]> gcc.gnu.org Git - gcc.git/blob - gcc/config/ns32k/ns32k.h
*** empty log message ***
[gcc.git] / gcc / config / ns32k / ns32k.h
1 /* Definitions of target machine for GNU compiler. NS32000 version.
2 Copyright (C) 1988 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@mcc.com)
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21
22 /* Note that some other tm.h files include this one and then override
23 many of the definitions that relate to assembler syntax. */
24
25 extern enum reg_class secondary_reload_class();
26
27 /* Names to predefine in the preprocessor for this target machine. */
28
29 #define CPP_PREDEFINES "-Dns32000 -Dunix"
30
31 /* Print subsidiary information on the compiler version in use. */
32 #define TARGET_VERSION fprintf (stderr, " (32000, GAS syntax)");
33
34 \f
35 /* ABSOLUTE PREFIX, IMMEDIATE_PREFIX and EXTERNAL_PREFIX can be defined
36 to cover most NS32k addressing syntax variations. This way we don't
37 need to redefine long macros in all the tm.h files for just slight
38 variations in assembler syntax. */
39
40 #ifndef ABSOLUTE_PREFIX
41 #define ABSOLUTE_PREFIX '@'
42 #endif
43
44 #if defined(IMMEDIATE_PREFIX) && IMMEDIATE_PREFIX
45 #define PUT_IMMEDIATE_PREFIX(FILE) putc(IMMEDIATE_PREFIX, FILE)
46 #else
47 #define PUT_IMMEDIATE_PREFIX(FILE)
48 #endif
49 #if defined(ABSOLUTE_PREFIX) && ABSOLUTE_PREFIX
50 #define PUT_ABSOLUTE_PREFIX(FILE) putc(ABSOLUTE_PREFIX, FILE)
51 #else
52 #define PUT_ABSOLUTE_PREFIX(FILE)
53 #endif
54 #if defined(EXTERNAL_PREFIX) && EXTERNAL_PREFIX
55 #define PUT_EXTERNAL_PREFIX(FILE) putc(EXTERNAL_PREFIX, FILE)
56 #else
57 #define PUT_EXTERNAL_PREFIX(FILE)
58 #endif
59
60 /* Run-time compilation parameters selecting different hardware subsets. */
61
62 extern int target_flags;
63
64 /* Macros used in the machine description to test the flags. */
65
66 /* Compile 32081 insns for floating point (not library calls). */
67 #define TARGET_32081 (target_flags & 1)
68
69 /* Compile using rtd insn calling sequence.
70 This will not work unless you use prototypes at least
71 for all functions that can take varying numbers of args. */
72 #define TARGET_RTD (target_flags & 2)
73
74 /* Compile passing first two args in regs 0 and 1. */
75 #define TARGET_REGPARM (target_flags & 4)
76
77 /* Options to select type of CPU, for better optimization.
78 The output is correct for any kind of 32000 regardless of these options. */
79 #define TARGET_32532 (target_flags & 8)
80 #define TARGET_32332 (target_flags & 16)
81
82 /* Ok to use the static base register (and presume it's 0) */
83 #define TARGET_SB ((target_flags & 32) == 0)
84
85 /* Macro to define tables used to set the flags.
86 This is a list in braces of pairs in braces,
87 each pair being { "NAME", VALUE }
88 where VALUE is the bits to set or minus the bits to clear.
89 An empty string NAME is used to identify the default VALUE. */
90
91 #define TARGET_SWITCHES \
92 { { "32081", 1}, \
93 { "soft-float", -1}, \
94 { "rtd", 2}, \
95 { "nortd", -2}, \
96 { "regparm", 4}, \
97 { "noregparm", -4}, \
98 { "32532", 24}, \
99 { "32332", -16}, \
100 { "32332", 8}, \
101 { "32032", -24}, \
102 { "sb", -32}, \
103 { "nosb", 32}, \
104 { "", TARGET_DEFAULT}}
105 /* TARGET_DEFAULT is defined in encore.h, pc532.h, etc. */
106 \f
107 /* target machine storage layout */
108
109 /* Define this if most significant bit is lowest numbered
110 in instructions that operate on numbered bit-fields.
111 This is not true on the ns32k. */
112 #define BITS_BIG_ENDIAN 0
113
114 /* Define this if most significant byte of a word is the lowest numbered. */
115 /* That is not true on the ns32k. */
116 #define BYTES_BIG_ENDIAN 0
117
118 /* Define this if most significant word of a multiword number is lowest
119 numbered. This is not true on the ns32k. */
120 #define WORDS_BIG_ENDIAN 0
121
122 /* Number of bits in an addressable storage unit */
123 #define BITS_PER_UNIT 8
124
125 /* Width in bits of a "word", which is the contents of a machine register.
126 Note that this is not necessarily the width of data type `int';
127 if using 16-bit ints on a 32000, this would still be 32.
128 But on a machine with 16-bit registers, this would be 16. */
129 #define BITS_PER_WORD 32
130
131 /* Width of a word, in units (bytes). */
132 #define UNITS_PER_WORD 4
133
134 /* Width in bits of a pointer.
135 See also the macro `Pmode' defined below. */
136 #define POINTER_SIZE 32
137
138 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
139 #define PARM_BOUNDARY 32
140
141 /* Boundary (in *bits*) on which stack pointer should be aligned. */
142 #define STACK_BOUNDARY 32
143
144 /* Allocation boundary (in *bits*) for the code of a function. */
145 #define FUNCTION_BOUNDARY 16
146
147 /* Alignment of field after `int : 0' in a structure. */
148 #define EMPTY_FIELD_BOUNDARY 32
149
150 /* Every structure's size must be a multiple of this. */
151 #define STRUCTURE_SIZE_BOUNDARY 8
152
153 /* No data type wants to be aligned rounder than this. */
154 #define BIGGEST_ALIGNMENT 32
155
156 /* Set this nonzero if move instructions will actually fail to work
157 when given unaligned data. National claims that the NS32032
158 works without strict alignment, but rumor has it that operands
159 crossing a page boundary cause unpredictable results. */
160 #define STRICT_ALIGNMENT 1
161
162 /* If bit field type is int, dont let it cross an int,
163 and give entire struct the alignment of an int. */
164 /* Required on the 386 since it doesn't have a full set of bitfield insns.
165 (There is no signed extv insn.) */
166 #define PCC_BITFIELD_TYPE_MATTERS 1
167 \f
168 /* Standard register usage. */
169
170 /* Number of actual hardware registers.
171 The hardware registers are assigned numbers for the compiler
172 from 0 to just below FIRST_PSEUDO_REGISTER.
173 All registers that the compiler knows about must be given numbers,
174 even those that are not normally considered general registers. */
175 #define FIRST_PSEUDO_REGISTER 18
176
177 /* 1 for registers that have pervasive standard uses
178 and are not available for the register allocator.
179 On the ns32k, these are the FP, SP, (SB and PC are not included here). */
180 #define FIXED_REGISTERS {0, 0, 0, 0, 0, 0, 0, 0, \
181 0, 0, 0, 0, 0, 0, 0, 0, \
182 1, 1}
183
184 /* 1 for registers not available across function calls.
185 These must include the FIXED_REGISTERS and also any
186 registers that can be used without being saved.
187 The latter must include the registers where values are returned
188 and the register where structure-value addresses are passed.
189 Aside from that, you can include as many other registers as you like. */
190 #define CALL_USED_REGISTERS {1, 1, 1, 0, 0, 0, 0, 0, \
191 1, 1, 1, 1, 0, 0, 0, 0, \
192 1, 1}
193
194 /* Return number of consecutive hard regs needed starting at reg REGNO
195 to hold something of mode MODE.
196 This is ordinarily the length in words of a value of mode MODE
197 but can be less for certain modes in special long registers.
198 On the ns32k, all registers are 32 bits long. */
199 #define HARD_REGNO_NREGS(REGNO, MODE) \
200 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
201
202 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
203 #define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok (REGNO, MODE)
204
205 /* Value is 1 if it is a good idea to tie two pseudo registers
206 when one has mode MODE1 and one has mode MODE2.
207 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
208 for any hard reg, then this must be 0 for correct output. */
209 #define MODES_TIEABLE_P(MODE1, MODE2) \
210 (((MODE1) == DFmode || (MODE1) == DCmode || (MODE1) == DImode) == \
211 ((MODE2) == DFmode || (MODE2) == DCmode || (MODE2) == DImode))
212
213 /* Specify the registers used for certain standard purposes.
214 The values of these macros are register numbers. */
215
216 /* NS32000 pc is not overloaded on a register. */
217 /* #define PC_REGNUM */
218
219 /* Register to use for pushing function arguments. */
220 #define STACK_POINTER_REGNUM 17
221
222 /* Base register for access to local variables of the function. */
223 #define FRAME_POINTER_REGNUM 16
224
225 /* Value should be nonzero if functions must have frame pointers.
226 Zero means the frame pointer need not be set up (and parms
227 may be accessed via the stack pointer) in functions that seem suitable.
228 This is computed in `reload', in reload1.c. */
229 #define FRAME_POINTER_REQUIRED 0
230
231 /* Base register for access to arguments of the function. */
232 #define ARG_POINTER_REGNUM 16
233
234 /* Register in which static-chain is passed to a function. */
235 #define STATIC_CHAIN_REGNUM 1
236
237 /* Register in which address to store a structure value
238 is passed to a function. */
239 #define STRUCT_VALUE_REGNUM 2
240 \f
241 /* Define the classes of registers for register constraints in the
242 machine description. Also define ranges of constants.
243
244 One of the classes must always be named ALL_REGS and include all hard regs.
245 If there is more than one class, another class must be named NO_REGS
246 and contain no registers.
247
248 The name GENERAL_REGS must be the name of a class (or an alias for
249 another name such as ALL_REGS). This is the class of registers
250 that is allowed by "g" or "r" in a register constraint.
251 Also, registers outside this class are allocated only when
252 instructions express preferences for them.
253
254 The classes must be numbered in nondecreasing order; that is,
255 a larger-numbered class must never be contained completely
256 in a smaller-numbered class.
257
258 For any two classes, it is very desirable that there be another
259 class that represents their union. */
260
261 enum reg_class { NO_REGS, GENERAL_REGS, FLOAT_REGS, FRAME_POINTER_REG, STACK_POINTER_REG,
262 GEN_AND_MEM_REGS, ALL_REGS, LIM_REG_CLASSES };
263
264 #define N_REG_CLASSES (int) LIM_REG_CLASSES
265
266 /* Give names of register classes as strings for dump file. */
267
268 #define REG_CLASS_NAMES \
269 {"NO_REGS", "GENERAL_REGS", "FLOAT_REGS", "FRAME_POINTER_REG", "STACK_POINTER_REG", "GEN_AND_MEM_REGS", "ALL_REGS" }
270
271 /* Define which registers fit in which classes.
272 This is an initializer for a vector of HARD_REG_SET
273 of length N_REG_CLASSES. */
274
275 #define REG_CLASS_CONTENTS {0, 0x00ff, 0xff00, 0x10000, 0x20000, 0x300ff, 0x3ffff }
276
277 /* The same information, inverted:
278 Return the class number of the smallest class containing
279 reg number REGNO. This could be a conditional expression
280 or could index an array. */
281
282 #define REGNO_REG_CLASS(REGNO) \
283 ((REGNO) < 8 ? GENERAL_REGS \
284 : (REGNO) < 16 ? FLOAT_REGS \
285 : (REGNO) == 16 ? FRAME_POINTER_REG \
286 : (REGNO) == 17 ? STACK_POINTER_REG \
287 : NO_REGS)
288
289 /* The class value for index registers, and the one for base regs. */
290
291 #define INDEX_REG_CLASS GENERAL_REGS
292 #define BASE_REG_CLASS GEN_AND_MEM_REGS
293
294 /* Get reg_class from a letter such as appears in the machine description. */
295
296 #define REG_CLASS_FROM_LETTER(C) \
297 ((C) == 'f' ? FLOAT_REGS \
298 : (C) == 'x' ? FRAME_POINTER_REG \
299 : (C) == 'y' ? STACK_POINTER_REG \
300 : NO_REGS)
301
302 /* The letters I, J, K, L and M in a register constraint string
303 can be used to stand for particular ranges of immediate operands.
304 This macro defines what the ranges are.
305 C is the letter, and VALUE is a constant value.
306 Return 1 if VALUE is in the range specified by C.
307
308 On the ns32k, these letters are used as follows:
309
310 I : Matches integers which are valid shift amounts for scaled indexing.
311 These are 0, 1, 2, 3 for byte, word, double, and quadword.
312 Used for matching arithmetic shifts only on 32032 & 32332.
313 J : Matches integers which fit a "quick" operand.
314 K : Matches integers 0 to 7 (for inss and exts instructions).
315 */
316
317 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
318 ((VALUE) < 8 && (VALUE) + 8 >= 0 ? \
319 ((C) == 'I' ? (!TARGET_32532 && 0 <= (VALUE) && (VALUE) <= 3) : \
320 (C) == 'J' ? (VALUE) <= 7 : \
321 (C) == 'K' ? 0 <= (VALUE) : 0) : 0)
322
323 /* Similar, but for floating constants, and defining letters G and H.
324 Here VALUE is the CONST_DOUBLE rtx itself. */
325
326 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 1
327
328 /* Given an rtx X being reloaded into a reg required to be
329 in class CLASS, return the class of reg to actually use.
330 In general this is just CLASS; but on some machines
331 in some cases it is preferable to use a more restrictive class. */
332
333 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
334
335 /* Return the maximum number of consecutive registers
336 needed to represent mode MODE in a register of class CLASS. */
337 /* On the 32000, this is the size of MODE in words */
338 #define CLASS_MAX_NREGS(CLASS, MODE) \
339 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
340 \f
341 /* Stack layout; function entry, exit and calling. */
342
343 /* Define this if pushing a word on the stack
344 makes the stack pointer a smaller address. */
345 #define STACK_GROWS_DOWNWARD
346
347 /* Define this if the nominal address of the stack frame
348 is at the high-address end of the local variables;
349 that is, each additional local variable allocated
350 goes at a more negative offset in the frame. */
351 #define FRAME_GROWS_DOWNWARD
352
353 /* Offset within stack frame to start allocating local variables at.
354 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
355 first local allocated. Otherwise, it is the offset to the BEGINNING
356 of the first local allocated. */
357 #define STARTING_FRAME_OFFSET 0
358
359 /* If we generate an insn to push BYTES bytes,
360 this says how many the stack pointer really advances by.
361 On the 32000, sp@- in a byte insn really pushes a BYTE. */
362 #define PUSH_ROUNDING(BYTES) (BYTES)
363
364 /* Offset of first parameter from the argument pointer register value. */
365 #define FIRST_PARM_OFFSET(FNDECL) 8
366
367 /* Value is the number of byte of arguments automatically
368 popped when returning from a subroutine call.
369 FUNTYPE is the data type of the function (as a tree),
370 or for a library call it is an identifier node for the subroutine name.
371 SIZE is the number of bytes of arguments passed on the stack.
372
373 On the 32000, the RET insn may be used to pop them if the number
374 of args is fixed, but if the number is variable then the caller
375 must pop them all. RET can't be used for library calls now
376 because the library is compiled with the Unix compiler.
377 Use of RET is a selectable option, since it is incompatible with
378 standard Unix calling sequences. If the option is not selected,
379 the caller must always pop the args. */
380
381 #define RETURN_POPS_ARGS(FUNTYPE,SIZE) \
382 ((TARGET_RTD && TREE_CODE (FUNTYPE) != IDENTIFIER_NODE \
383 && (TYPE_ARG_TYPES (FUNTYPE) == 0 \
384 || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (FUNTYPE))) \
385 == void_type_node))) \
386 ? (SIZE) : 0)
387
388 /* Define how to find the value returned by a function.
389 VALTYPE is the data type of the value (as a tree).
390 If the precise function being called is known, FUNC is its FUNCTION_DECL;
391 otherwise, FUNC is 0. */
392
393 /* On the 32000 the return value is in R0,
394 or perhaps in F0 is there is fp support. */
395
396 #define FUNCTION_VALUE(VALTYPE, FUNC) \
397 (TREE_CODE (VALTYPE) == REAL_TYPE && TARGET_32081 \
398 ? gen_rtx (REG, TYPE_MODE (VALTYPE), 8) \
399 : gen_rtx (REG, TYPE_MODE (VALTYPE), 0))
400
401 /* Define how to find the value returned by a library function
402 assuming the value has mode MODE. */
403
404 /* On the 32000 the return value is in R0,
405 or perhaps F0 is there is fp support. */
406
407 #define LIBCALL_VALUE(MODE) \
408 (((MODE) == DFmode || (MODE) == SFmode) && TARGET_32081 \
409 ? gen_rtx (REG, MODE, 8) \
410 : gen_rtx (REG, MODE, 0))
411
412 /* Define this if PCC uses the nonreentrant convention for returning
413 structure and union values. */
414
415 #define PCC_STATIC_STRUCT_RETURN
416
417 /* 1 if N is a possible register number for a function value.
418 On the 32000, R0 and F0 are the only registers thus used. */
419
420 #define FUNCTION_VALUE_REGNO_P(N) (((N) & ~8) == 0)
421
422 /* 1 if N is a possible register number for function argument passing.
423 On the 32000, no registers are used in this way. */
424
425 #define FUNCTION_ARG_REGNO_P(N) 0
426 \f
427 /* Define a data type for recording info about an argument list
428 during the scan of that argument list. This data type should
429 hold all necessary information about the function itself
430 and about the args processed so far, enough to enable macros
431 such as FUNCTION_ARG to determine where the next arg should go.
432
433 On the ns32k, this is a single integer, which is a number of bytes
434 of arguments scanned so far. */
435
436 #define CUMULATIVE_ARGS int
437
438 /* Initialize a variable CUM of type CUMULATIVE_ARGS
439 for a call to a function whose data type is FNTYPE.
440 For a library call, FNTYPE is 0.
441
442 On the ns32k, the offset starts at 0. */
443
444 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
445 ((CUM) = 0)
446
447 /* Update the data in CUM to advance over an argument
448 of mode MODE and data type TYPE.
449 (TYPE is null for libcalls where that information may not be available.) */
450
451 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
452 ((CUM) += ((MODE) != BLKmode \
453 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
454 : (int_size_in_bytes (TYPE) + 3) & ~3))
455
456 /* Define where to put the arguments to a function.
457 Value is zero to push the argument on the stack,
458 or a hard register in which to store the argument.
459
460 MODE is the argument's machine mode.
461 TYPE is the data type of the argument (as a tree).
462 This is null for libcalls where that information may
463 not be available.
464 CUM is a variable of type CUMULATIVE_ARGS which gives info about
465 the preceding args and about the function being called.
466 NAMED is nonzero if this argument is a named parameter
467 (otherwise it is an extra parameter matching an ellipsis). */
468
469 /* On the 32000 all args are pushed, except if -mregparm is specified
470 then the first two words of arguments are passed in r0, r1.
471 *NOTE* -mregparm does not work.
472 It exists only to test register calling conventions. */
473
474 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
475 ((TARGET_REGPARM && (CUM) < 8) ? gen_rtx (REG, (MODE), (CUM) / 4) : 0)
476
477 /* For an arg passed partly in registers and partly in memory,
478 this is the number of registers used.
479 For args passed entirely in registers or entirely in memory, zero. */
480
481 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
482 ((TARGET_REGPARM && (CUM) < 8 \
483 && 8 < ((CUM) + ((MODE) == BLKmode \
484 ? int_size_in_bytes (TYPE) \
485 : GET_MODE_SIZE (MODE)))) \
486 ? 2 - (CUM) / 4 : 0)
487
488 #ifndef MAIN_FUNCTION_PROLOGUE
489 #define MAIN_FUNCTION_PROLOGUE
490 #endif
491
492 /*
493 * The function prologue for the ns32k is fairly simple.
494 * If a frame pointer is needed (decided in reload.c ?) then
495 * we need assembler of the form
496 *
497 * # Save the oldframe pointer, set the new frame pointer, make space
498 * # on the stack and save any general purpose registers necessary
499 *
500 * enter [<general purpose regs to save>], <local stack space>
501 *
502 * movf fn, tos # Save any floating point registers necessary
503 * .
504 * .
505 *
506 * If a frame pointer is not needed we need assembler of the form
507 * # Save any general purpose registers necessary
508 *
509 * save [<general purpose regs to save>]
510 *
511 * movf fn, tos # Save any floating point registers necessary
512 * .
513 * .
514 */
515
516 #define FUNCTION_PROLOGUE(FILE, SIZE) \
517 { register int regno, g_regs_used = 0; \
518 int used_regs_buf[8], *bufp = used_regs_buf; \
519 int used_fregs_buf[8], *fbufp = used_fregs_buf; \
520 extern char call_used_regs[]; \
521 MAIN_FUNCTION_PROLOGUE; \
522 for (regno = 0; regno < 8; regno++) \
523 if (regs_ever_live[regno] \
524 && ! call_used_regs[regno]) \
525 { \
526 *bufp++ = regno; g_regs_used++; \
527 } \
528 *bufp = -1; \
529 for (; regno < 16; regno++) \
530 if (regs_ever_live[regno] && !call_used_regs[regno]) { \
531 *fbufp++ = regno; \
532 } \
533 *fbufp = -1; \
534 bufp = used_regs_buf; \
535 if (frame_pointer_needed) \
536 fprintf (FILE, "\tenter ["); \
537 else if (g_regs_used) \
538 fprintf (FILE, "\tsave ["); \
539 while (*bufp >= 0) \
540 { \
541 fprintf (FILE, "r%d", *bufp++); \
542 if (*bufp >= 0) \
543 fputc (',', FILE); \
544 } \
545 if (frame_pointer_needed) \
546 fprintf (FILE, "],%d\n", SIZE); \
547 else if (g_regs_used) \
548 fprintf (FILE, "]\n"); \
549 fbufp = used_fregs_buf; \
550 while (*fbufp >= 0) \
551 { \
552 if ((*fbufp & 1) || (fbufp[0] != fbufp[1] - 1)) \
553 fprintf (FILE, "\tmovf f%d,tos\n", *fbufp++ - 8); \
554 else \
555 { \
556 fprintf (FILE, "\tmovl f%d,tos\n", fbufp[0] - 8); \
557 fbufp += 2; \
558 } \
559 } \
560 }
561
562 /* Output assembler code to FILE to increment profiler label # LABELNO
563 for profiling a function entry.
564
565 THIS DEFINITION FOR THE 32000 IS A GUESS. IT HAS NOT BEEN TESTED. */
566
567 #define FUNCTION_PROFILER(FILE, LABELNO) \
568 fprintf (FILE, "\taddr LP%d,r0\n\tbsr mcount\n", (LABELNO))
569
570 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
571 the stack pointer does not matter. The value is tested only in
572 functions that have frame pointers.
573 No definition is equivalent to always zero.
574
575 We use 0, because using 1 requires hair in FUNCTION_EPILOGUE
576 that is worse than the stack adjust we could save. */
577
578 /* #define EXIT_IGNORE_STACK 1 */
579
580 /* This macro generates the assembly code for function exit,
581 on machines that need it. If FUNCTION_EPILOGUE is not defined
582 then individual return instructions are generated for each
583 return statement. Args are same as for FUNCTION_PROLOGUE.
584
585 The function epilogue should not depend on the current stack pointer,
586 if EXIT_IGNORE_STACK is nonzero. That doesn't apply here.
587
588 If a frame pointer is needed (decided in reload.c ?) then
589 we need assembler of the form
590
591 movf tos, fn # Restore any saved floating point registers
592 .
593 .
594
595 # Restore any saved general purpose registers, restore the stack
596 # pointer from the frame pointer, restore the old frame pointer.
597 exit [<general purpose regs to save>]
598
599 If a frame pointer is not needed we need assembler of the form
600 # Restore any general purpose registers saved
601
602 movf tos, fn # Restore any saved floating point registers
603 .
604 .
605 .
606 restore [<general purpose regs to save>] */
607
608 #define FUNCTION_EPILOGUE(FILE, SIZE) \
609 { register int regno, g_regs_used = 0, f_regs_used = 0; \
610 int used_regs_buf[8], *bufp = used_regs_buf; \
611 int used_fregs_buf[8], *fbufp = used_fregs_buf; \
612 extern char call_used_regs[]; \
613 *fbufp++ = -2; \
614 for (regno = 8; regno < 16; regno++) \
615 if (regs_ever_live[regno] && !call_used_regs[regno]) { \
616 *fbufp++ = regno; f_regs_used++; \
617 } \
618 fbufp--; \
619 for (regno = 0; regno < 8; regno++) \
620 if (regs_ever_live[regno] \
621 && ! call_used_regs[regno]) \
622 { \
623 *bufp++ = regno; g_regs_used++; \
624 } \
625 while (fbufp > used_fregs_buf) \
626 { \
627 if ((*fbufp & 1) && fbufp[0] == fbufp[-1] + 1) \
628 { \
629 fprintf (FILE, "\tmovl tos,f%d\n", fbufp[-1] - 8); \
630 fbufp -= 2; \
631 } \
632 else fprintf (FILE, "\tmovf tos,f%d\n", *fbufp-- - 8); \
633 } \
634 if (frame_pointer_needed) \
635 fprintf (FILE, "\texit ["); \
636 else if (g_regs_used) \
637 fprintf (FILE, "\trestore ["); \
638 while (bufp > used_regs_buf) \
639 { \
640 fprintf (FILE, "r%d", *--bufp); \
641 if (bufp > used_regs_buf) \
642 fputc (',', FILE); \
643 } \
644 if (g_regs_used || frame_pointer_needed) \
645 fprintf (FILE, "]\n"); \
646 if (current_function_pops_args) \
647 fprintf (FILE, "\tret %d\n", current_function_pops_args); \
648 else fprintf (FILE, "\tret 0\n"); }
649
650 /* Store in the variable DEPTH the initial difference between the
651 frame pointer reg contents and the stack pointer reg contents,
652 as of the start of the function body. This depends on the layout
653 of the fixed parts of the stack frame and on how registers are saved. */
654
655 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
656 { \
657 int regno; \
658 int offset = -4; \
659 for (regno = 0; regno < 16; regno++) \
660 if (regs_ever_live[regno] && ! call_used_regs[regno]) \
661 offset += 4; \
662 (DEPTH) = offset - get_frame_size (); \
663 }
664 \f
665
666 /* Output assembler code for a block containing the constant parts
667 of a trampoline, leaving space for the variable parts. */
668
669 /* On the 32k, the trampoline looks like this:
670 addr .,r2
671 jump @__trampoline
672 .int STATIC
673 .int FUNCTION
674 Doing trampolines with a library assist function is easier than figuring
675 out how to do stores to memory in reverse byte order (the way immediate
676 operands on the 32k are stored). */
677
678 #define TRAMPOLINE_TEMPLATE(FILE) \
679 { \
680 fprintf (FILE, "\taddr .,r2\n" ); \
681 fprintf (FILE, "\tjump " ); \
682 PUT_ABSOLUTE_PREFIX (FILE); \
683 fprintf (FILE, "__trampoline\n" ); \
684 ASM_OUTPUT_INT (FILE, const0_rtx); \
685 ASM_OUTPUT_INT (FILE, const0_rtx); \
686 }
687
688 /* Length in units of the trampoline for entering a nested function. */
689
690 #define TRAMPOLINE_SIZE 20
691
692 /* Emit RTL insns to initialize the variable parts of a trampoline.
693 FNADDR is an RTX for the address of the function's pure code.
694 CXT is an RTX for the static chain value for the function. */
695
696 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
697 { \
698 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 12)), CXT); \
699 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 16)), FNADDR); \
700 }
701
702 /* This is the library routine that is used
703 to transfer control from the trampoline
704 to the actual nested function. */
705
706 /* The function name __transfer_from_trampoline is not actually used.
707 The function definition just permits use of "asm with operands"
708 (though the operand list is empty). */
709 #define TRANSFER_FROM_TRAMPOLINE \
710 void \
711 __transfer_from_trampoline () \
712 { \
713 asm ("___trampoline:"); \
714 asm ("movd 16(r2),tos"); \
715 asm ("movd 12(r2),r2"); \
716 asm ("ret 0"); \
717 }
718 \f
719 /* Addressing modes, and classification of registers for them. */
720
721 /* #define HAVE_POST_INCREMENT */
722 /* #define HAVE_POST_DECREMENT */
723
724 /* #define HAVE_PRE_DECREMENT */
725 /* #define HAVE_PRE_INCREMENT */
726
727 /* Macros to check register numbers against specific register classes. */
728
729 /* These assume that REGNO is a hard or pseudo reg number.
730 They give nonzero only if REGNO is a hard reg of the suitable class
731 or a pseudo reg currently allocated to a suitable hard reg.
732 Since they use reg_renumber, they are safe only once reg_renumber
733 has been allocated, which happens in local-alloc.c. */
734
735 /* note that FP and SP cannot be used as an index. What about PC? */
736 #define REGNO_OK_FOR_INDEX_P(REGNO) \
737 ((REGNO) < 8 || (unsigned)reg_renumber[REGNO] < 8)
738 #define REGNO_OK_FOR_BASE_P(REGNO) \
739 ((REGNO) < 8 || (unsigned)reg_renumber[REGNO] < 8 \
740 || (REGNO) == FRAME_POINTER_REGNUM || (REGNO) == STACK_POINTER_REGNUM)
741
742 #define FP_REG_P(X) (GET_CODE (X) == REG && REGNO (X) > 7 && REGNO (X) < 16)
743 \f
744 /* Maximum number of registers that can appear in a valid memory address. */
745
746 #define MAX_REGS_PER_ADDRESS 2
747
748 /* Recognize any constant value that is a valid address.
749 This might not work on future ns32k processors as negative
750 displacements are not officially allowed but a mode reserved
751 to National. This works on processors up to 32532, though. */
752
753 #define CONSTANT_ADDRESS_P(X) \
754 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
755 || GET_CODE (X) == CONST \
756 || (GET_CODE (X) == CONST_INT \
757 && ((unsigned)INTVAL (X) >= 0xe0000000 \
758 || (unsigned)INTVAL (X) < 0x20000000)))
759
760 #define CONSTANT_ADDRESS_NO_LABEL_P(X) \
761 (GET_CODE (X) == CONST_INT \
762 && ((unsigned)INTVAL (X) >= 0xe0000000 \
763 || (unsigned)INTVAL (X) < 0x20000000))
764
765 /* Return the register class of a scratch register needed to copy IN into
766 or out of a register in CLASS in MODE. If it can be done directly,
767 NO_REGS is returned. */
768
769 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
770 secondary_reload_class (CLASS, MODE, IN)
771
772 /* Nonzero if the constant value X is a legitimate general operand.
773 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
774
775 #define LEGITIMATE_CONSTANT_P(X) 1
776
777 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
778 and check its validity for a certain class.
779 We have two alternate definitions for each of them.
780 The usual definition accepts all pseudo regs; the other rejects
781 them unless they have been allocated suitable hard regs.
782 The symbol REG_OK_STRICT causes the latter definition to be used.
783
784 Most source files want to accept pseudo regs in the hope that
785 they will get allocated to the class that the insn wants them to be in.
786 Source files for reload pass need to be strict.
787 After reload, it makes no difference, since pseudo regs have
788 been eliminated by then. */
789
790 #ifndef REG_OK_STRICT
791
792 /* Nonzero if X is a hard reg that can be used as an index
793 or if it is a pseudo reg. */
794 #define REG_OK_FOR_INDEX_P(X) \
795 (REGNO (X) < 8 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
796 /* Nonzero if X is a hard reg that can be used as a base reg
797 of if it is a pseudo reg. */
798 #define REG_OK_FOR_BASE_P(X) (REGNO (X) < 8 || REGNO (X) >= FRAME_POINTER_REGNUM)
799 /* Nonzero if X is a floating point reg or a pseudo reg. */
800
801 #else
802
803 /* Nonzero if X is a hard reg that can be used as an index. */
804 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
805 /* Nonzero if X is a hard reg that can be used as a base reg. */
806 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
807
808 #endif
809 \f
810 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
811 that is a valid memory address for an instruction.
812 The MODE argument is the machine mode for the MEM expression
813 that wants to use this address.
814
815 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
816
817 /* 1 if X is an address that we could indirect through. */
818 /***** NOTE ***** There is a bug in the Sequent assembler which fails
819 to fixup addressing information for symbols used as offsets
820 from registers which are not FP or SP (or SB or PC). This
821 makes _x(fp) valid, while _x(r0) is invalid. */
822
823 #define INDIRECTABLE_1_ADDRESS_P(X) \
824 (CONSTANT_ADDRESS_P (X) \
825 || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
826 || (GET_CODE (X) == PLUS \
827 && GET_CODE (XEXP (X, 0)) == REG \
828 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
829 && CONSTANT_ADDRESS_P (XEXP (X, 1))))
830
831 /* Check for frame pointer or stack pointer. */
832 #define MEM_REG(X) \
833 (GET_CODE (X) == REG && (REGNO (X) ^ 16) < 2)
834
835 /* A memory ref whose address is the FP or SP, with optional integer offset,
836 or (on certain machines) a constant address. */
837 #define INDIRECTABLE_2_ADDRESS_P(X) \
838 (GET_CODE (X) == MEM \
839 && (((xfoo0 = XEXP (X, 0), MEM_REG (xfoo0)) \
840 || (GET_CODE (xfoo0) == PLUS \
841 && MEM_REG (XEXP (xfoo0, 0)) \
842 && CONSTANT_ADDRESS_NO_LABEL_P (XEXP (xfoo0, 1)))) \
843 || (TARGET_SB && CONSTANT_ADDRESS_P (xfoo0))))
844
845 /* Go to ADDR if X is a valid address not using indexing.
846 (This much is the easy part.) */
847 #define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
848 { register rtx xfoob = (X); \
849 if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR; \
850 if (INDIRECTABLE_2_ADDRESS_P (X)) goto ADDR; \
851 if (GET_CODE (X) == PLUS) \
852 if (CONSTANT_ADDRESS_NO_LABEL_P (XEXP (X, 1))) \
853 if (INDIRECTABLE_2_ADDRESS_P (XEXP (X, 0))) \
854 goto ADDR; \
855 }
856
857 /* Go to ADDR if X is a valid address not using indexing.
858 (This much is the easy part.) */
859 #define GO_IF_INDEXING(X, MODE, ADDR) \
860 { register rtx xfoob = (X); \
861 if (GET_CODE (xfoob) == PLUS && INDEX_TERM_P (XEXP (xfoob, 0), MODE)) \
862 GO_IF_INDEXABLE_ADDRESS (XEXP (xfoob, 1), ADDR); \
863 if (GET_CODE (xfoob) == PLUS && INDEX_TERM_P (XEXP (xfoob, 1), MODE)) \
864 GO_IF_INDEXABLE_ADDRESS (XEXP (xfoob, 0), ADDR); } \
865
866 #define GO_IF_INDEXABLE_ADDRESS(X, ADDR) \
867 { if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) goto ADDR; \
868 if (INDIRECTABLE_2_ADDRESS_P (X)) goto ADDR; \
869 }
870
871 /* 1 if PROD is either a reg times size of mode MODE
872 or just a reg, if MODE is just one byte. Actually, on the ns32k,
873 since the index mode is independent of the operand size,
874 we can match more stuff...
875
876 This macro's expansion uses the temporary variables xfoo0, xfoo1
877 and xfoo2 that must be declared in the surrounding context. */
878 #define INDEX_TERM_P(PROD, MODE) \
879 ((GET_CODE (PROD) == REG && REG_OK_FOR_INDEX_P (PROD)) \
880 || (GET_CODE (PROD) == MULT \
881 && (xfoo0 = XEXP (PROD, 0), xfoo1 = XEXP (PROD, 1), \
882 (GET_CODE (xfoo1) == CONST_INT \
883 && GET_CODE (xfoo0) == REG \
884 && FITS_INDEX_RANGE (INTVAL (xfoo1)) \
885 && REG_OK_FOR_INDEX_P (xfoo0)))))
886
887 #define FITS_INDEX_RANGE(X) \
888 ((xfoo2 = (unsigned)(X)-1), \
889 ((xfoo2 < 4 && xfoo2 != 2) || xfoo2 == 7))
890
891 /* Note that xfoo0, xfoo1, xfoo2 are used in some of the submacros above. */
892 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
893 { register rtx xfooy, xfoo0, xfoo1; \
894 unsigned xfoo2; \
895 xfooy = X; \
896 GO_IF_NONINDEXED_ADDRESS (xfooy, ADDR); \
897 if (GET_CODE (xfooy) == PLUS) \
898 { \
899 if (CONSTANT_ADDRESS_NO_LABEL_P (XEXP (xfooy, 1)) \
900 && GET_CODE (XEXP (xfooy, 0)) == PLUS) \
901 xfooy = XEXP (xfooy, 0); \
902 else if (CONSTANT_ADDRESS_NO_LABEL_P (XEXP (xfooy, 0)) \
903 && GET_CODE (XEXP (xfooy, 1)) == PLUS) \
904 xfooy = XEXP (xfooy, 1); \
905 GO_IF_INDEXING (xfooy, MODE, ADDR); \
906 } \
907 else if (INDEX_TERM_P (xfooy, MODE)) \
908 goto ADDR; \
909 else if (GET_CODE (xfooy) == PRE_DEC) \
910 if (REGNO (XEXP (xfooy, 0)) == STACK_POINTER_REGNUM) goto ADDR; \
911 else abort (); \
912 }
913
914 /* Try machine-dependent ways of modifying an illegitimate address
915 to be legitimate. If we find one, return the new, valid address.
916 This macro is used in only one place: `memory_address' in explow.c.
917
918 OLDX is the address as it was before break_out_memory_refs was called.
919 In some cases it is useful to look at this to decide what needs to be done.
920
921 MODE and WIN are passed so that this macro can use
922 GO_IF_LEGITIMATE_ADDRESS.
923
924 It is always safe for this macro to do nothing. It exists to recognize
925 opportunities to optimize the output.
926
927 For the ns32k, we do nothing */
928
929 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
930
931 /* Go to LABEL if ADDR (a legitimate address expression)
932 has an effect that depends on the machine mode it is used for.
933 On the ns32k, only predecrement and postincrement address depend thus
934 (the amount of decrement or increment being the length of the operand). */
935
936 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
937 { if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) \
938 goto LABEL;}
939 \f
940 /* Specify the machine mode that this machine uses
941 for the index in the tablejump instruction.
942 Can do SImode, but HI mode is more efficient. */
943 #define CASE_VECTOR_MODE HImode
944
945 /* Define this if the tablejump instruction expects the table
946 to contain offsets from the address of the table.
947 Do not define this if the table should contain absolute addresses. */
948 #define CASE_VECTOR_PC_RELATIVE
949
950 /* Specify the tree operation to be used to convert reals to integers. */
951 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
952
953 /* This is the kind of divide that is easiest to do in the general case. */
954 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
955
956 /* Define this as 1 if `char' should by default be signed; else as 0. */
957 #define DEFAULT_SIGNED_CHAR 1
958
959 /* Max number of bytes we can move from memory to memory
960 in one reasonably fast instruction. */
961 #define MOVE_MAX 4
962
963 /* Define this if zero-extension is slow (more than one real instruction). */
964 /* #define SLOW_ZERO_EXTEND */
965
966 /* Nonzero if access to memory by bytes is slow and undesirable. */
967 #define SLOW_BYTE_ACCESS 0
968
969 /* Define if shifts truncate the shift count
970 which implies one can omit a sign-extension or zero-extension
971 of a shift count. */
972 /* #define SHIFT_COUNT_TRUNCATED */
973
974 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
975 is done just by pretending it is already truncated. */
976 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
977
978 /* We assume that the store-condition-codes instructions store 0 for false
979 and some other value for true. This is the value stored for true. */
980
981 #define STORE_FLAG_VALUE 1
982
983 /* Specify the machine mode that pointers have.
984 After generation of rtl, the compiler makes no further distinction
985 between pointers and any other objects of this machine mode. */
986 #define Pmode SImode
987
988 /* A function address in a call instruction
989 is a byte address (for indexing purposes)
990 so give the MEM rtx a byte's mode. */
991 #define FUNCTION_MODE QImode
992
993 /* Compute the cost of address ADDRESS. */
994
995 #define ADDRESS_COST(RTX) calc_address_cost (RTX)
996
997 /* Compute the cost of computing a constant rtl expression RTX
998 whose rtx-code is CODE. The body of this macro is a portion
999 of a switch statement. If the code is computed here,
1000 return it with a return statement. Otherwise, break from the switch. */
1001
1002 #define CONST_COSTS(RTX,CODE) \
1003 case CONST_INT: \
1004 if (INTVAL (RTX) <= 7 && INTVAL (RTX) >= -8) return 0; \
1005 if (INTVAL (RTX) < 0x4000 && INTVAL (RTX) >= -0x4000) \
1006 return 1; \
1007 case CONST: \
1008 case LABEL_REF: \
1009 case SYMBOL_REF: \
1010 return 3; \
1011 case CONST_DOUBLE: \
1012 return 5;
1013 \f
1014 /* Tell final.c how to eliminate redundant test instructions. */
1015
1016 /* Here we define machine-dependent flags and fields in cc_status
1017 (see `conditions.h'). */
1018
1019 /* This bit means that what ought to be in the Z bit
1020 should be tested in the F bit. */
1021 #define CC_Z_IN_F 04000
1022
1023 /* This bit means that what ought to be in the Z bit
1024 is complemented in the F bit. */
1025 #define CC_Z_IN_NOT_F 010000
1026
1027 /* Store in cc_status the expressions
1028 that the condition codes will describe
1029 after execution of an instruction whose pattern is EXP.
1030 Do not alter them if the instruction would not alter the cc's. */
1031
1032 #define NOTICE_UPDATE_CC(EXP, INSN) \
1033 { if (GET_CODE (EXP) == SET) \
1034 { if (GET_CODE (SET_DEST (EXP)) == CC0) \
1035 { cc_status.flags = 0; \
1036 cc_status.value1 = SET_DEST (EXP); \
1037 cc_status.value2 = SET_SRC (EXP); \
1038 } \
1039 else if (GET_CODE (SET_SRC (EXP)) == CALL) \
1040 { CC_STATUS_INIT; } \
1041 else if (GET_CODE (SET_DEST (EXP)) == REG) \
1042 { if (cc_status.value1 \
1043 && reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value1)) \
1044 cc_status.value1 = 0; \
1045 if (cc_status.value2 \
1046 && reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value2)) \
1047 cc_status.value2 = 0; \
1048 } \
1049 else if (GET_CODE (SET_DEST (EXP)) == MEM) \
1050 { CC_STATUS_INIT; } \
1051 } \
1052 else if (GET_CODE (EXP) == PARALLEL \
1053 && GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
1054 { if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) == CC0) \
1055 { cc_status.flags = 0; \
1056 cc_status.value1 = SET_DEST (XVECEXP (EXP, 0, 0)); \
1057 cc_status.value2 = SET_SRC (XVECEXP (EXP, 0, 0)); \
1058 } \
1059 else if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) == REG) \
1060 { if (cc_status.value1 \
1061 && reg_overlap_mentioned_p (SET_DEST (XVECEXP (EXP, 0, 0)), cc_status.value1)) \
1062 cc_status.value1 = 0; \
1063 if (cc_status.value2 \
1064 && reg_overlap_mentioned_p (SET_DEST (XVECEXP (EXP, 0, 0)), cc_status.value2)) \
1065 cc_status.value2 = 0; \
1066 } \
1067 else if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) == MEM) \
1068 { CC_STATUS_INIT; } \
1069 } \
1070 else if (GET_CODE (EXP) == CALL) \
1071 { /* all bets are off */ CC_STATUS_INIT; } \
1072 else { /* nothing happens? CC_STATUS_INIT; */} \
1073 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
1074 && cc_status.value2 \
1075 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
1076 abort (); \
1077 }
1078
1079 /* Describe the costs of the following register moves which are discouraged:
1080 1.) Moves between the Floating point registers and the frame pointer and stack pointer
1081 2.) Moves between the stack pointer and the frame pointer
1082 3.) Moves between the floating point and general registers */
1083
1084 #define REGISTER_MOVE_COST(CLASS1, CLASS2) \
1085 ((((CLASS1) == FLOAT_REGS && ((CLASS2) == STACK_POINTER_REG || (CLASS2) == FRAME_POINTER_REG)) \
1086 || ((CLASS2) == FLOAT_REGS && ((CLASS1) == STACK_POINTER_REG || (CLASS1) == FRAME_POINTER_REG)) \
1087 || ((CLASS1) == STACK_POINTER_REG && (CLASS2) == FRAME_POINTER_REG) \
1088 || ((CLASS2) == STACK_POINTER_REG && (CLASS1) == FRAME_POINTER_REG) \
1089 || ((CLASS1) == FLOAT_REGS && (CLASS2) == GENERAL_REGS) \
1090 || ((CLASS1) == GENERAL_REGS && (CLASS2) == FLOAT_REGS)) \
1091 ? 4 : 2)
1092
1093 #define OUTPUT_JUMP(NORMAL, NO_OV) \
1094 { if (cc_status.flags & CC_NO_OVERFLOW) \
1095 return NO_OV; \
1096 return NORMAL; }
1097 \f
1098 /* Dividing the output into sections */
1099
1100 /* Output before read-only data. */
1101
1102 #define TEXT_SECTION_ASM_OP ".text"
1103
1104 /* Output before writable data. */
1105
1106 #define DATA_SECTION_ASM_OP ".data"
1107
1108 /* Define the output Assembly Language */
1109
1110 /* Output at beginning of assembler file. */
1111
1112 #define ASM_FILE_START(FILE) fprintf (FILE, "#NO_APP\n");
1113
1114 /* Output to assembler file text saying following lines
1115 may contain character constants, extra white space, comments, etc. */
1116
1117 #define ASM_APP_ON "#APP\n"
1118
1119 /* Output to assembler file text saying following lines
1120 no longer contain unusual constructs. */
1121
1122 #define ASM_APP_OFF "#NO_APP\n"
1123
1124 /* Output of Data */
1125
1126 /* This is how to output an assembler line defining a `double' constant. */
1127
1128 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1129 fprintf (FILE, "\t.double 0d%.20e\n", (VALUE))
1130
1131 /* This is how to output an assembler line defining a `float' constant. */
1132
1133 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1134 fprintf (FILE, "\t.float 0f%.20e\n", (VALUE))
1135
1136 /* This is how to output an assembler line defining an `int' constant. */
1137
1138 #define ASM_OUTPUT_INT(FILE,VALUE) \
1139 ( fprintf (FILE, "\t.long "), \
1140 output_addr_const (FILE, (VALUE)), \
1141 fprintf (FILE, "\n"))
1142
1143 /* Likewise for `char' and `short' constants. */
1144
1145 #define ASM_OUTPUT_SHORT(FILE,VALUE) \
1146 ( fprintf (FILE, "\t.word "), \
1147 output_addr_const (FILE, (VALUE)), \
1148 fprintf (FILE, "\n"))
1149
1150 #define ASM_OUTPUT_CHAR(FILE,VALUE) \
1151 ( fprintf (FILE, "\t.byte "), \
1152 output_addr_const (FILE, (VALUE)), \
1153 fprintf (FILE, "\n"))
1154
1155 /* This is how to output an assembler line for a numeric constant byte. */
1156
1157 #define ASM_OUTPUT_BYTE(FILE,VALUE) \
1158 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
1159
1160 /* This is how to output an assembler line defining an external/static
1161 address which is not in tree format (for collect.c). */
1162
1163 #define ASM_OUTPUT_LABELREF_AS_INT(STREAM, NAME) \
1164 do { \
1165 fprintf (STREAM, "\t.long\t"); \
1166 ASM_OUTPUT_LABELREF (STREAM, NAME); \
1167 fprintf (STREAM, "\n"); \
1168 } while (0)
1169
1170 /* This is how to output an insn to push a register on the stack.
1171 It need not be very fast code. */
1172
1173 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1174 fprintf (FILE, "\tmovd %s,tos\n", reg_names[REGNO])
1175
1176 /* This is how to output an insn to pop a register from the stack.
1177 It need not be very fast code. */
1178
1179 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1180 fprintf (FILE, "\tmovd tos,%s\n", reg_names[REGNO])
1181
1182 /* How to refer to registers in assembler output.
1183 This sequence is indexed by compiler's hard-register-number (see above). */
1184
1185 #define REGISTER_NAMES \
1186 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
1187 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
1188 "fp", "sp"}
1189
1190 /* How to renumber registers for dbx and gdb.
1191 NS32000 may need more change in the numeration. */
1192
1193 #define DBX_REGISTER_NUMBER(REGNO) ((REGNO < 8) ? (REGNO)+4 : (REGNO))
1194
1195 /* This is how to output the definition of a user-level label named NAME,
1196 such as the label on a static function or variable NAME. */
1197
1198 #ifndef COLLECT
1199 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1200 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1201 #else
1202 #define ASM_OUTPUT_LABEL(STREAM,NAME) \
1203 do { \
1204 fprintf (STREAM, "%s:\n", NAME); \
1205 } while (0)
1206 #endif
1207
1208 /* This is how to output a command to make the user-level label named NAME
1209 defined for reference from other files. */
1210
1211 #ifndef COLLECT
1212 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1213 do { fputs (".globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1214 #else
1215 #define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
1216 do { \
1217 fprintf (STREAM, "\t.globl\t%s\n", NAME); \
1218 } while (0)
1219 #endif
1220
1221 /* This is how to output a reference to a user-level label named NAME.
1222 `assemble_name' uses this. */
1223
1224 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1225 fprintf (FILE, "_%s", NAME)
1226
1227 /* This is how to output an internal numbered label where
1228 PREFIX is the class of label and NUM is the number within the class. */
1229
1230 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1231 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1232
1233 /* This is how to store into the string LABEL
1234 the symbol_ref name of an internal numbered label where
1235 PREFIX is the class of label and NUM is the number within the class.
1236 This is suitable for output with `assemble_name'. */
1237
1238 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1239 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1240
1241 /* This is how to align the code that follows an unconditional branch. */
1242
1243 #define ASM_OUTPUT_ALIGN_CODE(FILE) \
1244 fprintf (FILE, "\t.align 2\n")
1245
1246 /* This is how to output an element of a case-vector that is absolute.
1247 (The ns32k does not use such vectors,
1248 but we must define this macro anyway.) */
1249
1250 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1251 fprintf (FILE, "\t.long L%d\n", VALUE)
1252
1253 /* This is how to output an element of a case-vector that is relative. */
1254 /* ** Notice that the second element is LI format! */
1255 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1256 fprintf (FILE, "\t.word L%d-LI%d\n", VALUE, REL)
1257
1258 /* This is how to output an assembler line
1259 that says to advance the location counter
1260 to a multiple of 2**LOG bytes. */
1261
1262 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1263 fprintf (FILE, "\t.align %d\n", (LOG))
1264
1265 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1266 fprintf (FILE, "\t.space %u\n", (SIZE))
1267
1268 /* This says how to output an assembler line
1269 to define a global common symbol. */
1270
1271 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1272 ( fputs (".comm ", (FILE)), \
1273 assemble_name ((FILE), (NAME)), \
1274 fprintf ((FILE), ",%u\n", (ROUNDED)))
1275
1276 /* This says how to output an assembler line
1277 to define a local common symbol. */
1278
1279 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1280 ( fputs (".lcomm ", (FILE)), \
1281 assemble_name ((FILE), (NAME)), \
1282 fprintf ((FILE), ",%u\n", (ROUNDED)))
1283
1284 /* Store in OUTPUT a string (made with alloca) containing
1285 an assembler-name for a local static variable named NAME.
1286 LABELNO is an integer which is different for each call. */
1287
1288 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1289 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1290 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1291
1292 /* Define the parentheses used to group arithmetic operations
1293 in assembler code. */
1294
1295 #define ASM_OPEN_PAREN "("
1296 #define ASM_CLOSE_PAREN ")"
1297
1298 /* Define results of standard character escape sequences. */
1299 #define TARGET_BELL 007
1300 #define TARGET_BS 010
1301 #define TARGET_TAB 011
1302 #define TARGET_NEWLINE 012
1303 #define TARGET_VT 013
1304 #define TARGET_FF 014
1305 #define TARGET_CR 015
1306
1307 /* Print an instruction operand X on file FILE.
1308 CODE is the code from the %-spec that requested printing this operand;
1309 if `%z3' was used to print operand 3, then CODE is 'z'. */
1310
1311 /* %$ means print the prefix for an immediate operand. */
1312
1313 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1314 ((CODE) == '$' || (CODE) == '?')
1315
1316 #define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE, X, CODE)
1317
1318 /* Print a memory operand whose address is X, on file FILE. */
1319
1320 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address(FILE, ADDR)
1321
1322 /* Define functions in ns32k.c and used in insn-output.c. */
1323
1324 extern char *output_move_double ();
1325 extern char *output_shift_insn ();
1326
1327 /*
1328 Local variables:
1329 version-control: t
1330 End:
1331 */
This page took 0.095133 seconds and 5 git commands to generate.