]> gcc.gnu.org Git - gcc.git/blob - gcc/config/pa/pa.h
Update copyright years.
[gcc.git] / gcc / config / pa / pa.h
1 /* Definitions of target machine for GNU compiler, for the HP Spectrum.
2 Copyright (C) 1992-2015 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) of Cygnus Support
4 and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
5 Software Science at the University of Utah.
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* For long call handling. */
24 extern unsigned long total_code_bytes;
25
26 #define pa_cpu_attr ((enum attr_cpu)pa_cpu)
27
28 #define TARGET_PA_10 (!TARGET_PA_11 && !TARGET_PA_20)
29
30 /* Generate code for the HPPA 2.0 architecture in 64bit mode. */
31 #ifndef TARGET_64BIT
32 #define TARGET_64BIT 0
33 #endif
34
35 /* Generate code for ELF32 ABI. */
36 #ifndef TARGET_ELF32
37 #define TARGET_ELF32 0
38 #endif
39
40 /* Generate code for SOM 32bit ABI. */
41 #ifndef TARGET_SOM
42 #define TARGET_SOM 0
43 #endif
44
45 /* HP-UX UNIX features. */
46 #ifndef TARGET_HPUX
47 #define TARGET_HPUX 0
48 #endif
49
50 /* HP-UX 10.10 UNIX 95 features. */
51 #ifndef TARGET_HPUX_10_10
52 #define TARGET_HPUX_10_10 0
53 #endif
54
55 /* HP-UX 11.* features (11.00, 11.11, 11.23, etc.) */
56 #ifndef TARGET_HPUX_11
57 #define TARGET_HPUX_11 0
58 #endif
59
60 /* HP-UX 11i multibyte and UNIX 98 extensions. */
61 #ifndef TARGET_HPUX_11_11
62 #define TARGET_HPUX_11_11 0
63 #endif
64
65 /* HP-UX 11i multibyte and UNIX 2003 extensions. */
66 #ifndef TARGET_HPUX_11_31
67 #define TARGET_HPUX_11_31 0
68 #endif
69
70 /* HP-UX long double library. */
71 #ifndef HPUX_LONG_DOUBLE_LIBRARY
72 #define HPUX_LONG_DOUBLE_LIBRARY 0
73 #endif
74
75 /* Linux kernel atomic operation support. */
76 #ifndef TARGET_SYNC_LIBCALL
77 #define TARGET_SYNC_LIBCALL 0
78 #endif
79
80 /* The following three defines are potential target switches. The current
81 defines are optimal given the current capabilities of GAS and GNU ld. */
82
83 /* Define to a C expression evaluating to true to use long absolute calls.
84 Currently, only the HP assembler and SOM linker support long absolute
85 calls. They are used only in non-pic code. */
86 #define TARGET_LONG_ABS_CALL (TARGET_SOM && !TARGET_GAS)
87
88 /* Define to a C expression evaluating to true to use long PIC symbol
89 difference calls. Long PIC symbol difference calls are only used with
90 the HP assembler and linker. The HP assembler detects this instruction
91 sequence and treats it as long pc-relative call. Currently, GAS only
92 allows a difference of two symbols in the same subspace, and it doesn't
93 detect the sequence as a pc-relative call. */
94 #define TARGET_LONG_PIC_SDIFF_CALL (!TARGET_GAS && TARGET_HPUX)
95
96 /* Define to a C expression evaluating to true to use long PIC
97 pc-relative calls. Long PIC pc-relative calls are only used with
98 GAS. Currently, they are usable for calls which bind local to a
99 module but not for external calls. */
100 #define TARGET_LONG_PIC_PCREL_CALL 0
101
102 /* Define to a C expression evaluating to true to use SOM secondary
103 definition symbols for weak support. Linker support for secondary
104 definition symbols is buggy prior to HP-UX 11.X. */
105 #define TARGET_SOM_SDEF 0
106
107 /* Define to a C expression evaluating to true to save the entry value
108 of SP in the current frame marker. This is normally unnecessary.
109 However, the HP-UX unwind library looks at the SAVE_SP callinfo flag.
110 HP compilers don't use this flag but it is supported by the assembler.
111 We set this flag to indicate that register %r3 has been saved at the
112 start of the frame. Thus, when the HP unwind library is used, we
113 need to generate additional code to save SP into the frame marker. */
114 #define TARGET_HPUX_UNWIND_LIBRARY 0
115
116 #ifndef TARGET_DEFAULT
117 #define TARGET_DEFAULT MASK_GAS
118 #endif
119
120 #ifndef TARGET_CPU_DEFAULT
121 #define TARGET_CPU_DEFAULT 0
122 #endif
123
124 #ifndef TARGET_SCHED_DEFAULT
125 #define TARGET_SCHED_DEFAULT PROCESSOR_8000
126 #endif
127
128 /* Support for a compile-time default CPU, et cetera. The rules are:
129 --with-schedule is ignored if -mschedule is specified.
130 --with-arch is ignored if -march is specified. */
131 #define OPTION_DEFAULT_SPECS \
132 {"arch", "%{!march=*:-march=%(VALUE)}" }, \
133 {"schedule", "%{!mschedule=*:-mschedule=%(VALUE)}" }
134
135 /* Specify the dialect of assembler to use. New mnemonics is dialect one
136 and the old mnemonics are dialect zero. */
137 #define ASSEMBLER_DIALECT (TARGET_PA_20 ? 1 : 0)
138
139 /* Override some settings from dbxelf.h. */
140
141 /* We do not have to be compatible with dbx, so we enable gdb extensions
142 by default. */
143 #define DEFAULT_GDB_EXTENSIONS 1
144
145 /* This used to be zero (no max length), but big enums and such can
146 cause huge strings which killed gas.
147
148 We also have to avoid lossage in dbxout.c -- it does not compute the
149 string size accurately, so we are real conservative here. */
150 #undef DBX_CONTIN_LENGTH
151 #define DBX_CONTIN_LENGTH 3000
152
153 /* GDB always assumes the current function's frame begins at the value
154 of the stack pointer upon entry to the current function. Accessing
155 local variables and parameters passed on the stack is done using the
156 base of the frame + an offset provided by GCC.
157
158 For functions which have frame pointers this method works fine;
159 the (frame pointer) == (stack pointer at function entry) and GCC provides
160 an offset relative to the frame pointer.
161
162 This loses for functions without a frame pointer; GCC provides an offset
163 which is relative to the stack pointer after adjusting for the function's
164 frame size. GDB would prefer the offset to be relative to the value of
165 the stack pointer at the function's entry. Yuk! */
166 #define DEBUGGER_AUTO_OFFSET(X) \
167 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
168 + (frame_pointer_needed ? 0 : pa_compute_frame_size (get_frame_size (), 0)))
169
170 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
171 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
172 + (frame_pointer_needed ? 0 : pa_compute_frame_size (get_frame_size (), 0)))
173
174 #define TARGET_CPU_CPP_BUILTINS() \
175 do { \
176 builtin_assert("cpu=hppa"); \
177 builtin_assert("machine=hppa"); \
178 builtin_define("__hppa"); \
179 builtin_define("__hppa__"); \
180 if (TARGET_PA_20) \
181 builtin_define("_PA_RISC2_0"); \
182 else if (TARGET_PA_11) \
183 builtin_define("_PA_RISC1_1"); \
184 else \
185 builtin_define("_PA_RISC1_0"); \
186 } while (0)
187
188 /* An old set of OS defines for various BSD-like systems. */
189 #define TARGET_OS_CPP_BUILTINS() \
190 do \
191 { \
192 builtin_define_std ("REVARGV"); \
193 builtin_define_std ("hp800"); \
194 builtin_define_std ("hp9000"); \
195 builtin_define_std ("hp9k8"); \
196 if (!c_dialect_cxx () && !flag_iso) \
197 builtin_define ("hppa"); \
198 builtin_define_std ("spectrum"); \
199 builtin_define_std ("unix"); \
200 builtin_assert ("system=bsd"); \
201 builtin_assert ("system=unix"); \
202 } \
203 while (0)
204
205 #define CC1_SPEC "%{pg:} %{p:}"
206
207 #define LINK_SPEC "%{mlinker-opt:-O} %{!shared:-u main} %{shared:-b}"
208
209 /* We don't want -lg. */
210 #ifndef LIB_SPEC
211 #define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
212 #endif
213
214 /* Make gcc agree with <machine/ansi.h> */
215
216 #define SIZE_TYPE "unsigned int"
217 #define PTRDIFF_TYPE "int"
218 #define WCHAR_TYPE "unsigned int"
219 #define WCHAR_TYPE_SIZE 32
220 \f
221 /* target machine storage layout */
222 typedef struct GTY(()) machine_function
223 {
224 /* Flag indicating that a .NSUBSPA directive has been output for
225 this function. */
226 int in_nsubspa;
227 } machine_function;
228
229 /* Define this macro if it is advisable to hold scalars in registers
230 in a wider mode than that declared by the program. In such cases,
231 the value is constrained to be within the bounds of the declared
232 type, but kept valid in the wider mode. The signedness of the
233 extension may differ from that of the type. */
234
235 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
236 if (GET_MODE_CLASS (MODE) == MODE_INT \
237 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
238 (MODE) = word_mode;
239
240 /* Define this if most significant bit is lowest numbered
241 in instructions that operate on numbered bit-fields. */
242 #define BITS_BIG_ENDIAN 1
243
244 /* Define this if most significant byte of a word is the lowest numbered. */
245 /* That is true on the HP-PA. */
246 #define BYTES_BIG_ENDIAN 1
247
248 /* Define this if most significant word of a multiword number is lowest
249 numbered. */
250 #define WORDS_BIG_ENDIAN 1
251
252 #define MAX_BITS_PER_WORD 64
253
254 /* Width of a word, in units (bytes). */
255 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
256
257 /* Minimum number of units in a word. If this is undefined, the default
258 is UNITS_PER_WORD. Otherwise, it is the constant value that is the
259 smallest value that UNITS_PER_WORD can have at run-time.
260
261 FIXME: This needs to be 4 when TARGET_64BIT is true to suppress the
262 building of various TImode routines in libgcc. The HP runtime
263 specification doesn't provide the alignment requirements and calling
264 conventions for TImode variables. */
265 #define MIN_UNITS_PER_WORD 4
266
267 /* The widest floating point format supported by the hardware. Note that
268 setting this influences some Ada floating point type sizes, currently
269 required for GNAT to operate properly. */
270 #define WIDEST_HARDWARE_FP_SIZE 64
271
272 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
273 #define PARM_BOUNDARY BITS_PER_WORD
274
275 /* Largest alignment required for any stack parameter, in bits.
276 Don't define this if it is equal to PARM_BOUNDARY */
277 #define MAX_PARM_BOUNDARY BIGGEST_ALIGNMENT
278
279 /* Boundary (in *bits*) on which stack pointer is always aligned;
280 certain optimizations in combine depend on this.
281
282 The HP-UX runtime documents mandate 64-byte and 16-byte alignment for
283 the stack on the 32 and 64-bit ports, respectively. However, we
284 are only guaranteed that the stack is aligned to BIGGEST_ALIGNMENT
285 in main. Thus, we treat the former as the preferred alignment. */
286 #define STACK_BOUNDARY BIGGEST_ALIGNMENT
287 #define PREFERRED_STACK_BOUNDARY (TARGET_64BIT ? 128 : 512)
288
289 /* Allocation boundary (in *bits*) for the code of a function. */
290 #define FUNCTION_BOUNDARY BITS_PER_WORD
291
292 /* Alignment of field after `int : 0' in a structure. */
293 #define EMPTY_FIELD_BOUNDARY 32
294
295 /* Every structure's size must be a multiple of this. */
296 #define STRUCTURE_SIZE_BOUNDARY 8
297
298 /* A bit-field declared as `int' forces `int' alignment for the struct. */
299 #define PCC_BITFIELD_TYPE_MATTERS 1
300
301 /* No data type wants to be aligned rounder than this. */
302 #define BIGGEST_ALIGNMENT (2 * BITS_PER_WORD)
303
304 /* Get around hp-ux assembler bug, and make strcpy of constants fast. */
305 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
306 (TREE_CODE (EXP) == STRING_CST \
307 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
308
309 /* Make arrays of chars word-aligned for the same reasons. */
310 #define DATA_ALIGNMENT(TYPE, ALIGN) \
311 (TREE_CODE (TYPE) == ARRAY_TYPE \
312 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
313 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
314
315 /* Set this nonzero if move instructions will actually fail to work
316 when given unaligned data. */
317 #define STRICT_ALIGNMENT 1
318
319 /* Value is 1 if it is a good idea to tie two pseudo registers
320 when one has mode MODE1 and one has mode MODE2.
321 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
322 for any hard reg, then this must be 0 for correct output. */
323 #define MODES_TIEABLE_P(MODE1, MODE2) \
324 pa_modes_tieable_p (MODE1, MODE2)
325
326 /* Specify the registers used for certain standard purposes.
327 The values of these macros are register numbers. */
328
329 /* The HP-PA pc isn't overloaded on a register that the compiler knows about. */
330 /* #define PC_REGNUM */
331
332 /* Register to use for pushing function arguments. */
333 #define STACK_POINTER_REGNUM 30
334
335 /* Fixed register for local variable access. Always eliminated. */
336 #define FRAME_POINTER_REGNUM (TARGET_64BIT ? 61 : 89)
337
338 /* Base register for access to local variables of the function. */
339 #define HARD_FRAME_POINTER_REGNUM 3
340
341 /* Don't allow hard registers to be renamed into r2 unless r2
342 is already live or already being saved (due to eh). */
343
344 #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
345 ((NEW_REG) != 2 || df_regs_ever_live_p (2) || crtl->calls_eh_return)
346
347 /* Base register for access to arguments of the function. */
348 #define ARG_POINTER_REGNUM (TARGET_64BIT ? 29 : 3)
349
350 /* Register in which static-chain is passed to a function. */
351 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? 31 : 29)
352
353 /* Register used to address the offset table for position-independent
354 data references. */
355 #define PIC_OFFSET_TABLE_REGNUM \
356 (flag_pic ? (TARGET_64BIT ? 27 : 19) : INVALID_REGNUM)
357
358 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
359
360 /* Function to return the rtx used to save the pic offset table register
361 across function calls. */
362 extern rtx hppa_pic_save_rtx (void);
363
364 #define DEFAULT_PCC_STRUCT_RETURN 0
365
366 /* Register in which address to store a structure value
367 is passed to a function. */
368 #define PA_STRUCT_VALUE_REGNUM 28
369
370 /* Definitions for register eliminations.
371
372 We have two registers that can be eliminated. First, the frame pointer
373 register can often be eliminated in favor of the stack pointer register.
374 Secondly, the argument pointer register can always be eliminated in the
375 32-bit runtimes. */
376
377 /* This is an array of structures. Each structure initializes one pair
378 of eliminable registers. The "from" register number is given first,
379 followed by "to". Eliminations of the same "from" register are listed
380 in order of preference.
381
382 The argument pointer cannot be eliminated in the 64-bit runtime. It
383 is the same register as the hard frame pointer in the 32-bit runtime.
384 So, it does not need to be listed. */
385 #define ELIMINABLE_REGS \
386 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
387 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
388 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM} }
389
390 /* Define the offset between two registers, one to be eliminated,
391 and the other its replacement, at the start of a routine. */
392 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
393 ((OFFSET) = pa_initial_elimination_offset(FROM, TO))
394
395 /* Describe how we implement __builtin_eh_return. */
396 #define EH_RETURN_DATA_REGNO(N) \
397 ((N) < 3 ? (N) + 20 : (N) == 3 ? 31 : INVALID_REGNUM)
398 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 29)
399 #define EH_RETURN_HANDLER_RTX pa_eh_return_handler_rtx ()
400
401 /* Offset from the frame pointer register value to the top of stack. */
402 #define FRAME_POINTER_CFA_OFFSET(FNDECL) 0
403
404 /* The maximum number of hard registers that can be saved in the call
405 frame. The soft frame pointer is not included. */
406 #define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER - 1)
407
408 /* A C expression whose value is RTL representing the location of the
409 incoming return address at the beginning of any function, before the
410 prologue. You only need to define this macro if you want to support
411 call frame debugging information like that provided by DWARF 2. */
412 #define INCOMING_RETURN_ADDR_RTX (gen_rtx_REG (word_mode, 2))
413 #define DWARF_FRAME_RETURN_COLUMN (DWARF_FRAME_REGNUM (2))
414
415 /* A C expression whose value is an integer giving a DWARF 2 column
416 number that may be used as an alternate return column. This should
417 be defined only if DWARF_FRAME_RETURN_COLUMN is set to a general
418 register, but an alternate column needs to be used for signal frames.
419
420 Column 0 is not used but unfortunately its register size is set to
421 4 bytes (sizeof CCmode) so it can't be used on 64-bit targets. */
422 #define DWARF_ALT_FRAME_RETURN_COLUMN (FIRST_PSEUDO_REGISTER - 1)
423
424 /* This macro chooses the encoding of pointers embedded in the exception
425 handling sections. If at all possible, this should be defined such
426 that the exception handling section will not require dynamic relocations,
427 and so may be read-only.
428
429 Because the HP assembler auto aligns, it is necessary to use
430 DW_EH_PE_aligned. It's not possible to make the data read-only
431 on the HP-UX SOM port since the linker requires fixups for label
432 differences in different sections to be word aligned. However,
433 the SOM linker can do unaligned fixups for absolute pointers.
434 We also need aligned pointers for global and function pointers.
435
436 Although the HP-UX 64-bit ELF linker can handle unaligned pc-relative
437 fixups, the runtime doesn't have a consistent relationship between
438 text and data for dynamically loaded objects. Thus, it's not possible
439 to use pc-relative encoding for pointers on this target. It may be
440 possible to use segment relative encodings but GAS doesn't currently
441 have a mechanism to generate these encodings. For other targets, we
442 use pc-relative encoding for pointers. If the pointer might require
443 dynamic relocation, we make it indirect. */
444 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
445 (TARGET_GAS && !TARGET_HPUX \
446 ? (DW_EH_PE_pcrel \
447 | ((GLOBAL) || (CODE) == 2 ? DW_EH_PE_indirect : 0) \
448 | (TARGET_64BIT ? DW_EH_PE_sdata8 : DW_EH_PE_sdata4)) \
449 : (!TARGET_GAS || (GLOBAL) || (CODE) == 2 \
450 ? DW_EH_PE_aligned : DW_EH_PE_absptr))
451
452 /* Handle special EH pointer encodings. Absolute, pc-relative, and
453 indirect are handled automatically. We output pc-relative, and
454 indirect pc-relative ourself since we need some special magic to
455 generate pc-relative relocations, and to handle indirect function
456 pointers. */
457 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
458 do { \
459 if (((ENCODING) & 0x70) == DW_EH_PE_pcrel) \
460 { \
461 fputs (integer_asm_op (SIZE, FALSE), FILE); \
462 if ((ENCODING) & DW_EH_PE_indirect) \
463 output_addr_const (FILE, pa_get_deferred_plabel (ADDR)); \
464 else \
465 assemble_name (FILE, XSTR ((ADDR), 0)); \
466 fputs ("+8-$PIC_pcrel$0", FILE); \
467 goto DONE; \
468 } \
469 } while (0)
470 \f
471
472 /* The class value for index registers, and the one for base regs. */
473 #define INDEX_REG_CLASS GENERAL_REGS
474 #define BASE_REG_CLASS GENERAL_REGS
475
476 #define FP_REG_CLASS_P(CLASS) \
477 ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS)
478
479 /* True if register is floating-point. */
480 #define FP_REGNO_P(N) ((N) >= FP_REG_FIRST && (N) <= FP_REG_LAST)
481
482 #define MAYBE_FP_REG_CLASS_P(CLASS) \
483 reg_classes_intersect_p ((CLASS), FP_REGS)
484
485 \f
486 /* Stack layout; function entry, exit and calling. */
487
488 /* Define this if pushing a word on the stack
489 makes the stack pointer a smaller address. */
490 /* #define STACK_GROWS_DOWNWARD */
491
492 /* Believe it or not. */
493 #define ARGS_GROW_DOWNWARD
494
495 /* Define this to nonzero if the nominal address of the stack frame
496 is at the high-address end of the local variables;
497 that is, each additional local variable allocated
498 goes at a more negative offset in the frame. */
499 #define FRAME_GROWS_DOWNWARD 0
500
501 /* Offset within stack frame to start allocating local variables at.
502 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
503 first local allocated. Otherwise, it is the offset to the BEGINNING
504 of the first local allocated.
505
506 On the 32-bit ports, we reserve one slot for the previous frame
507 pointer and one fill slot. The fill slot is for compatibility
508 with HP compiled programs. On the 64-bit ports, we reserve one
509 slot for the previous frame pointer. */
510 #define STARTING_FRAME_OFFSET 8
511
512 /* Define STACK_ALIGNMENT_NEEDED to zero to disable final alignment
513 of the stack. The default is to align it to STACK_BOUNDARY. */
514 #define STACK_ALIGNMENT_NEEDED 0
515
516 /* If we generate an insn to push BYTES bytes,
517 this says how many the stack pointer really advances by.
518 On the HP-PA, don't define this because there are no push insns. */
519 /* #define PUSH_ROUNDING(BYTES) */
520
521 /* Offset of first parameter from the argument pointer register value.
522 This value will be negated because the arguments grow down.
523 Also note that on STACK_GROWS_UPWARD machines (such as this one)
524 this is the distance from the frame pointer to the end of the first
525 argument, not it's beginning. To get the real offset of the first
526 argument, the size of the argument must be added. */
527
528 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_64BIT ? -64 : -32)
529
530 /* When a parameter is passed in a register, stack space is still
531 allocated for it. */
532 #define REG_PARM_STACK_SPACE(DECL) (TARGET_64BIT ? 64 : 16)
533
534 /* Define this if the above stack space is to be considered part of the
535 space allocated by the caller. */
536 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
537
538 /* Keep the stack pointer constant throughout the function.
539 This is both an optimization and a necessity: longjmp
540 doesn't behave itself when the stack pointer moves within
541 the function! */
542 #define ACCUMULATE_OUTGOING_ARGS 1
543
544 /* The weird HPPA calling conventions require a minimum of 48 bytes on
545 the stack: 16 bytes for register saves, and 32 bytes for magic.
546 This is the difference between the logical top of stack and the
547 actual sp.
548
549 On the 64-bit port, the HP C compiler allocates a 48-byte frame
550 marker, although the runtime documentation only describes a 16
551 byte marker. For compatibility, we allocate 48 bytes. */
552 #define STACK_POINTER_OFFSET \
553 (TARGET_64BIT ? -(crtl->outgoing_args_size + 48): -32)
554
555 #define STACK_DYNAMIC_OFFSET(FNDECL) \
556 (TARGET_64BIT \
557 ? (STACK_POINTER_OFFSET) \
558 : ((STACK_POINTER_OFFSET) - crtl->outgoing_args_size))
559
560 \f
561 /* Define a data type for recording info about an argument list
562 during the scan of that argument list. This data type should
563 hold all necessary information about the function itself
564 and about the args processed so far, enough to enable macros
565 such as FUNCTION_ARG to determine where the next arg should go.
566
567 On the HP-PA, the WORDS field holds the number of words
568 of arguments scanned so far (including the invisible argument,
569 if any, which holds the structure-value-address). Thus, 4 or
570 more means all following args should go on the stack.
571
572 The INCOMING field tracks whether this is an "incoming" or
573 "outgoing" argument.
574
575 The INDIRECT field indicates whether this is is an indirect
576 call or not.
577
578 The NARGS_PROTOTYPE field indicates that an argument does not
579 have a prototype when it less than or equal to 0. */
580
581 struct hppa_args {int words, nargs_prototype, incoming, indirect; };
582
583 #define CUMULATIVE_ARGS struct hppa_args
584
585 /* Initialize a variable CUM of type CUMULATIVE_ARGS
586 for a call to a function whose data type is FNTYPE.
587 For a library call, FNTYPE is 0. */
588
589 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
590 (CUM).words = 0, \
591 (CUM).incoming = 0, \
592 (CUM).indirect = (FNTYPE) && !(FNDECL), \
593 (CUM).nargs_prototype = (FNTYPE && prototype_p (FNTYPE) \
594 ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1 \
595 + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
596 || pa_return_in_memory (TREE_TYPE (FNTYPE), 0))) \
597 : 0)
598
599
600
601 /* Similar, but when scanning the definition of a procedure. We always
602 set NARGS_PROTOTYPE large so we never return a PARALLEL. */
603
604 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
605 (CUM).words = 0, \
606 (CUM).incoming = 1, \
607 (CUM).indirect = 0, \
608 (CUM).nargs_prototype = 1000
609
610 /* Figure out the size in words of the function argument. The size
611 returned by this macro should always be greater than zero because
612 we pass variable and zero sized objects by reference. */
613
614 #define FUNCTION_ARG_SIZE(MODE, TYPE) \
615 ((((MODE) != BLKmode \
616 ? (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \
617 : int_size_in_bytes (TYPE)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
618
619 /* Determine where to put an argument to a function.
620 Value is zero to push the argument on the stack,
621 or a hard register in which to store the argument.
622
623 MODE is the argument's machine mode.
624 TYPE is the data type of the argument (as a tree).
625 This is null for libcalls where that information may
626 not be available.
627 CUM is a variable of type CUMULATIVE_ARGS which gives info about
628 the preceding args and about the function being called.
629 NAMED is nonzero if this argument is a named parameter
630 (otherwise it is an extra parameter matching an ellipsis).
631
632 On the HP-PA the first four words of args are normally in registers
633 and the rest are pushed. But any arg that won't entirely fit in regs
634 is pushed.
635
636 Arguments passed in registers are either 1 or 2 words long.
637
638 The caller must make a distinction between calls to explicitly named
639 functions and calls through pointers to functions -- the conventions
640 are different! Calls through pointers to functions only use general
641 registers for the first four argument words.
642
643 Of course all this is different for the portable runtime model
644 HP wants everyone to use for ELF. Ugh. Here's a quick description
645 of how it's supposed to work.
646
647 1) callee side remains unchanged. It expects integer args to be
648 in the integer registers, float args in the float registers and
649 unnamed args in integer registers.
650
651 2) caller side now depends on if the function being called has
652 a prototype in scope (rather than if it's being called indirectly).
653
654 2a) If there is a prototype in scope, then arguments are passed
655 according to their type (ints in integer registers, floats in float
656 registers, unnamed args in integer registers.
657
658 2b) If there is no prototype in scope, then floating point arguments
659 are passed in both integer and float registers. egad.
660
661 FYI: The portable parameter passing conventions are almost exactly like
662 the standard parameter passing conventions on the RS6000. That's why
663 you'll see lots of similar code in rs6000.h. */
664
665 /* If defined, a C expression which determines whether, and in which
666 direction, to pad out an argument with extra space. */
667 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
668 pa_function_arg_padding ((MODE), (TYPE))
669
670 /* Specify padding for the last element of a block move between registers
671 and memory.
672
673 The 64-bit runtime specifies that objects need to be left justified
674 (i.e., the normal justification for a big endian target). The 32-bit
675 runtime specifies right justification for objects smaller than 64 bits.
676 We use a DImode register in the parallel for 5 to 7 byte structures
677 so that there is only one element. This allows the object to be
678 correctly padded. */
679 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
680 pa_function_arg_padding ((MODE), (TYPE))
681
682 \f
683 /* On HPPA, we emit profiling code as rtl via PROFILE_HOOK rather than
684 as assembly via FUNCTION_PROFILER. Just output a local label.
685 We can't use the function label because the GAS SOM target can't
686 handle the difference of a global symbol and a local symbol. */
687
688 #ifndef FUNC_BEGIN_PROLOG_LABEL
689 #define FUNC_BEGIN_PROLOG_LABEL "LFBP"
690 #endif
691
692 #define FUNCTION_PROFILER(FILE, LABEL) \
693 (*targetm.asm_out.internal_label) (FILE, FUNC_BEGIN_PROLOG_LABEL, LABEL)
694
695 #define PROFILE_HOOK(label_no) hppa_profile_hook (label_no)
696 void hppa_profile_hook (int label_no);
697
698 /* The profile counter if emitted must come before the prologue. */
699 #define PROFILE_BEFORE_PROLOGUE 1
700
701 /* We never want final.c to emit profile counters. When profile
702 counters are required, we have to defer emitting them to the end
703 of the current file. */
704 #define NO_PROFILE_COUNTERS 1
705
706 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
707 the stack pointer does not matter. The value is tested only in
708 functions that have frame pointers.
709 No definition is equivalent to always zero. */
710
711 extern int may_call_alloca;
712
713 #define EXIT_IGNORE_STACK \
714 (get_frame_size () != 0 \
715 || cfun->calls_alloca || crtl->outgoing_args_size)
716
717 /* Length in units of the trampoline for entering a nested function. */
718
719 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 72 : 52)
720
721 /* Alignment required by the trampoline. */
722
723 #define TRAMPOLINE_ALIGNMENT BITS_PER_WORD
724
725 /* Minimum length of a cache line. A length of 16 will work on all
726 PA-RISC processors. All PA 1.1 processors have a cache line of
727 32 bytes. Most but not all PA 2.0 processors have a cache line
728 of 64 bytes. As cache flushes are expensive and we don't support
729 PA 1.0, we use a minimum length of 32. */
730
731 #define MIN_CACHELINE_SIZE 32
732
733 \f
734 /* Addressing modes, and classification of registers for them.
735
736 Using autoincrement addressing modes on PA8000 class machines is
737 not profitable. */
738
739 #define HAVE_POST_INCREMENT (pa_cpu < PROCESSOR_8000)
740 #define HAVE_POST_DECREMENT (pa_cpu < PROCESSOR_8000)
741
742 #define HAVE_PRE_DECREMENT (pa_cpu < PROCESSOR_8000)
743 #define HAVE_PRE_INCREMENT (pa_cpu < PROCESSOR_8000)
744
745 /* Macros to check register numbers against specific register classes. */
746
747 /* The following macros assume that X is a hard or pseudo reg number.
748 They give nonzero only if X is a hard reg of the suitable class
749 or a pseudo reg currently allocated to a suitable hard reg.
750 Since they use reg_renumber, they are safe only once reg_renumber
751 has been allocated, which happens in reginfo.c during register
752 allocation. */
753
754 #define REGNO_OK_FOR_INDEX_P(X) \
755 ((X) && ((X) < 32 \
756 || ((X) == FRAME_POINTER_REGNUM) \
757 || ((X) >= FIRST_PSEUDO_REGISTER \
758 && reg_renumber \
759 && (unsigned) reg_renumber[X] < 32)))
760 #define REGNO_OK_FOR_BASE_P(X) \
761 ((X) && ((X) < 32 \
762 || ((X) == FRAME_POINTER_REGNUM) \
763 || ((X) >= FIRST_PSEUDO_REGISTER \
764 && reg_renumber \
765 && (unsigned) reg_renumber[X] < 32)))
766 #define REGNO_OK_FOR_FP_P(X) \
767 (FP_REGNO_P (X) \
768 || (X >= FIRST_PSEUDO_REGISTER \
769 && reg_renumber \
770 && FP_REGNO_P (reg_renumber[X])))
771
772 /* Now macros that check whether X is a register and also,
773 strictly, whether it is in a specified class.
774
775 These macros are specific to the HP-PA, and may be used only
776 in code for printing assembler insns and in conditions for
777 define_optimization. */
778
779 /* 1 if X is an fp register. */
780
781 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
782 \f
783 /* Maximum number of registers that can appear in a valid memory address. */
784
785 #define MAX_REGS_PER_ADDRESS 2
786
787 /* TLS symbolic reference. */
788 #define PA_SYMBOL_REF_TLS_P(X) \
789 (GET_CODE (X) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (X) != 0)
790
791 /* Recognize any constant value that is a valid address except
792 for symbolic addresses. We get better CSE by rejecting them
793 here and allowing hppa_legitimize_address to break them up. We
794 use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE. */
795
796 #define CONSTANT_ADDRESS_P(X) \
797 ((GET_CODE (X) == LABEL_REF \
798 || (GET_CODE (X) == SYMBOL_REF && !SYMBOL_REF_TLS_MODEL (X)) \
799 || GET_CODE (X) == CONST_INT \
800 || (GET_CODE (X) == CONST && !tls_referenced_p (X)) \
801 || GET_CODE (X) == HIGH) \
802 && (reload_in_progress || reload_completed \
803 || ! pa_symbolic_expression_p (X)))
804
805 /* A C expression that is nonzero if we are using the new HP assembler. */
806
807 #ifndef NEW_HP_ASSEMBLER
808 #define NEW_HP_ASSEMBLER 0
809 #endif
810
811 /* The macros below define the immediate range for CONST_INTS on
812 the 64-bit port. Constants in this range can be loaded in three
813 instructions using a ldil/ldo/depdi sequence. Constants outside
814 this range are forced to the constant pool prior to reload. */
815
816 #define MAX_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) 32 << 31)
817 #define MIN_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) -32 << 31)
818 #define LEGITIMATE_64BIT_CONST_INT_P(X) \
819 ((X) >= MIN_LEGIT_64BIT_CONST_INT && (X) < MAX_LEGIT_64BIT_CONST_INT)
820
821 /* Target flags set on a symbol_ref. */
822
823 /* Set by ASM_OUTPUT_SYMBOL_REF when a symbol_ref is output. */
824 #define SYMBOL_FLAG_REFERENCED (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
825 #define SYMBOL_REF_REFERENCED_P(RTX) \
826 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_REFERENCED) != 0)
827
828 /* Defines for constraints.md. */
829
830 /* Return 1 iff OP is a scaled or unscaled index address. */
831 #define IS_INDEX_ADDR_P(OP) \
832 (GET_CODE (OP) == PLUS \
833 && GET_MODE (OP) == Pmode \
834 && (GET_CODE (XEXP (OP, 0)) == MULT \
835 || GET_CODE (XEXP (OP, 1)) == MULT \
836 || (REG_P (XEXP (OP, 0)) \
837 && REG_P (XEXP (OP, 1)))))
838
839 /* Return 1 iff OP is a LO_SUM DLT address. */
840 #define IS_LO_SUM_DLT_ADDR_P(OP) \
841 (GET_CODE (OP) == LO_SUM \
842 && GET_MODE (OP) == Pmode \
843 && REG_P (XEXP (OP, 0)) \
844 && REG_OK_FOR_BASE_P (XEXP (OP, 0)) \
845 && GET_CODE (XEXP (OP, 1)) == UNSPEC)
846
847 /* Nonzero if 14-bit offsets can be used for all loads and stores.
848 This is not possible when generating PA 1.x code as floating point
849 loads and stores only support 5-bit offsets. Note that we do not
850 forbid the use of 14-bit offsets for integer modes. Instead, we
851 use secondary reloads to fix REG+D memory addresses for integer
852 mode floating-point loads and stores.
853
854 FIXME: the ELF32 linker clobbers the LSB of the FP register number
855 in PA 2.0 floating-point insns with long displacements. This is
856 because R_PARISC_DPREL14WR and other relocations like it are not
857 yet supported by GNU ld. For now, we reject long displacements
858 on this target. */
859
860 #define INT14_OK_STRICT \
861 (TARGET_SOFT_FLOAT \
862 || TARGET_DISABLE_FPREGS \
863 || (TARGET_PA_20 && !TARGET_ELF32))
864
865 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
866 and check its validity for a certain class.
867 We have two alternate definitions for each of them.
868 The usual definition accepts all pseudo regs; the other rejects
869 them unless they have been allocated suitable hard regs.
870
871 Most source files want to accept pseudo regs in the hope that
872 they will get allocated to the class that the insn wants them to be in.
873 Source files for reload pass need to be strict.
874 After reload, it makes no difference, since pseudo regs have
875 been eliminated by then. */
876
877 /* Nonzero if X is a hard reg that can be used as an index
878 or if it is a pseudo reg. */
879 #define REG_OK_FOR_INDEX_P(X) \
880 (REGNO (X) && (REGNO (X) < 32 \
881 || REGNO (X) == FRAME_POINTER_REGNUM \
882 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
883
884 /* Nonzero if X is a hard reg that can be used as a base reg
885 or if it is a pseudo reg. */
886 #define REG_OK_FOR_BASE_P(X) \
887 (REGNO (X) && (REGNO (X) < 32 \
888 || REGNO (X) == FRAME_POINTER_REGNUM \
889 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
890
891 /* Nonzero if X is a hard reg that can be used as an index. */
892 #define STRICT_REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
893
894 /* Nonzero if X is a hard reg that can be used as a base reg. */
895 #define STRICT_REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
896
897 #define VAL_5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x10 < 0x20)
898 #define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
899
900 #define VAL_U5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x20)
901 #define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
902
903 #define VAL_U6_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x40)
904 #define INT_U6_BITS(X) VAL_U6_BITS_P (INTVAL (X))
905
906 #define VAL_11_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x400 < 0x800)
907 #define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
908
909 #define VAL_14_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x2000 < 0x4000)
910 #define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
911
912 #if HOST_BITS_PER_WIDE_INT > 32
913 #define VAL_32_BITS_P(X) \
914 ((unsigned HOST_WIDE_INT)(X) + ((unsigned HOST_WIDE_INT) 1 << 31) \
915 < (unsigned HOST_WIDE_INT) 2 << 31)
916 #else
917 #define VAL_32_BITS_P(X) 1
918 #endif
919 #define INT_32_BITS(X) VAL_32_BITS_P (INTVAL (X))
920
921 /* These are the modes that we allow for scaled indexing. */
922 #define MODE_OK_FOR_SCALED_INDEXING_P(MODE) \
923 ((TARGET_64BIT && (MODE) == DImode) \
924 || (MODE) == SImode \
925 || (MODE) == HImode \
926 || (MODE) == SFmode \
927 || (MODE) == DFmode)
928
929 /* These are the modes that we allow for unscaled indexing. */
930 #define MODE_OK_FOR_UNSCALED_INDEXING_P(MODE) \
931 ((TARGET_64BIT && (MODE) == DImode) \
932 || (MODE) == SImode \
933 || (MODE) == HImode \
934 || (MODE) == QImode \
935 || (MODE) == SFmode \
936 || (MODE) == DFmode)
937
938 /* Try a machine-dependent way of reloading an illegitimate address
939 operand. If we find one, push the reload and jump to WIN. This
940 macro is used in only one place: `find_reloads_address' in reload.c. */
941
942 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND_L, WIN) \
943 do { \
944 rtx new_ad = pa_legitimize_reload_address (AD, MODE, OPNUM, TYPE, IND_L); \
945 if (new_ad) \
946 { \
947 AD = new_ad; \
948 goto WIN; \
949 } \
950 } while (0)
951
952 \f
953 #define TARGET_ASM_SELECT_SECTION pa_select_section
954
955 /* Return a nonzero value if DECL has a section attribute. */
956 #define IN_NAMED_SECTION_P(DECL) \
957 ((TREE_CODE (DECL) == FUNCTION_DECL || TREE_CODE (DECL) == VAR_DECL) \
958 && DECL_SECTION_NAME (DECL) != NULL)
959
960 /* Define this macro if references to a symbol must be treated
961 differently depending on something about the variable or
962 function named by the symbol (such as what section it is in).
963
964 The macro definition, if any, is executed immediately after the
965 rtl for DECL or other node is created.
966 The value of the rtl will be a `mem' whose address is a
967 `symbol_ref'.
968
969 The usual thing for this macro to do is to a flag in the
970 `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
971 name string in the `symbol_ref' (if one bit is not enough
972 information).
973
974 On the HP-PA we use this to indicate if a symbol is in text or
975 data space. Also, function labels need special treatment. */
976
977 #define TEXT_SPACE_P(DECL)\
978 (TREE_CODE (DECL) == FUNCTION_DECL \
979 || (TREE_CODE (DECL) == VAR_DECL \
980 && TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL) \
981 && (! DECL_INITIAL (DECL) || ! pa_reloc_needed (DECL_INITIAL (DECL))) \
982 && !flag_pic) \
983 || CONSTANT_CLASS_P (DECL))
984
985 #define FUNCTION_NAME_P(NAME) (*(NAME) == '@')
986
987 /* Specify the machine mode that this machine uses for the index in the
988 tablejump instruction. We use a 32-bit absolute address for non-pic code,
989 and a 32-bit offset for 32 and 64-bit pic code. */
990 #define CASE_VECTOR_MODE SImode
991
992 /* Jump tables must be 32-bit aligned, no matter the size of the element. */
993 #define ADDR_VEC_ALIGN(ADDR_VEC) 2
994
995 /* Define this as 1 if `char' should by default be signed; else as 0. */
996 #define DEFAULT_SIGNED_CHAR 1
997
998 /* Max number of bytes we can move from memory to memory
999 in one reasonably fast instruction. */
1000 #define MOVE_MAX 8
1001
1002 /* Higher than the default as we prefer to use simple move insns
1003 (better scheduling and delay slot filling) and because our
1004 built-in block move is really a 2X unrolled loop.
1005
1006 Believe it or not, this has to be big enough to allow for copying all
1007 arguments passed in registers to avoid infinite recursion during argument
1008 setup for a function call. Why? Consider how we copy the stack slots
1009 reserved for parameters when they may be trashed by a call. */
1010 #define MOVE_RATIO(speed) (TARGET_64BIT ? 8 : 4)
1011
1012 /* Define if operations between registers always perform the operation
1013 on the full register even if a narrower mode is specified. */
1014 #define WORD_REGISTER_OPERATIONS
1015
1016 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1017 will either zero-extend or sign-extend. The value of this macro should
1018 be the code that says which one of the two operations is implicitly
1019 done, UNKNOWN if none. */
1020 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1021
1022 /* Nonzero if access to memory by bytes is slow and undesirable. */
1023 #define SLOW_BYTE_ACCESS 1
1024
1025 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1026 is done just by pretending it is already truncated. */
1027 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1028
1029 /* Specify the machine mode that pointers have.
1030 After generation of rtl, the compiler makes no further distinction
1031 between pointers and any other objects of this machine mode. */
1032 #define Pmode word_mode
1033
1034 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1035 return the mode to be used for the comparison. For floating-point, CCFPmode
1036 should be used. CC_NOOVmode should be used when the first operand is a
1037 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1038 needed. */
1039 #define SELECT_CC_MODE(OP,X,Y) \
1040 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode) \
1041
1042 /* A function address in a call instruction
1043 is a byte address (for indexing purposes)
1044 so give the MEM rtx a byte's mode. */
1045 #define FUNCTION_MODE SImode
1046
1047 /* Define this if addresses of constant functions
1048 shouldn't be put through pseudo regs where they can be cse'd.
1049 Desirable on machines where ordinary constants are expensive
1050 but a CALL with constant address is cheap. */
1051 #define NO_FUNCTION_CSE
1052
1053 /* Define this to be nonzero if shift instructions ignore all but the low-order
1054 few bits. */
1055 #define SHIFT_COUNT_TRUNCATED 1
1056
1057 /* Adjust the cost of branches. */
1058 #define BRANCH_COST(speed_p, predictable_p) (pa_cpu == PROCESSOR_8000 ? 2 : 1)
1059
1060 /* Handling the special cases is going to get too complicated for a macro,
1061 just call `pa_adjust_insn_length' to do the real work. */
1062 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1063 ((LENGTH) = pa_adjust_insn_length ((INSN), (LENGTH)))
1064
1065 /* Millicode insns are actually function calls with some special
1066 constraints on arguments and register usage.
1067
1068 Millicode calls always expect their arguments in the integer argument
1069 registers, and always return their result in %r29 (ret1). They
1070 are expected to clobber their arguments, %r1, %r29, and the return
1071 pointer which is %r31 on 32-bit and %r2 on 64-bit, and nothing else.
1072
1073 This macro tells reorg that the references to arguments and
1074 millicode calls do not appear to happen until after the millicode call.
1075 This allows reorg to put insns which set the argument registers into the
1076 delay slot of the millicode call -- thus they act more like traditional
1077 CALL_INSNs.
1078
1079 Note we cannot consider side effects of the insn to be delayed because
1080 the branch and link insn will clobber the return pointer. If we happened
1081 to use the return pointer in the delay slot of the call, then we lose.
1082
1083 get_attr_type will try to recognize the given insn, so make sure to
1084 filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1085 in particular. */
1086 #define INSN_REFERENCES_ARE_DELAYED(X) (pa_insn_refs_are_delayed (X))
1087
1088 \f
1089 /* Control the assembler format that we output. */
1090
1091 /* A C string constant describing how to begin a comment in the target
1092 assembler language. The compiler assumes that the comment will end at
1093 the end of the line. */
1094
1095 #define ASM_COMMENT_START ";"
1096
1097 /* Output to assembler file text saying following lines
1098 may contain character constants, extra white space, comments, etc. */
1099
1100 #define ASM_APP_ON ""
1101
1102 /* Output to assembler file text saying following lines
1103 no longer contain unusual constructs. */
1104
1105 #define ASM_APP_OFF ""
1106
1107 /* This is how to output the definition of a user-level label named NAME,
1108 such as the label on a static function or variable NAME. */
1109
1110 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1111 do { \
1112 assemble_name ((FILE), (NAME)); \
1113 if (TARGET_GAS) \
1114 fputs (":\n", (FILE)); \
1115 else \
1116 fputc ('\n', (FILE)); \
1117 } while (0)
1118
1119 /* This is how to output a reference to a user-level label named NAME.
1120 `assemble_name' uses this. */
1121
1122 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1123 do { \
1124 const char *xname = (NAME); \
1125 if (FUNCTION_NAME_P (NAME)) \
1126 xname += 1; \
1127 if (xname[0] == '*') \
1128 xname += 1; \
1129 else \
1130 fputs (user_label_prefix, FILE); \
1131 fputs (xname, FILE); \
1132 } while (0)
1133
1134 /* This how we output the symbol_ref X. */
1135
1136 #define ASM_OUTPUT_SYMBOL_REF(FILE,X) \
1137 do { \
1138 SYMBOL_REF_FLAGS (X) |= SYMBOL_FLAG_REFERENCED; \
1139 assemble_name (FILE, XSTR (X, 0)); \
1140 } while (0)
1141
1142 /* This is how to store into the string LABEL
1143 the symbol_ref name of an internal numbered label where
1144 PREFIX is the class of label and NUM is the number within the class.
1145 This is suitable for output with `assemble_name'. */
1146
1147 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1148 sprintf (LABEL, "*%c$%s%04ld", (PREFIX)[0], (PREFIX) + 1, (long)(NUM))
1149
1150 /* Output the definition of a compiler-generated label named NAME. */
1151
1152 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,NAME) \
1153 do { \
1154 assemble_name_raw ((FILE), (NAME)); \
1155 if (TARGET_GAS) \
1156 fputs (":\n", (FILE)); \
1157 else \
1158 fputc ('\n', (FILE)); \
1159 } while (0)
1160
1161 #define TARGET_ASM_GLOBALIZE_LABEL pa_globalize_label
1162
1163 #define ASM_OUTPUT_ASCII(FILE, P, SIZE) \
1164 pa_output_ascii ((FILE), (P), (SIZE))
1165
1166 /* Jump tables are always placed in the text section. Technically, it
1167 is possible to put them in the readonly data section. This has the
1168 benefit of getting the table out of .text and reducing branch lengths
1169 as a result.
1170
1171 The downside is that an additional insn (addil) is needed to access
1172 the table when generating PIC code. The address difference table
1173 also has to use 32-bit pc-relative relocations. Currently, GAS does
1174 not support these relocations, although it is easily modified to do
1175 this operation.
1176
1177 The table entries need to look like "$L1+(.+8-$L0)-$PIC_pcrel$0"
1178 when using ELF GAS. A simple difference can be used when using
1179 SOM GAS or the HP assembler. The final downside is GDB complains
1180 about the nesting of the label for the table when debugging. */
1181
1182 #define JUMP_TABLES_IN_TEXT_SECTION 1
1183
1184 /* This is how to output an element of a case-vector that is absolute. */
1185
1186 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1187 fprintf (FILE, "\t.word L$%04d\n", VALUE)
1188
1189 /* This is how to output an element of a case-vector that is relative.
1190 Since we always place jump tables in the text section, the difference
1191 is absolute and requires no relocation. */
1192
1193 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1194 fprintf (FILE, "\t.word L$%04d-L$%04d\n", VALUE, REL)
1195
1196 /* This is how to output an absolute case-vector. */
1197
1198 #define ASM_OUTPUT_ADDR_VEC(LAB,BODY) \
1199 pa_output_addr_vec ((LAB),(BODY))
1200
1201 /* This is how to output a relative case-vector. */
1202
1203 #define ASM_OUTPUT_ADDR_DIFF_VEC(LAB,BODY) \
1204 pa_output_addr_diff_vec ((LAB),(BODY))
1205
1206 /* This is how to output an assembler line that says to advance the
1207 location counter to a multiple of 2**LOG bytes. */
1208
1209 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1210 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1211
1212 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1213 fprintf (FILE, "\t.blockz "HOST_WIDE_INT_PRINT_UNSIGNED"\n", \
1214 (unsigned HOST_WIDE_INT)(SIZE))
1215
1216 /* This says how to output an assembler line to define an uninitialized
1217 global variable with size SIZE (in bytes) and alignment ALIGN (in bits).
1218 This macro exists to properly support languages like C++ which do not
1219 have common data. */
1220
1221 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1222 pa_asm_output_aligned_bss (FILE, NAME, SIZE, ALIGN)
1223
1224 /* This says how to output an assembler line to define a global common symbol
1225 with size SIZE (in bytes) and alignment ALIGN (in bits). */
1226
1227 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGN) \
1228 pa_asm_output_aligned_common (FILE, NAME, SIZE, ALIGN)
1229
1230 /* This says how to output an assembler line to define a local common symbol
1231 with size SIZE (in bytes) and alignment ALIGN (in bits). This macro
1232 controls how the assembler definitions of uninitialized static variables
1233 are output. */
1234
1235 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN) \
1236 pa_asm_output_aligned_local (FILE, NAME, SIZE, ALIGN)
1237
1238 /* All HP assemblers use "!" to separate logical lines. */
1239 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == '!')
1240
1241 /* Print operand X (an rtx) in assembler syntax to file FILE.
1242 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1243 For `%' followed by punctuation, CODE is the punctuation and X is null.
1244
1245 On the HP-PA, the CODE can be `r', meaning this is a register-only operand
1246 and an immediate zero should be represented as `r0'.
1247
1248 Several % codes are defined:
1249 O an operation
1250 C compare conditions
1251 N extract conditions
1252 M modifier to handle preincrement addressing for memory refs.
1253 F modifier to handle preincrement addressing for fp memory refs */
1254
1255 #define PRINT_OPERAND(FILE, X, CODE) pa_print_operand (FILE, X, CODE)
1256
1257 \f
1258 /* Print a memory address as an operand to reference that memory location. */
1259
1260 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1261 { rtx addr = ADDR; \
1262 switch (GET_CODE (addr)) \
1263 { \
1264 case REG: \
1265 fprintf (FILE, "0(%s)", reg_names [REGNO (addr)]); \
1266 break; \
1267 case PLUS: \
1268 gcc_assert (GET_CODE (XEXP (addr, 1)) == CONST_INT); \
1269 fprintf (FILE, "%d(%s)", (int)INTVAL (XEXP (addr, 1)), \
1270 reg_names [REGNO (XEXP (addr, 0))]); \
1271 break; \
1272 case LO_SUM: \
1273 if (!symbolic_operand (XEXP (addr, 1), VOIDmode)) \
1274 fputs ("R'", FILE); \
1275 else if (flag_pic == 0) \
1276 fputs ("RR'", FILE); \
1277 else \
1278 fputs ("RT'", FILE); \
1279 pa_output_global_address (FILE, XEXP (addr, 1), 0); \
1280 fputs ("(", FILE); \
1281 output_operand (XEXP (addr, 0), 0); \
1282 fputs (")", FILE); \
1283 break; \
1284 case CONST_INT: \
1285 fprintf (FILE, HOST_WIDE_INT_PRINT_DEC "(%%r0)", INTVAL (addr)); \
1286 break; \
1287 default: \
1288 output_addr_const (FILE, addr); \
1289 }}
1290
1291 \f
1292 /* Find the return address associated with the frame given by
1293 FRAMEADDR. */
1294 #define RETURN_ADDR_RTX(COUNT, FRAMEADDR) \
1295 (pa_return_addr_rtx (COUNT, FRAMEADDR))
1296
1297 /* Used to mask out junk bits from the return address, such as
1298 processor state, interrupt status, condition codes and the like. */
1299 #define MASK_RETURN_ADDR \
1300 /* The privilege level is in the two low order bits, mask em out \
1301 of the return address. */ \
1302 (GEN_INT (-4))
1303
1304 /* We need a libcall to canonicalize function pointers on TARGET_ELF32. */
1305 #define CANONICALIZE_FUNCPTR_FOR_COMPARE_LIBCALL \
1306 "__canonicalize_funcptr_for_compare"
1307
1308 #ifdef HAVE_AS_TLS
1309 #undef TARGET_HAVE_TLS
1310 #define TARGET_HAVE_TLS true
1311 #endif
1312
1313 /* The maximum offset in bytes for a PA 1.X pc-relative call to the
1314 head of the preceding stub table. The selected offsets have been
1315 chosen so that approximately one call stub is allocated for every
1316 86.7 instructions. A long branch stub is two instructions when
1317 not generating PIC code. For HP-UX and ELF targets, PIC stubs are
1318 seven and four instructions, respectively. */
1319 #define MAX_PCREL17F_OFFSET \
1320 (flag_pic ? (TARGET_HPUX ? 198164 : 221312) : 240000)
This page took 0.095974 seconds and 5 git commands to generate.