]> gcc.gnu.org Git - gcc.git/blob - gcc/config/mips/mips.h
6e2227f43a7a5876aa7a23e51c39d009ca8fcb10
[gcc.git] / gcc / config / mips / mips.h
1 /* Definitions of target machine for GNU compiler. MIPS version.
2 Contributed by A. Lichnewsky, lich@inria.inria.fr
3 Changed by Michael Meissner, meissner@osf.org
4 64 bit r4000 support by Ian Lance Taylor, ian@cygnus.com, and
5 Brendan Eich, brendan@microunity.com.
6 Copyright (C) 1989, 90, 91, 92, 93, 94, 1995 Free Software Foundation, Inc.
7
8 This file is part of GNU CC.
9
10 GNU CC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14
15 GNU CC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GNU CC; see the file COPYING. If not, write to
22 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24
25 /* Standard GCC variables that we reference. */
26
27 extern char *asm_file_name;
28 extern char call_used_regs[];
29 extern int current_function_calls_alloca;
30 extern int flag_omit_frame_pointer;
31 extern int frame_pointer_needed;
32 extern char *language_string;
33 extern int may_call_alloca;
34 extern int optimize;
35 extern char **save_argv;
36 extern int target_flags;
37 extern char *version_string;
38
39 /* MIPS external variables defined in mips.c. */
40
41 /* comparison type */
42 enum cmp_type {
43 CMP_SI, /* compare four byte integers */
44 CMP_DI, /* compare eight byte integers */
45 CMP_SF, /* compare single precision floats */
46 CMP_DF, /* compare double precision floats */
47 CMP_MAX /* max comparison type */
48 };
49
50 /* types of delay slot */
51 enum delay_type {
52 DELAY_NONE, /* no delay slot */
53 DELAY_LOAD, /* load from memory delay */
54 DELAY_HILO, /* move from/to hi/lo registers */
55 DELAY_FCMP /* delay after doing c.<xx>.{d,s} */
56 };
57
58 /* Which processor to schedule for. Since there is no difference between
59 a R2000 and R3000 in terms of the scheduler, we collapse them into
60 just an R3000. The elements of the enumeration must match exactly
61 the cpu attribute in the mips.md machine description. */
62
63 enum processor_type {
64 PROCESSOR_DEFAULT,
65 PROCESSOR_R3000,
66 PROCESSOR_R6000,
67 PROCESSOR_R4000,
68 PROCESSOR_R4600,
69 PROCESSOR_R4650,
70 PROCESSOR_R8000
71 };
72
73 /* Recast the cpu class to be the cpu attribute. */
74 #define mips_cpu_attr ((enum attr_cpu)mips_cpu)
75
76 /* Whether to emit abicalls code sequences or not. */
77
78 enum mips_abicalls_type {
79 MIPS_ABICALLS_NO,
80 MIPS_ABICALLS_YES
81 };
82
83 /* Recast the abicalls class to be the abicalls attribute. */
84 #define mips_abicalls_attr ((enum attr_abicalls)mips_abicalls)
85
86 /* Which type of block move to do (whether or not the last store is
87 split out so it can fill a branch delay slot). */
88
89 enum block_move_type {
90 BLOCK_MOVE_NORMAL, /* generate complete block move */
91 BLOCK_MOVE_NOT_LAST, /* generate all but last store */
92 BLOCK_MOVE_LAST /* generate just the last store */
93 };
94
95 extern char mips_reg_names[][8]; /* register names (a0 vs. $4). */
96 extern char mips_print_operand_punct[]; /* print_operand punctuation chars */
97 extern char *current_function_name; /* current function being compiled */
98 extern char *current_function_file; /* filename current function is in */
99 extern int num_source_filenames; /* current .file # */
100 extern int inside_function; /* != 0 if inside of a function */
101 extern int ignore_line_number; /* != 0 if we are to ignore next .loc */
102 extern int file_in_function_warning; /* warning given about .file in func */
103 extern int sdb_label_count; /* block start/end next label # */
104 extern int mips_section_threshold; /* # bytes of data/sdata cutoff */
105 extern int g_switch_value; /* value of the -G xx switch */
106 extern int g_switch_set; /* whether -G xx was passed. */
107 extern int sym_lineno; /* sgi next label # for each stmt */
108 extern int set_noreorder; /* # of nested .set noreorder's */
109 extern int set_nomacro; /* # of nested .set nomacro's */
110 extern int set_noat; /* # of nested .set noat's */
111 extern int set_volatile; /* # of nested .set volatile's */
112 extern int mips_branch_likely; /* emit 'l' after br (branch likely) */
113 extern int mips_dbx_regno[]; /* Map register # to debug register # */
114 extern struct rtx_def *branch_cmp[2]; /* operands for compare */
115 extern enum cmp_type branch_type; /* what type of branch to use */
116 extern enum processor_type mips_cpu; /* which cpu are we scheduling for */
117 extern enum mips_abicalls_type mips_abicalls;/* for svr4 abi pic calls */
118 extern int mips_isa; /* architectural level */
119 extern char *mips_cpu_string; /* for -mcpu=<xxx> */
120 extern char *mips_isa_string; /* for -mips{1,2,3,4} */
121 extern int dslots_load_total; /* total # load related delay slots */
122 extern int dslots_load_filled; /* # filled load delay slots */
123 extern int dslots_jump_total; /* total # jump related delay slots */
124 extern int dslots_jump_filled; /* # filled jump delay slots */
125 extern int dslots_number_nops; /* # of nops needed by previous insn */
126 extern int num_refs[3]; /* # 1/2/3 word references */
127 extern struct rtx_def *mips_load_reg; /* register to check for load delay */
128 extern struct rtx_def *mips_load_reg2; /* 2nd reg to check for load delay */
129 extern struct rtx_def *mips_load_reg3; /* 3rd reg to check for load delay */
130 extern struct rtx_def *mips_load_reg4; /* 4th reg to check for load delay */
131 extern struct rtx_def *embedded_pic_fnaddr_rtx; /* function address */
132
133 /* Functions within mips.c that we reference. */
134
135 extern void abort_with_insn ();
136 extern int arith32_operand ();
137 extern int arith_operand ();
138 extern int cmp_op ();
139 extern long compute_frame_size ();
140 extern int epilogue_reg_mentioned_p ();
141 extern void expand_block_move ();
142 extern int equality_op ();
143 extern void final_prescan_insn ();
144 extern struct rtx_def * function_arg ();
145 extern void function_arg_advance ();
146 extern int function_arg_partial_nregs ();
147 extern void function_epilogue ();
148 extern void function_prologue ();
149 extern void gen_conditional_branch ();
150 extern struct rtx_def * gen_int_relational ();
151 extern void init_cumulative_args ();
152 extern int large_int ();
153 extern int mips_address_cost ();
154 extern void mips_asm_file_end ();
155 extern void mips_asm_file_start ();
156 extern int mips_const_double_ok ();
157 extern void mips_count_memory_refs ();
158 extern int mips_debugger_offset ();
159 extern void mips_declare_object ();
160 extern int mips_epilogue_delay_slots ();
161 extern void mips_expand_epilogue ();
162 extern void mips_expand_prologue ();
163 extern char *mips_fill_delay_slot ();
164 extern char *mips_move_1word ();
165 extern char *mips_move_2words ();
166 extern void mips_output_double ();
167 extern int mips_output_external ();
168 extern void mips_output_float ();
169 extern void mips_output_filename ();
170 extern void mips_output_lineno ();
171 extern char *output_block_move ();
172 extern void override_options ();
173 extern int pc_or_label_operand ();
174 extern void print_operand_address ();
175 extern void print_operand ();
176 extern void print_options ();
177 extern int reg_or_0_operand ();
178 extern int simple_epilogue_p ();
179 extern int simple_memory_operand ();
180 extern int small_int ();
181 extern void trace();
182 extern int uns_arith_operand ();
183 extern struct rtx_def * embedded_pic_offset ();
184 extern void mips_finalize_pic ();
185
186 /* Recognition functions that return if a condition is true. */
187 extern int address_operand ();
188 extern int const_double_operand ();
189 extern int const_int_operand ();
190 extern int general_operand ();
191 extern int immediate_operand ();
192 extern int memory_address_p ();
193 extern int memory_operand ();
194 extern int nonimmediate_operand ();
195 extern int nonmemory_operand ();
196 extern int register_operand ();
197 extern int scratch_operand ();
198
199 /* Functions to change what output section we are using. */
200 extern void data_section ();
201 extern void rdata_section ();
202 extern void readonly_data_section ();
203 extern void sdata_section ();
204 extern void text_section ();
205
206 /* Functions in the rest of the compiler that we reference. */
207 extern void abort_with_insn ();
208 extern void debug_rtx ();
209 extern void fatal_io_error ();
210 extern int get_frame_size ();
211 extern int offsettable_address_p ();
212 extern void output_address ();
213 extern char *permalloc ();
214 extern int reg_mentioned_p ();
215
216 /* Functions in the standard library that we reference. */
217 extern int atoi ();
218 extern char *getenv ();
219 extern char *mktemp ();
220
221
222 /* Stubs for half-pic support if not OSF/1 reference platform. */
223
224 #ifndef HALF_PIC_P
225 #define HALF_PIC_P() 0
226 #define HALF_PIC_NUMBER_PTRS 0
227 #define HALF_PIC_NUMBER_REFS 0
228 #define HALF_PIC_ENCODE(DECL)
229 #define HALF_PIC_DECLARE(NAME)
230 #define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it.")
231 #define HALF_PIC_ADDRESS_P(X) 0
232 #define HALF_PIC_PTR(X) X
233 #define HALF_PIC_FINISH(STREAM)
234 #endif
235
236 \f
237 /* Run-time compilation parameters selecting different hardware subsets. */
238
239 /* Macros used in the machine description to test the flags. */
240
241 /* Bits for real switches */
242 #define MASK_INT64 0x00000001 /* ints are 64 bits */
243 #define MASK_LONG64 0x00000002 /* longs and pointers are 64 bits */
244 #define MASK_UNUSED 0x00000004
245 #define MASK_GPOPT 0x00000008 /* Optimize for global pointer */
246 #define MASK_GAS 0x00000010 /* Gas used instead of MIPS as */
247 #define MASK_NAME_REGS 0x00000020 /* Use MIPS s/w reg name convention */
248 #define MASK_STATS 0x00000040 /* print statistics to stderr */
249 #define MASK_MEMCPY 0x00000080 /* call memcpy instead of inline code*/
250 #define MASK_SOFT_FLOAT 0x00000100 /* software floating point */
251 #define MASK_FLOAT64 0x00000200 /* fp registers are 64 bits */
252 #define MASK_ABICALLS 0x00000400 /* emit .abicalls/.cprestore/.cpload */
253 #define MASK_HALF_PIC 0x00000800 /* Emit OSF-style pic refs to externs*/
254 #define MASK_LONG_CALLS 0x00001000 /* Always call through a register */
255 #define MASK_64BIT 0x00002000 /* Use 64 bit GP registers and insns */
256 #define MASK_EMBEDDED_PIC 0x00004000 /* Generate embedded PIC code */
257 #define MASK_EMBEDDED_DATA 0x00008000 /* Reduce RAM usage, not fast code */
258 #define MASK_BIG_ENDIAN 0x00010000 /* Generate big endian code */
259 #define MASK_SINGLE_FLOAT 0x00020000 /* Only single precision FPU. */
260 #define MASK_MAD 0x00040000 /* Generate mad/madu as on 4650. */
261 #define MASK_UNUSED1 0x00080000
262
263 /* Dummy switches used only in spec's*/
264 #define MASK_MIPS_TFILE 0x00000000 /* flag for mips-tfile usage */
265
266 /* Debug switches, not documented */
267 #define MASK_DEBUG 0x40000000 /* Eliminate version # in .s file */
268 #define MASK_DEBUG_A 0x20000000 /* don't allow <label>($reg) addrs */
269 #define MASK_DEBUG_B 0x10000000 /* GO_IF_LEGITIMATE_ADDRESS debug */
270 #define MASK_DEBUG_C 0x08000000 /* don't expand seq, etc. */
271 #define MASK_DEBUG_D 0x04000000 /* don't do define_split's */
272 #define MASK_DEBUG_E 0x02000000 /* function_arg debug */
273 #define MASK_DEBUG_F 0x01000000 /* don't try to suppress load nop's */
274 #define MASK_DEBUG_G 0x00800000 /* don't support 64 bit arithmetic */
275 #define MASK_DEBUG_H 0x00400000 /* allow ints in FP registers */
276 #define MASK_DEBUG_I 0x00200000 /* unused */
277 #define MASK_DEBUG_J 0x00100000 /* unused */
278
279 /* r4000 64 bit sizes */
280 #define TARGET_INT64 (target_flags & MASK_INT64)
281 #define TARGET_LONG64 (target_flags & MASK_LONG64)
282 #define TARGET_FLOAT64 (target_flags & MASK_FLOAT64)
283 #define TARGET_64BIT (target_flags & MASK_64BIT)
284
285 /* Mips vs. GNU assembler */
286 #define TARGET_GAS (target_flags & MASK_GAS)
287 #define TARGET_UNIX_ASM (!TARGET_GAS)
288 #define TARGET_MIPS_AS TARGET_UNIX_ASM
289
290 /* Debug Mode */
291 #define TARGET_DEBUG_MODE (target_flags & MASK_DEBUG)
292 #define TARGET_DEBUG_A_MODE (target_flags & MASK_DEBUG_A)
293 #define TARGET_DEBUG_B_MODE (target_flags & MASK_DEBUG_B)
294 #define TARGET_DEBUG_C_MODE (target_flags & MASK_DEBUG_C)
295 #define TARGET_DEBUG_D_MODE (target_flags & MASK_DEBUG_D)
296 #define TARGET_DEBUG_E_MODE (target_flags & MASK_DEBUG_E)
297 #define TARGET_DEBUG_F_MODE (target_flags & MASK_DEBUG_F)
298 #define TARGET_DEBUG_G_MODE (target_flags & MASK_DEBUG_G)
299 #define TARGET_DEBUG_H_MODE (target_flags & MASK_DEBUG_H)
300 #define TARGET_DEBUG_I_MODE (target_flags & MASK_DEBUG_I)
301 #define TARGET_DEBUG_J_MODE (target_flags & MASK_DEBUG_J)
302
303 /* Reg. Naming in .s ($21 vs. $a0) */
304 #define TARGET_NAME_REGS (target_flags & MASK_NAME_REGS)
305
306 /* Optimize for Sdata/Sbss */
307 #define TARGET_GP_OPT (target_flags & MASK_GPOPT)
308
309 /* print program statistics */
310 #define TARGET_STATS (target_flags & MASK_STATS)
311
312 /* call memcpy instead of inline code */
313 #define TARGET_MEMCPY (target_flags & MASK_MEMCPY)
314
315 /* .abicalls, etc from Pyramid V.4 */
316 #define TARGET_ABICALLS (target_flags & MASK_ABICALLS)
317
318 /* OSF pic references to externs */
319 #define TARGET_HALF_PIC (target_flags & MASK_HALF_PIC)
320
321 /* software floating point */
322 #define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
323 #define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
324
325 /* always call through a register */
326 #define TARGET_LONG_CALLS (target_flags & MASK_LONG_CALLS)
327
328 /* generate embedded PIC code;
329 requires gas. */
330 #define TARGET_EMBEDDED_PIC (target_flags & MASK_EMBEDDED_PIC)
331
332 /* for embedded systems, optimize for
333 reduced RAM space instead of for
334 fastest code. */
335 #define TARGET_EMBEDDED_DATA (target_flags & MASK_EMBEDDED_DATA)
336
337 /* generate big endian code. */
338 #define TARGET_BIG_ENDIAN (target_flags & MASK_BIG_ENDIAN)
339
340 #define TARGET_SINGLE_FLOAT (target_flags & MASK_SINGLE_FLOAT)
341 #define TARGET_DOUBLE_FLOAT (! TARGET_SINGLE_FLOAT)
342
343 #define TARGET_MAD (target_flags & MASK_MAD)
344
345 /* Macro to define tables used to set the flags.
346 This is a list in braces of pairs in braces,
347 each pair being { "NAME", VALUE }
348 where VALUE is the bits to set or minus the bits to clear.
349 An empty string NAME is used to identify the default VALUE. */
350
351 #define TARGET_SWITCHES \
352 { \
353 {"int64", MASK_INT64 | MASK_LONG64}, \
354 {"long64", MASK_LONG64}, \
355 {"mips-as", -MASK_GAS}, \
356 {"gas", MASK_GAS}, \
357 {"rnames", MASK_NAME_REGS}, \
358 {"no-rnames", -MASK_NAME_REGS}, \
359 {"gpOPT", MASK_GPOPT}, \
360 {"gpopt", MASK_GPOPT}, \
361 {"no-gpOPT", -MASK_GPOPT}, \
362 {"no-gpopt", -MASK_GPOPT}, \
363 {"stats", MASK_STATS}, \
364 {"no-stats", -MASK_STATS}, \
365 {"memcpy", MASK_MEMCPY}, \
366 {"no-memcpy", -MASK_MEMCPY}, \
367 {"mips-tfile", MASK_MIPS_TFILE}, \
368 {"no-mips-tfile", -MASK_MIPS_TFILE}, \
369 {"soft-float", MASK_SOFT_FLOAT}, \
370 {"hard-float", -MASK_SOFT_FLOAT}, \
371 {"fp64", MASK_FLOAT64}, \
372 {"fp32", -MASK_FLOAT64}, \
373 {"gp64", MASK_64BIT}, \
374 {"gp32", -MASK_64BIT}, \
375 {"abicalls", MASK_ABICALLS}, \
376 {"no-abicalls", -MASK_ABICALLS}, \
377 {"half-pic", MASK_HALF_PIC}, \
378 {"no-half-pic", -MASK_HALF_PIC}, \
379 {"long-calls", MASK_LONG_CALLS}, \
380 {"no-long-calls", -MASK_LONG_CALLS}, \
381 {"embedded-pic", MASK_EMBEDDED_PIC}, \
382 {"no-embedded-pic", -MASK_EMBEDDED_PIC}, \
383 {"embedded-data", MASK_EMBEDDED_DATA}, \
384 {"no-embedded-data", -MASK_EMBEDDED_DATA}, \
385 {"eb", MASK_BIG_ENDIAN}, \
386 {"el", -MASK_BIG_ENDIAN}, \
387 {"single-float", MASK_SINGLE_FLOAT}, \
388 {"double-float", -MASK_SINGLE_FLOAT}, \
389 {"mad", MASK_MAD}, \
390 {"no-mad", -MASK_MAD}, \
391 {"4650", MASK_MAD | MASK_SINGLE_FLOAT}, \
392 {"debug", MASK_DEBUG}, \
393 {"debuga", MASK_DEBUG_A}, \
394 {"debugb", MASK_DEBUG_B}, \
395 {"debugc", MASK_DEBUG_C}, \
396 {"debugd", MASK_DEBUG_D}, \
397 {"debuge", MASK_DEBUG_E}, \
398 {"debugf", MASK_DEBUG_F}, \
399 {"debugg", MASK_DEBUG_G}, \
400 {"debugh", MASK_DEBUG_H}, \
401 {"debugi", MASK_DEBUG_I}, \
402 {"debugj", MASK_DEBUG_J}, \
403 {"", (TARGET_DEFAULT \
404 | TARGET_CPU_DEFAULT \
405 | TARGET_ENDIAN_DEFAULT)} \
406 }
407
408 /* Default target_flags if no switches are specified */
409
410 #ifndef TARGET_DEFAULT
411 #define TARGET_DEFAULT 0
412 #endif
413
414 #ifndef TARGET_CPU_DEFAULT
415 #define TARGET_CPU_DEFAULT 0
416 #endif
417
418 #ifndef TARGET_ENDIAN_DEFAULT
419 #ifndef DECSTATION
420 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
421 #else
422 #define TARGET_ENDIAN_DEFAULT 0
423 #endif
424 #endif
425
426 /* This macro is similar to `TARGET_SWITCHES' but defines names of
427 command options that have values. Its definition is an
428 initializer with a subgrouping for each command option.
429
430 Each subgrouping contains a string constant, that defines the
431 fixed part of the option name, and the address of a variable.
432 The variable, type `char *', is set to the variable part of the
433 given option if the fixed part matches. The actual option name
434 is made by appending `-m' to the specified name.
435
436 Here is an example which defines `-mshort-data-NUMBER'. If the
437 given option is `-mshort-data-512', the variable `m88k_short_data'
438 will be set to the string `"512"'.
439
440 extern char *m88k_short_data;
441 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
442
443 #define TARGET_OPTIONS \
444 { \
445 { "cpu=", &mips_cpu_string }, \
446 { "ips", &mips_isa_string } \
447 }
448
449 /* Macros to decide whether certain features are available or not,
450 depending on the instruction set architecture level. */
451
452 #define BRANCH_LIKELY_P() (mips_isa >= 2)
453 #define HAVE_SQRT_P() (mips_isa >= 2)
454
455 /* CC1_SPEC causes -mips3 and -mips4 to set -mfp64 and -mgp64; -mips1 or
456 -mips2 sets -mfp32 and -mgp32. This can be overridden by an explicit
457 -mfp32, -mfp64, -mgp32 or -mgp64. -mfp64 sets MASK_FLOAT64 in
458 target_flags, and -mgp64 sets MASK_64BIT.
459
460 Setting MASK_64BIT in target_flags will cause gcc to assume that
461 registers are 64 bits wide. int, long and void * will be 32 bit;
462 this may be changed with -mint64 or -mlong64.
463
464 The gen* programs link code that refers to MASK_64BIT. They don't
465 actually use the information in target_flags; they just refer to
466 it. */
467 \f
468 /* Switch Recognition by gcc.c. Add -G xx support */
469
470 #ifdef SWITCH_TAKES_ARG
471 #undef SWITCH_TAKES_ARG
472 #endif
473
474 #define SWITCH_TAKES_ARG(CHAR) \
475 ((CHAR) == 'D' || (CHAR) == 'U' || (CHAR) == 'o' \
476 || (CHAR) == 'e' || (CHAR) == 'T' || (CHAR) == 'u' \
477 || (CHAR) == 'I' || (CHAR) == 'm' \
478 || (CHAR) == 'L' || (CHAR) == 'A' || (CHAR) == 'G')
479
480 /* Sometimes certain combinations of command options do not make sense
481 on a particular target machine. You can define a macro
482 `OVERRIDE_OPTIONS' to take account of this. This macro, if
483 defined, is executed once just after all the command options have
484 been parsed.
485
486 On the MIPS, it is used to handle -G. We also use it to set up all
487 of the tables referenced in the other macros. */
488
489 #define OVERRIDE_OPTIONS override_options ()
490
491 /* Zero or more C statements that may conditionally modify two
492 variables `fixed_regs' and `call_used_regs' (both of type `char
493 []') after they have been initialized from the two preceding
494 macros.
495
496 This is necessary in case the fixed or call-clobbered registers
497 depend on target flags.
498
499 You need not define this macro if it has no work to do.
500
501 If the usage of an entire class of registers depends on the target
502 flags, you may indicate this to GCC by using this macro to modify
503 `fixed_regs' and `call_used_regs' to 1 for each of the registers in
504 the classes which should not be used by GCC. Also define the macro
505 `REG_CLASS_FROM_LETTER' to return `NO_REGS' if it is called with a
506 letter for a class that shouldn't be used.
507
508 (However, if this class is not included in `GENERAL_REGS' and all
509 of the insn patterns whose constraints permit this class are
510 controlled by target switches, then GCC will automatically avoid
511 using these registers when the target switches are opposed to
512 them.) */
513
514 #define CONDITIONAL_REGISTER_USAGE \
515 do \
516 { \
517 if (!TARGET_HARD_FLOAT) \
518 { \
519 int regno; \
520 \
521 for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++) \
522 fixed_regs[regno] = call_used_regs[regno] = 1; \
523 } \
524 SUBTARGET_CONDITIONAL_REGISTER_USAGE \
525 } \
526 while (0)
527
528 /* This is meant to be redefined in the host dependent files */
529 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
530
531 /* Show we can debug even without a frame pointer. */
532 #define CAN_DEBUG_WITHOUT_FP
533 \f
534 /* Complain about missing specs and predefines that should be defined in each
535 of the target tm files to override the defaults. This is mostly a place-
536 holder until I can get each of the files updated [mm]. */
537
538 #if defined(OSF_OS) \
539 || defined(DECSTATION) \
540 || defined(SGI_TARGET) \
541 || defined(MIPS_NEWS) \
542 || defined(MIPS_SYSV) \
543 || defined(MIPS_SVR4) \
544 || defined(MIPS_BSD43)
545
546 #ifndef CPP_PREDEFINES
547 #error "Define CPP_PREDEFINES in the appropriate tm.h file"
548 #endif
549
550 #ifndef LIB_SPEC
551 #error "Define LIB_SPEC in the appropriate tm.h file"
552 #endif
553
554 #ifndef STARTFILE_SPEC
555 #error "Define STARTFILE_SPEC in the appropriate tm.h file"
556 #endif
557
558 #ifndef MACHINE_TYPE
559 #error "Define MACHINE_TYPE in the appropriate tm.h file"
560 #endif
561 #endif
562
563 /* Tell collect what flags to pass to nm. */
564 #ifndef NM_FLAGS
565 #define NM_FLAGS "-Bp"
566 #endif
567
568 \f
569 /* Names to predefine in the preprocessor for this target machine. */
570
571 #ifndef CPP_PREDEFINES
572 #define CPP_PREDEFINES "-Dmips -Dunix -Dhost_mips -DMIPSEB -DR3000 -DSYSTYPE_BSD43 \
573 -D_mips -D_unix -D_host_mips -D_MIPSEB -D_R3000 -D_SYSTYPE_BSD43 \
574 -Asystem(unix) -Asystem(bsd) -Acpu(mips) -Amachine(mips)"
575 #endif
576
577 /* Extra switches sometimes passed to the assembler. */
578
579 #ifndef ASM_SPEC
580 #if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
581 /* GAS */
582 #define ASM_SPEC "\
583 %{mmips-as: \
584 %{!.s:-nocpp} %{.s: %{cpp} %{nocpp}} \
585 %{pipe: %e-pipe is not supported.} \
586 %{K}} \
587 %{!mmips-as: \
588 %{mcpu=*} %{m4650} %{mmad:-m4650}} \
589 %{G*} %{EB} %{EL} %{mips1} %{mips2} %{mips3} %{mips4} %{v} \
590 %{noasmopt:-O0} \
591 %{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}} \
592 %{g} %{g0} %{g1} %{g2} %{g3} \
593 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
594 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
595 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
596 %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
597 %{membedded-pic}"
598
599 #else
600 /* not GAS */
601 #define ASM_SPEC "\
602 %{!mgas: \
603 %{!.s:-nocpp} %{.s: %{cpp} %{nocpp}} \
604 %{pipe: %e-pipe is not supported.} \
605 %{K}} \
606 %{mgas: \
607 %{mcpu=*} %{m4650} %{mmad:-m4650}} \
608 %{G*} %{EB} %{EL} %{mips1} %{mips2} %{mips3} %{mips4} %{v} \
609 %{noasmopt:-O0} \
610 %{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}} \
611 %{g} %{g0} %{g1} %{g2} %{g3} \
612 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
613 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
614 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
615 %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
616 %{membedded-pic}"
617
618 #endif
619 #endif /* ASM_SPEC */
620
621 /* Specify to run a post-processor, mips-tfile after the assembler
622 has run to stuff the mips debug information into the object file.
623 This is needed because the $#!%^ MIPS assembler provides no way
624 of specifying such information in the assembly file. If we are
625 cross compiling, disable mips-tfile unless the user specifies
626 -mmips-tfile. */
627
628 #ifndef ASM_FINAL_SPEC
629 #if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
630 /* GAS */
631 #define ASM_FINAL_SPEC "\
632 %{mmips-as: %{!mno-mips-tfile: \
633 \n mips-tfile %{v*: -v} \
634 %{K: -I %b.o~} \
635 %{!K: %{save-temps: -I %b.o~}} \
636 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
637 %{.s:%i} %{!.s:%g.s}}}"
638
639 #else
640 /* not GAS */
641 #define ASM_FINAL_SPEC "\
642 %{!mgas: %{!mno-mips-tfile: \
643 \n mips-tfile %{v*: -v} \
644 %{K: -I %b.o~} \
645 %{!K: %{save-temps: -I %b.o~}} \
646 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
647 %{.s:%i} %{!.s:%g.s}}}"
648
649 #endif
650 #endif /* ASM_FINAL_SPEC */
651
652 /* Redefinition of libraries used. Mips doesn't support normal
653 UNIX style profiling via calling _mcount. It does offer
654 profiling that samples the PC, so do what we can... */
655
656 #ifndef LIB_SPEC
657 #define LIB_SPEC "%{pg:-lprof1} %{p:-lprof1} -lc"
658 #endif
659
660 /* Extra switches sometimes passed to the linker. */
661 /* ??? The bestGnum will never be passed to the linker, because the gcc driver
662 will interpret it as a -b option. */
663
664 #ifndef LINK_SPEC
665 #define LINK_SPEC "\
666 %{G*} %{EB} %{EL} %{mips1} %{mips2} %{mips3} %{mips4} \
667 %{bestGnum} %{shared} %{non_shared}"
668 #endif /* LINK_SPEC defined */
669
670 /* Specs for the compiler proper */
671
672 #ifndef CC1_SPEC
673 #define CC1_SPEC "\
674 %{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
675 %{mips1:-mfp32 -mgp32}%{mips2:-mfp32 -mgp32}\
676 %{mips3:%{!msingle-float:%{!m4650:-mfp64}} -mgp64} \
677 %{mips4:%{!msingle-float:%{!m4650:-mfp64}} -mgp64} \
678 %{mfp64:%{msingle-float:%emay not use both -mfp64 and -msingle-float}} \
679 %{mfp64:%{m4650:%emay not use both -mfp64 and -m4650}} \
680 %{m4650:-mcpu=r4650} \
681 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
682 %{pic-none: -mno-half-pic} \
683 %{pic-lib: -mhalf-pic} \
684 %{pic-extern: -mhalf-pic} \
685 %{pic-calls: -mhalf-pic} \
686 %{save-temps: }"
687 #endif
688
689 /* Preprocessor specs */
690
691 #ifndef CPP_SPEC
692 #define CPP_SPEC "\
693 %{.cc: -D__LANGUAGE_C_PLUS_PLUS -D_LANGUAGE_C_PLUS_PLUS} \
694 %{.cxx: -D__LANGUAGE_C_PLUS_PLUS -D_LANGUAGE_C_PLUS_PLUS} \
695 %{.C: -D__LANGUAGE_C_PLUS_PLUS -D_LANGUAGE_C_PLUS_PLUS} \
696 %{.m: -D__LANGUAGE_OBJECTIVE_C -D_LANGUAGE_OBJECTIVE_C} \
697 %{.S: -D__LANGUAGE_ASSEMBLY -D_LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
698 %{.s: -D__LANGUAGE_ASSEMBLY -D_LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
699 %{!.S:%{!.s: -D__LANGUAGE_C -D_LANGUAGE_C %{!ansi:-DLANGUAGE_C}}} \
700 %{mlong64:-D__SIZE_TYPE__=long\\ unsigned\\ int -D__PTRDIFF_TYPE__=long\\ int} \
701 %{!mlong64:-D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int} \
702 %{mips3:-U__mips -D__mips=3} \
703 %{mips4:-U__mips -D__mips=4} \
704 %{EB:-UMIPSEL -U_MIPSEL -U__MIPSEL -U__MIPSEL__ -D_MIPSEB -D__MIPSEB -D__MIPSEB__ %{!ansi:-DMIPSEB}} \
705 %{EL:-UMIPSEB -U_MIPSEB -U__MIPSEB -U__MIPSEB__ -D_MIPSEL -D__MIPSEL -D__MIPSEL__ %{!ansi:-DMIPSEL}}"
706 #endif
707
708 /* If defined, this macro is an additional prefix to try after
709 `STANDARD_EXEC_PREFIX'. */
710
711 #ifndef MD_EXEC_PREFIX
712 #define MD_EXEC_PREFIX "/usr/lib/cmplrs/cc/"
713 #endif
714
715 #ifndef MD_STARTFILE_PREFIX
716 #define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
717 #endif
718
719 \f
720 /* Print subsidiary information on the compiler version in use. */
721
722 #define MIPS_VERSION "[AL 1.1, MM 40]"
723
724 #ifndef MACHINE_TYPE
725 #define MACHINE_TYPE "BSD Mips"
726 #endif
727
728 #ifndef TARGET_VERSION_INTERNAL
729 #define TARGET_VERSION_INTERNAL(STREAM) \
730 fprintf (STREAM, " %s %s", MIPS_VERSION, MACHINE_TYPE)
731 #endif
732
733 #ifndef TARGET_VERSION
734 #define TARGET_VERSION TARGET_VERSION_INTERNAL (stderr)
735 #endif
736
737 \f
738 #define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
739 #define DBX_DEBUGGING_INFO /* generate stabs (OSF/rose) */
740 #define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
741
742 #ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
743 #define PREFERRED_DEBUGGING_TYPE ((len > 1 && !strncmp (str, "ggdb", len)) ? DBX_DEBUG : SDB_DEBUG)
744 #endif
745
746 /* By default, turn on GDB extensions. */
747 #define DEFAULT_GDB_EXTENSIONS 1
748
749 /* If we are passing smuggling stabs through the MIPS ECOFF object
750 format, put a comment in front of the .stab<x> operation so
751 that the MIPS assembler does not choke. The mips-tfile program
752 will correctly put the stab into the object file. */
753
754 #define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
755 #define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
756 #define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
757
758 /* Forward references to tags are allowed. */
759 #define SDB_ALLOW_FORWARD_REFERENCES
760
761 /* Unknown tags are also allowed. */
762 #define SDB_ALLOW_UNKNOWN_REFERENCES
763
764 /* On Sun 4, this limit is 2048. We use 1500 to be safe,
765 since the length can run past this up to a continuation point. */
766 #define DBX_CONTIN_LENGTH 1500
767
768
769 /* How to renumber registers for dbx and gdb. */
770 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[ (REGNO) ]
771
772
773 /* Overrides for the COFF debug format. */
774 #define PUT_SDB_SCL(a) \
775 do { \
776 extern FILE *asm_out_text_file; \
777 fprintf (asm_out_text_file, "\t.scl\t%d;", (a)); \
778 } while (0)
779
780 #define PUT_SDB_INT_VAL(a) \
781 do { \
782 extern FILE *asm_out_text_file; \
783 fprintf (asm_out_text_file, "\t.val\t%d;", (a)); \
784 } while (0)
785
786 #define PUT_SDB_VAL(a) \
787 do { \
788 extern FILE *asm_out_text_file; \
789 fputs ("\t.val\t", asm_out_text_file); \
790 output_addr_const (asm_out_text_file, (a)); \
791 fputc (';', asm_out_text_file); \
792 } while (0)
793
794 #define PUT_SDB_DEF(a) \
795 do { \
796 extern FILE *asm_out_text_file; \
797 fprintf (asm_out_text_file, "\t%s.def\t", \
798 (TARGET_GAS) ? "" : "#"); \
799 ASM_OUTPUT_LABELREF (asm_out_text_file, a); \
800 fputc (';', asm_out_text_file); \
801 } while (0)
802
803 #define PUT_SDB_PLAIN_DEF(a) \
804 do { \
805 extern FILE *asm_out_text_file; \
806 fprintf (asm_out_text_file, "\t%s.def\t.%s;", \
807 (TARGET_GAS) ? "" : "#", (a)); \
808 } while (0)
809
810 #define PUT_SDB_ENDEF \
811 do { \
812 extern FILE *asm_out_text_file; \
813 fprintf (asm_out_text_file, "\t.endef\n"); \
814 } while (0)
815
816 #define PUT_SDB_TYPE(a) \
817 do { \
818 extern FILE *asm_out_text_file; \
819 fprintf (asm_out_text_file, "\t.type\t0x%x;", (a)); \
820 } while (0)
821
822 #define PUT_SDB_SIZE(a) \
823 do { \
824 extern FILE *asm_out_text_file; \
825 fprintf (asm_out_text_file, "\t.size\t%d;", (a)); \
826 } while (0)
827
828 #define PUT_SDB_DIM(a) \
829 do { \
830 extern FILE *asm_out_text_file; \
831 fprintf (asm_out_text_file, "\t.dim\t%d;", (a)); \
832 } while (0)
833
834 #ifndef PUT_SDB_START_DIM
835 #define PUT_SDB_START_DIM \
836 do { \
837 extern FILE *asm_out_text_file; \
838 fprintf (asm_out_text_file, "\t.dim\t"); \
839 } while (0)
840 #endif
841
842 #ifndef PUT_SDB_NEXT_DIM
843 #define PUT_SDB_NEXT_DIM(a) \
844 do { \
845 extern FILE *asm_out_text_file; \
846 fprintf (asm_out_text_file, "%d,", a); \
847 } while (0)
848 #endif
849
850 #ifndef PUT_SDB_LAST_DIM
851 #define PUT_SDB_LAST_DIM(a) \
852 do { \
853 extern FILE *asm_out_text_file; \
854 fprintf (asm_out_text_file, "%d;", a); \
855 } while (0)
856 #endif
857
858 #define PUT_SDB_TAG(a) \
859 do { \
860 extern FILE *asm_out_text_file; \
861 fprintf (asm_out_text_file, "\t.tag\t"); \
862 ASM_OUTPUT_LABELREF (asm_out_text_file, a); \
863 fputc (';', asm_out_text_file); \
864 } while (0)
865
866 /* For block start and end, we create labels, so that
867 later we can figure out where the correct offset is.
868 The normal .ent/.end serve well enough for functions,
869 so those are just commented out. */
870
871 #define PUT_SDB_BLOCK_START(LINE) \
872 do { \
873 extern FILE *asm_out_text_file; \
874 fprintf (asm_out_text_file, \
875 "$Lb%d:\n\t%s.begin\t$Lb%d\t%d\n", \
876 sdb_label_count, \
877 (TARGET_GAS) ? "" : "#", \
878 sdb_label_count, \
879 (LINE)); \
880 sdb_label_count++; \
881 } while (0)
882
883 #define PUT_SDB_BLOCK_END(LINE) \
884 do { \
885 extern FILE *asm_out_text_file; \
886 fprintf (asm_out_text_file, \
887 "$Le%d:\n\t%s.bend\t$Le%d\t%d\n", \
888 sdb_label_count, \
889 (TARGET_GAS) ? "" : "#", \
890 sdb_label_count, \
891 (LINE)); \
892 sdb_label_count++; \
893 } while (0)
894
895 #define PUT_SDB_FUNCTION_START(LINE)
896
897 #define PUT_SDB_FUNCTION_END(LINE)
898
899 #define PUT_SDB_EPILOGUE_END(NAME)
900
901 #define SDB_GENERATE_FAKE(BUFFER, NUMBER) \
902 sprintf ((BUFFER), ".%dfake", (NUMBER));
903
904 /* Correct the offset of automatic variables and arguments. Note that
905 the MIPS debug format wants all automatic variables and arguments
906 to be in terms of the virtual frame pointer (stack pointer before
907 any adjustment in the function), while the MIPS 3.0 linker wants
908 the frame pointer to be the stack pointer after the initial
909 adjustment. */
910
911 #define DEBUGGER_AUTO_OFFSET(X) mips_debugger_offset (X, 0)
912 #define DEBUGGER_ARG_OFFSET(OFFSET, X) mips_debugger_offset (X, OFFSET)
913
914
915 /* Tell collect that the object format is ECOFF */
916 #ifndef OBJECT_FORMAT_ROSE
917 #define OBJECT_FORMAT_COFF /* Object file looks like COFF */
918 #define EXTENDED_COFF /* ECOFF, not normal coff */
919 #endif
920
921 #if 0 /* These definitions normally have no effect because
922 MIPS systems define USE_COLLECT2, so
923 assemble_constructor does nothing anyway. */
924
925 /* Don't use the default definitions, because we don't have gld.
926 Also, we don't want stabs when generating ECOFF output.
927 Instead we depend on collect to handle these. */
928
929 #define ASM_OUTPUT_CONSTRUCTOR(file, name)
930 #define ASM_OUTPUT_DESTRUCTOR(file, name)
931
932 #endif /* 0 */
933 \f
934 /* Target machine storage layout */
935
936 /* Define in order to support both big and little endian float formats
937 in the same gcc binary. */
938 #define REAL_ARITHMETIC
939
940 /* Define this if most significant bit is lowest numbered
941 in instructions that operate on numbered bit-fields.
942 */
943 #define BITS_BIG_ENDIAN 0
944
945 /* Define this if most significant byte of a word is the lowest numbered. */
946 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
947
948 /* Define this if most significant word of a multiword number is the lowest. */
949 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
950
951 /* Define this to set the endianness to use in libgcc2.c, which can
952 not depend on target_flags. */
953 #if !defined(MIPSEL) && !defined(__MIPSEL__)
954 #define LIBGCC2_WORDS_BIG_ENDIAN 1
955 #else
956 #define LIBGCC2_WORDS_BIG_ENDIAN 0
957 #endif
958
959 /* Number of bits in an addressable storage unit */
960 #define BITS_PER_UNIT 8
961
962 /* Width in bits of a "word", which is the contents of a machine register.
963 Note that this is not necessarily the width of data type `int';
964 if using 16-bit ints on a 68000, this would still be 32.
965 But on a machine with 16-bit registers, this would be 16. */
966 #define BITS_PER_WORD (TARGET_64BIT ? 64 : 32)
967 #define MAX_BITS_PER_WORD 64
968
969 /* Width of a word, in units (bytes). */
970 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
971 #define MIN_UNITS_PER_WORD 4
972
973 /* For MIPS, width of a floating point register. */
974 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
975
976 /* A C expression for the size in bits of the type `int' on the
977 target machine. If you don't define this, the default is one
978 word. */
979 #define INT_TYPE_SIZE (TARGET_INT64 ? 64 : 32)
980 #define MAX_INT_TYPE_SIZE 64
981
982 /* Tell the preprocessor the maximum size of wchar_t. */
983 #ifndef MAX_WCHAR_TYPE_SIZE
984 #ifndef WCHAR_TYPE_SIZE
985 #define MAX_WCHAR_TYPE_SIZE MAX_INT_TYPE_SIZE
986 #endif
987 #endif
988
989 /* A C expression for the size in bits of the type `short' on the
990 target machine. If you don't define this, the default is half a
991 word. (If this would be less than one storage unit, it is
992 rounded up to one unit.) */
993 #define SHORT_TYPE_SIZE 16
994
995 /* A C expression for the size in bits of the type `long' on the
996 target machine. If you don't define this, the default is one
997 word. */
998 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
999 #define MAX_LONG_TYPE_SIZE 64
1000
1001 /* A C expression for the size in bits of the type `long long' on the
1002 target machine. If you don't define this, the default is two
1003 words. */
1004 #define LONG_LONG_TYPE_SIZE 64
1005
1006 /* A C expression for the size in bits of the type `char' on the
1007 target machine. If you don't define this, the default is one
1008 quarter of a word. (If this would be less than one storage unit,
1009 it is rounded up to one unit.) */
1010 #define CHAR_TYPE_SIZE BITS_PER_UNIT
1011
1012 /* A C expression for the size in bits of the type `float' on the
1013 target machine. If you don't define this, the default is one
1014 word. */
1015 #define FLOAT_TYPE_SIZE 32
1016
1017 /* A C expression for the size in bits of the type `double' on the
1018 target machine. If you don't define this, the default is two
1019 words. */
1020 #define DOUBLE_TYPE_SIZE 64
1021
1022 /* A C expression for the size in bits of the type `long double' on
1023 the target machine. If you don't define this, the default is two
1024 words. */
1025 #define LONG_DOUBLE_TYPE_SIZE 64
1026
1027 /* Width in bits of a pointer.
1028 See also the macro `Pmode' defined below. */
1029 #define POINTER_SIZE (TARGET_LONG64 ? 64 : 32)
1030
1031 /* Allocation boundary (in *bits*) for storing pointers in memory. */
1032 #define POINTER_BOUNDARY (TARGET_LONG64 ? 64 : 32)
1033
1034 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
1035 #define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
1036
1037 /* Allocation boundary (in *bits*) for the code of a function. */
1038 #define FUNCTION_BOUNDARY 32
1039
1040 /* Alignment of field after `int : 0' in a structure. */
1041 #define EMPTY_FIELD_BOUNDARY (TARGET_LONG64 ? 64 : 32)
1042
1043 /* Every structure's size must be a multiple of this. */
1044 /* 8 is observed right on a DECstation and on riscos 4.02. */
1045 #define STRUCTURE_SIZE_BOUNDARY 8
1046
1047 /* There is no point aligning anything to a rounder boundary than this. */
1048 #define BIGGEST_ALIGNMENT 64
1049
1050 /* Biggest alignment any structure field can require in bits. */
1051 #define BIGGEST_FIELD_ALIGNMENT 64
1052
1053 /* Set this nonzero if move instructions will actually fail to work
1054 when given unaligned data. */
1055 #define STRICT_ALIGNMENT 1
1056
1057 /* Define this if you wish to imitate the way many other C compilers
1058 handle alignment of bitfields and the structures that contain
1059 them.
1060
1061 The behavior is that the type written for a bitfield (`int',
1062 `short', or other integer type) imposes an alignment for the
1063 entire structure, as if the structure really did contain an
1064 ordinary field of that type. In addition, the bitfield is placed
1065 within the structure so that it would fit within such a field,
1066 not crossing a boundary for it.
1067
1068 Thus, on most machines, a bitfield whose type is written as `int'
1069 would not cross a four-byte boundary, and would force four-byte
1070 alignment for the whole structure. (The alignment used may not
1071 be four bytes; it is controlled by the other alignment
1072 parameters.)
1073
1074 If the macro is defined, its definition should be a C expression;
1075 a nonzero value for the expression enables this behavior. */
1076
1077 #define PCC_BITFIELD_TYPE_MATTERS 1
1078
1079 /* If defined, a C expression to compute the alignment given to a
1080 constant that is being placed in memory. CONSTANT is the constant
1081 and ALIGN is the alignment that the object would ordinarily have.
1082 The value of this macro is used instead of that alignment to align
1083 the object.
1084
1085 If this macro is not defined, then ALIGN is used.
1086
1087 The typical use of this macro is to increase alignment for string
1088 constants to be word aligned so that `strcpy' calls that copy
1089 constants can be done inline. */
1090
1091 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
1092 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
1093 && (ALIGN) < BITS_PER_WORD \
1094 ? BITS_PER_WORD \
1095 : (ALIGN))
1096
1097 /* If defined, a C expression to compute the alignment for a static
1098 variable. TYPE is the data type, and ALIGN is the alignment that
1099 the object would ordinarily have. The value of this macro is used
1100 instead of that alignment to align the object.
1101
1102 If this macro is not defined, then ALIGN is used.
1103
1104 One use of this macro is to increase alignment of medium-size
1105 data to make it all fit in fewer cache lines. Another is to
1106 cause character arrays to be word-aligned so that `strcpy' calls
1107 that copy constants to character arrays can be done inline. */
1108
1109 #undef DATA_ALIGNMENT
1110 #define DATA_ALIGNMENT(TYPE, ALIGN) \
1111 ((((ALIGN) < BITS_PER_WORD) \
1112 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1113 || TREE_CODE (TYPE) == UNION_TYPE \
1114 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1115
1116 /* Define this macro if an argument declared as `char' or `short' in a
1117 prototype should actually be passed as an `int'. In addition to
1118 avoiding errors in certain cases of mismatch, it also makes for
1119 better code on certain machines. */
1120
1121 #define PROMOTE_PROTOTYPES
1122
1123 /* Define if operations between registers always perform the operation
1124 on the full register even if a narrower mode is specified. */
1125 #define WORD_REGISTER_OPERATIONS
1126
1127 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1128 will either zero-extend or sign-extend. The value of this macro should
1129 be the code that says which one of the two operations is implicitly
1130 done, NIL if none. */
1131 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1132 \f
1133 /* Standard register usage. */
1134
1135 /* Number of actual hardware registers.
1136 The hardware registers are assigned numbers for the compiler
1137 from 0 to just below FIRST_PSEUDO_REGISTER.
1138 All registers that the compiler knows about must be given numbers,
1139 even those that are not normally considered general registers.
1140
1141 On the Mips, we have 32 integer registers, 32 floating point registers
1142 and the special registers hi, lo, and fp status. */
1143
1144 #define FIRST_PSEUDO_REGISTER 67
1145
1146 /* 1 for registers that have pervasive standard uses
1147 and are not available for the register allocator.
1148
1149 On the MIPS, see conventions, page D-2 */
1150
1151 #define FIXED_REGISTERS \
1152 { \
1153 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1154 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, \
1155 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1156 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1157 0, 0, 1 \
1158 }
1159
1160
1161 /* 1 for registers not available across function calls.
1162 These must include the FIXED_REGISTERS and also any
1163 registers that can be used without being saved.
1164 The latter must include the registers where values are returned
1165 and the register where structure-value addresses are passed.
1166 Aside from that, you can include as many other registers as you like. */
1167
1168 #define CALL_USED_REGISTERS \
1169 { \
1170 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1171 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, \
1172 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1173 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1174 1, 1, 1 \
1175 }
1176
1177
1178 /* Internal macros to classify a register number as to whether it's a
1179 general purpose register, a floating point register, a
1180 multiply/divide register, or a status register. */
1181
1182 #define GP_REG_FIRST 0
1183 #define GP_REG_LAST 31
1184 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1185 #define GP_DBX_FIRST 0
1186
1187 #define FP_REG_FIRST 32
1188 #define FP_REG_LAST 63
1189 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1190 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1191
1192 #define MD_REG_FIRST 64
1193 #define MD_REG_LAST 65
1194 #define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1195
1196 #define ST_REG_FIRST 66
1197 #define ST_REG_LAST 66
1198 #define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1199
1200 #define AT_REGNUM (GP_REG_FIRST + 1)
1201 #define HI_REGNUM (MD_REG_FIRST + 0)
1202 #define LO_REGNUM (MD_REG_FIRST + 1)
1203 #define FPSW_REGNUM ST_REG_FIRST
1204
1205 #define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1206 #define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1207 #define MD_REG_P(REGNO) ((unsigned) ((REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1208 #define ST_REG_P(REGNO) ((REGNO) == ST_REG_FIRST)
1209
1210 /* Return number of consecutive hard regs needed starting at reg REGNO
1211 to hold something of mode MODE.
1212 This is ordinarily the length in words of a value of mode MODE
1213 but can be less for certain modes in special long registers.
1214
1215 On the MIPS, all general registers are one word long. Except on
1216 the R4000 with the FR bit set, the floating point uses register
1217 pairs, with the second register not being allocatable. */
1218
1219 #define HARD_REGNO_NREGS(REGNO, MODE) \
1220 (! FP_REG_P (REGNO) \
1221 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) \
1222 : (TARGET_SINGLE_FLOAT \
1223 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG) \
1224 : (((GET_MODE_SIZE (MODE) + 7) / 8) << (TARGET_FLOAT64 == 0))))
1225
1226 /* Value is 1 if hard register REGNO can hold a value of machine-mode
1227 MODE. In 32 bit mode, require that DImode and DFmode be in even
1228 registers. For DImode, this makes some of the insns easier to
1229 write, since you don't have to worry about a DImode value in
1230 registers 3 & 4, producing a result in 4 & 5.
1231
1232 To make the code simpler HARD_REGNO_MODE_OK now just references an
1233 array built in override_options. Because machmodes.h is not yet
1234 included before this file is processed, the MODE bound can't be
1235 expressed here. */
1236
1237 extern char mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
1238
1239 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1240 mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1241
1242 /* Value is 1 if it is a good idea to tie two pseudo registers
1243 when one has mode MODE1 and one has mode MODE2.
1244 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1245 for any hard reg, then this must be 0 for correct output. */
1246 #define MODES_TIEABLE_P(MODE1, MODE2) \
1247 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
1248 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
1249 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
1250 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
1251
1252 /* MIPS pc is not overloaded on a register. */
1253 /* #define PC_REGNUM xx */
1254
1255 /* Register to use for pushing function arguments. */
1256 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1257
1258 /* Offset from the stack pointer to the first available location. */
1259 #define STACK_POINTER_OFFSET 0
1260
1261 /* Base register for access to local variables of the function. */
1262 #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 30)
1263
1264 /* Value should be nonzero if functions must have frame pointers.
1265 Zero means the frame pointer need not be set up (and parms
1266 may be accessed via the stack pointer) in functions that seem suitable.
1267 This is computed in `reload', in reload1.c. */
1268 #define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
1269
1270 /* Base register for access to arguments of the function. */
1271 #define ARG_POINTER_REGNUM GP_REG_FIRST
1272
1273 /* Register in which static-chain is passed to a function. */
1274 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
1275
1276 /* If the structure value address is passed in a register, then
1277 `STRUCT_VALUE_REGNUM' should be the number of that register. */
1278 /* #define STRUCT_VALUE_REGNUM (GP_REG_FIRST + 4) */
1279
1280 /* If the structure value address is not passed in a register, define
1281 `STRUCT_VALUE' as an expression returning an RTX for the place
1282 where the address is passed. If it returns 0, the address is
1283 passed as an "invisible" first argument. */
1284 #define STRUCT_VALUE 0
1285
1286 /* Mips registers used in prologue/epilogue code when the stack frame
1287 is larger than 32K bytes. These registers must come from the
1288 scratch register set, and not used for passing and returning
1289 arguments and any other information used in the calling sequence
1290 (such as pic). Must start at 12, since t0/t3 are parameter passing
1291 registers in the 64 bit ABI. */
1292
1293 #define MIPS_TEMP1_REGNUM (GP_REG_FIRST + 12)
1294 #define MIPS_TEMP2_REGNUM (GP_REG_FIRST + 13)
1295
1296 /* Define this macro if it is as good or better to call a constant
1297 function address than to call an address kept in a register. */
1298 #define NO_FUNCTION_CSE 1
1299
1300 /* Define this macro if it is as good or better for a function to
1301 call itself with an explicit address than to call an address
1302 kept in a register. */
1303 #define NO_RECURSIVE_FUNCTION_CSE 1
1304
1305 /* The register number of the register used to address a table of
1306 static data addresses in memory. In some cases this register is
1307 defined by a processor's "application binary interface" (ABI).
1308 When this macro is defined, RTL is generated for this register
1309 once, as with the stack pointer and frame pointer registers. If
1310 this macro is not defined, it is up to the machine-dependent
1311 files to allocate such a register (if necessary). */
1312 #define PIC_OFFSET_TABLE_REGNUM (GP_REG_FIRST + 28)
1313
1314 #define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
1315
1316 #define FINALIZE_PIC mips_finalize_pic ()
1317 \f
1318 /* Define the classes of registers for register constraints in the
1319 machine description. Also define ranges of constants.
1320
1321 One of the classes must always be named ALL_REGS and include all hard regs.
1322 If there is more than one class, another class must be named NO_REGS
1323 and contain no registers.
1324
1325 The name GENERAL_REGS must be the name of a class (or an alias for
1326 another name such as ALL_REGS). This is the class of registers
1327 that is allowed by "g" or "r" in a register constraint.
1328 Also, registers outside this class are allocated only when
1329 instructions express preferences for them.
1330
1331 The classes must be numbered in nondecreasing order; that is,
1332 a larger-numbered class must never be contained completely
1333 in a smaller-numbered class.
1334
1335 For any two classes, it is very desirable that there be another
1336 class that represents their union. */
1337
1338 enum reg_class
1339 {
1340 NO_REGS, /* no registers in set */
1341 GR_REGS, /* integer registers */
1342 FP_REGS, /* floating point registers */
1343 HI_REG, /* hi register */
1344 LO_REG, /* lo register */
1345 MD_REGS, /* multiply/divide registers (hi/lo) */
1346 ST_REGS, /* status registers (fp status) */
1347 ALL_REGS, /* all registers */
1348 LIM_REG_CLASSES /* max value + 1 */
1349 };
1350
1351 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1352
1353 #define GENERAL_REGS GR_REGS
1354
1355 /* An initializer containing the names of the register classes as C
1356 string constants. These names are used in writing some of the
1357 debugging dumps. */
1358
1359 #define REG_CLASS_NAMES \
1360 { \
1361 "NO_REGS", \
1362 "GR_REGS", \
1363 "FP_REGS", \
1364 "HI_REG", \
1365 "LO_REG", \
1366 "MD_REGS", \
1367 "ST_REGS", \
1368 "ALL_REGS" \
1369 }
1370
1371 /* An initializer containing the contents of the register classes,
1372 as integers which are bit masks. The Nth integer specifies the
1373 contents of class N. The way the integer MASK is interpreted is
1374 that register R is in the class if `MASK & (1 << R)' is 1.
1375
1376 When the machine has more than 32 registers, an integer does not
1377 suffice. Then the integers are replaced by sub-initializers,
1378 braced groupings containing several integers. Each
1379 sub-initializer must be suitable as an initializer for the type
1380 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
1381
1382 #define REG_CLASS_CONTENTS \
1383 { \
1384 { 0x00000000, 0x00000000, 0x00000000 }, /* no registers */ \
1385 { 0xffffffff, 0x00000000, 0x00000000 }, /* integer registers */ \
1386 { 0x00000000, 0xffffffff, 0x00000000 }, /* floating registers*/ \
1387 { 0x00000000, 0x00000000, 0x00000001 }, /* hi register */ \
1388 { 0x00000000, 0x00000000, 0x00000002 }, /* lo register */ \
1389 { 0x00000000, 0x00000000, 0x00000003 }, /* mul/div registers */ \
1390 { 0x00000000, 0x00000000, 0x00000004 }, /* status registers */ \
1391 { 0xffffffff, 0xffffffff, 0x00000007 } /* all registers */ \
1392 }
1393
1394
1395 /* A C expression whose value is a register class containing hard
1396 register REGNO. In general there is more that one such class;
1397 choose a class which is "minimal", meaning that no smaller class
1398 also contains the register. */
1399
1400 extern enum reg_class mips_regno_to_class[];
1401
1402 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1403
1404 /* A macro whose definition is the name of the class to which a
1405 valid base register must belong. A base register is one used in
1406 an address which is the register value plus a displacement. */
1407
1408 #define BASE_REG_CLASS GR_REGS
1409
1410 /* A macro whose definition is the name of the class to which a
1411 valid index register must belong. An index register is one used
1412 in an address where its value is either multiplied by a scale
1413 factor or added to another register (as well as added to a
1414 displacement). */
1415
1416 #define INDEX_REG_CLASS NO_REGS
1417
1418
1419 /* REGISTER AND CONSTANT CLASSES */
1420
1421 /* Get reg_class from a letter such as appears in the machine
1422 description.
1423
1424 DEFINED REGISTER CLASSES:
1425
1426 'd' General (aka integer) registers
1427 'f' Floating point registers
1428 'h' Hi register
1429 'l' Lo register
1430 'x' Multiply/divide registers
1431 'z' FP Status register */
1432
1433 extern enum reg_class mips_char_to_class[];
1434
1435 #define REG_CLASS_FROM_LETTER(C) mips_char_to_class[ (C) ]
1436
1437 /* The letters I, J, K, L, M, N, O, and P in a register constraint
1438 string can be used to stand for particular ranges of immediate
1439 operands. This macro defines what the ranges are. C is the
1440 letter, and VALUE is a constant value. Return 1 if VALUE is
1441 in the range specified by C. */
1442
1443 /* For MIPS:
1444
1445 `I' is used for the range of constants an arithmetic insn can
1446 actually contain (16 bits signed integers).
1447
1448 `J' is used for the range which is just zero (ie, $r0).
1449
1450 `K' is used for the range of constants a logical insn can actually
1451 contain (16 bit zero-extended integers).
1452
1453 `L' is used for the range of constants that be loaded with lui
1454 (ie, the bottom 16 bits are zero).
1455
1456 `M' is used for the range of constants that take two words to load
1457 (ie, not matched by `I', `K', and `L').
1458
1459 `N' is used for negative 16 bit constants.
1460
1461 `O' is an exact power of 2 (not yet used in the md file).
1462
1463 `P' is used for positive 16 bit constants. */
1464
1465 #define SMALL_INT(X) ((unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1466 #define SMALL_INT_UNSIGNED(X) ((unsigned HOST_WIDE_INT) (INTVAL (X)) < 0x10000)
1467
1468 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1469 ((C) == 'I' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000) \
1470 : (C) == 'J' ? ((VALUE) == 0) \
1471 : (C) == 'K' ? ((unsigned HOST_WIDE_INT) (VALUE) < 0x10000) \
1472 : (C) == 'L' ? (((VALUE) & 0x0000ffff) == 0 \
1473 && (((VALUE) & ~2147483647) == 0 \
1474 || ((VALUE) & ~2147483647) == ~2147483647)) \
1475 : (C) == 'M' ? ((((VALUE) & ~0x0000ffff) != 0) \
1476 && (((VALUE) & ~0x0000ffff) != ~0x0000ffff) \
1477 && (((VALUE) & 0x0000ffff) != 0 \
1478 || (((VALUE) & ~2147483647) != 0 \
1479 && ((VALUE) & ~2147483647) != ~2147483647))) \
1480 : (C) == 'N' ? (((VALUE) & ~0x0000ffff) == ~0x0000ffff) \
1481 : (C) == 'O' ? (exact_log2 (VALUE) >= 0) \
1482 : (C) == 'P' ? ((VALUE) != 0 && (((VALUE) & ~0x0000ffff) == 0)) \
1483 : 0)
1484
1485 /* Similar, but for floating constants, and defining letters G and H.
1486 Here VALUE is the CONST_DOUBLE rtx itself. */
1487
1488 /* For Mips
1489
1490 'G' : Floating point 0 */
1491
1492 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1493 ((C) == 'G' \
1494 && (VALUE) == CONST0_RTX (GET_MODE (VALUE)))
1495
1496 /* Letters in the range `Q' through `U' may be defined in a
1497 machine-dependent fashion to stand for arbitrary operand types.
1498 The machine description macro `EXTRA_CONSTRAINT' is passed the
1499 operand as its first argument and the constraint letter as its
1500 second operand.
1501
1502 `Q' is for memory references which take more than 1 instruction.
1503 `R' is for memory references which take 1 word for the instruction.
1504 `S' is for references to extern items which are PIC for OSF/rose. */
1505
1506 #define EXTRA_CONSTRAINT(OP,CODE) \
1507 ((GET_CODE (OP) != MEM) ? FALSE \
1508 : ((CODE) == 'Q') ? !simple_memory_operand (OP, GET_MODE (OP)) \
1509 : ((CODE) == 'R') ? simple_memory_operand (OP, GET_MODE (OP)) \
1510 : ((CODE) == 'S') ? (HALF_PIC_P () && CONSTANT_P (OP) \
1511 && HALF_PIC_ADDRESS_P (OP)) \
1512 : FALSE)
1513
1514 /* Given an rtx X being reloaded into a reg required to be
1515 in class CLASS, return the class of reg to actually use.
1516 In general this is just CLASS; but on some machines
1517 in some cases it is preferable to use a more restrictive class. */
1518
1519 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1520 ((CLASS) != ALL_REGS \
1521 ? (CLASS) \
1522 : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1523 || GET_MODE_CLASS (GET_MODE (X)) == MODE_COMPLEX_FLOAT) \
1524 ? (TARGET_SOFT_FLOAT ? GR_REGS : FP_REGS) \
1525 : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
1526 || GET_MODE (X) == VOIDmode) \
1527 ? GR_REGS \
1528 : (CLASS))))
1529
1530 /* Certain machines have the property that some registers cannot be
1531 copied to some other registers without using memory. Define this
1532 macro on those machines to be a C expression that is non-zero if
1533 objects of mode MODE in registers of CLASS1 can only be copied to
1534 registers of class CLASS2 by storing a register of CLASS1 into
1535 memory and loading that memory location into a register of CLASS2.
1536
1537 Do not define this macro if its value would always be zero. */
1538
1539 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1540 ((!TARGET_DEBUG_H_MODE \
1541 && GET_MODE_CLASS (MODE) == MODE_INT \
1542 && ((CLASS1 == FP_REGS && CLASS2 == GR_REGS) \
1543 || (CLASS1 == GR_REGS && CLASS2 == FP_REGS))) \
1544 || (TARGET_FLOAT64 && !TARGET_64BIT && (MODE) == DFmode \
1545 && ((CLASS1 == GR_REGS && CLASS2 == FP_REGS) \
1546 || (CLASS2 == GR_REGS && CLASS1 == FP_REGS))))
1547
1548 /* The HI and LO registers can only be reloaded via the general
1549 registers. */
1550
1551 #define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
1552 mips_secondary_reload_class (CLASS, MODE, X)
1553
1554 /* Not declared above, with the other functions, because enum
1555 reg_class is not declared yet. */
1556 extern enum reg_class mips_secondary_reload_class ();
1557
1558 /* Return the maximum number of consecutive registers
1559 needed to represent mode MODE in a register of class CLASS. */
1560
1561 #define CLASS_UNITS(mode, size) \
1562 ((GET_MODE_SIZE (mode) + (size) - 1) / (size))
1563
1564 #define CLASS_MAX_NREGS(CLASS, MODE) \
1565 ((CLASS) == FP_REGS \
1566 ? (TARGET_FLOAT64 \
1567 ? CLASS_UNITS (MODE, 8) \
1568 : 2 * CLASS_UNITS (MODE, 8)) \
1569 : CLASS_UNITS (MODE, UNITS_PER_WORD))
1570
1571 /* If defined, this is a C expression whose value should be
1572 nonzero if the insn INSN has the effect of mysteriously
1573 clobbering the contents of hard register number REGNO. By
1574 "mysterious" we mean that the insn's RTL expression doesn't
1575 describe such an effect.
1576
1577 If this macro is not defined, it means that no insn clobbers
1578 registers mysteriously. This is the usual situation; all else
1579 being equal, it is best for the RTL expression to show all the
1580 activity. */
1581
1582 /* #define INSN_CLOBBERS_REGNO_P(INSN, REGNO) */
1583
1584 \f
1585 /* Stack layout; function entry, exit and calling. */
1586
1587 /* Don't enable support for the 64 bit ABI calling convention.
1588 Some embedded code depends on the old 64 bit calling convention. */
1589 #define ABI_64BIT 0
1590
1591 /* Define this if pushing a word on the stack
1592 makes the stack pointer a smaller address. */
1593 #define STACK_GROWS_DOWNWARD
1594
1595 /* Define this if the nominal address of the stack frame
1596 is at the high-address end of the local variables;
1597 that is, each additional local variable allocated
1598 goes at a more negative offset in the frame. */
1599 /* #define FRAME_GROWS_DOWNWARD */
1600
1601 /* Offset within stack frame to start allocating local variables at.
1602 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1603 first local allocated. Otherwise, it is the offset to the BEGINNING
1604 of the first local allocated. */
1605 #define STARTING_FRAME_OFFSET \
1606 (current_function_outgoing_args_size \
1607 + (TARGET_ABICALLS ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0))
1608
1609 /* Offset from the stack pointer register to an item dynamically
1610 allocated on the stack, e.g., by `alloca'.
1611
1612 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1613 length of the outgoing arguments. The default is correct for most
1614 machines. See `function.c' for details.
1615
1616 The MIPS ABI states that functions which dynamically allocate the
1617 stack must not have 0 for STACK_DYNAMIC_OFFSET, since it looks like
1618 we are trying to create a second frame pointer to the function, so
1619 allocate some stack space to make it happy.
1620
1621 However, the linker currently complains about linking any code that
1622 dynamically allocates stack space, and there seems to be a bug in
1623 STACK_DYNAMIC_OFFSET, so don't define this right now. */
1624
1625 #if 0
1626 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1627 ((current_function_outgoing_args_size == 0 && current_function_calls_alloca) \
1628 ? 4*UNITS_PER_WORD \
1629 : current_function_outgoing_args_size)
1630 #endif
1631
1632 /* Structure to be filled in by compute_frame_size with register
1633 save masks, and offsets for the current function. */
1634
1635 struct mips_frame_info
1636 {
1637 long total_size; /* # bytes that the entire frame takes up */
1638 long var_size; /* # bytes that variables take up */
1639 long args_size; /* # bytes that outgoing arguments take up */
1640 long extra_size; /* # bytes of extra gunk */
1641 int gp_reg_size; /* # bytes needed to store gp regs */
1642 int fp_reg_size; /* # bytes needed to store fp regs */
1643 long mask; /* mask of saved gp registers */
1644 long fmask; /* mask of saved fp registers */
1645 long gp_save_offset; /* offset from vfp to store gp registers */
1646 long fp_save_offset; /* offset from vfp to store fp registers */
1647 long gp_sp_offset; /* offset from new sp to store gp registers */
1648 long fp_sp_offset; /* offset from new sp to store fp registers */
1649 int initialized; /* != 0 if frame size already calculated */
1650 int num_gp; /* number of gp registers saved */
1651 int num_fp; /* number of fp registers saved */
1652 };
1653
1654 extern struct mips_frame_info current_frame_info;
1655
1656 /* Store in the variable DEPTH the initial difference between the
1657 frame pointer reg contents and the stack pointer reg contents,
1658 as of the start of the function body. This depends on the layout
1659 of the fixed parts of the stack frame and on how registers are saved. */
1660
1661 /* #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
1662 ((VAR) = compute_frame_size (get_frame_size ())) */
1663
1664 /* If defined, this macro specifies a table of register pairs used to
1665 eliminate unneeded registers that point into the stack frame. If
1666 it is not defined, the only elimination attempted by the compiler
1667 is to replace references to the frame pointer with references to
1668 the stack pointer.
1669
1670 The definition of this macro is a list of structure
1671 initializations, each of which specifies an original and
1672 replacement register.
1673
1674 On some machines, the position of the argument pointer is not
1675 known until the compilation is completed. In such a case, a
1676 separate hard register must be used for the argument pointer.
1677 This register can be eliminated by replacing it with either the
1678 frame pointer or the argument pointer, depending on whether or not
1679 the frame pointer has been eliminated.
1680
1681 In this case, you might specify:
1682 #define ELIMINABLE_REGS \
1683 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1684 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1685 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1686
1687 Note that the elimination of the argument pointer with the stack
1688 pointer is specified first since that is the preferred elimination. */
1689
1690 #define ELIMINABLE_REGS \
1691 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1692 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1693 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1694
1695
1696 /* A C expression that returns non-zero if the compiler is allowed to
1697 try to replace register number FROM-REG with register number
1698 TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is
1699 defined, and will usually be the constant 1, since most of the
1700 cases preventing register elimination are things that the compiler
1701 already knows about. */
1702
1703 #define CAN_ELIMINATE(FROM, TO) \
1704 (!frame_pointer_needed \
1705 || ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM))
1706
1707 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
1708 specifies the initial difference between the specified pair of
1709 registers. This macro must be defined if `ELIMINABLE_REGS' is
1710 defined. */
1711
1712 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1713 { compute_frame_size (get_frame_size ()); \
1714 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1715 (OFFSET) = 0; \
1716 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1717 (OFFSET) = current_frame_info.total_size; \
1718 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1719 (OFFSET) = current_frame_info.total_size; \
1720 else \
1721 abort (); \
1722 }
1723
1724
1725 /* If we generate an insn to push BYTES bytes,
1726 this says how many the stack pointer really advances by.
1727 On the vax, sp@- in a byte insn really pushes a word. */
1728
1729 /* #define PUSH_ROUNDING(BYTES) 0 */
1730
1731 /* If defined, the maximum amount of space required for outgoing
1732 arguments will be computed and placed into the variable
1733 `current_function_outgoing_args_size'. No space will be pushed
1734 onto the stack for each call; instead, the function prologue
1735 should increase the stack frame size by this amount.
1736
1737 It is not proper to define both `PUSH_ROUNDING' and
1738 `ACCUMULATE_OUTGOING_ARGS'. */
1739 #define ACCUMULATE_OUTGOING_ARGS
1740
1741 /* Offset from the argument pointer register to the first argument's
1742 address. On some machines it may depend on the data type of the
1743 function.
1744
1745 If `ARGS_GROW_DOWNWARD', this is the offset to the location above
1746 the first argument's address.
1747
1748 On the MIPS, we must skip the first argument position if we are
1749 returning a structure or a union, to account for its address being
1750 passed in $4. However, at the current time, this produces a compiler
1751 that can't bootstrap, so comment it out for now. */
1752
1753 #if 0
1754 #define FIRST_PARM_OFFSET(FNDECL) \
1755 (FNDECL != 0 \
1756 && TREE_TYPE (FNDECL) != 0 \
1757 && TREE_TYPE (TREE_TYPE (FNDECL)) != 0 \
1758 && (TREE_CODE (TREE_TYPE (TREE_TYPE (FNDECL))) == RECORD_TYPE \
1759 || TREE_CODE (TREE_TYPE (TREE_TYPE (FNDECL))) == UNION_TYPE) \
1760 ? UNITS_PER_WORD \
1761 : 0)
1762 #else
1763 #define FIRST_PARM_OFFSET(FNDECL) 0
1764 #endif
1765
1766 /* When a parameter is passed in a register, stack space is still
1767 allocated for it. For the MIPS, stack space must be allocated, cf
1768 Asm Lang Prog Guide page 7-8.
1769
1770 BEWARE that some space is also allocated for non existing arguments
1771 in register. In case an argument list is of form GF used registers
1772 are a0 (a2,a3), but we should push over a1... */
1773
1774 #define REG_PARM_STACK_SPACE(FNDECL) \
1775 ((MAX_ARGS_IN_REGISTERS*UNITS_PER_WORD) - FIRST_PARM_OFFSET (FNDECL))
1776
1777 /* Define this if it is the responsibility of the caller to
1778 allocate the area reserved for arguments passed in registers.
1779 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
1780 of this macro is to determine whether the space is included in
1781 `current_function_outgoing_args_size'. */
1782 #define OUTGOING_REG_PARM_STACK_SPACE
1783
1784 /* Align stack frames on 64 bits (Double Word ). */
1785 #define STACK_BOUNDARY 64
1786
1787 /* Make sure 4 words are always allocated on the stack. */
1788
1789 #ifndef STACK_ARGS_ADJUST
1790 #define STACK_ARGS_ADJUST(SIZE) \
1791 { \
1792 if (SIZE.constant < 4 * UNITS_PER_WORD) \
1793 SIZE.constant = 4 * UNITS_PER_WORD; \
1794 }
1795 #endif
1796
1797 \f
1798 /* A C expression that should indicate the number of bytes of its
1799 own arguments that a function function pops on returning, or 0
1800 if the function pops no arguments and the caller must therefore
1801 pop them all after the function returns.
1802
1803 FUNTYPE is a C variable whose value is a tree node that
1804 describes the function in question. Normally it is a node of
1805 type `FUNCTION_TYPE' that describes the data type of the function.
1806 From this it is possible to obtain the data types of the value
1807 and arguments (if known).
1808
1809 When a call to a library function is being considered, FUNTYPE
1810 will contain an identifier node for the library function. Thus,
1811 if you need to distinguish among various library functions, you
1812 can do so by their names. Note that "library function" in this
1813 context means a function used to perform arithmetic, whose name
1814 is known specially in the compiler and was not mentioned in the
1815 C code being compiled.
1816
1817 STACK-SIZE is the number of bytes of arguments passed on the
1818 stack. If a variable number of bytes is passed, it is zero, and
1819 argument popping will always be the responsibility of the
1820 calling function. */
1821
1822 #define RETURN_POPS_ARGS(FUNTYPE, SIZE) 0
1823
1824
1825 /* Symbolic macros for the registers used to return integer and floating
1826 point values. */
1827
1828 #define GP_RETURN (GP_REG_FIRST + 2)
1829 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
1830
1831 /* Symbolic macros for the first/last argument registers. */
1832
1833 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
1834 #define GP_ARG_LAST (GP_REG_FIRST + 7)
1835 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
1836 #define FP_ARG_LAST (FP_REG_FIRST + 15)
1837
1838 #define MAX_ARGS_IN_REGISTERS 4
1839
1840 /* Define how to find the value returned by a library function
1841 assuming the value has mode MODE. */
1842
1843 #define LIBCALL_VALUE(MODE) \
1844 gen_rtx (REG, MODE, \
1845 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
1846 && (! TARGET_SINGLE_FLOAT \
1847 || GET_MODE_SIZE (MODE) <= 4)) \
1848 ? FP_RETURN \
1849 : GP_RETURN))
1850
1851 /* Define how to find the value returned by a function.
1852 VALTYPE is the data type of the value (as a tree).
1853 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1854 otherwise, FUNC is 0. */
1855
1856 #define FUNCTION_VALUE(VALTYPE, FUNC) LIBCALL_VALUE (TYPE_MODE (VALTYPE))
1857
1858
1859 /* 1 if N is a possible register number for a function value.
1860 On the MIPS, R2 R3 and F0 F2 are the only register thus used.
1861 Currently, R2 and F0 are only implemented here (C has no complex type) */
1862
1863 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN)
1864
1865 /* 1 if N is a possible register number for function argument passing. */
1866
1867 #define FUNCTION_ARG_REGNO_P(N) (((N) >= GP_ARG_FIRST && (N) <= GP_ARG_LAST) \
1868 || ((N) >= FP_ARG_FIRST && (N) <= FP_ARG_LAST \
1869 && (0 == (N) % 2)))
1870
1871 /* A C expression which can inhibit the returning of certain function
1872 values in registers, based on the type of value. A nonzero value says
1873 to return the function value in memory, just as large structures are
1874 always returned. Here TYPE will be a C expression of type
1875 `tree', representing the data type of the value.
1876
1877 Note that values of mode `BLKmode' must be explicitly
1878 handled by this macro. Also, the option `-fpcc-struct-return'
1879 takes effect regardless of this macro. On most systems, it is
1880 possible to leave the macro undefined; this causes a default
1881 definition to be used, whose value is the constant 1 for BLKmode
1882 values, and 0 otherwise.
1883
1884 GCC normally converts 1 byte structures into chars, 2 byte
1885 structs into shorts, and 4 byte structs into ints, and returns
1886 them this way. Defining the following macro overrides this,
1887 to give us MIPS cc compatibility. */
1888
1889 #define RETURN_IN_MEMORY(TYPE) \
1890 (TYPE_MODE (TYPE) == BLKmode)
1891 \f
1892 /* A code distinguishing the floating point format of the target
1893 machine. There are three defined values: IEEE_FLOAT_FORMAT,
1894 VAX_FLOAT_FORMAT, and UNKNOWN_FLOAT_FORMAT. */
1895
1896 #define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
1897
1898 \f
1899 /* Define a data type for recording info about an argument list
1900 during the scan of that argument list. This data type should
1901 hold all necessary information about the function itself
1902 and about the args processed so far, enough to enable macros
1903 such as FUNCTION_ARG to determine where the next arg should go.
1904 */
1905
1906 typedef struct mips_args {
1907 int gp_reg_found; /* whether a gp register was found yet */
1908 int arg_number; /* argument number */
1909 int arg_words; /* # total words the arguments take */
1910 int num_adjusts; /* number of adjustments made */
1911 /* Adjustments made to args pass in regs. */
1912 /* ??? The size is doubled to work around a
1913 bug in the code that sets the adjustments
1914 in function_arg. */
1915 struct rtx_def *adjust[MAX_ARGS_IN_REGISTERS*2];
1916 } CUMULATIVE_ARGS;
1917
1918 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1919 for a call to a function whose data type is FNTYPE.
1920 For a library call, FNTYPE is 0.
1921
1922 */
1923
1924 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME) \
1925 init_cumulative_args (&CUM, FNTYPE, LIBNAME) \
1926
1927 /* Update the data in CUM to advance over an argument
1928 of mode MODE and data type TYPE.
1929 (TYPE is null for libcalls where that information may not be available.) */
1930
1931 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1932 function_arg_advance (&CUM, MODE, TYPE, NAMED)
1933
1934 /* Determine where to put an argument to a function.
1935 Value is zero to push the argument on the stack,
1936 or a hard register in which to store the argument.
1937
1938 MODE is the argument's machine mode.
1939 TYPE is the data type of the argument (as a tree).
1940 This is null for libcalls where that information may
1941 not be available.
1942 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1943 the preceding args and about the function being called.
1944 NAMED is nonzero if this argument is a named parameter
1945 (otherwise it is an extra parameter matching an ellipsis). */
1946
1947 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1948 function_arg( &CUM, MODE, TYPE, NAMED)
1949
1950 /* For an arg passed partly in registers and partly in memory,
1951 this is the number of registers used.
1952 For args passed entirely in registers or entirely in memory, zero. */
1953
1954 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1955 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1956
1957 /* If defined, a C expression that gives the alignment boundary, in
1958 bits, of an argument with the specified mode and type. If it is
1959 not defined, `PARM_BOUNDARY' is used for all arguments. */
1960
1961 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1962 (((TYPE) != 0) \
1963 ? ((TYPE_ALIGN(TYPE) <= PARM_BOUNDARY) \
1964 ? PARM_BOUNDARY \
1965 : TYPE_ALIGN(TYPE)) \
1966 : ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY) \
1967 ? PARM_BOUNDARY \
1968 : GET_MODE_ALIGNMENT(MODE)))
1969
1970 \f
1971 /* This macro generates the assembly code for function entry.
1972 FILE is a stdio stream to output the code to.
1973 SIZE is an int: how many units of temporary storage to allocate.
1974 Refer to the array `regs_ever_live' to determine which registers
1975 to save; `regs_ever_live[I]' is nonzero if register number I
1976 is ever used in the function. This macro is responsible for
1977 knowing which registers should not be saved even if used. */
1978
1979 #define FUNCTION_PROLOGUE(FILE, SIZE) function_prologue(FILE, SIZE)
1980
1981 /* This macro generates the assembly code for function exit,
1982 on machines that need it. If FUNCTION_EPILOGUE is not defined
1983 then individual return instructions are generated for each
1984 return statement. Args are same as for FUNCTION_PROLOGUE. */
1985
1986 #define FUNCTION_EPILOGUE(FILE, SIZE) function_epilogue(FILE, SIZE)
1987
1988 /* Define the number of delay slots needed for the function epilogue.
1989
1990 On the mips, we need a slot if either no stack has been allocated,
1991 or the only register saved is the return register. */
1992
1993 #define DELAY_SLOTS_FOR_EPILOGUE mips_epilogue_delay_slots ()
1994
1995 /* Define whether INSN can be placed in delay slot N for the epilogue.
1996 No references to the stack must be made, since on the MIPS, the
1997 delay slot is done after the stack has been cleaned up. */
1998
1999 #define ELIGIBLE_FOR_EPILOGUE_DELAY(INSN,N) \
2000 (get_attr_dslot (INSN) == DSLOT_NO \
2001 && get_attr_length (INSN) == 1 \
2002 && ! epilogue_reg_mentioned_p (PATTERN (INSN)))
2003
2004 /* Tell prologue and epilogue if register REGNO should be saved / restored. */
2005
2006 #define MUST_SAVE_REGISTER(regno) \
2007 ((regs_ever_live[regno] && !call_used_regs[regno]) \
2008 || (regno == FRAME_POINTER_REGNUM && frame_pointer_needed) \
2009 || (regno == (GP_REG_FIRST + 31) && regs_ever_live[GP_REG_FIRST + 31]))
2010
2011 /* ALIGN FRAMES on double word boundaries */
2012
2013 #define MIPS_STACK_ALIGN(LOC) (((LOC)+7) & ~7)
2014
2015 \f
2016 /* Output assembler code to FILE to increment profiler label # LABELNO
2017 for profiling a function entry. */
2018
2019 #define FUNCTION_PROFILER(FILE, LABELNO) \
2020 { \
2021 fprintf (FILE, "\t.set\tnoreorder\n"); \
2022 fprintf (FILE, "\t.set\tnoat\n"); \
2023 fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n", \
2024 reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]); \
2025 fprintf (FILE, "\tjal\t_mcount\n"); \
2026 fprintf (FILE, \
2027 "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from stack\n", \
2028 TARGET_64BIT ? "dsubu" : "subu", \
2029 reg_names[STACK_POINTER_REGNUM], \
2030 reg_names[STACK_POINTER_REGNUM], \
2031 TARGET_LONG64 ? 16 : 8); \
2032 fprintf (FILE, "\t.set\treorder\n"); \
2033 fprintf (FILE, "\t.set\tat\n"); \
2034 }
2035
2036 /* Define this macro if the code for function profiling should come
2037 before the function prologue. Normally, the profiling code comes
2038 after. */
2039
2040 /* #define PROFILE_BEFORE_PROLOGUE */
2041
2042 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2043 the stack pointer does not matter. The value is tested only in
2044 functions that have frame pointers.
2045 No definition is equivalent to always zero. */
2046
2047 #define EXIT_IGNORE_STACK 1
2048
2049 \f
2050 /* A C statement to output, on the stream FILE, assembler code for a
2051 block of data that contains the constant parts of a trampoline.
2052 This code should not include a label--the label is taken care of
2053 automatically. */
2054
2055 #define TRAMPOLINE_TEMPLATE(STREAM) \
2056 { \
2057 fprintf (STREAM, "\t.word\t0x03e00821\t\t# move $1,$31\n"); \
2058 fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n"); \
2059 fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n"); \
2060 if (TARGET_LONG64) \
2061 { \
2062 fprintf (STREAM, "\t.word\t0xdfe30014\t\t# ld $3,20($31)\n"); \
2063 fprintf (STREAM, "\t.word\t0xdfe2001c\t\t# ld $2,28($31)\n"); \
2064 } \
2065 else \
2066 { \
2067 fprintf (STREAM, "\t.word\t0x8fe30014\t\t# lw $3,20($31)\n"); \
2068 fprintf (STREAM, "\t.word\t0x8fe20018\t\t# lw $2,24($31)\n"); \
2069 } \
2070 fprintf (STREAM, "\t.word\t0x0060c821\t\t# move $25,$3 (abicalls)\n"); \
2071 fprintf (STREAM, "\t.word\t0x00600008\t\t# jr $3\n"); \
2072 fprintf (STREAM, "\t.word\t0x0020f821\t\t# move $31,$1\n"); \
2073 if (TARGET_LONG64) \
2074 { \
2075 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <function address>\n"); \
2076 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <static chain value>\n"); \
2077 } \
2078 else \
2079 { \
2080 fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
2081 fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
2082 } \
2083 }
2084
2085 /* A C expression for the size in bytes of the trampoline, as an
2086 integer. */
2087
2088 #define TRAMPOLINE_SIZE (32 + (TARGET_LONG64 ? 16 : 8))
2089
2090 /* Alignment required for trampolines, in bits. */
2091
2092 #define TRAMPOLINE_ALIGNMENT (TARGET_LONG64 ? 64 : 32)
2093
2094 /* A C statement to initialize the variable parts of a trampoline.
2095 ADDR is an RTX for the address of the trampoline; FNADDR is an
2096 RTX for the address of the nested function; STATIC_CHAIN is an
2097 RTX for the static chain value that should be passed to the
2098 function when it is called. */
2099
2100 #define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
2101 { \
2102 rtx addr = ADDR; \
2103 if (TARGET_LONG64) \
2104 { \
2105 emit_move_insn (gen_rtx (MEM, DImode, plus_constant (addr, 32)), FUNC); \
2106 emit_move_insn (gen_rtx (MEM, DImode, plus_constant (addr, 40)), CHAIN);\
2107 } \
2108 else \
2109 { \
2110 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (addr, 32)), FUNC); \
2111 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (addr, 36)), CHAIN);\
2112 } \
2113 \
2114 /* Flush the instruction cache. */ \
2115 /* ??? Are the modes right? Maybe they should depend on -mint64/-mlong64? */\
2116 /* ??? Should check the return value for errors. */ \
2117 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "cacheflush"), \
2118 0, VOIDmode, 3, addr, Pmode, \
2119 GEN_INT (TRAMPOLINE_SIZE), SImode, \
2120 GEN_INT (1), SImode); \
2121 }
2122 \f
2123 /* Addressing modes, and classification of registers for them. */
2124
2125 /* #define HAVE_POST_INCREMENT */
2126 /* #define HAVE_POST_DECREMENT */
2127
2128 /* #define HAVE_PRE_DECREMENT */
2129 /* #define HAVE_PRE_INCREMENT */
2130
2131 /* These assume that REGNO is a hard or pseudo reg number.
2132 They give nonzero only if REGNO is a hard reg of the suitable class
2133 or a pseudo reg currently allocated to a suitable hard reg.
2134 These definitions are NOT overridden anywhere. */
2135
2136 #define GP_REG_OR_PSEUDO_STRICT_P(regno) \
2137 GP_REG_P((regno < FIRST_PSEUDO_REGISTER) ? regno : reg_renumber[regno])
2138
2139 #define GP_REG_OR_PSEUDO_NONSTRICT_P(regno) \
2140 (((regno) >= FIRST_PSEUDO_REGISTER) || (GP_REG_P (regno)))
2141
2142 #define REGNO_OK_FOR_INDEX_P(regno) 0
2143 #define REGNO_OK_FOR_BASE_P(regno) GP_REG_OR_PSEUDO_STRICT_P (regno)
2144
2145 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2146 and check its validity for a certain class.
2147 We have two alternate definitions for each of them.
2148 The usual definition accepts all pseudo regs; the other rejects them all.
2149 The symbol REG_OK_STRICT causes the latter definition to be used.
2150
2151 Most source files want to accept pseudo regs in the hope that
2152 they will get allocated to the class that the insn wants them to be in.
2153 Some source files that are used after register allocation
2154 need to be strict. */
2155
2156 #ifndef REG_OK_STRICT
2157
2158 #define REG_OK_STRICT_P 0
2159 #define REG_OK_FOR_INDEX_P(X) 0
2160 #define REG_OK_FOR_BASE_P(X) GP_REG_OR_PSEUDO_NONSTRICT_P (REGNO (X))
2161
2162 #else
2163
2164 #define REG_OK_STRICT_P 1
2165 #define REG_OK_FOR_INDEX_P(X) 0
2166 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
2167
2168 #endif
2169
2170 \f
2171 /* Maximum number of registers that can appear in a valid memory address. */
2172
2173 #define MAX_REGS_PER_ADDRESS 1
2174
2175 /* A C compound statement with a conditional `goto LABEL;' executed
2176 if X (an RTX) is a legitimate memory address on the target
2177 machine for a memory operand of mode MODE.
2178
2179 It usually pays to define several simpler macros to serve as
2180 subroutines for this one. Otherwise it may be too complicated
2181 to understand.
2182
2183 This macro must exist in two variants: a strict variant and a
2184 non-strict one. The strict variant is used in the reload pass.
2185 It must be defined so that any pseudo-register that has not been
2186 allocated a hard register is considered a memory reference. In
2187 contexts where some kind of register is required, a
2188 pseudo-register with no hard register must be rejected.
2189
2190 The non-strict variant is used in other passes. It must be
2191 defined to accept all pseudo-registers in every context where
2192 some kind of register is required.
2193
2194 Compiler source files that want to use the strict variant of
2195 this macro define the macro `REG_OK_STRICT'. You should use an
2196 `#ifdef REG_OK_STRICT' conditional to define the strict variant
2197 in that case and the non-strict variant otherwise.
2198
2199 Typically among the subroutines used to define
2200 `GO_IF_LEGITIMATE_ADDRESS' are subroutines to check for
2201 acceptable registers for various purposes (one for base
2202 registers, one for index registers, and so on). Then only these
2203 subroutine macros need have two variants; the higher levels of
2204 macros may be the same whether strict or not.
2205
2206 Normally, constant addresses which are the sum of a `symbol_ref'
2207 and an integer are stored inside a `const' RTX to mark them as
2208 constant. Therefore, there is no need to recognize such sums
2209 specifically as legitimate addresses. Normally you would simply
2210 recognize any `const' as legitimate.
2211
2212 Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle
2213 constant sums that are not marked with `const'. It assumes
2214 that a naked `plus' indicates indexing. If so, then you *must*
2215 reject such naked constant sums as illegitimate addresses, so
2216 that none of them will be given to `PRINT_OPERAND_ADDRESS'.
2217
2218 On some machines, whether a symbolic address is legitimate
2219 depends on the section that the address refers to. On these
2220 machines, define the macro `ENCODE_SECTION_INFO' to store the
2221 information into the `symbol_ref', and then check for it here.
2222 When you see a `const', you will have to look inside it to find
2223 the `symbol_ref' in order to determine the section. */
2224
2225 #if 1
2226 #define GO_PRINTF(x) trace(x)
2227 #define GO_PRINTF2(x,y) trace(x,y)
2228 #define GO_DEBUG_RTX(x) debug_rtx(x)
2229
2230 #else
2231 #define GO_PRINTF(x)
2232 #define GO_PRINTF2(x,y)
2233 #define GO_DEBUG_RTX(x)
2234 #endif
2235
2236 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2237 { \
2238 register rtx xinsn = (X); \
2239 \
2240 if (TARGET_DEBUG_B_MODE) \
2241 { \
2242 GO_PRINTF2 ("\n========== GO_IF_LEGITIMATE_ADDRESS, %sstrict\n", \
2243 (REG_OK_STRICT_P) ? "" : "not "); \
2244 GO_DEBUG_RTX (xinsn); \
2245 } \
2246 \
2247 if (GET_CODE (xinsn) == REG && REG_OK_FOR_BASE_P (xinsn)) \
2248 goto ADDR; \
2249 \
2250 if (CONSTANT_ADDRESS_P (xinsn)) \
2251 goto ADDR; \
2252 \
2253 if (GET_CODE (xinsn) == PLUS) \
2254 { \
2255 register rtx xplus0 = XEXP (xinsn, 0); \
2256 register rtx xplus1 = XEXP (xinsn, 1); \
2257 register enum rtx_code code0 = GET_CODE (xplus0); \
2258 register enum rtx_code code1 = GET_CODE (xplus1); \
2259 \
2260 if (code0 != REG && code1 == REG) \
2261 { \
2262 xplus0 = XEXP (xinsn, 1); \
2263 xplus1 = XEXP (xinsn, 0); \
2264 code0 = GET_CODE (xplus0); \
2265 code1 = GET_CODE (xplus1); \
2266 } \
2267 \
2268 if (code0 == REG && REG_OK_FOR_BASE_P (xplus0)) \
2269 { \
2270 if (code1 == CONST_INT \
2271 && INTVAL (xplus1) >= -32768 \
2272 && INTVAL (xplus1) + GET_MODE_SIZE (MODE) - 1 <= 32767) \
2273 goto ADDR; \
2274 \
2275 /* For some code sequences, you actually get better code by \
2276 pretending that the MIPS supports an address mode of a \
2277 constant address + a register, even though the real \
2278 machine doesn't support it. This is because the \
2279 assembler can use $r1 to load just the high 16 bits, add \
2280 in the register, and fold the low 16 bits into the memory \
2281 reference, whereas the compiler generates a 4 instruction \
2282 sequence. On the other hand, CSE is not as effective. \
2283 It would be a win to generate the lui directly, but the \
2284 MIPS assembler does not have syntax to generate the \
2285 appropriate relocation. */ \
2286 \
2287 /* Also accept CONST_INT addresses here, so no else. */ \
2288 /* Reject combining an embedded PIC text segment reference \
2289 with a register. That requires an additional \
2290 instruction. */ \
2291 /* ??? Reject combining an address with a register for the MIPS \
2292 64 bit ABI, because the SGI assembler can not handle this. */ \
2293 if (!TARGET_DEBUG_A_MODE \
2294 && ! ABI_64BIT \
2295 && CONSTANT_ADDRESS_P (xplus1) \
2296 && (!TARGET_EMBEDDED_PIC \
2297 || code1 != CONST \
2298 || GET_CODE (XEXP (xplus1, 0)) != MINUS)) \
2299 goto ADDR; \
2300 } \
2301 } \
2302 \
2303 if (TARGET_DEBUG_B_MODE) \
2304 GO_PRINTF ("Not a legitimate address\n"); \
2305 }
2306
2307
2308 /* A C expression that is 1 if the RTX X is a constant which is a
2309 valid address. This is defined to be the same as `CONSTANT_P (X)',
2310 but rejecting CONST_DOUBLE. */
2311 /* When pic, we must reject addresses of the form symbol+large int.
2312 This is because an instruction `sw $4,s+70000' needs to be converted
2313 by the assembler to `lw $at,s($gp);sw $4,70000($at)'. Normally the
2314 assembler would use $at as a temp to load in the large offset. In this
2315 case $at is already in use. We convert such problem addresses to
2316 `la $5,s;sw $4,70000($5)' via LEGITIMIZE_ADDRESS. */
2317 /* ??? SGI Irix 6 assembler fails for CONST address, so reject them. */
2318 #define CONSTANT_ADDRESS_P(X) \
2319 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
2320 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
2321 || (GET_CODE (X) == CONST \
2322 && ! (flag_pic && pic_address_needs_scratch (X)) \
2323 && ! ABI_64BIT)) \
2324 && (!HALF_PIC_P () || !HALF_PIC_ADDRESS_P (X)))
2325
2326 /* Define this, so that when PIC, reload won't try to reload invalid
2327 addresses which require two reload registers. */
2328
2329 #define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
2330
2331 /* Nonzero if the constant value X is a legitimate general operand.
2332 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
2333
2334 At present, GAS doesn't understand li.[sd], so don't allow it
2335 to be generated at present. Also, the MIPS assembler does not
2336 grok li.d Infinity. */
2337
2338 /* ??? SGI Irix 6 assembler fails for CONST address, so reject them. */
2339 #define LEGITIMATE_CONSTANT_P(X) \
2340 ((GET_CODE (X) != CONST_DOUBLE \
2341 || mips_const_double_ok (X, GET_MODE (X))) \
2342 && ! (GET_CODE (X) == CONST && ABI_64BIT))
2343
2344 /* A C compound statement that attempts to replace X with a valid
2345 memory address for an operand of mode MODE. WIN will be a C
2346 statement label elsewhere in the code; the macro definition may
2347 use
2348
2349 GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);
2350
2351 to avoid further processing if the address has become legitimate.
2352
2353 X will always be the result of a call to `break_out_memory_refs',
2354 and OLDX will be the operand that was given to that function to
2355 produce X.
2356
2357 The code generated by this macro should not alter the
2358 substructure of X. If it transforms X into a more legitimate
2359 form, it should assign X (which will always be a C variable) a
2360 new value.
2361
2362 It is not necessary for this macro to come up with a legitimate
2363 address. The compiler has standard ways of doing so in all
2364 cases. In fact, it is safe for this macro to do nothing. But
2365 often a machine-dependent strategy can generate better code.
2366
2367 For the MIPS, transform:
2368
2369 memory(X + <large int>)
2370
2371 into:
2372
2373 Y = <large int> & ~0x7fff;
2374 Z = X + Y
2375 memory (Z + (<large int> & 0x7fff));
2376
2377 This is for CSE to find several similar references, and only use one Z.
2378
2379 When PIC, convert addresses of the form memory (symbol+large int) to
2380 memory (reg+large int). */
2381
2382
2383 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2384 { \
2385 register rtx xinsn = (X); \
2386 \
2387 if (TARGET_DEBUG_B_MODE) \
2388 { \
2389 GO_PRINTF ("\n========== LEGITIMIZE_ADDRESS\n"); \
2390 GO_DEBUG_RTX (xinsn); \
2391 } \
2392 \
2393 if (GET_CODE (xinsn) == CONST \
2394 && ((flag_pic && pic_address_needs_scratch (xinsn)) \
2395 /* ??? SGI's Irix 6 assembler can't handle CONST. */ \
2396 || ABI_64BIT)) \
2397 { \
2398 rtx ptr_reg = gen_reg_rtx (Pmode); \
2399 rtx constant = XEXP (XEXP (xinsn, 0), 1); \
2400 \
2401 emit_move_insn (ptr_reg, XEXP (XEXP (xinsn, 0), 0)); \
2402 \
2403 X = gen_rtx (PLUS, Pmode, ptr_reg, constant); \
2404 if (SMALL_INT (constant)) \
2405 goto WIN; \
2406 /* Otherwise we fall through so the code below will fix the \
2407 constant. */ \
2408 xinsn = X; \
2409 } \
2410 \
2411 if (GET_CODE (xinsn) == PLUS) \
2412 { \
2413 register rtx xplus0 = XEXP (xinsn, 0); \
2414 register rtx xplus1 = XEXP (xinsn, 1); \
2415 register enum rtx_code code0 = GET_CODE (xplus0); \
2416 register enum rtx_code code1 = GET_CODE (xplus1); \
2417 \
2418 if (code0 != REG && code1 == REG) \
2419 { \
2420 xplus0 = XEXP (xinsn, 1); \
2421 xplus1 = XEXP (xinsn, 0); \
2422 code0 = GET_CODE (xplus0); \
2423 code1 = GET_CODE (xplus1); \
2424 } \
2425 \
2426 if (code0 == REG && REG_OK_FOR_BASE_P (xplus0) \
2427 && code1 == CONST_INT && !SMALL_INT (xplus1)) \
2428 { \
2429 rtx int_reg = gen_reg_rtx (Pmode); \
2430 rtx ptr_reg = gen_reg_rtx (Pmode); \
2431 \
2432 emit_move_insn (int_reg, \
2433 GEN_INT (INTVAL (xplus1) & ~ 0x7fff)); \
2434 \
2435 emit_insn (gen_rtx (SET, VOIDmode, \
2436 ptr_reg, \
2437 gen_rtx (PLUS, Pmode, xplus0, int_reg))); \
2438 \
2439 X = gen_rtx (PLUS, Pmode, ptr_reg, \
2440 GEN_INT (INTVAL (xplus1) & 0x7fff)); \
2441 goto WIN; \
2442 } \
2443 } \
2444 \
2445 if (TARGET_DEBUG_B_MODE) \
2446 GO_PRINTF ("LEGITIMIZE_ADDRESS could not fix.\n"); \
2447 }
2448
2449
2450 /* A C statement or compound statement with a conditional `goto
2451 LABEL;' executed if memory address X (an RTX) can have different
2452 meanings depending on the machine mode of the memory reference it
2453 is used for.
2454
2455 Autoincrement and autodecrement addresses typically have
2456 mode-dependent effects because the amount of the increment or
2457 decrement is the size of the operand being addressed. Some
2458 machines have other mode-dependent addresses. Many RISC machines
2459 have no mode-dependent addresses.
2460
2461 You may assume that ADDR is a valid address for the machine. */
2462
2463 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
2464
2465
2466 /* Define this macro if references to a symbol must be treated
2467 differently depending on something about the variable or
2468 function named by the symbol (such as what section it is in).
2469
2470 The macro definition, if any, is executed immediately after the
2471 rtl for DECL has been created and stored in `DECL_RTL (DECL)'.
2472 The value of the rtl will be a `mem' whose address is a
2473 `symbol_ref'.
2474
2475 The usual thing for this macro to do is to a flag in the
2476 `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
2477 name string in the `symbol_ref' (if one bit is not enough
2478 information).
2479
2480 The best way to modify the name string is by adding text to the
2481 beginning, with suitable punctuation to prevent any ambiguity.
2482 Allocate the new name in `saveable_obstack'. You will have to
2483 modify `ASM_OUTPUT_LABELREF' to remove and decode the added text
2484 and output the name accordingly.
2485
2486 You can also check the information stored in the `symbol_ref' in
2487 the definition of `GO_IF_LEGITIMATE_ADDRESS' or
2488 `PRINT_OPERAND_ADDRESS'. */
2489
2490 #define ENCODE_SECTION_INFO(DECL) \
2491 do \
2492 { \
2493 if (TARGET_EMBEDDED_PIC) \
2494 { \
2495 if (TREE_CODE (DECL) == VAR_DECL) \
2496 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
2497 else if (TREE_CODE (DECL) == FUNCTION_DECL) \
2498 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 0; \
2499 else if (TREE_CODE (DECL) == STRING_CST \
2500 && ! flag_writable_strings) \
2501 SYMBOL_REF_FLAG (XEXP (TREE_CST_RTL (DECL), 0)) = 0; \
2502 else \
2503 SYMBOL_REF_FLAG (XEXP (TREE_CST_RTL (DECL), 0)) = 1; \
2504 } \
2505 \
2506 else if (TARGET_GP_OPT && TREE_CODE (DECL) == VAR_DECL) \
2507 { \
2508 int size = int_size_in_bytes (TREE_TYPE (DECL)); \
2509 \
2510 if (size > 0 && size <= mips_section_threshold) \
2511 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
2512 } \
2513 \
2514 else if (HALF_PIC_P ()) \
2515 HALF_PIC_ENCODE (DECL); \
2516 } \
2517 while (0)
2518
2519 \f
2520 /* Specify the machine mode that this machine uses
2521 for the index in the tablejump instruction. */
2522 #define CASE_VECTOR_MODE (TARGET_LONG64 ? DImode : SImode)
2523
2524 /* Define this if the tablejump instruction expects the table
2525 to contain offsets from the address of the table.
2526 Do not define this if the table should contain absolute addresses. */
2527 /* #define CASE_VECTOR_PC_RELATIVE */
2528
2529 /* Specify the tree operation to be used to convert reals to integers. */
2530 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
2531
2532 /* This is the kind of divide that is easiest to do in the general case. */
2533 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
2534
2535 /* Define this as 1 if `char' should by default be signed; else as 0. */
2536 #ifndef DEFAULT_SIGNED_CHAR
2537 #define DEFAULT_SIGNED_CHAR 1
2538 #endif
2539
2540 /* Max number of bytes we can move from memory to memory
2541 in one reasonably fast instruction. */
2542 #define MOVE_MAX (TARGET_64BIT ? 8 : 4)
2543 #define MAX_MOVE_MAX 8
2544
2545 /* Define this macro as a C expression which is nonzero if
2546 accessing less than a word of memory (i.e. a `char' or a
2547 `short') is no faster than accessing a word of memory, i.e., if
2548 such access require more than one instruction or if there is no
2549 difference in cost between byte and (aligned) word loads.
2550
2551 On RISC machines, it tends to generate better code to define
2552 this as 1, since it avoids making a QI or HI mode register. */
2553 #define SLOW_BYTE_ACCESS 1
2554
2555 /* We assume that the store-condition-codes instructions store 0 for false
2556 and some other value for true. This is the value stored for true. */
2557
2558 #define STORE_FLAG_VALUE 1
2559
2560 /* Define this if zero-extension is slow (more than one real instruction). */
2561 #define SLOW_ZERO_EXTEND
2562
2563 /* Define this to be nonzero if shift instructions ignore all but the low-order
2564 few bits. */
2565 #define SHIFT_COUNT_TRUNCATED 1
2566
2567 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2568 is done just by pretending it is already truncated. */
2569 /* In 64 bit mode, 32 bit instructions require that register values be properly
2570 sign-extended to 64 bits. As a result, a truncate is not a no-op if it
2571 converts a value >32 bits to a value <32 bits. */
2572 /* ??? This results in inefficient code for 64 bit to 32 conversions.
2573 Something needs to be done about this. Perhaps not use any 32 bit
2574 instructions? Perhaps use PROMOTE_MODE? */
2575 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2576 (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
2577
2578 /* Define this macro to control use of the character `$' in
2579 identifier names. The value should be 0, 1, or 2. 0 means `$'
2580 is not allowed by default; 1 means it is allowed by default if
2581 `-traditional' is used; 2 means it is allowed by default provided
2582 `-ansi' is not used. 1 is the default; there is no need to
2583 define this macro in that case. */
2584
2585 #ifndef DOLLARS_IN_IDENTIFIERS
2586 #define DOLLARS_IN_IDENTIFIERS 1
2587 #endif
2588
2589 /* Specify the machine mode that pointers have.
2590 After generation of rtl, the compiler makes no further distinction
2591 between pointers and any other objects of this machine mode. */
2592
2593 #define Pmode (TARGET_LONG64 ? DImode : SImode)
2594
2595 /* A function address in a call instruction
2596 is a word address (for indexing purposes)
2597 so give the MEM rtx a words's mode. */
2598
2599 #define FUNCTION_MODE (TARGET_LONG64 ? DImode : SImode)
2600
2601 /* Define TARGET_MEM_FUNCTIONS if we want to use calls to memcpy and
2602 memset, instead of the BSD functions bcopy and bzero. */
2603
2604 #if defined(MIPS_SYSV) || defined(OSF_OS)
2605 #define TARGET_MEM_FUNCTIONS
2606 #endif
2607
2608 \f
2609 /* A part of a C `switch' statement that describes the relative
2610 costs of constant RTL expressions. It must contain `case'
2611 labels for expression codes `const_int', `const', `symbol_ref',
2612 `label_ref' and `const_double'. Each case must ultimately reach
2613 a `return' statement to return the relative cost of the use of
2614 that kind of constant value in an expression. The cost may
2615 depend on the precise value of the constant, which is available
2616 for examination in X.
2617
2618 CODE is the expression code--redundant, since it can be obtained
2619 with `GET_CODE (X)'. */
2620
2621 #define CONST_COSTS(X,CODE,OUTER_CODE) \
2622 case CONST_INT: \
2623 /* Always return 0, since we don't have different sized \
2624 instructions, hence different costs according to Richard \
2625 Kenner */ \
2626 return 0; \
2627 \
2628 case LABEL_REF: \
2629 return COSTS_N_INSNS (2); \
2630 \
2631 case CONST: \
2632 { \
2633 rtx offset = const0_rtx; \
2634 rtx symref = eliminate_constant_term (XEXP (X, 0), &offset); \
2635 \
2636 if (GET_CODE (symref) == LABEL_REF) \
2637 return COSTS_N_INSNS (2); \
2638 \
2639 if (GET_CODE (symref) != SYMBOL_REF) \
2640 return COSTS_N_INSNS (4); \
2641 \
2642 /* let's be paranoid.... */ \
2643 if (INTVAL (offset) < -32768 || INTVAL (offset) > 32767) \
2644 return COSTS_N_INSNS (2); \
2645 \
2646 return COSTS_N_INSNS (SYMBOL_REF_FLAG (symref) ? 1 : 2); \
2647 } \
2648 \
2649 case SYMBOL_REF: \
2650 return COSTS_N_INSNS (SYMBOL_REF_FLAG (X) ? 1 : 2); \
2651 \
2652 case CONST_DOUBLE: \
2653 { \
2654 rtx high, low; \
2655 split_double (X, &high, &low); \
2656 return COSTS_N_INSNS ((high == CONST0_RTX (GET_MODE (high)) \
2657 || low == CONST0_RTX (GET_MODE (low))) \
2658 ? 2 : 4); \
2659 }
2660
2661 /* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
2662 This can be used, for example, to indicate how costly a multiply
2663 instruction is. In writing this macro, you can use the construct
2664 `COSTS_N_INSNS (N)' to specify a cost equal to N fast instructions.
2665
2666 This macro is optional; do not define it if the default cost
2667 assumptions are adequate for the target machine.
2668
2669 If -mdebugd is used, change the multiply cost to 2, so multiply by
2670 a constant isn't converted to a series of shifts. This helps
2671 strength reduction, and also makes it easier to identify what the
2672 compiler is doing. */
2673
2674 /* ??? Fix this to be right for the R8000. */
2675 #define RTX_COSTS(X,CODE,OUTER_CODE) \
2676 case MEM: \
2677 { \
2678 int num_words = (GET_MODE_SIZE (GET_MODE (X)) > UNITS_PER_WORD) ? 2 : 1; \
2679 if (simple_memory_operand (X, GET_MODE (X))) \
2680 return COSTS_N_INSNS (num_words); \
2681 \
2682 return COSTS_N_INSNS (2*num_words); \
2683 } \
2684 \
2685 case FFS: \
2686 return COSTS_N_INSNS (6); \
2687 \
2688 case NOT: \
2689 return COSTS_N_INSNS ((GET_MODE (X) == DImode && !TARGET_64BIT) ? 2 : 1); \
2690 \
2691 case AND: \
2692 case IOR: \
2693 case XOR: \
2694 if (GET_MODE (X) == DImode && !TARGET_64BIT) \
2695 return COSTS_N_INSNS (2); \
2696 \
2697 return COSTS_N_INSNS (1); \
2698 \
2699 case ASHIFT: \
2700 case ASHIFTRT: \
2701 case LSHIFTRT: \
2702 if (GET_MODE (X) == DImode && !TARGET_64BIT) \
2703 return COSTS_N_INSNS ((GET_CODE (XEXP (X, 1)) == CONST_INT) ? 4 : 12); \
2704 \
2705 return COSTS_N_INSNS (1); \
2706 \
2707 case ABS: \
2708 { \
2709 enum machine_mode xmode = GET_MODE (X); \
2710 if (xmode == SFmode || xmode == DFmode) \
2711 return COSTS_N_INSNS (1); \
2712 \
2713 return COSTS_N_INSNS (4); \
2714 } \
2715 \
2716 case PLUS: \
2717 case MINUS: \
2718 { \
2719 enum machine_mode xmode = GET_MODE (X); \
2720 if (xmode == SFmode || xmode == DFmode) \
2721 { \
2722 if (mips_cpu == PROCESSOR_R3000) \
2723 return COSTS_N_INSNS (2); \
2724 else if (mips_cpu == PROCESSOR_R6000) \
2725 return COSTS_N_INSNS (3); \
2726 else \
2727 return COSTS_N_INSNS (6); \
2728 } \
2729 \
2730 if (xmode == DImode && !TARGET_64BIT) \
2731 return COSTS_N_INSNS (4); \
2732 \
2733 return COSTS_N_INSNS (1); \
2734 } \
2735 \
2736 case NEG: \
2737 return COSTS_N_INSNS ((GET_MODE (X) == DImode && !TARGET_64BIT) ? 4 : 1); \
2738 \
2739 case MULT: \
2740 { \
2741 enum machine_mode xmode = GET_MODE (X); \
2742 if (xmode == SFmode) \
2743 { \
2744 if (mips_cpu == PROCESSOR_R3000) \
2745 return COSTS_N_INSNS (4); \
2746 else if (mips_cpu == PROCESSOR_R6000) \
2747 return COSTS_N_INSNS (5); \
2748 else \
2749 return COSTS_N_INSNS (7); \
2750 } \
2751 \
2752 if (xmode == DFmode) \
2753 { \
2754 if (mips_cpu == PROCESSOR_R3000) \
2755 return COSTS_N_INSNS (5); \
2756 else if (mips_cpu == PROCESSOR_R6000) \
2757 return COSTS_N_INSNS (6); \
2758 else \
2759 return COSTS_N_INSNS (8); \
2760 } \
2761 \
2762 if (mips_cpu == PROCESSOR_R3000) \
2763 return COSTS_N_INSNS (12); \
2764 else if (mips_cpu == PROCESSOR_R6000) \
2765 return COSTS_N_INSNS (17); \
2766 else \
2767 return COSTS_N_INSNS (10); \
2768 } \
2769 \
2770 case DIV: \
2771 case MOD: \
2772 { \
2773 enum machine_mode xmode = GET_MODE (X); \
2774 if (xmode == SFmode) \
2775 { \
2776 if (mips_cpu == PROCESSOR_R3000) \
2777 return COSTS_N_INSNS (12); \
2778 else if (mips_cpu == PROCESSOR_R6000) \
2779 return COSTS_N_INSNS (15); \
2780 else \
2781 return COSTS_N_INSNS (23); \
2782 } \
2783 \
2784 if (xmode == DFmode) \
2785 { \
2786 if (mips_cpu == PROCESSOR_R3000) \
2787 return COSTS_N_INSNS (19); \
2788 else if (mips_cpu == PROCESSOR_R6000) \
2789 return COSTS_N_INSNS (16); \
2790 else \
2791 return COSTS_N_INSNS (36); \
2792 } \
2793 } \
2794 /* fall through */ \
2795 \
2796 case UDIV: \
2797 case UMOD: \
2798 if (mips_cpu == PROCESSOR_R3000) \
2799 return COSTS_N_INSNS (35); \
2800 else if (mips_cpu == PROCESSOR_R6000) \
2801 return COSTS_N_INSNS (38); \
2802 else \
2803 return COSTS_N_INSNS (69);
2804
2805 /* An expression giving the cost of an addressing mode that
2806 contains ADDRESS. If not defined, the cost is computed from the
2807 form of the ADDRESS expression and the `CONST_COSTS' values.
2808
2809 For most CISC machines, the default cost is a good approximation
2810 of the true cost of the addressing mode. However, on RISC
2811 machines, all instructions normally have the same length and
2812 execution time. Hence all addresses will have equal costs.
2813
2814 In cases where more than one form of an address is known, the
2815 form with the lowest cost will be used. If multiple forms have
2816 the same, lowest, cost, the one that is the most complex will be
2817 used.
2818
2819 For example, suppose an address that is equal to the sum of a
2820 register and a constant is used twice in the same basic block.
2821 When this macro is not defined, the address will be computed in
2822 a register and memory references will be indirect through that
2823 register. On machines where the cost of the addressing mode
2824 containing the sum is no higher than that of a simple indirect
2825 reference, this will produce an additional instruction and
2826 possibly require an additional register. Proper specification
2827 of this macro eliminates this overhead for such machines.
2828
2829 Similar use of this macro is made in strength reduction of loops.
2830
2831 ADDRESS need not be valid as an address. In such a case, the
2832 cost is not relevant and can be any value; invalid addresses
2833 need not be assigned a different cost.
2834
2835 On machines where an address involving more than one register is
2836 as cheap as an address computation involving only one register,
2837 defining `ADDRESS_COST' to reflect this can cause two registers
2838 to be live over a region of code where only one would have been
2839 if `ADDRESS_COST' were not defined in that manner. This effect
2840 should be considered in the definition of this macro.
2841 Equivalent costs should probably only be given to addresses with
2842 different numbers of registers on machines with lots of registers.
2843
2844 This macro will normally either not be defined or be defined as
2845 a constant. */
2846
2847 #define ADDRESS_COST(ADDR) (REG_P (ADDR) ? 1 : mips_address_cost (ADDR))
2848
2849 /* A C expression for the cost of moving data from a register in
2850 class FROM to one in class TO. The classes are expressed using
2851 the enumeration values such as `GENERAL_REGS'. A value of 2 is
2852 the default; other values are interpreted relative to that.
2853
2854 It is not required that the cost always equal 2 when FROM is the
2855 same as TO; on some machines it is expensive to move between
2856 registers if they are not general registers.
2857
2858 If reload sees an insn consisting of a single `set' between two
2859 hard registers, and if `REGISTER_MOVE_COST' applied to their
2860 classes returns a value of 2, reload does not check to ensure
2861 that the constraints of the insn are met. Setting a cost of
2862 other than 2 will allow reload to verify that the constraints are
2863 met. You should do this if the `movM' pattern's constraints do
2864 not allow such copying. */
2865
2866 #define REGISTER_MOVE_COST(FROM, TO) \
2867 ((FROM) == GR_REGS && (TO) == GR_REGS ? 2 \
2868 : (FROM) == FP_REGS && (TO) == FP_REGS ? 2 \
2869 : (FROM) == GR_REGS && (TO) == FP_REGS ? 4 \
2870 : (FROM) == FP_REGS && (TO) == GR_REGS ? 4 \
2871 : (((FROM) == HI_REG || (FROM) == LO_REG || (FROM) == MD_REGS) \
2872 && (TO) == GR_REGS) ? 6 \
2873 : (((TO) == HI_REG || (TO) == LO_REG || (TO) == MD_REGS) \
2874 && (FROM) == GR_REGS) ? 6 \
2875 : 12)
2876
2877 /* ??? Fix this to be right for the R8000. */
2878 #define MEMORY_MOVE_COST(MODE) \
2879 ((mips_cpu == PROCESSOR_R4000 || mips_cpu == PROCESSOR_R6000) ? 6 : 4)
2880
2881 /* A C expression for the cost of a branch instruction. A value of
2882 1 is the default; other values are interpreted relative to that. */
2883
2884 /* ??? Fix this to be right for the R8000. */
2885 #define BRANCH_COST \
2886 ((mips_cpu == PROCESSOR_R4000 || mips_cpu == PROCESSOR_R6000) ? 2 : 1)
2887
2888 /* A C statement (sans semicolon) to update the integer variable COST
2889 based on the relationship between INSN that is dependent on
2890 DEP_INSN through the dependence LINK. The default is to make no
2891 adjustment to COST. On the MIPS, ignore the cost of anti- and
2892 output-dependencies. */
2893
2894 #define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
2895 if (REG_NOTE_KIND (LINK) != 0) \
2896 (COST) = 0; /* Anti or output dependence. */
2897 \f
2898 /* Optionally define this if you have added predicates to
2899 `MACHINE.c'. This macro is called within an initializer of an
2900 array of structures. The first field in the structure is the
2901 name of a predicate and the second field is an array of rtl
2902 codes. For each predicate, list all rtl codes that can be in
2903 expressions matched by the predicate. The list should have a
2904 trailing comma. Here is an example of two entries in the list
2905 for a typical RISC machine:
2906
2907 #define PREDICATE_CODES \
2908 {"gen_reg_rtx_operand", {SUBREG, REG}}, \
2909 {"reg_or_short_cint_operand", {SUBREG, REG, CONST_INT}},
2910
2911 Defining this macro does not affect the generated code (however,
2912 incorrect definitions that omit an rtl code that may be matched
2913 by the predicate can cause the compiler to malfunction).
2914 Instead, it allows the table built by `genrecog' to be more
2915 compact and efficient, thus speeding up the compiler. The most
2916 important predicates to include in the list specified by this
2917 macro are thoses used in the most insn patterns. */
2918
2919 #define PREDICATE_CODES \
2920 {"uns_arith_operand", { REG, CONST_INT, SUBREG }}, \
2921 {"arith_operand", { REG, CONST_INT, SUBREG }}, \
2922 {"arith32_operand", { REG, CONST_INT, SUBREG }}, \
2923 {"reg_or_0_operand", { REG, CONST_INT, SUBREG }}, \
2924 {"small_int", { CONST_INT }}, \
2925 {"large_int", { CONST_INT }}, \
2926 {"mips_const_double_ok", { CONST_DOUBLE }}, \
2927 {"simple_memory_operand", { MEM, SUBREG }}, \
2928 {"equality_op", { EQ, NE }}, \
2929 {"cmp_op", { EQ, NE, GT, GE, GTU, GEU, LT, LE, \
2930 LTU, LEU }}, \
2931 {"pc_or_label_operand", { PC, LABEL_REF }}, \
2932 {"call_insn_operand", { MEM }}, \
2933
2934 \f
2935 /* If defined, a C statement to be executed just prior to the
2936 output of assembler code for INSN, to modify the extracted
2937 operands so they will be output differently.
2938
2939 Here the argument OPVEC is the vector containing the operands
2940 extracted from INSN, and NOPERANDS is the number of elements of
2941 the vector which contain meaningful data for this insn. The
2942 contents of this vector are what will be used to convert the
2943 insn template into assembler code, so you can change the
2944 assembler output by changing the contents of the vector.
2945
2946 We use it to check if the current insn needs a nop in front of it
2947 because of load delays, and also to update the delay slot
2948 statistics. */
2949
2950 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2951 final_prescan_insn (INSN, OPVEC, NOPERANDS)
2952
2953 \f
2954 /* Tell final.c how to eliminate redundant test instructions.
2955 Here we define machine-dependent flags and fields in cc_status
2956 (see `conditions.h'). */
2957
2958 /* A list of names to be used for additional modes for condition code
2959 values in registers. These names are added to `enum machine_mode'
2960 and all have class `MODE_CC'. By convention, they should start
2961 with `CC' and end with `mode'.
2962
2963 You should only define this macro if your machine does not use
2964 `cc0' and only if additional modes are required.
2965
2966 On the MIPS, we use CC_FPmode for all floating point except for not
2967 equal, CC_REV_FPmode for not equal (to reverse the sense of the
2968 jump), CC_EQmode for integer equality/inequality comparisons,
2969 CC_0mode for comparisons against 0, and CCmode for other integer
2970 comparisons. */
2971
2972 #define EXTRA_CC_MODES CC_EQmode, CC_FPmode, CC_0mode, CC_REV_FPmode
2973
2974 /* A list of C strings giving the names for the modes listed in
2975 `EXTRA_CC_MODES'. */
2976
2977 #define EXTRA_CC_NAMES "CC_EQ", "CC_FP", "CC_0", "CC_REV_FP"
2978
2979 /* Returns a mode from class `MODE_CC' to be used when comparison
2980 operation code OP is applied to rtx X. */
2981
2982 #define SELECT_CC_MODE(OP, X, Y) \
2983 (GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
2984 ? SImode \
2985 : ((OP == NE) ? CC_REV_FPmode : CC_FPmode))
2986
2987 \f
2988 /* Control the assembler format that we output. */
2989
2990 /* Output at beginning of assembler file.
2991 If we are optimizing to use the global pointer, create a temporary
2992 file to hold all of the text stuff, and write it out to the end.
2993 This is needed because the MIPS assembler is evidently one pass,
2994 and if it hasn't seen the relevant .comm/.lcomm/.extern/.sdata
2995 declaration when the code is processed, it generates a two
2996 instruction sequence. */
2997
2998 #define ASM_FILE_START(STREAM) mips_asm_file_start (STREAM)
2999
3000 /* Output to assembler file text saying following lines
3001 may contain character constants, extra white space, comments, etc. */
3002
3003 #define ASM_APP_ON " #APP\n"
3004
3005 /* Output to assembler file text saying following lines
3006 no longer contain unusual constructs. */
3007
3008 #define ASM_APP_OFF " #NO_APP\n"
3009
3010 /* How to refer to registers in assembler output.
3011 This sequence is indexed by compiler's hard-register-number (see above).
3012
3013 In order to support the two different conventions for register names,
3014 we use the name of a table set up in mips.c, which is overwritten
3015 if -mrnames is used. */
3016
3017 #define REGISTER_NAMES \
3018 { \
3019 &mips_reg_names[ 0][0], \
3020 &mips_reg_names[ 1][0], \
3021 &mips_reg_names[ 2][0], \
3022 &mips_reg_names[ 3][0], \
3023 &mips_reg_names[ 4][0], \
3024 &mips_reg_names[ 5][0], \
3025 &mips_reg_names[ 6][0], \
3026 &mips_reg_names[ 7][0], \
3027 &mips_reg_names[ 8][0], \
3028 &mips_reg_names[ 9][0], \
3029 &mips_reg_names[10][0], \
3030 &mips_reg_names[11][0], \
3031 &mips_reg_names[12][0], \
3032 &mips_reg_names[13][0], \
3033 &mips_reg_names[14][0], \
3034 &mips_reg_names[15][0], \
3035 &mips_reg_names[16][0], \
3036 &mips_reg_names[17][0], \
3037 &mips_reg_names[18][0], \
3038 &mips_reg_names[19][0], \
3039 &mips_reg_names[20][0], \
3040 &mips_reg_names[21][0], \
3041 &mips_reg_names[22][0], \
3042 &mips_reg_names[23][0], \
3043 &mips_reg_names[24][0], \
3044 &mips_reg_names[25][0], \
3045 &mips_reg_names[26][0], \
3046 &mips_reg_names[27][0], \
3047 &mips_reg_names[28][0], \
3048 &mips_reg_names[29][0], \
3049 &mips_reg_names[30][0], \
3050 &mips_reg_names[31][0], \
3051 &mips_reg_names[32][0], \
3052 &mips_reg_names[33][0], \
3053 &mips_reg_names[34][0], \
3054 &mips_reg_names[35][0], \
3055 &mips_reg_names[36][0], \
3056 &mips_reg_names[37][0], \
3057 &mips_reg_names[38][0], \
3058 &mips_reg_names[39][0], \
3059 &mips_reg_names[40][0], \
3060 &mips_reg_names[41][0], \
3061 &mips_reg_names[42][0], \
3062 &mips_reg_names[43][0], \
3063 &mips_reg_names[44][0], \
3064 &mips_reg_names[45][0], \
3065 &mips_reg_names[46][0], \
3066 &mips_reg_names[47][0], \
3067 &mips_reg_names[48][0], \
3068 &mips_reg_names[49][0], \
3069 &mips_reg_names[50][0], \
3070 &mips_reg_names[51][0], \
3071 &mips_reg_names[52][0], \
3072 &mips_reg_names[53][0], \
3073 &mips_reg_names[54][0], \
3074 &mips_reg_names[55][0], \
3075 &mips_reg_names[56][0], \
3076 &mips_reg_names[57][0], \
3077 &mips_reg_names[58][0], \
3078 &mips_reg_names[59][0], \
3079 &mips_reg_names[60][0], \
3080 &mips_reg_names[61][0], \
3081 &mips_reg_names[62][0], \
3082 &mips_reg_names[63][0], \
3083 &mips_reg_names[64][0], \
3084 &mips_reg_names[65][0], \
3085 &mips_reg_names[66][0], \
3086 }
3087
3088 /* print-rtl.c can't use REGISTER_NAMES, since it depends on mips.c.
3089 So define this for it. */
3090 #define DEBUG_REGISTER_NAMES \
3091 { \
3092 "$0", "at", "v0", "v1", "a0", "a1", "a2", "a3", \
3093 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", \
3094 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", \
3095 "t8", "t9", "k0", "k1", "gp", "sp", "$fp", "ra", \
3096 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
3097 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
3098 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
3099 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
3100 "hi", "lo", "$fcr31" \
3101 }
3102
3103 /* If defined, a C initializer for an array of structures
3104 containing a name and a register number. This macro defines
3105 additional names for hard registers, thus allowing the `asm'
3106 option in declarations to refer to registers using alternate
3107 names.
3108
3109 We define both names for the integer registers here. */
3110
3111 #define ADDITIONAL_REGISTER_NAMES \
3112 { \
3113 { "$0", 0 + GP_REG_FIRST }, \
3114 { "$1", 1 + GP_REG_FIRST }, \
3115 { "$2", 2 + GP_REG_FIRST }, \
3116 { "$3", 3 + GP_REG_FIRST }, \
3117 { "$4", 4 + GP_REG_FIRST }, \
3118 { "$5", 5 + GP_REG_FIRST }, \
3119 { "$6", 6 + GP_REG_FIRST }, \
3120 { "$7", 7 + GP_REG_FIRST }, \
3121 { "$8", 8 + GP_REG_FIRST }, \
3122 { "$9", 9 + GP_REG_FIRST }, \
3123 { "$10", 10 + GP_REG_FIRST }, \
3124 { "$11", 11 + GP_REG_FIRST }, \
3125 { "$12", 12 + GP_REG_FIRST }, \
3126 { "$13", 13 + GP_REG_FIRST }, \
3127 { "$14", 14 + GP_REG_FIRST }, \
3128 { "$15", 15 + GP_REG_FIRST }, \
3129 { "$16", 16 + GP_REG_FIRST }, \
3130 { "$17", 17 + GP_REG_FIRST }, \
3131 { "$18", 18 + GP_REG_FIRST }, \
3132 { "$19", 19 + GP_REG_FIRST }, \
3133 { "$20", 20 + GP_REG_FIRST }, \
3134 { "$21", 21 + GP_REG_FIRST }, \
3135 { "$22", 22 + GP_REG_FIRST }, \
3136 { "$23", 23 + GP_REG_FIRST }, \
3137 { "$24", 24 + GP_REG_FIRST }, \
3138 { "$25", 25 + GP_REG_FIRST }, \
3139 { "$26", 26 + GP_REG_FIRST }, \
3140 { "$27", 27 + GP_REG_FIRST }, \
3141 { "$28", 28 + GP_REG_FIRST }, \
3142 { "$29", 29 + GP_REG_FIRST }, \
3143 { "$30", 30 + GP_REG_FIRST }, \
3144 { "$31", 31 + GP_REG_FIRST }, \
3145 { "$sp", 29 + GP_REG_FIRST }, \
3146 { "$fp", 30 + GP_REG_FIRST }, \
3147 { "at", 1 + GP_REG_FIRST }, \
3148 { "v0", 2 + GP_REG_FIRST }, \
3149 { "v1", 3 + GP_REG_FIRST }, \
3150 { "a0", 4 + GP_REG_FIRST }, \
3151 { "a1", 5 + GP_REG_FIRST }, \
3152 { "a2", 6 + GP_REG_FIRST }, \
3153 { "a3", 7 + GP_REG_FIRST }, \
3154 { "t0", 8 + GP_REG_FIRST }, \
3155 { "t1", 9 + GP_REG_FIRST }, \
3156 { "t2", 10 + GP_REG_FIRST }, \
3157 { "t3", 11 + GP_REG_FIRST }, \
3158 { "t4", 12 + GP_REG_FIRST }, \
3159 { "t5", 13 + GP_REG_FIRST }, \
3160 { "t6", 14 + GP_REG_FIRST }, \
3161 { "t7", 15 + GP_REG_FIRST }, \
3162 { "s0", 16 + GP_REG_FIRST }, \
3163 { "s1", 17 + GP_REG_FIRST }, \
3164 { "s2", 18 + GP_REG_FIRST }, \
3165 { "s3", 19 + GP_REG_FIRST }, \
3166 { "s4", 20 + GP_REG_FIRST }, \
3167 { "s5", 21 + GP_REG_FIRST }, \
3168 { "s6", 22 + GP_REG_FIRST }, \
3169 { "s7", 23 + GP_REG_FIRST }, \
3170 { "t8", 24 + GP_REG_FIRST }, \
3171 { "t9", 25 + GP_REG_FIRST }, \
3172 { "k0", 26 + GP_REG_FIRST }, \
3173 { "k1", 27 + GP_REG_FIRST }, \
3174 { "gp", 28 + GP_REG_FIRST }, \
3175 { "sp", 29 + GP_REG_FIRST }, \
3176 { "fp", 30 + GP_REG_FIRST }, \
3177 { "ra", 31 + GP_REG_FIRST }, \
3178 { "$sp", 29 + GP_REG_FIRST }, \
3179 { "$fp", 30 + GP_REG_FIRST }, \
3180 { "cc", FPSW_REGNUM }, \
3181 }
3182
3183 /* Define results of standard character escape sequences. */
3184 #define TARGET_BELL 007
3185 #define TARGET_BS 010
3186 #define TARGET_TAB 011
3187 #define TARGET_NEWLINE 012
3188 #define TARGET_VT 013
3189 #define TARGET_FF 014
3190 #define TARGET_CR 015
3191
3192 /* A C compound statement to output to stdio stream STREAM the
3193 assembler syntax for an instruction operand X. X is an RTL
3194 expression.
3195
3196 CODE is a value that can be used to specify one of several ways
3197 of printing the operand. It is used when identical operands
3198 must be printed differently depending on the context. CODE
3199 comes from the `%' specification that was used to request
3200 printing of the operand. If the specification was just `%DIGIT'
3201 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
3202 is the ASCII code for LTR.
3203
3204 If X is a register, this macro should print the register's name.
3205 The names can be found in an array `reg_names' whose type is
3206 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
3207
3208 When the machine description has a specification `%PUNCT' (a `%'
3209 followed by a punctuation character), this macro is called with
3210 a null pointer for X and the punctuation character for CODE.
3211
3212 See mips.c for the MIPS specific codes. */
3213
3214 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
3215
3216 /* A C expression which evaluates to true if CODE is a valid
3217 punctuation character for use in the `PRINT_OPERAND' macro. If
3218 `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no
3219 punctuation characters (except for the standard one, `%') are
3220 used in this way. */
3221
3222 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE]
3223
3224 /* A C compound statement to output to stdio stream STREAM the
3225 assembler syntax for an instruction operand that is a memory
3226 reference whose address is ADDR. ADDR is an RTL expression.
3227
3228 On some machines, the syntax for a symbolic address depends on
3229 the section that the address refers to. On these machines,
3230 define the macro `ENCODE_SECTION_INFO' to store the information
3231 into the `symbol_ref', and then check for it here. */
3232
3233 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
3234
3235
3236 /* A C statement, to be executed after all slot-filler instructions
3237 have been output. If necessary, call `dbr_sequence_length' to
3238 determine the number of slots filled in a sequence (zero if not
3239 currently outputting a sequence), to decide how many no-ops to
3240 output, or whatever.
3241
3242 Don't define this macro if it has nothing to do, but it is
3243 helpful in reading assembly output if the extent of the delay
3244 sequence is made explicit (e.g. with white space).
3245
3246 Note that output routines for instructions with delay slots must
3247 be prepared to deal with not being output as part of a sequence
3248 (i.e. when the scheduling pass is not run, or when no slot
3249 fillers could be found.) The variable `final_sequence' is null
3250 when not processing a sequence, otherwise it contains the
3251 `sequence' rtx being output. */
3252
3253 #define DBR_OUTPUT_SEQEND(STREAM) \
3254 do \
3255 { \
3256 if (set_nomacro > 0 && --set_nomacro == 0) \
3257 fputs ("\t.set\tmacro\n", STREAM); \
3258 \
3259 if (set_noreorder > 0 && --set_noreorder == 0) \
3260 fputs ("\t.set\treorder\n", STREAM); \
3261 \
3262 dslots_jump_filled++; \
3263 fputs ("\n", STREAM); \
3264 } \
3265 while (0)
3266
3267
3268 /* How to tell the debugger about changes of source files. Note, the
3269 mips ECOFF format cannot deal with changes of files inside of
3270 functions, which means the output of parser generators like bison
3271 is generally not debuggable without using the -l switch. Lose,
3272 lose, lose. Silicon graphics seems to want all .file's hardwired
3273 to 1. */
3274
3275 #ifndef SET_FILE_NUMBER
3276 #define SET_FILE_NUMBER() ++num_source_filenames
3277 #endif
3278
3279 #define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
3280 mips_output_filename (STREAM, NAME)
3281
3282 /* This is defined so that it can be overriden in iris6.h. */
3283 #define ASM_OUTPUT_FILENAME(STREAM, NUM_SOURCE_FILENAMES, NAME) \
3284 do \
3285 { \
3286 fprintf (STREAM, "\t.file\t%d ", NUM_SOURCE_FILENAMES); \
3287 output_quoted_string (STREAM, NAME); \
3288 fputs ("\n", STREAM); \
3289 } \
3290 while (0)
3291
3292 /* This is how to output a note the debugger telling it the line number
3293 to which the following sequence of instructions corresponds.
3294 Silicon graphics puts a label after each .loc. */
3295
3296 #ifndef LABEL_AFTER_LOC
3297 #define LABEL_AFTER_LOC(STREAM)
3298 #endif
3299
3300 #define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
3301 mips_output_lineno (STREAM, LINE)
3302
3303 /* The MIPS implementation uses some labels for it's own purpose. The
3304 following lists what labels are created, and are all formed by the
3305 pattern $L[a-z].*. The machine independent portion of GCC creates
3306 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
3307
3308 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
3309 $Lb[0-9]+ Begin blocks for MIPS debug support
3310 $Lc[0-9]+ Label for use in s<xx> operation.
3311 $Le[0-9]+ End blocks for MIPS debug support
3312 $Lp\..+ Half-pic labels. */
3313
3314 /* This is how to output the definition of a user-level label named NAME,
3315 such as the label on a static function or variable NAME.
3316
3317 If we are optimizing the gp, remember that this label has been put
3318 out, so we know not to emit an .extern for it in mips_asm_file_end.
3319 We use one of the common bits in the IDENTIFIER tree node for this,
3320 since those bits seem to be unused, and we don't have any method
3321 of getting the decl nodes from the name. */
3322
3323 #define ASM_OUTPUT_LABEL(STREAM,NAME) \
3324 do { \
3325 assemble_name (STREAM, NAME); \
3326 fputs (":\n", STREAM); \
3327 } while (0)
3328
3329
3330 /* A C statement (sans semicolon) to output to the stdio stream
3331 STREAM any text necessary for declaring the name NAME of an
3332 initialized variable which is being defined. This macro must
3333 output the label definition (perhaps using `ASM_OUTPUT_LABEL').
3334 The argument DECL is the `VAR_DECL' tree node representing the
3335 variable.
3336
3337 If this macro is not defined, then the variable name is defined
3338 in the usual manner as a label (by means of `ASM_OUTPUT_LABEL'). */
3339
3340 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
3341 do \
3342 { \
3343 mips_declare_object (STREAM, NAME, "", ":\n", 0); \
3344 HALF_PIC_DECLARE (NAME); \
3345 } \
3346 while (0)
3347
3348
3349 /* This is how to output a command to make the user-level label named NAME
3350 defined for reference from other files. */
3351
3352 #define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
3353 do { \
3354 fputs ("\t.globl\t", STREAM); \
3355 assemble_name (STREAM, NAME); \
3356 fputs ("\n", STREAM); \
3357 } while (0)
3358
3359 /* This says how to define a global common symbol. */
3360
3361 #define ASM_OUTPUT_COMMON(STREAM, NAME, SIZE, ROUNDED) \
3362 mips_declare_object (STREAM, NAME, "\n\t.comm\t", ",%u\n", (SIZE))
3363
3364 /* This says how to define a local common symbol (ie, not visible to
3365 linker). */
3366
3367 #define ASM_OUTPUT_LOCAL(STREAM, NAME, SIZE, ROUNDED) \
3368 mips_declare_object (STREAM, NAME, "\n\t.lcomm\t", ",%u\n", (SIZE))
3369
3370
3371 /* This says how to output an external. It would be possible not to
3372 output anything and let undefined symbol become external. However
3373 the assembler uses length information on externals to allocate in
3374 data/sdata bss/sbss, thereby saving exec time. */
3375
3376 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
3377 mips_output_external(STREAM,DECL,NAME)
3378
3379 /* This says what to print at the end of the assembly file */
3380 #define ASM_FILE_END(STREAM) mips_asm_file_end(STREAM)
3381
3382
3383 /* This is how to declare a function name. The actual work of
3384 emitting the label is moved to function_prologue, so that we can
3385 get the line number correctly emitted before the .ent directive,
3386 and after any .file directives.
3387
3388 Also, switch files if we are optimizing the global pointer. */
3389
3390 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL) \
3391 { \
3392 extern FILE *asm_out_text_file; \
3393 if (TARGET_GP_OPT) \
3394 { \
3395 STREAM = asm_out_text_file; \
3396 /* ??? text_section gets called too soon. If the previous \
3397 function is in a special section and we're not, we have \
3398 to switch back to the text section. We can't call \
3399 text_section again as gcc thinks we're already there. */ \
3400 /* ??? See varasm.c. There are other things that get output \
3401 too early, like alignment (before we've switched STREAM). */ \
3402 if (DECL_SECTION_NAME (DECL) == NULL_TREE) \
3403 fprintf (STREAM, "%s\n", TEXT_SECTION_ASM_OP); \
3404 } \
3405 \
3406 current_function_name = NAME; \
3407 HALF_PIC_DECLARE (NAME); \
3408 }
3409
3410 /* This is how to output a reference to a user-level label named NAME.
3411 `assemble_name' uses this. */
3412
3413 #define ASM_OUTPUT_LABELREF(STREAM,NAME) fprintf (STREAM, "%s", NAME)
3414
3415 /* This is how to output an internal numbered label where
3416 PREFIX is the class of label and NUM is the number within the class. */
3417
3418 #define ASM_OUTPUT_INTERNAL_LABEL(STREAM,PREFIX,NUM) \
3419 fprintf (STREAM, "$%s%d:\n", PREFIX, NUM)
3420
3421 /* This is how to store into the string LABEL
3422 the symbol_ref name of an internal numbered label where
3423 PREFIX is the class of label and NUM is the number within the class.
3424 This is suitable for output with `assemble_name'. */
3425
3426 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
3427 sprintf (LABEL, "*$%s%d", PREFIX, NUM)
3428
3429 /* This is how to output an assembler line defining a `double' constant. */
3430
3431 #define ASM_OUTPUT_DOUBLE(STREAM,VALUE) \
3432 mips_output_double (STREAM, VALUE)
3433
3434
3435 /* This is how to output an assembler line defining a `float' constant. */
3436
3437 #define ASM_OUTPUT_FLOAT(STREAM,VALUE) \
3438 mips_output_float (STREAM, VALUE)
3439
3440
3441 /* This is how to output an assembler line defining an `int' constant. */
3442
3443 #define ASM_OUTPUT_INT(STREAM,VALUE) \
3444 do { \
3445 fprintf (STREAM, "\t.word\t"); \
3446 output_addr_const (STREAM, (VALUE)); \
3447 fprintf (STREAM, "\n"); \
3448 } while (0)
3449
3450 /* Likewise for 64 bit, `char' and `short' constants. */
3451
3452 #define ASM_OUTPUT_DOUBLE_INT(STREAM,VALUE) \
3453 do { \
3454 if (TARGET_64BIT) \
3455 { \
3456 fprintf (STREAM, "\t.dword\t"); \
3457 output_addr_const (STREAM, (VALUE)); \
3458 fprintf (STREAM, "\n"); \
3459 } \
3460 else \
3461 { \
3462 assemble_integer (operand_subword ((VALUE), 0, 0, DImode), \
3463 UNITS_PER_WORD, 1); \
3464 assemble_integer (operand_subword ((VALUE), 1, 0, DImode), \
3465 UNITS_PER_WORD, 1); \
3466 } \
3467 } while (0)
3468
3469 #define ASM_OUTPUT_SHORT(STREAM,VALUE) \
3470 { \
3471 fprintf (STREAM, "\t.half\t"); \
3472 output_addr_const (STREAM, (VALUE)); \
3473 fprintf (STREAM, "\n"); \
3474 }
3475
3476 #define ASM_OUTPUT_CHAR(STREAM,VALUE) \
3477 { \
3478 fprintf (STREAM, "\t.byte\t"); \
3479 output_addr_const (STREAM, (VALUE)); \
3480 fprintf (STREAM, "\n"); \
3481 }
3482
3483 /* This is how to output an assembler line for a numeric constant byte. */
3484
3485 #define ASM_OUTPUT_BYTE(STREAM,VALUE) \
3486 fprintf (STREAM, "\t.byte\t0x%x\n", (VALUE))
3487
3488 /* This is how to output an element of a case-vector that is absolute. */
3489
3490 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
3491 fprintf (STREAM, "\t%s\t$L%d\n", \
3492 TARGET_LONG64 ? ".dword" : ".word", \
3493 VALUE)
3494
3495 /* This is how to output an element of a case-vector that is relative.
3496 This is used for pc-relative code (e.g. when TARGET_ABICALLS or
3497 TARGET_EMBEDDED_PIC). */
3498
3499 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, VALUE, REL) \
3500 do { \
3501 if (TARGET_EMBEDDED_PIC) \
3502 fprintf (STREAM, "\t%s\t$L%d-$LS%d\n", \
3503 TARGET_LONG64 ? ".dword" : ".word", \
3504 VALUE, REL); \
3505 else if (! ABI_64BIT) \
3506 fprintf (STREAM, "\t%s\t$L%d\n", \
3507 TARGET_LONG64 ? ".gpdword" : ".gpword", \
3508 VALUE); \
3509 else \
3510 fprintf (STREAM, "\t%s\t.L%d\n", \
3511 TARGET_LONG64 ? ".dword" : ".word", \
3512 VALUE); \
3513 } while (0)
3514
3515 /* When generating embedded PIC code we want to put the jump table in
3516 the .text section. In all other cases, we want to put the jump
3517 table in the .rdata section. Unfortunately, we can't use
3518 JUMP_TABLES_IN_TEXT_SECTION, because it is not conditional.
3519 Instead, we use ASM_OUTPUT_CASE_LABEL to switch back to the .text
3520 section if appropriate. */
3521 #define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, INSN) \
3522 do { \
3523 if (TARGET_EMBEDDED_PIC) \
3524 text_section (); \
3525 ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); \
3526 } while (0)
3527
3528 /* This is how to output an assembler line
3529 that says to advance the location counter
3530 to a multiple of 2**LOG bytes. */
3531
3532 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
3533 { \
3534 int mask = (1 << (LOG)) - 1; \
3535 fprintf (STREAM, "\t.align\t%d\n", (LOG)); \
3536 }
3537
3538 /* This is how to output an assembler line to to advance the location
3539 counter by SIZE bytes. */
3540
3541 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
3542 fprintf (STREAM, "\t.space\t%u\n", (SIZE))
3543
3544 /* This is how to output a string. */
3545 #define ASM_OUTPUT_ASCII(STREAM, STRING, LEN) \
3546 do { \
3547 register int i, c, len = (LEN), cur_pos = 17; \
3548 register unsigned char *string = (unsigned char *)(STRING); \
3549 fprintf ((STREAM), "\t.ascii\t\""); \
3550 for (i = 0; i < len; i++) \
3551 { \
3552 register int c = string[i]; \
3553 \
3554 switch (c) \
3555 { \
3556 case '\"': \
3557 case '\\': \
3558 putc ('\\', (STREAM)); \
3559 putc (c, (STREAM)); \
3560 cur_pos += 2; \
3561 break; \
3562 \
3563 case TARGET_NEWLINE: \
3564 fputs ("\\n", (STREAM)); \
3565 if (i+1 < len \
3566 && (((c = string[i+1]) >= '\040' && c <= '~') \
3567 || c == TARGET_TAB)) \
3568 cur_pos = 32767; /* break right here */ \
3569 else \
3570 cur_pos += 2; \
3571 break; \
3572 \
3573 case TARGET_TAB: \
3574 fputs ("\\t", (STREAM)); \
3575 cur_pos += 2; \
3576 break; \
3577 \
3578 case TARGET_FF: \
3579 fputs ("\\f", (STREAM)); \
3580 cur_pos += 2; \
3581 break; \
3582 \
3583 case TARGET_BS: \
3584 fputs ("\\b", (STREAM)); \
3585 cur_pos += 2; \
3586 break; \
3587 \
3588 case TARGET_CR: \
3589 fputs ("\\r", (STREAM)); \
3590 cur_pos += 2; \
3591 break; \
3592 \
3593 default: \
3594 if (c >= ' ' && c < 0177) \
3595 { \
3596 putc (c, (STREAM)); \
3597 cur_pos++; \
3598 } \
3599 else \
3600 { \
3601 fprintf ((STREAM), "\\%03o", c); \
3602 cur_pos += 4; \
3603 } \
3604 } \
3605 \
3606 if (cur_pos > 72 && i+1 < len) \
3607 { \
3608 cur_pos = 17; \
3609 fprintf ((STREAM), "\"\n\t.ascii\t\""); \
3610 } \
3611 } \
3612 fprintf ((STREAM), "\"\n"); \
3613 } while (0)
3614
3615 /* Handle certain cpp directives used in header files on sysV. */
3616 #define SCCS_DIRECTIVE
3617
3618 /* Output #ident as a in the read-only data section. */
3619 #define ASM_OUTPUT_IDENT(FILE, STRING) \
3620 { \
3621 char *p = STRING; \
3622 int size = strlen (p) + 1; \
3623 rdata_section (); \
3624 assemble_string (p, size); \
3625 }
3626 \f
3627 /* Default to -G 8 */
3628 #ifndef MIPS_DEFAULT_GVALUE
3629 #define MIPS_DEFAULT_GVALUE 8
3630 #endif
3631
3632 /* Define the strings to put out for each section in the object file. */
3633 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
3634 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
3635 #define SDATA_SECTION_ASM_OP "\t.sdata" /* small data */
3636 #define RDATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
3637 #define READONLY_DATA_SECTION rdata_section
3638
3639 /* What other sections we support other than the normal .data/.text. */
3640
3641 #define EXTRA_SECTIONS in_sdata, in_rdata
3642
3643 /* Define the additional functions to select our additional sections. */
3644
3645 /* on the MIPS it is not a good idea to put constants in the text
3646 section, since this defeats the sdata/data mechanism. This is
3647 especially true when -O is used. In this case an effort is made to
3648 address with faster (gp) register relative addressing, which can
3649 only get at sdata and sbss items (there is no stext !!) However,
3650 if the constant is too large for sdata, and it's readonly, it
3651 will go into the .rdata section. */
3652
3653 #define EXTRA_SECTION_FUNCTIONS \
3654 void \
3655 sdata_section () \
3656 { \
3657 if (in_section != in_sdata) \
3658 { \
3659 fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP); \
3660 in_section = in_sdata; \
3661 } \
3662 } \
3663 \
3664 void \
3665 rdata_section () \
3666 { \
3667 if (in_section != in_rdata) \
3668 { \
3669 fprintf (asm_out_file, "%s\n", RDATA_SECTION_ASM_OP); \
3670 in_section = in_rdata; \
3671 } \
3672 }
3673
3674 /* Given a decl node or constant node, choose the section to output it in
3675 and select that section. */
3676
3677 #define SELECT_RTX_SECTION(MODE,RTX) mips_select_rtx_section (MODE, RTX)
3678
3679 #define SELECT_SECTION(DECL, RELOC) mips_select_section (DECL, RELOC)
3680
3681 \f
3682 /* Store in OUTPUT a string (made with alloca) containing
3683 an assembler-name for a local static variable named NAME.
3684 LABELNO is an integer which is different for each call. */
3685
3686 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
3687 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
3688 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
3689
3690 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
3691 do \
3692 { \
3693 fprintf (STREAM, "\t%s\t%s,%s,8\n\t%s\t%s,0(%s)\n", \
3694 TARGET_64BIT ? "dsubu" : "subu", \
3695 reg_names[STACK_POINTER_REGNUM], \
3696 reg_names[STACK_POINTER_REGNUM], \
3697 TARGET_64BIT ? "sd" : "sw", \
3698 reg_names[REGNO], \
3699 reg_names[STACK_POINTER_REGNUM]); \
3700 } \
3701 while (0)
3702
3703 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
3704 do \
3705 { \
3706 if (! set_noreorder) \
3707 fprintf (STREAM, "\t.set\tnoreorder\n"); \
3708 \
3709 dslots_load_total++; \
3710 dslots_load_filled++; \
3711 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
3712 TARGET_64BIT ? "ld" : "lw", \
3713 reg_names[REGNO], \
3714 reg_names[STACK_POINTER_REGNUM], \
3715 TARGET_64BIT ? "daddu" : "addu", \
3716 reg_names[STACK_POINTER_REGNUM], \
3717 reg_names[STACK_POINTER_REGNUM]); \
3718 \
3719 if (! set_noreorder) \
3720 fprintf (STREAM, "\t.set\treorder\n"); \
3721 } \
3722 while (0)
3723
3724 /* Define the parentheses used to group arithmetic operations
3725 in assembler code. */
3726
3727 #define ASM_OPEN_PAREN "("
3728 #define ASM_CLOSE_PAREN ")"
3729
3730 /* How to start an assembler comment. */
3731 #ifndef ASM_COMMENT_START
3732 #define ASM_COMMENT_START "\t\t# "
3733 #endif
3734
3735 \f
3736
3737 /* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
3738 and mips-tdump.c to print them out.
3739
3740 These must match the corresponding definitions in gdb/mipsread.c.
3741 Unfortunately, gcc and gdb do not currently share any directories. */
3742
3743 #define CODE_MASK 0x8F300
3744 #define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
3745 #define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
3746 #define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
3747
3748 \f
3749 /* Default definitions for size_t and ptrdiff_t. */
3750
3751 #ifndef SIZE_TYPE
3752 #define NO_BUILTIN_SIZE_TYPE
3753 #define SIZE_TYPE (TARGET_LONG64 ? "long unsigned int" : "unsigned int")
3754 #endif
3755
3756 #ifndef PTRDIFF_TYPE
3757 #define NO_BUILTIN_PTRDIFF_TYPE
3758 #define PTRDIFF_TYPE (TARGET_LONG64 ? "long int" : "int")
3759 #endif
This page took 0.211136 seconds and 4 git commands to generate.