* Now macros that check whether X is a register and also,
1090 strictly, whether it is in a specified class.
1092 These macros are specific to the the HP-PA, and may be used only
1093 in code for printing assembler insns and in conditions for
1094 define_optimization. */
1096 /* 1 if X is an fp register. */
1098 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1100 /* Maximum number of registers that can appear in a valid memory address. */
1102 #define MAX_REGS_PER_ADDRESS 2
1104 /* Recognize any constant value that is a valid address except
1105 for symbolic addresses. We get better CSE by rejecting them
1106 here and allowing hppa_legitimize_address to break them up. We
1107 use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE. */
1109 #define CONSTANT_ADDRESS_P(X) \
1110 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1111 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1112 || GET_CODE (X) == HIGH) \
1113 && (reload_in_progress || reload_completed || ! symbolic_expression_p (X)))
1115 /* Include all constant integers and constant doubles, but not
1116 floating-point, except for floating-point zero.
1118 Also reject function labels as reload can not handle them correctly
1119 right now. (Fix this for 2.5). */
1120 #define LEGITIMATE_CONSTANT_P(X) \
1121 ((GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1122 || (X) == CONST0_RTX (GET_MODE (X))) \
1123 && ! function_label_operand (X, VOIDmode))
1125 /* Subroutine for EXTRA_CONSTRAINT.
1127 Return 1 iff OP is a pseudo which did not get a hard register and
1128 we are running the reload pass. */
1130 #define IS_RELOADING_PSEUDO_P(OP) \
1131 ((reload_in_progress \
1132 && GET_CODE (OP) == REG \
1133 && REGNO (OP) >= FIRST_PSEUDO_REGISTER \
1134 && reg_renumber [REGNO (OP)] < 0))
1136 /* Optional extra constraints for this machine. Borrowed from sparc.h.
1138 For the HPPA, `Q' means that this is a memory operand but not a
1139 symbolic memory operand. Note that an unassigned pseudo register
1140 is such a memory operand. Needed because reload will generate
1141 these things in insns and then not re-recognize the insns, causing
1142 constrain_operands to fail.
1144 Also note `Q' accepts any memory operand during the reload pass.
1145 This includes out-of-range displacements in reg+d addressing.
1146 This makes for better code. (??? For 2.5 address this issue).
1152 `T' is for fp loads and stores. */
1153 #define EXTRA_CONSTRAINT(OP, C) \
1155 (IS_RELOADING_PSEUDO_P (OP) \
1156 || (GET_CODE (OP) == MEM \
1157 && reload_in_progress) \
1158 || (GET_CODE (OP) == MEM \
1159 && memory_address_p (GET_MODE (OP), XEXP (OP, 0))\
1160 && ! symbolic_memory_operand (OP, VOIDmode))) \
1162 (GET_CODE (OP) == MEM \
1163 /* Using DFmode forces only short displacements \
1164 to be recognized as valid in reg+d addresses. */\
1165 && memory_address_p (DFmode, XEXP (OP, 0))) : 0))
1167 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1168 and check its validity for a certain class.
1169 We have two alternate definitions for each of them.
1170 The usual definition accepts all pseudo regs; the other rejects
1171 them unless they have been allocated suitable hard regs.
1172 The symbol REG_OK_STRICT causes the latter definition to be used.
1174 Most source files want to accept pseudo regs in the hope that
1175 they will get allocated to the class that the insn wants them to be in.
1176 Source files for reload pass need to be strict.
1177 After reload, it makes no difference, since pseudo regs have
1178 been eliminated by then. */
1180 #ifndef REG_OK_STRICT
1182 /* Nonzero if X is a hard reg that can be used as an index
1183 or if it is a pseudo reg. */
1184 #define REG_OK_FOR_INDEX_P(X) \
1185 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1186 /* Nonzero if X is a hard reg that can be used as a base reg
1187 or if it is a pseudo reg. */
1188 #define REG_OK_FOR_BASE_P(X) \
1189 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1193 /* Nonzero if X is a hard reg that can be used as an index. */
1194 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1195 /* Nonzero if X is a hard reg that can be used as a base reg. */
1196 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1200 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1201 that is a valid memory address for an instruction.
1202 The MODE argument is the machine mode for the MEM expression
1203 that wants to use this address.
1205 On the HP-PA, the actual legitimate addresses must be
1206 REG+REG, REG+(REG*SCALE) or REG+SMALLINT.
1207 But we can treat a SYMBOL_REF as legitimate if it is part of this
1208 function's constant-pool, because such addresses can actually
1209 be output as REG+SMALLINT. */
1211 #define VAL_5_BITS_P(X) ((unsigned)(X) + 0x10 < 0x20)
1212 #define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
1214 #define VAL_U5_BITS_P(X) ((unsigned)(X) < 0x20)
1215 #define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
1217 #define VAL_11_BITS_P(X) ((unsigned)(X) + 0x400 < 0x800)
1218 #define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
1220 #define VAL_14_BITS_P(X) ((unsigned)(X) + 0x2000 < 0x4000)
1221 #define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
1223 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1225 if ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1226 || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC \
1227 || GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC) \
1228 && REG_P (XEXP (X, 0)) \
1229 && REG_OK_FOR_BASE_P (XEXP (X, 0)))) \
1231 else if (GET_CODE (X) == PLUS) \
1233 rtx base = 0, index; \
1234 if (flag_pic && XEXP (X, 0) == pic_offset_table_rtx)\
1236 if (GET_CODE (XEXP (X, 1)) == REG \
1237 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
1239 else if (flag_pic == 1 \
1240 && GET_CODE (XEXP (X, 1)) != REG \
1241 && GET_CODE (XEXP (X, 1)) != LO_SUM \
1242 && GET_CODE (XEXP (X, 1)) != MEM) \
1245 else if (REG_P (XEXP (X, 0)) \
1246 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
1247 base = XEXP (X, 0), index = XEXP (X, 1); \
1248 else if (REG_P (XEXP (X, 1)) \
1249 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
1250 base = XEXP (X, 1), index = XEXP (X, 0); \
1252 if (GET_CODE (index) == CONST_INT \
1253 && ((INT_14_BITS (index) && (MODE) != SFmode && (MODE) != DFmode) \
1254 || INT_5_BITS (index))) \
1257 else if (GET_CODE (X) == LO_SUM \
1258 && GET_CODE (XEXP (X, 0)) == REG \
1259 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1260 && CONSTANT_P (XEXP (X, 1)) \
1261 && (MODE) != SFmode \
1262 && (MODE) != DFmode) \
1264 else if (GET_CODE (X) == LO_SUM \
1265 && GET_CODE (XEXP (X, 0)) == SUBREG \
1266 && GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG\
1267 && REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0)))\
1268 && CONSTANT_P (XEXP (X, 1)) \
1269 && (MODE) != SFmode \
1270 && (MODE) != DFmode) \
1272 else if (GET_CODE (X) == LABEL_REF \
1273 || (GET_CODE (X) == CONST_INT \
1274 && INT_14_BITS (X))) \
1278 /* Try machine-dependent ways of modifying an illegitimate address
1279 to be legitimate. If we find one, return the new, valid address.
1280 This macro is used in only one place: `memory_address' in explow.c.
1282 OLDX is the address as it was before break_out_memory_refs was called.
1283 In some cases it is useful to look at this to decide what needs to be done.
1285 MODE and WIN are passed so that this macro can use
1286 GO_IF_LEGITIMATE_ADDRESS.
1288 It is always safe for this macro to do nothing. It exists to recognize
1289 opportunities to optimize the output. */
1291 extern struct rtx_def
*hppa_legitimize_address ();
1292 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1293 { rtx orig_x = (X); \
1294 (X) = hppa_legitimize_address (X, OLDX, MODE); \
1295 if ((X) != orig_x && memory_address_p (MODE, X)) \
1298 /* Go to LABEL if ADDR (a legitimate address expression)
1299 has an effect that depends on the machine mode it is used for. */
1301 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1302 if (GET_CODE (ADDR) == PRE_DEC \
1303 || GET_CODE (ADDR) == POST_DEC \
1304 || GET_CODE (ADDR) == PRE_INC \
1305 || GET_CODE (ADDR) == POST_INC) \
1308 /* Define this macro if references to a symbol must be treated
1309 differently depending on something about the variable or
1310 function named by the symbol (such as what section it is in).
1312 The macro definition, if any, is executed immediately after the
1313 rtl for DECL or other node is created.
1314 The value of the rtl will be a `mem' whose address is a
1317 The usual thing for this macro to do is to a flag in the
1318 `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
1319 name string in the `symbol_ref' (if one bit is not enough
1322 On the HP-PA we use this to indicate if a symbol is in text or
1323 data space. Also, function labels need special treatment. */
1325 #define TEXT_SPACE_P(DECL)\
1326 (TREE_CODE (DECL) == FUNCTION_DECL \
1327 || (TREE_CODE (DECL) == VAR_DECL \
1328 && TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL) \
1330 || (*tree_code_type[(int) TREE_CODE (DECL)] == 'c' \
1331 && !(TREE_CODE (DECL) == STRING_CST && flag_writable_strings)))
1333 #define FUNCTION_NAME_P(NAME) \
1334 (*(NAME) == '@' || (*(NAME) == '*' && *((NAME) + 1) == '@'))
1336 #define ENCODE_SECTION_INFO(DECL)\
1338 { if (TEXT_SPACE_P (DECL)) \
1340 if (TREE_CODE (DECL) == FUNCTION_DECL \
1341 || TREE_CODE (DECL) == VAR_DECL) \
1342 _rtl = DECL_RTL (DECL); \
1344 _rtl = TREE_CST_RTL (DECL); \
1345 SYMBOL_REF_FLAG (XEXP (_rtl, 0)) = 1; \
1346 if (TREE_CODE (DECL) == FUNCTION_DECL) \
1347 hppa_encode_label (XEXP (DECL_RTL (DECL), 0));\
1352 /* Store the user-specified part of SYMBOL_NAME in VAR.
1353 This is sort of inverse to ENCODE_SECTION_INFO. */
1355 #define STRIP_NAME_ENCODING(VAR,SYMBOL_NAME) \
1356 (VAR) = ((SYMBOL_NAME) + ((SYMBOL_NAME)[0] == '*' ? \
1357 1 + (SYMBOL_NAME)[1] == '@'\
1358 : (SYMBOL_NAME)[0] == '@'))
1360 /* Specify the machine mode that this machine uses
1361 for the index in the tablejump instruction. */
1362 #define CASE_VECTOR_MODE DImode
1364 /* Define this if the tablejump instruction expects the table
1365 to contain offsets from the address of the table.
1366 Do not define this if the table should contain absolute addresses. */
1367 /* #define CASE_VECTOR_PC_RELATIVE */
1369 #define CASE_DROPS_THROUGH
1370 /* Specify the tree operation to be used to convert reals to integers. */
1371 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1373 /* This is the kind of divide that is easiest to do in the general case. */
1374 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1376 /* Define this as 1 if `char' should by default be signed; else as 0. */
1377 #define DEFAULT_SIGNED_CHAR 1
1379 /* Max number of bytes we can move from memory to memory
1380 in one reasonably fast instruction. */
1383 /* Define if normal loads of shorter-than-word items from memory clears
1384 the rest of the bigs in the register. */
1385 #define BYTE_LOADS_ZERO_EXTEND
1387 /* Nonzero if access to memory by bytes is slow and undesirable. */
1388 #define SLOW_BYTE_ACCESS 1
1390 /* Do not break .stabs pseudos into continuations. */
1391 #define DBX_CONTIN_LENGTH 0
1393 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1394 is done just by pretending it is already truncated. */
1395 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1397 /* We assume that the store-condition-codes instructions store 0 for false
1398 and some other value for true. This is the value stored for true. */
1400 #define STORE_FLAG_VALUE 1
1402 /* When a prototype says `char' or `short', really pass an `int'. */
1403 #define PROMOTE_PROTOTYPES
1405 /* Specify the machine mode that pointers have.
1406 After generation of rtl, the compiler makes no further distinction
1407 between pointers and any other objects of this machine mode. */
1408 #define Pmode SImode
1410 /* Add any extra modes needed to represent the condition code.
1412 HPPA floating comparisons produce condition codes. */
1413 #define EXTRA_CC_MODES CCFPmode
1415 /* Define the names for the modes specified above. */
1416 #define EXTRA_CC_NAMES "CCFP"
1418 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1419 return the mode to be used for the comparison. For floating-point, CCFPmode
1420 should be used. CC_NOOVmode should be used when the first operand is a
1421 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1423 #define SELECT_CC_MODE(OP,X,Y) \
1424 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode) \
1426 /* A function address in a call instruction
1427 is a byte address (for indexing purposes)
1428 so give the MEM rtx a byte's mode. */
1429 #define FUNCTION_MODE SImode
1431 /* Define this if addresses of constant functions
1432 shouldn't be put through pseudo regs where they can be cse'd.
1433 Desirable on machines where ordinary constants are expensive
1434 but a CALL with constant address is cheap. */
1435 #define NO_FUNCTION_CSE
1437 /* Define this if shift instructions ignore all but the low-order
1439 #define SHIFT_COUNT_TRUNCATED
1441 /* Use atexit for static constructors/destructors, instead of defining
1442 our own exit function. */
1445 /* Compute the cost of computing a constant rtl expression RTX
1446 whose rtx-code is CODE. The body of this macro is a portion
1447 of a switch statement. If the code is computed here,
1448 return it with a return statement. Otherwise, break from the switch. */
1450 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1452 if (INTVAL (RTX) == 0) return 0; \
1453 if (INT_14_BITS (RTX)) return 1; \
1460 case CONST_DOUBLE: \
1461 if (RTX == CONST0_RTX (DFmode) || RTX == CONST0_RTX (SFmode)\
1462 && OUTER_CODE != SET) \
1467 #define ADDRESS_COST(RTX) \
1468 (GET_CODE (RTX) == REG ? 1 : hppa_address_cost (RTX))
1470 /* Compute extra cost of moving data between one register class
1473 Make moves from SAR so expensive they should never happen.
1475 Copies involving a FP register and a non-FP register are relatively
1476 expensive because they must go through memory.
1478 Other copies are reasonably cheap. */
1479 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
1480 (CLASS1 == SHIFT_REGS ? 0xffff \
1481 : FP_REG_CLASS_P (CLASS1) && ! FP_REG_CLASS_P (CLASS2) ? 16 \
1482 : FP_REG_CLASS_P (CLASS2) && ! FP_REG_CLASS_P (CLASS1) ? 16 \
1486 /* Provide the costs of a rtl expression. This is in the body of a
1487 switch on CODE. The purpose for the cost of MULT is to encourage
1488 `synth_mult' to find a synthetic multiply when reasonable. */
1490 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1492 return TARGET_SNAKE && ! TARGET_DISABLE_FPREGS \
1493 ? COSTS_N_INSNS (8) : COSTS_N_INSNS (20); \
1498 return COSTS_N_INSNS (60); \
1499 case PLUS: /* this includes shNadd insns */ \
1500 return COSTS_N_INSNS (1) + 2;
1502 /* Adjust the cost of dependencies. */
1504 #define ADJUST_COST(INSN,LINK,DEP,COST) \
1505 (COST) = pa_adjust_cost (INSN, LINK, DEP, COST)
1507 /* Handling the special cases is going to get too complicated for a macro,
1508 just call `pa_adjust_insn_length' to do the real work. */
1509 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1510 LENGTH += pa_adjust_insn_length (INSN, LENGTH);
1512 /* Enable a bug fix. (This is for extra caution.) */
1513 #define SHORTEN_WITH_ADJUST_INSN_LENGTH
1515 /* Millicode insns are actually function calls with some special
1516 constraints on arguments and register usage.
1518 Millicode calls always expect their arguments in the integer argument
1519 registers, and always return their result in %r29 (ret1). They
1520 are expected to clobber their arguments, %r1, %r29, and %r31 and
1523 These macros tell reorg that the references to arguments and
1524 register clobbers for millicode calls do not appear to happen
1525 until after the millicode call. This allows reorg to put insns
1526 which set the argument registers into the delay slot of the millicode
1527 call -- thus they act more like traditional CALL_INSNs.
1529 get_attr_type will try to recognize the given insn, so make sure to
1530 filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1532 #define INSN_SETS_ARE_DELAYED(X) \
1533 ((GET_CODE (X) == INSN \
1534 && GET_CODE (PATTERN (X)) != SEQUENCE \
1535 && GET_CODE (PATTERN (X)) != USE \
1536 && GET_CODE (PATTERN (X)) != CLOBBER \
1537 && get_attr_type (X) == TYPE_MILLI))
1539 #define INSN_REFERENCES_ARE_DELAYED(X) \
1540 ((GET_CODE (X) == INSN \
1541 && GET_CODE (PATTERN (X)) != SEQUENCE \
1542 && GET_CODE (PATTERN (X)) != USE \
1543 && GET_CODE (PATTERN (X)) != CLOBBER \
1544 && get_attr_type (X) == TYPE_MILLI))
1547 /* Control the assembler format that we output. */
1549 /* Output at beginning of assembler file. */
1551 #define ASM_FILE_START(FILE) \
1552 do { fprintf (FILE, "\t.SPACE $PRIVATE$\n\
1553 \t.SUBSPA $DATA$,QUAD=1,ALIGN=8,ACCESS=31\n\
1554 \t.SUBSPA $BSS$,QUAD=1,ALIGN=8,ACCESS=31,ZERO,SORT=82\n\
1556 \t.SUBSPA $LIT$,QUAD=0,ALIGN=8,ACCESS=44\n\
1557 \t.SUBSPA $CODE$,QUAD=0,ALIGN=8,ACCESS=44,CODE_ONLY\n\
1558 \t.IMPORT $global$,DATA\n\
1559 \t.IMPORT $$dyncall,MILLICODE\n");\
1561 fprintf (FILE, "\t.IMPORT _mcount, CODE\n");\
1564 /* Output to assembler file text saying following lines
1565 may contain character constants, extra white space, comments, etc. */
1567 #define ASM_APP_ON ""
1569 /* Output to assembler file text saying following lines
1570 no longer contain unusual constructs. */
1572 #define ASM_APP_OFF ""
1574 /* We don't yet know how to identify GCC to HP-PA machines. */
1575 #define ASM_IDENTIFY_GCC(FILE) fprintf (FILE, "; gcc_compiled.:\n")
1577 /* Output before code. */
1579 /* Supposedly the assembler rejects the command if there is no tab! */
1580 #define TEXT_SECTION_ASM_OP "\t.SPACE $TEXT$\n\t.SUBSPA $CODE$\n"
1582 /* Output before writable data. */
1584 /* Supposedly the assembler rejects the command if there is no tab! */
1585 #define DATA_SECTION_ASM_OP "\t.SPACE $PRIVATE$\n\t.SUBSPA $DATA$\n"
1587 /* Output before uninitialized data. */
1589 #define BSS_SECTION_ASM_OP "\t.SPACE $PRIVATE$\n\t.SUBSPA $BSS$\n"
1591 /* Define the .bss section for ASM_OUTPUT_LOCAL to use. */
1593 #define EXTRA_SECTIONS in_bss
1595 #define EXTRA_SECTION_FUNCTIONS \
1599 if (in_section != in_bss) \
1601 fprintf (asm_out_file, "%s\n", BSS_SECTION_ASM_OP); \
1602 in_section = in_bss; \
1607 /* How to refer to registers in assembler output.
1608 This sequence is indexed by compiler's hard-register-number (see above). */
1610 #define REGISTER_NAMES \
1611 {"0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
1612 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
1613 "%r16", "%r17", "%r18", "%r19", "%r20", "%r21", "%r22", "%r23", \
1614 "%r24", "%r25", "%r26", "%r27", "%r28", "%r29", "%r30", "%r31", \
1615 "%fr4", "%fr5", "%fr6", "%fr7", \
1616 "%fr8", "%fr9", "%fr10", "%fr11", "%fr12", "%fr13", "%fr14", "%fr15", \
1617 "%fr4", "%fr4R", "%fr5", "%fr5R", "%fr6", "%fr6R", "%fr7", "%fr7R", \
1618 "%fr8", "%fr8R", "%fr9", "%fr9R", "%fr10", "%fr10R", "%fr11", "%fr11R",\
1619 "%fr12", "%fr12R", "%fr13", "%fr13R", "%fr14", "%fr14R", "%fr15", "%fr15R",\
1620 "%fr16", "%fr16R", "%fr17", "%fr17R", "%fr18", "%fr18R", "%fr19", "%fr19R",\
1621 "%fr20", "%fr20R", "%fr21", "%fr21R", "%fr22", "%fr22R", "%fr23", "%fr23R",\
1622 "%fr24", "%fr24R", "%fr25", "%fr25R", "%fr26", "%fr26R", "%fr27", "%fr27R",\
1623 "%fr28", "%fr28R", "%fr29", "%fr29R", "%fr30", "%fr30R", "%fr31", "%fr31R",\
1626 /* How to renumber registers for dbx and gdb. */
1628 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1630 /* This is how to output the definition of a user-level label named NAME,
1631 such as the label on a static function or variable NAME. */
1633 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1634 do { assemble_name (FILE, NAME); \
1635 if (TARGET_TRAILING_COLON) \
1636 fputc (':', FILE); \
1637 fputc ('\n', FILE); } while (0)
1639 /* This is how to output a command to make the user-level label named NAME
1640 defined for reference from other files. */
1642 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1643 do { fputs ("\t.IMPORT ", FILE); \
1644 assemble_name (FILE, NAME); \
1645 if (FUNCTION_NAME_P (NAME)) \
1646 fputs (",CODE\n", FILE); \
1648 fputs (",DATA\n", FILE); \
1651 /* hpux ld doesn't output the object file name, or anything useful at
1652 all, to indicate the start of an object file's symbols. This screws
1653 up gdb, so we'll output this magic cookie at the end of an object
1654 file with debugging symbols */
1656 #define ASM_FILE_END(FILE) \
1657 do { if (write_symbols == DBX_DEBUG)\
1658 { fputs (TEXT_SECTION_ASM_OP, FILE);\
1659 fputs (".stabs \"end_file.\",4,0,0,Ltext_end\nLtext_end:\n",\
1664 /* The bogus HP assembler requires ALL external references to be
1665 "imported", even library calls. They look a bit different, so
1666 here's this macro. */
1668 #define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, RTL) \
1669 do { fputs ("\t.IMPORT ", FILE); \
1670 assemble_name (FILE, XSTR ((RTL), 0)); \
1671 fputs (",CODE\n", FILE); \
1674 #define ASM_GLOBALIZE_LABEL(FILE, NAME) \
1675 do { fputs ("\t.EXPORT ", FILE); assemble_name (FILE, NAME); \
1676 if (FUNCTION_NAME_P (NAME)) \
1677 fputs (",CODE\n", FILE); \
1679 fputs (",DATA\n", FILE);} while (0)
1681 /* This is how to output a reference to a user-level label named NAME.
1682 `assemble_name' uses this. */
1684 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1685 fprintf ((FILE), "%s", (NAME) + (FUNCTION_NAME_P (NAME) ? 1 : 0))
1687 /* This is how to output an internal numbered label where
1688 PREFIX is the class of label and NUM is the number within the class. */
1690 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1691 {fprintf (FILE, "%s$%04d", PREFIX, NUM); \
1692 if (TARGET_TRAILING_COLON) \
1693 fputs (":\n", FILE); \
1695 fputs ("\n", FILE);}
1697 /* This is how to store into the string LABEL
1698 the symbol_ref name of an internal numbered label where
1699 PREFIX is the class of label and NUM is the number within the class.
1700 This is suitable for output with `assemble_name'. */
1702 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1703 sprintf (LABEL, "*%s$%04d", PREFIX, NUM)
1705 /* This is how to output an assembler line defining a `double' constant. */
1707 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1708 do { union { double d; int i[2];} __u; \
1710 fprintf (FILE, "\t; .double %.20e\n\t.word %d ; = 0x%x\n\t.word %d ; = 0x%x\n", \
1711 __u.d, __u.i[0], __u.i[0], __u.i[1], __u.i[1]); \
1714 /* This is how to output an assembler line defining a `float' constant. */
1716 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1717 do { union { float f; int i;} __u; \
1719 fprintf (FILE, "\t; .float %.12e\n\t.word %d ; = 0x%x\n", __u.f, __u.i, __u.i); \
1722 /* This is how to output an assembler line defining an `int' constant. */
1724 #define ASM_OUTPUT_INT(FILE,VALUE) \
1725 { fprintf (FILE, "\t.word "); \
1726 if (function_label_operand (VALUE, VOIDmode)) \
1727 fprintf (FILE, "P%%"); \
1728 output_addr_const (FILE, (VALUE)); \
1729 fprintf (FILE, "\n");}
1731 /* Likewise for `short' and `char' constants. */
1733 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1734 ( fprintf (FILE, "\t.half "), \
1735 output_addr_const (FILE, (VALUE)), \
1736 fprintf (FILE, "\n"))
1738 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1739 ( fprintf (FILE, "\t.byte "), \
1740 output_addr_const (FILE, (VALUE)), \
1741 fprintf (FILE, "\n"))
1743 /* This is how to output an assembler line for a numeric constant byte. */
1745 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1746 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1748 #define ASM_OUTPUT_ASCII(FILE, P, SIZE) \
1749 output_ascii ((FILE), (P), (SIZE))
1751 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
1752 #define ASM_OUTPUT_REG_POP(FILE,REGNO)
1753 /* This is how to output an element of a case-vector that is absolute.
1754 Note that this method makes filling these branch delay slots
1757 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1758 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1760 /* Jump tables are executable code and live in the TEXT section on the PA. */
1761 #define JUMP_TABLES_IN_TEXT_SECTION
1763 /* This is how to output an element of a case-vector that is relative.
1764 (The HP-PA does not use such vectors,
1765 but we must define this macro anyway.) */
1767 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1768 fprintf (FILE, "\tword L%d-L%d\n", VALUE, REL)
1770 /* This is how to output an assembler line
1771 that says to advance the location counter
1772 to a multiple of 2**LOG bytes. */
1774 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1775 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1777 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1778 fprintf (FILE, "\t.blockz %d\n", (SIZE))
1780 /* This says how to output an assembler line
1781 to define a global common symbol. */
1783 /* Supposedly the assembler rejects the command if there is no tab! */
1786 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1788 assemble_name ((FILE), (NAME)); \
1789 if (TARGET_TRAILING_COLON) \
1790 fputc (':', (FILE)); \
1791 fputs ("\t.comm ", (FILE)); \
1792 fprintf ((FILE), "%d\n", (ROUNDED));}
1794 /* This says how to output an assembler line
1795 to define a local common symbol. */
1797 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1799 fprintf ((FILE), "\t.align %d\n", (SIZE) <= 4 ? 4 : 8); \
1800 assemble_name ((FILE), (NAME)); \
1801 if (TARGET_TRAILING_COLON) \
1802 fputc (':', (FILE)); \
1803 fprintf ((FILE), "\n\t.block %d\n", (ROUNDED));}
1805 /* Store in OUTPUT a string (made with alloca) containing
1806 an assembler-name for a local static variable named NAME.
1807 LABELNO is an integer which is different for each call. */
1809 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1810 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 12), \
1811 sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
1813 /* Define the parentheses used to group arithmetic operations
1814 in assembler code. */
1816 #define ASM_OPEN_PAREN "("
1817 #define ASM_CLOSE_PAREN ")"
1819 /* Define results of standard character escape sequences. */
1820 #define TARGET_BELL 007
1821 #define TARGET_BS 010
1822 #define TARGET_TAB 011
1823 #define TARGET_NEWLINE 012
1824 #define TARGET_VT 013
1825 #define TARGET_FF 014
1826 #define TARGET_CR 015
1828 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1829 ((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^')
1831 /* Print operand X (an rtx) in assembler syntax to file FILE.
1832 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1833 For `%' followed by punctuation, CODE is the punctuation and X is null.
1835 On the HP-PA, the CODE can be `r', meaning this is a register-only operand
1836 and an immediate zero should be represented as `r0'.
1838 Several % codes are defined:
1840 C compare conditions
1841 N extract conditions
1842 M modifier to handle preincrement addressing for memory refs.
1843 F modifier to handle preincrement addressing for fp memory refs */
1845 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1848 /* Print a memory address as an operand to reference that memory location. */
1850 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1851 { register rtx addr = ADDR; \
1852 register rtx base; \
1854 switch (GET_CODE (addr)) \
1857 fprintf (FILE, "0(0,%s)", reg_names [REGNO (addr)]); \
1860 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
1861 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1); \
1862 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1863 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0); \
1866 fprintf (FILE, "%d(0,%s)", offset, reg_names [REGNO (base)]); \
1869 fputs ("R'", FILE); \
1870 output_global_address (FILE, XEXP (addr, 1)); \
1871 fputs ("(", FILE); \
1872 output_operand (XEXP (addr, 0), 0); \
1873 fputs (")", FILE); \
1876 fprintf (FILE, "%d(0,0)", INTVAL (addr)); \
1879 output_addr_const (FILE, addr); \
1883 /* Define functions in pa.c and used in insn-output.c. */
1885 extern char *output_and ();
1886 extern char *output_ior ();
1887 extern char *output_move_double ();
1888 extern char *output_fp_move_double ();
1889 extern char *output_block_move ();
1890 extern char *output_scc_insn ();
1891 extern char *output_cbranch ();
1892 extern char *output_bb ();
1893 extern char *output_dbra ();
1894 extern char *output_movb ();
1895 extern char *output_return ();
1896 extern char *output_call ();
1897 extern char *output_floatsisf2 ();
1898 extern char *output_floatsidf2 ();
1899 extern char *output_mul_insn ();
1900 extern char *output_div_insn ();
1901 extern char *output_mod_insn ();
1902 extern char *singlemove_string ();
1903 extern void output_arg_descriptor ();
1904 extern void output_global_address ();
1905 extern struct rtx_def
*legitimize_pic_address ();
1906 extern struct rtx_def
*gen_cmp_fp ();
1907 extern void hppa_encode_label ();
1909 extern struct rtx_def
*hppa_save_pic_table_rtx
;