1 /* Definitions of target machine for GNU compiler. MIPS version.
2 Contributed by A. Lichnewsky, lich@inria.inria.fr
3 Changed by Michael Meissner, meissner@osf.org
4 64 bit r4000 support by Ian Lance Taylor, ian@cygnus.com, and
5 Brendan Eich, brendan@microunity.com.
6 Copyright (C) 1989, 90, 91, 92, 93, 94, 1995 Free Software Foundation, Inc.
8 This file is part of GNU CC.
10 GNU CC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
15 GNU CC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GNU CC; see the file COPYING. If not, write to
22 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
25 /* Standard GCC variables that we reference. */
27 extern char *asm_file_name
;
28 extern char call_used_regs
[];
29 extern int current_function_calls_alloca
;
30 extern int flag_omit_frame_pointer
;
31 extern int frame_pointer_needed
;
32 extern char *language_string
;
33 extern int may_call_alloca
;
35 extern char **save_argv
;
36 extern int target_flags
;
37 extern char *version_string
;
39 /* MIPS external variables defined in mips.c. */
43 CMP_SI
, /* compare four byte integers */
44 CMP_DI
, /* compare eight byte integers */
45 CMP_SF
, /* compare single precision floats */
46 CMP_DF
, /* compare double precision floats */
47 CMP_MAX
/* max comparison type */
50 /* types of delay slot */
52 DELAY_NONE
, /* no delay slot */
53 DELAY_LOAD
, /* load from memory delay */
54 DELAY_HILO
, /* move from/to hi/lo registers */
55 DELAY_FCMP
/* delay after doing c.<xx>.{d,s} */
58 /* Which processor to schedule for. Since there is no difference between
59 a R2000 and R3000 in terms of the scheduler, we collapse them into
60 just an R3000. The elements of the enumeration must match exactly
61 the cpu attribute in the mips.md machine description. */
73 /* Recast the cpu class to be the cpu attribute. */
74 #define mips_cpu_attr ((enum attr_cpu)mips_cpu)
76 /* Whether to emit abicalls code sequences or not. */
78 enum mips_abicalls_type
{
83 /* Recast the abicalls class to be the abicalls attribute. */
84 #define mips_abicalls_attr ((enum attr_abicalls)mips_abicalls)
86 /* Which type of block move to do (whether or not the last store is
87 split out so it can fill a branch delay slot). */
89 enum block_move_type
{
90 BLOCK_MOVE_NORMAL
, /* generate complete block move */
91 BLOCK_MOVE_NOT_LAST
, /* generate all but last store */
92 BLOCK_MOVE_LAST
/* generate just the last store */
95 extern char mips_reg_names
[][8]; /* register names (a0 vs. $4). */
96 extern char mips_print_operand_punct
[]; /* print_operand punctuation chars */
97 extern char *current_function_name
; /* current function being compiled */
98 extern char *current_function_file
; /* filename current function is in */
99 extern int num_source_filenames
; /* current .file # */
100 extern int inside_function
; /* != 0 if inside of a function */
101 extern int ignore_line_number
; /* != 0 if we are to ignore next .loc */
102 extern int file_in_function_warning
; /* warning given about .file in func */
103 extern int sdb_label_count
; /* block start/end next label # */
104 extern int mips_section_threshold
; /* # bytes of data/sdata cutoff */
105 extern int g_switch_value
; /* value of the -G xx switch */
106 extern int g_switch_set
; /* whether -G xx was passed. */
107 extern int sym_lineno
; /* sgi next label # for each stmt */
108 extern int set_noreorder
; /* # of nested .set noreorder's */
109 extern int set_nomacro
; /* # of nested .set nomacro's */
110 extern int set_noat
; /* # of nested .set noat's */
111 extern int set_volatile
; /* # of nested .set volatile's */
112 extern int mips_branch_likely
; /* emit 'l' after br (branch likely) */
113 extern int mips_dbx_regno
[]; /* Map register # to debug register # */
114 extern struct rtx_def
*branch_cmp
[2]; /* operands for compare */
115 extern enum cmp_type branch_type
; /* what type of branch to use */
116 extern enum processor_type mips_cpu
; /* which cpu are we scheduling for */
117 extern enum mips_abicalls_type mips_abicalls
;/* for svr4 abi pic calls */
118 extern int mips_isa
; /* architectural level */
119 extern char *mips_cpu_string
; /* for -mcpu=<xxx> */
120 extern char *mips_isa_string
; /* for -mips{1,2,3,4} */
121 extern int dslots_load_total
; /* total # load related delay slots */
122 extern int dslots_load_filled
; /* # filled load delay slots */
123 extern int dslots_jump_total
; /* total # jump related delay slots */
124 extern int dslots_jump_filled
; /* # filled jump delay slots */
125 extern int dslots_number_nops
; /* # of nops needed by previous insn */
126 extern int num_refs
[3]; /* # 1/2/3 word references */
127 extern struct rtx_def
*mips_load_reg
; /* register to check for load delay */
128 extern struct rtx_def
*mips_load_reg2
; /* 2nd reg to check for load delay */
129 extern struct rtx_def
*mips_load_reg3
; /* 3rd reg to check for load delay */
130 extern struct rtx_def
*mips_load_reg4
; /* 4th reg to check for load delay */
131 extern struct rtx_def
*embedded_pic_fnaddr_rtx
; /* function address */
133 /* Functions within mips.c that we reference. */
135 extern void abort_with_insn ();
136 extern int arith32_operand ();
137 extern int arith_operand ();
138 extern int cmp_op ();
139 extern long compute_frame_size ();
140 extern int epilogue_reg_mentioned_p ();
141 extern void expand_block_move ();
142 extern int equality_op ();
143 extern void final_prescan_insn ();
144 extern struct rtx_def
* function_arg ();
145 extern void function_arg_advance ();
146 extern int function_arg_partial_nregs ();
147 extern void function_epilogue ();
148 extern void function_prologue ();
149 extern void gen_conditional_branch ();
150 extern struct rtx_def
* gen_int_relational ();
151 extern void init_cumulative_args ();
152 extern int large_int ();
153 extern int mips_address_cost ();
154 extern void mips_asm_file_end ();
155 extern void mips_asm_file_start ();
156 extern int mips_const_double_ok ();
157 extern void mips_count_memory_refs ();
158 extern int mips_debugger_offset ();
159 extern void mips_declare_object ();
160 extern int mips_epilogue_delay_slots ();
161 extern void mips_expand_epilogue ();
162 extern void mips_expand_prologue ();
163 extern char *mips_fill_delay_slot ();
164 extern char *mips_move_1word ();
165 extern char *mips_move_2words ();
166 extern void mips_output_double ();
167 extern int mips_output_external ();
168 extern void mips_output_float ();
169 extern void mips_output_filename ();
170 extern void mips_output_lineno ();
171 extern char *output_block_move ();
172 extern void override_options ();
173 extern int pc_or_label_operand ();
174 extern void print_operand_address ();
175 extern void print_operand ();
176 extern void print_options ();
177 extern int reg_or_0_operand ();
178 extern int simple_epilogue_p ();
179 extern int simple_memory_operand ();
180 extern int small_int ();
182 extern int uns_arith_operand ();
183 extern struct rtx_def
* embedded_pic_offset ();
184 extern void mips_finalize_pic ();
186 /* Recognition functions that return if a condition is true. */
187 extern int address_operand ();
188 extern int const_double_operand ();
189 extern int const_int_operand ();
190 extern int general_operand ();
191 extern int immediate_operand ();
192 extern int memory_address_p ();
193 extern int memory_operand ();
194 extern int nonimmediate_operand ();
195 extern int nonmemory_operand ();
196 extern int register_operand ();
197 extern int scratch_operand ();
199 /* Functions to change what output section we are using. */
200 extern void data_section ();
201 extern void rdata_section ();
202 extern void readonly_data_section ();
203 extern void sdata_section ();
204 extern void text_section ();
206 /* Functions in the rest of the compiler that we reference. */
207 extern void abort_with_insn ();
208 extern void debug_rtx ();
209 extern void fatal_io_error ();
210 extern int get_frame_size ();
211 extern int offsettable_address_p ();
212 extern void output_address ();
213 extern char *permalloc ();
214 extern int reg_mentioned_p ();
216 /* Functions in the standard library that we reference. */
218 extern char *getenv ();
219 extern char *mktemp ();
222 /* Stubs for half-pic support if not OSF/1 reference platform. */
225 #define HALF_PIC_P() 0
226 #define HALF_PIC_NUMBER_PTRS 0
227 #define HALF_PIC_NUMBER_REFS 0
228 #define HALF_PIC_ENCODE(DECL)
229 #define HALF_PIC_DECLARE(NAME)
230 #define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it.")
231 #define HALF_PIC_ADDRESS_P(X) 0
232 #define HALF_PIC_PTR(X) X
233 #define HALF_PIC_FINISH(STREAM)
237 /* Run-time compilation parameters selecting different hardware subsets. */
239 /* Macros used in the machine description to test the flags. */
241 /* Bits for real switches */
242 #define MASK_INT64 0x00000001 /* ints are 64 bits */
243 #define MASK_LONG64 0x00000002 /* longs and pointers are 64 bits */
244 #define MASK_UNUSED 0x00000004
245 #define MASK_GPOPT 0x00000008 /* Optimize for global pointer */
246 #define MASK_GAS 0x00000010 /* Gas used instead of MIPS as */
247 #define MASK_NAME_REGS 0x00000020 /* Use MIPS s/w reg name convention */
248 #define MASK_STATS 0x00000040 /* print statistics to stderr */
249 #define MASK_MEMCPY 0x00000080 /* call memcpy instead of inline code*/
250 #define MASK_SOFT_FLOAT 0x00000100 /* software floating point */
251 #define MASK_FLOAT64 0x00000200 /* fp registers are 64 bits */
252 #define MASK_ABICALLS 0x00000400 /* emit .abicalls/.cprestore/.cpload */
253 #define MASK_HALF_PIC 0x00000800 /* Emit OSF-style pic refs to externs*/
254 #define MASK_LONG_CALLS 0x00001000 /* Always call through a register */
255 #define MASK_64BIT 0x00002000 /* Use 64 bit GP registers and insns */
256 #define MASK_EMBEDDED_PIC 0x00004000 /* Generate embedded PIC code */
257 #define MASK_EMBEDDED_DATA 0x00008000 /* Reduce RAM usage, not fast code */
258 #define MASK_BIG_ENDIAN 0x00010000 /* Generate big endian code */
259 #define MASK_SINGLE_FLOAT 0x00020000 /* Only single precision FPU. */
260 #define MASK_MAD 0x00040000 /* Generate mad/madu as on 4650. */
261 #define MASK_UNUSED1 0x00080000
263 /* Dummy switches used only in spec's*/
264 #define MASK_MIPS_TFILE 0x00000000 /* flag for mips-tfile usage */
266 /* Debug switches, not documented */
267 #define MASK_DEBUG 0x40000000 /* Eliminate version # in .s file */
268 #define MASK_DEBUG_A 0x20000000 /* don't allow <label>($reg) addrs */
269 #define MASK_DEBUG_B 0x10000000 /* GO_IF_LEGITIMATE_ADDRESS debug */
270 #define MASK_DEBUG_C 0x08000000 /* don't expand seq, etc. */
271 #define MASK_DEBUG_D 0x04000000 /* don't do define_split's */
272 #define MASK_DEBUG_E 0x02000000 /* function_arg debug */
273 #define MASK_DEBUG_F 0x01000000 /* don't try to suppress load nop's */
274 #define MASK_DEBUG_G 0x00800000 /* don't support 64 bit arithmetic */
275 #define MASK_DEBUG_H 0x00400000 /* allow ints in FP registers */
276 #define MASK_DEBUG_I 0x00200000 /* unused */
277 #define MASK_DEBUG_J 0x00100000 /* unused */
279 /* r4000 64 bit sizes */
280 #define TARGET_INT64 (target_flags & MASK_INT64)
281 #define TARGET_LONG64 (target_flags & MASK_LONG64)
282 #define TARGET_FLOAT64 (target_flags & MASK_FLOAT64)
283 #define TARGET_64BIT (target_flags & MASK_64BIT)
285 /* Mips vs. GNU assembler */
286 #define TARGET_GAS (target_flags & MASK_GAS)
287 #define TARGET_UNIX_ASM (!TARGET_GAS)
288 #define TARGET_MIPS_AS TARGET_UNIX_ASM
291 #define TARGET_DEBUG_MODE (target_flags & MASK_DEBUG)
292 #define TARGET_DEBUG_A_MODE (target_flags & MASK_DEBUG_A)
293 #define TARGET_DEBUG_B_MODE (target_flags & MASK_DEBUG_B)
294 #define TARGET_DEBUG_C_MODE (target_flags & MASK_DEBUG_C)
295 #define TARGET_DEBUG_D_MODE (target_flags & MASK_DEBUG_D)
296 #define TARGET_DEBUG_E_MODE (target_flags & MASK_DEBUG_E)
297 #define TARGET_DEBUG_F_MODE (target_flags & MASK_DEBUG_F)
298 #define TARGET_DEBUG_G_MODE (target_flags & MASK_DEBUG_G)
299 #define TARGET_DEBUG_H_MODE (target_flags & MASK_DEBUG_H)
300 #define TARGET_DEBUG_I_MODE (target_flags & MASK_DEBUG_I)
301 #define TARGET_DEBUG_J_MODE (target_flags & MASK_DEBUG_J)
303 /* Reg. Naming in .s ($21 vs. $a0) */
304 #define TARGET_NAME_REGS (target_flags & MASK_NAME_REGS)
306 /* Optimize for Sdata/Sbss */
307 #define TARGET_GP_OPT (target_flags & MASK_GPOPT)
309 /* print program statistics */
310 #define TARGET_STATS (target_flags & MASK_STATS)
312 /* call memcpy instead of inline code */
313 #define TARGET_MEMCPY (target_flags & MASK_MEMCPY)
315 /* .abicalls, etc from Pyramid V.4 */
316 #define TARGET_ABICALLS (target_flags & MASK_ABICALLS)
318 /* OSF pic references to externs */
319 #define TARGET_HALF_PIC (target_flags & MASK_HALF_PIC)
321 /* software floating point */
322 #define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
323 #define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
325 /* always call through a register */
326 #define TARGET_LONG_CALLS (target_flags & MASK_LONG_CALLS)
328 /* generate embedded PIC code;
330 #define TARGET_EMBEDDED_PIC (target_flags & MASK_EMBEDDED_PIC)
332 /* for embedded systems, optimize for
333 reduced RAM space instead of for
335 #define TARGET_EMBEDDED_DATA (target_flags & MASK_EMBEDDED_DATA)
337 /* generate big endian code. */
338 #define TARGET_BIG_ENDIAN (target_flags & MASK_BIG_ENDIAN)
340 #define TARGET_SINGLE_FLOAT (target_flags & MASK_SINGLE_FLOAT)
341 #define TARGET_DOUBLE_FLOAT (! TARGET_SINGLE_FLOAT)
343 #define TARGET_MAD (target_flags & MASK_MAD)
345 /* Macro to define tables used to set the flags.
346 This is a list in braces of pairs in braces,
347 each pair being { "NAME", VALUE }
348 where VALUE is the bits to set or minus the bits to clear.
349 An empty string NAME is used to identify the default VALUE. */
351 #define TARGET_SWITCHES \
353 {"int64", MASK_INT64 | MASK_LONG64}, \
354 {"long64", MASK_LONG64}, \
355 {"mips-as", -MASK_GAS}, \
357 {"rnames", MASK_NAME_REGS}, \
358 {"no-rnames", -MASK_NAME_REGS}, \
359 {"gpOPT", MASK_GPOPT}, \
360 {"gpopt", MASK_GPOPT}, \
361 {"no-gpOPT", -MASK_GPOPT}, \
362 {"no-gpopt", -MASK_GPOPT}, \
363 {"stats", MASK_STATS}, \
364 {"no-stats", -MASK_STATS}, \
365 {"memcpy", MASK_MEMCPY}, \
366 {"no-memcpy", -MASK_MEMCPY}, \
367 {"mips-tfile", MASK_MIPS_TFILE}, \
368 {"no-mips-tfile", -MASK_MIPS_TFILE}, \
369 {"soft-float", MASK_SOFT_FLOAT}, \
370 {"hard-float", -MASK_SOFT_FLOAT}, \
371 {"fp64", MASK_FLOAT64}, \
372 {"fp32", -MASK_FLOAT64}, \
373 {"gp64", MASK_64BIT}, \
374 {"gp32", -MASK_64BIT}, \
375 {"abicalls", MASK_ABICALLS}, \
376 {"no-abicalls", -MASK_ABICALLS}, \
377 {"half-pic", MASK_HALF_PIC}, \
378 {"no-half-pic", -MASK_HALF_PIC}, \
379 {"long-calls", MASK_LONG_CALLS}, \
380 {"no-long-calls", -MASK_LONG_CALLS}, \
381 {"embedded-pic", MASK_EMBEDDED_PIC}, \
382 {"no-embedded-pic", -MASK_EMBEDDED_PIC}, \
383 {"embedded-data", MASK_EMBEDDED_DATA}, \
384 {"no-embedded-data", -MASK_EMBEDDED_DATA}, \
385 {"eb", MASK_BIG_ENDIAN}, \
386 {"el", -MASK_BIG_ENDIAN}, \
387 {"single-float", MASK_SINGLE_FLOAT}, \
388 {"double-float", -MASK_SINGLE_FLOAT}, \
390 {"no-mad", -MASK_MAD}, \
391 {"4650", MASK_MAD | MASK_SINGLE_FLOAT}, \
392 {"debug", MASK_DEBUG}, \
393 {"debuga", MASK_DEBUG_A}, \
394 {"debugb", MASK_DEBUG_B}, \
395 {"debugc", MASK_DEBUG_C}, \
396 {"debugd", MASK_DEBUG_D}, \
397 {"debuge", MASK_DEBUG_E}, \
398 {"debugf", MASK_DEBUG_F}, \
399 {"debugg", MASK_DEBUG_G}, \
400 {"debugh", MASK_DEBUG_H}, \
401 {"debugi", MASK_DEBUG_I}, \
402 {"debugj", MASK_DEBUG_J}, \
403 {"", (TARGET_DEFAULT \
404 | TARGET_CPU_DEFAULT \
405 | TARGET_ENDIAN_DEFAULT)} \
408 /* Default target_flags if no switches are specified */
410 #ifndef TARGET_DEFAULT
411 #define TARGET_DEFAULT 0
414 #ifndef TARGET_CPU_DEFAULT
415 #define TARGET_CPU_DEFAULT 0
418 #ifndef TARGET_ENDIAN_DEFAULT
420 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
422 #define TARGET_ENDIAN_DEFAULT 0
426 /* This macro is similar to `TARGET_SWITCHES' but defines names of
427 command options that have values. Its definition is an
428 initializer with a subgrouping for each command option.
430 Each subgrouping contains a string constant, that defines the
431 fixed part of the option name, and the address of a variable.
432 The variable, type `char *', is set to the variable part of the
433 given option if the fixed part matches. The actual option name
434 is made by appending `-m' to the specified name.
436 Here is an example which defines `-mshort-data-NUMBER'. If the
437 given option is `-mshort-data-512', the variable `m88k_short_data'
438 will be set to the string `"512"'.
440 extern char *m88k_short_data;
441 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
443 #define TARGET_OPTIONS \
445 { "cpu=", &mips_cpu_string }, \
446 { "ips", &mips_isa_string } \
449 /* Macros to decide whether certain features are available or not,
450 depending on the instruction set architecture level. */
452 #define BRANCH_LIKELY_P() (mips_isa >= 2)
453 #define HAVE_SQRT_P() (mips_isa >= 2)
455 /* CC1_SPEC causes -mips3 and -mips4 to set -mfp64 and -mgp64; -mips1 or
456 -mips2 sets -mfp32 and -mgp32. This can be overridden by an explicit
457 -mfp32, -mfp64, -mgp32 or -mgp64. -mfp64 sets MASK_FLOAT64 in
458 target_flags, and -mgp64 sets MASK_64BIT.
460 Setting MASK_64BIT in target_flags will cause gcc to assume that
461 registers are 64 bits wide. int, long and void * will be 32 bit;
462 this may be changed with -mint64 or -mlong64.
464 The gen* programs link code that refers to MASK_64BIT. They don't
465 actually use the information in target_flags; they just refer to
468 /* Switch Recognition by gcc.c. Add -G xx support */
470 #ifdef SWITCH_TAKES_ARG
471 #undef SWITCH_TAKES_ARG
474 #define SWITCH_TAKES_ARG(CHAR) \
475 ((CHAR) == 'D' || (CHAR) == 'U' || (CHAR) == 'o' \
476 || (CHAR) == 'e' || (CHAR) == 'T' || (CHAR) == 'u' \
477 || (CHAR) == 'I' || (CHAR) == 'm' \
478 || (CHAR) == 'L' || (CHAR) == 'A' || (CHAR) == 'G')
480 /* Sometimes certain combinations of command options do not make sense
481 on a particular target machine. You can define a macro
482 `OVERRIDE_OPTIONS' to take account of this. This macro, if
483 defined, is executed once just after all the command options have
486 On the MIPS, it is used to handle -G. We also use it to set up all
487 of the tables referenced in the other macros. */
489 #define OVERRIDE_OPTIONS override_options ()
491 /* Zero or more C statements that may conditionally modify two
492 variables `fixed_regs' and `call_used_regs' (both of type `char
493 []') after they have been initialized from the two preceding
496 This is necessary in case the fixed or call-clobbered registers
497 depend on target flags.
499 You need not define this macro if it has no work to do.
501 If the usage of an entire class of registers depends on the target
502 flags, you may indicate this to GCC by using this macro to modify
503 `fixed_regs' and `call_used_regs' to 1 for each of the registers in
504 the classes which should not be used by GCC. Also define the macro
505 `REG_CLASS_FROM_LETTER' to return `NO_REGS' if it is called with a
506 letter for a class that shouldn't be used.
508 (However, if this class is not included in `GENERAL_REGS' and all
509 of the insn patterns whose constraints permit this class are
510 controlled by target switches, then GCC will automatically avoid
511 using these registers when the target switches are opposed to
514 #define CONDITIONAL_REGISTER_USAGE \
517 if (!TARGET_HARD_FLOAT) \
521 for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++) \
522 fixed_regs[regno] = call_used_regs[regno] = 1; \
524 SUBTARGET_CONDITIONAL_REGISTER_USAGE \
528 /* This is meant to be redefined in the host dependent files */
529 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
531 /* Show we can debug even without a frame pointer. */
532 #define CAN_DEBUG_WITHOUT_FP
534 /* Complain about missing specs and predefines that should be defined in each
535 of the target tm files to override the defaults. This is mostly a place-
536 holder until I can get each of the files updated [mm]. */
538 #if defined(OSF_OS) \
539 || defined(DECSTATION) \
540 || defined(SGI_TARGET) \
541 || defined(MIPS_NEWS) \
542 || defined(MIPS_SYSV) \
543 || defined(MIPS_SVR4) \
544 || defined(MIPS_BSD43)
546 #ifndef CPP_PREDEFINES
547 #error "Define CPP_PREDEFINES in the appropriate tm.h file"
551 #error "Define LIB_SPEC in the appropriate tm.h file"
554 #ifndef STARTFILE_SPEC
555 #error "Define STARTFILE_SPEC in the appropriate tm.h file"
559 #error "Define MACHINE_TYPE in the appropriate tm.h file"
563 /* Tell collect what flags to pass to nm. */
565 #define NM_FLAGS "-Bp"
569 /* Names to predefine in the preprocessor for this target machine. */
571 #ifndef CPP_PREDEFINES
572 #define CPP_PREDEFINES "-Dmips -Dunix -Dhost_mips -DMIPSEB -DR3000 -DSYSTYPE_BSD43 \
573 -D_mips -D_unix -D_host_mips -D_MIPSEB -D_R3000 -D_SYSTYPE_BSD43 \
574 -Asystem(unix) -Asystem(bsd) -Acpu(mips) -Amachine(mips)"
577 /* Extra switches sometimes passed to the assembler. */
580 #if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
584 %{!.s:-nocpp} %{.s: %{cpp} %{nocpp}} \
585 %{pipe: %e-pipe is not supported.} \
588 %{mcpu=*} %{m4650} %{mmad:-m4650}} \
589 %{G*} %{EB} %{EL} %{mips1} %{mips2} %{mips3} %{mips4} %{v} \
591 %{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}} \
592 %{g} %{g0} %{g1} %{g2} %{g3} \
593 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
594 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
595 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
596 %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
603 %{!.s:-nocpp} %{.s: %{cpp} %{nocpp}} \
604 %{pipe: %e-pipe is not supported.} \
607 %{mcpu=*} %{m4650} %{mmad:-m4650}} \
608 %{G*} %{EB} %{EL} %{mips1} %{mips2} %{mips3} %{mips4} %{v} \
610 %{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}} \
611 %{g} %{g0} %{g1} %{g2} %{g3} \
612 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
613 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
614 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
615 %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
619 #endif /* ASM_SPEC */
621 /* Specify to run a post-processor, mips-tfile after the assembler
622 has run to stuff the mips debug information into the object file.
623 This is needed because the $#!%^ MIPS assembler provides no way
624 of specifying such information in the assembly file. If we are
625 cross compiling, disable mips-tfile unless the user specifies
628 #ifndef ASM_FINAL_SPEC
629 #if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
631 #define ASM_FINAL_SPEC "\
632 %{mmips-as: %{!mno-mips-tfile: \
633 \n mips-tfile %{v*: -v} \
635 %{!K: %{save-temps: -I %b.o~}} \
636 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
637 %{.s:%i} %{!.s:%g.s}}}"
641 #define ASM_FINAL_SPEC "\
642 %{!mgas: %{!mno-mips-tfile: \
643 \n mips-tfile %{v*: -v} \
645 %{!K: %{save-temps: -I %b.o~}} \
646 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
647 %{.s:%i} %{!.s:%g.s}}}"
650 #endif /* ASM_FINAL_SPEC */
652 /* Redefinition of libraries used. Mips doesn't support normal
653 UNIX style profiling via calling _mcount. It does offer
654 profiling that samples the PC, so do what we can... */
657 #define LIB_SPEC "%{pg:-lprof1} %{p:-lprof1} -lc"
660 /* Extra switches sometimes passed to the linker. */
661 /* ??? The bestGnum will never be passed to the linker, because the gcc driver
662 will interpret it as a -b option. */
666 %{G*} %{EB} %{EL} %{mips1} %{mips2} %{mips3} %{mips4} \
667 %{bestGnum} %{shared} %{non_shared}"
668 #endif /* LINK_SPEC defined */
670 /* Specs for the compiler proper */
674 %{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
675 %{mips1:-mfp32 -mgp32}%{mips2:-mfp32 -mgp32}\
676 %{mips3:%{!msingle-float:%{!m4650:-mfp64}} -mgp64} \
677 %{mips4:%{!msingle-float:%{!m4650:-mfp64}} -mgp64} \
678 %{mfp64:%{msingle-float:%emay not use both -mfp64 and -msingle-float}} \
679 %{mfp64:%{m4650:%emay not use both -mfp64 and -m4650}} \
680 %{m4650:-mcpu=r4650} \
681 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
682 %{pic-none: -mno-half-pic} \
683 %{pic-lib: -mhalf-pic} \
684 %{pic-extern: -mhalf-pic} \
685 %{pic-calls: -mhalf-pic} \
689 /* Preprocessor specs */
693 %{.cc: -D__LANGUAGE_C_PLUS_PLUS -D_LANGUAGE_C_PLUS_PLUS} \
694 %{.cxx: -D__LANGUAGE_C_PLUS_PLUS -D_LANGUAGE_C_PLUS_PLUS} \
695 %{.C: -D__LANGUAGE_C_PLUS_PLUS -D_LANGUAGE_C_PLUS_PLUS} \
696 %{.m: -D__LANGUAGE_OBJECTIVE_C -D_LANGUAGE_OBJECTIVE_C} \
697 %{.S: -D__LANGUAGE_ASSEMBLY -D_LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
698 %{.s: -D__LANGUAGE_ASSEMBLY -D_LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
699 %{!.S:%{!.s: -D__LANGUAGE_C -D_LANGUAGE_C %{!ansi:-DLANGUAGE_C}}} \
700 %{mlong64:-D__SIZE_TYPE__=long\\ unsigned\\ int -D__PTRDIFF_TYPE__=long\\ int} \
701 %{!mlong64:-D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int} \
702 %{mips3:-U__mips -D__mips=3} \
703 %{mips4:-U__mips -D__mips=4} \
704 %{EB:-UMIPSEL -U_MIPSEL -U__MIPSEL -U__MIPSEL__ -D_MIPSEB -D__MIPSEB -D__MIPSEB__ %{!ansi:-DMIPSEB}} \
705 %{EL:-UMIPSEB -U_MIPSEB -U__MIPSEB -U__MIPSEB__ -D_MIPSEL -D__MIPSEL -D__MIPSEL__ %{!ansi:-DMIPSEL}}"
708 /* If defined, this macro is an additional prefix to try after
709 `STANDARD_EXEC_PREFIX'. */
711 #ifndef MD_EXEC_PREFIX
712 #define MD_EXEC_PREFIX "/usr/lib/cmplrs/cc/"
715 #ifndef MD_STARTFILE_PREFIX
716 #define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
720 /* Print subsidiary information on the compiler version in use. */
722 #define MIPS_VERSION "[AL 1.1, MM 40]"
725 #define MACHINE_TYPE "BSD Mips"
728 #ifndef TARGET_VERSION_INTERNAL
729 #define TARGET_VERSION_INTERNAL(STREAM) \
730 fprintf (STREAM, " %s %s", MIPS_VERSION, MACHINE_TYPE)
733 #ifndef TARGET_VERSION
734 #define TARGET_VERSION TARGET_VERSION_INTERNAL (stderr)
738 #define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
739 #define DBX_DEBUGGING_INFO /* generate stabs (OSF/rose) */
740 #define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
742 #ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
743 #define PREFERRED_DEBUGGING_TYPE ((len > 1 && !strncmp (str, "ggdb", len)) ? DBX_DEBUG : SDB_DEBUG)
746 /* By default, turn on GDB extensions. */
747 #define DEFAULT_GDB_EXTENSIONS 1
749 /* If we are passing smuggling stabs through the MIPS ECOFF object
750 format, put a comment in front of the .stab<x> operation so
751 that the MIPS assembler does not choke. The mips-tfile program
752 will correctly put the stab into the object file. */
754 #define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
755 #define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
756 #define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
758 /* Forward references to tags are allowed. */
759 #define SDB_ALLOW_FORWARD_REFERENCES
761 /* Unknown tags are also allowed. */
762 #define SDB_ALLOW_UNKNOWN_REFERENCES
764 /* On Sun 4, this limit is 2048. We use 1500 to be safe,
765 since the length can run past this up to a continuation point. */
766 #define DBX_CONTIN_LENGTH 1500
769 /* How to renumber registers for dbx and gdb. */
770 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[ (REGNO) ]
773 /* Overrides for the COFF debug format. */
774 #define PUT_SDB_SCL(a) \
776 extern FILE *asm_out_text_file; \
777 fprintf (asm_out_text_file, "\t.scl\t%d;", (a)); \
780 #define PUT_SDB_INT_VAL(a) \
782 extern FILE *asm_out_text_file; \
783 fprintf (asm_out_text_file, "\t.val\t%d;", (a)); \
786 #define PUT_SDB_VAL(a) \
788 extern FILE *asm_out_text_file; \
789 fputs ("\t.val\t", asm_out_text_file); \
790 output_addr_const (asm_out_text_file, (a)); \
791 fputc (';', asm_out_text_file); \
794 #define PUT_SDB_DEF(a) \
796 extern FILE *asm_out_text_file; \
797 fprintf (asm_out_text_file, "\t%s.def\t", \
798 (TARGET_GAS) ? "" : "#"); \
799 ASM_OUTPUT_LABELREF (asm_out_text_file, a); \
800 fputc (';', asm_out_text_file); \
803 #define PUT_SDB_PLAIN_DEF(a) \
805 extern FILE *asm_out_text_file; \
806 fprintf (asm_out_text_file, "\t%s.def\t.%s;", \
807 (TARGET_GAS) ? "" : "#", (a)); \
810 #define PUT_SDB_ENDEF \
812 extern FILE *asm_out_text_file; \
813 fprintf (asm_out_text_file, "\t.endef\n"); \
816 #define PUT_SDB_TYPE(a) \
818 extern FILE *asm_out_text_file; \
819 fprintf (asm_out_text_file, "\t.type\t0x%x;", (a)); \
822 #define PUT_SDB_SIZE(a) \
824 extern FILE *asm_out_text_file; \
825 fprintf (asm_out_text_file, "\t.size\t%d;", (a)); \
828 #define PUT_SDB_DIM(a) \
830 extern FILE *asm_out_text_file; \
831 fprintf (asm_out_text_file, "\t.dim\t%d;", (a)); \
834 #ifndef PUT_SDB_START_DIM
835 #define PUT_SDB_START_DIM \
837 extern FILE *asm_out_text_file; \
838 fprintf (asm_out_text_file, "\t.dim\t"); \
842 #ifndef PUT_SDB_NEXT_DIM
843 #define PUT_SDB_NEXT_DIM(a) \
845 extern FILE *asm_out_text_file; \
846 fprintf (asm_out_text_file, "%d,", a); \
850 #ifndef PUT_SDB_LAST_DIM
851 #define PUT_SDB_LAST_DIM(a) \
853 extern FILE *asm_out_text_file; \
854 fprintf (asm_out_text_file, "%d;", a); \
858 #define PUT_SDB_TAG(a) \
860 extern FILE *asm_out_text_file; \
861 fprintf (asm_out_text_file, "\t.tag\t"); \
862 ASM_OUTPUT_LABELREF (asm_out_text_file, a); \
863 fputc (';', asm_out_text_file); \
866 /* For block start and end, we create labels, so that
867 later we can figure out where the correct offset is.
868 The normal .ent/.end serve well enough for functions,
869 so those are just commented out. */
871 #define PUT_SDB_BLOCK_START(LINE) \
873 extern FILE *asm_out_text_file; \
874 fprintf (asm_out_text_file, \
875 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
877 (TARGET_GAS) ? "" : "#", \
883 #define PUT_SDB_BLOCK_END(LINE) \
885 extern FILE *asm_out_text_file; \
886 fprintf (asm_out_text_file, \
887 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
889 (TARGET_GAS) ? "" : "#", \
895 #define PUT_SDB_FUNCTION_START(LINE)
897 #define PUT_SDB_FUNCTION_END(LINE)
899 #define PUT_SDB_EPILOGUE_END(NAME)
901 #define SDB_GENERATE_FAKE(BUFFER, NUMBER) \
902 sprintf ((BUFFER), ".%dfake", (NUMBER));
904 /* Correct the offset of automatic variables and arguments. Note that
905 the MIPS debug format wants all automatic variables and arguments
906 to be in terms of the virtual frame pointer (stack pointer before
907 any adjustment in the function), while the MIPS 3.0 linker wants
908 the frame pointer to be the stack pointer after the initial
911 #define DEBUGGER_AUTO_OFFSET(X) mips_debugger_offset (X, 0)
912 #define DEBUGGER_ARG_OFFSET(OFFSET, X) mips_debugger_offset (X, OFFSET)
915 /* Tell collect that the object format is ECOFF */
916 #ifndef OBJECT_FORMAT_ROSE
917 #define OBJECT_FORMAT_COFF /* Object file looks like COFF */
918 #define EXTENDED_COFF /* ECOFF, not normal coff */
921 #if 0 /* These definitions normally have no effect because
922 MIPS systems define USE_COLLECT2, so
923 assemble_constructor does nothing anyway. */
925 /* Don't use the default definitions, because we don't have gld.
926 Also, we don't want stabs when generating ECOFF output.
927 Instead we depend on collect to handle these. */
929 #define ASM_OUTPUT_CONSTRUCTOR(file, name)
930 #define ASM_OUTPUT_DESTRUCTOR(file, name)
934 /* Target machine storage layout */
936 /* Define in order to support both big and little endian float formats
937 in the same gcc binary. */
938 #define REAL_ARITHMETIC
940 /* Define this if most significant bit is lowest numbered
941 in instructions that operate on numbered bit-fields.
943 #define BITS_BIG_ENDIAN 0
945 /* Define this if most significant byte of a word is the lowest numbered. */
946 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
948 /* Define this if most significant word of a multiword number is the lowest. */
949 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
951 /* Define this to set the endianness to use in libgcc2.c, which can
952 not depend on target_flags. */
953 #if !defined(MIPSEL) && !defined(__MIPSEL__)
954 #define LIBGCC2_WORDS_BIG_ENDIAN 1
956 #define LIBGCC2_WORDS_BIG_ENDIAN 0
959 /* Number of bits in an addressable storage unit */
960 #define BITS_PER_UNIT 8
962 /* Width in bits of a "word", which is the contents of a machine register.
963 Note that this is not necessarily the width of data type `int';
964 if using 16-bit ints on a 68000, this would still be 32.
965 But on a machine with 16-bit registers, this would be 16. */
966 #define BITS_PER_WORD (TARGET_64BIT ? 64 : 32)
967 #define MAX_BITS_PER_WORD 64
969 /* Width of a word, in units (bytes). */
970 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
971 #define MIN_UNITS_PER_WORD 4
973 /* For MIPS, width of a floating point register. */
974 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
976 /* A C expression for the size in bits of the type `int' on the
977 target machine. If you don't define this, the default is one
979 #define INT_TYPE_SIZE (TARGET_INT64 ? 64 : 32)
980 #define MAX_INT_TYPE_SIZE 64
982 /* Tell the preprocessor the maximum size of wchar_t. */
983 #ifndef MAX_WCHAR_TYPE_SIZE
984 #ifndef WCHAR_TYPE_SIZE
985 #define MAX_WCHAR_TYPE_SIZE MAX_INT_TYPE_SIZE
989 /* A C expression for the size in bits of the type `short' on the
990 target machine. If you don't define this, the default is half a
991 word. (If this would be less than one storage unit, it is
992 rounded up to one unit.) */
993 #define SHORT_TYPE_SIZE 16
995 /* A C expression for the size in bits of the type `long' on the
996 target machine. If you don't define this, the default is one
998 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
999 #define MAX_LONG_TYPE_SIZE 64
1001 /* A C expression for the size in bits of the type `long long' on the
1002 target machine. If you don't define this, the default is two
1004 #define LONG_LONG_TYPE_SIZE 64
1006 /* A C expression for the size in bits of the type `char' on the
1007 target machine. If you don't define this, the default is one
1008 quarter of a word. (If this would be less than one storage unit,
1009 it is rounded up to one unit.) */
1010 #define CHAR_TYPE_SIZE BITS_PER_UNIT
1012 /* A C expression for the size in bits of the type `float' on the
1013 target machine. If you don't define this, the default is one
1015 #define FLOAT_TYPE_SIZE 32
1017 /* A C expression for the size in bits of the type `double' on the
1018 target machine. If you don't define this, the default is two
1020 #define DOUBLE_TYPE_SIZE 64
1022 /* A C expression for the size in bits of the type `long double' on
1023 the target machine. If you don't define this, the default is two
1025 #define LONG_DOUBLE_TYPE_SIZE 64
1027 /* Width in bits of a pointer.
1028 See also the macro `Pmode' defined below. */
1029 #define POINTER_SIZE (TARGET_LONG64 ? 64 : 32)
1031 /* Allocation boundary (in *bits*) for storing pointers in memory. */
1032 #define POINTER_BOUNDARY (TARGET_LONG64 ? 64 : 32)
1034 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
1035 #define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
1037 /* Allocation boundary (in *bits*) for the code of a function. */
1038 #define FUNCTION_BOUNDARY 32
1040 /* Alignment of field after `int : 0' in a structure. */
1041 #define EMPTY_FIELD_BOUNDARY (TARGET_LONG64 ? 64 : 32)
1043 /* Every structure's size must be a multiple of this. */
1044 /* 8 is observed right on a DECstation and on riscos 4.02. */
1045 #define STRUCTURE_SIZE_BOUNDARY 8
1047 /* There is no point aligning anything to a rounder boundary than this. */
1048 #define BIGGEST_ALIGNMENT 64
1050 /* Biggest alignment any structure field can require in bits. */
1051 #define BIGGEST_FIELD_ALIGNMENT 64
1053 /* Set this nonzero if move instructions will actually fail to work
1054 when given unaligned data. */
1055 #define STRICT_ALIGNMENT 1
1057 /* Define this if you wish to imitate the way many other C compilers
1058 handle alignment of bitfields and the structures that contain
1061 The behavior is that the type written for a bitfield (`int',
1062 `short', or other integer type) imposes an alignment for the
1063 entire structure, as if the structure really did contain an
1064 ordinary field of that type. In addition, the bitfield is placed
1065 within the structure so that it would fit within such a field,
1066 not crossing a boundary for it.
1068 Thus, on most machines, a bitfield whose type is written as `int'
1069 would not cross a four-byte boundary, and would force four-byte
1070 alignment for the whole structure. (The alignment used may not
1071 be four bytes; it is controlled by the other alignment
1074 If the macro is defined, its definition should be a C expression;
1075 a nonzero value for the expression enables this behavior. */
1077 #define PCC_BITFIELD_TYPE_MATTERS 1
1079 /* If defined, a C expression to compute the alignment given to a
1080 constant that is being placed in memory. CONSTANT is the constant
1081 and ALIGN is the alignment that the object would ordinarily have.
1082 The value of this macro is used instead of that alignment to align
1085 If this macro is not defined, then ALIGN is used.
1087 The typical use of this macro is to increase alignment for string
1088 constants to be word aligned so that `strcpy' calls that copy
1089 constants can be done inline. */
1091 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
1092 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
1093 && (ALIGN) < BITS_PER_WORD \
1097 /* If defined, a C expression to compute the alignment for a static
1098 variable. TYPE is the data type, and ALIGN is the alignment that
1099 the object would ordinarily have. The value of this macro is used
1100 instead of that alignment to align the object.
1102 If this macro is not defined, then ALIGN is used.
1104 One use of this macro is to increase alignment of medium-size
1105 data to make it all fit in fewer cache lines. Another is to
1106 cause character arrays to be word-aligned so that `strcpy' calls
1107 that copy constants to character arrays can be done inline. */
1109 #undef DATA_ALIGNMENT
1110 #define DATA_ALIGNMENT(TYPE, ALIGN) \
1111 ((((ALIGN) < BITS_PER_WORD) \
1112 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1113 || TREE_CODE (TYPE) == UNION_TYPE \
1114 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1116 /* Define this macro if an argument declared as `char' or `short' in a
1117 prototype should actually be passed as an `int'. In addition to
1118 avoiding errors in certain cases of mismatch, it also makes for
1119 better code on certain machines. */
1121 #define PROMOTE_PROTOTYPES
1123 /* Define if operations between registers always perform the operation
1124 on the full register even if a narrower mode is specified. */
1125 #define WORD_REGISTER_OPERATIONS
1127 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1128 will either zero-extend or sign-extend. The value of this macro should
1129 be the code that says which one of the two operations is implicitly
1130 done, NIL if none. */
1131 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1133 /* Standard register usage. */
1135 /* Number of actual hardware registers.
1136 The hardware registers are assigned numbers for the compiler
1137 from 0 to just below FIRST_PSEUDO_REGISTER.
1138 All registers that the compiler knows about must be given numbers,
1139 even those that are not normally considered general registers.
1141 On the Mips, we have 32 integer registers, 32 floating point registers
1142 and the special registers hi, lo, and fp status. */
1144 #define FIRST_PSEUDO_REGISTER 67
1146 /* 1 for registers that have pervasive standard uses
1147 and are not available for the register allocator.
1149 On the MIPS, see conventions, page D-2 */
1151 #define FIXED_REGISTERS \
1153 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1154 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, \
1155 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1156 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1161 /* 1 for registers not available across function calls.
1162 These must include the FIXED_REGISTERS and also any
1163 registers that can be used without being saved.
1164 The latter must include the registers where values are returned
1165 and the register where structure-value addresses are passed.
1166 Aside from that, you can include as many other registers as you like. */
1168 #define CALL_USED_REGISTERS \
1170 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1171 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, \
1172 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1173 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1178 /* Internal macros to classify a register number as to whether it's a
1179 general purpose register, a floating point register, a
1180 multiply/divide register, or a status register. */
1182 #define GP_REG_FIRST 0
1183 #define GP_REG_LAST 31
1184 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1185 #define GP_DBX_FIRST 0
1187 #define FP_REG_FIRST 32
1188 #define FP_REG_LAST 63
1189 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1190 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1192 #define MD_REG_FIRST 64
1193 #define MD_REG_LAST 65
1194 #define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1196 #define ST_REG_FIRST 66
1197 #define ST_REG_LAST 66
1198 #define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1200 #define AT_REGNUM (GP_REG_FIRST + 1)
1201 #define HI_REGNUM (MD_REG_FIRST + 0)
1202 #define LO_REGNUM (MD_REG_FIRST + 1)
1203 #define FPSW_REGNUM ST_REG_FIRST
1205 #define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1206 #define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1207 #define MD_REG_P(REGNO) ((unsigned) ((REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1208 #define ST_REG_P(REGNO) ((REGNO) == ST_REG_FIRST)
1210 /* Return number of consecutive hard regs needed starting at reg REGNO
1211 to hold something of mode MODE.
1212 This is ordinarily the length in words of a value of mode MODE
1213 but can be less for certain modes in special long registers.
1215 On the MIPS, all general registers are one word long. Except on
1216 the R4000 with the FR bit set, the floating point uses register
1217 pairs, with the second register not being allocatable. */
1219 #define HARD_REGNO_NREGS(REGNO, MODE) \
1220 (! FP_REG_P (REGNO) \
1221 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) \
1222 : (TARGET_SINGLE_FLOAT \
1223 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG) \
1224 : (((GET_MODE_SIZE (MODE) + 7) / 8) << (TARGET_FLOAT64 == 0))))
1226 /* Value is 1 if hard register REGNO can hold a value of machine-mode
1227 MODE. In 32 bit mode, require that DImode and DFmode be in even
1228 registers. For DImode, this makes some of the insns easier to
1229 write, since you don't have to worry about a DImode value in
1230 registers 3 & 4, producing a result in 4 & 5.
1232 To make the code simpler HARD_REGNO_MODE_OK now just references an
1233 array built in override_options. Because machmodes.h is not yet
1234 included before this file is processed, the MODE bound can't be
1237 extern char mips_hard_regno_mode_ok
[][FIRST_PSEUDO_REGISTER
];
1239 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1240 mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1242 /* Value is 1 if it is a good idea to tie two pseudo registers
1243 when one has mode MODE1 and one has mode MODE2.
1244 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1245 for any hard reg, then this must be 0 for correct output. */
1246 #define MODES_TIEABLE_P(MODE1, MODE2) \
1247 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
1248 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
1249 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
1250 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
1252 /* MIPS pc is not overloaded on a register. */
1253 /* #define PC_REGNUM xx */
1255 /* Register to use for pushing function arguments. */
1256 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1258 /* Offset from the stack pointer to the first available location. */
1259 #define STACK_POINTER_OFFSET 0
1261 /* Base register for access to local variables of the function. */
1262 #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 30)
1264 /* Value should be nonzero if functions must have frame pointers.
1265 Zero means the frame pointer need not be set up (and parms
1266 may be accessed via the stack pointer) in functions that seem suitable.
1267 This is computed in `reload', in reload1.c. */
1268 #define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
1270 /* Base register for access to arguments of the function. */
1271 #define ARG_POINTER_REGNUM GP_REG_FIRST
1273 /* Register in which static-chain is passed to a function. */
1274 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
1276 /* If the structure value address is passed in a register, then
1277 `STRUCT_VALUE_REGNUM' should be the number of that register. */
1278 /* #define STRUCT_VALUE_REGNUM (GP_REG_FIRST + 4) */
1280 /* If the structure value address is not passed in a register, define
1281 `STRUCT_VALUE' as an expression returning an RTX for the place
1282 where the address is passed. If it returns 0, the address is
1283 passed as an "invisible" first argument. */
1284 #define STRUCT_VALUE 0
1286 /* Mips registers used in prologue/epilogue code when the stack frame
1287 is larger than 32K bytes. These registers must come from the
1288 scratch register set, and not used for passing and returning
1289 arguments and any other information used in the calling sequence
1290 (such as pic). Must start at 12, since t0/t3 are parameter passing
1291 registers in the 64 bit ABI. */
1293 #define MIPS_TEMP1_REGNUM (GP_REG_FIRST + 12)
1294 #define MIPS_TEMP2_REGNUM (GP_REG_FIRST + 13)
1296 /* Define this macro if it is as good or better to call a constant
1297 function address than to call an address kept in a register. */
1298 #define NO_FUNCTION_CSE 1
1300 /* Define this macro if it is as good or better for a function to
1301 call itself with an explicit address than to call an address
1302 kept in a register. */
1303 #define NO_RECURSIVE_FUNCTION_CSE 1
1305 /* The register number of the register used to address a table of
1306 static data addresses in memory. In some cases this register is
1307 defined by a processor's "application binary interface" (ABI).
1308 When this macro is defined, RTL is generated for this register
1309 once, as with the stack pointer and frame pointer registers. If
1310 this macro is not defined, it is up to the machine-dependent
1311 files to allocate such a register (if necessary). */
1312 #define PIC_OFFSET_TABLE_REGNUM (GP_REG_FIRST + 28)
1314 #define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
1316 #define FINALIZE_PIC mips_finalize_pic ()
1318 /* Define the classes of registers for register constraints in the
1319 machine description. Also define ranges of constants.
1321 One of the classes must always be named ALL_REGS and include all hard regs.
1322 If there is more than one class, another class must be named NO_REGS
1323 and contain no registers.
1325 The name GENERAL_REGS must be the name of a class (or an alias for
1326 another name such as ALL_REGS). This is the class of registers
1327 that is allowed by "g" or "r" in a register constraint.
1328 Also, registers outside this class are allocated only when
1329 instructions express preferences for them.
1331 The classes must be numbered in nondecreasing order; that is,
1332 a larger-numbered class must never be contained completely
1333 in a smaller-numbered class.
1335 For any two classes, it is very desirable that there be another
1336 class that represents their union. */
1340 NO_REGS
, /* no registers in set */
1341 GR_REGS
, /* integer registers */
1342 FP_REGS
, /* floating point registers */
1343 HI_REG
, /* hi register */
1344 LO_REG
, /* lo register */
1345 MD_REGS
, /* multiply/divide registers (hi/lo) */
1346 ST_REGS
, /* status registers (fp status) */
1347 ALL_REGS
, /* all registers */
1348 LIM_REG_CLASSES
/* max value + 1 */
1351 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1353 #define GENERAL_REGS GR_REGS
1355 /* An initializer containing the names of the register classes as C
1356 string constants. These names are used in writing some of the
1359 #define REG_CLASS_NAMES \
1371 /* An initializer containing the contents of the register classes,
1372 as integers which are bit masks. The Nth integer specifies the
1373 contents of class N. The way the integer MASK is interpreted is
1374 that register R is in the class if `MASK & (1 << R)' is 1.
1376 When the machine has more than 32 registers, an integer does not
1377 suffice. Then the integers are replaced by sub-initializers,
1378 braced groupings containing several integers. Each
1379 sub-initializer must be suitable as an initializer for the type
1380 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
1382 #define REG_CLASS_CONTENTS \
1384 { 0x00000000, 0x00000000, 0x00000000 }, /* no registers */ \
1385 { 0xffffffff, 0x00000000, 0x00000000 }, /* integer registers */ \
1386 { 0x00000000, 0xffffffff, 0x00000000 }, /* floating registers*/ \
1387 { 0x00000000, 0x00000000, 0x00000001 }, /* hi register */ \
1388 { 0x00000000, 0x00000000, 0x00000002 }, /* lo register */ \
1389 { 0x00000000, 0x00000000, 0x00000003 }, /* mul/div registers */ \
1390 { 0x00000000, 0x00000000, 0x00000004 }, /* status registers */ \
1391 { 0xffffffff, 0xffffffff, 0x00000007 } /* all registers */ \
1395 /* A C expression whose value is a register class containing hard
1396 register REGNO. In general there is more that one such class;
1397 choose a class which is "minimal", meaning that no smaller class
1398 also contains the register. */
1400 extern enum reg_class mips_regno_to_class
[];
1402 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1404 /* A macro whose definition is the name of the class to which a
1405 valid base register must belong. A base register is one used in
1406 an address which is the register value plus a displacement. */
1408 #define BASE_REG_CLASS GR_REGS
1410 /* A macro whose definition is the name of the class to which a
1411 valid index register must belong. An index register is one used
1412 in an address where its value is either multiplied by a scale
1413 factor or added to another register (as well as added to a
1416 #define INDEX_REG_CLASS NO_REGS
1419 /* REGISTER AND CONSTANT CLASSES */
1421 /* Get reg_class from a letter such as appears in the machine
1424 DEFINED REGISTER CLASSES:
1426 'd' General (aka integer) registers
1427 'f' Floating point registers
1430 'x' Multiply/divide registers
1431 'z' FP Status register */
1433 extern enum reg_class mips_char_to_class
[];
1435 #define REG_CLASS_FROM_LETTER(C) mips_char_to_class[ (C) ]
1437 /* The letters I, J, K, L, M, N, O, and P in a register constraint
1438 string can be used to stand for particular ranges of immediate
1439 operands. This macro defines what the ranges are. C is the
1440 letter, and VALUE is a constant value. Return 1 if VALUE is
1441 in the range specified by C. */
1445 `I' is used for the range of constants an arithmetic insn can
1446 actually contain (16 bits signed integers).
1448 `J' is used for the range which is just zero (ie, $r0).
1450 `K' is used for the range of constants a logical insn can actually
1451 contain (16 bit zero-extended integers).
1453 `L' is used for the range of constants that be loaded with lui
1454 (ie, the bottom 16 bits are zero).
1456 `M' is used for the range of constants that take two words to load
1457 (ie, not matched by `I', `K', and `L').
1459 `N' is used for negative 16 bit constants.
1461 `O' is an exact power of 2 (not yet used in the md file).
1463 `P' is used for positive 16 bit constants. */
1465 #define SMALL_INT(X) ((unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1466 #define SMALL_INT_UNSIGNED(X) ((unsigned HOST_WIDE_INT) (INTVAL (X)) < 0x10000)
1468 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1469 ((C) == 'I' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000) \
1470 : (C) == 'J' ? ((VALUE) == 0) \
1471 : (C) == 'K' ? ((unsigned HOST_WIDE_INT) (VALUE) < 0x10000) \
1472 : (C) == 'L' ? (((VALUE) & 0x0000ffff) == 0 \
1473 && (((VALUE) & ~2147483647) == 0 \
1474 || ((VALUE) & ~2147483647) == ~2147483647)) \
1475 : (C) == 'M' ? ((((VALUE) & ~0x0000ffff) != 0) \
1476 && (((VALUE) & ~0x0000ffff) != ~0x0000ffff) \
1477 && (((VALUE) & 0x0000ffff) != 0 \
1478 || (((VALUE) & ~2147483647) != 0 \
1479 && ((VALUE) & ~2147483647) != ~2147483647))) \
1480 : (C) == 'N' ? (((VALUE) & ~0x0000ffff) == ~0x0000ffff) \
1481 : (C) == 'O' ? (exact_log2 (VALUE) >= 0) \
1482 : (C) == 'P' ? ((VALUE) != 0 && (((VALUE) & ~0x0000ffff) == 0)) \
1485 /* Similar, but for floating constants, and defining letters G and H.
1486 Here VALUE is the CONST_DOUBLE rtx itself. */
1490 'G' : Floating point 0 */
1492 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1494 && (VALUE) == CONST0_RTX (GET_MODE (VALUE)))
1496 /* Letters in the range `Q' through `U' may be defined in a
1497 machine-dependent fashion to stand for arbitrary operand types.
1498 The machine description macro `EXTRA_CONSTRAINT' is passed the
1499 operand as its first argument and the constraint letter as its
1502 `Q' is for memory references which take more than 1 instruction.
1503 `R' is for memory references which take 1 word for the instruction.
1504 `S' is for references to extern items which are PIC for OSF/rose. */
1506 #define EXTRA_CONSTRAINT(OP,CODE) \
1507 ((GET_CODE (OP) != MEM) ? FALSE \
1508 : ((CODE) == 'Q') ? !simple_memory_operand (OP, GET_MODE (OP)) \
1509 : ((CODE) == 'R') ? simple_memory_operand (OP, GET_MODE (OP)) \
1510 : ((CODE) == 'S') ? (HALF_PIC_P () && CONSTANT_P (OP) \
1511 && HALF_PIC_ADDRESS_P (OP)) \
1514 /* Given an rtx X being reloaded into a reg required to be
1515 in class CLASS, return the class of reg to actually use.
1516 In general this is just CLASS; but on some machines
1517 in some cases it is preferable to use a more restrictive class. */
1519 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1520 ((CLASS) != ALL_REGS \
1522 : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1523 || GET_MODE_CLASS (GET_MODE (X)) == MODE_COMPLEX_FLOAT) \
1524 ? (TARGET_SOFT_FLOAT ? GR_REGS : FP_REGS) \
1525 : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
1526 || GET_MODE (X) == VOIDmode) \
1530 /* Certain machines have the property that some registers cannot be
1531 copied to some other registers without using memory. Define this
1532 macro on those machines to be a C expression that is non-zero if
1533 objects of mode MODE in registers of CLASS1 can only be copied to
1534 registers of class CLASS2 by storing a register of CLASS1 into
1535 memory and loading that memory location into a register of CLASS2.
1537 Do not define this macro if its value would always be zero. */
1539 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1540 ((!TARGET_DEBUG_H_MODE \
1541 && GET_MODE_CLASS (MODE) == MODE_INT \
1542 && ((CLASS1 == FP_REGS && CLASS2 == GR_REGS) \
1543 || (CLASS1 == GR_REGS && CLASS2 == FP_REGS))) \
1544 || (TARGET_FLOAT64 && !TARGET_64BIT && (MODE) == DFmode \
1545 && ((CLASS1 == GR_REGS && CLASS2 == FP_REGS) \
1546 || (CLASS2 == GR_REGS && CLASS1 == FP_REGS))))
1548 /* The HI and LO registers can only be reloaded via the general
1551 #define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
1552 mips_secondary_reload_class (CLASS, MODE, X)
1554 /* Not declared above, with the other functions, because enum
1555 reg_class is not declared yet. */
1556 extern enum reg_class
mips_secondary_reload_class ();
1558 /* Return the maximum number of consecutive registers
1559 needed to represent mode MODE in a register of class CLASS. */
1561 #define CLASS_UNITS(mode, size) \
1562 ((GET_MODE_SIZE (mode) + (size) - 1) / (size))
1564 #define CLASS_MAX_NREGS(CLASS, MODE) \
1565 ((CLASS) == FP_REGS \
1567 ? CLASS_UNITS (MODE, 8) \
1568 : 2 * CLASS_UNITS (MODE, 8)) \
1569 : CLASS_UNITS (MODE, UNITS_PER_WORD))
1571 /* If defined, this is a C expression whose value should be
1572 nonzero if the insn INSN has the effect of mysteriously
1573 clobbering the contents of hard register number REGNO. By
1574 "mysterious" we mean that the insn's RTL expression doesn't
1575 describe such an effect.
1577 If this macro is not defined, it means that no insn clobbers
1578 registers mysteriously. This is the usual situation; all else
1579 being equal, it is best for the RTL expression to show all the
1582 /* #define INSN_CLOBBERS_REGNO_P(INSN, REGNO) */
1585 /* Stack layout; function entry, exit and calling. */
1587 /* Don't enable support for the 64 bit ABI calling convention.
1588 Some embedded code depends on the old 64 bit calling convention. */
1591 /* Define this if pushing a word on the stack
1592 makes the stack pointer a smaller address. */
1593 #define STACK_GROWS_DOWNWARD
1595 /* Define this if the nominal address of the stack frame
1596 is at the high-address end of the local variables;
1597 that is, each additional local variable allocated
1598 goes at a more negative offset in the frame. */
1599 /* #define FRAME_GROWS_DOWNWARD */
1601 /* Offset within stack frame to start allocating local variables at.
1602 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1603 first local allocated. Otherwise, it is the offset to the BEGINNING
1604 of the first local allocated. */
1605 #define STARTING_FRAME_OFFSET \
1606 (current_function_outgoing_args_size \
1607 + (TARGET_ABICALLS ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0))
1609 /* Offset from the stack pointer register to an item dynamically
1610 allocated on the stack, e.g., by `alloca'.
1612 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1613 length of the outgoing arguments. The default is correct for most
1614 machines. See `function.c' for details.
1616 The MIPS ABI states that functions which dynamically allocate the
1617 stack must not have 0 for STACK_DYNAMIC_OFFSET, since it looks like
1618 we are trying to create a second frame pointer to the function, so
1619 allocate some stack space to make it happy.
1621 However, the linker currently complains about linking any code that
1622 dynamically allocates stack space, and there seems to be a bug in
1623 STACK_DYNAMIC_OFFSET, so don't define this right now. */
1626 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1627 ((current_function_outgoing_args_size == 0 && current_function_calls_alloca) \
1628 ? 4*UNITS_PER_WORD \
1629 : current_function_outgoing_args_size)
1632 /* Structure to be filled in by compute_frame_size with register
1633 save masks, and offsets for the current function. */
1635 struct mips_frame_info
1637 long total_size
; /* # bytes that the entire frame takes up */
1638 long var_size
; /* # bytes that variables take up */
1639 long args_size
; /* # bytes that outgoing arguments take up */
1640 long extra_size
; /* # bytes of extra gunk */
1641 int gp_reg_size
; /* # bytes needed to store gp regs */
1642 int fp_reg_size
; /* # bytes needed to store fp regs */
1643 long mask
; /* mask of saved gp registers */
1644 long fmask
; /* mask of saved fp registers */
1645 long gp_save_offset
; /* offset from vfp to store gp registers */
1646 long fp_save_offset
; /* offset from vfp to store fp registers */
1647 long gp_sp_offset
; /* offset from new sp to store gp registers */
1648 long fp_sp_offset
; /* offset from new sp to store fp registers */
1649 int initialized
; /* != 0 if frame size already calculated */
1650 int num_gp
; /* number of gp registers saved */
1651 int num_fp
; /* number of fp registers saved */
1654 extern struct mips_frame_info current_frame_info
;
1656 /* Store in the variable DEPTH the initial difference between the
1657 frame pointer reg contents and the stack pointer reg contents,
1658 as of the start of the function body. This depends on the layout
1659 of the fixed parts of the stack frame and on how registers are saved. */
1661 /* #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
1662 ((VAR) = compute_frame_size (get_frame_size ())) */
1664 /* If defined, this macro specifies a table of register pairs used to
1665 eliminate unneeded registers that point into the stack frame. If
1666 it is not defined, the only elimination attempted by the compiler
1667 is to replace references to the frame pointer with references to
1670 The definition of this macro is a list of structure
1671 initializations, each of which specifies an original and
1672 replacement register.
1674 On some machines, the position of the argument pointer is not
1675 known until the compilation is completed. In such a case, a
1676 separate hard register must be used for the argument pointer.
1677 This register can be eliminated by replacing it with either the
1678 frame pointer or the argument pointer, depending on whether or not
1679 the frame pointer has been eliminated.
1681 In this case, you might specify:
1682 #define ELIMINABLE_REGS \
1683 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1684 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1685 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1687 Note that the elimination of the argument pointer with the stack
1688 pointer is specified first since that is the preferred elimination. */
1690 #define ELIMINABLE_REGS \
1691 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1692 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1693 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1696 /* A C expression that returns non-zero if the compiler is allowed to
1697 try to replace register number FROM-REG with register number
1698 TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is
1699 defined, and will usually be the constant 1, since most of the
1700 cases preventing register elimination are things that the compiler
1701 already knows about. */
1703 #define CAN_ELIMINATE(FROM, TO) \
1704 (!frame_pointer_needed \
1705 || ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM))
1707 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
1708 specifies the initial difference between the specified pair of
1709 registers. This macro must be defined if `ELIMINABLE_REGS' is
1712 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1713 { compute_frame_size (get_frame_size ()); \
1714 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1716 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1717 (OFFSET) = current_frame_info.total_size; \
1718 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1719 (OFFSET) = current_frame_info.total_size; \
1725 /* If we generate an insn to push BYTES bytes,
1726 this says how many the stack pointer really advances by.
1727 On the vax, sp@- in a byte insn really pushes a word. */
1729 /* #define PUSH_ROUNDING(BYTES) 0 */
1731 /* If defined, the maximum amount of space required for outgoing
1732 arguments will be computed and placed into the variable
1733 `current_function_outgoing_args_size'. No space will be pushed
1734 onto the stack for each call; instead, the function prologue
1735 should increase the stack frame size by this amount.
1737 It is not proper to define both `PUSH_ROUNDING' and
1738 `ACCUMULATE_OUTGOING_ARGS'. */
1739 #define ACCUMULATE_OUTGOING_ARGS
1741 /* Offset from the argument pointer register to the first argument's
1742 address. On some machines it may depend on the data type of the
1745 If `ARGS_GROW_DOWNWARD', this is the offset to the location above
1746 the first argument's address.
1748 On the MIPS, we must skip the first argument position if we are
1749 returning a structure or a union, to account for its address being
1750 passed in $4. However, at the current time, this produces a compiler
1751 that can't bootstrap, so comment it out for now. */
1754 #define FIRST_PARM_OFFSET(FNDECL) \
1756 && TREE_TYPE (FNDECL) != 0 \
1757 && TREE_TYPE (TREE_TYPE (FNDECL)) != 0 \
1758 && (TREE_CODE (TREE_TYPE (TREE_TYPE (FNDECL))) == RECORD_TYPE \
1759 || TREE_CODE (TREE_TYPE (TREE_TYPE (FNDECL))) == UNION_TYPE) \
1763 #define FIRST_PARM_OFFSET(FNDECL) 0
1766 /* When a parameter is passed in a register, stack space is still
1767 allocated for it. For the MIPS, stack space must be allocated, cf
1768 Asm Lang Prog Guide page 7-8.
1770 BEWARE that some space is also allocated for non existing arguments
1771 in register. In case an argument list is of form GF used registers
1772 are a0 (a2,a3), but we should push over a1... */
1774 #define REG_PARM_STACK_SPACE(FNDECL) \
1775 ((MAX_ARGS_IN_REGISTERS*UNITS_PER_WORD) - FIRST_PARM_OFFSET (FNDECL))
1777 /* Define this if it is the responsibility of the caller to
1778 allocate the area reserved for arguments passed in registers.
1779 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
1780 of this macro is to determine whether the space is included in
1781 `current_function_outgoing_args_size'. */
1782 #define OUTGOING_REG_PARM_STACK_SPACE
1784 /* Align stack frames on 64 bits (Double Word ). */
1785 #define STACK_BOUNDARY 64
1787 /* Make sure 4 words are always allocated on the stack. */
1789 #ifndef STACK_ARGS_ADJUST
1790 #define STACK_ARGS_ADJUST(SIZE) \
1792 if (SIZE.constant < 4 * UNITS_PER_WORD) \
1793 SIZE.constant = 4 * UNITS_PER_WORD; \
1798 /* A C expression that should indicate the number of bytes of its
1799 own arguments that a function function pops on returning, or 0
1800 if the function pops no arguments and the caller must therefore
1801 pop them all after the function returns.
1803 FUNTYPE is a C variable whose value is a tree node that
1804 describes the function in question. Normally it is a node of
1805 type `FUNCTION_TYPE' that describes the data type of the function.
1806 From this it is possible to obtain the data types of the value
1807 and arguments (if known).
1809 When a call to a library function is being considered, FUNTYPE
1810 will contain an identifier node for the library function. Thus,
1811 if you need to distinguish among various library functions, you
1812 can do so by their names. Note that "library function" in this
1813 context means a function used to perform arithmetic, whose name
1814 is known specially in the compiler and was not mentioned in the
1815 C code being compiled.
1817 STACK-SIZE is the number of bytes of arguments passed on the
1818 stack. If a variable number of bytes is passed, it is zero, and
1819 argument popping will always be the responsibility of the
1820 calling function. */
1822 #define RETURN_POPS_ARGS(FUNTYPE, SIZE) 0
1825 /* Symbolic macros for the registers used to return integer and floating
1828 #define GP_RETURN (GP_REG_FIRST + 2)
1829 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
1831 /* Symbolic macros for the first/last argument registers. */
1833 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
1834 #define GP_ARG_LAST (GP_REG_FIRST + 7)
1835 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
1836 #define FP_ARG_LAST (FP_REG_FIRST + 15)
1838 #define MAX_ARGS_IN_REGISTERS 4
1840 /* Define how to find the value returned by a library function
1841 assuming the value has mode MODE. */
1843 #define LIBCALL_VALUE(MODE) \
1844 gen_rtx (REG, MODE, \
1845 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
1846 && (! TARGET_SINGLE_FLOAT \
1847 || GET_MODE_SIZE (MODE) <= 4)) \
1851 /* Define how to find the value returned by a function.
1852 VALTYPE is the data type of the value (as a tree).
1853 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1854 otherwise, FUNC is 0. */
1856 #define FUNCTION_VALUE(VALTYPE, FUNC) LIBCALL_VALUE (TYPE_MODE (VALTYPE))
1859 /* 1 if N is a possible register number for a function value.
1860 On the MIPS, R2 R3 and F0 F2 are the only register thus used.
1861 Currently, R2 and F0 are only implemented here (C has no complex type) */
1863 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN)
1865 /* 1 if N is a possible register number for function argument passing. */
1867 #define FUNCTION_ARG_REGNO_P(N) (((N) >= GP_ARG_FIRST && (N) <= GP_ARG_LAST) \
1868 || ((N) >= FP_ARG_FIRST && (N) <= FP_ARG_LAST \
1871 /* A C expression which can inhibit the returning of certain function
1872 values in registers, based on the type of value. A nonzero value says
1873 to return the function value in memory, just as large structures are
1874 always returned. Here TYPE will be a C expression of type
1875 `tree', representing the data type of the value.
1877 Note that values of mode `BLKmode' must be explicitly
1878 handled by this macro. Also, the option `-fpcc-struct-return'
1879 takes effect regardless of this macro. On most systems, it is
1880 possible to leave the macro undefined; this causes a default
1881 definition to be used, whose value is the constant 1 for BLKmode
1882 values, and 0 otherwise.
1884 GCC normally converts 1 byte structures into chars, 2 byte
1885 structs into shorts, and 4 byte structs into ints, and returns
1886 them this way. Defining the following macro overrides this,
1887 to give us MIPS cc compatibility. */
1889 #define RETURN_IN_MEMORY(TYPE) \
1890 (TYPE_MODE (TYPE) == BLKmode)
1892 /* A code distinguishing the floating point format of the target
1893 machine. There are three defined values: IEEE_FLOAT_FORMAT,
1894 VAX_FLOAT_FORMAT, and UNKNOWN_FLOAT_FORMAT. */
1896 #define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
1899 /* Define a data type for recording info about an argument list
1900 during the scan of that argument list. This data type should
1901 hold all necessary information about the function itself
1902 and about the args processed so far, enough to enable macros
1903 such as FUNCTION_ARG to determine where the next arg should go.
1906 typedef struct mips_args
{
1907 int gp_reg_found
; /* whether a gp register was found yet */
1908 int arg_number
; /* argument number */
1909 int arg_words
; /* # total words the arguments take */
1910 int num_adjusts
; /* number of adjustments made */
1911 /* Adjustments made to args pass in regs. */
1912 /* ??? The size is doubled to work around a
1913 bug in the code that sets the adjustments
1915 struct rtx_def
*adjust
[MAX_ARGS_IN_REGISTERS
*2];
1918 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1919 for a call to a function whose data type is FNTYPE.
1920 For a library call, FNTYPE is 0.
1924 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
1925 init_cumulative_args (&CUM, FNTYPE, LIBNAME) \
1927 /* Update the data in CUM to advance over an argument
1928 of mode MODE and data type TYPE.
1929 (TYPE is null for libcalls where that information may not be available.) */
1931 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1932 function_arg_advance (&CUM, MODE, TYPE, NAMED)
1934 /* Determine where to put an argument to a function.
1935 Value is zero to push the argument on the stack,
1936 or a hard register in which to store the argument.
1938 MODE is the argument's machine mode.
1939 TYPE is the data type of the argument (as a tree).
1940 This is null for libcalls where that information may
1942 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1943 the preceding args and about the function being called.
1944 NAMED is nonzero if this argument is a named parameter
1945 (otherwise it is an extra parameter matching an ellipsis). */
1947 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1948 function_arg( &CUM, MODE, TYPE, NAMED)
1950 /* For an arg passed partly in registers and partly in memory,
1951 this is the number of registers used.
1952 For args passed entirely in registers or entirely in memory, zero. */
1954 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1955 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1957 /* If defined, a C expression that gives the alignment boundary, in
1958 bits, of an argument with the specified mode and type. If it is
1959 not defined, `PARM_BOUNDARY' is used for all arguments. */
1961 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1963 ? ((TYPE_ALIGN(TYPE) <= PARM_BOUNDARY) \
1965 : TYPE_ALIGN(TYPE)) \
1966 : ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY) \
1968 : GET_MODE_ALIGNMENT(MODE)))
1971 /* This macro generates the assembly code for function entry.
1972 FILE is a stdio stream to output the code to.
1973 SIZE is an int: how many units of temporary storage to allocate.
1974 Refer to the array `regs_ever_live' to determine which registers
1975 to save; `regs_ever_live[I]' is nonzero if register number I
1976 is ever used in the function. This macro is responsible for
1977 knowing which registers should not be saved even if used. */
1979 #define FUNCTION_PROLOGUE(FILE, SIZE) function_prologue(FILE, SIZE)
1981 /* This macro generates the assembly code for function exit,
1982 on machines that need it. If FUNCTION_EPILOGUE is not defined
1983 then individual return instructions are generated for each
1984 return statement. Args are same as for FUNCTION_PROLOGUE. */
1986 #define FUNCTION_EPILOGUE(FILE, SIZE) function_epilogue(FILE, SIZE)
1988 /* Define the number of delay slots needed for the function epilogue.
1990 On the mips, we need a slot if either no stack has been allocated,
1991 or the only register saved is the return register. */
1993 #define DELAY_SLOTS_FOR_EPILOGUE mips_epilogue_delay_slots ()
1995 /* Define whether INSN can be placed in delay slot N for the epilogue.
1996 No references to the stack must be made, since on the MIPS, the
1997 delay slot is done after the stack has been cleaned up. */
1999 #define ELIGIBLE_FOR_EPILOGUE_DELAY(INSN,N) \
2000 (get_attr_dslot (INSN) == DSLOT_NO \
2001 && get_attr_length (INSN) == 1 \
2002 && ! epilogue_reg_mentioned_p (PATTERN (INSN)))
2004 /* Tell prologue and epilogue if register REGNO should be saved / restored. */
2006 #define MUST_SAVE_REGISTER(regno) \
2007 ((regs_ever_live[regno] && !call_used_regs[regno]) \
2008 || (regno == FRAME_POINTER_REGNUM && frame_pointer_needed) \
2009 || (regno == (GP_REG_FIRST + 31) && regs_ever_live[GP_REG_FIRST + 31]))
2011 /* ALIGN FRAMES on double word boundaries */
2013 #define MIPS_STACK_ALIGN(LOC) (((LOC)+7) & ~7)
2016 /* Output assembler code to FILE to increment profiler label # LABELNO
2017 for profiling a function entry. */
2019 #define FUNCTION_PROFILER(FILE, LABELNO) \
2021 fprintf (FILE, "\t.set\tnoreorder\n"); \
2022 fprintf (FILE, "\t.set\tnoat\n"); \
2023 fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n", \
2024 reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]); \
2025 fprintf (FILE, "\tjal\t_mcount\n"); \
2027 "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from stack\n", \
2028 TARGET_64BIT ? "dsubu" : "subu", \
2029 reg_names[STACK_POINTER_REGNUM], \
2030 reg_names[STACK_POINTER_REGNUM], \
2031 TARGET_LONG64 ? 16 : 8); \
2032 fprintf (FILE, "\t.set\treorder\n"); \
2033 fprintf (FILE, "\t.set\tat\n"); \
2036 /* Define this macro if the code for function profiling should come
2037 before the function prologue. Normally, the profiling code comes
2040 /* #define PROFILE_BEFORE_PROLOGUE */
2042 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2043 the stack pointer does not matter. The value is tested only in
2044 functions that have frame pointers.
2045 No definition is equivalent to always zero. */
2047 #define EXIT_IGNORE_STACK 1
2050 /* A C statement to output, on the stream FILE, assembler code for a
2051 block of data that contains the constant parts of a trampoline.
2052 This code should not include a label--the label is taken care of
2055 #define TRAMPOLINE_TEMPLATE(STREAM) \
2057 fprintf (STREAM, "\t.word\t0x03e00821\t\t# move $1,$31\n"); \
2058 fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n"); \
2059 fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n"); \
2060 if (TARGET_LONG64) \
2062 fprintf (STREAM, "\t.word\t0xdfe30014\t\t# ld $3,20($31)\n"); \
2063 fprintf (STREAM, "\t.word\t0xdfe2001c\t\t# ld $2,28($31)\n"); \
2067 fprintf (STREAM, "\t.word\t0x8fe30014\t\t# lw $3,20($31)\n"); \
2068 fprintf (STREAM, "\t.word\t0x8fe20018\t\t# lw $2,24($31)\n"); \
2070 fprintf (STREAM, "\t.word\t0x0060c821\t\t# move $25,$3 (abicalls)\n"); \
2071 fprintf (STREAM, "\t.word\t0x00600008\t\t# jr $3\n"); \
2072 fprintf (STREAM, "\t.word\t0x0020f821\t\t# move $31,$1\n"); \
2073 if (TARGET_LONG64) \
2075 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <function address>\n"); \
2076 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <static chain value>\n"); \
2080 fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
2081 fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
2085 /* A C expression for the size in bytes of the trampoline, as an
2088 #define TRAMPOLINE_SIZE (32 + (TARGET_LONG64 ? 16 : 8))
2090 /* Alignment required for trampolines, in bits. */
2092 #define TRAMPOLINE_ALIGNMENT (TARGET_LONG64 ? 64 : 32)
2094 /* A C statement to initialize the variable parts of a trampoline.
2095 ADDR is an RTX for the address of the trampoline; FNADDR is an
2096 RTX for the address of the nested function; STATIC_CHAIN is an
2097 RTX for the static chain value that should be passed to the
2098 function when it is called. */
2100 #define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
2103 if (TARGET_LONG64) \
2105 emit_move_insn (gen_rtx (MEM, DImode, plus_constant (addr, 32)), FUNC); \
2106 emit_move_insn (gen_rtx (MEM, DImode, plus_constant (addr, 40)), CHAIN);\
2110 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (addr, 32)), FUNC); \
2111 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (addr, 36)), CHAIN);\
2114 /* Flush the instruction cache. */ \
2115 /* ??? Are the modes right? Maybe they should depend on -mint64/-mlong64? */\
2116 /* ??? Should check the return value for errors. */ \
2117 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "cacheflush"), \
2118 0, VOIDmode, 3, addr, Pmode, \
2119 GEN_INT (TRAMPOLINE_SIZE), SImode, \
2120 GEN_INT (1), SImode); \
2123 /* Addressing modes, and classification of registers for them. */
2125 /* #define HAVE_POST_INCREMENT */
2126 /* #define HAVE_POST_DECREMENT */
2128 /* #define HAVE_PRE_DECREMENT */
2129 /* #define HAVE_PRE_INCREMENT */
2131 /* These assume that REGNO is a hard or pseudo reg number.
2132 They give nonzero only if REGNO is a hard reg of the suitable class
2133 or a pseudo reg currently allocated to a suitable hard reg.
2134 These definitions are NOT overridden anywhere. */
2136 #define GP_REG_OR_PSEUDO_STRICT_P(regno) \
2137 GP_REG_P((regno < FIRST_PSEUDO_REGISTER) ? regno : reg_renumber[regno])
2139 #define GP_REG_OR_PSEUDO_NONSTRICT_P(regno) \
2140 (((regno) >= FIRST_PSEUDO_REGISTER) || (GP_REG_P (regno)))
2142 #define REGNO_OK_FOR_INDEX_P(regno) 0
2143 #define REGNO_OK_FOR_BASE_P(regno) GP_REG_OR_PSEUDO_STRICT_P (regno)
2145 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2146 and check its validity for a certain class.
2147 We have two alternate definitions for each of them.
2148 The usual definition accepts all pseudo regs; the other rejects them all.
2149 The symbol REG_OK_STRICT causes the latter definition to be used.
2151 Most source files want to accept pseudo regs in the hope that
2152 they will get allocated to the class that the insn wants them to be in.
2153 Some source files that are used after register allocation
2154 need to be strict. */
2156 #ifndef REG_OK_STRICT
2158 #define REG_OK_STRICT_P 0
2159 #define REG_OK_FOR_INDEX_P(X) 0
2160 #define REG_OK_FOR_BASE_P(X) GP_REG_OR_PSEUDO_NONSTRICT_P (REGNO (X))
2164 #define REG_OK_STRICT_P 1
2165 #define REG_OK_FOR_INDEX_P(X) 0
2166 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
2171 /* Maximum number of registers that can appear in a valid memory address. */
2173 #define MAX_REGS_PER_ADDRESS 1
2175 /* A C compound statement with a conditional `goto LABEL;' executed
2176 if X (an RTX) is a legitimate memory address on the target
2177 machine for a memory operand of mode MODE.
2179 It usually pays to define several simpler macros to serve as
2180 subroutines for this one. Otherwise it may be too complicated
2183 This macro must exist in two variants: a strict variant and a
2184 non-strict one. The strict variant is used in the reload pass.
2185 It must be defined so that any pseudo-register that has not been
2186 allocated a hard register is considered a memory reference. In
2187 contexts where some kind of register is required, a
2188 pseudo-register with no hard register must be rejected.
2190 The non-strict variant is used in other passes. It must be
2191 defined to accept all pseudo-registers in every context where
2192 some kind of register is required.
2194 Compiler source files that want to use the strict variant of
2195 this macro define the macro `REG_OK_STRICT'. You should use an
2196 `#ifdef REG_OK_STRICT' conditional to define the strict variant
2197 in that case and the non-strict variant otherwise.
2199 Typically among the subroutines used to define
2200 `GO_IF_LEGITIMATE_ADDRESS' are subroutines to check for
2201 acceptable registers for various purposes (one for base
2202 registers, one for index registers, and so on). Then only these
2203 subroutine macros need have two variants; the higher levels of
2204 macros may be the same whether strict or not.
2206 Normally, constant addresses which are the sum of a `symbol_ref'
2207 and an integer are stored inside a `const' RTX to mark them as
2208 constant. Therefore, there is no need to recognize such sums
2209 specifically as legitimate addresses. Normally you would simply
2210 recognize any `const' as legitimate.
2212 Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle
2213 constant sums that are not marked with `const'. It assumes
2214 that a naked `plus' indicates indexing. If so, then you *must*
2215 reject such naked constant sums as illegitimate addresses, so
2216 that none of them will be given to `PRINT_OPERAND_ADDRESS'.
2218 On some machines, whether a symbolic address is legitimate
2219 depends on the section that the address refers to. On these
2220 machines, define the macro `ENCODE_SECTION_INFO' to store the
2221 information into the `symbol_ref', and then check for it here.
2222 When you see a `const', you will have to look inside it to find
2223 the `symbol_ref' in order to determine the section. */
2226 #define GO_PRINTF(x) trace(x)
2227 #define GO_PRINTF2(x,y) trace(x,y)
2228 #define GO_DEBUG_RTX(x) debug_rtx(x)
2231 #define GO_PRINTF(x)
2232 #define GO_PRINTF2(x,y)
2233 #define GO_DEBUG_RTX(x)
2236 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2238 register rtx xinsn = (X); \
2240 if (TARGET_DEBUG_B_MODE) \
2242 GO_PRINTF2 ("\n========== GO_IF_LEGITIMATE_ADDRESS, %sstrict\n", \
2243 (REG_OK_STRICT_P) ? "" : "not "); \
2244 GO_DEBUG_RTX (xinsn); \
2247 if (GET_CODE (xinsn) == REG && REG_OK_FOR_BASE_P (xinsn)) \
2250 if (CONSTANT_ADDRESS_P (xinsn)) \
2253 if (GET_CODE (xinsn) == PLUS) \
2255 register rtx xplus0 = XEXP (xinsn, 0); \
2256 register rtx xplus1 = XEXP (xinsn, 1); \
2257 register enum rtx_code code0 = GET_CODE (xplus0); \
2258 register enum rtx_code code1 = GET_CODE (xplus1); \
2260 if (code0 != REG && code1 == REG) \
2262 xplus0 = XEXP (xinsn, 1); \
2263 xplus1 = XEXP (xinsn, 0); \
2264 code0 = GET_CODE (xplus0); \
2265 code1 = GET_CODE (xplus1); \
2268 if (code0 == REG && REG_OK_FOR_BASE_P (xplus0)) \
2270 if (code1 == CONST_INT \
2271 && INTVAL (xplus1) >= -32768 \
2272 && INTVAL (xplus1) + GET_MODE_SIZE (MODE) - 1 <= 32767) \
2275 /* For some code sequences, you actually get better code by \
2276 pretending that the MIPS supports an address mode of a \
2277 constant address + a register, even though the real \
2278 machine doesn't support it. This is because the \
2279 assembler can use $r1 to load just the high 16 bits, add \
2280 in the register, and fold the low 16 bits into the memory \
2281 reference, whereas the compiler generates a 4 instruction \
2282 sequence. On the other hand, CSE is not as effective. \
2283 It would be a win to generate the lui directly, but the \
2284 MIPS assembler does not have syntax to generate the \
2285 appropriate relocation. */ \
2287 /* Also accept CONST_INT addresses here, so no else. */ \
2288 /* Reject combining an embedded PIC text segment reference \
2289 with a register. That requires an additional \
2291 /* ??? Reject combining an address with a register for the MIPS \
2292 64 bit ABI, because the SGI assembler can not handle this. */ \
2293 if (!TARGET_DEBUG_A_MODE \
2295 && CONSTANT_ADDRESS_P (xplus1) \
2296 && (!TARGET_EMBEDDED_PIC \
2298 || GET_CODE (XEXP (xplus1, 0)) != MINUS)) \
2303 if (TARGET_DEBUG_B_MODE) \
2304 GO_PRINTF ("Not a legitimate address\n"); \
2308 /* A C expression that is 1 if the RTX X is a constant which is a
2309 valid address. This is defined to be the same as `CONSTANT_P (X)',
2310 but rejecting CONST_DOUBLE. */
2311 /* When pic, we must reject addresses of the form symbol+large int.
2312 This is because an instruction `sw $4,s+70000' needs to be converted
2313 by the assembler to `lw $at,s($gp);sw $4,70000($at)'. Normally the
2314 assembler would use $at as a temp to load in the large offset. In this
2315 case $at is already in use. We convert such problem addresses to
2316 `la $5,s;sw $4,70000($5)' via LEGITIMIZE_ADDRESS. */
2317 /* ??? SGI Irix 6 assembler fails for CONST address, so reject them. */
2318 #define CONSTANT_ADDRESS_P(X) \
2319 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
2320 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
2321 || (GET_CODE (X) == CONST \
2322 && ! (flag_pic && pic_address_needs_scratch (X)) \
2324 && (!HALF_PIC_P () || !HALF_PIC_ADDRESS_P (X)))
2326 /* Define this, so that when PIC, reload won't try to reload invalid
2327 addresses which require two reload registers. */
2329 #define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
2331 /* Nonzero if the constant value X is a legitimate general operand.
2332 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
2334 At present, GAS doesn't understand li.[sd], so don't allow it
2335 to be generated at present. Also, the MIPS assembler does not
2336 grok li.d Infinity. */
2338 /* ??? SGI Irix 6 assembler fails for CONST address, so reject them. */
2339 #define LEGITIMATE_CONSTANT_P(X) \
2340 ((GET_CODE (X) != CONST_DOUBLE \
2341 || mips_const_double_ok (X, GET_MODE (X))) \
2342 && ! (GET_CODE (X) == CONST && ABI_64BIT))
2344 /* A C compound statement that attempts to replace X with a valid
2345 memory address for an operand of mode MODE. WIN will be a C
2346 statement label elsewhere in the code; the macro definition may
2349 GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);
2351 to avoid further processing if the address has become legitimate.
2353 X will always be the result of a call to `break_out_memory_refs',
2354 and OLDX will be the operand that was given to that function to
2357 The code generated by this macro should not alter the
2358 substructure of X. If it transforms X into a more legitimate
2359 form, it should assign X (which will always be a C variable) a
2362 It is not necessary for this macro to come up with a legitimate
2363 address. The compiler has standard ways of doing so in all
2364 cases. In fact, it is safe for this macro to do nothing. But
2365 often a machine-dependent strategy can generate better code.
2367 For the MIPS, transform:
2369 memory(X + <large int>)
2373 Y = <large int> & ~0x7fff;
2375 memory (Z + (<large int> & 0x7fff));
2377 This is for CSE to find several similar references, and only use one Z.
2379 When PIC, convert addresses of the form memory (symbol+large int) to
2380 memory (reg+large int). */
2383 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2385 register rtx xinsn = (X); \
2387 if (TARGET_DEBUG_B_MODE) \
2389 GO_PRINTF ("\n========== LEGITIMIZE_ADDRESS\n"); \
2390 GO_DEBUG_RTX (xinsn); \
2393 if (GET_CODE (xinsn) == CONST \
2394 && ((flag_pic && pic_address_needs_scratch (xinsn)) \
2395 /* ??? SGI's Irix 6 assembler can't handle CONST. */ \
2398 rtx ptr_reg = gen_reg_rtx (Pmode); \
2399 rtx constant = XEXP (XEXP (xinsn, 0), 1); \
2401 emit_move_insn (ptr_reg, XEXP (XEXP (xinsn, 0), 0)); \
2403 X = gen_rtx (PLUS, Pmode, ptr_reg, constant); \
2404 if (SMALL_INT (constant)) \
2406 /* Otherwise we fall through so the code below will fix the \
2411 if (GET_CODE (xinsn) == PLUS) \
2413 register rtx xplus0 = XEXP (xinsn, 0); \
2414 register rtx xplus1 = XEXP (xinsn, 1); \
2415 register enum rtx_code code0 = GET_CODE (xplus0); \
2416 register enum rtx_code code1 = GET_CODE (xplus1); \
2418 if (code0 != REG && code1 == REG) \
2420 xplus0 = XEXP (xinsn, 1); \
2421 xplus1 = XEXP (xinsn, 0); \
2422 code0 = GET_CODE (xplus0); \
2423 code1 = GET_CODE (xplus1); \
2426 if (code0 == REG && REG_OK_FOR_BASE_P (xplus0) \
2427 && code1 == CONST_INT && !SMALL_INT (xplus1)) \
2429 rtx int_reg = gen_reg_rtx (Pmode); \
2430 rtx ptr_reg = gen_reg_rtx (Pmode); \
2432 emit_move_insn (int_reg, \
2433 GEN_INT (INTVAL (xplus1) & ~ 0x7fff)); \
2435 emit_insn (gen_rtx (SET, VOIDmode, \
2437 gen_rtx (PLUS, Pmode, xplus0, int_reg))); \
2439 X = gen_rtx (PLUS, Pmode, ptr_reg, \
2440 GEN_INT (INTVAL (xplus1) & 0x7fff)); \
2445 if (TARGET_DEBUG_B_MODE) \
2446 GO_PRINTF ("LEGITIMIZE_ADDRESS could not fix.\n"); \
2450 /* A C statement or compound statement with a conditional `goto
2451 LABEL;' executed if memory address X (an RTX) can have different
2452 meanings depending on the machine mode of the memory reference it
2455 Autoincrement and autodecrement addresses typically have
2456 mode-dependent effects because the amount of the increment or
2457 decrement is the size of the operand being addressed. Some
2458 machines have other mode-dependent addresses. Many RISC machines
2459 have no mode-dependent addresses.
2461 You may assume that ADDR is a valid address for the machine. */
2463 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
2466 /* Define this macro if references to a symbol must be treated
2467 differently depending on something about the variable or
2468 function named by the symbol (such as what section it is in).
2470 The macro definition, if any, is executed immediately after the
2471 rtl for DECL has been created and stored in `DECL_RTL (DECL)'.
2472 The value of the rtl will be a `mem' whose address is a
2475 The usual thing for this macro to do is to a flag in the
2476 `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
2477 name string in the `symbol_ref' (if one bit is not enough
2480 The best way to modify the name string is by adding text to the
2481 beginning, with suitable punctuation to prevent any ambiguity.
2482 Allocate the new name in `saveable_obstack'. You will have to
2483 modify `ASM_OUTPUT_LABELREF' to remove and decode the added text
2484 and output the name accordingly.
2486 You can also check the information stored in the `symbol_ref' in
2487 the definition of `GO_IF_LEGITIMATE_ADDRESS' or
2488 `PRINT_OPERAND_ADDRESS'. */
2490 #define ENCODE_SECTION_INFO(DECL) \
2493 if (TARGET_EMBEDDED_PIC) \
2495 if (TREE_CODE (DECL) == VAR_DECL) \
2496 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
2497 else if (TREE_CODE (DECL) == FUNCTION_DECL) \
2498 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 0; \
2499 else if (TREE_CODE (DECL) == STRING_CST \
2500 && ! flag_writable_strings) \
2501 SYMBOL_REF_FLAG (XEXP (TREE_CST_RTL (DECL), 0)) = 0; \
2503 SYMBOL_REF_FLAG (XEXP (TREE_CST_RTL (DECL), 0)) = 1; \
2506 else if (TARGET_GP_OPT && TREE_CODE (DECL) == VAR_DECL) \
2508 int size = int_size_in_bytes (TREE_TYPE (DECL)); \
2510 if (size > 0 && size <= mips_section_threshold) \
2511 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
2514 else if (HALF_PIC_P ()) \
2515 HALF_PIC_ENCODE (DECL); \
2520 /* Specify the machine mode that this machine uses
2521 for the index in the tablejump instruction. */
2522 #define CASE_VECTOR_MODE (TARGET_LONG64 ? DImode : SImode)
2524 /* Define this if the tablejump instruction expects the table
2525 to contain offsets from the address of the table.
2526 Do not define this if the table should contain absolute addresses. */
2527 /* #define CASE_VECTOR_PC_RELATIVE */
2529 /* Specify the tree operation to be used to convert reals to integers. */
2530 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
2532 /* This is the kind of divide that is easiest to do in the general case. */
2533 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
2535 /* Define this as 1 if `char' should by default be signed; else as 0. */
2536 #ifndef DEFAULT_SIGNED_CHAR
2537 #define DEFAULT_SIGNED_CHAR 1
2540 /* Max number of bytes we can move from memory to memory
2541 in one reasonably fast instruction. */
2542 #define MOVE_MAX (TARGET_64BIT ? 8 : 4)
2543 #define MAX_MOVE_MAX 8
2545 /* Define this macro as a C expression which is nonzero if
2546 accessing less than a word of memory (i.e. a `char' or a
2547 `short') is no faster than accessing a word of memory, i.e., if
2548 such access require more than one instruction or if there is no
2549 difference in cost between byte and (aligned) word loads.
2551 On RISC machines, it tends to generate better code to define
2552 this as 1, since it avoids making a QI or HI mode register. */
2553 #define SLOW_BYTE_ACCESS 1
2555 /* We assume that the store-condition-codes instructions store 0 for false
2556 and some other value for true. This is the value stored for true. */
2558 #define STORE_FLAG_VALUE 1
2560 /* Define this if zero-extension is slow (more than one real instruction). */
2561 #define SLOW_ZERO_EXTEND
2563 /* Define this to be nonzero if shift instructions ignore all but the low-order
2565 #define SHIFT_COUNT_TRUNCATED 1
2567 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2568 is done just by pretending it is already truncated. */
2569 /* In 64 bit mode, 32 bit instructions require that register values be properly
2570 sign-extended to 64 bits. As a result, a truncate is not a no-op if it
2571 converts a value >32 bits to a value <32 bits. */
2572 /* ??? This results in inefficient code for 64 bit to 32 conversions.
2573 Something needs to be done about this. Perhaps not use any 32 bit
2574 instructions? Perhaps use PROMOTE_MODE? */
2575 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2576 (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
2578 /* Define this macro to control use of the character `$' in
2579 identifier names. The value should be 0, 1, or 2. 0 means `$'
2580 is not allowed by default; 1 means it is allowed by default if
2581 `-traditional' is used; 2 means it is allowed by default provided
2582 `-ansi' is not used. 1 is the default; there is no need to
2583 define this macro in that case. */
2585 #ifndef DOLLARS_IN_IDENTIFIERS
2586 #define DOLLARS_IN_IDENTIFIERS 1
2589 /* Specify the machine mode that pointers have.
2590 After generation of rtl, the compiler makes no further distinction
2591 between pointers and any other objects of this machine mode. */
2593 #define Pmode (TARGET_LONG64 ? DImode : SImode)
2595 /* A function address in a call instruction
2596 is a word address (for indexing purposes)
2597 so give the MEM rtx a words's mode. */
2599 #define FUNCTION_MODE (TARGET_LONG64 ? DImode : SImode)
2601 /* Define TARGET_MEM_FUNCTIONS if we want to use calls to memcpy and
2602 memset, instead of the BSD functions bcopy and bzero. */
2604 #if defined(MIPS_SYSV) || defined(OSF_OS)
2605 #define TARGET_MEM_FUNCTIONS
2609 /* A part of a C `switch' statement that describes the relative
2610 costs of constant RTL expressions. It must contain `case'
2611 labels for expression codes `const_int', `const', `symbol_ref',
2612 `label_ref' and `const_double'. Each case must ultimately reach
2613 a `return' statement to return the relative cost of the use of
2614 that kind of constant value in an expression. The cost may
2615 depend on the precise value of the constant, which is available
2616 for examination in X.
2618 CODE is the expression code--redundant, since it can be obtained
2619 with `GET_CODE (X)'. */
2621 #define CONST_COSTS(X,CODE,OUTER_CODE) \
2623 /* Always return 0, since we don't have different sized \
2624 instructions, hence different costs according to Richard \
2629 return COSTS_N_INSNS (2); \
2633 rtx offset = const0_rtx; \
2634 rtx symref = eliminate_constant_term (XEXP (X, 0), &offset); \
2636 if (GET_CODE (symref) == LABEL_REF) \
2637 return COSTS_N_INSNS (2); \
2639 if (GET_CODE (symref) != SYMBOL_REF) \
2640 return COSTS_N_INSNS (4); \
2642 /* let's be paranoid.... */ \
2643 if (INTVAL (offset) < -32768 || INTVAL (offset) > 32767) \
2644 return COSTS_N_INSNS (2); \
2646 return COSTS_N_INSNS (SYMBOL_REF_FLAG (symref) ? 1 : 2); \
2650 return COSTS_N_INSNS (SYMBOL_REF_FLAG (X) ? 1 : 2); \
2652 case CONST_DOUBLE: \
2655 split_double (X, &high, &low); \
2656 return COSTS_N_INSNS ((high == CONST0_RTX (GET_MODE (high)) \
2657 || low == CONST0_RTX (GET_MODE (low))) \
2661 /* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
2662 This can be used, for example, to indicate how costly a multiply
2663 instruction is. In writing this macro, you can use the construct
2664 `COSTS_N_INSNS (N)' to specify a cost equal to N fast instructions.
2666 This macro is optional; do not define it if the default cost
2667 assumptions are adequate for the target machine.
2669 If -mdebugd is used, change the multiply cost to 2, so multiply by
2670 a constant isn't converted to a series of shifts. This helps
2671 strength reduction, and also makes it easier to identify what the
2672 compiler is doing. */
2674 /* ??? Fix this to be right for the R8000. */
2675 #define RTX_COSTS(X,CODE,OUTER_CODE) \
2678 int num_words = (GET_MODE_SIZE (GET_MODE (X)) > UNITS_PER_WORD) ? 2 : 1; \
2679 if (simple_memory_operand (X, GET_MODE (X))) \
2680 return COSTS_N_INSNS (num_words); \
2682 return COSTS_N_INSNS (2*num_words); \
2686 return COSTS_N_INSNS (6); \
2689 return COSTS_N_INSNS ((GET_MODE (X) == DImode && !TARGET_64BIT) ? 2 : 1); \
2694 if (GET_MODE (X) == DImode && !TARGET_64BIT) \
2695 return COSTS_N_INSNS (2); \
2697 return COSTS_N_INSNS (1); \
2702 if (GET_MODE (X) == DImode && !TARGET_64BIT) \
2703 return COSTS_N_INSNS ((GET_CODE (XEXP (X, 1)) == CONST_INT) ? 4 : 12); \
2705 return COSTS_N_INSNS (1); \
2709 enum machine_mode xmode = GET_MODE (X); \
2710 if (xmode == SFmode || xmode == DFmode) \
2711 return COSTS_N_INSNS (1); \
2713 return COSTS_N_INSNS (4); \
2719 enum machine_mode xmode = GET_MODE (X); \
2720 if (xmode == SFmode || xmode == DFmode) \
2722 if (mips_cpu == PROCESSOR_R3000) \
2723 return COSTS_N_INSNS (2); \
2724 else if (mips_cpu == PROCESSOR_R6000) \
2725 return COSTS_N_INSNS (3); \
2727 return COSTS_N_INSNS (6); \
2730 if (xmode == DImode && !TARGET_64BIT) \
2731 return COSTS_N_INSNS (4); \
2733 return COSTS_N_INSNS (1); \
2737 return COSTS_N_INSNS ((GET_MODE (X) == DImode && !TARGET_64BIT) ? 4 : 1); \
2741 enum machine_mode xmode = GET_MODE (X); \
2742 if (xmode == SFmode) \
2744 if (mips_cpu == PROCESSOR_R3000) \
2745 return COSTS_N_INSNS (4); \
2746 else if (mips_cpu == PROCESSOR_R6000) \
2747 return COSTS_N_INSNS (5); \
2749 return COSTS_N_INSNS (7); \
2752 if (xmode == DFmode) \
2754 if (mips_cpu == PROCESSOR_R3000) \
2755 return COSTS_N_INSNS (5); \
2756 else if (mips_cpu == PROCESSOR_R6000) \
2757 return COSTS_N_INSNS (6); \
2759 return COSTS_N_INSNS (8); \
2762 if (mips_cpu == PROCESSOR_R3000) \
2763 return COSTS_N_INSNS (12); \
2764 else if (mips_cpu == PROCESSOR_R6000) \
2765 return COSTS_N_INSNS (17); \
2767 return COSTS_N_INSNS (10); \
2773 enum machine_mode xmode = GET_MODE (X); \
2774 if (xmode == SFmode) \
2776 if (mips_cpu == PROCESSOR_R3000) \
2777 return COSTS_N_INSNS (12); \
2778 else if (mips_cpu == PROCESSOR_R6000) \
2779 return COSTS_N_INSNS (15); \
2781 return COSTS_N_INSNS (23); \
2784 if (xmode == DFmode) \
2786 if (mips_cpu == PROCESSOR_R3000) \
2787 return COSTS_N_INSNS (19); \
2788 else if (mips_cpu == PROCESSOR_R6000) \
2789 return COSTS_N_INSNS (16); \
2791 return COSTS_N_INSNS (36); \
2794 /* fall through */ \
2798 if (mips_cpu == PROCESSOR_R3000) \
2799 return COSTS_N_INSNS (35); \
2800 else if (mips_cpu == PROCESSOR_R6000) \
2801 return COSTS_N_INSNS (38); \
2803 return COSTS_N_INSNS (69);
2805 /* An expression giving the cost of an addressing mode that
2806 contains ADDRESS. If not defined, the cost is computed from the
2807 form of the ADDRESS expression and the `CONST_COSTS' values.
2809 For most CISC machines, the default cost is a good approximation
2810 of the true cost of the addressing mode. However, on RISC
2811 machines, all instructions normally have the same length and
2812 execution time. Hence all addresses will have equal costs.
2814 In cases where more than one form of an address is known, the
2815 form with the lowest cost will be used. If multiple forms have
2816 the same, lowest, cost, the one that is the most complex will be
2819 For example, suppose an address that is equal to the sum of a
2820 register and a constant is used twice in the same basic block.
2821 When this macro is not defined, the address will be computed in
2822 a register and memory references will be indirect through that
2823 register. On machines where the cost of the addressing mode
2824 containing the sum is no higher than that of a simple indirect
2825 reference, this will produce an additional instruction and
2826 possibly require an additional register. Proper specification
2827 of this macro eliminates this overhead for such machines.
2829 Similar use of this macro is made in strength reduction of loops.
2831 ADDRESS need not be valid as an address. In such a case, the
2832 cost is not relevant and can be any value; invalid addresses
2833 need not be assigned a different cost.
2835 On machines where an address involving more than one register is
2836 as cheap as an address computation involving only one register,
2837 defining `ADDRESS_COST' to reflect this can cause two registers
2838 to be live over a region of code where only one would have been
2839 if `ADDRESS_COST' were not defined in that manner. This effect
2840 should be considered in the definition of this macro.
2841 Equivalent costs should probably only be given to addresses with
2842 different numbers of registers on machines with lots of registers.
2844 This macro will normally either not be defined or be defined as
2847 #define ADDRESS_COST(ADDR) (REG_P (ADDR) ? 1 : mips_address_cost (ADDR))
2849 /* A C expression for the cost of moving data from a register in
2850 class FROM to one in class TO. The classes are expressed using
2851 the enumeration values such as `GENERAL_REGS'. A value of 2 is
2852 the default; other values are interpreted relative to that.
2854 It is not required that the cost always equal 2 when FROM is the
2855 same as TO; on some machines it is expensive to move between
2856 registers if they are not general registers.
2858 If reload sees an insn consisting of a single `set' between two
2859 hard registers, and if `REGISTER_MOVE_COST' applied to their
2860 classes returns a value of 2, reload does not check to ensure
2861 that the constraints of the insn are met. Setting a cost of
2862 other than 2 will allow reload to verify that the constraints are
2863 met. You should do this if the `movM' pattern's constraints do
2864 not allow such copying. */
2866 #define REGISTER_MOVE_COST(FROM, TO) \
2867 ((FROM) == GR_REGS && (TO) == GR_REGS ? 2 \
2868 : (FROM) == FP_REGS && (TO) == FP_REGS ? 2 \
2869 : (FROM) == GR_REGS && (TO) == FP_REGS ? 4 \
2870 : (FROM) == FP_REGS && (TO) == GR_REGS ? 4 \
2871 : (((FROM) == HI_REG || (FROM) == LO_REG || (FROM) == MD_REGS) \
2872 && (TO) == GR_REGS) ? 6 \
2873 : (((TO) == HI_REG || (TO) == LO_REG || (TO) == MD_REGS) \
2874 && (FROM) == GR_REGS) ? 6 \
2877 /* ??? Fix this to be right for the R8000. */
2878 #define MEMORY_MOVE_COST(MODE) \
2879 ((mips_cpu == PROCESSOR_R4000 || mips_cpu == PROCESSOR_R6000) ? 6 : 4)
2881 /* A C expression for the cost of a branch instruction. A value of
2882 1 is the default; other values are interpreted relative to that. */
2884 /* ??? Fix this to be right for the R8000. */
2885 #define BRANCH_COST \
2886 ((mips_cpu == PROCESSOR_R4000 || mips_cpu == PROCESSOR_R6000) ? 2 : 1)
2888 /* A C statement (sans semicolon) to update the integer variable COST
2889 based on the relationship between INSN that is dependent on
2890 DEP_INSN through the dependence LINK. The default is to make no
2891 adjustment to COST. On the MIPS, ignore the cost of anti- and
2892 output-dependencies. */
2894 #define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
2895 if (REG_NOTE_KIND (LINK) != 0) \
2896 (COST) = 0; /* Anti or output dependence. */
2898 /* Optionally define this if you have added predicates to
2899 `MACHINE.c'. This macro is called within an initializer of an
2900 array of structures. The first field in the structure is the
2901 name of a predicate and the second field is an array of rtl
2902 codes. For each predicate, list all rtl codes that can be in
2903 expressions matched by the predicate. The list should have a
2904 trailing comma. Here is an example of two entries in the list
2905 for a typical RISC machine:
2907 #define PREDICATE_CODES \
2908 {"gen_reg_rtx_operand", {SUBREG, REG}}, \
2909 {"reg_or_short_cint_operand", {SUBREG, REG, CONST_INT}},
2911 Defining this macro does not affect the generated code (however,
2912 incorrect definitions that omit an rtl code that may be matched
2913 by the predicate can cause the compiler to malfunction).
2914 Instead, it allows the table built by `genrecog' to be more
2915 compact and efficient, thus speeding up the compiler. The most
2916 important predicates to include in the list specified by this
2917 macro are thoses used in the most insn patterns. */
2919 #define PREDICATE_CODES \
2920 {"uns_arith_operand", { REG, CONST_INT, SUBREG }}, \
2921 {"arith_operand", { REG, CONST_INT, SUBREG }}, \
2922 {"arith32_operand", { REG, CONST_INT, SUBREG }}, \
2923 {"reg_or_0_operand", { REG, CONST_INT, SUBREG }}, \
2924 {"small_int", { CONST_INT }}, \
2925 {"large_int", { CONST_INT }}, \
2926 {"mips_const_double_ok", { CONST_DOUBLE }}, \
2927 {"simple_memory_operand", { MEM, SUBREG }}, \
2928 {"equality_op", { EQ, NE }}, \
2929 {"cmp_op", { EQ, NE, GT, GE, GTU, GEU, LT, LE, \
2931 {"pc_or_label_operand", { PC, LABEL_REF }}, \
2932 {"call_insn_operand", { MEM }}, \
2935 /* If defined, a C statement to be executed just prior to the
2936 output of assembler code for INSN, to modify the extracted
2937 operands so they will be output differently.
2939 Here the argument OPVEC is the vector containing the operands
2940 extracted from INSN, and NOPERANDS is the number of elements of
2941 the vector which contain meaningful data for this insn. The
2942 contents of this vector are what will be used to convert the
2943 insn template into assembler code, so you can change the
2944 assembler output by changing the contents of the vector.
2946 We use it to check if the current insn needs a nop in front of it
2947 because of load delays, and also to update the delay slot
2950 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2951 final_prescan_insn (INSN, OPVEC, NOPERANDS)
2954 /* Tell final.c how to eliminate redundant test instructions.
2955 Here we define machine-dependent flags and fields in cc_status
2956 (see `conditions.h'). */
2958 /* A list of names to be used for additional modes for condition code
2959 values in registers. These names are added to `enum machine_mode'
2960 and all have class `MODE_CC'. By convention, they should start
2961 with `CC' and end with `mode'.
2963 You should only define this macro if your machine does not use
2964 `cc0' and only if additional modes are required.
2966 On the MIPS, we use CC_FPmode for all floating point except for not
2967 equal, CC_REV_FPmode for not equal (to reverse the sense of the
2968 jump), CC_EQmode for integer equality/inequality comparisons,
2969 CC_0mode for comparisons against 0, and CCmode for other integer
2972 #define EXTRA_CC_MODES CC_EQmode, CC_FPmode, CC_0mode, CC_REV_FPmode
2974 /* A list of C strings giving the names for the modes listed in
2975 `EXTRA_CC_MODES'. */
2977 #define EXTRA_CC_NAMES "CC_EQ", "CC_FP", "CC_0", "CC_REV_FP"
2979 /* Returns a mode from class `MODE_CC' to be used when comparison
2980 operation code OP is applied to rtx X. */
2982 #define SELECT_CC_MODE(OP, X, Y) \
2983 (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
2985 : ((OP == NE) ? CC_REV_FPmode : CC_FPmode))
2988 /* Control the assembler format that we output. */
2990 /* Output at beginning of assembler file.
2991 If we are optimizing to use the global pointer, create a temporary
2992 file to hold all of the text stuff, and write it out to the end.
2993 This is needed because the MIPS assembler is evidently one pass,
2994 and if it hasn't seen the relevant .comm/.lcomm/.extern/.sdata
2995 declaration when the code is processed, it generates a two
2996 instruction sequence. */
2998 #define ASM_FILE_START(STREAM) mips_asm_file_start (STREAM)
3000 /* Output to assembler file text saying following lines
3001 may contain character constants, extra white space, comments, etc. */
3003 #define ASM_APP_ON " #APP\n"
3005 /* Output to assembler file text saying following lines
3006 no longer contain unusual constructs. */
3008 #define ASM_APP_OFF " #NO_APP\n"
3010 /* How to refer to registers in assembler output.
3011 This sequence is indexed by compiler's hard-register-number (see above).
3013 In order to support the two different conventions for register names,
3014 we use the name of a table set up in mips.c, which is overwritten
3015 if -mrnames is used. */
3017 #define REGISTER_NAMES \
3019 &mips_reg_names[ 0][0], \
3020 &mips_reg_names[ 1][0], \
3021 &mips_reg_names[ 2][0], \
3022 &mips_reg_names[ 3][0], \
3023 &mips_reg_names[ 4][0], \
3024 &mips_reg_names[ 5][0], \
3025 &mips_reg_names[ 6][0], \
3026 &mips_reg_names[ 7][0], \
3027 &mips_reg_names[ 8][0], \
3028 &mips_reg_names[ 9][0], \
3029 &mips_reg_names[10][0], \
3030 &mips_reg_names[11][0], \
3031 &mips_reg_names[12][0], \
3032 &mips_reg_names[13][0], \
3033 &mips_reg_names[14][0], \
3034 &mips_reg_names[15][0], \
3035 &mips_reg_names[16][0], \
3036 &mips_reg_names[17][0], \
3037 &mips_reg_names[18][0], \
3038 &mips_reg_names[19][0], \
3039 &mips_reg_names[20][0], \
3040 &mips_reg_names[21][0], \
3041 &mips_reg_names[22][0], \
3042 &mips_reg_names[23][0], \
3043 &mips_reg_names[24][0], \
3044 &mips_reg_names[25][0], \
3045 &mips_reg_names[26][0], \
3046 &mips_reg_names[27][0], \
3047 &mips_reg_names[28][0], \
3048 &mips_reg_names[29][0], \
3049 &mips_reg_names[30][0], \
3050 &mips_reg_names[31][0], \
3051 &mips_reg_names[32][0], \
3052 &mips_reg_names[33][0], \
3053 &mips_reg_names[34][0], \
3054 &mips_reg_names[35][0], \
3055 &mips_reg_names[36][0], \
3056 &mips_reg_names[37][0], \
3057 &mips_reg_names[38][0], \
3058 &mips_reg_names[39][0], \
3059 &mips_reg_names[40][0], \
3060 &mips_reg_names[41][0], \
3061 &mips_reg_names[42][0], \
3062 &mips_reg_names[43][0], \
3063 &mips_reg_names[44][0], \
3064 &mips_reg_names[45][0], \
3065 &mips_reg_names[46][0], \
3066 &mips_reg_names[47][0], \
3067 &mips_reg_names[48][0], \
3068 &mips_reg_names[49][0], \
3069 &mips_reg_names[50][0], \
3070 &mips_reg_names[51][0], \
3071 &mips_reg_names[52][0], \
3072 &mips_reg_names[53][0], \
3073 &mips_reg_names[54][0], \
3074 &mips_reg_names[55][0], \
3075 &mips_reg_names[56][0], \
3076 &mips_reg_names[57][0], \
3077 &mips_reg_names[58][0], \
3078 &mips_reg_names[59][0], \
3079 &mips_reg_names[60][0], \
3080 &mips_reg_names[61][0], \
3081 &mips_reg_names[62][0], \
3082 &mips_reg_names[63][0], \
3083 &mips_reg_names[64][0], \
3084 &mips_reg_names[65][0], \
3085 &mips_reg_names[66][0], \
3088 /* print-rtl.c can't use REGISTER_NAMES, since it depends on mips.c.
3089 So define this for it. */
3090 #define DEBUG_REGISTER_NAMES \
3092 "$0", "at", "v0", "v1", "a0", "a1", "a2", "a3", \
3093 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", \
3094 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", \
3095 "t8", "t9", "k0", "k1", "gp", "sp", "$fp", "ra", \
3096 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
3097 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
3098 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
3099 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
3100 "hi", "lo", "$fcr31" \
3103 /* If defined, a C initializer for an array of structures
3104 containing a name and a register number. This macro defines
3105 additional names for hard registers, thus allowing the `asm'
3106 option in declarations to refer to registers using alternate
3109 We define both names for the integer registers here. */
3111 #define ADDITIONAL_REGISTER_NAMES \
3113 { "$0", 0 + GP_REG_FIRST }, \
3114 { "$1", 1 + GP_REG_FIRST }, \
3115 { "$2", 2 + GP_REG_FIRST }, \
3116 { "$3", 3 + GP_REG_FIRST }, \
3117 { "$4", 4 + GP_REG_FIRST }, \
3118 { "$5", 5 + GP_REG_FIRST }, \
3119 { "$6", 6 + GP_REG_FIRST }, \
3120 { "$7", 7 + GP_REG_FIRST }, \
3121 { "$8", 8 + GP_REG_FIRST }, \
3122 { "$9", 9 + GP_REG_FIRST }, \
3123 { "$10", 10 + GP_REG_FIRST }, \
3124 { "$11", 11 + GP_REG_FIRST }, \
3125 { "$12", 12 + GP_REG_FIRST }, \
3126 { "$13", 13 + GP_REG_FIRST }, \
3127 { "$14", 14 + GP_REG_FIRST }, \
3128 { "$15", 15 + GP_REG_FIRST }, \
3129 { "$16", 16 + GP_REG_FIRST }, \
3130 { "$17", 17 + GP_REG_FIRST }, \
3131 { "$18", 18 + GP_REG_FIRST }, \
3132 { "$19", 19 + GP_REG_FIRST }, \
3133 { "$20", 20 + GP_REG_FIRST }, \
3134 { "$21", 21 + GP_REG_FIRST }, \
3135 { "$22", 22 + GP_REG_FIRST }, \
3136 { "$23", 23 + GP_REG_FIRST }, \
3137 { "$24", 24 + GP_REG_FIRST }, \
3138 { "$25", 25 + GP_REG_FIRST }, \
3139 { "$26", 26 + GP_REG_FIRST }, \
3140 { "$27", 27 + GP_REG_FIRST }, \
3141 { "$28", 28 + GP_REG_FIRST }, \
3142 { "$29", 29 + GP_REG_FIRST }, \
3143 { "$30", 30 + GP_REG_FIRST }, \
3144 { "$31", 31 + GP_REG_FIRST }, \
3145 { "$sp", 29 + GP_REG_FIRST }, \
3146 { "$fp", 30 + GP_REG_FIRST }, \
3147 { "at", 1 + GP_REG_FIRST }, \
3148 { "v0", 2 + GP_REG_FIRST }, \
3149 { "v1", 3 + GP_REG_FIRST }, \
3150 { "a0", 4 + GP_REG_FIRST }, \
3151 { "a1", 5 + GP_REG_FIRST }, \
3152 { "a2", 6 + GP_REG_FIRST }, \
3153 { "a3", 7 + GP_REG_FIRST }, \
3154 { "t0", 8 + GP_REG_FIRST }, \
3155 { "t1", 9 + GP_REG_FIRST }, \
3156 { "t2", 10 + GP_REG_FIRST }, \
3157 { "t3", 11 + GP_REG_FIRST }, \
3158 { "t4", 12 + GP_REG_FIRST }, \
3159 { "t5", 13 + GP_REG_FIRST }, \
3160 { "t6", 14 + GP_REG_FIRST }, \
3161 { "t7", 15 + GP_REG_FIRST }, \
3162 { "s0", 16 + GP_REG_FIRST }, \
3163 { "s1", 17 + GP_REG_FIRST }, \
3164 { "s2", 18 + GP_REG_FIRST }, \
3165 { "s3", 19 + GP_REG_FIRST }, \
3166 { "s4", 20 + GP_REG_FIRST }, \
3167 { "s5", 21 + GP_REG_FIRST }, \
3168 { "s6", 22 + GP_REG_FIRST }, \
3169 { "s7", 23 + GP_REG_FIRST }, \
3170 { "t8", 24 + GP_REG_FIRST }, \
3171 { "t9", 25 + GP_REG_FIRST }, \
3172 { "k0", 26 + GP_REG_FIRST }, \
3173 { "k1", 27 + GP_REG_FIRST }, \
3174 { "gp", 28 + GP_REG_FIRST }, \
3175 { "sp", 29 + GP_REG_FIRST }, \
3176 { "fp", 30 + GP_REG_FIRST }, \
3177 { "ra", 31 + GP_REG_FIRST }, \
3178 { "$sp", 29 + GP_REG_FIRST }, \
3179 { "$fp", 30 + GP_REG_FIRST }, \
3180 { "cc", FPSW_REGNUM }, \
3183 /* Define results of standard character escape sequences. */
3184 #define TARGET_BELL 007
3185 #define TARGET_BS 010
3186 #define TARGET_TAB 011
3187 #define TARGET_NEWLINE 012
3188 #define TARGET_VT 013
3189 #define TARGET_FF 014
3190 #define TARGET_CR 015
3192 /* A C compound statement to output to stdio stream STREAM the
3193 assembler syntax for an instruction operand X. X is an RTL
3196 CODE is a value that can be used to specify one of several ways
3197 of printing the operand. It is used when identical operands
3198 must be printed differently depending on the context. CODE
3199 comes from the `%' specification that was used to request
3200 printing of the operand. If the specification was just `%DIGIT'
3201 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
3202 is the ASCII code for LTR.
3204 If X is a register, this macro should print the register's name.
3205 The names can be found in an array `reg_names' whose type is
3206 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
3208 When the machine description has a specification `%PUNCT' (a `%'
3209 followed by a punctuation character), this macro is called with
3210 a null pointer for X and the punctuation character for CODE.
3212 See mips.c for the MIPS specific codes. */
3214 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
3216 /* A C expression which evaluates to true if CODE is a valid
3217 punctuation character for use in the `PRINT_OPERAND' macro. If
3218 `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no
3219 punctuation characters (except for the standard one, `%') are
3220 used in this way. */
3222 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE]
3224 /* A C compound statement to output to stdio stream STREAM the
3225 assembler syntax for an instruction operand that is a memory
3226 reference whose address is ADDR. ADDR is an RTL expression.
3228 On some machines, the syntax for a symbolic address depends on
3229 the section that the address refers to. On these machines,
3230 define the macro `ENCODE_SECTION_INFO' to store the information
3231 into the `symbol_ref', and then check for it here. */
3233 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
3236 /* A C statement, to be executed after all slot-filler instructions
3237 have been output. If necessary, call `dbr_sequence_length' to
3238 determine the number of slots filled in a sequence (zero if not
3239 currently outputting a sequence), to decide how many no-ops to
3240 output, or whatever.
3242 Don't define this macro if it has nothing to do, but it is
3243 helpful in reading assembly output if the extent of the delay
3244 sequence is made explicit (e.g. with white space).
3246 Note that output routines for instructions with delay slots must
3247 be prepared to deal with not being output as part of a sequence
3248 (i.e. when the scheduling pass is not run, or when no slot
3249 fillers could be found.) The variable `final_sequence' is null
3250 when not processing a sequence, otherwise it contains the
3251 `sequence' rtx being output. */
3253 #define DBR_OUTPUT_SEQEND(STREAM) \
3256 if (set_nomacro > 0 && --set_nomacro == 0) \
3257 fputs ("\t.set\tmacro\n", STREAM); \
3259 if (set_noreorder > 0 && --set_noreorder == 0) \
3260 fputs ("\t.set\treorder\n", STREAM); \
3262 dslots_jump_filled++; \
3263 fputs ("\n", STREAM); \
3268 /* How to tell the debugger about changes of source files. Note, the
3269 mips ECOFF format cannot deal with changes of files inside of
3270 functions, which means the output of parser generators like bison
3271 is generally not debuggable without using the -l switch. Lose,
3272 lose, lose. Silicon graphics seems to want all .file's hardwired
3275 #ifndef SET_FILE_NUMBER
3276 #define SET_FILE_NUMBER() ++num_source_filenames
3279 #define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
3280 mips_output_filename (STREAM, NAME)
3282 /* This is defined so that it can be overriden in iris6.h. */
3283 #define ASM_OUTPUT_FILENAME(STREAM, NUM_SOURCE_FILENAMES, NAME) \
3286 fprintf (STREAM, "\t.file\t%d ", NUM_SOURCE_FILENAMES); \
3287 output_quoted_string (STREAM, NAME); \
3288 fputs ("\n", STREAM); \
3292 /* This is how to output a note the debugger telling it the line number
3293 to which the following sequence of instructions corresponds.
3294 Silicon graphics puts a label after each .loc. */
3296 #ifndef LABEL_AFTER_LOC
3297 #define LABEL_AFTER_LOC(STREAM)
3300 #define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
3301 mips_output_lineno (STREAM, LINE)
3303 /* The MIPS implementation uses some labels for it's own purpose. The
3304 following lists what labels are created, and are all formed by the
3305 pattern $L[a-z].*. The machine independent portion of GCC creates
3306 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
3308 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
3309 $Lb[0-9]+ Begin blocks for MIPS debug support
3310 $Lc[0-9]+ Label for use in s<xx> operation.
3311 $Le[0-9]+ End blocks for MIPS debug support
3312 $Lp\..+ Half-pic labels. */
3314 /* This is how to output the definition of a user-level label named NAME,
3315 such as the label on a static function or variable NAME.
3317 If we are optimizing the gp, remember that this label has been put
3318 out, so we know not to emit an .extern for it in mips_asm_file_end.
3319 We use one of the common bits in the IDENTIFIER tree node for this,
3320 since those bits seem to be unused, and we don't have any method
3321 of getting the decl nodes from the name. */
3323 #define ASM_OUTPUT_LABEL(STREAM,NAME) \
3325 assemble_name (STREAM, NAME); \
3326 fputs (":\n", STREAM); \
3330 /* A C statement (sans semicolon) to output to the stdio stream
3331 STREAM any text necessary for declaring the name NAME of an
3332 initialized variable which is being defined. This macro must
3333 output the label definition (perhaps using `ASM_OUTPUT_LABEL').
3334 The argument DECL is the `VAR_DECL' tree node representing the
3337 If this macro is not defined, then the variable name is defined
3338 in the usual manner as a label (by means of `ASM_OUTPUT_LABEL'). */
3340 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
3343 mips_declare_object (STREAM, NAME, "", ":\n", 0); \
3344 HALF_PIC_DECLARE (NAME); \
3349 /* This is how to output a command to make the user-level label named NAME
3350 defined for reference from other files. */
3352 #define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
3354 fputs ("\t.globl\t", STREAM); \
3355 assemble_name (STREAM, NAME); \
3356 fputs ("\n", STREAM); \
3359 /* This says how to define a global common symbol. */
3361 #define ASM_OUTPUT_COMMON(STREAM, NAME, SIZE, ROUNDED) \
3362 mips_declare_object (STREAM, NAME, "\n\t.comm\t", ",%u\n", (SIZE))
3364 /* This says how to define a local common symbol (ie, not visible to
3367 #define ASM_OUTPUT_LOCAL(STREAM, NAME, SIZE, ROUNDED) \
3368 mips_declare_object (STREAM, NAME, "\n\t.lcomm\t", ",%u\n", (SIZE))
3371 /* This says how to output an external. It would be possible not to
3372 output anything and let undefined symbol become external. However
3373 the assembler uses length information on externals to allocate in
3374 data/sdata bss/sbss, thereby saving exec time. */
3376 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
3377 mips_output_external(STREAM,DECL,NAME)
3379 /* This says what to print at the end of the assembly file */
3380 #define ASM_FILE_END(STREAM) mips_asm_file_end(STREAM)
3383 /* This is how to declare a function name. The actual work of
3384 emitting the label is moved to function_prologue, so that we can
3385 get the line number correctly emitted before the .ent directive,
3386 and after any .file directives.
3388 Also, switch files if we are optimizing the global pointer. */
3390 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL) \
3392 extern FILE *asm_out_text_file; \
3393 if (TARGET_GP_OPT) \
3395 STREAM = asm_out_text_file; \
3396 /* ??? text_section gets called too soon. If the previous \
3397 function is in a special section and we're not, we have \
3398 to switch back to the text section. We can't call \
3399 text_section again as gcc thinks we're already there. */ \
3400 /* ??? See varasm.c. There are other things that get output \
3401 too early, like alignment (before we've switched STREAM). */ \
3402 if (DECL_SECTION_NAME (DECL) == NULL_TREE) \
3403 fprintf (STREAM, "%s\n", TEXT_SECTION_ASM_OP); \
3406 current_function_name = NAME; \
3407 HALF_PIC_DECLARE (NAME); \
3410 /* This is how to output a reference to a user-level label named NAME.
3411 `assemble_name' uses this. */
3413 #define ASM_OUTPUT_LABELREF(STREAM,NAME) fprintf (STREAM, "%s", NAME)
3415 /* This is how to output an internal numbered label where
3416 PREFIX is the class of label and NUM is the number within the class. */
3418 #define ASM_OUTPUT_INTERNAL_LABEL(STREAM,PREFIX,NUM) \
3419 fprintf (STREAM, "$%s%d:\n", PREFIX, NUM)
3421 /* This is how to store into the string LABEL
3422 the symbol_ref name of an internal numbered label where
3423 PREFIX is the class of label and NUM is the number within the class.
3424 This is suitable for output with `assemble_name'. */
3426 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
3427 sprintf (LABEL, "*$%s%d", PREFIX, NUM)
3429 /* This is how to output an assembler line defining a `double' constant. */
3431 #define ASM_OUTPUT_DOUBLE(STREAM,VALUE) \
3432 mips_output_double (STREAM, VALUE)
3435 /* This is how to output an assembler line defining a `float' constant. */
3437 #define ASM_OUTPUT_FLOAT(STREAM,VALUE) \
3438 mips_output_float (STREAM, VALUE)
3441 /* This is how to output an assembler line defining an `int' constant. */
3443 #define ASM_OUTPUT_INT(STREAM,VALUE) \
3445 fprintf (STREAM, "\t.word\t"); \
3446 output_addr_const (STREAM, (VALUE)); \
3447 fprintf (STREAM, "\n"); \
3450 /* Likewise for 64 bit, `char' and `short' constants. */
3452 #define ASM_OUTPUT_DOUBLE_INT(STREAM,VALUE) \
3456 fprintf (STREAM, "\t.dword\t"); \
3457 output_addr_const (STREAM, (VALUE)); \
3458 fprintf (STREAM, "\n"); \
3462 assemble_integer (operand_subword ((VALUE), 0, 0, DImode), \
3463 UNITS_PER_WORD, 1); \
3464 assemble_integer (operand_subword ((VALUE), 1, 0, DImode), \
3465 UNITS_PER_WORD, 1); \
3469 #define ASM_OUTPUT_SHORT(STREAM,VALUE) \
3471 fprintf (STREAM, "\t.half\t"); \
3472 output_addr_const (STREAM, (VALUE)); \
3473 fprintf (STREAM, "\n"); \
3476 #define ASM_OUTPUT_CHAR(STREAM,VALUE) \
3478 fprintf (STREAM, "\t.byte\t"); \
3479 output_addr_const (STREAM, (VALUE)); \
3480 fprintf (STREAM, "\n"); \
3483 /* This is how to output an assembler line for a numeric constant byte. */
3485 #define ASM_OUTPUT_BYTE(STREAM,VALUE) \
3486 fprintf (STREAM, "\t.byte\t0x%x\n", (VALUE))
3488 /* This is how to output an element of a case-vector that is absolute. */
3490 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
3491 fprintf (STREAM, "\t%s\t$L%d\n", \
3492 TARGET_LONG64 ? ".dword" : ".word", \
3495 /* This is how to output an element of a case-vector that is relative.
3496 This is used for pc-relative code (e.g. when TARGET_ABICALLS or
3497 TARGET_EMBEDDED_PIC). */
3499 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, VALUE, REL) \
3501 if (TARGET_EMBEDDED_PIC) \
3502 fprintf (STREAM, "\t%s\t$L%d-$LS%d\n", \
3503 TARGET_LONG64 ? ".dword" : ".word", \
3505 else if (! ABI_64BIT) \
3506 fprintf (STREAM, "\t%s\t$L%d\n", \
3507 TARGET_LONG64 ? ".gpdword" : ".gpword", \
3510 fprintf (STREAM, "\t%s\t.L%d\n", \
3511 TARGET_LONG64 ? ".dword" : ".word", \
3515 /* When generating embedded PIC code we want to put the jump table in
3516 the .text section. In all other cases, we want to put the jump
3517 table in the .rdata section. Unfortunately, we can't use
3518 JUMP_TABLES_IN_TEXT_SECTION, because it is not conditional.
3519 Instead, we use ASM_OUTPUT_CASE_LABEL to switch back to the .text
3520 section if appropriate. */
3521 #define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, INSN) \
3523 if (TARGET_EMBEDDED_PIC) \
3525 ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); \
3528 /* This is how to output an assembler line
3529 that says to advance the location counter
3530 to a multiple of 2**LOG bytes. */
3532 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
3534 int mask = (1 << (LOG)) - 1; \
3535 fprintf (STREAM, "\t.align\t%d\n", (LOG)); \
3538 /* This is how to output an assembler line to to advance the location
3539 counter by SIZE bytes. */
3541 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
3542 fprintf (STREAM, "\t.space\t%u\n", (SIZE))
3544 /* This is how to output a string. */
3545 #define ASM_OUTPUT_ASCII(STREAM, STRING, LEN) \
3547 register int i, c, len = (LEN), cur_pos = 17; \
3548 register unsigned char *string = (unsigned char *)(STRING); \
3549 fprintf ((STREAM), "\t.ascii\t\""); \
3550 for (i = 0; i < len; i++) \
3552 register int c = string[i]; \
3558 putc ('\\', (STREAM)); \
3559 putc (c, (STREAM)); \
3563 case TARGET_NEWLINE: \
3564 fputs ("\\n", (STREAM)); \
3566 && (((c = string[i+1]) >= '\040' && c <= '~') \
3567 || c == TARGET_TAB)) \
3568 cur_pos = 32767; /* break right here */ \
3574 fputs ("\\t", (STREAM)); \
3579 fputs ("\\f", (STREAM)); \
3584 fputs ("\\b", (STREAM)); \
3589 fputs ("\\r", (STREAM)); \
3594 if (c >= ' ' && c < 0177) \
3596 putc (c, (STREAM)); \
3601 fprintf ((STREAM), "\\%03o", c); \
3606 if (cur_pos > 72 && i+1 < len) \
3609 fprintf ((STREAM), "\"\n\t.ascii\t\""); \
3612 fprintf ((STREAM), "\"\n"); \
3615 /* Handle certain cpp directives used in header files on sysV. */
3616 #define SCCS_DIRECTIVE
3618 /* Output #ident as a in the read-only data section. */
3619 #define ASM_OUTPUT_IDENT(FILE, STRING) \
3622 int size = strlen (p) + 1; \
3624 assemble_string (p, size); \
3627 /* Default to -G 8 */
3628 #ifndef MIPS_DEFAULT_GVALUE
3629 #define MIPS_DEFAULT_GVALUE 8
3632 /* Define the strings to put out for each section in the object file. */
3633 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
3634 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
3635 #define SDATA_SECTION_ASM_OP "\t.sdata" /* small data */
3636 #define RDATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
3637 #define READONLY_DATA_SECTION rdata_section
3639 /* What other sections we support other than the normal .data/.text. */
3641 #define EXTRA_SECTIONS in_sdata, in_rdata
3643 /* Define the additional functions to select our additional sections. */
3645 /* on the MIPS it is not a good idea to put constants in the text
3646 section, since this defeats the sdata/data mechanism. This is
3647 especially true when -O is used. In this case an effort is made to
3648 address with faster (gp) register relative addressing, which can
3649 only get at sdata and sbss items (there is no stext !!) However,
3650 if the constant is too large for sdata, and it's readonly, it
3651 will go into the .rdata section. */
3653 #define EXTRA_SECTION_FUNCTIONS \
3657 if (in_section != in_sdata) \
3659 fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP); \
3660 in_section = in_sdata; \
3667 if (in_section != in_rdata) \
3669 fprintf (asm_out_file, "%s\n", RDATA_SECTION_ASM_OP); \
3670 in_section = in_rdata; \
3674 /* Given a decl node or constant node, choose the section to output it in
3675 and select that section. */
3677 #define SELECT_RTX_SECTION(MODE,RTX) mips_select_rtx_section (MODE, RTX)
3679 #define SELECT_SECTION(DECL, RELOC) mips_select_section (DECL, RELOC)
3682 /* Store in OUTPUT a string (made with alloca) containing
3683 an assembler-name for a local static variable named NAME.
3684 LABELNO is an integer which is different for each call. */
3686 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
3687 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
3688 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
3690 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
3693 fprintf (STREAM, "\t%s\t%s,%s,8\n\t%s\t%s,0(%s)\n", \
3694 TARGET_64BIT ? "dsubu" : "subu", \
3695 reg_names[STACK_POINTER_REGNUM], \
3696 reg_names[STACK_POINTER_REGNUM], \
3697 TARGET_64BIT ? "sd" : "sw", \
3699 reg_names[STACK_POINTER_REGNUM]); \
3703 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
3706 if (! set_noreorder) \
3707 fprintf (STREAM, "\t.set\tnoreorder\n"); \
3709 dslots_load_total++; \
3710 dslots_load_filled++; \
3711 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
3712 TARGET_64BIT ? "ld" : "lw", \
3714 reg_names[STACK_POINTER_REGNUM], \
3715 TARGET_64BIT ? "daddu" : "addu", \
3716 reg_names[STACK_POINTER_REGNUM], \
3717 reg_names[STACK_POINTER_REGNUM]); \
3719 if (! set_noreorder) \
3720 fprintf (STREAM, "\t.set\treorder\n"); \
3724 /* Define the parentheses used to group arithmetic operations
3725 in assembler code. */
3727 #define ASM_OPEN_PAREN "("
3728 #define ASM_CLOSE_PAREN ")"
3730 /* How to start an assembler comment. */
3731 #ifndef ASM_COMMENT_START
3732 #define ASM_COMMENT_START "\t\t# "
3737 /* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
3738 and mips-tdump.c to print them out.
3740 These must match the corresponding definitions in gdb/mipsread.c.
3741 Unfortunately, gcc and gdb do not currently share any directories. */
3743 #define CODE_MASK 0x8F300
3744 #define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
3745 #define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
3746 #define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
3749 /* Default definitions for size_t and ptrdiff_t. */
3752 #define NO_BUILTIN_SIZE_TYPE
3753 #define SIZE_TYPE (TARGET_LONG64 ? "long unsigned int" : "unsigned int")
3756 #ifndef PTRDIFF_TYPE
3757 #define NO_BUILTIN_PTRDIFF_TYPE
3758 #define PTRDIFF_TYPE (TARGET_LONG64 ? "long int" : "int")