]> gcc.gnu.org Git - gcc.git/blob - gcc/config/ns32k/ns32k.h
fe80c7244462b3a41002d1b032dce6a65abb6ae5
[gcc.git] / gcc / config / ns32k / ns32k.h
1 /* Definitions of target machine for GNU compiler. NS32000 version.
2 Copyright (C) 1988, 1993, 1994 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21
22 /* Note that some other tm.h files include this one and then override
23 many of the definitions that relate to assembler syntax. */
24
25 extern enum reg_class secondary_reload_class();
26
27 /* Names to predefine in the preprocessor for this target machine. */
28
29 #define CPP_PREDEFINES "-Dns32000 -Dunix -Asystem(unix) -Acpu(ns32k) -Amachine(ns32k)"
30
31 /* Print subsidiary information on the compiler version in use. */
32 #define TARGET_VERSION fprintf (stderr, " (32000, GAS syntax)");
33
34 \f
35 /* ABSOLUTE PREFIX, IMMEDIATE_PREFIX and EXTERNAL_PREFIX can be defined
36 to cover most NS32k addressing syntax variations. This way we don't
37 need to redefine long macros in all the tm.h files for just slight
38 variations in assembler syntax. */
39
40 #ifndef ABSOLUTE_PREFIX
41 #define ABSOLUTE_PREFIX '@'
42 #endif
43
44 #if defined(IMMEDIATE_PREFIX) && IMMEDIATE_PREFIX
45 #define PUT_IMMEDIATE_PREFIX(FILE) putc(IMMEDIATE_PREFIX, FILE)
46 #else
47 #define PUT_IMMEDIATE_PREFIX(FILE)
48 #endif
49 #if defined(ABSOLUTE_PREFIX) && ABSOLUTE_PREFIX
50 #define PUT_ABSOLUTE_PREFIX(FILE) putc(ABSOLUTE_PREFIX, FILE)
51 #else
52 #define PUT_ABSOLUTE_PREFIX(FILE)
53 #endif
54 #if defined(EXTERNAL_PREFIX) && EXTERNAL_PREFIX
55 #define PUT_EXTERNAL_PREFIX(FILE) putc(EXTERNAL_PREFIX, FILE)
56 #else
57 #define PUT_EXTERNAL_PREFIX(FILE)
58 #endif
59
60 /* Run-time compilation parameters selecting different hardware subsets. */
61
62 extern int target_flags;
63
64 /* Macros used in the machine description to test the flags. */
65
66 /* Compile 32081 insns for floating point (not library calls). */
67 #define TARGET_32081 (target_flags & 1)
68
69 /* Compile using rtd insn calling sequence.
70 This will not work unless you use prototypes at least
71 for all functions that can take varying numbers of args. */
72 #define TARGET_RTD (target_flags & 2)
73
74 /* Compile passing first two args in regs 0 and 1. */
75 #define TARGET_REGPARM (target_flags & 4)
76
77 /* Options to select type of CPU, for better optimization.
78 The output is correct for any kind of 32000 regardless of these options. */
79 #define TARGET_32532 (target_flags & 8)
80 #define TARGET_32332 (target_flags & 16)
81
82 /* Ok to use the static base register (and presume it's 0) */
83 #define TARGET_SB ((target_flags & 32) == 0)
84 #define TARGET_HIMEM (target_flags & 128)
85
86 /* Compile using bitfield insns. */
87 #define TARGET_BITFIELD ((target_flags & 64) == 0)
88
89 /* Macro to define tables used to set the flags.
90 This is a list in braces of pairs in braces,
91 each pair being { "NAME", VALUE }
92 where VALUE is the bits to set or minus the bits to clear.
93 An empty string NAME is used to identify the default VALUE. */
94
95 #define TARGET_SWITCHES \
96 { { "32081", 1}, \
97 { "soft-float", -1}, \
98 { "rtd", 2}, \
99 { "nortd", -2}, \
100 { "regparm", 4}, \
101 { "noregparm", -4}, \
102 { "32532", 24}, \
103 { "32332", -8}, \
104 { "32332", 16}, \
105 { "32032", -24}, \
106 { "sb", -32}, \
107 { "nosb", 32}, \
108 { "bitfield", -64}, \
109 { "nobitfield", 64}, \
110 { "himem", 128}, \
111 { "nohimem", -128}, \
112 { "", TARGET_DEFAULT}}
113 /* TARGET_DEFAULT is defined in encore.h, pc532.h, etc. */
114
115 /* When we are generating PIC, the sb is used as a pointer
116 to the GOT. */
117
118 #define OVERRIDE_OPTIONS \
119 { \
120 if (flag_pic || TARGET_HIMEM) target_flags |= 32; \
121 }
122
123 \f
124 /* target machine storage layout */
125
126 /* Define this if most significant bit is lowest numbered
127 in instructions that operate on numbered bit-fields.
128 This is not true on the ns32k. */
129 #define BITS_BIG_ENDIAN 0
130
131 /* Define this if most significant byte of a word is the lowest numbered. */
132 /* That is not true on the ns32k. */
133 #define BYTES_BIG_ENDIAN 0
134
135 /* Define this if most significant word of a multiword number is lowest
136 numbered. This is not true on the ns32k. */
137 #define WORDS_BIG_ENDIAN 0
138
139 /* Number of bits in an addressable storage unit */
140 #define BITS_PER_UNIT 8
141
142 /* Width in bits of a "word", which is the contents of a machine register.
143 Note that this is not necessarily the width of data type `int';
144 if using 16-bit ints on a 32000, this would still be 32.
145 But on a machine with 16-bit registers, this would be 16. */
146 #define BITS_PER_WORD 32
147
148 /* Width of a word, in units (bytes). */
149 #define UNITS_PER_WORD 4
150
151 /* Width in bits of a pointer.
152 See also the macro `Pmode' defined below. */
153 #define POINTER_SIZE 32
154
155 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
156 #define PARM_BOUNDARY 32
157
158 /* Boundary (in *bits*) on which stack pointer should be aligned. */
159 #define STACK_BOUNDARY 32
160
161 /* Allocation boundary (in *bits*) for the code of a function. */
162 #define FUNCTION_BOUNDARY 16
163
164 /* Alignment of field after `int : 0' in a structure. */
165 #define EMPTY_FIELD_BOUNDARY 32
166
167 /* Every structure's size must be a multiple of this. */
168 #define STRUCTURE_SIZE_BOUNDARY 8
169
170 /* No data type wants to be aligned rounder than this. */
171 #define BIGGEST_ALIGNMENT 32
172
173 /* Set this nonzero if move instructions will actually fail to work
174 when given unaligned data. National claims that the NS32032
175 works without strict alignment, but rumor has it that operands
176 crossing a page boundary cause unpredictable results. */
177 #define STRICT_ALIGNMENT 1
178
179 /* If bit field type is int, dont let it cross an int,
180 and give entire struct the alignment of an int. */
181 /* Required on the 386 since it doesn't have a full set of bitfield insns.
182 (There is no signed extv insn.) */
183 #define PCC_BITFIELD_TYPE_MATTERS 1
184 \f
185 /* Standard register usage. */
186
187 /* Number of actual hardware registers.
188 The hardware registers are assigned numbers for the compiler
189 from 0 to just below FIRST_PSEUDO_REGISTER.
190 All registers that the compiler knows about must be given numbers,
191 even those that are not normally considered general registers. */
192 #define FIRST_PSEUDO_REGISTER 18
193
194 /* 1 for registers that have pervasive standard uses
195 and are not available for the register allocator.
196 On the ns32k, these are the FP, SP, (SB and PC are not included here). */
197 #define FIXED_REGISTERS {0, 0, 0, 0, 0, 0, 0, 0, \
198 0, 0, 0, 0, 0, 0, 0, 0, \
199 1, 1}
200
201 /* 1 for registers not available across function calls.
202 These must include the FIXED_REGISTERS and also any
203 registers that can be used without being saved.
204 The latter must include the registers where values are returned
205 and the register where structure-value addresses are passed.
206 Aside from that, you can include as many other registers as you like. */
207 #define CALL_USED_REGISTERS {1, 1, 1, 0, 0, 0, 0, 0, \
208 1, 1, 1, 1, 0, 0, 0, 0, \
209 1, 1}
210
211 /* Return number of consecutive hard regs needed starting at reg REGNO
212 to hold something of mode MODE.
213 This is ordinarily the length in words of a value of mode MODE
214 but can be less for certain modes in special long registers.
215 On the ns32k, all registers are 32 bits long. */
216 #define HARD_REGNO_NREGS(REGNO, MODE) \
217 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
218
219 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
220 #define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok (REGNO, MODE)
221
222 /* Value is 1 if it is a good idea to tie two pseudo registers
223 when one has mode MODE1 and one has mode MODE2.
224 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
225 for any hard reg, then this must be 0 for correct output. */
226 #define MODES_TIEABLE_P(MODE1, MODE2) \
227 (((MODE1) == DFmode || (MODE1) == DCmode || (MODE1) == DImode) == \
228 ((MODE2) == DFmode || (MODE2) == DCmode || (MODE2) == DImode))
229
230 /* Specify the registers used for certain standard purposes.
231 The values of these macros are register numbers. */
232
233 /* NS32000 pc is not overloaded on a register. */
234 /* #define PC_REGNUM */
235
236 /* Register to use for pushing function arguments. */
237 #define STACK_POINTER_REGNUM 17
238
239 /* Base register for access to local variables of the function. */
240 #define FRAME_POINTER_REGNUM 16
241
242 /* Value should be nonzero if functions must have frame pointers.
243 Zero means the frame pointer need not be set up (and parms
244 may be accessed via the stack pointer) in functions that seem suitable.
245 This is computed in `reload', in reload1.c. */
246 #define FRAME_POINTER_REQUIRED 0
247
248 /* Base register for access to arguments of the function. */
249 #define ARG_POINTER_REGNUM 16
250
251 /* Register in which static-chain is passed to a function. */
252 #define STATIC_CHAIN_REGNUM 1
253
254 /* Register in which address to store a structure value
255 is passed to a function. */
256 #define STRUCT_VALUE_REGNUM 2
257 \f
258 /* Define the classes of registers for register constraints in the
259 machine description. Also define ranges of constants.
260
261 One of the classes must always be named ALL_REGS and include all hard regs.
262 If there is more than one class, another class must be named NO_REGS
263 and contain no registers.
264
265 The name GENERAL_REGS must be the name of a class (or an alias for
266 another name such as ALL_REGS). This is the class of registers
267 that is allowed by "g" or "r" in a register constraint.
268 Also, registers outside this class are allocated only when
269 instructions express preferences for them.
270
271 The classes must be numbered in nondecreasing order; that is,
272 a larger-numbered class must never be contained completely
273 in a smaller-numbered class.
274
275 For any two classes, it is very desirable that there be another
276 class that represents their union. */
277
278 enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, GEN_AND_FP_REGS,
279 FRAME_POINTER_REG, STACK_POINTER_REG,
280 GEN_AND_MEM_REGS, ALL_REGS, LIM_REG_CLASSES };
281
282 #define N_REG_CLASSES (int) LIM_REG_CLASSES
283
284 /* Give names of register classes as strings for dump file. */
285
286 #define REG_CLASS_NAMES \
287 {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "GEN_AND_FP_REGS", \
288 "FRAME_POINTER_REG", "STACK_POINTER_REG", "GEN_AND_MEM_REGS", "ALL_REGS" }
289
290 /* Define which registers fit in which classes.
291 This is an initializer for a vector of HARD_REG_SET
292 of length N_REG_CLASSES. */
293
294 #define REG_CLASS_CONTENTS {0, 0x00ff, 0xff00, 0xffff, \
295 0x10000, 0x20000, 0x300ff, 0x3ffff }
296
297 /* The same information, inverted:
298 Return the class number of the smallest class containing
299 reg number REGNO. This could be a conditional expression
300 or could index an array. */
301
302 #define REGNO_REG_CLASS(REGNO) \
303 ((REGNO) < 8 ? GENERAL_REGS \
304 : (REGNO) < 16 ? FLOAT_REGS \
305 : (REGNO) == 16 ? FRAME_POINTER_REG \
306 : (REGNO) == 17 ? STACK_POINTER_REG \
307 : NO_REGS)
308
309 /* The class value for index registers, and the one for base regs. */
310
311 #define INDEX_REG_CLASS GENERAL_REGS
312 #define BASE_REG_CLASS GEN_AND_MEM_REGS
313
314 /* Get reg_class from a letter such as appears in the machine description. */
315
316 #define REG_CLASS_FROM_LETTER(C) \
317 ((C) == 'f' ? FLOAT_REGS \
318 : (C) == 'x' ? FRAME_POINTER_REG \
319 : (C) == 'y' ? STACK_POINTER_REG \
320 : NO_REGS)
321
322 /* The letters I, J, K, L and M in a register constraint string
323 can be used to stand for particular ranges of immediate operands.
324 This macro defines what the ranges are.
325 C is the letter, and VALUE is a constant value.
326 Return 1 if VALUE is in the range specified by C.
327
328 On the ns32k, these letters are used as follows:
329
330 I : Matches integers which are valid shift amounts for scaled indexing.
331 These are 0, 1, 2, 3 for byte, word, double, and quadword.
332 Used for matching arithmetic shifts only on 32032 & 32332.
333 J : Matches integers which fit a "quick" operand.
334 K : Matches integers 0 to 7 (for inss and exts instructions).
335 */
336
337 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
338 ((VALUE) < 8 && (VALUE) + 8 >= 0 ? \
339 ((C) == 'I' ? (!TARGET_32532 && 0 <= (VALUE) && (VALUE) <= 3) : \
340 (C) == 'J' ? (VALUE) <= 7 : \
341 (C) == 'K' ? 0 <= (VALUE) : 0) : 0)
342
343 /* Similar, but for floating constants, and defining letters G and H.
344 Here VALUE is the CONST_DOUBLE rtx itself. */
345
346 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 1
347
348 /* Given an rtx X being reloaded into a reg required to be
349 in class CLASS, return the class of reg to actually use.
350 In general this is just CLASS; but on some machines
351 in some cases it is preferable to use a more restrictive class. */
352
353 /* We return GENERAL_REGS instead of GEN_AND_MEM_REGS.
354 The latter offers no real additional possibilities
355 and can cause spurious secondary reloading. */
356 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
357 ((CLASS) == GEN_AND_MEM_REGS ? GENERAL_REGS : (CLASS))
358
359 /* Return the maximum number of consecutive registers
360 needed to represent mode MODE in a register of class CLASS. */
361 /* On the 32000, this is the size of MODE in words */
362 #define CLASS_MAX_NREGS(CLASS, MODE) \
363 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
364 \f
365 /* Stack layout; function entry, exit and calling. */
366
367 /* Define this if pushing a word on the stack
368 makes the stack pointer a smaller address. */
369 #define STACK_GROWS_DOWNWARD
370
371 /* Define this if the nominal address of the stack frame
372 is at the high-address end of the local variables;
373 that is, each additional local variable allocated
374 goes at a more negative offset in the frame. */
375 #define FRAME_GROWS_DOWNWARD
376
377 /* Offset within stack frame to start allocating local variables at.
378 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
379 first local allocated. Otherwise, it is the offset to the BEGINNING
380 of the first local allocated. */
381 #define STARTING_FRAME_OFFSET 0
382
383 /* If we generate an insn to push BYTES bytes,
384 this says how many the stack pointer really advances by.
385 On the 32000, sp@- in a byte insn really pushes a BYTE. */
386 #define PUSH_ROUNDING(BYTES) (BYTES)
387
388 /* Offset of first parameter from the argument pointer register value. */
389 #define FIRST_PARM_OFFSET(FNDECL) 8
390
391 /* Value is the number of byte of arguments automatically
392 popped when returning from a subroutine call.
393 FUNTYPE is the data type of the function (as a tree),
394 or for a library call it is an identifier node for the subroutine name.
395 SIZE is the number of bytes of arguments passed on the stack.
396
397 On the 32000, the RET insn may be used to pop them if the number
398 of args is fixed, but if the number is variable then the caller
399 must pop them all. RET can't be used for library calls now
400 because the library is compiled with the Unix compiler.
401 Use of RET is a selectable option, since it is incompatible with
402 standard Unix calling sequences. If the option is not selected,
403 the caller must always pop the args. */
404
405 #define RETURN_POPS_ARGS(FUNTYPE,SIZE) \
406 ((TARGET_RTD && TREE_CODE (FUNTYPE) != IDENTIFIER_NODE \
407 && (TYPE_ARG_TYPES (FUNTYPE) == 0 \
408 || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE))) \
409 == void_type_node))) \
410 ? (SIZE) : 0)
411
412 /* Define how to find the value returned by a function.
413 VALTYPE is the data type of the value (as a tree).
414 If the precise function being called is known, FUNC is its FUNCTION_DECL;
415 otherwise, FUNC is 0. */
416
417 /* On the 32000 the return value is in R0,
418 or perhaps in F0 is there is fp support. */
419
420 #define FUNCTION_VALUE(VALTYPE, FUNC) \
421 (TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_32081 \
422 ? gen_rtx (REG, TYPE_MODE (VALTYPE), 8) \
423 : gen_rtx (REG, TYPE_MODE (VALTYPE), 0))
424
425 /* Define how to find the value returned by a library function
426 assuming the value has mode MODE. */
427
428 /* On the 32000 the return value is in R0,
429 or perhaps F0 is there is fp support. */
430
431 #define LIBCALL_VALUE(MODE) \
432 (((MODE) == DFmode || (MODE) == SFmode) && TARGET_32081 \
433 ? gen_rtx (REG, MODE, 8) \
434 : gen_rtx (REG, MODE, 0))
435
436 /* Define this if PCC uses the nonreentrant convention for returning
437 structure and union values. */
438
439 #define PCC_STATIC_STRUCT_RETURN
440
441 /* 1 if N is a possible register number for a function value.
442 On the 32000, R0 and F0 are the only registers thus used. */
443
444 #define FUNCTION_VALUE_REGNO_P(N) (((N) & ~8) == 0)
445
446 /* 1 if N is a possible register number for function argument passing.
447 On the 32000, no registers are used in this way. */
448
449 #define FUNCTION_ARG_REGNO_P(N) 0
450 \f
451 /* Define a data type for recording info about an argument list
452 during the scan of that argument list. This data type should
453 hold all necessary information about the function itself
454 and about the args processed so far, enough to enable macros
455 such as FUNCTION_ARG to determine where the next arg should go.
456
457 On the ns32k, this is a single integer, which is a number of bytes
458 of arguments scanned so far. */
459
460 #define CUMULATIVE_ARGS int
461
462 /* Initialize a variable CUM of type CUMULATIVE_ARGS
463 for a call to a function whose data type is FNTYPE.
464 For a library call, FNTYPE is 0.
465
466 On the ns32k, the offset starts at 0. */
467
468 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
469 ((CUM) = 0)
470
471 /* Update the data in CUM to advance over an argument
472 of mode MODE and data type TYPE.
473 (TYPE is null for libcalls where that information may not be available.) */
474
475 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
476 ((CUM) += ((MODE) != BLKmode \
477 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
478 : (int_size_in_bytes (TYPE) + 3) & ~3))
479
480 /* Define where to put the arguments to a function.
481 Value is zero to push the argument on the stack,
482 or a hard register in which to store the argument.
483
484 MODE is the argument's machine mode.
485 TYPE is the data type of the argument (as a tree).
486 This is null for libcalls where that information may
487 not be available.
488 CUM is a variable of type CUMULATIVE_ARGS which gives info about
489 the preceding args and about the function being called.
490 NAMED is nonzero if this argument is a named parameter
491 (otherwise it is an extra parameter matching an ellipsis). */
492
493 /* On the 32000 all args are pushed, except if -mregparm is specified
494 then the first two words of arguments are passed in r0, r1.
495 *NOTE* -mregparm does not work.
496 It exists only to test register calling conventions. */
497
498 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
499 ((TARGET_REGPARM && (CUM) < 8) ? gen_rtx (REG, (MODE), (CUM) / 4) : 0)
500
501 /* For an arg passed partly in registers and partly in memory,
502 this is the number of registers used.
503 For args passed entirely in registers or entirely in memory, zero. */
504
505 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
506 ((TARGET_REGPARM && (CUM) < 8 \
507 && 8 < ((CUM) + ((MODE) == BLKmode \
508 ? int_size_in_bytes (TYPE) \
509 : GET_MODE_SIZE (MODE)))) \
510 ? 2 - (CUM) / 4 : 0)
511
512 #ifndef MAIN_FUNCTION_PROLOGUE
513 #define MAIN_FUNCTION_PROLOGUE
514 #endif
515
516 /*
517 * The function prologue for the ns32k is fairly simple.
518 * If a frame pointer is needed (decided in reload.c ?) then
519 * we need assembler of the form
520 *
521 * # Save the oldframe pointer, set the new frame pointer, make space
522 * # on the stack and save any general purpose registers necessary
523 *
524 * enter [<general purpose regs to save>], <local stack space>
525 *
526 * movf fn, tos # Save any floating point registers necessary
527 * .
528 * .
529 *
530 * If a frame pointer is not needed we need assembler of the form
531 *
532 * # Make space on the stack
533 *
534 * adjspd <local stack space + 4>
535 *
536 * # Save any general purpose registers necessary
537 *
538 * save [<general purpose regs to save>]
539 *
540 * movf fn, tos # Save any floating point registers necessary
541 * .
542 * .
543 */
544 #if defined(IMMEDIATE_PREFIX) && IMMEDIATE_PREFIX
545 #define ADJSP(FILE, n) \
546 fprintf (FILE, "\tadjspd %c%d\n", IMMEDIATE_PREFIX, (n))
547 #else
548 #define ADJSP(FILE, n) \
549 fprintf (FILE, "\tadjspd %d\n", (n))
550 #endif
551
552 #define FUNCTION_PROLOGUE(FILE, SIZE) \
553 { register int regno, g_regs_used = 0; \
554 int used_regs_buf[8], *bufp = used_regs_buf; \
555 int used_fregs_buf[8], *fbufp = used_fregs_buf; \
556 extern char call_used_regs[]; \
557 extern int current_function_uses_pic_offset_table, flag_pic; \
558 MAIN_FUNCTION_PROLOGUE; \
559 for (regno = 0; regno < 8; regno++) \
560 if (regs_ever_live[regno] \
561 && ! call_used_regs[regno]) \
562 { \
563 *bufp++ = regno; g_regs_used++; \
564 } \
565 *bufp = -1; \
566 for (; regno < 16; regno++) \
567 if (regs_ever_live[regno] && !call_used_regs[regno]) \
568 { \
569 *fbufp++ = regno; \
570 } \
571 *fbufp = -1; \
572 bufp = used_regs_buf; \
573 if (frame_pointer_needed) \
574 fprintf (FILE, "\tenter ["); \
575 else \
576 { \
577 if (SIZE) \
578 ADJSP (FILE, SIZE + 4); \
579 if (g_regs_used && g_regs_used > 4) \
580 fprintf (FILE, "\tsave ["); \
581 else \
582 { \
583 while (*bufp >= 0) \
584 fprintf (FILE, "\tmovd r%d,tos\n", *bufp++); \
585 g_regs_used = 0; \
586 } \
587 } \
588 while (*bufp >= 0) \
589 { \
590 fprintf (FILE, "r%d", *bufp++); \
591 if (*bufp >= 0) \
592 fputc (',', FILE); \
593 } \
594 if (frame_pointer_needed) \
595 fprintf (FILE, "],%d\n", SIZE); \
596 else if (g_regs_used) \
597 fprintf (FILE, "]\n"); \
598 fbufp = used_fregs_buf; \
599 while (*fbufp >= 0) \
600 { \
601 if ((*fbufp & 1) || (fbufp[0] != fbufp[1] - 1)) \
602 fprintf (FILE, "\tmovf f%d,tos\n", *fbufp++ - 8); \
603 else \
604 { \
605 fprintf (FILE, "\tmovl f%d,tos\n", fbufp[0] - 8); \
606 fbufp += 2; \
607 } \
608 } \
609 if (flag_pic && current_function_uses_pic_offset_table) \
610 { \
611 fprintf (FILE, "\tsprd sb,tos\n"); \
612 if (TARGET_REGPARM) \
613 { \
614 fprintf (FILE, "\taddr __GLOBAL_OFFSET_TABLE_(pc),tos\n"); \
615 fprintf (FILE, "\tlprd sb,tos\n"); \
616 } \
617 else \
618 { \
619 fprintf (FILE, "\taddr __GLOBAL_OFFSET_TABLE_(pc),r0\n"); \
620 fprintf (FILE, "\tlprd sb,r0\n"); \
621 } \
622 } \
623 }
624
625 /* Output assembler code to FILE to increment profiler label # LABELNO
626 for profiling a function entry.
627
628 THIS DEFINITION FOR THE 32000 IS A GUESS. IT HAS NOT BEEN TESTED. */
629
630 #define FUNCTION_PROFILER(FILE, LABELNO) \
631 fprintf (FILE, "\taddr LP%d,r0\n\tbsr mcount\n", (LABELNO))
632
633 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
634 the stack pointer does not matter. The value is tested only in
635 functions that have frame pointers.
636 No definition is equivalent to always zero.
637
638 We use 0, because using 1 requires hair in FUNCTION_EPILOGUE
639 that is worse than the stack adjust we could save. */
640
641 /* #define EXIT_IGNORE_STACK 1 */
642
643 /* This macro generates the assembly code for function exit,
644 on machines that need it. If FUNCTION_EPILOGUE is not defined
645 then individual return instructions are generated for each
646 return statement. Args are same as for FUNCTION_PROLOGUE.
647
648 The function epilogue should not depend on the current stack pointer,
649 if EXIT_IGNORE_STACK is nonzero. That doesn't apply here.
650
651 If a frame pointer is needed (decided in reload.c ?) then
652 we need assembler of the form
653
654 movf tos, fn # Restore any saved floating point registers
655 .
656 .
657
658 # Restore any saved general purpose registers, restore the stack
659 # pointer from the frame pointer, restore the old frame pointer.
660 exit [<general purpose regs to save>]
661
662 If a frame pointer is not needed we need assembler of the form
663 # Restore any general purpose registers saved
664
665 movf tos, fn # Restore any saved floating point registers
666 .
667 .
668 .
669 restore [<general purpose regs to save>]
670
671 # reclaim space allocated on stack
672
673 adjspd <-(local stack space + 4)> */
674
675
676 #define FUNCTION_EPILOGUE(FILE, SIZE) \
677 { register int regno, g_regs_used = 0, f_regs_used = 0; \
678 int used_regs_buf[8], *bufp = used_regs_buf; \
679 int used_fregs_buf[8], *fbufp = used_fregs_buf; \
680 extern char call_used_regs[]; \
681 extern int current_function_uses_pic_offset_table, flag_pic; \
682 if (flag_pic && current_function_uses_pic_offset_table) \
683 fprintf (FILE, "\tlprd sb,tos\n"); \
684 *fbufp++ = -2; \
685 for (regno = 8; regno < 16; regno++) \
686 if (regs_ever_live[regno] && !call_used_regs[regno]) \
687 { \
688 *fbufp++ = regno; f_regs_used++; \
689 } \
690 fbufp--; \
691 for (regno = 0; regno < 8; regno++) \
692 if (regs_ever_live[regno] \
693 && ! call_used_regs[regno]) \
694 { \
695 *bufp++ = regno; g_regs_used++; \
696 } \
697 while (fbufp > used_fregs_buf) \
698 { \
699 if ((*fbufp & 1) && fbufp[0] == fbufp[-1] + 1) \
700 { \
701 fprintf (FILE, "\tmovl tos,f%d\n", fbufp[-1] - 8); \
702 fbufp -= 2; \
703 } \
704 else fprintf (FILE, "\tmovf tos,f%d\n", *fbufp-- - 8); \
705 } \
706 if (frame_pointer_needed) \
707 fprintf (FILE, "\texit ["); \
708 else \
709 { \
710 if (g_regs_used && g_regs_used > 4) \
711 fprintf (FILE, "\trestore ["); \
712 else \
713 { \
714 while (bufp > used_regs_buf) \
715 fprintf (FILE, "\tmovd tos,r%d\n", *--bufp); \
716 g_regs_used = 0; \
717 } \
718 } \
719 while (bufp > used_regs_buf) \
720 { \
721 fprintf (FILE, "r%d", *--bufp); \
722 if (bufp > used_regs_buf) \
723 fputc (',', FILE); \
724 } \
725 if (g_regs_used || frame_pointer_needed) \
726 fprintf (FILE, "]\n"); \
727 if (SIZE && !frame_pointer_needed) \
728 ADJSP (FILE, -(SIZE + 4)); \
729 if (current_function_pops_args) \
730 fprintf (FILE, "\tret %d\n", current_function_pops_args); \
731 else fprintf (FILE, "\tret 0\n"); }
732
733 /* Store in the variable DEPTH the initial difference between the
734 frame pointer reg contents and the stack pointer reg contents,
735 as of the start of the function body. This depends on the layout
736 of the fixed parts of the stack frame and on how registers are saved. */
737
738 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
739 { \
740 int regno; \
741 int offset = -4; \
742 extern int current_function_uses_pic_offset_table, flag_pic; \
743 for (regno = 0; regno < 16; regno++) \
744 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
745 offset += 4; \
746 if (flag_pic && current_function_uses_pic_offset_table) \
747 offset += 4; \
748 (DEPTH) = (offset + get_frame_size () \
749 + (get_frame_size () == 0 ? 0 : 4)); \
750 }
751 \f
752
753 /* Output assembler code for a block containing the constant parts
754 of a trampoline, leaving space for the variable parts. */
755
756 /* On the 32k, the trampoline looks like this:
757 addr .,r2
758 jump @__trampoline
759 .int STATIC
760 .int FUNCTION
761 Doing trampolines with a library assist function is easier than figuring
762 out how to do stores to memory in reverse byte order (the way immediate
763 operands on the 32k are stored). */
764
765 #define TRAMPOLINE_TEMPLATE(FILE) \
766 { \
767 fprintf (FILE, "\taddr .,r2\n" ); \
768 fprintf (FILE, "\tjump " ); \
769 PUT_ABSOLUTE_PREFIX (FILE); \
770 fprintf (FILE, "__trampoline\n" ); \
771 ASM_OUTPUT_INT (FILE, const0_rtx); \
772 ASM_OUTPUT_INT (FILE, const0_rtx); \
773 }
774
775 /* Length in units of the trampoline for entering a nested function. */
776
777 #define TRAMPOLINE_SIZE 20
778
779 /* Emit RTL insns to initialize the variable parts of a trampoline.
780 FNADDR is an RTX for the address of the function's pure code.
781 CXT is an RTX for the static chain value for the function. */
782
783 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
784 { \
785 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 12)), CXT); \
786 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 16)), FNADDR); \
787 }
788
789 /* This is the library routine that is used
790 to transfer control from the trampoline
791 to the actual nested function. */
792
793 /* The function name __transfer_from_trampoline is not actually used.
794 The function definition just permits use of "asm with operands"
795 (though the operand list is empty). */
796 #define TRANSFER_FROM_TRAMPOLINE \
797 void \
798 __transfer_from_trampoline () \
799 { \
800 asm ("___trampoline:"); \
801 asm ("movd 16(r2),tos"); \
802 asm ("movd 12(r2),r2"); \
803 asm ("ret 0"); \
804 }
805 \f
806 /* Addressing modes, and classification of registers for them. */
807
808 /* #define HAVE_POST_INCREMENT */
809 /* #define HAVE_POST_DECREMENT */
810
811 /* #define HAVE_PRE_DECREMENT */
812 /* #define HAVE_PRE_INCREMENT */
813
814 /* Macros to check register numbers against specific register classes. */
815
816 /* These assume that REGNO is a hard or pseudo reg number.
817 They give nonzero only if REGNO is a hard reg of the suitable class
818 or a pseudo reg currently allocated to a suitable hard reg.
819 Since they use reg_renumber, they are safe only once reg_renumber
820 has been allocated, which happens in local-alloc.c. */
821
822 /* note that FP and SP cannot be used as an index. What about PC? */
823 #define REGNO_OK_FOR_INDEX_P(REGNO) \
824 ((REGNO) < 8 || (unsigned)reg_renumber[REGNO] < 8)
825 #define REGNO_OK_FOR_BASE_P(REGNO) \
826 ((REGNO) < 8 || (unsigned)reg_renumber[REGNO] < 8 \
827 || (REGNO) == FRAME_POINTER_REGNUM || (REGNO) == STACK_POINTER_REGNUM)
828
829 #define FP_REG_P(X) (GET_CODE (X) == REG && REGNO (X) > 7 && REGNO (X) < 16)
830 \f
831 /* Maximum number of registers that can appear in a valid memory address. */
832
833 #define MAX_REGS_PER_ADDRESS 2
834
835 /* Recognize any constant value that is a valid address.
836 This might not work on future ns32k processors as negative
837 displacements are not officially allowed but a mode reserved
838 to National. This works on processors up to 32532, though. */
839
840 #define CONSTANT_ADDRESS_P(X) \
841 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
842 || GET_CODE (X) == CONST \
843 || (GET_CODE (X) == CONST_INT \
844 && ((unsigned)INTVAL (X) >= 0xe0000000 \
845 || (unsigned)INTVAL (X) < 0x20000000)))
846
847 #define CONSTANT_ADDRESS_NO_LABEL_P(X) \
848 (GET_CODE (X) == CONST_INT \
849 && ((unsigned)INTVAL (X) >= 0xe0000000 \
850 || (unsigned)INTVAL (X) < 0x20000000))
851
852 /* Return the register class of a scratch register needed to copy IN into
853 or out of a register in CLASS in MODE. If it can be done directly,
854 NO_REGS is returned. */
855
856 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
857 secondary_reload_class (CLASS, MODE, IN)
858
859 /* Nonzero if the constant value X is a legitimate general operand.
860 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
861
862 #define LEGITIMATE_CONSTANT_P(X) 1
863
864 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
865 and check its validity for a certain class.
866 We have two alternate definitions for each of them.
867 The usual definition accepts all pseudo regs; the other rejects
868 them unless they have been allocated suitable hard regs.
869 The symbol REG_OK_STRICT causes the latter definition to be used.
870
871 Most source files want to accept pseudo regs in the hope that
872 they will get allocated to the class that the insn wants them to be in.
873 Source files for reload pass need to be strict.
874 After reload, it makes no difference, since pseudo regs have
875 been eliminated by then. */
876
877 #ifndef REG_OK_STRICT
878
879 /* Nonzero if X is a hard reg that can be used as an index
880 or if it is a pseudo reg. */
881 #define REG_OK_FOR_INDEX_P(X) \
882 (REGNO (X) < 8 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
883 /* Nonzero if X is a hard reg that can be used as a base reg
884 of if it is a pseudo reg. */
885 #define REG_OK_FOR_BASE_P(X) (REGNO (X) < 8 || REGNO (X) >= FRAME_POINTER_REGNUM)
886 /* Nonzero if X is a floating point reg or a pseudo reg. */
887
888 #else
889
890 /* Nonzero if X is a hard reg that can be used as an index. */
891 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
892 /* Nonzero if X is a hard reg that can be used as a base reg. */
893 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
894
895 #endif
896 \f
897 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
898 that is a valid memory address for an instruction.
899 The MODE argument is the machine mode for the MEM expression
900 that wants to use this address.
901
902 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
903
904 /* 1 if X is an address that we could indirect through. */
905 /***** NOTE ***** There is a bug in the Sequent assembler which fails
906 to fixup addressing information for symbols used as offsets
907 from registers which are not FP or SP (or SB or PC). This
908 makes _x(fp) valid, while _x(r0) is invalid. */
909
910 #define INDIRECTABLE_1_ADDRESS_P(X) \
911 (CONSTANT_ADDRESS_P (X) \
912 || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
913 || (GET_CODE (X) == PLUS \
914 && GET_CODE (XEXP (X, 0)) == REG \
915 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
916 && ((flag_pic || TARGET_HIMEM) ? \
917 CONSTANT_ADDRESS_NO_LABEL_P (XEXP (X, 1)) \
918 : \
919 CONSTANT_ADDRESS_P (XEXP (X, 1))) \
920 && (GET_CODE (X) != CONST_INT || NS32K_DISPLACEMENT_P (INTVAL (X)))))
921
922 /* 1 if integer I will fit in a 4 byte displacement field.
923 Strictly speaking, we can't be sure that a symbol will fit this range.
924 But, in practice, it always will. */
925
926 /* idall@eleceng.adelaide.edu.au says that the 32016 and 32032
927 can handle the full range of displacements--it is only the addresses
928 that have a limited range. So the following was deleted:
929 (((i) <= 16777215 && (i) >= -16777216)
930 || ((TARGET_32532 || TARGET_32332) && ...)) */
931 #define NS32K_DISPLACEMENT_P(i) \
932 ((i) < (1 << 29) && (i) >= - (1 << 29))
933
934 /* Check for frame pointer or stack pointer. */
935 #define MEM_REG(X) \
936 (GET_CODE (X) == REG && (REGNO (X) ^ 16) < 2)
937
938 /* A memory ref whose address is the FP or SP, with optional integer offset,
939 or (on certain machines) a constant address. */
940 #define INDIRECTABLE_2_ADDRESS_P(X) \
941 (GET_CODE (X) == MEM \
942 && (((xfoo0 = XEXP (X, 0), MEM_REG (xfoo0)) \
943 || (GET_CODE (xfoo0) == PLUS \
944 && MEM_REG (XEXP (xfoo0, 0)) \
945 && CONSTANT_ADDRESS_NO_LABEL_P (XEXP (xfoo0, 1)))) \
946 || (TARGET_SB && CONSTANT_ADDRESS_P (xfoo0))))
947
948 /* Go to ADDR if X is a valid address not using indexing.
949 (This much is the easy part.) */
950 #define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
951 { register rtx xfoob = (X); \
952 if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR; \
953 if (INDIRECTABLE_2_ADDRESS_P (X)) goto ADDR; \
954 if (GET_CODE (X) == PLUS) \
955 if (CONSTANT_ADDRESS_NO_LABEL_P (XEXP (X, 1))) \
956 if (INDIRECTABLE_2_ADDRESS_P (XEXP (X, 0))) \
957 goto ADDR; \
958 }
959
960 /* Go to ADDR if X is a valid address not using indexing.
961 (This much is the easy part.) */
962 #define GO_IF_INDEXING(X, MODE, ADDR) \
963 { register rtx xfoob = (X); \
964 if (GET_CODE (xfoob) == PLUS && INDEX_TERM_P (XEXP (xfoob, 0), MODE)) \
965 GO_IF_INDEXABLE_ADDRESS (XEXP (xfoob, 1), ADDR); \
966 if (GET_CODE (xfoob) == PLUS && INDEX_TERM_P (XEXP (xfoob, 1), MODE)) \
967 GO_IF_INDEXABLE_ADDRESS (XEXP (xfoob, 0), ADDR); } \
968
969 #define GO_IF_INDEXABLE_ADDRESS(X, ADDR) \
970 { if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) goto ADDR; \
971 if (INDIRECTABLE_2_ADDRESS_P (X)) goto ADDR; \
972 if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR; \
973 }
974
975 /* 1 if PROD is either a reg times size of mode MODE
976 or just a reg, if MODE is just one byte. Actually, on the ns32k,
977 since the index mode is independent of the operand size,
978 we can match more stuff...
979
980 This macro's expansion uses the temporary variables xfoo0, xfoo1
981 and xfoo2 that must be declared in the surrounding context. */
982 #define INDEX_TERM_P(PROD, MODE) \
983 ((GET_CODE (PROD) == REG && REG_OK_FOR_INDEX_P (PROD)) \
984 || (GET_CODE (PROD) == MULT \
985 && (xfoo0 = XEXP (PROD, 0), xfoo1 = XEXP (PROD, 1), \
986 (GET_CODE (xfoo1) == CONST_INT \
987 && GET_CODE (xfoo0) == REG \
988 && FITS_INDEX_RANGE (INTVAL (xfoo1)) \
989 && REG_OK_FOR_INDEX_P (xfoo0)))))
990
991 #define FITS_INDEX_RANGE(X) \
992 ((xfoo2 = (unsigned)(X)-1), \
993 ((xfoo2 < 4 && xfoo2 != 2) || xfoo2 == 7))
994
995 /* Note that xfoo0, xfoo1, xfoo2 are used in some of the submacros above. */
996 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
997 { register rtx xfooy, xfoo0, xfoo1; \
998 unsigned xfoo2; \
999 extern int current_function_uses_pic_offset_table, flag_pic; \
1000 xfooy = X; \
1001 if (flag_pic && ! current_function_uses_pic_offset_table \
1002 && global_symbolic_reference_mentioned_p (X, 1)) \
1003 current_function_uses_pic_offset_table = 1; \
1004 GO_IF_NONINDEXED_ADDRESS (xfooy, ADDR); \
1005 if (GET_CODE (xfooy) == PLUS) \
1006 { \
1007 if (CONSTANT_ADDRESS_NO_LABEL_P (XEXP (xfooy, 1)) \
1008 && GET_CODE (XEXP (xfooy, 0)) == PLUS) \
1009 xfooy = XEXP (xfooy, 0); \
1010 else if (CONSTANT_ADDRESS_NO_LABEL_P (XEXP (xfooy, 0)) \
1011 && GET_CODE (XEXP (xfooy, 1)) == PLUS) \
1012 xfooy = XEXP (xfooy, 1); \
1013 GO_IF_INDEXING (xfooy, MODE, ADDR); \
1014 } \
1015 else if (INDEX_TERM_P (xfooy, MODE)) \
1016 goto ADDR; \
1017 else if (GET_CODE (xfooy) == PRE_DEC) \
1018 if (REGNO (XEXP (xfooy, 0)) == STACK_POINTER_REGNUM) goto ADDR; \
1019 else abort (); \
1020 }
1021
1022 /* Try machine-dependent ways of modifying an illegitimate address
1023 to be legitimate. If we find one, return the new, valid address.
1024 This macro is used in only one place: `memory_address' in explow.c.
1025
1026 OLDX is the address as it was before break_out_memory_refs was called.
1027 In some cases it is useful to look at this to decide what needs to be done.
1028
1029 MODE and WIN are passed so that this macro can use
1030 GO_IF_LEGITIMATE_ADDRESS.
1031
1032 It is always safe for this macro to do nothing. It exists to recognize
1033 opportunities to optimize the output.
1034
1035 For the ns32k, we do nothing */
1036
1037 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
1038
1039 /* Nonzero if the constant value X is a legitimate general operand
1040 when generating PIC code. It is given that flag_pic is on and
1041 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1042
1043 extern int current_function_uses_pic_offset_table, flag_pic;
1044 #define LEGITIMATE_PIC_OPERAND_P(X) \
1045 (((! current_function_uses_pic_offset_table \
1046 && global_symbolic_reference_mentioned_p (X, 1))? \
1047 (current_function_uses_pic_offset_table = 1):0 \
1048 ), 1)
1049
1050 /* Define this macro if references to a symbol must be treated
1051 differently depending on something about the variable or
1052 function named by the symbol (such as what section it is in).
1053
1054 On the ns32k, if using PIC, mark a SYMBOL_REF for a non-global
1055 symbol or a code symbol. These symbols are referenced via pc
1056 and not via sb. */
1057
1058 #define ENCODE_SECTION_INFO(DECL) \
1059 do \
1060 { \
1061 extern int flag_pic; \
1062 if (flag_pic) \
1063 { \
1064 rtx rtl = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
1065 ? TREE_CST_RTL (DECL) : DECL_RTL (DECL)); \
1066 SYMBOL_REF_FLAG (XEXP (rtl, 0)) \
1067 = (TREE_CODE_CLASS (TREE_CODE (DECL)) != 'd' \
1068 || ! TREE_PUBLIC (DECL)); \
1069 } \
1070 } \
1071 while (0)
1072
1073 /* Go to LABEL if ADDR (a legitimate address expression)
1074 has an effect that depends on the machine mode it is used for.
1075 On the ns32k, only predecrement and postincrement address depend thus
1076 (the amount of decrement or increment being the length of the operand). */
1077
1078 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1079 { if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) \
1080 goto LABEL;}
1081 \f
1082 /* Specify the machine mode that this machine uses
1083 for the index in the tablejump instruction.
1084 HI mode is more efficient but the range is not wide enough for
1085 all programs. */
1086 #define CASE_VECTOR_MODE SImode
1087
1088 /* Define this if the tablejump instruction expects the table
1089 to contain offsets from the address of the table.
1090 Do not define this if the table should contain absolute addresses. */
1091 #define CASE_VECTOR_PC_RELATIVE
1092
1093 /* Specify the tree operation to be used to convert reals to integers. */
1094 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
1095
1096 /* This is the kind of divide that is easiest to do in the general case. */
1097 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
1098
1099 /* Define this as 1 if `char' should by default be signed; else as 0. */
1100 #define DEFAULT_SIGNED_CHAR 1
1101
1102 /* Max number of bytes we can move from memory to memory
1103 in one reasonably fast instruction. */
1104 #define MOVE_MAX 4
1105
1106 /* Define this if zero-extension is slow (more than one real instruction). */
1107 /* #define SLOW_ZERO_EXTEND */
1108
1109 /* Nonzero if access to memory by bytes is slow and undesirable. */
1110 #define SLOW_BYTE_ACCESS 0
1111
1112 /* Define if shifts truncate the shift count
1113 which implies one can omit a sign-extension or zero-extension
1114 of a shift count. */
1115 /* #define SHIFT_COUNT_TRUNCATED */
1116
1117 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1118 is done just by pretending it is already truncated. */
1119 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1120
1121 /* We assume that the store-condition-codes instructions store 0 for false
1122 and some other value for true. This is the value stored for true. */
1123
1124 #define STORE_FLAG_VALUE 1
1125
1126 /* Specify the machine mode that pointers have.
1127 After generation of rtl, the compiler makes no further distinction
1128 between pointers and any other objects of this machine mode. */
1129 #define Pmode SImode
1130
1131 /* A function address in a call instruction
1132 is a byte address (for indexing purposes)
1133 so give the MEM rtx a byte's mode. */
1134 #define FUNCTION_MODE QImode
1135
1136 /* Compute the cost of address ADDRESS. */
1137
1138 #define ADDRESS_COST(RTX) calc_address_cost (RTX)
1139
1140 /* Compute the cost of computing a constant rtl expression RTX
1141 whose rtx-code is CODE. The body of this macro is a portion
1142 of a switch statement. If the code is computed here,
1143 return it with a return statement. Otherwise, break from the switch. */
1144
1145 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1146 case CONST_INT: \
1147 if (INTVAL (RTX) <= 7 && INTVAL (RTX) >= -8) return 0; \
1148 if (INTVAL (RTX) < 0x2000 && INTVAL (RTX) >= -0x2000) \
1149 return 1; \
1150 case CONST: \
1151 case LABEL_REF: \
1152 case SYMBOL_REF: \
1153 return 3; \
1154 case CONST_DOUBLE: \
1155 return 5;
1156 \f
1157 /* Tell final.c how to eliminate redundant test instructions. */
1158
1159 /* Here we define machine-dependent flags and fields in cc_status
1160 (see `conditions.h'). */
1161
1162 /* This bit means that what ought to be in the Z bit
1163 should be tested in the F bit. */
1164 #define CC_Z_IN_F 04000
1165
1166 /* This bit means that what ought to be in the Z bit
1167 is complemented in the F bit. */
1168 #define CC_Z_IN_NOT_F 010000
1169
1170 /* Store in cc_status the expressions
1171 that the condition codes will describe
1172 after execution of an instruction whose pattern is EXP.
1173 Do not alter them if the instruction would not alter the cc's. */
1174
1175 #define NOTICE_UPDATE_CC(EXP, INSN) \
1176 { if (GET_CODE (EXP) == SET) \
1177 { if (GET_CODE (SET_DEST (EXP)) == CC0) \
1178 { cc_status.flags = 0; \
1179 cc_status.value1 = SET_DEST (EXP); \
1180 cc_status.value2 = SET_SRC (EXP); \
1181 } \
1182 else if (GET_CODE (SET_SRC (EXP)) == CALL) \
1183 { CC_STATUS_INIT; } \
1184 else if (GET_CODE (SET_DEST (EXP)) == REG) \
1185 { if (cc_status.value1 \
1186 && reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value1)) \
1187 cc_status.value1 = 0; \
1188 if (cc_status.value2 \
1189 && reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value2)) \
1190 cc_status.value2 = 0; \
1191 } \
1192 else if (GET_CODE (SET_DEST (EXP)) == MEM) \
1193 { CC_STATUS_INIT; } \
1194 } \
1195 else if (GET_CODE (EXP) == PARALLEL \
1196 && GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
1197 { if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) == CC0) \
1198 { cc_status.flags = 0; \
1199 cc_status.value1 = SET_DEST (XVECEXP (EXP, 0, 0)); \
1200 cc_status.value2 = SET_SRC (XVECEXP (EXP, 0, 0)); \
1201 } \
1202 else if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) == REG) \
1203 { if (cc_status.value1 \
1204 && reg_overlap_mentioned_p (SET_DEST (XVECEXP (EXP, 0, 0)), cc_status.value1)) \
1205 cc_status.value1 = 0; \
1206 if (cc_status.value2 \
1207 && reg_overlap_mentioned_p (SET_DEST (XVECEXP (EXP, 0, 0)), cc_status.value2)) \
1208 cc_status.value2 = 0; \
1209 } \
1210 else if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) == MEM) \
1211 { CC_STATUS_INIT; } \
1212 } \
1213 else if (GET_CODE (EXP) == CALL) \
1214 { /* all bets are off */ CC_STATUS_INIT; } \
1215 else { /* nothing happens? CC_STATUS_INIT; */} \
1216 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
1217 && cc_status.value2 \
1218 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
1219 abort (); \
1220 }
1221
1222 /* Describe the costs of the following register moves which are discouraged:
1223 1.) Moves between the Floating point registers and the frame pointer and stack pointer
1224 2.) Moves between the stack pointer and the frame pointer
1225 3.) Moves between the floating point and general registers */
1226
1227 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
1228 ((((CLASS1) == FLOAT_REGS && ((CLASS2) == STACK_POINTER_REG || (CLASS2) == FRAME_POINTER_REG)) \
1229 || ((CLASS2) == FLOAT_REGS && ((CLASS1) == STACK_POINTER_REG || (CLASS1) == FRAME_POINTER_REG)) \
1230 || ((CLASS1) == STACK_POINTER_REG && (CLASS2) == FRAME_POINTER_REG) \
1231 || ((CLASS2) == STACK_POINTER_REG && (CLASS1) == FRAME_POINTER_REG) \
1232 || ((CLASS1) == FLOAT_REGS && (CLASS2) == GENERAL_REGS) \
1233 || ((CLASS1) == GENERAL_REGS && (CLASS2) == FLOAT_REGS)) \
1234 ? 4 : 2)
1235
1236 #define OUTPUT_JUMP(NORMAL, NO_OV) \
1237 { if (cc_status.flags & CC_NO_OVERFLOW) \
1238 return NO_OV; \
1239 return NORMAL; }
1240 \f
1241 /* Dividing the output into sections */
1242
1243 /* Output before read-only data. */
1244
1245 #define TEXT_SECTION_ASM_OP ".text"
1246
1247 /* Output before writable data. */
1248
1249 #define DATA_SECTION_ASM_OP ".data"
1250
1251 /* Define the output Assembly Language */
1252
1253 /* Output at beginning of assembler file. */
1254
1255 #define ASM_FILE_START(FILE) fprintf (FILE, "#NO_APP\n");
1256
1257 /* Output to assembler file text saying following lines
1258 may contain character constants, extra white space, comments, etc. */
1259
1260 #define ASM_APP_ON "#APP\n"
1261
1262 /* Output to assembler file text saying following lines
1263 no longer contain unusual constructs. */
1264
1265 #define ASM_APP_OFF "#NO_APP\n"
1266
1267 /* Output of Data */
1268
1269 /* This is how to output an assembler line defining a `double' constant. */
1270
1271 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1272 fprintf (FILE, "\t.double 0d%.20e\n", (VALUE))
1273
1274 /* This is how to output an assembler line defining a `float' constant. */
1275
1276 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1277 fprintf (FILE, "\t.float 0f%.20e\n", (VALUE))
1278
1279 /* This is how to output an assembler line defining an `int' constant. */
1280
1281 #define ASM_OUTPUT_INT(FILE,VALUE) \
1282 ( fprintf (FILE, "\t.long "), \
1283 output_addr_const (FILE, (VALUE)), \
1284 fprintf (FILE, "\n"))
1285
1286 /* Likewise for `char' and `short' constants. */
1287
1288 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1289 ( fprintf (FILE, "\t.word "), \
1290 output_addr_const (FILE, (VALUE)), \
1291 fprintf (FILE, "\n"))
1292
1293 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1294 ( fprintf (FILE, "\t.byte "), \
1295 output_addr_const (FILE, (VALUE)), \
1296 fprintf (FILE, "\n"))
1297
1298 /* This is how to output an assembler line for a numeric constant byte. */
1299
1300 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1301 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1302
1303 /* This is how to output an assembler line defining an external/static
1304 address which is not in tree format (for collect.c). */
1305
1306 #define ASM_OUTPUT_LABELREF_AS_INT(STREAM, NAME) \
1307 do { \
1308 fprintf (STREAM, "\t.long\t"); \
1309 ASM_OUTPUT_LABELREF (STREAM, NAME); \
1310 fprintf (STREAM, "\n"); \
1311 } while (0)
1312
1313 /* This is how to output an insn to push a register on the stack.
1314 It need not be very fast code. */
1315
1316 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1317 fprintf (FILE, "\tmovd %s,tos\n", reg_names[REGNO])
1318
1319 /* This is how to output an insn to pop a register from the stack.
1320 It need not be very fast code. */
1321
1322 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1323 fprintf (FILE, "\tmovd tos,%s\n", reg_names[REGNO])
1324
1325 /* How to refer to registers in assembler output.
1326 This sequence is indexed by compiler's hard-register-number (see above). */
1327
1328 #define REGISTER_NAMES \
1329 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
1330 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
1331 "fp", "sp"}
1332
1333 /* How to renumber registers for dbx and gdb.
1334 NS32000 may need more change in the numeration. */
1335
1336 #define DBX_REGISTER_NUMBER(REGNO) ((REGNO < 8) ? (REGNO)+4 : (REGNO))
1337
1338 /* This is how to output the definition of a user-level label named NAME,
1339 such as the label on a static function or variable NAME. */
1340
1341 #ifndef COLLECT
1342 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1343 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1344 #else
1345 #define ASM_OUTPUT_LABEL(STREAM,NAME) \
1346 do { \
1347 fprintf (STREAM, "%s:\n", NAME); \
1348 } while (0)
1349 #endif
1350
1351 /* This is how to output a command to make the user-level label named NAME
1352 defined for reference from other files. */
1353
1354 #ifndef COLLECT
1355 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1356 do { fputs (".globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1357 #else
1358 #define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
1359 do { \
1360 fprintf (STREAM, "\t.globl\t%s\n", NAME); \
1361 } while (0)
1362 #endif
1363
1364 /* This is how to output a reference to a user-level label named NAME.
1365 `assemble_name' uses this. */
1366
1367 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1368 fprintf (FILE, "_%s", NAME)
1369
1370 /* This is how to output an internal numbered label where
1371 PREFIX is the class of label and NUM is the number within the class. */
1372
1373 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1374 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1375
1376 /* This is how to store into the string LABEL
1377 the symbol_ref name of an internal numbered label where
1378 PREFIX is the class of label and NUM is the number within the class.
1379 This is suitable for output with `assemble_name'. */
1380
1381 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1382 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1383
1384 /* This is how to align the code that follows an unconditional branch.
1385 Note that 0xa2 is a no-op. */
1386
1387 #define ASM_OUTPUT_ALIGN_CODE(FILE) \
1388 fprintf (FILE, "\t.align 2,0xa2\n")
1389
1390 /* This is how to output an element of a case-vector that is absolute.
1391 (The ns32k does not use such vectors,
1392 but we must define this macro anyway.) */
1393
1394 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1395 fprintf (FILE, "\t.long L%d\n", VALUE)
1396
1397 /* This is how to output an element of a case-vector that is relative. */
1398 /* ** Notice that the second element is LI format! */
1399 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1400 fprintf (FILE, "\t.long L%d-LI%d\n", VALUE, REL)
1401
1402 /* This is how to output an assembler line
1403 that says to advance the location counter
1404 to a multiple of 2**LOG bytes. */
1405
1406 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1407 fprintf (FILE, "\t.align %d\n", (LOG))
1408
1409 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1410 fprintf (FILE, "\t.space %u\n", (SIZE))
1411
1412 /* This says how to output an assembler line
1413 to define a global common symbol. */
1414
1415 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1416 ( fputs (".comm ", (FILE)), \
1417 assemble_name ((FILE), (NAME)), \
1418 fprintf ((FILE), ",%u\n", (ROUNDED)))
1419
1420 /* This says how to output an assembler line
1421 to define a local common symbol. */
1422
1423 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1424 ( fputs (".lcomm ", (FILE)), \
1425 assemble_name ((FILE), (NAME)), \
1426 fprintf ((FILE), ",%u\n", (ROUNDED)))
1427
1428 /* Store in OUTPUT a string (made with alloca) containing
1429 an assembler-name for a local static variable named NAME.
1430 LABELNO is an integer which is different for each call. */
1431
1432 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1433 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1434 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1435
1436 /* Define the parentheses used to group arithmetic operations
1437 in assembler code. */
1438
1439 #define ASM_OPEN_PAREN "("
1440 #define ASM_CLOSE_PAREN ")"
1441
1442 /* Define results of standard character escape sequences. */
1443 #define TARGET_BELL 007
1444 #define TARGET_BS 010
1445 #define TARGET_TAB 011
1446 #define TARGET_NEWLINE 012
1447 #define TARGET_VT 013
1448 #define TARGET_FF 014
1449 #define TARGET_CR 015
1450
1451 /* Print an instruction operand X on file FILE.
1452 CODE is the code from the %-spec that requested printing this operand;
1453 if `%z3' was used to print operand 3, then CODE is 'z'. */
1454
1455 /* %$ means print the prefix for an immediate operand. */
1456
1457 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1458 ((CODE) == '$' || (CODE) == '?')
1459
1460 #define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE, X, CODE)
1461
1462 /* Print a memory operand whose address is X, on file FILE. */
1463
1464 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address(FILE, ADDR)
1465
1466 /* Define functions in ns32k.c and used in insn-output.c. */
1467
1468 extern char *output_move_double ();
1469 extern char *output_shift_insn ();
1470 extern char *output_move_dconst ();
1471
1472 /*
1473 Local variables:
1474 version-control: t
1475 End:
1476 */
This page took 0.106379 seconds and 4 git commands to generate.