]> gcc.gnu.org Git - gcc.git/blob - gcc/config/mips/mips.h
abi64.h (LONG_MAX_SPEC): Check MIPS_ABI_DEFAULT and TARGET_DEFAULT, and define __LONG...
[gcc.git] / gcc / config / mips / mips.h
1 /* Definitions of target machine for GNU compiler. MIPS version.
2 Copyright (C) 1989, 90-6, 1997 Free Software Foundation, Inc.
3 Contributed by A. Lichnewsky (lich@inria.inria.fr).
4 Changed by Michael Meissner (meissner@osf.org).
5 64 bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
6 Brendan Eich (brendan@microunity.com).
7
8 This file is part of GNU CC.
9
10 GNU CC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14
15 GNU CC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GNU CC; see the file COPYING. If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25
26 /* Standard GCC variables that we reference. */
27
28 extern char *asm_file_name;
29 extern char call_used_regs[];
30 extern int current_function_calls_alloca;
31 extern char *language_string;
32 extern int may_call_alloca;
33 extern char **save_argv;
34 extern int target_flags;
35 extern char *version_string;
36
37 /* MIPS external variables defined in mips.c. */
38
39 /* comparison type */
40 enum cmp_type {
41 CMP_SI, /* compare four byte integers */
42 CMP_DI, /* compare eight byte integers */
43 CMP_SF, /* compare single precision floats */
44 CMP_DF, /* compare double precision floats */
45 CMP_MAX /* max comparison type */
46 };
47
48 /* types of delay slot */
49 enum delay_type {
50 DELAY_NONE, /* no delay slot */
51 DELAY_LOAD, /* load from memory delay */
52 DELAY_HILO, /* move from/to hi/lo registers */
53 DELAY_FCMP /* delay after doing c.<xx>.{d,s} */
54 };
55
56 /* Which processor to schedule for. Since there is no difference between
57 a R2000 and R3000 in terms of the scheduler, we collapse them into
58 just an R3000. The elements of the enumeration must match exactly
59 the cpu attribute in the mips.md machine description. */
60
61 enum processor_type {
62 PROCESSOR_DEFAULT,
63 PROCESSOR_R3000,
64 PROCESSOR_R3900,
65 PROCESSOR_R6000,
66 PROCESSOR_R4000,
67 PROCESSOR_R4100,
68 PROCESSOR_R4300,
69 PROCESSOR_R4600,
70 PROCESSOR_R4650,
71 PROCESSOR_R5000,
72 PROCESSOR_R8000
73 };
74
75 /* Recast the cpu class to be the cpu attribute. */
76 #define mips_cpu_attr ((enum attr_cpu)mips_cpu)
77
78 /* Which ABI to use. These are constants because abi64.h must check their
79 value at preprocessing time. */
80
81 #define ABI_32 0
82 #define ABI_N32 1
83 #define ABI_64 2
84 #define ABI_EABI 3
85
86 #ifndef MIPS_ABI_DEFAULT
87 /* We define this away so that there is no extra runtime cost if the target
88 doesn't support multiple ABIs. */
89 #define mips_abi ABI_32
90 #else
91 extern int mips_abi;
92 #endif
93
94 /* Whether to emit abicalls code sequences or not. */
95
96 enum mips_abicalls_type {
97 MIPS_ABICALLS_NO,
98 MIPS_ABICALLS_YES
99 };
100
101 /* Recast the abicalls class to be the abicalls attribute. */
102 #define mips_abicalls_attr ((enum attr_abicalls)mips_abicalls)
103
104 /* Which type of block move to do (whether or not the last store is
105 split out so it can fill a branch delay slot). */
106
107 enum block_move_type {
108 BLOCK_MOVE_NORMAL, /* generate complete block move */
109 BLOCK_MOVE_NOT_LAST, /* generate all but last store */
110 BLOCK_MOVE_LAST /* generate just the last store */
111 };
112
113 extern char mips_reg_names[][8]; /* register names (a0 vs. $4). */
114 extern char mips_print_operand_punct[]; /* print_operand punctuation chars */
115 extern char *current_function_file; /* filename current function is in */
116 extern int num_source_filenames; /* current .file # */
117 extern int inside_function; /* != 0 if inside of a function */
118 extern int ignore_line_number; /* != 0 if we are to ignore next .loc */
119 extern int file_in_function_warning; /* warning given about .file in func */
120 extern int sdb_label_count; /* block start/end next label # */
121 extern int sdb_begin_function_line; /* Starting Line of current function */
122 extern int mips_section_threshold; /* # bytes of data/sdata cutoff */
123 extern int g_switch_value; /* value of the -G xx switch */
124 extern int g_switch_set; /* whether -G xx was passed. */
125 extern int sym_lineno; /* sgi next label # for each stmt */
126 extern int set_noreorder; /* # of nested .set noreorder's */
127 extern int set_nomacro; /* # of nested .set nomacro's */
128 extern int set_noat; /* # of nested .set noat's */
129 extern int set_volatile; /* # of nested .set volatile's */
130 extern int mips_branch_likely; /* emit 'l' after br (branch likely) */
131 extern int mips_dbx_regno[]; /* Map register # to debug register # */
132 extern struct rtx_def *branch_cmp[2]; /* operands for compare */
133 extern enum cmp_type branch_type; /* what type of branch to use */
134 extern enum processor_type mips_cpu; /* which cpu are we scheduling for */
135 extern enum mips_abicalls_type mips_abicalls;/* for svr4 abi pic calls */
136 extern int mips_isa; /* architectural level */
137 extern char *mips_cpu_string; /* for -mcpu=<xxx> */
138 extern char *mips_isa_string; /* for -mips{1,2,3,4} */
139 extern char *mips_abi_string; /* for -misa={32,n32,64} */
140 extern int mips_split_addresses; /* perform high/lo_sum support */
141 extern int dslots_load_total; /* total # load related delay slots */
142 extern int dslots_load_filled; /* # filled load delay slots */
143 extern int dslots_jump_total; /* total # jump related delay slots */
144 extern int dslots_jump_filled; /* # filled jump delay slots */
145 extern int dslots_number_nops; /* # of nops needed by previous insn */
146 extern int num_refs[3]; /* # 1/2/3 word references */
147 extern struct rtx_def *mips_load_reg; /* register to check for load delay */
148 extern struct rtx_def *mips_load_reg2; /* 2nd reg to check for load delay */
149 extern struct rtx_def *mips_load_reg3; /* 3rd reg to check for load delay */
150 extern struct rtx_def *mips_load_reg4; /* 4th reg to check for load delay */
151 extern struct rtx_def *embedded_pic_fnaddr_rtx; /* function address */
152
153 /* Functions within mips.c that we reference. */
154
155 extern void abort_with_insn ();
156 extern int arith32_operand ();
157 extern int arith_operand ();
158 extern int cmp_op ();
159 extern long compute_frame_size ();
160 extern int epilogue_reg_mentioned_p ();
161 extern void expand_block_move ();
162 extern int equality_op ();
163 extern void final_prescan_insn ();
164 extern struct rtx_def * function_arg ();
165 extern void function_arg_advance ();
166 extern int function_arg_partial_nregs ();
167 extern int function_arg_pass_by_reference ();
168 extern void function_epilogue ();
169 extern void function_prologue ();
170 extern void gen_conditional_branch ();
171 extern void gen_conditional_move ();
172 extern struct rtx_def * gen_int_relational ();
173 extern void init_cumulative_args ();
174 extern int large_int ();
175 extern int mips_address_cost ();
176 extern void mips_asm_file_end ();
177 extern void mips_asm_file_start ();
178 extern int mips_const_double_ok ();
179 extern void mips_count_memory_refs ();
180 extern int mips_debugger_offset ();
181 extern void mips_declare_object ();
182 extern int mips_epilogue_delay_slots ();
183 extern void mips_expand_epilogue ();
184 extern void mips_expand_prologue ();
185 extern int mips_check_split ();
186 extern char *mips_fill_delay_slot ();
187 extern char *mips_move_1word ();
188 extern char *mips_move_2words ();
189 extern void mips_output_double ();
190 extern int mips_output_external ();
191 extern void mips_output_float ();
192 extern void mips_output_filename ();
193 extern void mips_output_lineno ();
194 extern char *output_block_move ();
195 extern void override_options ();
196 extern int pc_or_label_operand ();
197 extern void print_operand_address ();
198 extern void print_operand ();
199 extern void print_options ();
200 extern int reg_or_0_operand ();
201 extern int simple_epilogue_p ();
202 extern int simple_memory_operand ();
203 extern int small_int ();
204 extern void trace();
205 extern int uns_arith_operand ();
206 extern struct rtx_def * embedded_pic_offset ();
207
208 /* Recognition functions that return if a condition is true. */
209 extern int address_operand ();
210 extern int const_double_operand ();
211 extern int const_int_operand ();
212 extern int general_operand ();
213 extern int immediate_operand ();
214 extern int memory_address_p ();
215 extern int memory_operand ();
216 extern int nonimmediate_operand ();
217 extern int nonmemory_operand ();
218 extern int register_operand ();
219 extern int scratch_operand ();
220 extern int move_operand ();
221 extern int movdi_operand ();
222 extern int se_register_operand ();
223 extern int se_reg_or_0_operand ();
224 extern int se_uns_arith_operand ();
225 extern int se_arith_operand ();
226 extern int se_nonmemory_operand ();
227 extern int se_nonimmediate_operand ();
228
229 /* Functions to change what output section we are using. */
230 extern void data_section ();
231 extern void rdata_section ();
232 extern void readonly_data_section ();
233 extern void sdata_section ();
234 extern void text_section ();
235
236 /* Stubs for half-pic support if not OSF/1 reference platform. */
237
238 #ifndef HALF_PIC_P
239 #define HALF_PIC_P() 0
240 #define HALF_PIC_NUMBER_PTRS 0
241 #define HALF_PIC_NUMBER_REFS 0
242 #define HALF_PIC_ENCODE(DECL)
243 #define HALF_PIC_DECLARE(NAME)
244 #define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it.")
245 #define HALF_PIC_ADDRESS_P(X) 0
246 #define HALF_PIC_PTR(X) X
247 #define HALF_PIC_FINISH(STREAM)
248 #endif
249
250 \f
251 /* Run-time compilation parameters selecting different hardware subsets. */
252
253 /* Macros used in the machine description to test the flags. */
254
255 /* Bits for real switches */
256 #define MASK_INT64 0x00000001 /* ints are 64 bits */
257 #define MASK_LONG64 0x00000002 /* longs and pointers are 64 bits */
258 #define MASK_SPLIT_ADDR 0x00000004 /* Address splitting is enabled. */
259 #define MASK_GPOPT 0x00000008 /* Optimize for global pointer */
260 #define MASK_GAS 0x00000010 /* Gas used instead of MIPS as */
261 #define MASK_NAME_REGS 0x00000020 /* Use MIPS s/w reg name convention */
262 #define MASK_STATS 0x00000040 /* print statistics to stderr */
263 #define MASK_MEMCPY 0x00000080 /* call memcpy instead of inline code*/
264 #define MASK_SOFT_FLOAT 0x00000100 /* software floating point */
265 #define MASK_FLOAT64 0x00000200 /* fp registers are 64 bits */
266 #define MASK_ABICALLS 0x00000400 /* emit .abicalls/.cprestore/.cpload */
267 #define MASK_HALF_PIC 0x00000800 /* Emit OSF-style pic refs to externs*/
268 #define MASK_LONG_CALLS 0x00001000 /* Always call through a register */
269 #define MASK_64BIT 0x00002000 /* Use 64 bit GP registers and insns */
270 #define MASK_EMBEDDED_PIC 0x00004000 /* Generate embedded PIC code */
271 #define MASK_EMBEDDED_DATA 0x00008000 /* Reduce RAM usage, not fast code */
272 #define MASK_BIG_ENDIAN 0x00010000 /* Generate big endian code */
273 #define MASK_SINGLE_FLOAT 0x00020000 /* Only single precision FPU. */
274 #define MASK_MAD 0x00040000 /* Generate mad/madu as on 4650. */
275 #define MASK_4300_MUL_FIX 0x00080000 /* Work-around early Vr4300 CPU bug */
276 #define MASK_MIPS3900 0x00100000 /* like -mips1 only 3900 */
277
278 /* Dummy switches used only in spec's*/
279 #define MASK_MIPS_TFILE 0x00000000 /* flag for mips-tfile usage */
280
281 /* Debug switches, not documented */
282 #define MASK_DEBUG 0x40000000 /* Eliminate version # in .s file */
283 #define MASK_DEBUG_A 0x20000000 /* don't allow <label>($reg) addrs */
284 #define MASK_DEBUG_B 0x10000000 /* GO_IF_LEGITIMATE_ADDRESS debug */
285 #define MASK_DEBUG_C 0x08000000 /* don't expand seq, etc. */
286 #define MASK_DEBUG_D 0x04000000 /* don't do define_split's */
287 #define MASK_DEBUG_E 0x02000000 /* function_arg debug */
288 #define MASK_DEBUG_F 0x01000000 /* don't try to suppress load nop's */
289 #define MASK_DEBUG_G 0x00800000 /* don't support 64 bit arithmetic */
290 #define MASK_DEBUG_H 0 /* allow ints in FP registers */
291 #define MASK_DEBUG_I 0x00200000 /* unused */
292
293 /* r4000 64 bit sizes */
294 #define TARGET_INT64 (target_flags & MASK_INT64)
295 #define TARGET_LONG64 (target_flags & MASK_LONG64)
296 #define TARGET_FLOAT64 (target_flags & MASK_FLOAT64)
297 #define TARGET_64BIT (target_flags & MASK_64BIT)
298
299 /* Mips vs. GNU linker */
300 #define TARGET_SPLIT_ADDRESSES (target_flags & MASK_SPLIT_ADDR)
301
302 /* generate mips 3900 insns */
303 #define TARGET_MIPS3900 (target_flags & MASK_MIPS3900)
304
305 /* Mips vs. GNU assembler */
306 #define TARGET_GAS (target_flags & MASK_GAS)
307 #define TARGET_UNIX_ASM (!TARGET_GAS)
308 #define TARGET_MIPS_AS TARGET_UNIX_ASM
309
310 /* Debug Mode */
311 #define TARGET_DEBUG_MODE (target_flags & MASK_DEBUG)
312 #define TARGET_DEBUG_A_MODE (target_flags & MASK_DEBUG_A)
313 #define TARGET_DEBUG_B_MODE (target_flags & MASK_DEBUG_B)
314 #define TARGET_DEBUG_C_MODE (target_flags & MASK_DEBUG_C)
315 #define TARGET_DEBUG_D_MODE (target_flags & MASK_DEBUG_D)
316 #define TARGET_DEBUG_E_MODE (target_flags & MASK_DEBUG_E)
317 #define TARGET_DEBUG_F_MODE (target_flags & MASK_DEBUG_F)
318 #define TARGET_DEBUG_G_MODE (target_flags & MASK_DEBUG_G)
319 #define TARGET_DEBUG_H_MODE (target_flags & MASK_DEBUG_H)
320 #define TARGET_DEBUG_I_MODE (target_flags & MASK_DEBUG_I)
321
322 /* Reg. Naming in .s ($21 vs. $a0) */
323 #define TARGET_NAME_REGS (target_flags & MASK_NAME_REGS)
324
325 /* Optimize for Sdata/Sbss */
326 #define TARGET_GP_OPT (target_flags & MASK_GPOPT)
327
328 /* print program statistics */
329 #define TARGET_STATS (target_flags & MASK_STATS)
330
331 /* call memcpy instead of inline code */
332 #define TARGET_MEMCPY (target_flags & MASK_MEMCPY)
333
334 /* .abicalls, etc from Pyramid V.4 */
335 #define TARGET_ABICALLS (target_flags & MASK_ABICALLS)
336
337 /* OSF pic references to externs */
338 #define TARGET_HALF_PIC (target_flags & MASK_HALF_PIC)
339
340 /* software floating point */
341 #define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
342 #define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
343
344 /* always call through a register */
345 #define TARGET_LONG_CALLS (target_flags & MASK_LONG_CALLS)
346
347 /* generate embedded PIC code;
348 requires gas. */
349 #define TARGET_EMBEDDED_PIC (target_flags & MASK_EMBEDDED_PIC)
350
351 /* for embedded systems, optimize for
352 reduced RAM space instead of for
353 fastest code. */
354 #define TARGET_EMBEDDED_DATA (target_flags & MASK_EMBEDDED_DATA)
355
356 /* generate big endian code. */
357 #define TARGET_BIG_ENDIAN (target_flags & MASK_BIG_ENDIAN)
358
359 #define TARGET_SINGLE_FLOAT (target_flags & MASK_SINGLE_FLOAT)
360 #define TARGET_DOUBLE_FLOAT (! TARGET_SINGLE_FLOAT)
361
362 #define TARGET_MAD (target_flags & MASK_MAD)
363
364 #define TARGET_4300_MUL_FIX (target_flags & MASK_4300_MUL_FIX)
365
366 /* This is true if we must enable the assembly language file switching
367 code. */
368
369 #define TARGET_FILE_SWITCHING (TARGET_GP_OPT && ! TARGET_GAS)
370
371 /* We must disable the function end stabs when doing the file switching trick,
372 because the Lscope stabs end up in the wrong place, making it impossible
373 to debug the resulting code. */
374 #define NO_DBX_FUNCTION_END TARGET_FILE_SWITCHING
375
376 /* Macro to define tables used to set the flags.
377 This is a list in braces of pairs in braces,
378 each pair being { "NAME", VALUE }
379 where VALUE is the bits to set or minus the bits to clear.
380 An empty string NAME is used to identify the default VALUE. */
381
382 #define TARGET_SWITCHES \
383 { \
384 {"int64", MASK_INT64 | MASK_LONG64}, \
385 {"long64", MASK_LONG64}, \
386 {"split-addresses", MASK_SPLIT_ADDR}, \
387 {"no-split-addresses", -MASK_SPLIT_ADDR}, \
388 {"mips-as", -MASK_GAS}, \
389 {"gas", MASK_GAS}, \
390 {"rnames", MASK_NAME_REGS}, \
391 {"no-rnames", -MASK_NAME_REGS}, \
392 {"gpOPT", MASK_GPOPT}, \
393 {"gpopt", MASK_GPOPT}, \
394 {"no-gpOPT", -MASK_GPOPT}, \
395 {"no-gpopt", -MASK_GPOPT}, \
396 {"stats", MASK_STATS}, \
397 {"no-stats", -MASK_STATS}, \
398 {"memcpy", MASK_MEMCPY}, \
399 {"no-memcpy", -MASK_MEMCPY}, \
400 {"mips-tfile", MASK_MIPS_TFILE}, \
401 {"no-mips-tfile", -MASK_MIPS_TFILE}, \
402 {"soft-float", MASK_SOFT_FLOAT}, \
403 {"hard-float", -MASK_SOFT_FLOAT}, \
404 {"fp64", MASK_FLOAT64}, \
405 {"fp32", -MASK_FLOAT64}, \
406 {"gp64", MASK_64BIT}, \
407 {"gp32", -MASK_64BIT}, \
408 {"abicalls", MASK_ABICALLS}, \
409 {"no-abicalls", -MASK_ABICALLS}, \
410 {"half-pic", MASK_HALF_PIC}, \
411 {"no-half-pic", -MASK_HALF_PIC}, \
412 {"long-calls", MASK_LONG_CALLS}, \
413 {"no-long-calls", -MASK_LONG_CALLS}, \
414 {"embedded-pic", MASK_EMBEDDED_PIC}, \
415 {"no-embedded-pic", -MASK_EMBEDDED_PIC}, \
416 {"embedded-data", MASK_EMBEDDED_DATA}, \
417 {"no-embedded-data", -MASK_EMBEDDED_DATA}, \
418 {"eb", MASK_BIG_ENDIAN}, \
419 {"el", -MASK_BIG_ENDIAN}, \
420 {"single-float", MASK_SINGLE_FLOAT}, \
421 {"double-float", -MASK_SINGLE_FLOAT}, \
422 {"mad", MASK_MAD}, \
423 {"no-mad", -MASK_MAD}, \
424 {"fix4300", MASK_4300_MUL_FIX}, \
425 {"no-fix4300", -MASK_4300_MUL_FIX}, \
426 {"4650", MASK_MAD | MASK_SINGLE_FLOAT}, \
427 {"3900", MASK_MIPS3900}, \
428 {"debug", MASK_DEBUG}, \
429 {"debuga", MASK_DEBUG_A}, \
430 {"debugb", MASK_DEBUG_B}, \
431 {"debugc", MASK_DEBUG_C}, \
432 {"debugd", MASK_DEBUG_D}, \
433 {"debuge", MASK_DEBUG_E}, \
434 {"debugf", MASK_DEBUG_F}, \
435 {"debugg", MASK_DEBUG_G}, \
436 {"debugh", MASK_DEBUG_H}, \
437 {"debugi", MASK_DEBUG_I}, \
438 {"", (TARGET_DEFAULT \
439 | TARGET_CPU_DEFAULT \
440 | TARGET_ENDIAN_DEFAULT)} \
441 }
442
443 /* Default target_flags if no switches are specified */
444
445 #ifndef TARGET_DEFAULT
446 #define TARGET_DEFAULT 0
447 #endif
448
449 #ifndef TARGET_CPU_DEFAULT
450 #define TARGET_CPU_DEFAULT 0
451 #endif
452
453 #ifndef TARGET_ENDIAN_DEFAULT
454 #ifndef DECSTATION
455 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
456 #else
457 #define TARGET_ENDIAN_DEFAULT 0
458 #endif
459 #endif
460
461 #ifndef MULTILIB_DEFAULTS
462 #if TARGET_ENDIAN_DEFAULT == 0
463 #define MULTILIB_DEFAULTS { "EL", "mips1" }
464 #else
465 #define MULTILIB_DEFAULTS { "EB", "mips1" }
466 #endif
467 #endif
468
469 /* We must pass -EL to the linker by default for little endian embedded
470 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
471 linker will default to using big-endian output files. The OUTPUT_FORMAT
472 line must be in the linker script, otherwise -EB/-EL will not work. */
473
474 #ifndef LINKER_ENDIAN_SPEC
475 #if TARGET_ENDIAN_DEFAULT == 0
476 #define LINKER_ENDIAN_SPEC "%{!EB:%{!meb:-EL}}"
477 #else
478 #define LINKER_ENDIAN_SPEC ""
479 #endif
480 #endif
481
482 /* This macro is similar to `TARGET_SWITCHES' but defines names of
483 command options that have values. Its definition is an
484 initializer with a subgrouping for each command option.
485
486 Each subgrouping contains a string constant, that defines the
487 fixed part of the option name, and the address of a variable.
488 The variable, type `char *', is set to the variable part of the
489 given option if the fixed part matches. The actual option name
490 is made by appending `-m' to the specified name.
491
492 Here is an example which defines `-mshort-data-NUMBER'. If the
493 given option is `-mshort-data-512', the variable `m88k_short_data'
494 will be set to the string `"512"'.
495
496 extern char *m88k_short_data;
497 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
498
499 #define TARGET_OPTIONS \
500 { \
501 SUBTARGET_TARGET_OPTIONS \
502 { "cpu=", &mips_cpu_string }, \
503 { "ips", &mips_isa_string } \
504 }
505
506 /* This is meant to be redefined in the host dependent files. */
507 #define SUBTARGET_TARGET_OPTIONS
508
509 #define GENERATE_BRANCHLIKELY (TARGET_MIPS3900 || (mips_isa >= 2))
510 #define GENERATE_MULT3 (TARGET_MIPS3900)
511 #define GENERATE_MADD (TARGET_MIPS3900)
512
513
514
515 /* Macros to decide whether certain features are available or not,
516 depending on the instruction set architecture level. */
517
518 #define BRANCH_LIKELY_P() GENERATE_BRANCHLIKELY
519 #define HAVE_SQRT_P() (mips_isa >= 2)
520
521 /* CC1_SPEC causes -mips3 and -mips4 to set -mfp64 and -mgp64; -mips1 or
522 -mips2 sets -mfp32 and -mgp32. This can be overridden by an explicit
523 -mfp32, -mfp64, -mgp32 or -mgp64. -mfp64 sets MASK_FLOAT64 in
524 target_flags, and -mgp64 sets MASK_64BIT.
525
526 Setting MASK_64BIT in target_flags will cause gcc to assume that
527 registers are 64 bits wide. int, long and void * will be 32 bit;
528 this may be changed with -mint64 or -mlong64.
529
530 The gen* programs link code that refers to MASK_64BIT. They don't
531 actually use the information in target_flags; they just refer to
532 it. */
533 \f
534 /* Switch Recognition by gcc.c. Add -G xx support */
535
536 #ifdef SWITCH_TAKES_ARG
537 #undef SWITCH_TAKES_ARG
538 #endif
539
540 #define SWITCH_TAKES_ARG(CHAR) \
541 (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
542
543 /* Sometimes certain combinations of command options do not make sense
544 on a particular target machine. You can define a macro
545 `OVERRIDE_OPTIONS' to take account of this. This macro, if
546 defined, is executed once just after all the command options have
547 been parsed.
548
549 On the MIPS, it is used to handle -G. We also use it to set up all
550 of the tables referenced in the other macros. */
551
552 #define OVERRIDE_OPTIONS override_options ()
553
554 /* Zero or more C statements that may conditionally modify two
555 variables `fixed_regs' and `call_used_regs' (both of type `char
556 []') after they have been initialized from the two preceding
557 macros.
558
559 This is necessary in case the fixed or call-clobbered registers
560 depend on target flags.
561
562 You need not define this macro if it has no work to do.
563
564 If the usage of an entire class of registers depends on the target
565 flags, you may indicate this to GCC by using this macro to modify
566 `fixed_regs' and `call_used_regs' to 1 for each of the registers in
567 the classes which should not be used by GCC. Also define the macro
568 `REG_CLASS_FROM_LETTER' to return `NO_REGS' if it is called with a
569 letter for a class that shouldn't be used.
570
571 (However, if this class is not included in `GENERAL_REGS' and all
572 of the insn patterns whose constraints permit this class are
573 controlled by target switches, then GCC will automatically avoid
574 using these registers when the target switches are opposed to
575 them.) */
576
577 #define CONDITIONAL_REGISTER_USAGE \
578 do \
579 { \
580 if (!TARGET_HARD_FLOAT) \
581 { \
582 int regno; \
583 \
584 for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++) \
585 fixed_regs[regno] = call_used_regs[regno] = 1; \
586 for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++) \
587 fixed_regs[regno] = call_used_regs[regno] = 1; \
588 } \
589 else if (mips_isa < 4) \
590 { \
591 int regno; \
592 \
593 /* We only have a single condition code register. We \
594 implement this by hiding all the condition code registers, \
595 and generating RTL that refers directly to ST_REG_FIRST. */ \
596 for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++) \
597 fixed_regs[regno] = call_used_regs[regno] = 1; \
598 } \
599 SUBTARGET_CONDITIONAL_REGISTER_USAGE \
600 } \
601 while (0)
602
603 /* This is meant to be redefined in the host dependent files. */
604 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
605
606 /* Show we can debug even without a frame pointer. */
607 #define CAN_DEBUG_WITHOUT_FP
608 \f
609 /* Complain about missing specs and predefines that should be defined in each
610 of the target tm files to override the defaults. This is mostly a place-
611 holder until I can get each of the files updated [mm]. */
612
613 #if defined(OSF_OS) \
614 || defined(DECSTATION) \
615 || defined(SGI_TARGET) \
616 || defined(MIPS_NEWS) \
617 || defined(MIPS_SYSV) \
618 || defined(MIPS_SVR4) \
619 || defined(MIPS_BSD43)
620
621 #ifndef CPP_PREDEFINES
622 #error "Define CPP_PREDEFINES in the appropriate tm.h file"
623 #endif
624
625 #ifndef LIB_SPEC
626 #error "Define LIB_SPEC in the appropriate tm.h file"
627 #endif
628
629 #ifndef STARTFILE_SPEC
630 #error "Define STARTFILE_SPEC in the appropriate tm.h file"
631 #endif
632
633 #ifndef MACHINE_TYPE
634 #error "Define MACHINE_TYPE in the appropriate tm.h file"
635 #endif
636 #endif
637
638 /* Tell collect what flags to pass to nm. */
639 #ifndef NM_FLAGS
640 #define NM_FLAGS "-Bp"
641 #endif
642
643 \f
644 /* Names to predefine in the preprocessor for this target machine. */
645
646 #ifndef CPP_PREDEFINES
647 #define CPP_PREDEFINES "-Dmips -Dunix -Dhost_mips -DMIPSEB -DR3000 -DSYSTYPE_BSD43 \
648 -D_mips -D_unix -D_host_mips -D_MIPSEB -D_R3000 -D_SYSTYPE_BSD43 \
649 -Asystem(unix) -Asystem(bsd) -Acpu(mips) -Amachine(mips)"
650 #endif
651
652 /* Assembler specs. */
653
654 /* MIPS_AS_ASM_SPEC is passed when using the MIPS assembler rather
655 than gas. */
656
657 #define MIPS_AS_ASM_SPEC "\
658 %{!.s:-nocpp} %{.s: %{cpp} %{nocpp}} \
659 %{pipe: %e-pipe is not supported.} \
660 %{K} %(subtarget_mips_as_asm_spec)"
661
662 /* SUBTARGET_MIPS_AS_ASM_SPEC is passed when using the MIPS assembler
663 rather than gas. It may be overridden by subtargets. */
664
665 #ifndef SUBTARGET_MIPS_AS_ASM_SPEC
666 #define SUBTARGET_MIPS_AS_ASM_SPEC "%{v}"
667 #endif
668
669 /* GAS_ASM_SPEC is passed when using gas, rather than the MIPS
670 assembler. */
671
672 #define GAS_ASM_SPEC "%{mcpu=*} %{m4650} %{mmad:-m4650} %{m3900} %{v}"
673
674 /* TARGET_ASM_SPEC is used to select either MIPS_AS_ASM_SPEC or
675 GAS_ASM_SPEC as the default, depending upon the value of
676 TARGET_DEFAULT. */
677
678 #if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
679 /* GAS */
680
681 #define TARGET_ASM_SPEC "\
682 %{mmips-as: %(mips_as_asm_spec)} \
683 %{!mmips-as: %(gas_asm_spec)}"
684
685 #else /* not GAS */
686
687 #define TARGET_ASM_SPEC "\
688 %{!mgas: %(mips_as_asm_spec)} \
689 %{mgas: %(gas_asm_spec)}"
690
691 #endif /* not GAS */
692
693 /* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options
694 to the assembler. It may be overridden by subtargets. */
695 #ifndef SUBTARGET_ASM_OPTIMIZING_SPEC
696 #define SUBTARGET_ASM_OPTIMIZING_SPEC "\
697 %{noasmopt:-O0} \
698 %{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}"
699 #endif
700
701 /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
702 the assembler. It may be overridden by subtargets. */
703 #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
704 #define SUBTARGET_ASM_DEBUGGING_SPEC "\
705 %{g} %{g0} %{g1} %{g2} %{g3} \
706 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
707 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
708 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
709 %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3}"
710 #endif
711
712 /* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
713 overridden by subtargets. */
714
715 #ifndef SUBTARGET_ASM_SPEC
716 #define SUBTARGET_ASM_SPEC ""
717 #endif
718
719 /* ASM_SPEC is the set of arguments to pass to the assembler. */
720
721 #define ASM_SPEC "\
722 %{G*} %{EB} %{EL} %{mips1} %{mips2} %{mips3} %{mips4} \
723 %(subtarget_asm_optimizing_spec) \
724 %(subtarget_asm_debugging_spec) \
725 %{membedded-pic} \
726 %{mabi=32:-32}%{mabi=o32:-32}%{mabi=n32:-n32}%{mabi=64:-64}%{mabi=n64:-64} \
727 %(target_asm_spec) \
728 %(subtarget_asm_spec)"
729
730 /* Specify to run a post-processor, mips-tfile after the assembler
731 has run to stuff the mips debug information into the object file.
732 This is needed because the $#!%^ MIPS assembler provides no way
733 of specifying such information in the assembly file. If we are
734 cross compiling, disable mips-tfile unless the user specifies
735 -mmips-tfile. */
736
737 #ifndef ASM_FINAL_SPEC
738 #if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
739 /* GAS */
740 #define ASM_FINAL_SPEC "\
741 %{mmips-as: %{!mno-mips-tfile: \
742 \n mips-tfile %{v*: -v} \
743 %{K: -I %b.o~} \
744 %{!K: %{save-temps: -I %b.o~}} \
745 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
746 %{.s:%i} %{!.s:%g.s}}}"
747
748 #else
749 /* not GAS */
750 #define ASM_FINAL_SPEC "\
751 %{!mgas: %{!mno-mips-tfile: \
752 \n mips-tfile %{v*: -v} \
753 %{K: -I %b.o~} \
754 %{!K: %{save-temps: -I %b.o~}} \
755 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
756 %{.s:%i} %{!.s:%g.s}}}"
757
758 #endif
759 #endif /* ASM_FINAL_SPEC */
760
761 /* Redefinition of libraries used. Mips doesn't support normal
762 UNIX style profiling via calling _mcount. It does offer
763 profiling that samples the PC, so do what we can... */
764
765 #ifndef LIB_SPEC
766 #define LIB_SPEC "%{pg:-lprof1} %{p:-lprof1} -lc"
767 #endif
768
769 /* Extra switches sometimes passed to the linker. */
770 /* ??? The bestGnum will never be passed to the linker, because the gcc driver
771 will interpret it as a -b option. */
772
773 #ifndef LINK_SPEC
774 #define LINK_SPEC "\
775 %{G*} %{EB} %{EL} %{mips1} %{mips2} %{mips3} %{mips4} \
776 %{bestGnum} %{shared} %{non_shared} \
777 %(linker_endian_spec)"
778 #endif /* LINK_SPEC defined */
779
780 /* Specs for the compiler proper */
781
782 /* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
783 overridden by subtargets. */
784 #ifndef SUBTARGET_CC1_SPEC
785 #define SUBTARGET_CC1_SPEC ""
786 #endif
787
788 /* CC1_SPEC is the set of arguments to pass to the compiler proper. */
789
790 #ifndef CC1_SPEC
791 #define CC1_SPEC "\
792 %{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
793 %{mips1:-mfp32 -mgp32} %{mips2:-mfp32 -mgp32}\
794 %{mips3:%{!msingle-float:%{!m4650:-mfp64}} -mgp64} \
795 %{mips4:%{!msingle-float:%{!m4650:-mfp64}} -mgp64} \
796 %{mfp64:%{msingle-float:%emay not use both -mfp64 and -msingle-float}} \
797 %{mfp64:%{m4650:%emay not use both -mfp64 and -m4650}} \
798 %{m4650:-mcpu=r4650} \
799 %{m3900:-mips1 -mcpu=r3900 -mfp32 -mgp32} \
800 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
801 %{pic-none: -mno-half-pic} \
802 %{pic-lib: -mhalf-pic} \
803 %{pic-extern: -mhalf-pic} \
804 %{pic-calls: -mhalf-pic} \
805 %{save-temps: } \
806 %(subtarget_cc1_spec) "
807 #endif
808
809 /* Preprocessor specs. */
810
811 /* SUBTARGET_CPP_SIZE_SPEC defines SIZE_TYPE and PTRDIFF_TYPE. It may
812 be overridden by subtargets. */
813
814 #ifndef SUBTARGET_CPP_SIZE_SPEC
815 #define SUBTARGET_CPP_SIZE_SPEC "\
816 %{mlong64:-D__SIZE_TYPE__=long\\ unsigned\\ int -D__PTRDIFF_TYPE__=long\\ int} \
817 %{!mlong64:-D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int}"
818 #endif
819
820 /* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
821 overridden by subtargets. */
822 #ifndef SUBTARGET_CPP_SPEC
823 #define SUBTARGET_CPP_SPEC ""
824 #endif
825
826 /* If we're using 64bit longs, then we have to define __LONG_MAX__
827 correctly. Similarly for 64bit ints and __INT_MAX__. */
828 #ifndef LONG_MAX_SPEC
829 #if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_LONG64)
830 #define LONG_MAX_SPEC "%{!mno-long64:-D__LONG_MAX__=9223372036854775807L}"
831 #else
832 #define LONG_MAX_SPEC "%{mlong64:-D__LONG_MAX__=9223372036854775807L}"
833 #endif
834 #endif
835
836 /* CPP_SPEC is the set of arguments to pass to the preprocessor. */
837
838 #ifndef CPP_SPEC
839 #define CPP_SPEC "\
840 %{.cc: -D__LANGUAGE_C_PLUS_PLUS -D_LANGUAGE_C_PLUS_PLUS} \
841 %{.cxx: -D__LANGUAGE_C_PLUS_PLUS -D_LANGUAGE_C_PLUS_PLUS} \
842 %{.C: -D__LANGUAGE_C_PLUS_PLUS -D_LANGUAGE_C_PLUS_PLUS} \
843 %{.m: -D__LANGUAGE_OBJECTIVE_C -D_LANGUAGE_OBJECTIVE_C -D__LANGUAGE_C -D_LANGUAGE_C} \
844 %{.S: -D__LANGUAGE_ASSEMBLY -D_LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
845 %{.s: -D__LANGUAGE_ASSEMBLY -D_LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
846 %{!.S: %{!.s: %{!.cc: %{!.cxx: %{!.C: %{!.m: -D__LANGUAGE_C -D_LANGUAGE_C %{!ansi:-DLANGUAGE_C}}}}}}} \
847 %(subtarget_cpp_size_spec) \
848 %{mips3:-U__mips -D__mips=3 -D__mips64} \
849 %{mips4:-U__mips -D__mips=4 -D__mips64} \
850 %{mgp32:-U__mips64} %{mgp64:-D__mips64} \
851 %{msingle-float:%{!msoft-float:-D__mips_single_float}} \
852 %{m4650:%{!msoft-float:-D__mips_single_float}} \
853 %{msoft-float:-D__mips_soft_float} \
854 %{mabi=eabi:-D__mips_eabi} \
855 %{EB:-UMIPSEL -U_MIPSEL -U__MIPSEL -U__MIPSEL__ -D_MIPSEB -D__MIPSEB -D__MIPSEB__ %{!ansi:-DMIPSEB}} \
856 %{EL:-UMIPSEB -U_MIPSEB -U__MIPSEB -U__MIPSEB__ -D_MIPSEL -D__MIPSEL -D__MIPSEL__ %{!ansi:-DMIPSEL}} \
857 %(long_max_spec) \
858 %(subtarget_cpp_spec) "
859 #endif
860
861 /* This macro defines names of additional specifications to put in the specs
862 that can be used in various specifications like CC1_SPEC. Its definition
863 is an initializer with a subgrouping for each command option.
864
865 Each subgrouping contains a string constant, that defines the
866 specification name, and a string constant that used by the GNU CC driver
867 program.
868
869 Do not define this macro if it does not need to do anything. */
870
871 #define EXTRA_SPECS \
872 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
873 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
874 { "subtarget_cpp_size_spec", SUBTARGET_CPP_SIZE_SPEC }, \
875 { "long_max_spec", LONG_MAX_SPEC }, \
876 { "mips_as_asm_spec", MIPS_AS_ASM_SPEC }, \
877 { "gas_asm_spec", GAS_ASM_SPEC }, \
878 { "target_asm_spec", TARGET_ASM_SPEC }, \
879 { "subtarget_mips_as_asm_spec", SUBTARGET_MIPS_AS_ASM_SPEC }, \
880 { "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC }, \
881 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
882 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
883 { "linker_endian_spec", LINKER_ENDIAN_SPEC }, \
884 SUBTARGET_EXTRA_SPECS
885
886 #ifndef SUBTARGET_EXTRA_SPECS
887 #define SUBTARGET_EXTRA_SPECS
888 #endif
889
890 /* If defined, this macro is an additional prefix to try after
891 `STANDARD_EXEC_PREFIX'. */
892
893 #ifndef MD_EXEC_PREFIX
894 #define MD_EXEC_PREFIX "/usr/lib/cmplrs/cc/"
895 #endif
896
897 #ifndef MD_STARTFILE_PREFIX
898 #define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
899 #endif
900
901 \f
902 /* Print subsidiary information on the compiler version in use. */
903
904 #define MIPS_VERSION "[AL 1.1, MM 40]"
905
906 #ifndef MACHINE_TYPE
907 #define MACHINE_TYPE "BSD Mips"
908 #endif
909
910 #ifndef TARGET_VERSION_INTERNAL
911 #define TARGET_VERSION_INTERNAL(STREAM) \
912 fprintf (STREAM, " %s %s", MIPS_VERSION, MACHINE_TYPE)
913 #endif
914
915 #ifndef TARGET_VERSION
916 #define TARGET_VERSION TARGET_VERSION_INTERNAL (stderr)
917 #endif
918
919 \f
920 #define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
921 #define DBX_DEBUGGING_INFO /* generate stabs (OSF/rose) */
922 #define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
923
924 #ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
925 #define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
926 #endif
927
928 /* By default, turn on GDB extensions. */
929 #define DEFAULT_GDB_EXTENSIONS 1
930
931 /* If we are passing smuggling stabs through the MIPS ECOFF object
932 format, put a comment in front of the .stab<x> operation so
933 that the MIPS assembler does not choke. The mips-tfile program
934 will correctly put the stab into the object file. */
935
936 #define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
937 #define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
938 #define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
939
940 /* Local compiler-generated symbols must have a prefix that the assembler
941 understands. By default, this is $, although some targets (e.g.,
942 NetBSD-ELF) need to override this. */
943
944 #ifndef LOCAL_LABEL_PREFIX
945 #define LOCAL_LABEL_PREFIX "$"
946 #endif
947
948 /* By default on the mips, external symbols do not have an underscore
949 prepended, but some targets (e.g., NetBSD) require this. */
950
951 #ifndef USER_LABEL_PREFIX
952 #define USER_LABEL_PREFIX ""
953 #endif
954
955 /* Forward references to tags are allowed. */
956 #define SDB_ALLOW_FORWARD_REFERENCES
957
958 /* Unknown tags are also allowed. */
959 #define SDB_ALLOW_UNKNOWN_REFERENCES
960
961 /* On Sun 4, this limit is 2048. We use 1500 to be safe,
962 since the length can run past this up to a continuation point. */
963 #define DBX_CONTIN_LENGTH 1500
964
965 /* How to renumber registers for dbx and gdb. */
966 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[ (REGNO) ]
967
968 /* The mapping from gcc register number to DWARF 2 CFA column number.
969 This mapping does not allow for tracking register 0, since SGI's broken
970 dwarf reader thinks column 0 is used for the frame address, but since
971 register 0 is fixed this is not a problem. */
972 #define DWARF_FRAME_REGNUM(REG) \
973 (REG == GP_REG_FIRST + 31 ? DWARF_FRAME_RETURN_COLUMN : REG)
974
975 /* The DWARF 2 CFA column which tracks the return address. */
976 #define DWARF_FRAME_RETURN_COLUMN (FP_REG_LAST + 1)
977
978 /* Before the prologue, RA lives in r31. */
979 #define INCOMING_RETURN_ADDR_RTX gen_rtx (REG, VOIDmode, GP_REG_FIRST + 31)
980
981 /* Overrides for the COFF debug format. */
982 #define PUT_SDB_SCL(a) \
983 do { \
984 extern FILE *asm_out_text_file; \
985 fprintf (asm_out_text_file, "\t.scl\t%d;", (a)); \
986 } while (0)
987
988 #define PUT_SDB_INT_VAL(a) \
989 do { \
990 extern FILE *asm_out_text_file; \
991 fprintf (asm_out_text_file, "\t.val\t%d;", (a)); \
992 } while (0)
993
994 #define PUT_SDB_VAL(a) \
995 do { \
996 extern FILE *asm_out_text_file; \
997 fputs ("\t.val\t", asm_out_text_file); \
998 output_addr_const (asm_out_text_file, (a)); \
999 fputc (';', asm_out_text_file); \
1000 } while (0)
1001
1002 #define PUT_SDB_DEF(a) \
1003 do { \
1004 extern FILE *asm_out_text_file; \
1005 fprintf (asm_out_text_file, "\t%s.def\t", \
1006 (TARGET_GAS) ? "" : "#"); \
1007 ASM_OUTPUT_LABELREF (asm_out_text_file, a); \
1008 fputc (';', asm_out_text_file); \
1009 } while (0)
1010
1011 #define PUT_SDB_PLAIN_DEF(a) \
1012 do { \
1013 extern FILE *asm_out_text_file; \
1014 fprintf (asm_out_text_file, "\t%s.def\t.%s;", \
1015 (TARGET_GAS) ? "" : "#", (a)); \
1016 } while (0)
1017
1018 #define PUT_SDB_ENDEF \
1019 do { \
1020 extern FILE *asm_out_text_file; \
1021 fprintf (asm_out_text_file, "\t.endef\n"); \
1022 } while (0)
1023
1024 #define PUT_SDB_TYPE(a) \
1025 do { \
1026 extern FILE *asm_out_text_file; \
1027 fprintf (asm_out_text_file, "\t.type\t0x%x;", (a)); \
1028 } while (0)
1029
1030 #define PUT_SDB_SIZE(a) \
1031 do { \
1032 extern FILE *asm_out_text_file; \
1033 fprintf (asm_out_text_file, "\t.size\t%d;", (a)); \
1034 } while (0)
1035
1036 #define PUT_SDB_DIM(a) \
1037 do { \
1038 extern FILE *asm_out_text_file; \
1039 fprintf (asm_out_text_file, "\t.dim\t%d;", (a)); \
1040 } while (0)
1041
1042 #ifndef PUT_SDB_START_DIM
1043 #define PUT_SDB_START_DIM \
1044 do { \
1045 extern FILE *asm_out_text_file; \
1046 fprintf (asm_out_text_file, "\t.dim\t"); \
1047 } while (0)
1048 #endif
1049
1050 #ifndef PUT_SDB_NEXT_DIM
1051 #define PUT_SDB_NEXT_DIM(a) \
1052 do { \
1053 extern FILE *asm_out_text_file; \
1054 fprintf (asm_out_text_file, "%d,", a); \
1055 } while (0)
1056 #endif
1057
1058 #ifndef PUT_SDB_LAST_DIM
1059 #define PUT_SDB_LAST_DIM(a) \
1060 do { \
1061 extern FILE *asm_out_text_file; \
1062 fprintf (asm_out_text_file, "%d;", a); \
1063 } while (0)
1064 #endif
1065
1066 #define PUT_SDB_TAG(a) \
1067 do { \
1068 extern FILE *asm_out_text_file; \
1069 fprintf (asm_out_text_file, "\t.tag\t"); \
1070 ASM_OUTPUT_LABELREF (asm_out_text_file, a); \
1071 fputc (';', asm_out_text_file); \
1072 } while (0)
1073
1074 /* For block start and end, we create labels, so that
1075 later we can figure out where the correct offset is.
1076 The normal .ent/.end serve well enough for functions,
1077 so those are just commented out. */
1078
1079 #define PUT_SDB_BLOCK_START(LINE) \
1080 do { \
1081 extern FILE *asm_out_text_file; \
1082 fprintf (asm_out_text_file, \
1083 "%sLb%d:\n\t%s.begin\t%sLb%d\t%d\n", \
1084 LOCAL_LABEL_PREFIX, \
1085 sdb_label_count, \
1086 (TARGET_GAS) ? "" : "#", \
1087 LOCAL_LABEL_PREFIX, \
1088 sdb_label_count, \
1089 (LINE)); \
1090 sdb_label_count++; \
1091 } while (0)
1092
1093 #define PUT_SDB_BLOCK_END(LINE) \
1094 do { \
1095 extern FILE *asm_out_text_file; \
1096 fprintf (asm_out_text_file, \
1097 "%sLe%d:\n\t%s.bend\t%sLe%d\t%d\n", \
1098 LOCAL_LABEL_PREFIX, \
1099 sdb_label_count, \
1100 (TARGET_GAS) ? "" : "#", \
1101 LOCAL_LABEL_PREFIX, \
1102 sdb_label_count, \
1103 (LINE)); \
1104 sdb_label_count++; \
1105 } while (0)
1106
1107 #define PUT_SDB_FUNCTION_START(LINE)
1108
1109 #define PUT_SDB_FUNCTION_END(LINE) \
1110 do { \
1111 extern FILE *asm_out_text_file; \
1112 ASM_OUTPUT_SOURCE_LINE (asm_out_text_file, LINE + sdb_begin_function_line); \
1113 } while (0)
1114
1115 #define PUT_SDB_EPILOGUE_END(NAME)
1116
1117 #define PUT_SDB_SRC_FILE(FILENAME) \
1118 do { \
1119 extern FILE *asm_out_text_file; \
1120 output_file_directive (asm_out_text_file, (FILENAME)); \
1121 } while (0)
1122
1123 #define SDB_GENERATE_FAKE(BUFFER, NUMBER) \
1124 sprintf ((BUFFER), ".%dfake", (NUMBER));
1125
1126 /* Correct the offset of automatic variables and arguments. Note that
1127 the MIPS debug format wants all automatic variables and arguments
1128 to be in terms of the virtual frame pointer (stack pointer before
1129 any adjustment in the function), while the MIPS 3.0 linker wants
1130 the frame pointer to be the stack pointer after the initial
1131 adjustment. */
1132
1133 #define DEBUGGER_AUTO_OFFSET(X) mips_debugger_offset (X, 0)
1134 #define DEBUGGER_ARG_OFFSET(OFFSET, X) mips_debugger_offset (X, OFFSET)
1135
1136
1137 /* Tell collect that the object format is ECOFF */
1138 #ifndef OBJECT_FORMAT_ROSE
1139 #define OBJECT_FORMAT_COFF /* Object file looks like COFF */
1140 #define EXTENDED_COFF /* ECOFF, not normal coff */
1141 #endif
1142
1143 #if 0 /* These definitions normally have no effect because
1144 MIPS systems define USE_COLLECT2, so
1145 assemble_constructor does nothing anyway. */
1146
1147 /* Don't use the default definitions, because we don't have gld.
1148 Also, we don't want stabs when generating ECOFF output.
1149 Instead we depend on collect to handle these. */
1150
1151 #define ASM_OUTPUT_CONSTRUCTOR(file, name)
1152 #define ASM_OUTPUT_DESTRUCTOR(file, name)
1153
1154 #endif /* 0 */
1155 \f
1156 /* Target machine storage layout */
1157
1158 /* Define in order to support both big and little endian float formats
1159 in the same gcc binary. */
1160 #define REAL_ARITHMETIC
1161
1162 /* Define this if most significant bit is lowest numbered
1163 in instructions that operate on numbered bit-fields.
1164 */
1165 #define BITS_BIG_ENDIAN 0
1166
1167 /* Define this if most significant byte of a word is the lowest numbered. */
1168 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1169
1170 /* Define this if most significant word of a multiword number is the lowest. */
1171 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1172
1173 /* Define this to set the endianness to use in libgcc2.c, which can
1174 not depend on target_flags. */
1175 #if !defined(MIPSEL) && !defined(__MIPSEL__)
1176 #define LIBGCC2_WORDS_BIG_ENDIAN 1
1177 #else
1178 #define LIBGCC2_WORDS_BIG_ENDIAN 0
1179 #endif
1180
1181 /* Number of bits in an addressable storage unit */
1182 #define BITS_PER_UNIT 8
1183
1184 /* Width in bits of a "word", which is the contents of a machine register.
1185 Note that this is not necessarily the width of data type `int';
1186 if using 16-bit ints on a 68000, this would still be 32.
1187 But on a machine with 16-bit registers, this would be 16. */
1188 #define BITS_PER_WORD (TARGET_64BIT ? 64 : 32)
1189 #define MAX_BITS_PER_WORD 64
1190
1191 /* Width of a word, in units (bytes). */
1192 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1193 #define MIN_UNITS_PER_WORD 4
1194
1195 /* For MIPS, width of a floating point register. */
1196 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1197
1198 /* A C expression for the size in bits of the type `int' on the
1199 target machine. If you don't define this, the default is one
1200 word. */
1201 #define INT_TYPE_SIZE (TARGET_INT64 ? 64 : 32)
1202 #define MAX_INT_TYPE_SIZE 64
1203
1204 /* Tell the preprocessor the maximum size of wchar_t. */
1205 #ifndef MAX_WCHAR_TYPE_SIZE
1206 #ifndef WCHAR_TYPE_SIZE
1207 #define MAX_WCHAR_TYPE_SIZE MAX_INT_TYPE_SIZE
1208 #endif
1209 #endif
1210
1211 /* A C expression for the size in bits of the type `short' on the
1212 target machine. If you don't define this, the default is half a
1213 word. (If this would be less than one storage unit, it is
1214 rounded up to one unit.) */
1215 #define SHORT_TYPE_SIZE 16
1216
1217 /* A C expression for the size in bits of the type `long' on the
1218 target machine. If you don't define this, the default is one
1219 word. */
1220 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1221 #define MAX_LONG_TYPE_SIZE 64
1222
1223 /* A C expression for the size in bits of the type `long long' on the
1224 target machine. If you don't define this, the default is two
1225 words. */
1226 #define LONG_LONG_TYPE_SIZE 64
1227
1228 /* A C expression for the size in bits of the type `char' on the
1229 target machine. If you don't define this, the default is one
1230 quarter of a word. (If this would be less than one storage unit,
1231 it is rounded up to one unit.) */
1232 #define CHAR_TYPE_SIZE BITS_PER_UNIT
1233
1234 /* A C expression for the size in bits of the type `float' on the
1235 target machine. If you don't define this, the default is one
1236 word. */
1237 #define FLOAT_TYPE_SIZE 32
1238
1239 /* A C expression for the size in bits of the type `double' on the
1240 target machine. If you don't define this, the default is two
1241 words. */
1242 #define DOUBLE_TYPE_SIZE 64
1243
1244 /* A C expression for the size in bits of the type `long double' on
1245 the target machine. If you don't define this, the default is two
1246 words. */
1247 #define LONG_DOUBLE_TYPE_SIZE 64
1248
1249 /* Width in bits of a pointer.
1250 See also the macro `Pmode' defined below. */
1251 #define POINTER_SIZE (TARGET_LONG64 ? 64 : 32)
1252
1253 /* Allocation boundary (in *bits*) for storing pointers in memory. */
1254 #define POINTER_BOUNDARY (TARGET_LONG64 ? 64 : 32)
1255
1256 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
1257 #define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
1258
1259 /* Allocation boundary (in *bits*) for the code of a function. */
1260 #define FUNCTION_BOUNDARY 32
1261
1262 /* Alignment of field after `int : 0' in a structure. */
1263 #define EMPTY_FIELD_BOUNDARY 32
1264
1265 /* Every structure's size must be a multiple of this. */
1266 /* 8 is observed right on a DECstation and on riscos 4.02. */
1267 #define STRUCTURE_SIZE_BOUNDARY 8
1268
1269 /* There is no point aligning anything to a rounder boundary than this. */
1270 #define BIGGEST_ALIGNMENT 64
1271
1272 /* Set this nonzero if move instructions will actually fail to work
1273 when given unaligned data. */
1274 #define STRICT_ALIGNMENT 1
1275
1276 /* Define this if you wish to imitate the way many other C compilers
1277 handle alignment of bitfields and the structures that contain
1278 them.
1279
1280 The behavior is that the type written for a bitfield (`int',
1281 `short', or other integer type) imposes an alignment for the
1282 entire structure, as if the structure really did contain an
1283 ordinary field of that type. In addition, the bitfield is placed
1284 within the structure so that it would fit within such a field,
1285 not crossing a boundary for it.
1286
1287 Thus, on most machines, a bitfield whose type is written as `int'
1288 would not cross a four-byte boundary, and would force four-byte
1289 alignment for the whole structure. (The alignment used may not
1290 be four bytes; it is controlled by the other alignment
1291 parameters.)
1292
1293 If the macro is defined, its definition should be a C expression;
1294 a nonzero value for the expression enables this behavior. */
1295
1296 #define PCC_BITFIELD_TYPE_MATTERS 1
1297
1298 /* If defined, a C expression to compute the alignment given to a
1299 constant that is being placed in memory. CONSTANT is the constant
1300 and ALIGN is the alignment that the object would ordinarily have.
1301 The value of this macro is used instead of that alignment to align
1302 the object.
1303
1304 If this macro is not defined, then ALIGN is used.
1305
1306 The typical use of this macro is to increase alignment for string
1307 constants to be word aligned so that `strcpy' calls that copy
1308 constants can be done inline. */
1309
1310 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
1311 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
1312 && (ALIGN) < BITS_PER_WORD \
1313 ? BITS_PER_WORD \
1314 : (ALIGN))
1315
1316 /* If defined, a C expression to compute the alignment for a static
1317 variable. TYPE is the data type, and ALIGN is the alignment that
1318 the object would ordinarily have. The value of this macro is used
1319 instead of that alignment to align the object.
1320
1321 If this macro is not defined, then ALIGN is used.
1322
1323 One use of this macro is to increase alignment of medium-size
1324 data to make it all fit in fewer cache lines. Another is to
1325 cause character arrays to be word-aligned so that `strcpy' calls
1326 that copy constants to character arrays can be done inline. */
1327
1328 #undef DATA_ALIGNMENT
1329 #define DATA_ALIGNMENT(TYPE, ALIGN) \
1330 ((((ALIGN) < BITS_PER_WORD) \
1331 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1332 || TREE_CODE (TYPE) == UNION_TYPE \
1333 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1334
1335 /* Define this macro if an argument declared as `char' or `short' in a
1336 prototype should actually be passed as an `int'. In addition to
1337 avoiding errors in certain cases of mismatch, it also makes for
1338 better code on certain machines. */
1339
1340 #define PROMOTE_PROTOTYPES
1341
1342 /* Define if operations between registers always perform the operation
1343 on the full register even if a narrower mode is specified. */
1344 #define WORD_REGISTER_OPERATIONS
1345
1346 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1347 will either zero-extend or sign-extend. The value of this macro should
1348 be the code that says which one of the two operations is implicitly
1349 done, NIL if none. */
1350 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1351 \f
1352 /* Standard register usage. */
1353
1354 /* Number of actual hardware registers.
1355 The hardware registers are assigned numbers for the compiler
1356 from 0 to just below FIRST_PSEUDO_REGISTER.
1357 All registers that the compiler knows about must be given numbers,
1358 even those that are not normally considered general registers.
1359
1360 On the Mips, we have 32 integer registers, 32 floating point
1361 registers, 8 condition code registers, and the special registers
1362 hi, lo, hilo, and rap. The 8 condition code registers are only
1363 used if mips_isa >= 4. The hilo register is only used in 64 bit
1364 mode. It represents a 64 bit value stored as two 32 bit values in
1365 the hi and lo registers; this is the result of the mult
1366 instruction. rap is a pointer to the stack where the return
1367 address reg ($31) was stored. This is needed for C++ exception
1368 handling. */
1369
1370 #define FIRST_PSEUDO_REGISTER 76
1371
1372 /* 1 for registers that have pervasive standard uses
1373 and are not available for the register allocator.
1374
1375 On the MIPS, see conventions, page D-2 */
1376
1377 #define FIXED_REGISTERS \
1378 { \
1379 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1380 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, \
1381 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1382 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1383 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 \
1384 }
1385
1386
1387 /* 1 for registers not available across function calls.
1388 These must include the FIXED_REGISTERS and also any
1389 registers that can be used without being saved.
1390 The latter must include the registers where values are returned
1391 and the register where structure-value addresses are passed.
1392 Aside from that, you can include as many other registers as you like. */
1393
1394 #define CALL_USED_REGISTERS \
1395 { \
1396 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1397 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, \
1398 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1399 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1400 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1401 }
1402
1403
1404 /* Internal macros to classify a register number as to whether it's a
1405 general purpose register, a floating point register, a
1406 multiply/divide register, or a status register. */
1407
1408 #define GP_REG_FIRST 0
1409 #define GP_REG_LAST 31
1410 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1411 #define GP_DBX_FIRST 0
1412
1413 #define FP_REG_FIRST 32
1414 #define FP_REG_LAST 63
1415 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1416 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1417
1418 #define MD_REG_FIRST 64
1419 #define MD_REG_LAST 66
1420 #define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1421
1422 #define ST_REG_FIRST 67
1423 #define ST_REG_LAST 74
1424 #define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1425
1426 #define RAP_REG_NUM 75
1427
1428 #define AT_REGNUM (GP_REG_FIRST + 1)
1429 #define HI_REGNUM (MD_REG_FIRST + 0)
1430 #define LO_REGNUM (MD_REG_FIRST + 1)
1431 #define HILO_REGNUM (MD_REG_FIRST + 2)
1432
1433 /* FPSW_REGNUM is the single condition code used if mips_isa < 4. If
1434 mips_isa >= 4, it should not be used, and an arbitrary ST_REG
1435 should be used instead. */
1436 #define FPSW_REGNUM ST_REG_FIRST
1437
1438 #define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1439 #define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1440 #define MD_REG_P(REGNO) ((unsigned) ((REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1441 #define ST_REG_P(REGNO) ((unsigned) ((REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1442
1443 /* Return number of consecutive hard regs needed starting at reg REGNO
1444 to hold something of mode MODE.
1445 This is ordinarily the length in words of a value of mode MODE
1446 but can be less for certain modes in special long registers.
1447
1448 On the MIPS, all general registers are one word long. Except on
1449 the R4000 with the FR bit set, the floating point uses register
1450 pairs, with the second register not being allocable. */
1451
1452 #define HARD_REGNO_NREGS(REGNO, MODE) \
1453 (! FP_REG_P (REGNO) \
1454 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) \
1455 : ((GET_MODE_SIZE (MODE) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG))
1456
1457 /* Value is 1 if hard register REGNO can hold a value of machine-mode
1458 MODE. In 32 bit mode, require that DImode and DFmode be in even
1459 registers. For DImode, this makes some of the insns easier to
1460 write, since you don't have to worry about a DImode value in
1461 registers 3 & 4, producing a result in 4 & 5.
1462
1463 To make the code simpler HARD_REGNO_MODE_OK now just references an
1464 array built in override_options. Because machmodes.h is not yet
1465 included before this file is processed, the MODE bound can't be
1466 expressed here. */
1467
1468 extern char mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
1469
1470 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1471 mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1472
1473 /* Value is 1 if it is a good idea to tie two pseudo registers
1474 when one has mode MODE1 and one has mode MODE2.
1475 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1476 for any hard reg, then this must be 0 for correct output. */
1477 #define MODES_TIEABLE_P(MODE1, MODE2) \
1478 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
1479 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
1480 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
1481 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
1482
1483 /* MIPS pc is not overloaded on a register. */
1484 /* #define PC_REGNUM xx */
1485
1486 /* Register to use for pushing function arguments. */
1487 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1488
1489 /* Offset from the stack pointer to the first available location. Use
1490 the default value zero. */
1491 /* #define STACK_POINTER_OFFSET 0 */
1492
1493 /* Base register for access to local variables of the function. */
1494 #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 30)
1495
1496 /* Value should be nonzero if functions must have frame pointers.
1497 Zero means the frame pointer need not be set up (and parms
1498 may be accessed via the stack pointer) in functions that seem suitable.
1499 This is computed in `reload', in reload1.c. */
1500 #define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
1501
1502 /* Base register for access to arguments of the function. */
1503 #define ARG_POINTER_REGNUM GP_REG_FIRST
1504
1505 /* Fake register that holds the address on the stack of the
1506 current function's return address. */
1507 #define RETURN_ADDRESS_POINTER_REGNUM RAP_REG_NUM
1508
1509 /* Register in which static-chain is passed to a function. */
1510 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
1511
1512 /* If the structure value address is passed in a register, then
1513 `STRUCT_VALUE_REGNUM' should be the number of that register. */
1514 /* #define STRUCT_VALUE_REGNUM (GP_REG_FIRST + 4) */
1515
1516 /* If the structure value address is not passed in a register, define
1517 `STRUCT_VALUE' as an expression returning an RTX for the place
1518 where the address is passed. If it returns 0, the address is
1519 passed as an "invisible" first argument. */
1520 #define STRUCT_VALUE 0
1521
1522 /* Mips registers used in prologue/epilogue code when the stack frame
1523 is larger than 32K bytes. These registers must come from the
1524 scratch register set, and not used for passing and returning
1525 arguments and any other information used in the calling sequence
1526 (such as pic). Must start at 12, since t0/t3 are parameter passing
1527 registers in the 64 bit ABI. */
1528
1529 #define MIPS_TEMP1_REGNUM (GP_REG_FIRST + 12)
1530 #define MIPS_TEMP2_REGNUM (GP_REG_FIRST + 13)
1531
1532 /* Define this macro if it is as good or better to call a constant
1533 function address than to call an address kept in a register. */
1534 #define NO_FUNCTION_CSE 1
1535
1536 /* Define this macro if it is as good or better for a function to
1537 call itself with an explicit address than to call an address
1538 kept in a register. */
1539 #define NO_RECURSIVE_FUNCTION_CSE 1
1540
1541 /* The register number of the register used to address a table of
1542 static data addresses in memory. In some cases this register is
1543 defined by a processor's "application binary interface" (ABI).
1544 When this macro is defined, RTL is generated for this register
1545 once, as with the stack pointer and frame pointer registers. If
1546 this macro is not defined, it is up to the machine-dependent
1547 files to allocate such a register (if necessary). */
1548 #define PIC_OFFSET_TABLE_REGNUM (GP_REG_FIRST + 28)
1549
1550 #define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
1551
1552 /* Initialize embedded_pic_fnaddr_rtx before RTL generation for
1553 each function. We used to do this in FINALIZE_PIC, but FINALIZE_PIC
1554 isn't always called for static inline functions. */
1555 #define INIT_EXPANDERS embedded_pic_fnaddr_rtx = NULL;
1556 \f
1557 /* Define the classes of registers for register constraints in the
1558 machine description. Also define ranges of constants.
1559
1560 One of the classes must always be named ALL_REGS and include all hard regs.
1561 If there is more than one class, another class must be named NO_REGS
1562 and contain no registers.
1563
1564 The name GENERAL_REGS must be the name of a class (or an alias for
1565 another name such as ALL_REGS). This is the class of registers
1566 that is allowed by "g" or "r" in a register constraint.
1567 Also, registers outside this class are allocated only when
1568 instructions express preferences for them.
1569
1570 The classes must be numbered in nondecreasing order; that is,
1571 a larger-numbered class must never be contained completely
1572 in a smaller-numbered class.
1573
1574 For any two classes, it is very desirable that there be another
1575 class that represents their union. */
1576
1577 enum reg_class
1578 {
1579 NO_REGS, /* no registers in set */
1580 GR_REGS, /* integer registers */
1581 FP_REGS, /* floating point registers */
1582 HI_REG, /* hi register */
1583 LO_REG, /* lo register */
1584 HILO_REG, /* hilo register pair for 64 bit mode mult */
1585 MD_REGS, /* multiply/divide registers (hi/lo) */
1586 ST_REGS, /* status registers (fp status) */
1587 ALL_REGS, /* all registers */
1588 LIM_REG_CLASSES /* max value + 1 */
1589 };
1590
1591 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1592
1593 #define GENERAL_REGS GR_REGS
1594
1595 /* An initializer containing the names of the register classes as C
1596 string constants. These names are used in writing some of the
1597 debugging dumps. */
1598
1599 #define REG_CLASS_NAMES \
1600 { \
1601 "NO_REGS", \
1602 "GR_REGS", \
1603 "FP_REGS", \
1604 "HI_REG", \
1605 "LO_REG", \
1606 "HILO_REG", \
1607 "MD_REGS", \
1608 "ST_REGS", \
1609 "ALL_REGS" \
1610 }
1611
1612 /* An initializer containing the contents of the register classes,
1613 as integers which are bit masks. The Nth integer specifies the
1614 contents of class N. The way the integer MASK is interpreted is
1615 that register R is in the class if `MASK & (1 << R)' is 1.
1616
1617 When the machine has more than 32 registers, an integer does not
1618 suffice. Then the integers are replaced by sub-initializers,
1619 braced groupings containing several integers. Each
1620 sub-initializer must be suitable as an initializer for the type
1621 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
1622
1623 #define REG_CLASS_CONTENTS \
1624 { \
1625 { 0x00000000, 0x00000000, 0x00000000 }, /* no registers */ \
1626 { 0xffffffff, 0x00000000, 0x00000000 }, /* integer registers */ \
1627 { 0x00000000, 0xffffffff, 0x00000000 }, /* floating registers*/ \
1628 { 0x00000000, 0x00000000, 0x00000001 }, /* hi register */ \
1629 { 0x00000000, 0x00000000, 0x00000002 }, /* lo register */ \
1630 { 0x00000000, 0x00000000, 0x00000004 }, /* hilo register */ \
1631 { 0x00000000, 0x00000000, 0x00000003 }, /* mul/div registers */ \
1632 { 0x00000000, 0x00000000, 0x000007f8 }, /* status registers */ \
1633 { 0xffffffff, 0xffffffff, 0x000007ff } /* all registers */ \
1634 }
1635
1636
1637 /* A C expression whose value is a register class containing hard
1638 register REGNO. In general there is more that one such class;
1639 choose a class which is "minimal", meaning that no smaller class
1640 also contains the register. */
1641
1642 extern enum reg_class mips_regno_to_class[];
1643
1644 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1645
1646 /* A macro whose definition is the name of the class to which a
1647 valid base register must belong. A base register is one used in
1648 an address which is the register value plus a displacement. */
1649
1650 #define BASE_REG_CLASS GR_REGS
1651
1652 /* A macro whose definition is the name of the class to which a
1653 valid index register must belong. An index register is one used
1654 in an address where its value is either multiplied by a scale
1655 factor or added to another register (as well as added to a
1656 displacement). */
1657
1658 #define INDEX_REG_CLASS NO_REGS
1659
1660
1661 /* REGISTER AND CONSTANT CLASSES */
1662
1663 /* Get reg_class from a letter such as appears in the machine
1664 description.
1665
1666 DEFINED REGISTER CLASSES:
1667
1668 'd' General (aka integer) registers
1669 'f' Floating point registers
1670 'h' Hi register
1671 'l' Lo register
1672 'x' Multiply/divide registers
1673 'a' HILO_REG
1674 'z' FP Status register
1675 'b' All registers */
1676
1677 extern enum reg_class mips_char_to_class[];
1678
1679 #define REG_CLASS_FROM_LETTER(C) mips_char_to_class[ (C) ]
1680
1681 /* The letters I, J, K, L, M, N, O, and P in a register constraint
1682 string can be used to stand for particular ranges of immediate
1683 operands. This macro defines what the ranges are. C is the
1684 letter, and VALUE is a constant value. Return 1 if VALUE is
1685 in the range specified by C. */
1686
1687 /* For MIPS:
1688
1689 `I' is used for the range of constants an arithmetic insn can
1690 actually contain (16 bits signed integers).
1691
1692 `J' is used for the range which is just zero (ie, $r0).
1693
1694 `K' is used for the range of constants a logical insn can actually
1695 contain (16 bit zero-extended integers).
1696
1697 `L' is used for the range of constants that be loaded with lui
1698 (ie, the bottom 16 bits are zero).
1699
1700 `M' is used for the range of constants that take two words to load
1701 (ie, not matched by `I', `K', and `L').
1702
1703 `N' is used for negative 16 bit constants.
1704
1705 `O' is an exact power of 2 (not yet used in the md file).
1706
1707 `P' is used for positive 16 bit constants. */
1708
1709 #define SMALL_INT(X) ((unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1710 #define SMALL_INT_UNSIGNED(X) ((unsigned HOST_WIDE_INT) (INTVAL (X)) < 0x10000)
1711
1712 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1713 ((C) == 'I' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000) \
1714 : (C) == 'J' ? ((VALUE) == 0) \
1715 : (C) == 'K' ? ((unsigned HOST_WIDE_INT) (VALUE) < 0x10000) \
1716 : (C) == 'L' ? (((VALUE) & 0x0000ffff) == 0 \
1717 && (((VALUE) & ~2147483647) == 0 \
1718 || ((VALUE) & ~2147483647) == ~2147483647)) \
1719 : (C) == 'M' ? ((((VALUE) & ~0x0000ffff) != 0) \
1720 && (((VALUE) & ~0x0000ffff) != ~0x0000ffff) \
1721 && (((VALUE) & 0x0000ffff) != 0 \
1722 || (((VALUE) & ~2147483647) != 0 \
1723 && ((VALUE) & ~2147483647) != ~2147483647))) \
1724 : (C) == 'N' ? (((VALUE) & ~0x0000ffff) == ~0x0000ffff) \
1725 : (C) == 'O' ? (exact_log2 (VALUE) >= 0) \
1726 : (C) == 'P' ? ((VALUE) != 0 && (((VALUE) & ~0x0000ffff) == 0)) \
1727 : 0)
1728
1729 /* Similar, but for floating constants, and defining letters G and H.
1730 Here VALUE is the CONST_DOUBLE rtx itself. */
1731
1732 /* For Mips
1733
1734 'G' : Floating point 0 */
1735
1736 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1737 ((C) == 'G' \
1738 && (VALUE) == CONST0_RTX (GET_MODE (VALUE)))
1739
1740 /* Letters in the range `Q' through `U' may be defined in a
1741 machine-dependent fashion to stand for arbitrary operand types.
1742 The machine description macro `EXTRA_CONSTRAINT' is passed the
1743 operand as its first argument and the constraint letter as its
1744 second operand.
1745
1746 `Q' is for memory references which take more than 1 instruction.
1747 `R' is for memory references which take 1 word for the instruction.
1748 `S' is for references to extern items which are PIC for OSF/rose. */
1749
1750 #define EXTRA_CONSTRAINT(OP,CODE) \
1751 ((GET_CODE (OP) != MEM) ? FALSE \
1752 : ((CODE) == 'Q') ? !simple_memory_operand (OP, GET_MODE (OP)) \
1753 : ((CODE) == 'R') ? simple_memory_operand (OP, GET_MODE (OP)) \
1754 : ((CODE) == 'S') ? (HALF_PIC_P () && CONSTANT_P (OP) \
1755 && HALF_PIC_ADDRESS_P (OP)) \
1756 : FALSE)
1757
1758 /* Given an rtx X being reloaded into a reg required to be
1759 in class CLASS, return the class of reg to actually use.
1760 In general this is just CLASS; but on some machines
1761 in some cases it is preferable to use a more restrictive class. */
1762
1763 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1764 ((CLASS) != ALL_REGS \
1765 ? (CLASS) \
1766 : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1767 || GET_MODE_CLASS (GET_MODE (X)) == MODE_COMPLEX_FLOAT) \
1768 ? (TARGET_SOFT_FLOAT ? GR_REGS : FP_REGS) \
1769 : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
1770 || GET_MODE (X) == VOIDmode) \
1771 ? GR_REGS \
1772 : (CLASS))))
1773
1774 /* Certain machines have the property that some registers cannot be
1775 copied to some other registers without using memory. Define this
1776 macro on those machines to be a C expression that is non-zero if
1777 objects of mode MODE in registers of CLASS1 can only be copied to
1778 registers of class CLASS2 by storing a register of CLASS1 into
1779 memory and loading that memory location into a register of CLASS2.
1780
1781 Do not define this macro if its value would always be zero. */
1782
1783 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1784 ((!TARGET_DEBUG_H_MODE \
1785 && GET_MODE_CLASS (MODE) == MODE_INT \
1786 && ((CLASS1 == FP_REGS && CLASS2 == GR_REGS) \
1787 || (CLASS1 == GR_REGS && CLASS2 == FP_REGS))) \
1788 || (TARGET_FLOAT64 && !TARGET_64BIT && (MODE) == DFmode \
1789 && ((CLASS1 == GR_REGS && CLASS2 == FP_REGS) \
1790 || (CLASS2 == GR_REGS && CLASS1 == FP_REGS))))
1791
1792 /* The HI and LO registers can only be reloaded via the general
1793 registers. Condition code registers can only be loaded to the
1794 general registers, and from the floating point registers. */
1795
1796 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1797 mips_secondary_reload_class (CLASS, MODE, X, 1)
1798 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1799 mips_secondary_reload_class (CLASS, MODE, X, 0)
1800
1801 /* Not declared above, with the other functions, because enum
1802 reg_class is not declared yet. */
1803 extern enum reg_class mips_secondary_reload_class ();
1804
1805 /* Return the maximum number of consecutive registers
1806 needed to represent mode MODE in a register of class CLASS. */
1807
1808 #define CLASS_UNITS(mode, size) \
1809 ((GET_MODE_SIZE (mode) + (size) - 1) / (size))
1810
1811 #define CLASS_MAX_NREGS(CLASS, MODE) \
1812 ((CLASS) == FP_REGS \
1813 ? (TARGET_FLOAT64 \
1814 ? CLASS_UNITS (MODE, 8) \
1815 : 2 * CLASS_UNITS (MODE, 8)) \
1816 : CLASS_UNITS (MODE, UNITS_PER_WORD))
1817
1818 /* If defined, this is a C expression whose value should be
1819 nonzero if the insn INSN has the effect of mysteriously
1820 clobbering the contents of hard register number REGNO. By
1821 "mysterious" we mean that the insn's RTL expression doesn't
1822 describe such an effect.
1823
1824 If this macro is not defined, it means that no insn clobbers
1825 registers mysteriously. This is the usual situation; all else
1826 being equal, it is best for the RTL expression to show all the
1827 activity. */
1828
1829 /* #define INSN_CLOBBERS_REGNO_P(INSN, REGNO) */
1830
1831 \f
1832 /* Stack layout; function entry, exit and calling. */
1833
1834 /* Define this if pushing a word on the stack
1835 makes the stack pointer a smaller address. */
1836 #define STACK_GROWS_DOWNWARD
1837
1838 /* Define this if the nominal address of the stack frame
1839 is at the high-address end of the local variables;
1840 that is, each additional local variable allocated
1841 goes at a more negative offset in the frame. */
1842 /* #define FRAME_GROWS_DOWNWARD */
1843
1844 /* Offset within stack frame to start allocating local variables at.
1845 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1846 first local allocated. Otherwise, it is the offset to the BEGINNING
1847 of the first local allocated. */
1848 #define STARTING_FRAME_OFFSET \
1849 (current_function_outgoing_args_size \
1850 + (TARGET_ABICALLS ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0))
1851
1852 /* Offset from the stack pointer register to an item dynamically
1853 allocated on the stack, e.g., by `alloca'.
1854
1855 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1856 length of the outgoing arguments. The default is correct for most
1857 machines. See `function.c' for details.
1858
1859 The MIPS ABI states that functions which dynamically allocate the
1860 stack must not have 0 for STACK_DYNAMIC_OFFSET, since it looks like
1861 we are trying to create a second frame pointer to the function, so
1862 allocate some stack space to make it happy.
1863
1864 However, the linker currently complains about linking any code that
1865 dynamically allocates stack space, and there seems to be a bug in
1866 STACK_DYNAMIC_OFFSET, so don't define this right now. */
1867
1868 #if 0
1869 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1870 ((current_function_outgoing_args_size == 0 && current_function_calls_alloca) \
1871 ? 4*UNITS_PER_WORD \
1872 : current_function_outgoing_args_size)
1873 #endif
1874
1875 /* The return address for the current frame is in r31 is this is a leaf
1876 function. Otherwise, it is on the stack. It is at a variable offset
1877 from sp/fp/ap, so we define a fake hard register rap which is a
1878 poiner to the return address on the stack. This always gets eliminated
1879 during reload to be either the frame pointer or the stack pointer plus
1880 an offset. */
1881
1882 /* ??? This definition fails for leaf functions. There is currently no
1883 general solution for this problem. */
1884
1885 /* ??? There appears to be no way to get the return address of any previous
1886 frame except by disassembling instructions in the prologue/epilogue.
1887 So currently we support only the current frame. */
1888
1889 #define RETURN_ADDR_RTX(count, frame) \
1890 ((count == 0) \
1891 ? gen_rtx (MEM, Pmode, gen_rtx (REG, Pmode, RETURN_ADDRESS_POINTER_REGNUM))\
1892 : (rtx) 0)
1893
1894 /* Structure to be filled in by compute_frame_size with register
1895 save masks, and offsets for the current function. */
1896
1897 struct mips_frame_info
1898 {
1899 long total_size; /* # bytes that the entire frame takes up */
1900 long var_size; /* # bytes that variables take up */
1901 long args_size; /* # bytes that outgoing arguments take up */
1902 long extra_size; /* # bytes of extra gunk */
1903 int gp_reg_size; /* # bytes needed to store gp regs */
1904 int fp_reg_size; /* # bytes needed to store fp regs */
1905 long mask; /* mask of saved gp registers */
1906 long fmask; /* mask of saved fp registers */
1907 long gp_save_offset; /* offset from vfp to store gp registers */
1908 long fp_save_offset; /* offset from vfp to store fp registers */
1909 long gp_sp_offset; /* offset from new sp to store gp registers */
1910 long fp_sp_offset; /* offset from new sp to store fp registers */
1911 int initialized; /* != 0 if frame size already calculated */
1912 int num_gp; /* number of gp registers saved */
1913 int num_fp; /* number of fp registers saved */
1914 };
1915
1916 extern struct mips_frame_info current_frame_info;
1917
1918 /* If defined, this macro specifies a table of register pairs used to
1919 eliminate unneeded registers that point into the stack frame. If
1920 it is not defined, the only elimination attempted by the compiler
1921 is to replace references to the frame pointer with references to
1922 the stack pointer.
1923
1924 The definition of this macro is a list of structure
1925 initializations, each of which specifies an original and
1926 replacement register.
1927
1928 On some machines, the position of the argument pointer is not
1929 known until the compilation is completed. In such a case, a
1930 separate hard register must be used for the argument pointer.
1931 This register can be eliminated by replacing it with either the
1932 frame pointer or the argument pointer, depending on whether or not
1933 the frame pointer has been eliminated.
1934
1935 In this case, you might specify:
1936 #define ELIMINABLE_REGS \
1937 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1938 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1939 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1940
1941 Note that the elimination of the argument pointer with the stack
1942 pointer is specified first since that is the preferred elimination. */
1943
1944 #define ELIMINABLE_REGS \
1945 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1946 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1947 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1948 { RETURN_ADDRESS_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1949 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1950
1951 /* A C expression that returns non-zero if the compiler is allowed to
1952 try to replace register number FROM-REG with register number
1953 TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is
1954 defined, and will usually be the constant 1, since most of the
1955 cases preventing register elimination are things that the compiler
1956 already knows about. */
1957
1958 #define CAN_ELIMINATE(FROM, TO) \
1959 (!frame_pointer_needed \
1960 || ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1961 || ((FROM) == RETURN_ADDRESS_POINTER_REGNUM \
1962 && (TO) == FRAME_POINTER_REGNUM))
1963
1964 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
1965 specifies the initial difference between the specified pair of
1966 registers. This macro must be defined if `ELIMINABLE_REGS' is
1967 defined. */
1968
1969 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1970 { compute_frame_size (get_frame_size ()); \
1971 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1972 (OFFSET) = 0; \
1973 else if ((FROM) == ARG_POINTER_REGNUM \
1974 && ((TO) == FRAME_POINTER_REGNUM \
1975 || (TO) == STACK_POINTER_REGNUM)) \
1976 (OFFSET) = (current_frame_info.total_size \
1977 - ((mips_abi != ABI_32 && mips_abi != ABI_EABI) \
1978 ? current_function_pretend_args_size \
1979 : 0)); \
1980 else if ((FROM) == RETURN_ADDRESS_POINTER_REGNUM \
1981 && ((TO) == FRAME_POINTER_REGNUM \
1982 || (TO) == STACK_POINTER_REGNUM)) \
1983 (OFFSET) = current_frame_info.gp_sp_offset \
1984 + ((UNITS_PER_WORD - (POINTER_SIZE / BITS_PER_UNIT)) \
1985 * (BYTES_BIG_ENDIAN != 0)); \
1986 else \
1987 abort (); \
1988 }
1989
1990 /* If we generate an insn to push BYTES bytes,
1991 this says how many the stack pointer really advances by.
1992 On the vax, sp@- in a byte insn really pushes a word. */
1993
1994 /* #define PUSH_ROUNDING(BYTES) 0 */
1995
1996 /* If defined, the maximum amount of space required for outgoing
1997 arguments will be computed and placed into the variable
1998 `current_function_outgoing_args_size'. No space will be pushed
1999 onto the stack for each call; instead, the function prologue
2000 should increase the stack frame size by this amount.
2001
2002 It is not proper to define both `PUSH_ROUNDING' and
2003 `ACCUMULATE_OUTGOING_ARGS'. */
2004 #define ACCUMULATE_OUTGOING_ARGS
2005
2006 /* Offset from the argument pointer register to the first argument's
2007 address. On some machines it may depend on the data type of the
2008 function.
2009
2010 If `ARGS_GROW_DOWNWARD', this is the offset to the location above
2011 the first argument's address.
2012
2013 On the MIPS, we must skip the first argument position if we are
2014 returning a structure or a union, to account for its address being
2015 passed in $4. However, at the current time, this produces a compiler
2016 that can't bootstrap, so comment it out for now. */
2017
2018 #if 0
2019 #define FIRST_PARM_OFFSET(FNDECL) \
2020 (FNDECL != 0 \
2021 && TREE_TYPE (FNDECL) != 0 \
2022 && TREE_TYPE (TREE_TYPE (FNDECL)) != 0 \
2023 && (TREE_CODE (TREE_TYPE (TREE_TYPE (FNDECL))) == RECORD_TYPE \
2024 || TREE_CODE (TREE_TYPE (TREE_TYPE (FNDECL))) == UNION_TYPE) \
2025 ? UNITS_PER_WORD \
2026 : 0)
2027 #else
2028 #define FIRST_PARM_OFFSET(FNDECL) 0
2029 #endif
2030
2031 /* When a parameter is passed in a register, stack space is still
2032 allocated for it. For the MIPS, stack space must be allocated, cf
2033 Asm Lang Prog Guide page 7-8.
2034
2035 BEWARE that some space is also allocated for non existing arguments
2036 in register. In case an argument list is of form GF used registers
2037 are a0 (a2,a3), but we should push over a1... */
2038
2039 #define REG_PARM_STACK_SPACE(FNDECL) \
2040 ((MAX_ARGS_IN_REGISTERS*UNITS_PER_WORD) - FIRST_PARM_OFFSET (FNDECL))
2041
2042 /* Define this if it is the responsibility of the caller to
2043 allocate the area reserved for arguments passed in registers.
2044 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
2045 of this macro is to determine whether the space is included in
2046 `current_function_outgoing_args_size'. */
2047 #define OUTGOING_REG_PARM_STACK_SPACE
2048
2049 /* Align stack frames on 64 bits (Double Word ). */
2050 #define STACK_BOUNDARY 64
2051
2052 /* Make sure 4 words are always allocated on the stack. */
2053
2054 #ifndef STACK_ARGS_ADJUST
2055 #define STACK_ARGS_ADJUST(SIZE) \
2056 { \
2057 if (SIZE.constant < 4 * UNITS_PER_WORD) \
2058 SIZE.constant = 4 * UNITS_PER_WORD; \
2059 }
2060 #endif
2061
2062 \f
2063 /* A C expression that should indicate the number of bytes of its
2064 own arguments that a function function pops on returning, or 0
2065 if the function pops no arguments and the caller must therefore
2066 pop them all after the function returns.
2067
2068 FUNDECL is the declaration node of the function (as a tree).
2069
2070 FUNTYPE is a C variable whose value is a tree node that
2071 describes the function in question. Normally it is a node of
2072 type `FUNCTION_TYPE' that describes the data type of the function.
2073 From this it is possible to obtain the data types of the value
2074 and arguments (if known).
2075
2076 When a call to a library function is being considered, FUNTYPE
2077 will contain an identifier node for the library function. Thus,
2078 if you need to distinguish among various library functions, you
2079 can do so by their names. Note that "library function" in this
2080 context means a function used to perform arithmetic, whose name
2081 is known specially in the compiler and was not mentioned in the
2082 C code being compiled.
2083
2084 STACK-SIZE is the number of bytes of arguments passed on the
2085 stack. If a variable number of bytes is passed, it is zero, and
2086 argument popping will always be the responsibility of the
2087 calling function. */
2088
2089 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
2090
2091
2092 /* Symbolic macros for the registers used to return integer and floating
2093 point values. */
2094
2095 #define GP_RETURN (GP_REG_FIRST + 2)
2096 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2097
2098 /* Symbolic macros for the first/last argument registers. */
2099
2100 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
2101 #define GP_ARG_LAST (GP_REG_FIRST + 7)
2102 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
2103 #define FP_ARG_LAST (FP_REG_FIRST + 15)
2104
2105 #define MAX_ARGS_IN_REGISTERS 4
2106
2107 /* Define how to find the value returned by a library function
2108 assuming the value has mode MODE. */
2109
2110 #define LIBCALL_VALUE(MODE) \
2111 gen_rtx (REG, MODE, \
2112 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
2113 && (! TARGET_SINGLE_FLOAT \
2114 || GET_MODE_SIZE (MODE) <= 4)) \
2115 ? FP_RETURN \
2116 : GP_RETURN))
2117
2118 /* Define how to find the value returned by a function.
2119 VALTYPE is the data type of the value (as a tree).
2120 If the precise function being called is known, FUNC is its FUNCTION_DECL;
2121 otherwise, FUNC is 0. */
2122
2123 #define FUNCTION_VALUE(VALTYPE, FUNC) LIBCALL_VALUE (TYPE_MODE (VALTYPE))
2124
2125
2126 /* 1 if N is a possible register number for a function value.
2127 On the MIPS, R2 R3 and F0 F2 are the only register thus used.
2128 Currently, R2 and F0 are only implemented here (C has no complex type) */
2129
2130 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN)
2131
2132 /* 1 if N is a possible register number for function argument passing.
2133 We have no FP argument registers when soft-float. When FP registers
2134 are 32 bits, we can't directly reference the odd numbered ones. */
2135
2136 #define FUNCTION_ARG_REGNO_P(N) \
2137 (((N) >= GP_ARG_FIRST && (N) <= GP_ARG_LAST) \
2138 || (! TARGET_SOFT_FLOAT \
2139 && ((N) >= FP_ARG_FIRST && (N) <= FP_ARG_LAST) \
2140 && (TARGET_FLOAT64 || (0 == (N) % 2))))
2141
2142 /* A C expression which can inhibit the returning of certain function
2143 values in registers, based on the type of value. A nonzero value says
2144 to return the function value in memory, just as large structures are
2145 always returned. Here TYPE will be a C expression of type
2146 `tree', representing the data type of the value.
2147
2148 Note that values of mode `BLKmode' must be explicitly
2149 handled by this macro. Also, the option `-fpcc-struct-return'
2150 takes effect regardless of this macro. On most systems, it is
2151 possible to leave the macro undefined; this causes a default
2152 definition to be used, whose value is the constant 1 for BLKmode
2153 values, and 0 otherwise.
2154
2155 GCC normally converts 1 byte structures into chars, 2 byte
2156 structs into shorts, and 4 byte structs into ints, and returns
2157 them this way. Defining the following macro overrides this,
2158 to give us MIPS cc compatibility. */
2159
2160 #define RETURN_IN_MEMORY(TYPE) \
2161 (TYPE_MODE (TYPE) == BLKmode)
2162 \f
2163 /* A code distinguishing the floating point format of the target
2164 machine. There are three defined values: IEEE_FLOAT_FORMAT,
2165 VAX_FLOAT_FORMAT, and UNKNOWN_FLOAT_FORMAT. */
2166
2167 #define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
2168
2169 \f
2170 /* Define a data type for recording info about an argument list
2171 during the scan of that argument list. This data type should
2172 hold all necessary information about the function itself
2173 and about the args processed so far, enough to enable macros
2174 such as FUNCTION_ARG to determine where the next arg should go.
2175 */
2176
2177 typedef struct mips_args {
2178 int gp_reg_found; /* whether a gp register was found yet */
2179 int arg_number; /* argument number */
2180 int arg_words; /* # total words the arguments take */
2181 int fp_arg_words; /* # words for FP args (MIPS_EABI only) */
2182 int last_arg_fp; /* nonzero if last arg was FP (EABI only) */
2183 int num_adjusts; /* number of adjustments made */
2184 /* Adjustments made to args pass in regs. */
2185 /* ??? The size is doubled to work around a
2186 bug in the code that sets the adjustments
2187 in function_arg. */
2188 struct rtx_def *adjust[MAX_ARGS_IN_REGISTERS*2];
2189 } CUMULATIVE_ARGS;
2190
2191 /* Initialize a variable CUM of type CUMULATIVE_ARGS
2192 for a call to a function whose data type is FNTYPE.
2193 For a library call, FNTYPE is 0.
2194
2195 */
2196
2197 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
2198 init_cumulative_args (&CUM, FNTYPE, LIBNAME) \
2199
2200 /* Update the data in CUM to advance over an argument
2201 of mode MODE and data type TYPE.
2202 (TYPE is null for libcalls where that information may not be available.) */
2203
2204 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
2205 function_arg_advance (&CUM, MODE, TYPE, NAMED)
2206
2207 /* Determine where to put an argument to a function.
2208 Value is zero to push the argument on the stack,
2209 or a hard register in which to store the argument.
2210
2211 MODE is the argument's machine mode.
2212 TYPE is the data type of the argument (as a tree).
2213 This is null for libcalls where that information may
2214 not be available.
2215 CUM is a variable of type CUMULATIVE_ARGS which gives info about
2216 the preceding args and about the function being called.
2217 NAMED is nonzero if this argument is a named parameter
2218 (otherwise it is an extra parameter matching an ellipsis). */
2219
2220 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
2221 function_arg( &CUM, MODE, TYPE, NAMED)
2222
2223 /* For an arg passed partly in registers and partly in memory,
2224 this is the number of registers used.
2225 For args passed entirely in registers or entirely in memory, zero. */
2226
2227 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
2228 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
2229
2230 /* If defined, a C expression that gives the alignment boundary, in
2231 bits, of an argument with the specified mode and type. If it is
2232 not defined, `PARM_BOUNDARY' is used for all arguments. */
2233
2234 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
2235 (((TYPE) != 0) \
2236 ? ((TYPE_ALIGN(TYPE) <= PARM_BOUNDARY) \
2237 ? PARM_BOUNDARY \
2238 : TYPE_ALIGN(TYPE)) \
2239 : ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY) \
2240 ? PARM_BOUNDARY \
2241 : GET_MODE_ALIGNMENT(MODE)))
2242
2243 \f
2244 /* This macro generates the assembly code for function entry.
2245 FILE is a stdio stream to output the code to.
2246 SIZE is an int: how many units of temporary storage to allocate.
2247 Refer to the array `regs_ever_live' to determine which registers
2248 to save; `regs_ever_live[I]' is nonzero if register number I
2249 is ever used in the function. This macro is responsible for
2250 knowing which registers should not be saved even if used. */
2251
2252 #define FUNCTION_PROLOGUE(FILE, SIZE) function_prologue(FILE, SIZE)
2253
2254 /* This macro generates the assembly code for function exit,
2255 on machines that need it. If FUNCTION_EPILOGUE is not defined
2256 then individual return instructions are generated for each
2257 return statement. Args are same as for FUNCTION_PROLOGUE. */
2258
2259 #define FUNCTION_EPILOGUE(FILE, SIZE) function_epilogue(FILE, SIZE)
2260
2261 /* Tell prologue and epilogue if register REGNO should be saved / restored. */
2262
2263 #define MUST_SAVE_REGISTER(regno) \
2264 ((regs_ever_live[regno] && !call_used_regs[regno]) \
2265 || (regno == FRAME_POINTER_REGNUM && frame_pointer_needed) \
2266 || (regno == (GP_REG_FIRST + 31) && regs_ever_live[GP_REG_FIRST + 31]))
2267
2268 /* ALIGN FRAMES on double word boundaries */
2269
2270 #define MIPS_STACK_ALIGN(LOC) (((LOC)+7) & ~7)
2271
2272 \f
2273 /* Output assembler code to FILE to increment profiler label # LABELNO
2274 for profiling a function entry. */
2275
2276 #define FUNCTION_PROFILER(FILE, LABELNO) \
2277 { \
2278 fprintf (FILE, "\t.set\tnoreorder\n"); \
2279 fprintf (FILE, "\t.set\tnoat\n"); \
2280 fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n", \
2281 reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]); \
2282 fprintf (FILE, "\tjal\t_mcount\n"); \
2283 fprintf (FILE, \
2284 "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from stack\n", \
2285 TARGET_64BIT ? "dsubu" : "subu", \
2286 reg_names[STACK_POINTER_REGNUM], \
2287 reg_names[STACK_POINTER_REGNUM], \
2288 TARGET_LONG64 ? 16 : 8); \
2289 fprintf (FILE, "\t.set\treorder\n"); \
2290 fprintf (FILE, "\t.set\tat\n"); \
2291 }
2292
2293 /* Define this macro if the code for function profiling should come
2294 before the function prologue. Normally, the profiling code comes
2295 after. */
2296
2297 /* #define PROFILE_BEFORE_PROLOGUE */
2298
2299 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2300 the stack pointer does not matter. The value is tested only in
2301 functions that have frame pointers.
2302 No definition is equivalent to always zero. */
2303
2304 #define EXIT_IGNORE_STACK 1
2305
2306 \f
2307 /* A C statement to output, on the stream FILE, assembler code for a
2308 block of data that contains the constant parts of a trampoline.
2309 This code should not include a label--the label is taken care of
2310 automatically. */
2311
2312 #define TRAMPOLINE_TEMPLATE(STREAM) \
2313 { \
2314 fprintf (STREAM, "\t.word\t0x03e00821\t\t# move $1,$31\n"); \
2315 fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n"); \
2316 fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n"); \
2317 if (TARGET_LONG64) \
2318 { \
2319 fprintf (STREAM, "\t.word\t0xdfe30014\t\t# ld $3,20($31)\n"); \
2320 fprintf (STREAM, "\t.word\t0xdfe2001c\t\t# ld $2,28($31)\n"); \
2321 } \
2322 else \
2323 { \
2324 fprintf (STREAM, "\t.word\t0x8fe30014\t\t# lw $3,20($31)\n"); \
2325 fprintf (STREAM, "\t.word\t0x8fe20018\t\t# lw $2,24($31)\n"); \
2326 } \
2327 fprintf (STREAM, "\t.word\t0x0060c821\t\t# move $25,$3 (abicalls)\n"); \
2328 fprintf (STREAM, "\t.word\t0x00600008\t\t# jr $3\n"); \
2329 fprintf (STREAM, "\t.word\t0x0020f821\t\t# move $31,$1\n"); \
2330 if (TARGET_LONG64) \
2331 { \
2332 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <function address>\n"); \
2333 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <static chain value>\n"); \
2334 } \
2335 else \
2336 { \
2337 fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
2338 fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
2339 } \
2340 }
2341
2342 /* A C expression for the size in bytes of the trampoline, as an
2343 integer. */
2344
2345 #define TRAMPOLINE_SIZE (32 + (TARGET_LONG64 ? 16 : 8))
2346
2347 /* Alignment required for trampolines, in bits. */
2348
2349 #define TRAMPOLINE_ALIGNMENT (TARGET_LONG64 ? 64 : 32)
2350
2351 /* A C statement to initialize the variable parts of a trampoline.
2352 ADDR is an RTX for the address of the trampoline; FNADDR is an
2353 RTX for the address of the nested function; STATIC_CHAIN is an
2354 RTX for the static chain value that should be passed to the
2355 function when it is called. */
2356
2357 #define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
2358 { \
2359 rtx addr = ADDR; \
2360 if (TARGET_LONG64) \
2361 { \
2362 emit_move_insn (gen_rtx (MEM, DImode, plus_constant (addr, 32)), FUNC); \
2363 emit_move_insn (gen_rtx (MEM, DImode, plus_constant (addr, 40)), CHAIN);\
2364 } \
2365 else \
2366 { \
2367 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (addr, 32)), FUNC); \
2368 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (addr, 36)), CHAIN);\
2369 } \
2370 \
2371 /* Flush both caches. We need to flush the data cache in case \
2372 the system has a write-back cache. */ \
2373 /* ??? Should check the return value for errors. */ \
2374 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "_flush_cache"), \
2375 0, VOIDmode, 3, addr, Pmode, \
2376 GEN_INT (TRAMPOLINE_SIZE), TYPE_MODE (integer_type_node),\
2377 GEN_INT (3), TYPE_MODE (integer_type_node)); \
2378 }
2379 \f
2380 /* Addressing modes, and classification of registers for them. */
2381
2382 /* #define HAVE_POST_INCREMENT */
2383 /* #define HAVE_POST_DECREMENT */
2384
2385 /* #define HAVE_PRE_DECREMENT */
2386 /* #define HAVE_PRE_INCREMENT */
2387
2388 /* These assume that REGNO is a hard or pseudo reg number.
2389 They give nonzero only if REGNO is a hard reg of the suitable class
2390 or a pseudo reg currently allocated to a suitable hard reg.
2391 These definitions are NOT overridden anywhere. */
2392
2393 #define GP_REG_OR_PSEUDO_STRICT_P(regno) \
2394 GP_REG_P((regno < FIRST_PSEUDO_REGISTER) ? regno : reg_renumber[regno])
2395
2396 #define GP_REG_OR_PSEUDO_NONSTRICT_P(regno) \
2397 (((regno) >= FIRST_PSEUDO_REGISTER) || (GP_REG_P (regno)))
2398
2399 #define REGNO_OK_FOR_INDEX_P(regno) 0
2400 #define REGNO_OK_FOR_BASE_P(regno) GP_REG_OR_PSEUDO_STRICT_P (regno)
2401
2402 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2403 and check its validity for a certain class.
2404 We have two alternate definitions for each of them.
2405 The usual definition accepts all pseudo regs; the other rejects them all.
2406 The symbol REG_OK_STRICT causes the latter definition to be used.
2407
2408 Most source files want to accept pseudo regs in the hope that
2409 they will get allocated to the class that the insn wants them to be in.
2410 Some source files that are used after register allocation
2411 need to be strict. */
2412
2413 #ifndef REG_OK_STRICT
2414
2415 #define REG_OK_STRICT_P 0
2416 #define REG_OK_FOR_INDEX_P(X) 0
2417 #define REG_OK_FOR_BASE_P(X) GP_REG_OR_PSEUDO_NONSTRICT_P (REGNO (X))
2418
2419 #else
2420
2421 #define REG_OK_STRICT_P 1
2422 #define REG_OK_FOR_INDEX_P(X) 0
2423 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
2424
2425 #endif
2426
2427 \f
2428 /* Maximum number of registers that can appear in a valid memory address. */
2429
2430 #define MAX_REGS_PER_ADDRESS 1
2431
2432 /* A C compound statement with a conditional `goto LABEL;' executed
2433 if X (an RTX) is a legitimate memory address on the target
2434 machine for a memory operand of mode MODE.
2435
2436 It usually pays to define several simpler macros to serve as
2437 subroutines for this one. Otherwise it may be too complicated
2438 to understand.
2439
2440 This macro must exist in two variants: a strict variant and a
2441 non-strict one. The strict variant is used in the reload pass.
2442 It must be defined so that any pseudo-register that has not been
2443 allocated a hard register is considered a memory reference. In
2444 contexts where some kind of register is required, a
2445 pseudo-register with no hard register must be rejected.
2446
2447 The non-strict variant is used in other passes. It must be
2448 defined to accept all pseudo-registers in every context where
2449 some kind of register is required.
2450
2451 Compiler source files that want to use the strict variant of
2452 this macro define the macro `REG_OK_STRICT'. You should use an
2453 `#ifdef REG_OK_STRICT' conditional to define the strict variant
2454 in that case and the non-strict variant otherwise.
2455
2456 Typically among the subroutines used to define
2457 `GO_IF_LEGITIMATE_ADDRESS' are subroutines to check for
2458 acceptable registers for various purposes (one for base
2459 registers, one for index registers, and so on). Then only these
2460 subroutine macros need have two variants; the higher levels of
2461 macros may be the same whether strict or not.
2462
2463 Normally, constant addresses which are the sum of a `symbol_ref'
2464 and an integer are stored inside a `const' RTX to mark them as
2465 constant. Therefore, there is no need to recognize such sums
2466 specifically as legitimate addresses. Normally you would simply
2467 recognize any `const' as legitimate.
2468
2469 Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle
2470 constant sums that are not marked with `const'. It assumes
2471 that a naked `plus' indicates indexing. If so, then you *must*
2472 reject such naked constant sums as illegitimate addresses, so
2473 that none of them will be given to `PRINT_OPERAND_ADDRESS'.
2474
2475 On some machines, whether a symbolic address is legitimate
2476 depends on the section that the address refers to. On these
2477 machines, define the macro `ENCODE_SECTION_INFO' to store the
2478 information into the `symbol_ref', and then check for it here.
2479 When you see a `const', you will have to look inside it to find
2480 the `symbol_ref' in order to determine the section. */
2481
2482 #if 1
2483 #define GO_PRINTF(x) trace(x)
2484 #define GO_PRINTF2(x,y) trace(x,y)
2485 #define GO_DEBUG_RTX(x) debug_rtx(x)
2486
2487 #else
2488 #define GO_PRINTF(x)
2489 #define GO_PRINTF2(x,y)
2490 #define GO_DEBUG_RTX(x)
2491 #endif
2492
2493 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2494 { \
2495 register rtx xinsn = (X); \
2496 \
2497 if (TARGET_DEBUG_B_MODE) \
2498 { \
2499 GO_PRINTF2 ("\n========== GO_IF_LEGITIMATE_ADDRESS, %sstrict\n", \
2500 (REG_OK_STRICT_P) ? "" : "not "); \
2501 GO_DEBUG_RTX (xinsn); \
2502 } \
2503 \
2504 if (GET_CODE (xinsn) == REG && REG_OK_FOR_BASE_P (xinsn)) \
2505 goto ADDR; \
2506 \
2507 if (CONSTANT_ADDRESS_P (xinsn) \
2508 && ! (mips_split_addresses && mips_check_split (xinsn, MODE))) \
2509 goto ADDR; \
2510 \
2511 if (GET_CODE (xinsn) == LO_SUM && mips_split_addresses) \
2512 { \
2513 register rtx xlow0 = XEXP (xinsn, 0); \
2514 register rtx xlow1 = XEXP (xinsn, 1); \
2515 \
2516 if (GET_CODE (xlow0) == REG && REG_OK_FOR_BASE_P (xlow0) \
2517 && mips_check_split (xlow1, MODE)) \
2518 goto ADDR; \
2519 } \
2520 \
2521 if (GET_CODE (xinsn) == PLUS) \
2522 { \
2523 register rtx xplus0 = XEXP (xinsn, 0); \
2524 register rtx xplus1 = XEXP (xinsn, 1); \
2525 register enum rtx_code code0 = GET_CODE (xplus0); \
2526 register enum rtx_code code1 = GET_CODE (xplus1); \
2527 \
2528 if (code0 == REG && REG_OK_FOR_BASE_P (xplus0)) \
2529 { \
2530 if (code1 == CONST_INT \
2531 && INTVAL (xplus1) >= -32768 \
2532 && INTVAL (xplus1) + GET_MODE_SIZE (MODE) - 1 <= 32767) \
2533 goto ADDR; \
2534 \
2535 /* For some code sequences, you actually get better code by \
2536 pretending that the MIPS supports an address mode of a \
2537 constant address + a register, even though the real \
2538 machine doesn't support it. This is because the \
2539 assembler can use $r1 to load just the high 16 bits, add \
2540 in the register, and fold the low 16 bits into the memory \
2541 reference, whereas the compiler generates a 4 instruction \
2542 sequence. On the other hand, CSE is not as effective. \
2543 It would be a win to generate the lui directly, but the \
2544 MIPS assembler does not have syntax to generate the \
2545 appropriate relocation. */ \
2546 \
2547 /* Also accept CONST_INT addresses here, so no else. */ \
2548 /* Reject combining an embedded PIC text segment reference \
2549 with a register. That requires an additional \
2550 instruction. */ \
2551 /* ??? Reject combining an address with a register for the MIPS \
2552 64 bit ABI, because the SGI assembler can not handle this. */ \
2553 if (!TARGET_DEBUG_A_MODE \
2554 && (mips_abi == ABI_32 || mips_abi == ABI_EABI) \
2555 && CONSTANT_ADDRESS_P (xplus1) \
2556 && ! mips_split_addresses \
2557 && (!TARGET_EMBEDDED_PIC \
2558 || code1 != CONST \
2559 || GET_CODE (XEXP (xplus1, 0)) != MINUS)) \
2560 goto ADDR; \
2561 } \
2562 } \
2563 \
2564 if (TARGET_DEBUG_B_MODE) \
2565 GO_PRINTF ("Not a legitimate address\n"); \
2566 }
2567
2568
2569 /* A C expression that is 1 if the RTX X is a constant which is a
2570 valid address. This is defined to be the same as `CONSTANT_P (X)',
2571 but rejecting CONST_DOUBLE. */
2572 /* When pic, we must reject addresses of the form symbol+large int.
2573 This is because an instruction `sw $4,s+70000' needs to be converted
2574 by the assembler to `lw $at,s($gp);sw $4,70000($at)'. Normally the
2575 assembler would use $at as a temp to load in the large offset. In this
2576 case $at is already in use. We convert such problem addresses to
2577 `la $5,s;sw $4,70000($5)' via LEGITIMIZE_ADDRESS. */
2578 /* ??? SGI Irix 6 assembler fails for CONST address, so reject them. */
2579 #define CONSTANT_ADDRESS_P(X) \
2580 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
2581 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
2582 || (GET_CODE (X) == CONST \
2583 && ! (flag_pic && pic_address_needs_scratch (X)) \
2584 && (mips_abi == ABI_32 || mips_abi == ABI_EABI))) \
2585 && (!HALF_PIC_P () || !HALF_PIC_ADDRESS_P (X)))
2586
2587 /* Define this, so that when PIC, reload won't try to reload invalid
2588 addresses which require two reload registers. */
2589
2590 #define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
2591
2592 /* Nonzero if the constant value X is a legitimate general operand.
2593 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
2594
2595 At present, GAS doesn't understand li.[sd], so don't allow it
2596 to be generated at present. Also, the MIPS assembler does not
2597 grok li.d Infinity. */
2598
2599 /* ??? SGI Irix 6 assembler fails for CONST address, so reject them. */
2600 #define LEGITIMATE_CONSTANT_P(X) \
2601 ((GET_CODE (X) != CONST_DOUBLE \
2602 || mips_const_double_ok (X, GET_MODE (X))) \
2603 && ! (GET_CODE (X) == CONST \
2604 && mips_abi != ABI_32 && mips_abi != ABI_EABI))
2605
2606 /* A C compound statement that attempts to replace X with a valid
2607 memory address for an operand of mode MODE. WIN will be a C
2608 statement label elsewhere in the code; the macro definition may
2609 use
2610
2611 GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);
2612
2613 to avoid further processing if the address has become legitimate.
2614
2615 X will always be the result of a call to `break_out_memory_refs',
2616 and OLDX will be the operand that was given to that function to
2617 produce X.
2618
2619 The code generated by this macro should not alter the
2620 substructure of X. If it transforms X into a more legitimate
2621 form, it should assign X (which will always be a C variable) a
2622 new value.
2623
2624 It is not necessary for this macro to come up with a legitimate
2625 address. The compiler has standard ways of doing so in all
2626 cases. In fact, it is safe for this macro to do nothing. But
2627 often a machine-dependent strategy can generate better code.
2628
2629 For the MIPS, transform:
2630
2631 memory(X + <large int>)
2632
2633 into:
2634
2635 Y = <large int> & ~0x7fff;
2636 Z = X + Y
2637 memory (Z + (<large int> & 0x7fff));
2638
2639 This is for CSE to find several similar references, and only use one Z.
2640
2641 When PIC, convert addresses of the form memory (symbol+large int) to
2642 memory (reg+large int). */
2643
2644
2645 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2646 { \
2647 register rtx xinsn = (X); \
2648 \
2649 if (TARGET_DEBUG_B_MODE) \
2650 { \
2651 GO_PRINTF ("\n========== LEGITIMIZE_ADDRESS\n"); \
2652 GO_DEBUG_RTX (xinsn); \
2653 } \
2654 \
2655 if (mips_split_addresses && mips_check_split (X, MODE)) \
2656 { \
2657 /* ??? Is this ever executed? */ \
2658 X = gen_rtx (LO_SUM, Pmode, \
2659 copy_to_mode_reg (Pmode, gen_rtx (HIGH, Pmode, X)), X); \
2660 goto WIN; \
2661 } \
2662 \
2663 if (GET_CODE (xinsn) == CONST \
2664 && ((flag_pic && pic_address_needs_scratch (xinsn)) \
2665 /* ??? SGI's Irix 6 assembler can't handle CONST. */ \
2666 || (mips_abi != ABI_32 && mips_abi != ABI_EABI))) \
2667 { \
2668 rtx ptr_reg = gen_reg_rtx (Pmode); \
2669 rtx constant = XEXP (XEXP (xinsn, 0), 1); \
2670 \
2671 emit_move_insn (ptr_reg, XEXP (XEXP (xinsn, 0), 0)); \
2672 \
2673 X = gen_rtx (PLUS, Pmode, ptr_reg, constant); \
2674 if (SMALL_INT (constant)) \
2675 goto WIN; \
2676 /* Otherwise we fall through so the code below will fix the \
2677 constant. */ \
2678 xinsn = X; \
2679 } \
2680 \
2681 if (GET_CODE (xinsn) == PLUS) \
2682 { \
2683 register rtx xplus0 = XEXP (xinsn, 0); \
2684 register rtx xplus1 = XEXP (xinsn, 1); \
2685 register enum rtx_code code0 = GET_CODE (xplus0); \
2686 register enum rtx_code code1 = GET_CODE (xplus1); \
2687 \
2688 if (code0 != REG && code1 == REG) \
2689 { \
2690 xplus0 = XEXP (xinsn, 1); \
2691 xplus1 = XEXP (xinsn, 0); \
2692 code0 = GET_CODE (xplus0); \
2693 code1 = GET_CODE (xplus1); \
2694 } \
2695 \
2696 if (code0 == REG && REG_OK_FOR_BASE_P (xplus0) \
2697 && code1 == CONST_INT && !SMALL_INT (xplus1)) \
2698 { \
2699 rtx int_reg = gen_reg_rtx (Pmode); \
2700 rtx ptr_reg = gen_reg_rtx (Pmode); \
2701 \
2702 emit_move_insn (int_reg, \
2703 GEN_INT (INTVAL (xplus1) & ~ 0x7fff)); \
2704 \
2705 emit_insn (gen_rtx (SET, VOIDmode, \
2706 ptr_reg, \
2707 gen_rtx (PLUS, Pmode, xplus0, int_reg))); \
2708 \
2709 X = gen_rtx (PLUS, Pmode, ptr_reg, \
2710 GEN_INT (INTVAL (xplus1) & 0x7fff)); \
2711 goto WIN; \
2712 } \
2713 } \
2714 \
2715 if (TARGET_DEBUG_B_MODE) \
2716 GO_PRINTF ("LEGITIMIZE_ADDRESS could not fix.\n"); \
2717 }
2718
2719
2720 /* A C statement or compound statement with a conditional `goto
2721 LABEL;' executed if memory address X (an RTX) can have different
2722 meanings depending on the machine mode of the memory reference it
2723 is used for.
2724
2725 Autoincrement and autodecrement addresses typically have
2726 mode-dependent effects because the amount of the increment or
2727 decrement is the size of the operand being addressed. Some
2728 machines have other mode-dependent addresses. Many RISC machines
2729 have no mode-dependent addresses.
2730
2731 You may assume that ADDR is a valid address for the machine. */
2732
2733 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
2734
2735
2736 /* Define this macro if references to a symbol must be treated
2737 differently depending on something about the variable or
2738 function named by the symbol (such as what section it is in).
2739
2740 The macro definition, if any, is executed immediately after the
2741 rtl for DECL has been created and stored in `DECL_RTL (DECL)'.
2742 The value of the rtl will be a `mem' whose address is a
2743 `symbol_ref'.
2744
2745 The usual thing for this macro to do is to a flag in the
2746 `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
2747 name string in the `symbol_ref' (if one bit is not enough
2748 information).
2749
2750 The best way to modify the name string is by adding text to the
2751 beginning, with suitable punctuation to prevent any ambiguity.
2752 Allocate the new name in `saveable_obstack'. You will have to
2753 modify `ASM_OUTPUT_LABELREF' to remove and decode the added text
2754 and output the name accordingly.
2755
2756 You can also check the information stored in the `symbol_ref' in
2757 the definition of `GO_IF_LEGITIMATE_ADDRESS' or
2758 `PRINT_OPERAND_ADDRESS'. */
2759
2760 #define ENCODE_SECTION_INFO(DECL) \
2761 do \
2762 { \
2763 if (TARGET_EMBEDDED_PIC) \
2764 { \
2765 if (TREE_CODE (DECL) == VAR_DECL) \
2766 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
2767 else if (TREE_CODE (DECL) == FUNCTION_DECL) \
2768 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 0; \
2769 else if (TREE_CODE (DECL) == STRING_CST \
2770 && ! flag_writable_strings) \
2771 SYMBOL_REF_FLAG (XEXP (TREE_CST_RTL (DECL), 0)) = 0; \
2772 else \
2773 SYMBOL_REF_FLAG (XEXP (TREE_CST_RTL (DECL), 0)) = 1; \
2774 } \
2775 \
2776 else if (TARGET_GP_OPT && TREE_CODE (DECL) == VAR_DECL) \
2777 { \
2778 int size = int_size_in_bytes (TREE_TYPE (DECL)); \
2779 \
2780 if (size > 0 && size <= mips_section_threshold) \
2781 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
2782 } \
2783 \
2784 else if (HALF_PIC_P ()) \
2785 HALF_PIC_ENCODE (DECL); \
2786 } \
2787 while (0)
2788
2789 \f
2790 /* Specify the machine mode that this machine uses
2791 for the index in the tablejump instruction. */
2792 #define CASE_VECTOR_MODE (TARGET_LONG64 ? DImode : SImode)
2793
2794 /* Define this if the tablejump instruction expects the table
2795 to contain offsets from the address of the table.
2796 Do not define this if the table should contain absolute addresses. */
2797 /* #define CASE_VECTOR_PC_RELATIVE 1 */
2798
2799 /* Specify the tree operation to be used to convert reals to integers. */
2800 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
2801
2802 /* This is the kind of divide that is easiest to do in the general case. */
2803 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
2804
2805 /* Define this as 1 if `char' should by default be signed; else as 0. */
2806 #ifndef DEFAULT_SIGNED_CHAR
2807 #define DEFAULT_SIGNED_CHAR 1
2808 #endif
2809
2810 /* Max number of bytes we can move from memory to memory
2811 in one reasonably fast instruction. */
2812 #define MOVE_MAX (TARGET_64BIT ? 8 : 4)
2813 #define MAX_MOVE_MAX 8
2814
2815 /* Define this macro as a C expression which is nonzero if
2816 accessing less than a word of memory (i.e. a `char' or a
2817 `short') is no faster than accessing a word of memory, i.e., if
2818 such access require more than one instruction or if there is no
2819 difference in cost between byte and (aligned) word loads.
2820
2821 On RISC machines, it tends to generate better code to define
2822 this as 1, since it avoids making a QI or HI mode register. */
2823 #define SLOW_BYTE_ACCESS 1
2824
2825 /* We assume that the store-condition-codes instructions store 0 for false
2826 and some other value for true. This is the value stored for true. */
2827
2828 #define STORE_FLAG_VALUE 1
2829
2830 /* Define this if zero-extension is slow (more than one real instruction). */
2831 #define SLOW_ZERO_EXTEND
2832
2833 /* Define this to be nonzero if shift instructions ignore all but the low-order
2834 few bits. */
2835 #define SHIFT_COUNT_TRUNCATED 1
2836
2837 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2838 is done just by pretending it is already truncated. */
2839 /* In 64 bit mode, 32 bit instructions require that register values be properly
2840 sign-extended to 64 bits. As a result, a truncate is not a no-op if it
2841 converts a value >32 bits to a value <32 bits. */
2842 /* ??? This results in inefficient code for 64 bit to 32 conversions.
2843 Something needs to be done about this. Perhaps not use any 32 bit
2844 instructions? Perhaps use PROMOTE_MODE? */
2845 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2846 (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
2847
2848 /* Specify the machine mode that pointers have.
2849 After generation of rtl, the compiler makes no further distinction
2850 between pointers and any other objects of this machine mode. */
2851
2852 #define Pmode (TARGET_LONG64 ? DImode : SImode)
2853
2854 /* A function address in a call instruction
2855 is a word address (for indexing purposes)
2856 so give the MEM rtx a words's mode. */
2857
2858 #define FUNCTION_MODE (TARGET_LONG64 ? DImode : SImode)
2859
2860 /* Define TARGET_MEM_FUNCTIONS if we want to use calls to memcpy and
2861 memset, instead of the BSD functions bcopy and bzero. */
2862
2863 #if defined(MIPS_SYSV) || defined(OSF_OS)
2864 #define TARGET_MEM_FUNCTIONS
2865 #endif
2866
2867 \f
2868 /* A part of a C `switch' statement that describes the relative
2869 costs of constant RTL expressions. It must contain `case'
2870 labels for expression codes `const_int', `const', `symbol_ref',
2871 `label_ref' and `const_double'. Each case must ultimately reach
2872 a `return' statement to return the relative cost of the use of
2873 that kind of constant value in an expression. The cost may
2874 depend on the precise value of the constant, which is available
2875 for examination in X.
2876
2877 CODE is the expression code--redundant, since it can be obtained
2878 with `GET_CODE (X)'. */
2879
2880 #define CONST_COSTS(X,CODE,OUTER_CODE) \
2881 case CONST_INT: \
2882 /* Always return 0, since we don't have different sized \
2883 instructions, hence different costs according to Richard \
2884 Kenner */ \
2885 return 0; \
2886 \
2887 case LABEL_REF: \
2888 return COSTS_N_INSNS (2); \
2889 \
2890 case CONST: \
2891 { \
2892 rtx offset = const0_rtx; \
2893 rtx symref = eliminate_constant_term (XEXP (X, 0), &offset); \
2894 \
2895 if (GET_CODE (symref) == LABEL_REF) \
2896 return COSTS_N_INSNS (2); \
2897 \
2898 if (GET_CODE (symref) != SYMBOL_REF) \
2899 return COSTS_N_INSNS (4); \
2900 \
2901 /* let's be paranoid.... */ \
2902 if (INTVAL (offset) < -32768 || INTVAL (offset) > 32767) \
2903 return COSTS_N_INSNS (2); \
2904 \
2905 return COSTS_N_INSNS (SYMBOL_REF_FLAG (symref) ? 1 : 2); \
2906 } \
2907 \
2908 case SYMBOL_REF: \
2909 return COSTS_N_INSNS (SYMBOL_REF_FLAG (X) ? 1 : 2); \
2910 \
2911 case CONST_DOUBLE: \
2912 { \
2913 rtx high, low; \
2914 split_double (X, &high, &low); \
2915 return COSTS_N_INSNS ((high == CONST0_RTX (GET_MODE (high)) \
2916 || low == CONST0_RTX (GET_MODE (low))) \
2917 ? 2 : 4); \
2918 }
2919
2920 /* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
2921 This can be used, for example, to indicate how costly a multiply
2922 instruction is. In writing this macro, you can use the construct
2923 `COSTS_N_INSNS (N)' to specify a cost equal to N fast instructions.
2924
2925 This macro is optional; do not define it if the default cost
2926 assumptions are adequate for the target machine.
2927
2928 If -mdebugd is used, change the multiply cost to 2, so multiply by
2929 a constant isn't converted to a series of shifts. This helps
2930 strength reduction, and also makes it easier to identify what the
2931 compiler is doing. */
2932
2933 /* ??? Fix this to be right for the R8000. */
2934 #define RTX_COSTS(X,CODE,OUTER_CODE) \
2935 case MEM: \
2936 { \
2937 int num_words = (GET_MODE_SIZE (GET_MODE (X)) > UNITS_PER_WORD) ? 2 : 1; \
2938 if (simple_memory_operand (X, GET_MODE (X))) \
2939 return COSTS_N_INSNS (num_words); \
2940 \
2941 return COSTS_N_INSNS (2*num_words); \
2942 } \
2943 \
2944 case FFS: \
2945 return COSTS_N_INSNS (6); \
2946 \
2947 case NOT: \
2948 return COSTS_N_INSNS ((GET_MODE (X) == DImode && !TARGET_64BIT) ? 2 : 1); \
2949 \
2950 case AND: \
2951 case IOR: \
2952 case XOR: \
2953 if (GET_MODE (X) == DImode && !TARGET_64BIT) \
2954 return COSTS_N_INSNS (2); \
2955 \
2956 return COSTS_N_INSNS (1); \
2957 \
2958 case ASHIFT: \
2959 case ASHIFTRT: \
2960 case LSHIFTRT: \
2961 if (GET_MODE (X) == DImode && !TARGET_64BIT) \
2962 return COSTS_N_INSNS ((GET_CODE (XEXP (X, 1)) == CONST_INT) ? 4 : 12); \
2963 \
2964 return COSTS_N_INSNS (1); \
2965 \
2966 case ABS: \
2967 { \
2968 enum machine_mode xmode = GET_MODE (X); \
2969 if (xmode == SFmode || xmode == DFmode) \
2970 return COSTS_N_INSNS (1); \
2971 \
2972 return COSTS_N_INSNS (4); \
2973 } \
2974 \
2975 case PLUS: \
2976 case MINUS: \
2977 { \
2978 enum machine_mode xmode = GET_MODE (X); \
2979 if (xmode == SFmode || xmode == DFmode) \
2980 { \
2981 if (mips_cpu == PROCESSOR_R3000 \
2982 || mips_cpu == PROCESSOR_R3900) \
2983 return COSTS_N_INSNS (2); \
2984 else if (mips_cpu == PROCESSOR_R6000) \
2985 return COSTS_N_INSNS (3); \
2986 else \
2987 return COSTS_N_INSNS (6); \
2988 } \
2989 \
2990 if (xmode == DImode && !TARGET_64BIT) \
2991 return COSTS_N_INSNS (4); \
2992 \
2993 return COSTS_N_INSNS (1); \
2994 } \
2995 \
2996 case NEG: \
2997 return COSTS_N_INSNS ((GET_MODE (X) == DImode && !TARGET_64BIT) ? 4 : 1); \
2998 \
2999 case MULT: \
3000 { \
3001 enum machine_mode xmode = GET_MODE (X); \
3002 if (xmode == SFmode) \
3003 { \
3004 if (mips_cpu == PROCESSOR_R3000 \
3005 || mips_cpu == PROCESSOR_R3900 \
3006 || mips_cpu == PROCESSOR_R5000) \
3007 return COSTS_N_INSNS (4); \
3008 else if (mips_cpu == PROCESSOR_R6000) \
3009 return COSTS_N_INSNS (5); \
3010 else \
3011 return COSTS_N_INSNS (7); \
3012 } \
3013 \
3014 if (xmode == DFmode) \
3015 { \
3016 if (mips_cpu == PROCESSOR_R3000 \
3017 || mips_cpu == PROCESSOR_R3900 \
3018 || mips_cpu == PROCESSOR_R5000) \
3019 return COSTS_N_INSNS (5); \
3020 else if (mips_cpu == PROCESSOR_R6000) \
3021 return COSTS_N_INSNS (6); \
3022 else \
3023 return COSTS_N_INSNS (8); \
3024 } \
3025 \
3026 if (mips_cpu == PROCESSOR_R3000) \
3027 return COSTS_N_INSNS (12); \
3028 else if (mips_cpu == PROCESSOR_R3900) \
3029 return COSTS_N_INSNS (2); \
3030 else if (mips_cpu == PROCESSOR_R6000) \
3031 return COSTS_N_INSNS (17); \
3032 else if (mips_cpu == PROCESSOR_R5000) \
3033 return COSTS_N_INSNS (5); \
3034 else \
3035 return COSTS_N_INSNS (10); \
3036 } \
3037 \
3038 case DIV: \
3039 case MOD: \
3040 { \
3041 enum machine_mode xmode = GET_MODE (X); \
3042 if (xmode == SFmode) \
3043 { \
3044 if (mips_cpu == PROCESSOR_R3000 \
3045 || mips_cpu == PROCESSOR_R3900) \
3046 return COSTS_N_INSNS (12); \
3047 else if (mips_cpu == PROCESSOR_R6000) \
3048 return COSTS_N_INSNS (15); \
3049 else \
3050 return COSTS_N_INSNS (23); \
3051 } \
3052 \
3053 if (xmode == DFmode) \
3054 { \
3055 if (mips_cpu == PROCESSOR_R3000 \
3056 || mips_cpu == PROCESSOR_R3900) \
3057 return COSTS_N_INSNS (19); \
3058 else if (mips_cpu == PROCESSOR_R6000) \
3059 return COSTS_N_INSNS (16); \
3060 else \
3061 return COSTS_N_INSNS (36); \
3062 } \
3063 } \
3064 /* fall through */ \
3065 \
3066 case UDIV: \
3067 case UMOD: \
3068 if (mips_cpu == PROCESSOR_R3000 \
3069 || mips_cpu == PROCESSOR_R3900) \
3070 return COSTS_N_INSNS (35); \
3071 else if (mips_cpu == PROCESSOR_R6000) \
3072 return COSTS_N_INSNS (38); \
3073 else if (mips_cpu == PROCESSOR_R5000) \
3074 return COSTS_N_INSNS (36); \
3075 else \
3076 return COSTS_N_INSNS (69); \
3077 \
3078 case SIGN_EXTEND: \
3079 /* A sign extend from SImode to DImode in 64 bit mode is often \
3080 zero instructions, because the result can often be used \
3081 directly by another instruction; we'll call it one. */ \
3082 if (TARGET_64BIT && GET_MODE (X) == DImode \
3083 && GET_MODE (XEXP (X, 0)) == SImode) \
3084 return COSTS_N_INSNS (1); \
3085 else \
3086 return COSTS_N_INSNS (2); \
3087 \
3088 case ZERO_EXTEND: \
3089 if (TARGET_64BIT && GET_MODE (X) == DImode \
3090 && GET_MODE (XEXP (X, 0)) == SImode) \
3091 return COSTS_N_INSNS (2); \
3092 else \
3093 return COSTS_N_INSNS (1);
3094
3095 /* An expression giving the cost of an addressing mode that
3096 contains ADDRESS. If not defined, the cost is computed from the
3097 form of the ADDRESS expression and the `CONST_COSTS' values.
3098
3099 For most CISC machines, the default cost is a good approximation
3100 of the true cost of the addressing mode. However, on RISC
3101 machines, all instructions normally have the same length and
3102 execution time. Hence all addresses will have equal costs.
3103
3104 In cases where more than one form of an address is known, the
3105 form with the lowest cost will be used. If multiple forms have
3106 the same, lowest, cost, the one that is the most complex will be
3107 used.
3108
3109 For example, suppose an address that is equal to the sum of a
3110 register and a constant is used twice in the same basic block.
3111 When this macro is not defined, the address will be computed in
3112 a register and memory references will be indirect through that
3113 register. On machines where the cost of the addressing mode
3114 containing the sum is no higher than that of a simple indirect
3115 reference, this will produce an additional instruction and
3116 possibly require an additional register. Proper specification
3117 of this macro eliminates this overhead for such machines.
3118
3119 Similar use of this macro is made in strength reduction of loops.
3120
3121 ADDRESS need not be valid as an address. In such a case, the
3122 cost is not relevant and can be any value; invalid addresses
3123 need not be assigned a different cost.
3124
3125 On machines where an address involving more than one register is
3126 as cheap as an address computation involving only one register,
3127 defining `ADDRESS_COST' to reflect this can cause two registers
3128 to be live over a region of code where only one would have been
3129 if `ADDRESS_COST' were not defined in that manner. This effect
3130 should be considered in the definition of this macro.
3131 Equivalent costs should probably only be given to addresses with
3132 different numbers of registers on machines with lots of registers.
3133
3134 This macro will normally either not be defined or be defined as
3135 a constant. */
3136
3137 #define ADDRESS_COST(ADDR) (REG_P (ADDR) ? 1 : mips_address_cost (ADDR))
3138
3139 /* A C expression for the cost of moving data from a register in
3140 class FROM to one in class TO. The classes are expressed using
3141 the enumeration values such as `GENERAL_REGS'. A value of 2 is
3142 the default; other values are interpreted relative to that.
3143
3144 It is not required that the cost always equal 2 when FROM is the
3145 same as TO; on some machines it is expensive to move between
3146 registers if they are not general registers.
3147
3148 If reload sees an insn consisting of a single `set' between two
3149 hard registers, and if `REGISTER_MOVE_COST' applied to their
3150 classes returns a value of 2, reload does not check to ensure
3151 that the constraints of the insn are met. Setting a cost of
3152 other than 2 will allow reload to verify that the constraints are
3153 met. You should do this if the `movM' pattern's constraints do
3154 not allow such copying. */
3155
3156 #define REGISTER_MOVE_COST(FROM, TO) \
3157 ((FROM) == GR_REGS && (TO) == GR_REGS ? 2 \
3158 : (FROM) == FP_REGS && (TO) == FP_REGS ? 2 \
3159 : (FROM) == GR_REGS && (TO) == FP_REGS ? 4 \
3160 : (FROM) == FP_REGS && (TO) == GR_REGS ? 4 \
3161 : (((FROM) == HI_REG || (FROM) == LO_REG \
3162 || (FROM) == MD_REGS || (FROM) == HILO_REG) \
3163 && (TO) == GR_REGS) ? 6 \
3164 : (((TO) == HI_REG || (TO) == LO_REG \
3165 || (TO) == MD_REGS || (FROM) == HILO_REG) \
3166 && (FROM) == GR_REGS) ? 6 \
3167 : (FROM) == ST_REGS && (TO) == GR_REGS ? 4 \
3168 : (FROM) == FP_REGS && (TO) == ST_REGS ? 8 \
3169 : 12)
3170
3171 /* ??? Fix this to be right for the R8000. */
3172 #define MEMORY_MOVE_COST(MODE) \
3173 ((mips_cpu == PROCESSOR_R4000 || mips_cpu == PROCESSOR_R6000) ? 6 : 4)
3174
3175 /* A C expression for the cost of a branch instruction. A value of
3176 1 is the default; other values are interpreted relative to that. */
3177
3178 /* ??? Fix this to be right for the R8000. */
3179 #define BRANCH_COST \
3180 ((mips_cpu == PROCESSOR_R4000 || mips_cpu == PROCESSOR_R6000) ? 2 : 1)
3181
3182 /* A C statement (sans semicolon) to update the integer variable COST
3183 based on the relationship between INSN that is dependent on
3184 DEP_INSN through the dependence LINK. The default is to make no
3185 adjustment to COST. On the MIPS, ignore the cost of anti- and
3186 output-dependencies. */
3187
3188 #define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
3189 if (REG_NOTE_KIND (LINK) != 0) \
3190 (COST) = 0; /* Anti or output dependence. */
3191 \f
3192 /* Optionally define this if you have added predicates to
3193 `MACHINE.c'. This macro is called within an initializer of an
3194 array of structures. The first field in the structure is the
3195 name of a predicate and the second field is an array of rtl
3196 codes. For each predicate, list all rtl codes that can be in
3197 expressions matched by the predicate. The list should have a
3198 trailing comma. Here is an example of two entries in the list
3199 for a typical RISC machine:
3200
3201 #define PREDICATE_CODES \
3202 {"gen_reg_rtx_operand", {SUBREG, REG}}, \
3203 {"reg_or_short_cint_operand", {SUBREG, REG, CONST_INT}},
3204
3205 Defining this macro does not affect the generated code (however,
3206 incorrect definitions that omit an rtl code that may be matched
3207 by the predicate can cause the compiler to malfunction).
3208 Instead, it allows the table built by `genrecog' to be more
3209 compact and efficient, thus speeding up the compiler. The most
3210 important predicates to include in the list specified by this
3211 macro are thoses used in the most insn patterns. */
3212
3213 #define PREDICATE_CODES \
3214 {"uns_arith_operand", { REG, CONST_INT, SUBREG }}, \
3215 {"arith_operand", { REG, CONST_INT, SUBREG }}, \
3216 {"arith32_operand", { REG, CONST_INT, SUBREG }}, \
3217 {"reg_or_0_operand", { REG, CONST_INT, SUBREG }}, \
3218 {"small_int", { CONST_INT }}, \
3219 {"large_int", { CONST_INT }}, \
3220 {"mips_const_double_ok", { CONST_DOUBLE }}, \
3221 {"const_float_1_operand", { CONST_DOUBLE }}, \
3222 {"simple_memory_operand", { MEM, SUBREG }}, \
3223 {"equality_op", { EQ, NE }}, \
3224 {"cmp_op", { EQ, NE, GT, GE, GTU, GEU, LT, LE, \
3225 LTU, LEU }}, \
3226 {"pc_or_label_operand", { PC, LABEL_REF }}, \
3227 {"call_insn_operand", { CONST_INT, CONST, SYMBOL_REF, REG}}, \
3228 {"move_operand", { CONST_INT, CONST_DOUBLE, CONST, \
3229 SYMBOL_REF, LABEL_REF, SUBREG, \
3230 REG, MEM}}, \
3231 {"movdi_operand", { CONST_INT, CONST_DOUBLE, CONST, \
3232 SYMBOL_REF, LABEL_REF, SUBREG, REG, \
3233 MEM, SIGN_EXTEND }}, \
3234 {"se_register_operand", { SUBREG, REG, SIGN_EXTEND }}, \
3235 {"se_reg_or_0_operand", { REG, CONST_INT, SUBREG, \
3236 SIGN_EXTEND }}, \
3237 {"se_uns_arith_operand", { REG, CONST_INT, SUBREG, \
3238 SIGN_EXTEND }}, \
3239 {"se_arith_operand", { REG, CONST_INT, SUBREG, \
3240 SIGN_EXTEND }}, \
3241 {"se_nonmemory_operand", { CONST_INT, CONST_DOUBLE, CONST, \
3242 SYMBOL_REF, LABEL_REF, SUBREG, \
3243 REG, SIGN_EXTEND }}, \
3244 {"se_nonimmediate_operand", { SUBREG, REG, MEM, SIGN_EXTEND }},
3245
3246 \f
3247 /* If defined, a C statement to be executed just prior to the
3248 output of assembler code for INSN, to modify the extracted
3249 operands so they will be output differently.
3250
3251 Here the argument OPVEC is the vector containing the operands
3252 extracted from INSN, and NOPERANDS is the number of elements of
3253 the vector which contain meaningful data for this insn. The
3254 contents of this vector are what will be used to convert the
3255 insn template into assembler code, so you can change the
3256 assembler output by changing the contents of the vector.
3257
3258 We use it to check if the current insn needs a nop in front of it
3259 because of load delays, and also to update the delay slot
3260 statistics. */
3261
3262 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
3263 final_prescan_insn (INSN, OPVEC, NOPERANDS)
3264
3265 \f
3266 /* Control the assembler format that we output. */
3267
3268 /* Output at beginning of assembler file.
3269 If we are optimizing to use the global pointer, create a temporary
3270 file to hold all of the text stuff, and write it out to the end.
3271 This is needed because the MIPS assembler is evidently one pass,
3272 and if it hasn't seen the relevant .comm/.lcomm/.extern/.sdata
3273 declaration when the code is processed, it generates a two
3274 instruction sequence. */
3275
3276 #define ASM_FILE_START(STREAM) mips_asm_file_start (STREAM)
3277
3278 /* Output to assembler file text saying following lines
3279 may contain character constants, extra white space, comments, etc. */
3280
3281 #define ASM_APP_ON " #APP\n"
3282
3283 /* Output to assembler file text saying following lines
3284 no longer contain unusual constructs. */
3285
3286 #define ASM_APP_OFF " #NO_APP\n"
3287
3288 /* How to refer to registers in assembler output.
3289 This sequence is indexed by compiler's hard-register-number (see above).
3290
3291 In order to support the two different conventions for register names,
3292 we use the name of a table set up in mips.c, which is overwritten
3293 if -mrnames is used. */
3294
3295 #define REGISTER_NAMES \
3296 { \
3297 &mips_reg_names[ 0][0], \
3298 &mips_reg_names[ 1][0], \
3299 &mips_reg_names[ 2][0], \
3300 &mips_reg_names[ 3][0], \
3301 &mips_reg_names[ 4][0], \
3302 &mips_reg_names[ 5][0], \
3303 &mips_reg_names[ 6][0], \
3304 &mips_reg_names[ 7][0], \
3305 &mips_reg_names[ 8][0], \
3306 &mips_reg_names[ 9][0], \
3307 &mips_reg_names[10][0], \
3308 &mips_reg_names[11][0], \
3309 &mips_reg_names[12][0], \
3310 &mips_reg_names[13][0], \
3311 &mips_reg_names[14][0], \
3312 &mips_reg_names[15][0], \
3313 &mips_reg_names[16][0], \
3314 &mips_reg_names[17][0], \
3315 &mips_reg_names[18][0], \
3316 &mips_reg_names[19][0], \
3317 &mips_reg_names[20][0], \
3318 &mips_reg_names[21][0], \
3319 &mips_reg_names[22][0], \
3320 &mips_reg_names[23][0], \
3321 &mips_reg_names[24][0], \
3322 &mips_reg_names[25][0], \
3323 &mips_reg_names[26][0], \
3324 &mips_reg_names[27][0], \
3325 &mips_reg_names[28][0], \
3326 &mips_reg_names[29][0], \
3327 &mips_reg_names[30][0], \
3328 &mips_reg_names[31][0], \
3329 &mips_reg_names[32][0], \
3330 &mips_reg_names[33][0], \
3331 &mips_reg_names[34][0], \
3332 &mips_reg_names[35][0], \
3333 &mips_reg_names[36][0], \
3334 &mips_reg_names[37][0], \
3335 &mips_reg_names[38][0], \
3336 &mips_reg_names[39][0], \
3337 &mips_reg_names[40][0], \
3338 &mips_reg_names[41][0], \
3339 &mips_reg_names[42][0], \
3340 &mips_reg_names[43][0], \
3341 &mips_reg_names[44][0], \
3342 &mips_reg_names[45][0], \
3343 &mips_reg_names[46][0], \
3344 &mips_reg_names[47][0], \
3345 &mips_reg_names[48][0], \
3346 &mips_reg_names[49][0], \
3347 &mips_reg_names[50][0], \
3348 &mips_reg_names[51][0], \
3349 &mips_reg_names[52][0], \
3350 &mips_reg_names[53][0], \
3351 &mips_reg_names[54][0], \
3352 &mips_reg_names[55][0], \
3353 &mips_reg_names[56][0], \
3354 &mips_reg_names[57][0], \
3355 &mips_reg_names[58][0], \
3356 &mips_reg_names[59][0], \
3357 &mips_reg_names[60][0], \
3358 &mips_reg_names[61][0], \
3359 &mips_reg_names[62][0], \
3360 &mips_reg_names[63][0], \
3361 &mips_reg_names[64][0], \
3362 &mips_reg_names[65][0], \
3363 &mips_reg_names[66][0], \
3364 &mips_reg_names[67][0], \
3365 &mips_reg_names[68][0], \
3366 &mips_reg_names[69][0], \
3367 &mips_reg_names[70][0], \
3368 &mips_reg_names[71][0], \
3369 &mips_reg_names[72][0], \
3370 &mips_reg_names[73][0], \
3371 &mips_reg_names[74][0], \
3372 &mips_reg_names[75][0], \
3373 }
3374
3375 /* print-rtl.c can't use REGISTER_NAMES, since it depends on mips.c.
3376 So define this for it. */
3377 #define DEBUG_REGISTER_NAMES \
3378 { \
3379 "$0", "at", "v0", "v1", "a0", "a1", "a2", "a3", \
3380 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", \
3381 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", \
3382 "t8", "t9", "k0", "k1", "gp", "sp", "$fp", "ra", \
3383 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
3384 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
3385 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
3386 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
3387 "hi", "lo", "accum","$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
3388 "$fcc5","$fcc6","$fcc7","$rap" \
3389 }
3390
3391 /* If defined, a C initializer for an array of structures
3392 containing a name and a register number. This macro defines
3393 additional names for hard registers, thus allowing the `asm'
3394 option in declarations to refer to registers using alternate
3395 names.
3396
3397 We define both names for the integer registers here. */
3398
3399 #define ADDITIONAL_REGISTER_NAMES \
3400 { \
3401 { "$0", 0 + GP_REG_FIRST }, \
3402 { "$1", 1 + GP_REG_FIRST }, \
3403 { "$2", 2 + GP_REG_FIRST }, \
3404 { "$3", 3 + GP_REG_FIRST }, \
3405 { "$4", 4 + GP_REG_FIRST }, \
3406 { "$5", 5 + GP_REG_FIRST }, \
3407 { "$6", 6 + GP_REG_FIRST }, \
3408 { "$7", 7 + GP_REG_FIRST }, \
3409 { "$8", 8 + GP_REG_FIRST }, \
3410 { "$9", 9 + GP_REG_FIRST }, \
3411 { "$10", 10 + GP_REG_FIRST }, \
3412 { "$11", 11 + GP_REG_FIRST }, \
3413 { "$12", 12 + GP_REG_FIRST }, \
3414 { "$13", 13 + GP_REG_FIRST }, \
3415 { "$14", 14 + GP_REG_FIRST }, \
3416 { "$15", 15 + GP_REG_FIRST }, \
3417 { "$16", 16 + GP_REG_FIRST }, \
3418 { "$17", 17 + GP_REG_FIRST }, \
3419 { "$18", 18 + GP_REG_FIRST }, \
3420 { "$19", 19 + GP_REG_FIRST }, \
3421 { "$20", 20 + GP_REG_FIRST }, \
3422 { "$21", 21 + GP_REG_FIRST }, \
3423 { "$22", 22 + GP_REG_FIRST }, \
3424 { "$23", 23 + GP_REG_FIRST }, \
3425 { "$24", 24 + GP_REG_FIRST }, \
3426 { "$25", 25 + GP_REG_FIRST }, \
3427 { "$26", 26 + GP_REG_FIRST }, \
3428 { "$27", 27 + GP_REG_FIRST }, \
3429 { "$28", 28 + GP_REG_FIRST }, \
3430 { "$29", 29 + GP_REG_FIRST }, \
3431 { "$30", 30 + GP_REG_FIRST }, \
3432 { "$31", 31 + GP_REG_FIRST }, \
3433 { "$sp", 29 + GP_REG_FIRST }, \
3434 { "$fp", 30 + GP_REG_FIRST }, \
3435 { "at", 1 + GP_REG_FIRST }, \
3436 { "v0", 2 + GP_REG_FIRST }, \
3437 { "v1", 3 + GP_REG_FIRST }, \
3438 { "a0", 4 + GP_REG_FIRST }, \
3439 { "a1", 5 + GP_REG_FIRST }, \
3440 { "a2", 6 + GP_REG_FIRST }, \
3441 { "a3", 7 + GP_REG_FIRST }, \
3442 { "t0", 8 + GP_REG_FIRST }, \
3443 { "t1", 9 + GP_REG_FIRST }, \
3444 { "t2", 10 + GP_REG_FIRST }, \
3445 { "t3", 11 + GP_REG_FIRST }, \
3446 { "t4", 12 + GP_REG_FIRST }, \
3447 { "t5", 13 + GP_REG_FIRST }, \
3448 { "t6", 14 + GP_REG_FIRST }, \
3449 { "t7", 15 + GP_REG_FIRST }, \
3450 { "s0", 16 + GP_REG_FIRST }, \
3451 { "s1", 17 + GP_REG_FIRST }, \
3452 { "s2", 18 + GP_REG_FIRST }, \
3453 { "s3", 19 + GP_REG_FIRST }, \
3454 { "s4", 20 + GP_REG_FIRST }, \
3455 { "s5", 21 + GP_REG_FIRST }, \
3456 { "s6", 22 + GP_REG_FIRST }, \
3457 { "s7", 23 + GP_REG_FIRST }, \
3458 { "t8", 24 + GP_REG_FIRST }, \
3459 { "t9", 25 + GP_REG_FIRST }, \
3460 { "k0", 26 + GP_REG_FIRST }, \
3461 { "k1", 27 + GP_REG_FIRST }, \
3462 { "gp", 28 + GP_REG_FIRST }, \
3463 { "sp", 29 + GP_REG_FIRST }, \
3464 { "fp", 30 + GP_REG_FIRST }, \
3465 { "ra", 31 + GP_REG_FIRST }, \
3466 { "$sp", 29 + GP_REG_FIRST }, \
3467 { "$fp", 30 + GP_REG_FIRST } \
3468 }
3469
3470 /* Define results of standard character escape sequences. */
3471 #define TARGET_BELL 007
3472 #define TARGET_BS 010
3473 #define TARGET_TAB 011
3474 #define TARGET_NEWLINE 012
3475 #define TARGET_VT 013
3476 #define TARGET_FF 014
3477 #define TARGET_CR 015
3478
3479 /* A C compound statement to output to stdio stream STREAM the
3480 assembler syntax for an instruction operand X. X is an RTL
3481 expression.
3482
3483 CODE is a value that can be used to specify one of several ways
3484 of printing the operand. It is used when identical operands
3485 must be printed differently depending on the context. CODE
3486 comes from the `%' specification that was used to request
3487 printing of the operand. If the specification was just `%DIGIT'
3488 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
3489 is the ASCII code for LTR.
3490
3491 If X is a register, this macro should print the register's name.
3492 The names can be found in an array `reg_names' whose type is
3493 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
3494
3495 When the machine description has a specification `%PUNCT' (a `%'
3496 followed by a punctuation character), this macro is called with
3497 a null pointer for X and the punctuation character for CODE.
3498
3499 See mips.c for the MIPS specific codes. */
3500
3501 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
3502
3503 /* A C expression which evaluates to true if CODE is a valid
3504 punctuation character for use in the `PRINT_OPERAND' macro. If
3505 `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no
3506 punctuation characters (except for the standard one, `%') are
3507 used in this way. */
3508
3509 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE]
3510
3511 /* A C compound statement to output to stdio stream STREAM the
3512 assembler syntax for an instruction operand that is a memory
3513 reference whose address is ADDR. ADDR is an RTL expression.
3514
3515 On some machines, the syntax for a symbolic address depends on
3516 the section that the address refers to. On these machines,
3517 define the macro `ENCODE_SECTION_INFO' to store the information
3518 into the `symbol_ref', and then check for it here. */
3519
3520 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
3521
3522
3523 /* A C statement, to be executed after all slot-filler instructions
3524 have been output. If necessary, call `dbr_sequence_length' to
3525 determine the number of slots filled in a sequence (zero if not
3526 currently outputting a sequence), to decide how many no-ops to
3527 output, or whatever.
3528
3529 Don't define this macro if it has nothing to do, but it is
3530 helpful in reading assembly output if the extent of the delay
3531 sequence is made explicit (e.g. with white space).
3532
3533 Note that output routines for instructions with delay slots must
3534 be prepared to deal with not being output as part of a sequence
3535 (i.e. when the scheduling pass is not run, or when no slot
3536 fillers could be found.) The variable `final_sequence' is null
3537 when not processing a sequence, otherwise it contains the
3538 `sequence' rtx being output. */
3539
3540 #define DBR_OUTPUT_SEQEND(STREAM) \
3541 do \
3542 { \
3543 if (set_nomacro > 0 && --set_nomacro == 0) \
3544 fputs ("\t.set\tmacro\n", STREAM); \
3545 \
3546 if (set_noreorder > 0 && --set_noreorder == 0) \
3547 fputs ("\t.set\treorder\n", STREAM); \
3548 \
3549 dslots_jump_filled++; \
3550 fputs ("\n", STREAM); \
3551 } \
3552 while (0)
3553
3554
3555 /* How to tell the debugger about changes of source files. Note, the
3556 mips ECOFF format cannot deal with changes of files inside of
3557 functions, which means the output of parser generators like bison
3558 is generally not debuggable without using the -l switch. Lose,
3559 lose, lose. Silicon graphics seems to want all .file's hardwired
3560 to 1. */
3561
3562 #ifndef SET_FILE_NUMBER
3563 #define SET_FILE_NUMBER() ++num_source_filenames
3564 #endif
3565
3566 #define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
3567 mips_output_filename (STREAM, NAME)
3568
3569 /* This is defined so that it can be overridden in iris6.h. */
3570 #define ASM_OUTPUT_FILENAME(STREAM, NUM_SOURCE_FILENAMES, NAME) \
3571 do \
3572 { \
3573 fprintf (STREAM, "\t.file\t%d ", NUM_SOURCE_FILENAMES); \
3574 output_quoted_string (STREAM, NAME); \
3575 fputs ("\n", STREAM); \
3576 } \
3577 while (0)
3578
3579 /* This is how to output a note the debugger telling it the line number
3580 to which the following sequence of instructions corresponds.
3581 Silicon graphics puts a label after each .loc. */
3582
3583 #ifndef LABEL_AFTER_LOC
3584 #define LABEL_AFTER_LOC(STREAM)
3585 #endif
3586
3587 #define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
3588 mips_output_lineno (STREAM, LINE)
3589
3590 /* The MIPS implementation uses some labels for it's own purpose. The
3591 following lists what labels are created, and are all formed by the
3592 pattern $L[a-z].*. The machine independent portion of GCC creates
3593 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
3594
3595 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
3596 $Lb[0-9]+ Begin blocks for MIPS debug support
3597 $Lc[0-9]+ Label for use in s<xx> operation.
3598 $Le[0-9]+ End blocks for MIPS debug support
3599 $Lp\..+ Half-pic labels. */
3600
3601 /* This is how to output the definition of a user-level label named NAME,
3602 such as the label on a static function or variable NAME.
3603
3604 If we are optimizing the gp, remember that this label has been put
3605 out, so we know not to emit an .extern for it in mips_asm_file_end.
3606 We use one of the common bits in the IDENTIFIER tree node for this,
3607 since those bits seem to be unused, and we don't have any method
3608 of getting the decl nodes from the name. */
3609
3610 #define ASM_OUTPUT_LABEL(STREAM,NAME) \
3611 do { \
3612 assemble_name (STREAM, NAME); \
3613 fputs (":\n", STREAM); \
3614 } while (0)
3615
3616
3617 /* A C statement (sans semicolon) to output to the stdio stream
3618 STREAM any text necessary for declaring the name NAME of an
3619 initialized variable which is being defined. This macro must
3620 output the label definition (perhaps using `ASM_OUTPUT_LABEL').
3621 The argument DECL is the `VAR_DECL' tree node representing the
3622 variable.
3623
3624 If this macro is not defined, then the variable name is defined
3625 in the usual manner as a label (by means of `ASM_OUTPUT_LABEL'). */
3626
3627 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
3628 do \
3629 { \
3630 mips_declare_object (STREAM, NAME, "", ":\n", 0); \
3631 HALF_PIC_DECLARE (NAME); \
3632 } \
3633 while (0)
3634
3635
3636 /* This is how to output a command to make the user-level label named NAME
3637 defined for reference from other files. */
3638
3639 #define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
3640 do { \
3641 fputs ("\t.globl\t", STREAM); \
3642 assemble_name (STREAM, NAME); \
3643 fputs ("\n", STREAM); \
3644 } while (0)
3645
3646 /* This says how to define a global common symbol. */
3647
3648 #define ASM_OUTPUT_COMMON(STREAM, NAME, SIZE, ROUNDED) \
3649 mips_declare_object (STREAM, NAME, "\n\t.comm\t", ",%u\n", (SIZE))
3650
3651 /* This says how to define a local common symbol (ie, not visible to
3652 linker). */
3653
3654 #define ASM_OUTPUT_LOCAL(STREAM, NAME, SIZE, ROUNDED) \
3655 mips_declare_object (STREAM, NAME, "\n\t.lcomm\t", ",%u\n", (SIZE))
3656
3657
3658 /* This says how to output an external. It would be possible not to
3659 output anything and let undefined symbol become external. However
3660 the assembler uses length information on externals to allocate in
3661 data/sdata bss/sbss, thereby saving exec time. */
3662
3663 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
3664 mips_output_external(STREAM,DECL,NAME)
3665
3666 /* This says what to print at the end of the assembly file */
3667 #define ASM_FILE_END(STREAM) mips_asm_file_end(STREAM)
3668
3669
3670 /* This is how to declare a function name. The actual work of
3671 emitting the label is moved to function_prologue, so that we can
3672 get the line number correctly emitted before the .ent directive,
3673 and after any .file directives.
3674
3675 Also, switch files if we are optimizing the global pointer. */
3676
3677 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL) \
3678 { \
3679 extern FILE *asm_out_text_file; \
3680 if (TARGET_GP_OPT) \
3681 { \
3682 STREAM = asm_out_text_file; \
3683 /* ??? text_section gets called too soon. If the previous \
3684 function is in a special section and we're not, we have \
3685 to switch back to the text section. We can't call \
3686 text_section again as gcc thinks we're already there. */ \
3687 /* ??? See varasm.c. There are other things that get output \
3688 too early, like alignment (before we've switched STREAM). */ \
3689 if (DECL_SECTION_NAME (DECL) == NULL_TREE) \
3690 fprintf (STREAM, "%s\n", TEXT_SECTION_ASM_OP); \
3691 } \
3692 \
3693 HALF_PIC_DECLARE (NAME); \
3694 }
3695
3696 /* This is how to output an internal numbered label where
3697 PREFIX is the class of label and NUM is the number within the class. */
3698
3699 #define ASM_OUTPUT_INTERNAL_LABEL(STREAM,PREFIX,NUM) \
3700 fprintf (STREAM, "%s%s%d:\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
3701
3702 /* This is how to store into the string LABEL
3703 the symbol_ref name of an internal numbered label where
3704 PREFIX is the class of label and NUM is the number within the class.
3705 This is suitable for output with `assemble_name'. */
3706
3707 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
3708 sprintf (LABEL, "*%s%s%d", LOCAL_LABEL_PREFIX, PREFIX, NUM)
3709
3710 /* This is how to output an assembler line defining a `double' constant. */
3711
3712 #define ASM_OUTPUT_DOUBLE(STREAM,VALUE) \
3713 mips_output_double (STREAM, VALUE)
3714
3715
3716 /* This is how to output an assembler line defining a `float' constant. */
3717
3718 #define ASM_OUTPUT_FLOAT(STREAM,VALUE) \
3719 mips_output_float (STREAM, VALUE)
3720
3721
3722 /* This is how to output an assembler line defining an `int' constant. */
3723
3724 #define ASM_OUTPUT_INT(STREAM,VALUE) \
3725 do { \
3726 fprintf (STREAM, "\t.word\t"); \
3727 output_addr_const (STREAM, (VALUE)); \
3728 fprintf (STREAM, "\n"); \
3729 } while (0)
3730
3731 /* Likewise for 64 bit, `char' and `short' constants. */
3732
3733 #define ASM_OUTPUT_DOUBLE_INT(STREAM,VALUE) \
3734 do { \
3735 if (TARGET_64BIT) \
3736 { \
3737 fprintf (STREAM, "\t.dword\t"); \
3738 if (HOST_BITS_PER_WIDE_INT < 64 || GET_CODE (VALUE) != CONST_INT) \
3739 /* We can't use 'X' for negative numbers, because then we won't \
3740 get the right value for the upper 32 bits. */ \
3741 output_addr_const (STREAM, VALUE); \
3742 else \
3743 /* We must use 'X', because otherwise LONG_MIN will print as \
3744 a number that the Irix 6 assembler won't accept. */ \
3745 print_operand (STREAM, VALUE, 'X'); \
3746 fprintf (STREAM, "\n"); \
3747 } \
3748 else \
3749 { \
3750 assemble_integer (operand_subword ((VALUE), 0, 0, DImode), \
3751 UNITS_PER_WORD, 1); \
3752 assemble_integer (operand_subword ((VALUE), 1, 0, DImode), \
3753 UNITS_PER_WORD, 1); \
3754 } \
3755 } while (0)
3756
3757 #define ASM_OUTPUT_SHORT(STREAM,VALUE) \
3758 { \
3759 fprintf (STREAM, "\t.half\t"); \
3760 output_addr_const (STREAM, (VALUE)); \
3761 fprintf (STREAM, "\n"); \
3762 }
3763
3764 #define ASM_OUTPUT_CHAR(STREAM,VALUE) \
3765 { \
3766 fprintf (STREAM, "\t.byte\t"); \
3767 output_addr_const (STREAM, (VALUE)); \
3768 fprintf (STREAM, "\n"); \
3769 }
3770
3771 /* This is how to output an assembler line for a numeric constant byte. */
3772
3773 #define ASM_OUTPUT_BYTE(STREAM,VALUE) \
3774 fprintf (STREAM, "\t.byte\t0x%x\n", (VALUE))
3775
3776 /* This is how to output an element of a case-vector that is absolute. */
3777
3778 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
3779 fprintf (STREAM, "\t%s\t%sL%d\n", \
3780 TARGET_LONG64 ? ".dword" : ".word", \
3781 LOCAL_LABEL_PREFIX, \
3782 VALUE)
3783
3784 /* This is how to output an element of a case-vector that is relative.
3785 This is used for pc-relative code (e.g. when TARGET_ABICALLS or
3786 TARGET_EMBEDDED_PIC). */
3787
3788 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, VALUE, REL) \
3789 do { \
3790 if (TARGET_EMBEDDED_PIC) \
3791 fprintf (STREAM, "\t%s\t%sL%d-%sLS%d\n", \
3792 TARGET_LONG64 ? ".dword" : ".word", \
3793 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
3794 else if (mips_abi == ABI_32) \
3795 fprintf (STREAM, "\t%s\t%sL%d\n", \
3796 TARGET_LONG64 ? ".gpdword" : ".gpword", \
3797 LOCAL_LABEL_PREFIX, VALUE); \
3798 else \
3799 fprintf (STREAM, "\t%s\t%sL%d\n", \
3800 TARGET_LONG64 ? ".dword" : ".word", \
3801 LOCAL_LABEL_PREFIX, VALUE); \
3802 } while (0)
3803
3804 /* When generating embedded PIC code we want to put the jump table in
3805 the .text section. In all other cases, we want to put the jump
3806 table in the .rdata section. Unfortunately, we can't use
3807 JUMP_TABLES_IN_TEXT_SECTION, because it is not conditional.
3808 Instead, we use ASM_OUTPUT_CASE_LABEL to switch back to the .text
3809 section if appropriate. */
3810 #define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, INSN) \
3811 do { \
3812 if (TARGET_EMBEDDED_PIC) \
3813 text_section (); \
3814 ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); \
3815 } while (0)
3816
3817 /* This is how to output an assembler line
3818 that says to advance the location counter
3819 to a multiple of 2**LOG bytes. */
3820
3821 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
3822 { \
3823 int mask = (1 << (LOG)) - 1; \
3824 fprintf (STREAM, "\t.align\t%d\n", (LOG)); \
3825 }
3826
3827 /* This is how to output an assembler line to to advance the location
3828 counter by SIZE bytes. */
3829
3830 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
3831 fprintf (STREAM, "\t.space\t%u\n", (SIZE))
3832
3833 /* This is how to output a string. */
3834 #define ASM_OUTPUT_ASCII(STREAM, STRING, LEN) \
3835 do { \
3836 register int i, c, len = (LEN), cur_pos = 17; \
3837 register unsigned char *string = (unsigned char *)(STRING); \
3838 fprintf ((STREAM), "\t.ascii\t\""); \
3839 for (i = 0; i < len; i++) \
3840 { \
3841 register int c = string[i]; \
3842 \
3843 switch (c) \
3844 { \
3845 case '\"': \
3846 case '\\': \
3847 putc ('\\', (STREAM)); \
3848 putc (c, (STREAM)); \
3849 cur_pos += 2; \
3850 break; \
3851 \
3852 case TARGET_NEWLINE: \
3853 fputs ("\\n", (STREAM)); \
3854 if (i+1 < len \
3855 && (((c = string[i+1]) >= '\040' && c <= '~') \
3856 || c == TARGET_TAB)) \
3857 cur_pos = 32767; /* break right here */ \
3858 else \
3859 cur_pos += 2; \
3860 break; \
3861 \
3862 case TARGET_TAB: \
3863 fputs ("\\t", (STREAM)); \
3864 cur_pos += 2; \
3865 break; \
3866 \
3867 case TARGET_FF: \
3868 fputs ("\\f", (STREAM)); \
3869 cur_pos += 2; \
3870 break; \
3871 \
3872 case TARGET_BS: \
3873 fputs ("\\b", (STREAM)); \
3874 cur_pos += 2; \
3875 break; \
3876 \
3877 case TARGET_CR: \
3878 fputs ("\\r", (STREAM)); \
3879 cur_pos += 2; \
3880 break; \
3881 \
3882 default: \
3883 if (c >= ' ' && c < 0177) \
3884 { \
3885 putc (c, (STREAM)); \
3886 cur_pos++; \
3887 } \
3888 else \
3889 { \
3890 fprintf ((STREAM), "\\%03o", c); \
3891 cur_pos += 4; \
3892 } \
3893 } \
3894 \
3895 if (cur_pos > 72 && i+1 < len) \
3896 { \
3897 cur_pos = 17; \
3898 fprintf ((STREAM), "\"\n\t.ascii\t\""); \
3899 } \
3900 } \
3901 fprintf ((STREAM), "\"\n"); \
3902 } while (0)
3903
3904 /* Handle certain cpp directives used in header files on sysV. */
3905 #define SCCS_DIRECTIVE
3906
3907 /* Output #ident as a in the read-only data section. */
3908 #define ASM_OUTPUT_IDENT(FILE, STRING) \
3909 { \
3910 char *p = STRING; \
3911 int size = strlen (p) + 1; \
3912 rdata_section (); \
3913 assemble_string (p, size); \
3914 }
3915 \f
3916 /* Default to -G 8 */
3917 #ifndef MIPS_DEFAULT_GVALUE
3918 #define MIPS_DEFAULT_GVALUE 8
3919 #endif
3920
3921 /* Define the strings to put out for each section in the object file. */
3922 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
3923 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
3924 #define SDATA_SECTION_ASM_OP "\t.sdata" /* small data */
3925 #define RDATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
3926 #define READONLY_DATA_SECTION rdata_section
3927 #define SMALL_DATA_SECTION sdata_section
3928
3929 /* What other sections we support other than the normal .data/.text. */
3930
3931 #define EXTRA_SECTIONS in_sdata, in_rdata
3932
3933 /* Define the additional functions to select our additional sections. */
3934
3935 /* on the MIPS it is not a good idea to put constants in the text
3936 section, since this defeats the sdata/data mechanism. This is
3937 especially true when -O is used. In this case an effort is made to
3938 address with faster (gp) register relative addressing, which can
3939 only get at sdata and sbss items (there is no stext !!) However,
3940 if the constant is too large for sdata, and it's readonly, it
3941 will go into the .rdata section. */
3942
3943 #define EXTRA_SECTION_FUNCTIONS \
3944 void \
3945 sdata_section () \
3946 { \
3947 if (in_section != in_sdata) \
3948 { \
3949 fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP); \
3950 in_section = in_sdata; \
3951 } \
3952 } \
3953 \
3954 void \
3955 rdata_section () \
3956 { \
3957 if (in_section != in_rdata) \
3958 { \
3959 fprintf (asm_out_file, "%s\n", RDATA_SECTION_ASM_OP); \
3960 in_section = in_rdata; \
3961 } \
3962 }
3963
3964 /* Given a decl node or constant node, choose the section to output it in
3965 and select that section. */
3966
3967 #define SELECT_RTX_SECTION(MODE,RTX) mips_select_rtx_section (MODE, RTX)
3968
3969 #define SELECT_SECTION(DECL, RELOC) mips_select_section (DECL, RELOC)
3970
3971 \f
3972 /* Store in OUTPUT a string (made with alloca) containing
3973 an assembler-name for a local static variable named NAME.
3974 LABELNO is an integer which is different for each call. */
3975
3976 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
3977 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
3978 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
3979
3980 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
3981 do \
3982 { \
3983 fprintf (STREAM, "\t%s\t%s,%s,8\n\t%s\t%s,0(%s)\n", \
3984 TARGET_64BIT ? "dsubu" : "subu", \
3985 reg_names[STACK_POINTER_REGNUM], \
3986 reg_names[STACK_POINTER_REGNUM], \
3987 TARGET_64BIT ? "sd" : "sw", \
3988 reg_names[REGNO], \
3989 reg_names[STACK_POINTER_REGNUM]); \
3990 } \
3991 while (0)
3992
3993 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
3994 do \
3995 { \
3996 if (! set_noreorder) \
3997 fprintf (STREAM, "\t.set\tnoreorder\n"); \
3998 \
3999 dslots_load_total++; \
4000 dslots_load_filled++; \
4001 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
4002 TARGET_64BIT ? "ld" : "lw", \
4003 reg_names[REGNO], \
4004 reg_names[STACK_POINTER_REGNUM], \
4005 TARGET_64BIT ? "daddu" : "addu", \
4006 reg_names[STACK_POINTER_REGNUM], \
4007 reg_names[STACK_POINTER_REGNUM]); \
4008 \
4009 if (! set_noreorder) \
4010 fprintf (STREAM, "\t.set\treorder\n"); \
4011 } \
4012 while (0)
4013
4014 /* Define the parentheses used to group arithmetic operations
4015 in assembler code. */
4016
4017 #define ASM_OPEN_PAREN "("
4018 #define ASM_CLOSE_PAREN ")"
4019
4020 /* How to start an assembler comment.
4021 The leading space is important (the mips native assembler requires it). */
4022 #ifndef ASM_COMMENT_START
4023 #define ASM_COMMENT_START " #"
4024 #endif
4025 \f
4026
4027 /* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
4028 and mips-tdump.c to print them out.
4029
4030 These must match the corresponding definitions in gdb/mipsread.c.
4031 Unfortunately, gcc and gdb do not currently share any directories. */
4032
4033 #define CODE_MASK 0x8F300
4034 #define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
4035 #define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
4036 #define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
4037
4038 \f
4039 /* Default definitions for size_t and ptrdiff_t. */
4040
4041 #ifndef SIZE_TYPE
4042 #define NO_BUILTIN_SIZE_TYPE
4043 #define SIZE_TYPE (TARGET_LONG64 ? "long unsigned int" : "unsigned int")
4044 #endif
4045
4046 #ifndef PTRDIFF_TYPE
4047 #define NO_BUILTIN_PTRDIFF_TYPE
4048 #define PTRDIFF_TYPE (TARGET_LONG64 ? "long int" : "int")
4049 #endif
4050
4051 /* See mips_expand_prologue's use of loadgp for when this should be
4052 true. */
4053
4054 #define DONT_ACCESS_GBLS_AFTER_EPILOGUE (TARGET_ABICALLS && mips_abi != ABI_32)
4055
4056 #ifndef INIT_SUBTARGET_OPTABS
4057 #define INIT_SUBTARGET_OPTABS
4058 #endif
4059
4060 #define INIT_TARGET_OPTABS \
4061 do \
4062 { \
4063 INIT_SUBTARGET_OPTABS; \
4064 } \
4065 while (0)
This page took 0.232597 seconds and 5 git commands to generate.