]> gcc.gnu.org Git - gcc.git/blob - gcc/config/mips/mips.h
Bring in final gcc-2.8.0 changes.
[gcc.git] / gcc / config / mips / mips.h
1 /* Definitions of target machine for GNU compiler. MIPS version.
2 Copyright (C) 1989, 90-97, 1998 Free Software Foundation, Inc.
3 Contributed by A. Lichnewsky (lich@inria.inria.fr).
4 Changed by Michael Meissner (meissner@osf.org).
5 64 bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
6 Brendan Eich (brendan@microunity.com).
7
8 This file is part of GNU CC.
9
10 GNU CC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14
15 GNU CC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GNU CC; see the file COPYING. If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25
26 /* Standard GCC variables that we reference. */
27
28 extern char *asm_file_name;
29 extern char call_used_regs[];
30 extern int current_function_calls_alloca;
31 extern char *language_string;
32 extern int may_call_alloca;
33 extern char **save_argv;
34 extern int target_flags;
35 extern char *version_string;
36
37 /* MIPS external variables defined in mips.c. */
38
39 /* comparison type */
40 enum cmp_type {
41 CMP_SI, /* compare four byte integers */
42 CMP_DI, /* compare eight byte integers */
43 CMP_SF, /* compare single precision floats */
44 CMP_DF, /* compare double precision floats */
45 CMP_MAX /* max comparison type */
46 };
47
48 /* types of delay slot */
49 enum delay_type {
50 DELAY_NONE, /* no delay slot */
51 DELAY_LOAD, /* load from memory delay */
52 DELAY_HILO, /* move from/to hi/lo registers */
53 DELAY_FCMP /* delay after doing c.<xx>.{d,s} */
54 };
55
56 /* Which processor to schedule for. Since there is no difference between
57 a R2000 and R3000 in terms of the scheduler, we collapse them into
58 just an R3000. The elements of the enumeration must match exactly
59 the cpu attribute in the mips.md machine description. */
60
61 enum processor_type {
62 PROCESSOR_DEFAULT,
63 PROCESSOR_R3000,
64 PROCESSOR_R3900,
65 PROCESSOR_R6000,
66 PROCESSOR_R4000,
67 PROCESSOR_R4100,
68 PROCESSOR_R4300,
69 PROCESSOR_R4600,
70 PROCESSOR_R4650,
71 PROCESSOR_R5000,
72 PROCESSOR_R8000
73 };
74
75 /* Recast the cpu class to be the cpu attribute. */
76 #define mips_cpu_attr ((enum attr_cpu)mips_cpu)
77
78 /* Which ABI to use. These are constants because abi64.h must check their
79 value at preprocessing time. */
80
81 #define ABI_32 0
82 #define ABI_N32 1
83 #define ABI_64 2
84 #define ABI_EABI 3
85
86 #ifndef MIPS_ABI_DEFAULT
87 /* We define this away so that there is no extra runtime cost if the target
88 doesn't support multiple ABIs. */
89 #define mips_abi ABI_32
90 #else
91 extern int mips_abi;
92 #endif
93
94 /* Whether to emit abicalls code sequences or not. */
95
96 enum mips_abicalls_type {
97 MIPS_ABICALLS_NO,
98 MIPS_ABICALLS_YES
99 };
100
101 /* Recast the abicalls class to be the abicalls attribute. */
102 #define mips_abicalls_attr ((enum attr_abicalls)mips_abicalls)
103
104 /* Which type of block move to do (whether or not the last store is
105 split out so it can fill a branch delay slot). */
106
107 enum block_move_type {
108 BLOCK_MOVE_NORMAL, /* generate complete block move */
109 BLOCK_MOVE_NOT_LAST, /* generate all but last store */
110 BLOCK_MOVE_LAST /* generate just the last store */
111 };
112
113 extern char mips_reg_names[][8]; /* register names (a0 vs. $4). */
114 extern char mips_print_operand_punct[]; /* print_operand punctuation chars */
115 extern char *current_function_file; /* filename current function is in */
116 extern int num_source_filenames; /* current .file # */
117 extern int inside_function; /* != 0 if inside of a function */
118 extern int ignore_line_number; /* != 0 if we are to ignore next .loc */
119 extern int file_in_function_warning; /* warning given about .file in func */
120 extern int sdb_label_count; /* block start/end next label # */
121 extern int sdb_begin_function_line; /* Starting Line of current function */
122 extern int mips_section_threshold; /* # bytes of data/sdata cutoff */
123 extern int g_switch_value; /* value of the -G xx switch */
124 extern int g_switch_set; /* whether -G xx was passed. */
125 extern int sym_lineno; /* sgi next label # for each stmt */
126 extern int set_noreorder; /* # of nested .set noreorder's */
127 extern int set_nomacro; /* # of nested .set nomacro's */
128 extern int set_noat; /* # of nested .set noat's */
129 extern int set_volatile; /* # of nested .set volatile's */
130 extern int mips_branch_likely; /* emit 'l' after br (branch likely) */
131 extern int mips_dbx_regno[]; /* Map register # to debug register # */
132 extern struct rtx_def *branch_cmp[2]; /* operands for compare */
133 extern enum cmp_type branch_type; /* what type of branch to use */
134 extern enum processor_type mips_cpu; /* which cpu are we scheduling for */
135 extern enum mips_abicalls_type mips_abicalls;/* for svr4 abi pic calls */
136 extern int mips_isa; /* architectural level */
137 extern int mips16; /* whether generating mips16 code */
138 extern int mips16_hard_float; /* mips16 without -msoft-float */
139 extern int mips_entry; /* generate entry/exit for mips16 */
140 extern char *mips_cpu_string; /* for -mcpu=<xxx> */
141 extern char *mips_isa_string; /* for -mips{1,2,3,4} */
142 extern char *mips_abi_string; /* for -misa={32,n32,64} */
143 extern char *mips_entry_string; /* for -mentry */
144 extern char *mips_no_mips16_string; /* for -mno-mips16 */
145 extern int mips_split_addresses; /* perform high/lo_sum support */
146 extern int dslots_load_total; /* total # load related delay slots */
147 extern int dslots_load_filled; /* # filled load delay slots */
148 extern int dslots_jump_total; /* total # jump related delay slots */
149 extern int dslots_jump_filled; /* # filled jump delay slots */
150 extern int dslots_number_nops; /* # of nops needed by previous insn */
151 extern int num_refs[3]; /* # 1/2/3 word references */
152 extern struct rtx_def *mips_load_reg; /* register to check for load delay */
153 extern struct rtx_def *mips_load_reg2; /* 2nd reg to check for load delay */
154 extern struct rtx_def *mips_load_reg3; /* 3rd reg to check for load delay */
155 extern struct rtx_def *mips_load_reg4; /* 4th reg to check for load delay */
156 extern struct rtx_def *embedded_pic_fnaddr_rtx; /* function address */
157 extern int mips_string_length; /* length of strings for mips16 */
158 extern struct rtx_def *mips16_gp_pseudo_rtx; /* psuedo reg holding $gp */
159
160 /* Functions within mips.c that we reference. */
161
162 extern void abort_with_insn ();
163 extern int arith32_operand ();
164 extern int arith_operand ();
165 extern int cmp_op ();
166 extern long compute_frame_size ();
167 extern void expand_block_move ();
168 extern int equality_op ();
169 extern void final_prescan_insn ();
170 extern struct rtx_def * function_arg ();
171 extern void function_arg_advance ();
172 extern int function_arg_partial_nregs ();
173 extern int function_arg_pass_by_reference ();
174 extern void function_epilogue ();
175 extern void function_prologue ();
176 extern void gen_conditional_branch ();
177 extern void gen_conditional_move ();
178 extern struct rtx_def * gen_int_relational ();
179 extern void init_cumulative_args ();
180 extern int large_int ();
181 extern int mips_address_cost ();
182 extern void mips_asm_file_end ();
183 extern void mips_asm_file_start ();
184 extern int mips_const_double_ok ();
185 extern void mips_count_memory_refs ();
186 extern int mips_debugger_offset ();
187 extern void mips_declare_object ();
188 extern int mips_epilogue_delay_slots ();
189 extern void mips_expand_epilogue ();
190 extern void mips_expand_prologue ();
191 extern int mips_check_split ();
192 extern char *mips_fill_delay_slot ();
193 extern char *mips_move_1word ();
194 extern char *mips_move_2words ();
195 extern void mips_output_double ();
196 extern int mips_output_external ();
197 extern void mips_output_float ();
198 extern void mips_output_filename ();
199 extern void mips_output_lineno ();
200 extern char *output_block_move ();
201 extern void override_options ();
202 extern int pc_or_label_operand ();
203 extern void print_operand_address ();
204 extern void print_operand ();
205 extern void print_options ();
206 extern int reg_or_0_operand ();
207 extern int simple_epilogue_p ();
208 extern int simple_memory_operand ();
209 extern int double_memory_operand ();
210 extern int small_int ();
211 extern void trace();
212 extern int uns_arith_operand ();
213 extern struct rtx_def * embedded_pic_offset ();
214 extern void mips_order_regs_for_local_alloc ();
215 extern struct rtx_def * mips16_gp_pseudo_reg ();
216 extern struct rtx_def * mips16_gp_offset ();
217 extern int mips16_gp_offset_p ();
218 extern int mips16_constant_after_function_p ();
219 extern int build_mips16_call_stub ();
220
221 /* Recognition functions that return if a condition is true. */
222 extern int address_operand ();
223 extern int const_double_operand ();
224 extern int const_int_operand ();
225 extern int general_operand ();
226 extern int immediate_operand ();
227 extern int memory_address_p ();
228 extern int memory_operand ();
229 extern int nonimmediate_operand ();
230 extern int nonmemory_operand ();
231 extern int register_operand ();
232 extern int scratch_operand ();
233 extern int move_operand ();
234 extern int movdi_operand ();
235 extern int se_register_operand ();
236 extern int se_reg_or_0_operand ();
237 extern int se_uns_arith_operand ();
238 extern int se_arith_operand ();
239 extern int se_nonmemory_operand ();
240 extern int se_nonimmediate_operand ();
241 extern int m16_uimm3_b ();
242 extern int m16_simm4_1 ();
243 extern int m16_nsimm4_1 ();
244 extern int m16_simm5_1 ();
245 extern int m16_nsimm5_1 ();
246 extern int m16_uimm5_4 ();
247 extern int m16_nuimm5_4 ();
248 extern int m16_simm8_1 ();
249 extern int m16_nsimm8_1 ();
250 extern int m16_uimm8_1 ();
251 extern int m16_nuimm8_1 ();
252 extern int m16_uimm8_m1_1 ();
253 extern int m16_uimm8_4 ();
254 extern int m16_nuimm8_4 ();
255 extern int m16_simm8_8 ();
256 extern int m16_nsimm8_8 ();
257 extern int m16_usym8_4 ();
258 extern int m16_usym5_4 ();
259
260 /* Functions to change what output section we are using. */
261 extern void data_section ();
262 extern void rdata_section ();
263 extern void readonly_data_section ();
264 extern void sdata_section ();
265 extern void text_section ();
266
267 /* Stubs for half-pic support if not OSF/1 reference platform. */
268
269 #ifndef HALF_PIC_P
270 #define HALF_PIC_P() 0
271 #define HALF_PIC_NUMBER_PTRS 0
272 #define HALF_PIC_NUMBER_REFS 0
273 #define HALF_PIC_ENCODE(DECL)
274 #define HALF_PIC_DECLARE(NAME)
275 #define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it.")
276 #define HALF_PIC_ADDRESS_P(X) 0
277 #define HALF_PIC_PTR(X) X
278 #define HALF_PIC_FINISH(STREAM)
279 #endif
280
281 \f
282 /* Run-time compilation parameters selecting different hardware subsets. */
283
284 /* Macros used in the machine description to test the flags. */
285
286 /* Bits for real switches */
287 #define MASK_INT64 0x00000001 /* ints are 64 bits */
288 #define MASK_LONG64 0x00000002 /* longs and pointers are 64 bits */
289 #define MASK_SPLIT_ADDR 0x00000004 /* Address splitting is enabled. */
290 #define MASK_GPOPT 0x00000008 /* Optimize for global pointer */
291 #define MASK_GAS 0x00000010 /* Gas used instead of MIPS as */
292 #define MASK_NAME_REGS 0x00000020 /* Use MIPS s/w reg name convention */
293 #define MASK_STATS 0x00000040 /* print statistics to stderr */
294 #define MASK_MEMCPY 0x00000080 /* call memcpy instead of inline code*/
295 #define MASK_SOFT_FLOAT 0x00000100 /* software floating point */
296 #define MASK_FLOAT64 0x00000200 /* fp registers are 64 bits */
297 #define MASK_ABICALLS 0x00000400 /* emit .abicalls/.cprestore/.cpload */
298 #define MASK_HALF_PIC 0x00000800 /* Emit OSF-style pic refs to externs*/
299 #define MASK_LONG_CALLS 0x00001000 /* Always call through a register */
300 #define MASK_64BIT 0x00002000 /* Use 64 bit GP registers and insns */
301 #define MASK_EMBEDDED_PIC 0x00004000 /* Generate embedded PIC code */
302 #define MASK_EMBEDDED_DATA 0x00008000 /* Reduce RAM usage, not fast code */
303 #define MASK_BIG_ENDIAN 0x00010000 /* Generate big endian code */
304 #define MASK_SINGLE_FLOAT 0x00020000 /* Only single precision FPU. */
305 #define MASK_MAD 0x00040000 /* Generate mad/madu as on 4650. */
306 #define MASK_4300_MUL_FIX 0x00080000 /* Work-around early Vr4300 CPU bug */
307 #define MASK_MIPS3900 0x00100000 /* like -mips1 only 3900 */
308 #define MASK_MIPS16 0x01000000 /* Generate mips16 code */
309
310 /* Dummy switches used only in spec's*/
311 #define MASK_MIPS_TFILE 0x00000000 /* flag for mips-tfile usage */
312
313 /* Debug switches, not documented */
314 #define MASK_DEBUG 0x40000000 /* Eliminate version # in .s file */
315 #define MASK_DEBUG_A 0x20000000 /* don't allow <label>($reg) addrs */
316 #define MASK_DEBUG_B 0x10000000 /* GO_IF_LEGITIMATE_ADDRESS debug */
317 #define MASK_DEBUG_C 0x08000000 /* don't expand seq, etc. */
318 #define MASK_DEBUG_D 0x04000000 /* don't do define_split's */
319 #define MASK_DEBUG_E 0x02000000 /* function_arg debug */
320 #define MASK_DEBUG_F 0
321 #define MASK_DEBUG_G 0 /* don't support 64 bit arithmetic */
322 #define MASK_DEBUG_H 0 /* allow ints in FP registers */
323 #define MASK_DEBUG_I 0x00200000 /* unused */
324
325 /* r4000 64 bit sizes */
326 #define TARGET_INT64 (target_flags & MASK_INT64)
327 #define TARGET_LONG64 (target_flags & MASK_LONG64)
328 #define TARGET_FLOAT64 (target_flags & MASK_FLOAT64)
329 #define TARGET_64BIT (target_flags & MASK_64BIT)
330
331 /* Mips vs. GNU linker */
332 #define TARGET_SPLIT_ADDRESSES (target_flags & MASK_SPLIT_ADDR)
333
334 /* generate mips 3900 insns */
335 #define TARGET_MIPS3900 (target_flags & MASK_MIPS3900)
336
337 /* Mips vs. GNU assembler */
338 #define TARGET_GAS (target_flags & MASK_GAS)
339 #define TARGET_UNIX_ASM (!TARGET_GAS)
340 #define TARGET_MIPS_AS TARGET_UNIX_ASM
341
342 /* Debug Mode */
343 #define TARGET_DEBUG_MODE (target_flags & MASK_DEBUG)
344 #define TARGET_DEBUG_A_MODE (target_flags & MASK_DEBUG_A)
345 #define TARGET_DEBUG_B_MODE (target_flags & MASK_DEBUG_B)
346 #define TARGET_DEBUG_C_MODE (target_flags & MASK_DEBUG_C)
347 #define TARGET_DEBUG_D_MODE (target_flags & MASK_DEBUG_D)
348 #define TARGET_DEBUG_E_MODE (target_flags & MASK_DEBUG_E)
349 #define TARGET_DEBUG_F_MODE (target_flags & MASK_DEBUG_F)
350 #define TARGET_DEBUG_G_MODE (target_flags & MASK_DEBUG_G)
351 #define TARGET_DEBUG_H_MODE (target_flags & MASK_DEBUG_H)
352 #define TARGET_DEBUG_I_MODE (target_flags & MASK_DEBUG_I)
353
354 /* Reg. Naming in .s ($21 vs. $a0) */
355 #define TARGET_NAME_REGS (target_flags & MASK_NAME_REGS)
356
357 /* Optimize for Sdata/Sbss */
358 #define TARGET_GP_OPT (target_flags & MASK_GPOPT)
359
360 /* print program statistics */
361 #define TARGET_STATS (target_flags & MASK_STATS)
362
363 /* call memcpy instead of inline code */
364 #define TARGET_MEMCPY (target_flags & MASK_MEMCPY)
365
366 /* .abicalls, etc from Pyramid V.4 */
367 #define TARGET_ABICALLS (target_flags & MASK_ABICALLS)
368
369 /* OSF pic references to externs */
370 #define TARGET_HALF_PIC (target_flags & MASK_HALF_PIC)
371
372 /* software floating point */
373 #define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
374 #define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
375
376 /* always call through a register */
377 #define TARGET_LONG_CALLS (target_flags & MASK_LONG_CALLS)
378
379 /* generate embedded PIC code;
380 requires gas. */
381 #define TARGET_EMBEDDED_PIC (target_flags & MASK_EMBEDDED_PIC)
382
383 /* for embedded systems, optimize for
384 reduced RAM space instead of for
385 fastest code. */
386 #define TARGET_EMBEDDED_DATA (target_flags & MASK_EMBEDDED_DATA)
387
388 /* generate big endian code. */
389 #define TARGET_BIG_ENDIAN (target_flags & MASK_BIG_ENDIAN)
390
391 #define TARGET_SINGLE_FLOAT (target_flags & MASK_SINGLE_FLOAT)
392 #define TARGET_DOUBLE_FLOAT (! TARGET_SINGLE_FLOAT)
393
394 #define TARGET_MAD (target_flags & MASK_MAD)
395
396 #define TARGET_4300_MUL_FIX (target_flags & MASK_4300_MUL_FIX)
397
398 /* This is true if we must enable the assembly language file switching
399 code. */
400
401 #define TARGET_FILE_SWITCHING (TARGET_GP_OPT && ! TARGET_GAS)
402
403 /* We must disable the function end stabs when doing the file switching trick,
404 because the Lscope stabs end up in the wrong place, making it impossible
405 to debug the resulting code. */
406 #define NO_DBX_FUNCTION_END TARGET_FILE_SWITCHING
407
408 /* Generate mips16 code */
409 #define TARGET_MIPS16 (target_flags & MASK_MIPS16)
410
411 /* Macro to define tables used to set the flags.
412 This is a list in braces of pairs in braces,
413 each pair being { "NAME", VALUE }
414 where VALUE is the bits to set or minus the bits to clear.
415 An empty string NAME is used to identify the default VALUE. */
416
417 #define TARGET_SWITCHES \
418 { \
419 {"int64", MASK_INT64 | MASK_LONG64}, \
420 {"long64", MASK_LONG64}, \
421 {"split-addresses", MASK_SPLIT_ADDR}, \
422 {"no-split-addresses", -MASK_SPLIT_ADDR}, \
423 {"mips-as", -MASK_GAS}, \
424 {"gas", MASK_GAS}, \
425 {"rnames", MASK_NAME_REGS}, \
426 {"no-rnames", -MASK_NAME_REGS}, \
427 {"gpOPT", MASK_GPOPT}, \
428 {"gpopt", MASK_GPOPT}, \
429 {"no-gpOPT", -MASK_GPOPT}, \
430 {"no-gpopt", -MASK_GPOPT}, \
431 {"stats", MASK_STATS}, \
432 {"no-stats", -MASK_STATS}, \
433 {"memcpy", MASK_MEMCPY}, \
434 {"no-memcpy", -MASK_MEMCPY}, \
435 {"mips-tfile", MASK_MIPS_TFILE}, \
436 {"no-mips-tfile", -MASK_MIPS_TFILE}, \
437 {"soft-float", MASK_SOFT_FLOAT}, \
438 {"hard-float", -MASK_SOFT_FLOAT}, \
439 {"fp64", MASK_FLOAT64}, \
440 {"fp32", -MASK_FLOAT64}, \
441 {"gp64", MASK_64BIT}, \
442 {"gp32", -MASK_64BIT}, \
443 {"abicalls", MASK_ABICALLS}, \
444 {"no-abicalls", -MASK_ABICALLS}, \
445 {"half-pic", MASK_HALF_PIC}, \
446 {"no-half-pic", -MASK_HALF_PIC}, \
447 {"long-calls", MASK_LONG_CALLS}, \
448 {"no-long-calls", -MASK_LONG_CALLS}, \
449 {"embedded-pic", MASK_EMBEDDED_PIC}, \
450 {"no-embedded-pic", -MASK_EMBEDDED_PIC}, \
451 {"embedded-data", MASK_EMBEDDED_DATA}, \
452 {"no-embedded-data", -MASK_EMBEDDED_DATA}, \
453 {"eb", MASK_BIG_ENDIAN}, \
454 {"el", -MASK_BIG_ENDIAN}, \
455 {"single-float", MASK_SINGLE_FLOAT}, \
456 {"double-float", -MASK_SINGLE_FLOAT}, \
457 {"mad", MASK_MAD}, \
458 {"no-mad", -MASK_MAD}, \
459 {"fix4300", MASK_4300_MUL_FIX}, \
460 {"no-fix4300", -MASK_4300_MUL_FIX}, \
461 {"4650", MASK_MAD | MASK_SINGLE_FLOAT}, \
462 {"3900", MASK_MIPS3900}, \
463 {"debug", MASK_DEBUG}, \
464 {"debuga", MASK_DEBUG_A}, \
465 {"debugb", MASK_DEBUG_B}, \
466 {"debugc", MASK_DEBUG_C}, \
467 {"debugd", MASK_DEBUG_D}, \
468 {"debuge", MASK_DEBUG_E}, \
469 {"debugf", MASK_DEBUG_F}, \
470 {"debugg", MASK_DEBUG_G}, \
471 {"debugh", MASK_DEBUG_H}, \
472 {"debugi", MASK_DEBUG_I}, \
473 {"", (TARGET_DEFAULT \
474 | TARGET_CPU_DEFAULT \
475 | TARGET_ENDIAN_DEFAULT)} \
476 }
477
478 /* Default target_flags if no switches are specified */
479
480 #ifndef TARGET_DEFAULT
481 #define TARGET_DEFAULT 0
482 #endif
483
484 #ifndef TARGET_CPU_DEFAULT
485 #define TARGET_CPU_DEFAULT 0
486 #endif
487
488 #ifndef TARGET_ENDIAN_DEFAULT
489 #ifndef DECSTATION
490 #define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
491 #else
492 #define TARGET_ENDIAN_DEFAULT 0
493 #endif
494 #endif
495
496 #ifndef MULTILIB_DEFAULTS
497 #if TARGET_ENDIAN_DEFAULT == 0
498 #define MULTILIB_DEFAULTS { "EL", "mips1" }
499 #else
500 #define MULTILIB_DEFAULTS { "EB", "mips1" }
501 #endif
502 #endif
503
504 /* We must pass -EL to the linker by default for little endian embedded
505 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
506 linker will default to using big-endian output files. The OUTPUT_FORMAT
507 line must be in the linker script, otherwise -EB/-EL will not work. */
508
509 #ifndef LINKER_ENDIAN_SPEC
510 #if TARGET_ENDIAN_DEFAULT == 0
511 #define LINKER_ENDIAN_SPEC "%{!EB:%{!meb:-EL}}"
512 #else
513 #define LINKER_ENDIAN_SPEC ""
514 #endif
515 #endif
516
517 /* This macro is similar to `TARGET_SWITCHES' but defines names of
518 command options that have values. Its definition is an
519 initializer with a subgrouping for each command option.
520
521 Each subgrouping contains a string constant, that defines the
522 fixed part of the option name, and the address of a variable.
523 The variable, type `char *', is set to the variable part of the
524 given option if the fixed part matches. The actual option name
525 is made by appending `-m' to the specified name.
526
527 Here is an example which defines `-mshort-data-NUMBER'. If the
528 given option is `-mshort-data-512', the variable `m88k_short_data'
529 will be set to the string `"512"'.
530
531 extern char *m88k_short_data;
532 #define TARGET_OPTIONS { { "short-data-", &m88k_short_data } } */
533
534 #define TARGET_OPTIONS \
535 { \
536 SUBTARGET_TARGET_OPTIONS \
537 { "cpu=", &mips_cpu_string }, \
538 { "ips", &mips_isa_string }, \
539 { "entry", &mips_entry_string }, \
540 { "no-mips16", &mips_no_mips16_string } \
541 }
542
543 /* This is meant to be redefined in the host dependent files. */
544 #define SUBTARGET_TARGET_OPTIONS
545
546 #define GENERATE_BRANCHLIKELY (!TARGET_MIPS16 && (TARGET_MIPS3900 || (mips_isa >= 2)))
547 #define GENERATE_MULT3 (TARGET_MIPS3900 \
548 && !TARGET_MIPS16)
549 #define GENERATE_MADD (TARGET_MIPS3900 \
550 && !TARGET_MIPS16)
551
552
553
554 /* Macros to decide whether certain features are available or not,
555 depending on the instruction set architecture level. */
556
557 #define BRANCH_LIKELY_P() GENERATE_BRANCHLIKELY
558 #define HAVE_SQRT_P() (mips_isa >= 2)
559
560 /* CC1_SPEC causes -mips3 and -mips4 to set -mfp64 and -mgp64; -mips1 or
561 -mips2 sets -mfp32 and -mgp32. This can be overridden by an explicit
562 -mfp32, -mfp64, -mgp32 or -mgp64. -mfp64 sets MASK_FLOAT64 in
563 target_flags, and -mgp64 sets MASK_64BIT.
564
565 Setting MASK_64BIT in target_flags will cause gcc to assume that
566 registers are 64 bits wide. int, long and void * will be 32 bit;
567 this may be changed with -mint64 or -mlong64.
568
569 The gen* programs link code that refers to MASK_64BIT. They don't
570 actually use the information in target_flags; they just refer to
571 it. */
572 \f
573 /* Switch Recognition by gcc.c. Add -G xx support */
574
575 #ifdef SWITCH_TAKES_ARG
576 #undef SWITCH_TAKES_ARG
577 #endif
578
579 #define SWITCH_TAKES_ARG(CHAR) \
580 (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
581
582 /* Sometimes certain combinations of command options do not make sense
583 on a particular target machine. You can define a macro
584 `OVERRIDE_OPTIONS' to take account of this. This macro, if
585 defined, is executed once just after all the command options have
586 been parsed.
587
588 On the MIPS, it is used to handle -G. We also use it to set up all
589 of the tables referenced in the other macros. */
590
591 #define OVERRIDE_OPTIONS override_options ()
592
593 /* Zero or more C statements that may conditionally modify two
594 variables `fixed_regs' and `call_used_regs' (both of type `char
595 []') after they have been initialized from the two preceding
596 macros.
597
598 This is necessary in case the fixed or call-clobbered registers
599 depend on target flags.
600
601 You need not define this macro if it has no work to do.
602
603 If the usage of an entire class of registers depends on the target
604 flags, you may indicate this to GCC by using this macro to modify
605 `fixed_regs' and `call_used_regs' to 1 for each of the registers in
606 the classes which should not be used by GCC. Also define the macro
607 `REG_CLASS_FROM_LETTER' to return `NO_REGS' if it is called with a
608 letter for a class that shouldn't be used.
609
610 (However, if this class is not included in `GENERAL_REGS' and all
611 of the insn patterns whose constraints permit this class are
612 controlled by target switches, then GCC will automatically avoid
613 using these registers when the target switches are opposed to
614 them.) */
615
616 #define CONDITIONAL_REGISTER_USAGE \
617 do \
618 { \
619 if (!TARGET_HARD_FLOAT) \
620 { \
621 int regno; \
622 \
623 for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++) \
624 fixed_regs[regno] = call_used_regs[regno] = 1; \
625 for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++) \
626 fixed_regs[regno] = call_used_regs[regno] = 1; \
627 } \
628 else if (mips_isa < 4) \
629 { \
630 int regno; \
631 \
632 /* We only have a single condition code register. We \
633 implement this by hiding all the condition code registers, \
634 and generating RTL that refers directly to ST_REG_FIRST. */ \
635 for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++) \
636 fixed_regs[regno] = call_used_regs[regno] = 1; \
637 } \
638 /* In mips16 mode, we permit the $t temporary registers to be used \
639 for reload. We prohibit the unused $s registers, since they \
640 are caller saved, and saving them via a mips16 register would \
641 probably waste more time than just reloading the value. */ \
642 if (TARGET_MIPS16) \
643 { \
644 fixed_regs[18] = call_used_regs[18] = 1; \
645 fixed_regs[19] = call_used_regs[19] = 1; \
646 fixed_regs[20] = call_used_regs[20] = 1; \
647 fixed_regs[21] = call_used_regs[21] = 1; \
648 fixed_regs[22] = call_used_regs[22] = 1; \
649 fixed_regs[23] = call_used_regs[23] = 1; \
650 fixed_regs[26] = call_used_regs[26] = 1; \
651 fixed_regs[27] = call_used_regs[27] = 1; \
652 fixed_regs[30] = call_used_regs[30] = 1; \
653 } \
654 SUBTARGET_CONDITIONAL_REGISTER_USAGE \
655 } \
656 while (0)
657
658 /* This is meant to be redefined in the host dependent files. */
659 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
660
661 /* Show we can debug even without a frame pointer. */
662 #define CAN_DEBUG_WITHOUT_FP
663 \f
664 /* Complain about missing specs and predefines that should be defined in each
665 of the target tm files to override the defaults. This is mostly a place-
666 holder until I can get each of the files updated [mm]. */
667
668 #if defined(OSF_OS) \
669 || defined(DECSTATION) \
670 || defined(SGI_TARGET) \
671 || defined(MIPS_NEWS) \
672 || defined(MIPS_SYSV) \
673 || defined(MIPS_SVR4) \
674 || defined(MIPS_BSD43)
675
676 #ifndef CPP_PREDEFINES
677 #error "Define CPP_PREDEFINES in the appropriate tm.h file"
678 #endif
679
680 #ifndef LIB_SPEC
681 #error "Define LIB_SPEC in the appropriate tm.h file"
682 #endif
683
684 #ifndef STARTFILE_SPEC
685 #error "Define STARTFILE_SPEC in the appropriate tm.h file"
686 #endif
687
688 #ifndef MACHINE_TYPE
689 #error "Define MACHINE_TYPE in the appropriate tm.h file"
690 #endif
691 #endif
692
693 /* Tell collect what flags to pass to nm. */
694 #ifndef NM_FLAGS
695 #define NM_FLAGS "-Bp"
696 #endif
697
698 \f
699 /* Names to predefine in the preprocessor for this target machine. */
700
701 #ifndef CPP_PREDEFINES
702 #define CPP_PREDEFINES "-Dmips -Dunix -Dhost_mips -DMIPSEB -DR3000 -DSYSTYPE_BSD43 \
703 -D_mips -D_unix -D_host_mips -D_MIPSEB -D_R3000 -D_SYSTYPE_BSD43 \
704 -Asystem(unix) -Asystem(bsd) -Acpu(mips) -Amachine(mips)"
705 #endif
706
707 /* Assembler specs. */
708
709 /* MIPS_AS_ASM_SPEC is passed when using the MIPS assembler rather
710 than gas. */
711
712 #define MIPS_AS_ASM_SPEC "\
713 %{!.s:-nocpp} %{.s: %{cpp} %{nocpp}} \
714 %{pipe: %e-pipe is not supported.} \
715 %{K} %(subtarget_mips_as_asm_spec)"
716
717 /* SUBTARGET_MIPS_AS_ASM_SPEC is passed when using the MIPS assembler
718 rather than gas. It may be overridden by subtargets. */
719
720 #ifndef SUBTARGET_MIPS_AS_ASM_SPEC
721 #define SUBTARGET_MIPS_AS_ASM_SPEC "%{v}"
722 #endif
723
724 /* GAS_ASM_SPEC is passed when using gas, rather than the MIPS
725 assembler. */
726
727 #define GAS_ASM_SPEC "%{mcpu=*} %{m4650} %{mmad:-m4650} %{m3900} %{v}"
728
729 /* TARGET_ASM_SPEC is used to select either MIPS_AS_ASM_SPEC or
730 GAS_ASM_SPEC as the default, depending upon the value of
731 TARGET_DEFAULT. */
732
733 #if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
734 /* GAS */
735
736 #define TARGET_ASM_SPEC "\
737 %{mmips-as: %(mips_as_asm_spec)} \
738 %{!mmips-as: %(gas_asm_spec)}"
739
740 #else /* not GAS */
741
742 #define TARGET_ASM_SPEC "\
743 %{!mgas: %(mips_as_asm_spec)} \
744 %{mgas: %(gas_asm_spec)}"
745
746 #endif /* not GAS */
747
748 /* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options
749 to the assembler. It may be overridden by subtargets. */
750 #ifndef SUBTARGET_ASM_OPTIMIZING_SPEC
751 #define SUBTARGET_ASM_OPTIMIZING_SPEC "\
752 %{noasmopt:-O0} \
753 %{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}"
754 #endif
755
756 /* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
757 the assembler. It may be overridden by subtargets. */
758 #ifndef SUBTARGET_ASM_DEBUGGING_SPEC
759 #define SUBTARGET_ASM_DEBUGGING_SPEC "\
760 %{g} %{g0} %{g1} %{g2} %{g3} \
761 %{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
762 %{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
763 %{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
764 %{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3}"
765 #endif
766
767 /* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
768 overridden by subtargets. */
769
770 #ifndef SUBTARGET_ASM_SPEC
771 #define SUBTARGET_ASM_SPEC ""
772 #endif
773
774 /* ASM_SPEC is the set of arguments to pass to the assembler. */
775
776 #define ASM_SPEC "\
777 %{G*} %{EB} %{EL} %{mips1} %{mips2} %{mips3} %{mips4} \
778 %{mips16:%{!mno-mips16:-mips16}} %{mno-mips16:-no-mips16} \
779 %(subtarget_asm_optimizing_spec) \
780 %(subtarget_asm_debugging_spec) \
781 %{membedded-pic} \
782 %{mabi=32:-32}%{mabi=o32:-32}%{mabi=n32:-n32}%{mabi=64:-64}%{mabi=n64:-64} \
783 %(target_asm_spec) \
784 %(subtarget_asm_spec)"
785
786 /* Specify to run a post-processor, mips-tfile after the assembler
787 has run to stuff the mips debug information into the object file.
788 This is needed because the $#!%^ MIPS assembler provides no way
789 of specifying such information in the assembly file. If we are
790 cross compiling, disable mips-tfile unless the user specifies
791 -mmips-tfile. */
792
793 #ifndef ASM_FINAL_SPEC
794 #if ((TARGET_CPU_DEFAULT | TARGET_DEFAULT) & MASK_GAS) != 0
795 /* GAS */
796 #define ASM_FINAL_SPEC "\
797 %{mmips-as: %{!mno-mips-tfile: \
798 \n mips-tfile %{v*: -v} \
799 %{K: -I %b.o~} \
800 %{!K: %{save-temps: -I %b.o~}} \
801 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
802 %{.s:%i} %{!.s:%g.s}}}"
803
804 #else
805 /* not GAS */
806 #define ASM_FINAL_SPEC "\
807 %{!mgas: %{!mno-mips-tfile: \
808 \n mips-tfile %{v*: -v} \
809 %{K: -I %b.o~} \
810 %{!K: %{save-temps: -I %b.o~}} \
811 %{c:%W{o*}%{!o*:-o %b.o}}%{!c:-o %U.o} \
812 %{.s:%i} %{!.s:%g.s}}}"
813
814 #endif
815 #endif /* ASM_FINAL_SPEC */
816
817 /* Redefinition of libraries used. Mips doesn't support normal
818 UNIX style profiling via calling _mcount. It does offer
819 profiling that samples the PC, so do what we can... */
820
821 #ifndef LIB_SPEC
822 #define LIB_SPEC "%{pg:-lprof1} %{p:-lprof1} -lc"
823 #endif
824
825 /* Extra switches sometimes passed to the linker. */
826 /* ??? The bestGnum will never be passed to the linker, because the gcc driver
827 will interpret it as a -b option. */
828
829 #ifndef LINK_SPEC
830 #define LINK_SPEC "\
831 %{G*} %{EB} %{EL} %{mips1} %{mips2} %{mips3} %{mips4} \
832 %{bestGnum} %{shared} %{non_shared} \
833 %(linker_endian_spec)"
834 #endif /* LINK_SPEC defined */
835
836 /* Specs for the compiler proper */
837
838 /* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
839 overridden by subtargets. */
840 #ifndef SUBTARGET_CC1_SPEC
841 #define SUBTARGET_CC1_SPEC ""
842 #endif
843
844 /* CC1_SPEC is the set of arguments to pass to the compiler proper. */
845
846 #ifndef CC1_SPEC
847 #define CC1_SPEC "\
848 %{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
849 %{mips1:-mfp32 -mgp32} %{mips2:-mfp32 -mgp32}\
850 %{mips3:%{!msingle-float:%{!m4650:-mfp64}} -mgp64} \
851 %{mips4:%{!msingle-float:%{!m4650:-mfp64}} -mgp64} \
852 %{mfp64:%{msingle-float:%emay not use both -mfp64 and -msingle-float}} \
853 %{mfp64:%{m4650:%emay not use both -mfp64 and -m4650}} \
854 %{m4650:-mcpu=r4650} \
855 %{m3900:-mips1 -mcpu=r3900 -mfp32 -mgp32} \
856 %{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
857 %{pic-none: -mno-half-pic} \
858 %{pic-lib: -mhalf-pic} \
859 %{pic-extern: -mhalf-pic} \
860 %{pic-calls: -mhalf-pic} \
861 %{save-temps: } \
862 %(subtarget_cc1_spec) "
863 #endif
864
865 /* Preprocessor specs. */
866
867 /* SUBTARGET_CPP_SIZE_SPEC defines SIZE_TYPE and PTRDIFF_TYPE. It may
868 be overridden by subtargets. */
869
870 #ifndef SUBTARGET_CPP_SIZE_SPEC
871 #define SUBTARGET_CPP_SIZE_SPEC "\
872 %{mlong64:-D__SIZE_TYPE__=long\\ unsigned\\ int -D__PTRDIFF_TYPE__=long\\ int} \
873 %{!mlong64:-D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int}"
874 #endif
875
876 /* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
877 overridden by subtargets. */
878 #ifndef SUBTARGET_CPP_SPEC
879 #define SUBTARGET_CPP_SPEC ""
880 #endif
881
882 /* If we're using 64bit longs, then we have to define __LONG_MAX__
883 correctly. Similarly for 64bit ints and __INT_MAX__. */
884 #ifndef LONG_MAX_SPEC
885 #if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_LONG64)
886 #define LONG_MAX_SPEC "%{!mno-long64:-D__LONG_MAX__=9223372036854775807L}"
887 #else
888 #define LONG_MAX_SPEC "%{mlong64:-D__LONG_MAX__=9223372036854775807L}"
889 #endif
890 #endif
891
892 /* CPP_SPEC is the set of arguments to pass to the preprocessor. */
893
894 #ifndef CPP_SPEC
895 #define CPP_SPEC "\
896 %{.cc: -D__LANGUAGE_C_PLUS_PLUS -D_LANGUAGE_C_PLUS_PLUS} \
897 %{.cxx: -D__LANGUAGE_C_PLUS_PLUS -D_LANGUAGE_C_PLUS_PLUS} \
898 %{.C: -D__LANGUAGE_C_PLUS_PLUS -D_LANGUAGE_C_PLUS_PLUS} \
899 %{.m: -D__LANGUAGE_OBJECTIVE_C -D_LANGUAGE_OBJECTIVE_C -D__LANGUAGE_C -D_LANGUAGE_C} \
900 %{.S: -D__LANGUAGE_ASSEMBLY -D_LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
901 %{.s: -D__LANGUAGE_ASSEMBLY -D_LANGUAGE_ASSEMBLY %{!ansi:-DLANGUAGE_ASSEMBLY}} \
902 %{!.S: %{!.s: %{!.cc: %{!.cxx: %{!.C: %{!.m: -D__LANGUAGE_C -D_LANGUAGE_C %{!ansi:-DLANGUAGE_C}}}}}}} \
903 %(subtarget_cpp_size_spec) \
904 %{mips3:-U__mips -D__mips=3 -D__mips64} \
905 %{mips4:-U__mips -D__mips=4 -D__mips64} \
906 %{mgp32:-U__mips64} %{mgp64:-D__mips64} \
907 %{msingle-float:%{!msoft-float:-D__mips_single_float}} \
908 %{m4650:%{!msoft-float:-D__mips_single_float}} \
909 %{msoft-float:-D__mips_soft_float} \
910 %{mabi=eabi:-D__mips_eabi} \
911 %{mips16:%{!mno-mips16:-D__mips16}} \
912 %{EB:-UMIPSEL -U_MIPSEL -U__MIPSEL -U__MIPSEL__ -D_MIPSEB -D__MIPSEB -D__MIPSEB__ %{!ansi:-DMIPSEB}} \
913 %{EL:-UMIPSEB -U_MIPSEB -U__MIPSEB -U__MIPSEB__ -D_MIPSEL -D__MIPSEL -D__MIPSEL__ %{!ansi:-DMIPSEL}} \
914 %(long_max_spec) \
915 %(subtarget_cpp_spec) "
916 #endif
917
918 /* This macro defines names of additional specifications to put in the specs
919 that can be used in various specifications like CC1_SPEC. Its definition
920 is an initializer with a subgrouping for each command option.
921
922 Each subgrouping contains a string constant, that defines the
923 specification name, and a string constant that used by the GNU CC driver
924 program.
925
926 Do not define this macro if it does not need to do anything. */
927
928 #define EXTRA_SPECS \
929 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
930 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
931 { "subtarget_cpp_size_spec", SUBTARGET_CPP_SIZE_SPEC }, \
932 { "long_max_spec", LONG_MAX_SPEC }, \
933 { "mips_as_asm_spec", MIPS_AS_ASM_SPEC }, \
934 { "gas_asm_spec", GAS_ASM_SPEC }, \
935 { "target_asm_spec", TARGET_ASM_SPEC }, \
936 { "subtarget_mips_as_asm_spec", SUBTARGET_MIPS_AS_ASM_SPEC }, \
937 { "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC }, \
938 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
939 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
940 { "linker_endian_spec", LINKER_ENDIAN_SPEC }, \
941 SUBTARGET_EXTRA_SPECS
942
943 #ifndef SUBTARGET_EXTRA_SPECS
944 #define SUBTARGET_EXTRA_SPECS
945 #endif
946
947 /* If defined, this macro is an additional prefix to try after
948 `STANDARD_EXEC_PREFIX'. */
949
950 #ifndef MD_EXEC_PREFIX
951 #define MD_EXEC_PREFIX "/usr/lib/cmplrs/cc/"
952 #endif
953
954 #ifndef MD_STARTFILE_PREFIX
955 #define MD_STARTFILE_PREFIX "/usr/lib/cmplrs/cc/"
956 #endif
957
958 \f
959 /* Print subsidiary information on the compiler version in use. */
960
961 #define MIPS_VERSION "[AL 1.1, MM 40]"
962
963 #ifndef MACHINE_TYPE
964 #define MACHINE_TYPE "BSD Mips"
965 #endif
966
967 #ifndef TARGET_VERSION_INTERNAL
968 #define TARGET_VERSION_INTERNAL(STREAM) \
969 fprintf (STREAM, " %s %s", MIPS_VERSION, MACHINE_TYPE)
970 #endif
971
972 #ifndef TARGET_VERSION
973 #define TARGET_VERSION TARGET_VERSION_INTERNAL (stderr)
974 #endif
975
976 \f
977 #define SDB_DEBUGGING_INFO /* generate info for mips-tfile */
978 #define DBX_DEBUGGING_INFO /* generate stabs (OSF/rose) */
979 #define MIPS_DEBUGGING_INFO /* MIPS specific debugging info */
980
981 #ifndef PREFERRED_DEBUGGING_TYPE /* assume SDB_DEBUGGING_INFO */
982 #define PREFERRED_DEBUGGING_TYPE SDB_DEBUG
983 #endif
984
985 /* By default, turn on GDB extensions. */
986 #define DEFAULT_GDB_EXTENSIONS 1
987
988 /* If we are passing smuggling stabs through the MIPS ECOFF object
989 format, put a comment in front of the .stab<x> operation so
990 that the MIPS assembler does not choke. The mips-tfile program
991 will correctly put the stab into the object file. */
992
993 #define ASM_STABS_OP ((TARGET_GAS) ? ".stabs" : " #.stabs")
994 #define ASM_STABN_OP ((TARGET_GAS) ? ".stabn" : " #.stabn")
995 #define ASM_STABD_OP ((TARGET_GAS) ? ".stabd" : " #.stabd")
996
997 /* Local compiler-generated symbols must have a prefix that the assembler
998 understands. By default, this is $, although some targets (e.g.,
999 NetBSD-ELF) need to override this. */
1000
1001 #ifndef LOCAL_LABEL_PREFIX
1002 #define LOCAL_LABEL_PREFIX "$"
1003 #endif
1004
1005 /* By default on the mips, external symbols do not have an underscore
1006 prepended, but some targets (e.g., NetBSD) require this. */
1007
1008 #ifndef USER_LABEL_PREFIX
1009 #define USER_LABEL_PREFIX ""
1010 #endif
1011
1012 /* Forward references to tags are allowed. */
1013 #define SDB_ALLOW_FORWARD_REFERENCES
1014
1015 /* Unknown tags are also allowed. */
1016 #define SDB_ALLOW_UNKNOWN_REFERENCES
1017
1018 /* On Sun 4, this limit is 2048. We use 1500 to be safe,
1019 since the length can run past this up to a continuation point. */
1020 #define DBX_CONTIN_LENGTH 1500
1021
1022 /* How to renumber registers for dbx and gdb. */
1023 #define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[ (REGNO) ]
1024
1025 /* The mapping from gcc register number to DWARF 2 CFA column number.
1026 This mapping does not allow for tracking register 0, since SGI's broken
1027 dwarf reader thinks column 0 is used for the frame address, but since
1028 register 0 is fixed this is not a problem. */
1029 #define DWARF_FRAME_REGNUM(REG) \
1030 (REG == GP_REG_FIRST + 31 ? DWARF_FRAME_RETURN_COLUMN : REG)
1031
1032 /* The DWARF 2 CFA column which tracks the return address. */
1033 #define DWARF_FRAME_RETURN_COLUMN (FP_REG_LAST + 1)
1034
1035 /* Before the prologue, RA lives in r31. */
1036 #define INCOMING_RETURN_ADDR_RTX gen_rtx (REG, VOIDmode, GP_REG_FIRST + 31)
1037
1038 /* Overrides for the COFF debug format. */
1039 #define PUT_SDB_SCL(a) \
1040 do { \
1041 extern FILE *asm_out_text_file; \
1042 fprintf (asm_out_text_file, "\t.scl\t%d;", (a)); \
1043 } while (0)
1044
1045 #define PUT_SDB_INT_VAL(a) \
1046 do { \
1047 extern FILE *asm_out_text_file; \
1048 fprintf (asm_out_text_file, "\t.val\t%d;", (a)); \
1049 } while (0)
1050
1051 #define PUT_SDB_VAL(a) \
1052 do { \
1053 extern FILE *asm_out_text_file; \
1054 fputs ("\t.val\t", asm_out_text_file); \
1055 output_addr_const (asm_out_text_file, (a)); \
1056 fputc (';', asm_out_text_file); \
1057 } while (0)
1058
1059 #define PUT_SDB_DEF(a) \
1060 do { \
1061 extern FILE *asm_out_text_file; \
1062 fprintf (asm_out_text_file, "\t%s.def\t", \
1063 (TARGET_GAS) ? "" : "#"); \
1064 ASM_OUTPUT_LABELREF (asm_out_text_file, a); \
1065 fputc (';', asm_out_text_file); \
1066 } while (0)
1067
1068 #define PUT_SDB_PLAIN_DEF(a) \
1069 do { \
1070 extern FILE *asm_out_text_file; \
1071 fprintf (asm_out_text_file, "\t%s.def\t.%s;", \
1072 (TARGET_GAS) ? "" : "#", (a)); \
1073 } while (0)
1074
1075 #define PUT_SDB_ENDEF \
1076 do { \
1077 extern FILE *asm_out_text_file; \
1078 fprintf (asm_out_text_file, "\t.endef\n"); \
1079 } while (0)
1080
1081 #define PUT_SDB_TYPE(a) \
1082 do { \
1083 extern FILE *asm_out_text_file; \
1084 fprintf (asm_out_text_file, "\t.type\t0x%x;", (a)); \
1085 } while (0)
1086
1087 #define PUT_SDB_SIZE(a) \
1088 do { \
1089 extern FILE *asm_out_text_file; \
1090 fprintf (asm_out_text_file, "\t.size\t%d;", (a)); \
1091 } while (0)
1092
1093 #define PUT_SDB_DIM(a) \
1094 do { \
1095 extern FILE *asm_out_text_file; \
1096 fprintf (asm_out_text_file, "\t.dim\t%d;", (a)); \
1097 } while (0)
1098
1099 #ifndef PUT_SDB_START_DIM
1100 #define PUT_SDB_START_DIM \
1101 do { \
1102 extern FILE *asm_out_text_file; \
1103 fprintf (asm_out_text_file, "\t.dim\t"); \
1104 } while (0)
1105 #endif
1106
1107 #ifndef PUT_SDB_NEXT_DIM
1108 #define PUT_SDB_NEXT_DIM(a) \
1109 do { \
1110 extern FILE *asm_out_text_file; \
1111 fprintf (asm_out_text_file, "%d,", a); \
1112 } while (0)
1113 #endif
1114
1115 #ifndef PUT_SDB_LAST_DIM
1116 #define PUT_SDB_LAST_DIM(a) \
1117 do { \
1118 extern FILE *asm_out_text_file; \
1119 fprintf (asm_out_text_file, "%d;", a); \
1120 } while (0)
1121 #endif
1122
1123 #define PUT_SDB_TAG(a) \
1124 do { \
1125 extern FILE *asm_out_text_file; \
1126 fprintf (asm_out_text_file, "\t.tag\t"); \
1127 ASM_OUTPUT_LABELREF (asm_out_text_file, a); \
1128 fputc (';', asm_out_text_file); \
1129 } while (0)
1130
1131 /* For block start and end, we create labels, so that
1132 later we can figure out where the correct offset is.
1133 The normal .ent/.end serve well enough for functions,
1134 so those are just commented out. */
1135
1136 #define PUT_SDB_BLOCK_START(LINE) \
1137 do { \
1138 extern FILE *asm_out_text_file; \
1139 fprintf (asm_out_text_file, \
1140 "%sLb%d:\n\t%s.begin\t%sLb%d\t%d\n", \
1141 LOCAL_LABEL_PREFIX, \
1142 sdb_label_count, \
1143 (TARGET_GAS) ? "" : "#", \
1144 LOCAL_LABEL_PREFIX, \
1145 sdb_label_count, \
1146 (LINE)); \
1147 sdb_label_count++; \
1148 } while (0)
1149
1150 #define PUT_SDB_BLOCK_END(LINE) \
1151 do { \
1152 extern FILE *asm_out_text_file; \
1153 fprintf (asm_out_text_file, \
1154 "%sLe%d:\n\t%s.bend\t%sLe%d\t%d\n", \
1155 LOCAL_LABEL_PREFIX, \
1156 sdb_label_count, \
1157 (TARGET_GAS) ? "" : "#", \
1158 LOCAL_LABEL_PREFIX, \
1159 sdb_label_count, \
1160 (LINE)); \
1161 sdb_label_count++; \
1162 } while (0)
1163
1164 #define PUT_SDB_FUNCTION_START(LINE)
1165
1166 #define PUT_SDB_FUNCTION_END(LINE) \
1167 do { \
1168 extern FILE *asm_out_text_file; \
1169 ASM_OUTPUT_SOURCE_LINE (asm_out_text_file, LINE + sdb_begin_function_line); \
1170 } while (0)
1171
1172 #define PUT_SDB_EPILOGUE_END(NAME)
1173
1174 #define PUT_SDB_SRC_FILE(FILENAME) \
1175 do { \
1176 extern FILE *asm_out_text_file; \
1177 output_file_directive (asm_out_text_file, (FILENAME)); \
1178 } while (0)
1179
1180 #define SDB_GENERATE_FAKE(BUFFER, NUMBER) \
1181 sprintf ((BUFFER), ".%dfake", (NUMBER));
1182
1183 /* Correct the offset of automatic variables and arguments. Note that
1184 the MIPS debug format wants all automatic variables and arguments
1185 to be in terms of the virtual frame pointer (stack pointer before
1186 any adjustment in the function), while the MIPS 3.0 linker wants
1187 the frame pointer to be the stack pointer after the initial
1188 adjustment. */
1189
1190 #define DEBUGGER_AUTO_OFFSET(X) mips_debugger_offset (X, 0)
1191 #define DEBUGGER_ARG_OFFSET(OFFSET, X) mips_debugger_offset (X, OFFSET)
1192
1193
1194 /* Tell collect that the object format is ECOFF */
1195 #ifndef OBJECT_FORMAT_ROSE
1196 #define OBJECT_FORMAT_COFF /* Object file looks like COFF */
1197 #define EXTENDED_COFF /* ECOFF, not normal coff */
1198 #endif
1199
1200 #if 0 /* These definitions normally have no effect because
1201 MIPS systems define USE_COLLECT2, so
1202 assemble_constructor does nothing anyway. */
1203
1204 /* Don't use the default definitions, because we don't have gld.
1205 Also, we don't want stabs when generating ECOFF output.
1206 Instead we depend on collect to handle these. */
1207
1208 #define ASM_OUTPUT_CONSTRUCTOR(file, name)
1209 #define ASM_OUTPUT_DESTRUCTOR(file, name)
1210
1211 #endif /* 0 */
1212 \f
1213 /* Target machine storage layout */
1214
1215 /* Define in order to support both big and little endian float formats
1216 in the same gcc binary. */
1217 #define REAL_ARITHMETIC
1218
1219 /* Define this if most significant bit is lowest numbered
1220 in instructions that operate on numbered bit-fields.
1221 */
1222 #define BITS_BIG_ENDIAN 0
1223
1224 /* Define this if most significant byte of a word is the lowest numbered. */
1225 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1226
1227 /* Define this if most significant word of a multiword number is the lowest. */
1228 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
1229
1230 /* Define this to set the endianness to use in libgcc2.c, which can
1231 not depend on target_flags. */
1232 #if !defined(MIPSEL) && !defined(__MIPSEL__)
1233 #define LIBGCC2_WORDS_BIG_ENDIAN 1
1234 #else
1235 #define LIBGCC2_WORDS_BIG_ENDIAN 0
1236 #endif
1237
1238 /* Number of bits in an addressable storage unit */
1239 #define BITS_PER_UNIT 8
1240
1241 /* Width in bits of a "word", which is the contents of a machine register.
1242 Note that this is not necessarily the width of data type `int';
1243 if using 16-bit ints on a 68000, this would still be 32.
1244 But on a machine with 16-bit registers, this would be 16. */
1245 #define BITS_PER_WORD (TARGET_64BIT ? 64 : 32)
1246 #define MAX_BITS_PER_WORD 64
1247
1248 /* Width of a word, in units (bytes). */
1249 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
1250 #define MIN_UNITS_PER_WORD 4
1251
1252 /* For MIPS, width of a floating point register. */
1253 #define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1254
1255 /* A C expression for the size in bits of the type `int' on the
1256 target machine. If you don't define this, the default is one
1257 word. */
1258 #define INT_TYPE_SIZE (TARGET_INT64 ? 64 : 32)
1259 #define MAX_INT_TYPE_SIZE 64
1260
1261 /* Tell the preprocessor the maximum size of wchar_t. */
1262 #ifndef MAX_WCHAR_TYPE_SIZE
1263 #ifndef WCHAR_TYPE_SIZE
1264 #define MAX_WCHAR_TYPE_SIZE MAX_INT_TYPE_SIZE
1265 #endif
1266 #endif
1267
1268 /* A C expression for the size in bits of the type `short' on the
1269 target machine. If you don't define this, the default is half a
1270 word. (If this would be less than one storage unit, it is
1271 rounded up to one unit.) */
1272 #define SHORT_TYPE_SIZE 16
1273
1274 /* A C expression for the size in bits of the type `long' on the
1275 target machine. If you don't define this, the default is one
1276 word. */
1277 #define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1278 #define MAX_LONG_TYPE_SIZE 64
1279
1280 /* A C expression for the size in bits of the type `long long' on the
1281 target machine. If you don't define this, the default is two
1282 words. */
1283 #define LONG_LONG_TYPE_SIZE 64
1284
1285 /* A C expression for the size in bits of the type `char' on the
1286 target machine. If you don't define this, the default is one
1287 quarter of a word. (If this would be less than one storage unit,
1288 it is rounded up to one unit.) */
1289 #define CHAR_TYPE_SIZE BITS_PER_UNIT
1290
1291 /* A C expression for the size in bits of the type `float' on the
1292 target machine. If you don't define this, the default is one
1293 word. */
1294 #define FLOAT_TYPE_SIZE 32
1295
1296 /* A C expression for the size in bits of the type `double' on the
1297 target machine. If you don't define this, the default is two
1298 words. */
1299 #define DOUBLE_TYPE_SIZE 64
1300
1301 /* A C expression for the size in bits of the type `long double' on
1302 the target machine. If you don't define this, the default is two
1303 words. */
1304 #define LONG_DOUBLE_TYPE_SIZE 64
1305
1306 /* Width in bits of a pointer.
1307 See also the macro `Pmode' defined below. */
1308 #define POINTER_SIZE (TARGET_LONG64 ? 64 : 32)
1309
1310 /* Allocation boundary (in *bits*) for storing pointers in memory. */
1311 #define POINTER_BOUNDARY (TARGET_LONG64 ? 64 : 32)
1312
1313 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
1314 #define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
1315
1316 /* Allocation boundary (in *bits*) for the code of a function. */
1317 #define FUNCTION_BOUNDARY 32
1318
1319 /* Alignment of field after `int : 0' in a structure. */
1320 #define EMPTY_FIELD_BOUNDARY 32
1321
1322 /* Every structure's size must be a multiple of this. */
1323 /* 8 is observed right on a DECstation and on riscos 4.02. */
1324 #define STRUCTURE_SIZE_BOUNDARY 8
1325
1326 /* There is no point aligning anything to a rounder boundary than this. */
1327 #define BIGGEST_ALIGNMENT 64
1328
1329 /* Set this nonzero if move instructions will actually fail to work
1330 when given unaligned data. */
1331 #define STRICT_ALIGNMENT 1
1332
1333 /* Define this if you wish to imitate the way many other C compilers
1334 handle alignment of bitfields and the structures that contain
1335 them.
1336
1337 The behavior is that the type written for a bitfield (`int',
1338 `short', or other integer type) imposes an alignment for the
1339 entire structure, as if the structure really did contain an
1340 ordinary field of that type. In addition, the bitfield is placed
1341 within the structure so that it would fit within such a field,
1342 not crossing a boundary for it.
1343
1344 Thus, on most machines, a bitfield whose type is written as `int'
1345 would not cross a four-byte boundary, and would force four-byte
1346 alignment for the whole structure. (The alignment used may not
1347 be four bytes; it is controlled by the other alignment
1348 parameters.)
1349
1350 If the macro is defined, its definition should be a C expression;
1351 a nonzero value for the expression enables this behavior. */
1352
1353 #define PCC_BITFIELD_TYPE_MATTERS 1
1354
1355 /* If defined, a C expression to compute the alignment given to a
1356 constant that is being placed in memory. CONSTANT is the constant
1357 and ALIGN is the alignment that the object would ordinarily have.
1358 The value of this macro is used instead of that alignment to align
1359 the object.
1360
1361 If this macro is not defined, then ALIGN is used.
1362
1363 The typical use of this macro is to increase alignment for string
1364 constants to be word aligned so that `strcpy' calls that copy
1365 constants can be done inline. */
1366
1367 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
1368 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
1369 && (ALIGN) < BITS_PER_WORD \
1370 ? BITS_PER_WORD \
1371 : (ALIGN))
1372
1373 /* If defined, a C expression to compute the alignment for a static
1374 variable. TYPE is the data type, and ALIGN is the alignment that
1375 the object would ordinarily have. The value of this macro is used
1376 instead of that alignment to align the object.
1377
1378 If this macro is not defined, then ALIGN is used.
1379
1380 One use of this macro is to increase alignment of medium-size
1381 data to make it all fit in fewer cache lines. Another is to
1382 cause character arrays to be word-aligned so that `strcpy' calls
1383 that copy constants to character arrays can be done inline. */
1384
1385 #undef DATA_ALIGNMENT
1386 #define DATA_ALIGNMENT(TYPE, ALIGN) \
1387 ((((ALIGN) < BITS_PER_WORD) \
1388 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1389 || TREE_CODE (TYPE) == UNION_TYPE \
1390 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1391
1392 /* Define this macro if an argument declared as `char' or `short' in a
1393 prototype should actually be passed as an `int'. In addition to
1394 avoiding errors in certain cases of mismatch, it also makes for
1395 better code on certain machines. */
1396
1397 #define PROMOTE_PROTOTYPES
1398
1399 /* Define if operations between registers always perform the operation
1400 on the full register even if a narrower mode is specified. */
1401 #define WORD_REGISTER_OPERATIONS
1402
1403 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1404 will either zero-extend or sign-extend. The value of this macro should
1405 be the code that says which one of the two operations is implicitly
1406 done, NIL if none. */
1407 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1408
1409 /* Define this macro if it is advisable to hold scalars in registers
1410 in a wider mode than that declared by the program. In such cases,
1411 the value is constrained to be within the bounds of the declared
1412 type, but kept valid in the wider mode. The signedness of the
1413 extension may differ from that of the type.
1414
1415 We promote any value smaller than SImode up to SImode. We don't
1416 want to promote to DImode when in 64 bit mode, because that would
1417 prevent us from using the faster SImode multiply and divide
1418 instructions. */
1419
1420 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1421 if (GET_MODE_CLASS (MODE) == MODE_INT \
1422 && GET_MODE_SIZE (MODE) < 4) \
1423 (MODE) = SImode;
1424
1425 /* Define this if function arguments should also be promoted using the above
1426 procedure. */
1427
1428 #define PROMOTE_FUNCTION_ARGS
1429
1430 /* Likewise, if the function return value is promoted. */
1431
1432 #define PROMOTE_FUNCTION_RETURN
1433 \f
1434 /* Standard register usage. */
1435
1436 /* Number of actual hardware registers.
1437 The hardware registers are assigned numbers for the compiler
1438 from 0 to just below FIRST_PSEUDO_REGISTER.
1439 All registers that the compiler knows about must be given numbers,
1440 even those that are not normally considered general registers.
1441
1442 On the Mips, we have 32 integer registers, 32 floating point
1443 registers, 8 condition code registers, and the special registers
1444 hi, lo, hilo, and rap. The 8 condition code registers are only
1445 used if mips_isa >= 4. The hilo register is only used in 64 bit
1446 mode. It represents a 64 bit value stored as two 32 bit values in
1447 the hi and lo registers; this is the result of the mult
1448 instruction. rap is a pointer to the stack where the return
1449 address reg ($31) was stored. This is needed for C++ exception
1450 handling. */
1451
1452 #define FIRST_PSEUDO_REGISTER 76
1453
1454 /* 1 for registers that have pervasive standard uses
1455 and are not available for the register allocator.
1456
1457 On the MIPS, see conventions, page D-2 */
1458
1459 #define FIXED_REGISTERS \
1460 { \
1461 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1462 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, \
1463 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1464 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1465 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 \
1466 }
1467
1468
1469 /* 1 for registers not available across function calls.
1470 These must include the FIXED_REGISTERS and also any
1471 registers that can be used without being saved.
1472 The latter must include the registers where values are returned
1473 and the register where structure-value addresses are passed.
1474 Aside from that, you can include as many other registers as you like. */
1475
1476 #define CALL_USED_REGISTERS \
1477 { \
1478 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1479 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, \
1480 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1481 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1482 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1483 }
1484
1485
1486 /* Internal macros to classify a register number as to whether it's a
1487 general purpose register, a floating point register, a
1488 multiply/divide register, or a status register. */
1489
1490 #define GP_REG_FIRST 0
1491 #define GP_REG_LAST 31
1492 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1493 #define GP_DBX_FIRST 0
1494
1495 #define FP_REG_FIRST 32
1496 #define FP_REG_LAST 63
1497 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1498 #define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1499
1500 #define MD_REG_FIRST 64
1501 #define MD_REG_LAST 66
1502 #define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
1503
1504 #define ST_REG_FIRST 67
1505 #define ST_REG_LAST 74
1506 #define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1507
1508 #define RAP_REG_NUM 75
1509
1510 #define AT_REGNUM (GP_REG_FIRST + 1)
1511 #define HI_REGNUM (MD_REG_FIRST + 0)
1512 #define LO_REGNUM (MD_REG_FIRST + 1)
1513 #define HILO_REGNUM (MD_REG_FIRST + 2)
1514
1515 /* FPSW_REGNUM is the single condition code used if mips_isa < 4. If
1516 mips_isa >= 4, it should not be used, and an arbitrary ST_REG
1517 should be used instead. */
1518 #define FPSW_REGNUM ST_REG_FIRST
1519
1520 #define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1521 #define M16_REG_P(REGNO) \
1522 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1523 #define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1524 #define MD_REG_P(REGNO) ((unsigned) ((REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1525 #define ST_REG_P(REGNO) ((unsigned) ((REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1526
1527 /* Return number of consecutive hard regs needed starting at reg REGNO
1528 to hold something of mode MODE.
1529 This is ordinarily the length in words of a value of mode MODE
1530 but can be less for certain modes in special long registers.
1531
1532 On the MIPS, all general registers are one word long. Except on
1533 the R4000 with the FR bit set, the floating point uses register
1534 pairs, with the second register not being allocable. */
1535
1536 #define HARD_REGNO_NREGS(REGNO, MODE) \
1537 (! FP_REG_P (REGNO) \
1538 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) \
1539 : ((GET_MODE_SIZE (MODE) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG))
1540
1541 /* Value is 1 if hard register REGNO can hold a value of machine-mode
1542 MODE. In 32 bit mode, require that DImode and DFmode be in even
1543 registers. For DImode, this makes some of the insns easier to
1544 write, since you don't have to worry about a DImode value in
1545 registers 3 & 4, producing a result in 4 & 5.
1546
1547 To make the code simpler HARD_REGNO_MODE_OK now just references an
1548 array built in override_options. Because machmodes.h is not yet
1549 included before this file is processed, the MODE bound can't be
1550 expressed here. */
1551
1552 extern char mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
1553
1554 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1555 mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1556
1557 /* Value is 1 if it is a good idea to tie two pseudo registers
1558 when one has mode MODE1 and one has mode MODE2.
1559 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1560 for any hard reg, then this must be 0 for correct output. */
1561 #define MODES_TIEABLE_P(MODE1, MODE2) \
1562 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
1563 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
1564 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
1565 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
1566
1567 /* MIPS pc is not overloaded on a register. */
1568 /* #define PC_REGNUM xx */
1569
1570 /* Register to use for pushing function arguments. */
1571 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1572
1573 /* Offset from the stack pointer to the first available location. Use
1574 the default value zero. */
1575 /* #define STACK_POINTER_OFFSET 0 */
1576
1577 /* Base register for access to local variables of the function. We
1578 pretend that the frame pointer is $1, and then eliminate it to
1579 HARD_FRAME_POINTER_REGNUM. We can get away with this because $1 is
1580 a fixed register, and will not be used for anything else. */
1581 #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 1)
1582
1583 /* $30 is not available on the mips16, so we use $17 as the frame
1584 pointer. */
1585 #define HARD_FRAME_POINTER_REGNUM \
1586 (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1587
1588 /* Value should be nonzero if functions must have frame pointers.
1589 Zero means the frame pointer need not be set up (and parms
1590 may be accessed via the stack pointer) in functions that seem suitable.
1591 This is computed in `reload', in reload1.c. */
1592 #define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
1593
1594 /* Base register for access to arguments of the function. */
1595 #define ARG_POINTER_REGNUM GP_REG_FIRST
1596
1597 /* Fake register that holds the address on the stack of the
1598 current function's return address. */
1599 #define RETURN_ADDRESS_POINTER_REGNUM RAP_REG_NUM
1600
1601 /* Register in which static-chain is passed to a function. */
1602 #define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
1603
1604 /* If the structure value address is passed in a register, then
1605 `STRUCT_VALUE_REGNUM' should be the number of that register. */
1606 /* #define STRUCT_VALUE_REGNUM (GP_REG_FIRST + 4) */
1607
1608 /* If the structure value address is not passed in a register, define
1609 `STRUCT_VALUE' as an expression returning an RTX for the place
1610 where the address is passed. If it returns 0, the address is
1611 passed as an "invisible" first argument. */
1612 #define STRUCT_VALUE 0
1613
1614 /* Mips registers used in prologue/epilogue code when the stack frame
1615 is larger than 32K bytes. These registers must come from the
1616 scratch register set, and not used for passing and returning
1617 arguments and any other information used in the calling sequence
1618 (such as pic). Must start at 12, since t0/t3 are parameter passing
1619 registers in the 64 bit ABI. */
1620
1621 #define MIPS_TEMP1_REGNUM (GP_REG_FIRST + 12)
1622 #define MIPS_TEMP2_REGNUM (GP_REG_FIRST + 13)
1623
1624 /* Define this macro if it is as good or better to call a constant
1625 function address than to call an address kept in a register. */
1626 #define NO_FUNCTION_CSE 1
1627
1628 /* Define this macro if it is as good or better for a function to
1629 call itself with an explicit address than to call an address
1630 kept in a register. */
1631 #define NO_RECURSIVE_FUNCTION_CSE 1
1632
1633 /* The register number of the register used to address a table of
1634 static data addresses in memory. In some cases this register is
1635 defined by a processor's "application binary interface" (ABI).
1636 When this macro is defined, RTL is generated for this register
1637 once, as with the stack pointer and frame pointer registers. If
1638 this macro is not defined, it is up to the machine-dependent
1639 files to allocate such a register (if necessary). */
1640 #define PIC_OFFSET_TABLE_REGNUM (GP_REG_FIRST + 28)
1641
1642 #define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
1643
1644 /* Initialize embedded_pic_fnaddr_rtx before RTL generation for
1645 each function. We used to do this in FINALIZE_PIC, but FINALIZE_PIC
1646 isn't always called for static inline functions. */
1647 #define INIT_EXPANDERS \
1648 do { \
1649 embedded_pic_fnaddr_rtx = NULL; \
1650 mips16_gp_pseudo_rtx = NULL; \
1651 } while (0)
1652 \f
1653 /* Define the classes of registers for register constraints in the
1654 machine description. Also define ranges of constants.
1655
1656 One of the classes must always be named ALL_REGS and include all hard regs.
1657 If there is more than one class, another class must be named NO_REGS
1658 and contain no registers.
1659
1660 The name GENERAL_REGS must be the name of a class (or an alias for
1661 another name such as ALL_REGS). This is the class of registers
1662 that is allowed by "g" or "r" in a register constraint.
1663 Also, registers outside this class are allocated only when
1664 instructions express preferences for them.
1665
1666 The classes must be numbered in nondecreasing order; that is,
1667 a larger-numbered class must never be contained completely
1668 in a smaller-numbered class.
1669
1670 For any two classes, it is very desirable that there be another
1671 class that represents their union. */
1672
1673 enum reg_class
1674 {
1675 NO_REGS, /* no registers in set */
1676 M16_NA_REGS, /* mips16 regs not used to pass args */
1677 M16_REGS, /* mips16 directly accessible registers */
1678 T_REG, /* mips16 T register ($24) */
1679 M16_T_REGS, /* mips16 registers plus T register */
1680 GR_REGS, /* integer registers */
1681 FP_REGS, /* floating point registers */
1682 HI_REG, /* hi register */
1683 LO_REG, /* lo register */
1684 HILO_REG, /* hilo register pair for 64 bit mode mult */
1685 MD_REGS, /* multiply/divide registers (hi/lo) */
1686 ST_REGS, /* status registers (fp status) */
1687 ALL_REGS, /* all registers */
1688 LIM_REG_CLASSES /* max value + 1 */
1689 };
1690
1691 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1692
1693 #define GENERAL_REGS GR_REGS
1694
1695 /* An initializer containing the names of the register classes as C
1696 string constants. These names are used in writing some of the
1697 debugging dumps. */
1698
1699 #define REG_CLASS_NAMES \
1700 { \
1701 "NO_REGS", \
1702 "M16_NA_REGS", \
1703 "M16_REGS", \
1704 "T_REG", \
1705 "M16_T_REGS", \
1706 "GR_REGS", \
1707 "FP_REGS", \
1708 "HI_REG", \
1709 "LO_REG", \
1710 "HILO_REG", \
1711 "MD_REGS", \
1712 "ST_REGS", \
1713 "ALL_REGS" \
1714 }
1715
1716 /* An initializer containing the contents of the register classes,
1717 as integers which are bit masks. The Nth integer specifies the
1718 contents of class N. The way the integer MASK is interpreted is
1719 that register R is in the class if `MASK & (1 << R)' is 1.
1720
1721 When the machine has more than 32 registers, an integer does not
1722 suffice. Then the integers are replaced by sub-initializers,
1723 braced groupings containing several integers. Each
1724 sub-initializer must be suitable as an initializer for the type
1725 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
1726
1727 #define REG_CLASS_CONTENTS \
1728 { \
1729 { 0x00000000, 0x00000000, 0x00000000 }, /* no registers */ \
1730 { 0x0003000c, 0x00000000, 0x00000000 }, /* mips16 nonarg regs */\
1731 { 0x000300fc, 0x00000000, 0x00000000 }, /* mips16 registers */ \
1732 { 0x01000000, 0x00000000, 0x00000000 }, /* mips16 T register */ \
1733 { 0x010300fc, 0x00000000, 0x00000000 }, /* mips16 and T regs */ \
1734 { 0xffffffff, 0x00000000, 0x00000000 }, /* integer registers */ \
1735 { 0x00000000, 0xffffffff, 0x00000000 }, /* floating registers*/ \
1736 { 0x00000000, 0x00000000, 0x00000001 }, /* hi register */ \
1737 { 0x00000000, 0x00000000, 0x00000002 }, /* lo register */ \
1738 { 0x00000000, 0x00000000, 0x00000004 }, /* hilo register */ \
1739 { 0x00000000, 0x00000000, 0x00000003 }, /* mul/div registers */ \
1740 { 0x00000000, 0x00000000, 0x000007f8 }, /* status registers */ \
1741 { 0xffffffff, 0xffffffff, 0x000007ff } /* all registers */ \
1742 }
1743
1744
1745 /* A C expression whose value is a register class containing hard
1746 register REGNO. In general there is more that one such class;
1747 choose a class which is "minimal", meaning that no smaller class
1748 also contains the register. */
1749
1750 extern enum reg_class mips_regno_to_class[];
1751
1752 #define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1753
1754 /* A macro whose definition is the name of the class to which a
1755 valid base register must belong. A base register is one used in
1756 an address which is the register value plus a displacement. */
1757
1758 #define BASE_REG_CLASS (TARGET_MIPS16 ? M16_REGS : GR_REGS)
1759
1760 /* A macro whose definition is the name of the class to which a
1761 valid index register must belong. An index register is one used
1762 in an address where its value is either multiplied by a scale
1763 factor or added to another register (as well as added to a
1764 displacement). */
1765
1766 #define INDEX_REG_CLASS NO_REGS
1767
1768 /* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows
1769 registers explicitly used in the rtl to be used as spill registers
1770 but prevents the compiler from extending the lifetime of these
1771 registers. */
1772
1773 #define SMALL_REGISTER_CLASSES (TARGET_MIPS16)
1774
1775 /* This macro is used later on in the file. */
1776 #define GR_REG_CLASS_P(CLASS) \
1777 ((CLASS) == GR_REGS || (CLASS) == M16_REGS || (CLASS) == T_REG \
1778 || (CLASS) == M16_T_REGS || (CLASS) == M16_NA_REGS)
1779
1780 /* REG_ALLOC_ORDER is to order in which to allocate registers. This
1781 is the default value (allocate the registers in numeric order). We
1782 define it just so that we can override it for the mips16 target in
1783 ORDER_REGS_FOR_LOCAL_ALLOC. */
1784
1785 #define REG_ALLOC_ORDER \
1786 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
1787 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, \
1788 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
1789 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
1790 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75 \
1791 }
1792
1793 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
1794 to be rearranged based on a particular function. On the mips16, we
1795 want to allocate $24 (T_REG) before other registers for
1796 instructions for which it is possible. */
1797
1798 #define ORDER_REGS_FOR_LOCAL_ALLOC mips_order_regs_for_local_alloc ()
1799
1800 /* REGISTER AND CONSTANT CLASSES */
1801
1802 /* Get reg_class from a letter such as appears in the machine
1803 description.
1804
1805 DEFINED REGISTER CLASSES:
1806
1807 'd' General (aka integer) registers
1808 Normally this is GR_REGS, but in mips16 mode this is M16_REGS
1809 'y' General registers (in both mips16 and non mips16 mode)
1810 'e' mips16 non argument registers (M16_NA_REGS)
1811 't' mips16 temporary register ($24)
1812 'f' Floating point registers
1813 'h' Hi register
1814 'l' Lo register
1815 'x' Multiply/divide registers
1816 'a' HILO_REG
1817 'z' FP Status register
1818 'b' All registers */
1819
1820 extern enum reg_class mips_char_to_class[];
1821
1822 #define REG_CLASS_FROM_LETTER(C) mips_char_to_class[ (C) ]
1823
1824 /* The letters I, J, K, L, M, N, O, and P in a register constraint
1825 string can be used to stand for particular ranges of immediate
1826 operands. This macro defines what the ranges are. C is the
1827 letter, and VALUE is a constant value. Return 1 if VALUE is
1828 in the range specified by C. */
1829
1830 /* For MIPS:
1831
1832 `I' is used for the range of constants an arithmetic insn can
1833 actually contain (16 bits signed integers).
1834
1835 `J' is used for the range which is just zero (ie, $r0).
1836
1837 `K' is used for the range of constants a logical insn can actually
1838 contain (16 bit zero-extended integers).
1839
1840 `L' is used for the range of constants that be loaded with lui
1841 (ie, the bottom 16 bits are zero).
1842
1843 `M' is used for the range of constants that take two words to load
1844 (ie, not matched by `I', `K', and `L').
1845
1846 `N' is used for negative 16 bit constants other than -65536.
1847
1848 `O' is a 15 bit signed integer.
1849
1850 `P' is used for positive 16 bit constants. */
1851
1852 #define SMALL_INT(X) ((unsigned HOST_WIDE_INT) (INTVAL (X) + 0x8000) < 0x10000)
1853 #define SMALL_INT_UNSIGNED(X) ((unsigned HOST_WIDE_INT) (INTVAL (X)) < 0x10000)
1854
1855 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1856 ((C) == 'I' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000) \
1857 : (C) == 'J' ? ((VALUE) == 0) \
1858 : (C) == 'K' ? ((unsigned HOST_WIDE_INT) (VALUE) < 0x10000) \
1859 : (C) == 'L' ? (((VALUE) & 0x0000ffff) == 0 \
1860 && (((VALUE) & ~2147483647) == 0 \
1861 || ((VALUE) & ~2147483647) == ~2147483647)) \
1862 : (C) == 'M' ? ((((VALUE) & ~0x0000ffff) != 0) \
1863 && (((VALUE) & ~0x0000ffff) != ~0x0000ffff) \
1864 && (((VALUE) & 0x0000ffff) != 0 \
1865 || (((VALUE) & ~2147483647) != 0 \
1866 && ((VALUE) & ~2147483647) != ~2147483647))) \
1867 : (C) == 'N' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0xffff) < 0xffff) \
1868 : (C) == 'O' ? ((unsigned HOST_WIDE_INT) ((VALUE) + 0x4000) < 0x8000) \
1869 : (C) == 'P' ? ((VALUE) != 0 && (((VALUE) & ~0x0000ffff) == 0)) \
1870 : 0)
1871
1872 /* Similar, but for floating constants, and defining letters G and H.
1873 Here VALUE is the CONST_DOUBLE rtx itself. */
1874
1875 /* For Mips
1876
1877 'G' : Floating point 0 */
1878
1879 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1880 ((C) == 'G' \
1881 && (VALUE) == CONST0_RTX (GET_MODE (VALUE)))
1882
1883 /* Letters in the range `Q' through `U' may be defined in a
1884 machine-dependent fashion to stand for arbitrary operand types.
1885 The machine description macro `EXTRA_CONSTRAINT' is passed the
1886 operand as its first argument and the constraint letter as its
1887 second operand.
1888
1889 `Q' is for mips16 GP relative constants
1890 `R' is for memory references which take 1 word for the instruction.
1891 `S' is for references to extern items which are PIC for OSF/rose.
1892 `T' is for memory addresses that can be used to load two words. */
1893
1894 #define EXTRA_CONSTRAINT(OP,CODE) \
1895 (((CODE) == 'T') ? double_memory_operand (OP, GET_MODE (OP)) \
1896 : ((CODE) == 'Q') ? (GET_CODE (OP) == CONST \
1897 && mips16_gp_offset_p (OP)) \
1898 : (GET_CODE (OP) != MEM) ? FALSE \
1899 : ((CODE) == 'R') ? simple_memory_operand (OP, GET_MODE (OP)) \
1900 : ((CODE) == 'S') ? (HALF_PIC_P () && CONSTANT_P (OP) \
1901 && HALF_PIC_ADDRESS_P (OP)) \
1902 : FALSE)
1903
1904 /* Given an rtx X being reloaded into a reg required to be
1905 in class CLASS, return the class of reg to actually use.
1906 In general this is just CLASS; but on some machines
1907 in some cases it is preferable to use a more restrictive class. */
1908
1909 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1910 ((CLASS) != ALL_REGS \
1911 ? (! TARGET_MIPS16 \
1912 ? (CLASS) \
1913 : ((CLASS) != GR_REGS \
1914 ? (CLASS) \
1915 : M16_REGS)) \
1916 : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
1917 || GET_MODE_CLASS (GET_MODE (X)) == MODE_COMPLEX_FLOAT) \
1918 ? (TARGET_SOFT_FLOAT \
1919 ? (TARGET_MIPS16 ? M16_REGS : GR_REGS) \
1920 : FP_REGS) \
1921 : ((GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
1922 || GET_MODE (X) == VOIDmode) \
1923 ? (TARGET_MIPS16 ? M16_REGS : GR_REGS) \
1924 : (CLASS))))
1925
1926 /* Certain machines have the property that some registers cannot be
1927 copied to some other registers without using memory. Define this
1928 macro on those machines to be a C expression that is non-zero if
1929 objects of mode MODE in registers of CLASS1 can only be copied to
1930 registers of class CLASS2 by storing a register of CLASS1 into
1931 memory and loading that memory location into a register of CLASS2.
1932
1933 Do not define this macro if its value would always be zero. */
1934
1935 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1936 ((!TARGET_DEBUG_H_MODE \
1937 && GET_MODE_CLASS (MODE) == MODE_INT \
1938 && ((CLASS1 == FP_REGS && GR_REG_CLASS_P (CLASS2)) \
1939 || (GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS))) \
1940 || (TARGET_FLOAT64 && !TARGET_64BIT && (MODE) == DFmode \
1941 && ((GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS) \
1942 || (GR_REG_CLASS_P (CLASS2) && CLASS1 == FP_REGS))))
1943
1944 /* The HI and LO registers can only be reloaded via the general
1945 registers. Condition code registers can only be loaded to the
1946 general registers, and from the floating point registers. */
1947
1948 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1949 mips_secondary_reload_class (CLASS, MODE, X, 1)
1950 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1951 mips_secondary_reload_class (CLASS, MODE, X, 0)
1952
1953 /* Not declared above, with the other functions, because enum
1954 reg_class is not declared yet. */
1955 extern enum reg_class mips_secondary_reload_class ();
1956
1957 /* Return the maximum number of consecutive registers
1958 needed to represent mode MODE in a register of class CLASS. */
1959
1960 #define CLASS_UNITS(mode, size) \
1961 ((GET_MODE_SIZE (mode) + (size) - 1) / (size))
1962
1963 #define CLASS_MAX_NREGS(CLASS, MODE) \
1964 ((CLASS) == FP_REGS \
1965 ? (TARGET_FLOAT64 \
1966 ? CLASS_UNITS (MODE, 8) \
1967 : 2 * CLASS_UNITS (MODE, 8)) \
1968 : CLASS_UNITS (MODE, UNITS_PER_WORD))
1969
1970 /* If defined, this is a C expression whose value should be
1971 nonzero if the insn INSN has the effect of mysteriously
1972 clobbering the contents of hard register number REGNO. By
1973 "mysterious" we mean that the insn's RTL expression doesn't
1974 describe such an effect.
1975
1976 If this macro is not defined, it means that no insn clobbers
1977 registers mysteriously. This is the usual situation; all else
1978 being equal, it is best for the RTL expression to show all the
1979 activity. */
1980
1981 /* #define INSN_CLOBBERS_REGNO_P(INSN, REGNO) */
1982
1983 \f
1984 /* Stack layout; function entry, exit and calling. */
1985
1986 /* Define this if pushing a word on the stack
1987 makes the stack pointer a smaller address. */
1988 #define STACK_GROWS_DOWNWARD
1989
1990 /* Define this if the nominal address of the stack frame
1991 is at the high-address end of the local variables;
1992 that is, each additional local variable allocated
1993 goes at a more negative offset in the frame. */
1994 /* #define FRAME_GROWS_DOWNWARD */
1995
1996 /* Offset within stack frame to start allocating local variables at.
1997 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1998 first local allocated. Otherwise, it is the offset to the BEGINNING
1999 of the first local allocated. */
2000 #define STARTING_FRAME_OFFSET \
2001 (current_function_outgoing_args_size \
2002 + (TARGET_ABICALLS ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0))
2003
2004 /* Offset from the stack pointer register to an item dynamically
2005 allocated on the stack, e.g., by `alloca'.
2006
2007 The default value for this macro is `STACK_POINTER_OFFSET' plus the
2008 length of the outgoing arguments. The default is correct for most
2009 machines. See `function.c' for details.
2010
2011 The MIPS ABI states that functions which dynamically allocate the
2012 stack must not have 0 for STACK_DYNAMIC_OFFSET, since it looks like
2013 we are trying to create a second frame pointer to the function, so
2014 allocate some stack space to make it happy.
2015
2016 However, the linker currently complains about linking any code that
2017 dynamically allocates stack space, and there seems to be a bug in
2018 STACK_DYNAMIC_OFFSET, so don't define this right now. */
2019
2020 #if 0
2021 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
2022 ((current_function_outgoing_args_size == 0 && current_function_calls_alloca) \
2023 ? 4*UNITS_PER_WORD \
2024 : current_function_outgoing_args_size)
2025 #endif
2026
2027 /* The return address for the current frame is in r31 is this is a leaf
2028 function. Otherwise, it is on the stack. It is at a variable offset
2029 from sp/fp/ap, so we define a fake hard register rap which is a
2030 poiner to the return address on the stack. This always gets eliminated
2031 during reload to be either the frame pointer or the stack pointer plus
2032 an offset. */
2033
2034 /* ??? This definition fails for leaf functions. There is currently no
2035 general solution for this problem. */
2036
2037 /* ??? There appears to be no way to get the return address of any previous
2038 frame except by disassembling instructions in the prologue/epilogue.
2039 So currently we support only the current frame. */
2040
2041 #define RETURN_ADDR_RTX(count, frame) \
2042 ((count == 0) \
2043 ? gen_rtx (MEM, Pmode, gen_rtx (REG, Pmode, RETURN_ADDRESS_POINTER_REGNUM))\
2044 : (rtx) 0)
2045
2046 /* Structure to be filled in by compute_frame_size with register
2047 save masks, and offsets for the current function. */
2048
2049 struct mips_frame_info
2050 {
2051 long total_size; /* # bytes that the entire frame takes up */
2052 long var_size; /* # bytes that variables take up */
2053 long args_size; /* # bytes that outgoing arguments take up */
2054 long extra_size; /* # bytes of extra gunk */
2055 int gp_reg_size; /* # bytes needed to store gp regs */
2056 int fp_reg_size; /* # bytes needed to store fp regs */
2057 long mask; /* mask of saved gp registers */
2058 long fmask; /* mask of saved fp registers */
2059 long gp_save_offset; /* offset from vfp to store gp registers */
2060 long fp_save_offset; /* offset from vfp to store fp registers */
2061 long gp_sp_offset; /* offset from new sp to store gp registers */
2062 long fp_sp_offset; /* offset from new sp to store fp registers */
2063 int initialized; /* != 0 if frame size already calculated */
2064 int num_gp; /* number of gp registers saved */
2065 int num_fp; /* number of fp registers saved */
2066 long insns_len; /* length of insns; mips16 only */
2067 };
2068
2069 extern struct mips_frame_info current_frame_info;
2070
2071 /* If defined, this macro specifies a table of register pairs used to
2072 eliminate unneeded registers that point into the stack frame. If
2073 it is not defined, the only elimination attempted by the compiler
2074 is to replace references to the frame pointer with references to
2075 the stack pointer.
2076
2077 The definition of this macro is a list of structure
2078 initializations, each of which specifies an original and
2079 replacement register.
2080
2081 On some machines, the position of the argument pointer is not
2082 known until the compilation is completed. In such a case, a
2083 separate hard register must be used for the argument pointer.
2084 This register can be eliminated by replacing it with either the
2085 frame pointer or the argument pointer, depending on whether or not
2086 the frame pointer has been eliminated.
2087
2088 In this case, you might specify:
2089 #define ELIMINABLE_REGS \
2090 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2091 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
2092 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
2093
2094 Note that the elimination of the argument pointer with the stack
2095 pointer is specified first since that is the preferred elimination.
2096
2097 The eliminations to $17 are only used on the mips16. See the
2098 definition of HARD_FRAME_POINTER_REGNUM. */
2099
2100 #define ELIMINABLE_REGS \
2101 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2102 { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2103 { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
2104 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2105 { RETURN_ADDRESS_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2106 { RETURN_ADDRESS_POINTER_REGNUM, GP_REG_FIRST + 17}, \
2107 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2108 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2109 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
2110
2111 /* A C expression that returns non-zero if the compiler is allowed to
2112 try to replace register number FROM-REG with register number
2113 TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is
2114 defined, and will usually be the constant 1, since most of the
2115 cases preventing register elimination are things that the compiler
2116 already knows about.
2117
2118 We can always eliminate to the frame pointer. We can eliminate to
2119 the stack pointer unless a frame pointer is needed. In mips16
2120 mode, we need a frame pointer for a large frame; otherwise, reload
2121 may be unable to compute the address of a local variable, since
2122 there is no way to add a large constant to the stack pointer
2123 without using a temporary register. */
2124
2125 #define CAN_ELIMINATE(FROM, TO) \
2126 ((TO) == HARD_FRAME_POINTER_REGNUM \
2127 || ((TO) == STACK_POINTER_REGNUM && ! frame_pointer_needed \
2128 && (! TARGET_MIPS16 \
2129 || compute_frame_size (get_frame_size ()) < 32768)))
2130
2131 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
2132 specifies the initial difference between the specified pair of
2133 registers. This macro must be defined if `ELIMINABLE_REGS' is
2134 defined. */
2135
2136 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
2137 { compute_frame_size (get_frame_size ()); \
2138 if (TARGET_MIPS16 && (FROM) == FRAME_POINTER_REGNUM \
2139 && (TO) == HARD_FRAME_POINTER_REGNUM) \
2140 (OFFSET) = - current_function_outgoing_args_size; \
2141 else if ((FROM) == FRAME_POINTER_REGNUM) \
2142 (OFFSET) = 0; \
2143 else if (TARGET_MIPS16 && (FROM) == ARG_POINTER_REGNUM \
2144 && (TO) == HARD_FRAME_POINTER_REGNUM) \
2145 (OFFSET) = (current_frame_info.total_size \
2146 - current_function_outgoing_args_size \
2147 - ((mips_abi != ABI_32 && mips_abi != ABI_EABI) \
2148 ? current_function_pretend_args_size \
2149 : 0)); \
2150 else if ((FROM) == ARG_POINTER_REGNUM) \
2151 (OFFSET) = (current_frame_info.total_size \
2152 - ((mips_abi != ABI_32 && mips_abi != ABI_EABI) \
2153 ? current_function_pretend_args_size \
2154 : 0)); \
2155 else if ((FROM) == RETURN_ADDRESS_POINTER_REGNUM) \
2156 (OFFSET) = current_frame_info.gp_sp_offset; \
2157 }
2158
2159 /* If we generate an insn to push BYTES bytes,
2160 this says how many the stack pointer really advances by.
2161 On the vax, sp@- in a byte insn really pushes a word. */
2162
2163 /* #define PUSH_ROUNDING(BYTES) 0 */
2164
2165 /* If defined, the maximum amount of space required for outgoing
2166 arguments will be computed and placed into the variable
2167 `current_function_outgoing_args_size'. No space will be pushed
2168 onto the stack for each call; instead, the function prologue
2169 should increase the stack frame size by this amount.
2170
2171 It is not proper to define both `PUSH_ROUNDING' and
2172 `ACCUMULATE_OUTGOING_ARGS'. */
2173 #define ACCUMULATE_OUTGOING_ARGS
2174
2175 /* Offset from the argument pointer register to the first argument's
2176 address. On some machines it may depend on the data type of the
2177 function.
2178
2179 If `ARGS_GROW_DOWNWARD', this is the offset to the location above
2180 the first argument's address.
2181
2182 On the MIPS, we must skip the first argument position if we are
2183 returning a structure or a union, to account for its address being
2184 passed in $4. However, at the current time, this produces a compiler
2185 that can't bootstrap, so comment it out for now. */
2186
2187 #if 0
2188 #define FIRST_PARM_OFFSET(FNDECL) \
2189 (FNDECL != 0 \
2190 && TREE_TYPE (FNDECL) != 0 \
2191 && TREE_TYPE (TREE_TYPE (FNDECL)) != 0 \
2192 && (TREE_CODE (TREE_TYPE (TREE_TYPE (FNDECL))) == RECORD_TYPE \
2193 || TREE_CODE (TREE_TYPE (TREE_TYPE (FNDECL))) == UNION_TYPE) \
2194 ? UNITS_PER_WORD \
2195 : 0)
2196 #else
2197 #define FIRST_PARM_OFFSET(FNDECL) 0
2198 #endif
2199
2200 /* When a parameter is passed in a register, stack space is still
2201 allocated for it. For the MIPS, stack space must be allocated, cf
2202 Asm Lang Prog Guide page 7-8.
2203
2204 BEWARE that some space is also allocated for non existing arguments
2205 in register. In case an argument list is of form GF used registers
2206 are a0 (a2,a3), but we should push over a1... */
2207
2208 #define REG_PARM_STACK_SPACE(FNDECL) \
2209 ((MAX_ARGS_IN_REGISTERS*UNITS_PER_WORD) - FIRST_PARM_OFFSET (FNDECL))
2210
2211 /* Define this if it is the responsibility of the caller to
2212 allocate the area reserved for arguments passed in registers.
2213 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
2214 of this macro is to determine whether the space is included in
2215 `current_function_outgoing_args_size'. */
2216 #define OUTGOING_REG_PARM_STACK_SPACE
2217
2218 /* Align stack frames on 64 bits (Double Word ). */
2219 #define STACK_BOUNDARY 64
2220
2221 /* Make sure 4 words are always allocated on the stack. */
2222
2223 #ifndef STACK_ARGS_ADJUST
2224 #define STACK_ARGS_ADJUST(SIZE) \
2225 { \
2226 if (SIZE.constant < 4 * UNITS_PER_WORD) \
2227 SIZE.constant = 4 * UNITS_PER_WORD; \
2228 }
2229 #endif
2230
2231 \f
2232 /* A C expression that should indicate the number of bytes of its
2233 own arguments that a function function pops on returning, or 0
2234 if the function pops no arguments and the caller must therefore
2235 pop them all after the function returns.
2236
2237 FUNDECL is the declaration node of the function (as a tree).
2238
2239 FUNTYPE is a C variable whose value is a tree node that
2240 describes the function in question. Normally it is a node of
2241 type `FUNCTION_TYPE' that describes the data type of the function.
2242 From this it is possible to obtain the data types of the value
2243 and arguments (if known).
2244
2245 When a call to a library function is being considered, FUNTYPE
2246 will contain an identifier node for the library function. Thus,
2247 if you need to distinguish among various library functions, you
2248 can do so by their names. Note that "library function" in this
2249 context means a function used to perform arithmetic, whose name
2250 is known specially in the compiler and was not mentioned in the
2251 C code being compiled.
2252
2253 STACK-SIZE is the number of bytes of arguments passed on the
2254 stack. If a variable number of bytes is passed, it is zero, and
2255 argument popping will always be the responsibility of the
2256 calling function. */
2257
2258 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
2259
2260
2261 /* Symbolic macros for the registers used to return integer and floating
2262 point values. */
2263
2264 #define GP_RETURN (GP_REG_FIRST + 2)
2265 #define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2266
2267 /* Symbolic macros for the first/last argument registers. */
2268
2269 #define GP_ARG_FIRST (GP_REG_FIRST + 4)
2270 #define GP_ARG_LAST (GP_REG_FIRST + 7)
2271 #define FP_ARG_FIRST (FP_REG_FIRST + 12)
2272 #define FP_ARG_LAST (FP_REG_FIRST + 15)
2273
2274 #define MAX_ARGS_IN_REGISTERS 4
2275
2276 /* Define how to find the value returned by a library function
2277 assuming the value has mode MODE. Because we define
2278 PROMOTE_FUNCTION_RETURN, we must promote the mode just as
2279 PROMOTE_MODE does. */
2280
2281 #define LIBCALL_VALUE(MODE) \
2282 gen_rtx (REG, \
2283 ((GET_MODE_CLASS (MODE) != MODE_INT \
2284 || GET_MODE_SIZE (MODE) >= 4) \
2285 ? (MODE) \
2286 : SImode), \
2287 ((GET_MODE_CLASS (MODE) == MODE_FLOAT \
2288 && (! TARGET_SINGLE_FLOAT \
2289 || GET_MODE_SIZE (MODE) <= 4)) \
2290 ? FP_RETURN \
2291 : GP_RETURN))
2292
2293 /* Define how to find the value returned by a function.
2294 VALTYPE is the data type of the value (as a tree).
2295 If the precise function being called is known, FUNC is its FUNCTION_DECL;
2296 otherwise, FUNC is 0. */
2297
2298 #define FUNCTION_VALUE(VALTYPE, FUNC) LIBCALL_VALUE (TYPE_MODE (VALTYPE))
2299
2300
2301 /* 1 if N is a possible register number for a function value.
2302 On the MIPS, R2 R3 and F0 F2 are the only register thus used.
2303 Currently, R2 and F0 are only implemented here (C has no complex type) */
2304
2305 #define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN)
2306
2307 /* 1 if N is a possible register number for function argument passing.
2308 We have no FP argument registers when soft-float. When FP registers
2309 are 32 bits, we can't directly reference the odd numbered ones. */
2310
2311 #define FUNCTION_ARG_REGNO_P(N) \
2312 (((N) >= GP_ARG_FIRST && (N) <= GP_ARG_LAST) \
2313 || (! TARGET_SOFT_FLOAT \
2314 && ((N) >= FP_ARG_FIRST && (N) <= FP_ARG_LAST) \
2315 && (TARGET_FLOAT64 || (0 == (N) % 2))) \
2316 && ! fixed_regs[N])
2317
2318 /* A C expression which can inhibit the returning of certain function
2319 values in registers, based on the type of value. A nonzero value says
2320 to return the function value in memory, just as large structures are
2321 always returned. Here TYPE will be a C expression of type
2322 `tree', representing the data type of the value.
2323
2324 Note that values of mode `BLKmode' must be explicitly
2325 handled by this macro. Also, the option `-fpcc-struct-return'
2326 takes effect regardless of this macro. On most systems, it is
2327 possible to leave the macro undefined; this causes a default
2328 definition to be used, whose value is the constant 1 for BLKmode
2329 values, and 0 otherwise.
2330
2331 GCC normally converts 1 byte structures into chars, 2 byte
2332 structs into shorts, and 4 byte structs into ints, and returns
2333 them this way. Defining the following macro overrides this,
2334 to give us MIPS cc compatibility. */
2335
2336 #define RETURN_IN_MEMORY(TYPE) \
2337 (TYPE_MODE (TYPE) == BLKmode)
2338 \f
2339 /* A code distinguishing the floating point format of the target
2340 machine. There are three defined values: IEEE_FLOAT_FORMAT,
2341 VAX_FLOAT_FORMAT, and UNKNOWN_FLOAT_FORMAT. */
2342
2343 #define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
2344
2345 \f
2346 /* Define a data type for recording info about an argument list
2347 during the scan of that argument list. This data type should
2348 hold all necessary information about the function itself
2349 and about the args processed so far, enough to enable macros
2350 such as FUNCTION_ARG to determine where the next arg should go.
2351
2352 On the mips16, we need to keep track of which floating point
2353 arguments were passed in general registers, but would have been
2354 passed in the FP regs if this were a 32 bit function, so that we
2355 can move them to the FP regs if we wind up calling a 32 bit
2356 function. We record this information in fp_code, encoded in base
2357 four. A zero digit means no floating point argument, a one digit
2358 means an SFmode argument, and a two digit means a DFmode argument,
2359 and a three digit is not used. The low order digit is the first
2360 argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2361 an SFmode argument. ??? A more sophisticated approach will be
2362 needed if MIPS_ABI != ABI_32. */
2363
2364 typedef struct mips_args {
2365 int gp_reg_found; /* whether a gp register was found yet */
2366 int arg_number; /* argument number */
2367 int arg_words; /* # total words the arguments take */
2368 int fp_arg_words; /* # words for FP args (MIPS_EABI only) */
2369 int last_arg_fp; /* nonzero if last arg was FP (EABI only) */
2370 int fp_code; /* Mode of FP arguments (mips16) */
2371 int num_adjusts; /* number of adjustments made */
2372 /* Adjustments made to args pass in regs. */
2373 /* ??? The size is doubled to work around a
2374 bug in the code that sets the adjustments
2375 in function_arg. */
2376 struct rtx_def *adjust[MAX_ARGS_IN_REGISTERS*2];
2377 } CUMULATIVE_ARGS;
2378
2379 /* Initialize a variable CUM of type CUMULATIVE_ARGS
2380 for a call to a function whose data type is FNTYPE.
2381 For a library call, FNTYPE is 0.
2382
2383 */
2384
2385 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
2386 init_cumulative_args (&CUM, FNTYPE, LIBNAME) \
2387
2388 /* Update the data in CUM to advance over an argument
2389 of mode MODE and data type TYPE.
2390 (TYPE is null for libcalls where that information may not be available.) */
2391
2392 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
2393 function_arg_advance (&CUM, MODE, TYPE, NAMED)
2394
2395 /* Determine where to put an argument to a function.
2396 Value is zero to push the argument on the stack,
2397 or a hard register in which to store the argument.
2398
2399 MODE is the argument's machine mode.
2400 TYPE is the data type of the argument (as a tree).
2401 This is null for libcalls where that information may
2402 not be available.
2403 CUM is a variable of type CUMULATIVE_ARGS which gives info about
2404 the preceding args and about the function being called.
2405 NAMED is nonzero if this argument is a named parameter
2406 (otherwise it is an extra parameter matching an ellipsis). */
2407
2408 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
2409 function_arg( &CUM, MODE, TYPE, NAMED)
2410
2411 /* For an arg passed partly in registers and partly in memory,
2412 this is the number of registers used.
2413 For args passed entirely in registers or entirely in memory, zero. */
2414
2415 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
2416 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
2417
2418 /* If defined, a C expression that gives the alignment boundary, in
2419 bits, of an argument with the specified mode and type. If it is
2420 not defined, `PARM_BOUNDARY' is used for all arguments. */
2421
2422 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
2423 (((TYPE) != 0) \
2424 ? ((TYPE_ALIGN(TYPE) <= PARM_BOUNDARY) \
2425 ? PARM_BOUNDARY \
2426 : TYPE_ALIGN(TYPE)) \
2427 : ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY) \
2428 ? PARM_BOUNDARY \
2429 : GET_MODE_ALIGNMENT(MODE)))
2430
2431 \f
2432 /* This macro generates the assembly code for function entry.
2433 FILE is a stdio stream to output the code to.
2434 SIZE is an int: how many units of temporary storage to allocate.
2435 Refer to the array `regs_ever_live' to determine which registers
2436 to save; `regs_ever_live[I]' is nonzero if register number I
2437 is ever used in the function. This macro is responsible for
2438 knowing which registers should not be saved even if used. */
2439
2440 #define FUNCTION_PROLOGUE(FILE, SIZE) function_prologue(FILE, SIZE)
2441
2442 /* This macro generates the assembly code for function exit,
2443 on machines that need it. If FUNCTION_EPILOGUE is not defined
2444 then individual return instructions are generated for each
2445 return statement. Args are same as for FUNCTION_PROLOGUE. */
2446
2447 #define FUNCTION_EPILOGUE(FILE, SIZE) function_epilogue(FILE, SIZE)
2448
2449 /* Tell prologue and epilogue if register REGNO should be saved / restored. */
2450
2451 #define MUST_SAVE_REGISTER(regno) \
2452 ((regs_ever_live[regno] && !call_used_regs[regno]) \
2453 || (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed) \
2454 || (regno == (GP_REG_FIRST + 31) && regs_ever_live[GP_REG_FIRST + 31]))
2455
2456 /* ALIGN FRAMES on double word boundaries */
2457
2458 #define MIPS_STACK_ALIGN(LOC) (((LOC)+7) & ~7)
2459
2460 \f
2461 /* Output assembler code to FILE to increment profiler label # LABELNO
2462 for profiling a function entry. */
2463
2464 #define FUNCTION_PROFILER(FILE, LABELNO) \
2465 { \
2466 if (TARGET_MIPS16) \
2467 sorry ("mips16 function profiling"); \
2468 fprintf (FILE, "\t.set\tnoreorder\n"); \
2469 fprintf (FILE, "\t.set\tnoat\n"); \
2470 fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n", \
2471 reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]); \
2472 fprintf (FILE, "\tjal\t_mcount\n"); \
2473 fprintf (FILE, \
2474 "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from stack\n", \
2475 TARGET_64BIT ? "dsubu" : "subu", \
2476 reg_names[STACK_POINTER_REGNUM], \
2477 reg_names[STACK_POINTER_REGNUM], \
2478 TARGET_LONG64 ? 16 : 8); \
2479 fprintf (FILE, "\t.set\treorder\n"); \
2480 fprintf (FILE, "\t.set\tat\n"); \
2481 }
2482
2483 /* Define this macro if the code for function profiling should come
2484 before the function prologue. Normally, the profiling code comes
2485 after. */
2486
2487 /* #define PROFILE_BEFORE_PROLOGUE */
2488
2489 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2490 the stack pointer does not matter. The value is tested only in
2491 functions that have frame pointers.
2492 No definition is equivalent to always zero. */
2493
2494 #define EXIT_IGNORE_STACK 1
2495
2496 \f
2497 /* A C statement to output, on the stream FILE, assembler code for a
2498 block of data that contains the constant parts of a trampoline.
2499 This code should not include a label--the label is taken care of
2500 automatically. */
2501
2502 #define TRAMPOLINE_TEMPLATE(STREAM) \
2503 { \
2504 fprintf (STREAM, "\t.word\t0x03e00821\t\t# move $1,$31\n"); \
2505 fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n"); \
2506 fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n"); \
2507 if (TARGET_LONG64) \
2508 { \
2509 fprintf (STREAM, "\t.word\t0xdfe30014\t\t# ld $3,20($31)\n"); \
2510 fprintf (STREAM, "\t.word\t0xdfe2001c\t\t# ld $2,28($31)\n"); \
2511 } \
2512 else \
2513 { \
2514 fprintf (STREAM, "\t.word\t0x8fe30014\t\t# lw $3,20($31)\n"); \
2515 fprintf (STREAM, "\t.word\t0x8fe20018\t\t# lw $2,24($31)\n"); \
2516 } \
2517 fprintf (STREAM, "\t.word\t0x0060c821\t\t# move $25,$3 (abicalls)\n"); \
2518 fprintf (STREAM, "\t.word\t0x00600008\t\t# jr $3\n"); \
2519 fprintf (STREAM, "\t.word\t0x0020f821\t\t# move $31,$1\n"); \
2520 if (TARGET_LONG64) \
2521 { \
2522 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <function address>\n"); \
2523 fprintf (STREAM, "\t.dword\t0x00000000\t\t# <static chain value>\n"); \
2524 } \
2525 else \
2526 { \
2527 fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
2528 fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
2529 } \
2530 }
2531
2532 /* A C expression for the size in bytes of the trampoline, as an
2533 integer. */
2534
2535 #define TRAMPOLINE_SIZE (32 + (TARGET_LONG64 ? 16 : 8))
2536
2537 /* Alignment required for trampolines, in bits. */
2538
2539 #define TRAMPOLINE_ALIGNMENT (TARGET_LONG64 ? 64 : 32)
2540
2541 /* INITIALIZE_TRAMPOLINE calls this library function to flush
2542 program and data caches. */
2543
2544 #ifndef CACHE_FLUSH_FUNC
2545 #define CACHE_FLUSH_FUNC "_flush_cache"
2546 #endif
2547
2548 /* A C statement to initialize the variable parts of a trampoline.
2549 ADDR is an RTX for the address of the trampoline; FNADDR is an
2550 RTX for the address of the nested function; STATIC_CHAIN is an
2551 RTX for the static chain value that should be passed to the
2552 function when it is called. */
2553
2554 #define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
2555 { \
2556 rtx addr = ADDR; \
2557 if (TARGET_LONG64) \
2558 { \
2559 emit_move_insn (gen_rtx (MEM, DImode, plus_constant (addr, 32)), FUNC); \
2560 emit_move_insn (gen_rtx (MEM, DImode, plus_constant (addr, 40)), CHAIN);\
2561 } \
2562 else \
2563 { \
2564 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (addr, 32)), FUNC); \
2565 emit_move_insn (gen_rtx (MEM, SImode, plus_constant (addr, 36)), CHAIN);\
2566 } \
2567 \
2568 /* Flush both caches. We need to flush the data cache in case \
2569 the system has a write-back cache. */ \
2570 /* ??? Should check the return value for errors. */ \
2571 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, CACHE_FLUSH_FUNC), \
2572 0, VOIDmode, 3, addr, Pmode, \
2573 GEN_INT (TRAMPOLINE_SIZE), TYPE_MODE (integer_type_node),\
2574 GEN_INT (3), TYPE_MODE (integer_type_node)); \
2575 }
2576 \f
2577 /* Addressing modes, and classification of registers for them. */
2578
2579 /* #define HAVE_POST_INCREMENT */
2580 /* #define HAVE_POST_DECREMENT */
2581
2582 /* #define HAVE_PRE_DECREMENT */
2583 /* #define HAVE_PRE_INCREMENT */
2584
2585 /* These assume that REGNO is a hard or pseudo reg number.
2586 They give nonzero only if REGNO is a hard reg of the suitable class
2587 or a pseudo reg currently allocated to a suitable hard reg.
2588 These definitions are NOT overridden anywhere. */
2589
2590 #define BASE_REG_P(regno, mode) \
2591 (TARGET_MIPS16 \
2592 ? (M16_REG_P (regno) \
2593 || (regno) == FRAME_POINTER_REGNUM \
2594 || (regno) == ARG_POINTER_REGNUM \
2595 || ((regno) == STACK_POINTER_REGNUM \
2596 && (GET_MODE_SIZE (mode) == 4 \
2597 || GET_MODE_SIZE (mode) == 8))) \
2598 : GP_REG_P (regno))
2599
2600 #define GP_REG_OR_PSEUDO_STRICT_P(regno, mode) \
2601 BASE_REG_P((regno < FIRST_PSEUDO_REGISTER) ? regno : reg_renumber[regno], \
2602 (mode))
2603
2604 #define GP_REG_OR_PSEUDO_NONSTRICT_P(regno, mode) \
2605 (((regno) >= FIRST_PSEUDO_REGISTER) || (BASE_REG_P ((regno), (mode))))
2606
2607 #define REGNO_OK_FOR_INDEX_P(regno) 0
2608 #define REGNO_MODE_OK_FOR_BASE_P(regno, mode) \
2609 GP_REG_OR_PSEUDO_STRICT_P ((regno), (mode))
2610
2611 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2612 and check its validity for a certain class.
2613 We have two alternate definitions for each of them.
2614 The usual definition accepts all pseudo regs; the other rejects them all.
2615 The symbol REG_OK_STRICT causes the latter definition to be used.
2616
2617 Most source files want to accept pseudo regs in the hope that
2618 they will get allocated to the class that the insn wants them to be in.
2619 Some source files that are used after register allocation
2620 need to be strict. */
2621
2622 #ifndef REG_OK_STRICT
2623
2624 #define REG_OK_STRICT_P 0
2625 #define REG_OK_FOR_INDEX_P(X) 0
2626 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2627 GP_REG_OR_PSEUDO_NONSTRICT_P (REGNO (X), (MODE))
2628
2629 #else
2630
2631 #define REG_OK_STRICT_P 1
2632 #define REG_OK_FOR_INDEX_P(X) 0
2633 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2634 REGNO_MODE_OK_FOR_BASE_P (REGNO (X), (MODE))
2635
2636 #endif
2637
2638 \f
2639 /* Maximum number of registers that can appear in a valid memory address. */
2640
2641 #define MAX_REGS_PER_ADDRESS 1
2642
2643 /* A C compound statement with a conditional `goto LABEL;' executed
2644 if X (an RTX) is a legitimate memory address on the target
2645 machine for a memory operand of mode MODE.
2646
2647 It usually pays to define several simpler macros to serve as
2648 subroutines for this one. Otherwise it may be too complicated
2649 to understand.
2650
2651 This macro must exist in two variants: a strict variant and a
2652 non-strict one. The strict variant is used in the reload pass.
2653 It must be defined so that any pseudo-register that has not been
2654 allocated a hard register is considered a memory reference. In
2655 contexts where some kind of register is required, a
2656 pseudo-register with no hard register must be rejected.
2657
2658 The non-strict variant is used in other passes. It must be
2659 defined to accept all pseudo-registers in every context where
2660 some kind of register is required.
2661
2662 Compiler source files that want to use the strict variant of
2663 this macro define the macro `REG_OK_STRICT'. You should use an
2664 `#ifdef REG_OK_STRICT' conditional to define the strict variant
2665 in that case and the non-strict variant otherwise.
2666
2667 Typically among the subroutines used to define
2668 `GO_IF_LEGITIMATE_ADDRESS' are subroutines to check for
2669 acceptable registers for various purposes (one for base
2670 registers, one for index registers, and so on). Then only these
2671 subroutine macros need have two variants; the higher levels of
2672 macros may be the same whether strict or not.
2673
2674 Normally, constant addresses which are the sum of a `symbol_ref'
2675 and an integer are stored inside a `const' RTX to mark them as
2676 constant. Therefore, there is no need to recognize such sums
2677 specifically as legitimate addresses. Normally you would simply
2678 recognize any `const' as legitimate.
2679
2680 Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle
2681 constant sums that are not marked with `const'. It assumes
2682 that a naked `plus' indicates indexing. If so, then you *must*
2683 reject such naked constant sums as illegitimate addresses, so
2684 that none of them will be given to `PRINT_OPERAND_ADDRESS'.
2685
2686 On some machines, whether a symbolic address is legitimate
2687 depends on the section that the address refers to. On these
2688 machines, define the macro `ENCODE_SECTION_INFO' to store the
2689 information into the `symbol_ref', and then check for it here.
2690 When you see a `const', you will have to look inside it to find
2691 the `symbol_ref' in order to determine the section. */
2692
2693 #if 1
2694 #define GO_PRINTF(x) trace(x)
2695 #define GO_PRINTF2(x,y) trace(x,y)
2696 #define GO_DEBUG_RTX(x) debug_rtx(x)
2697
2698 #else
2699 #define GO_PRINTF(x)
2700 #define GO_PRINTF2(x,y)
2701 #define GO_DEBUG_RTX(x)
2702 #endif
2703
2704 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2705 { \
2706 register rtx xinsn = (X); \
2707 \
2708 if (TARGET_DEBUG_B_MODE) \
2709 { \
2710 GO_PRINTF2 ("\n========== GO_IF_LEGITIMATE_ADDRESS, %sstrict\n", \
2711 (REG_OK_STRICT_P) ? "" : "not "); \
2712 GO_DEBUG_RTX (xinsn); \
2713 } \
2714 \
2715 /* The mips16 can only use the stack pointer as a base register when \
2716 loading SImode or DImode values. */ \
2717 if (GET_CODE (xinsn) == REG && REG_MODE_OK_FOR_BASE_P (xinsn, MODE)) \
2718 goto ADDR; \
2719 \
2720 if (CONSTANT_ADDRESS_P (xinsn) \
2721 && ! (mips_split_addresses && mips_check_split (xinsn, MODE)) \
2722 && (! TARGET_MIPS16 || mips16_constant (xinsn, MODE, 1, 0))) \
2723 goto ADDR; \
2724 \
2725 if (GET_CODE (xinsn) == LO_SUM && mips_split_addresses) \
2726 { \
2727 register rtx xlow0 = XEXP (xinsn, 0); \
2728 register rtx xlow1 = XEXP (xinsn, 1); \
2729 \
2730 if (GET_CODE (xlow0) == REG \
2731 && REG_MODE_OK_FOR_BASE_P (xlow0, MODE) \
2732 && mips_check_split (xlow1, MODE)) \
2733 goto ADDR; \
2734 } \
2735 \
2736 if (GET_CODE (xinsn) == PLUS) \
2737 { \
2738 register rtx xplus0 = XEXP (xinsn, 0); \
2739 register rtx xplus1 = XEXP (xinsn, 1); \
2740 register enum rtx_code code0 = GET_CODE (xplus0); \
2741 register enum rtx_code code1 = GET_CODE (xplus1); \
2742 \
2743 /* The mips16 can only use the stack pointer as a base register \
2744 when loading SImode or DImode values. */ \
2745 if (code0 == REG && REG_MODE_OK_FOR_BASE_P (xplus0, MODE)) \
2746 { \
2747 if (code1 == CONST_INT \
2748 && INTVAL (xplus1) >= -32768 \
2749 && INTVAL (xplus1) + GET_MODE_SIZE (MODE) - 1 <= 32767) \
2750 goto ADDR; \
2751 \
2752 /* On the mips16, we represent GP relative offsets in RTL. \
2753 These are 16 bit signed values, and can serve as register \
2754 offsets. */ \
2755 if (TARGET_MIPS16 \
2756 && mips16_gp_offset_p (xplus1)) \
2757 goto ADDR; \
2758 \
2759 /* For some code sequences, you actually get better code by \
2760 pretending that the MIPS supports an address mode of a \
2761 constant address + a register, even though the real \
2762 machine doesn't support it. This is because the \
2763 assembler can use $r1 to load just the high 16 bits, add \
2764 in the register, and fold the low 16 bits into the memory \
2765 reference, whereas the compiler generates a 4 instruction \
2766 sequence. On the other hand, CSE is not as effective. \
2767 It would be a win to generate the lui directly, but the \
2768 MIPS assembler does not have syntax to generate the \
2769 appropriate relocation. */ \
2770 \
2771 /* Also accept CONST_INT addresses here, so no else. */ \
2772 /* Reject combining an embedded PIC text segment reference \
2773 with a register. That requires an additional \
2774 instruction. */ \
2775 /* ??? Reject combining an address with a register for the MIPS \
2776 64 bit ABI, because the SGI assembler can not handle this. */ \
2777 if (!TARGET_DEBUG_A_MODE \
2778 && (mips_abi == ABI_32 || mips_abi == ABI_EABI) \
2779 && CONSTANT_ADDRESS_P (xplus1) \
2780 && ! mips_split_addresses \
2781 && (!TARGET_EMBEDDED_PIC \
2782 || code1 != CONST \
2783 || GET_CODE (XEXP (xplus1, 0)) != MINUS) \
2784 && !TARGET_MIPS16) \
2785 goto ADDR; \
2786 } \
2787 } \
2788 \
2789 if (TARGET_DEBUG_B_MODE) \
2790 GO_PRINTF ("Not a legitimate address\n"); \
2791 }
2792
2793
2794 /* A C expression that is 1 if the RTX X is a constant which is a
2795 valid address. This is defined to be the same as `CONSTANT_P (X)',
2796 but rejecting CONST_DOUBLE. */
2797 /* When pic, we must reject addresses of the form symbol+large int.
2798 This is because an instruction `sw $4,s+70000' needs to be converted
2799 by the assembler to `lw $at,s($gp);sw $4,70000($at)'. Normally the
2800 assembler would use $at as a temp to load in the large offset. In this
2801 case $at is already in use. We convert such problem addresses to
2802 `la $5,s;sw $4,70000($5)' via LEGITIMIZE_ADDRESS. */
2803 /* ??? SGI Irix 6 assembler fails for CONST address, so reject them. */
2804 #define CONSTANT_ADDRESS_P(X) \
2805 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
2806 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
2807 || (GET_CODE (X) == CONST \
2808 && ! (flag_pic && pic_address_needs_scratch (X)) \
2809 && (mips_abi == ABI_32 || mips_abi == ABI_EABI))) \
2810 && (!HALF_PIC_P () || !HALF_PIC_ADDRESS_P (X)))
2811
2812 /* Define this, so that when PIC, reload won't try to reload invalid
2813 addresses which require two reload registers. */
2814
2815 #define LEGITIMATE_PIC_OPERAND_P(X) (! pic_address_needs_scratch (X))
2816
2817 /* Nonzero if the constant value X is a legitimate general operand.
2818 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
2819
2820 At present, GAS doesn't understand li.[sd], so don't allow it
2821 to be generated at present. Also, the MIPS assembler does not
2822 grok li.d Infinity. */
2823
2824 /* ??? SGI Irix 6 assembler fails for CONST address, so reject them. */
2825 #define LEGITIMATE_CONSTANT_P(X) \
2826 ((GET_CODE (X) != CONST_DOUBLE \
2827 || mips_const_double_ok (X, GET_MODE (X))) \
2828 && ! (GET_CODE (X) == CONST \
2829 && mips_abi != ABI_32 && mips_abi != ABI_EABI) \
2830 && (! TARGET_MIPS16 || mips16_constant (X, GET_MODE (X), 0, 0)))
2831
2832 /* A C compound statement that attempts to replace X with a valid
2833 memory address for an operand of mode MODE. WIN will be a C
2834 statement label elsewhere in the code; the macro definition may
2835 use
2836
2837 GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);
2838
2839 to avoid further processing if the address has become legitimate.
2840
2841 X will always be the result of a call to `break_out_memory_refs',
2842 and OLDX will be the operand that was given to that function to
2843 produce X.
2844
2845 The code generated by this macro should not alter the
2846 substructure of X. If it transforms X into a more legitimate
2847 form, it should assign X (which will always be a C variable) a
2848 new value.
2849
2850 It is not necessary for this macro to come up with a legitimate
2851 address. The compiler has standard ways of doing so in all
2852 cases. In fact, it is safe for this macro to do nothing. But
2853 often a machine-dependent strategy can generate better code.
2854
2855 For the MIPS, transform:
2856
2857 memory(X + <large int>)
2858
2859 into:
2860
2861 Y = <large int> & ~0x7fff;
2862 Z = X + Y
2863 memory (Z + (<large int> & 0x7fff));
2864
2865 This is for CSE to find several similar references, and only use one Z.
2866
2867 When PIC, convert addresses of the form memory (symbol+large int) to
2868 memory (reg+large int). */
2869
2870
2871 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2872 { \
2873 register rtx xinsn = (X); \
2874 \
2875 if (TARGET_DEBUG_B_MODE) \
2876 { \
2877 GO_PRINTF ("\n========== LEGITIMIZE_ADDRESS\n"); \
2878 GO_DEBUG_RTX (xinsn); \
2879 } \
2880 \
2881 if (mips_split_addresses && mips_check_split (X, MODE)) \
2882 { \
2883 /* ??? Is this ever executed? */ \
2884 X = gen_rtx (LO_SUM, Pmode, \
2885 copy_to_mode_reg (Pmode, gen_rtx (HIGH, Pmode, X)), X); \
2886 goto WIN; \
2887 } \
2888 \
2889 if (GET_CODE (xinsn) == CONST \
2890 && ((flag_pic && pic_address_needs_scratch (xinsn)) \
2891 /* ??? SGI's Irix 6 assembler can't handle CONST. */ \
2892 || (mips_abi != ABI_32 && mips_abi != ABI_EABI))) \
2893 { \
2894 rtx ptr_reg = gen_reg_rtx (Pmode); \
2895 rtx constant = XEXP (XEXP (xinsn, 0), 1); \
2896 \
2897 emit_move_insn (ptr_reg, XEXP (XEXP (xinsn, 0), 0)); \
2898 \
2899 X = gen_rtx (PLUS, Pmode, ptr_reg, constant); \
2900 if (SMALL_INT (constant)) \
2901 goto WIN; \
2902 /* Otherwise we fall through so the code below will fix the \
2903 constant. */ \
2904 xinsn = X; \
2905 } \
2906 \
2907 if (GET_CODE (xinsn) == PLUS) \
2908 { \
2909 register rtx xplus0 = XEXP (xinsn, 0); \
2910 register rtx xplus1 = XEXP (xinsn, 1); \
2911 register enum rtx_code code0 = GET_CODE (xplus0); \
2912 register enum rtx_code code1 = GET_CODE (xplus1); \
2913 \
2914 if (code0 != REG && code1 == REG) \
2915 { \
2916 xplus0 = XEXP (xinsn, 1); \
2917 xplus1 = XEXP (xinsn, 0); \
2918 code0 = GET_CODE (xplus0); \
2919 code1 = GET_CODE (xplus1); \
2920 } \
2921 \
2922 if (code0 == REG && REG_MODE_OK_FOR_BASE_P (xplus0, MODE) \
2923 && code1 == CONST_INT && !SMALL_INT (xplus1)) \
2924 { \
2925 rtx int_reg = gen_reg_rtx (Pmode); \
2926 rtx ptr_reg = gen_reg_rtx (Pmode); \
2927 \
2928 emit_move_insn (int_reg, \
2929 GEN_INT (INTVAL (xplus1) & ~ 0x7fff)); \
2930 \
2931 emit_insn (gen_rtx (SET, VOIDmode, \
2932 ptr_reg, \
2933 gen_rtx (PLUS, Pmode, xplus0, int_reg))); \
2934 \
2935 X = gen_rtx (PLUS, Pmode, ptr_reg, \
2936 GEN_INT (INTVAL (xplus1) & 0x7fff)); \
2937 goto WIN; \
2938 } \
2939 } \
2940 \
2941 if (TARGET_DEBUG_B_MODE) \
2942 GO_PRINTF ("LEGITIMIZE_ADDRESS could not fix.\n"); \
2943 }
2944
2945
2946 /* A C statement or compound statement with a conditional `goto
2947 LABEL;' executed if memory address X (an RTX) can have different
2948 meanings depending on the machine mode of the memory reference it
2949 is used for.
2950
2951 Autoincrement and autodecrement addresses typically have
2952 mode-dependent effects because the amount of the increment or
2953 decrement is the size of the operand being addressed. Some
2954 machines have other mode-dependent addresses. Many RISC machines
2955 have no mode-dependent addresses.
2956
2957 You may assume that ADDR is a valid address for the machine. */
2958
2959 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
2960
2961
2962 /* Define this macro if references to a symbol must be treated
2963 differently depending on something about the variable or
2964 function named by the symbol (such as what section it is in).
2965
2966 The macro definition, if any, is executed immediately after the
2967 rtl for DECL has been created and stored in `DECL_RTL (DECL)'.
2968 The value of the rtl will be a `mem' whose address is a
2969 `symbol_ref'.
2970
2971 The usual thing for this macro to do is to a flag in the
2972 `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
2973 name string in the `symbol_ref' (if one bit is not enough
2974 information).
2975
2976 The best way to modify the name string is by adding text to the
2977 beginning, with suitable punctuation to prevent any ambiguity.
2978 Allocate the new name in `saveable_obstack'. You will have to
2979 modify `ASM_OUTPUT_LABELREF' to remove and decode the added text
2980 and output the name accordingly.
2981
2982 You can also check the information stored in the `symbol_ref' in
2983 the definition of `GO_IF_LEGITIMATE_ADDRESS' or
2984 `PRINT_OPERAND_ADDRESS'.
2985
2986 When optimizing for the $gp pointer, SYMBOL_REF_FLAG is set for all
2987 small objects.
2988
2989 When generating embedded PIC code, SYMBOL_REF_FLAG is set for
2990 symbols which are not in the .text section.
2991
2992 When generating mips16 code, SYMBOL_REF_FLAG is set for string
2993 constants which are put in the .text section. We also record the
2994 total length of all such strings; this total is used to decide
2995 whether we need to split the constant table, and need not be
2996 precisely correct. */
2997
2998 #define ENCODE_SECTION_INFO(DECL) \
2999 do \
3000 { \
3001 if (TARGET_MIPS16) \
3002 { \
3003 if (TREE_CODE (DECL) == STRING_CST \
3004 && ! flag_writable_strings) \
3005 { \
3006 SYMBOL_REF_FLAG (XEXP (TREE_CST_RTL (DECL), 0)) = 1; \
3007 mips_string_length += TREE_STRING_LENGTH (DECL); \
3008 } \
3009 } \
3010 if (TARGET_EMBEDDED_PIC) \
3011 { \
3012 if (TREE_CODE (DECL) == VAR_DECL) \
3013 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
3014 else if (TREE_CODE (DECL) == FUNCTION_DECL) \
3015 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 0; \
3016 else if (TREE_CODE (DECL) == STRING_CST \
3017 && ! flag_writable_strings) \
3018 SYMBOL_REF_FLAG (XEXP (TREE_CST_RTL (DECL), 0)) = 0; \
3019 else \
3020 SYMBOL_REF_FLAG (XEXP (TREE_CST_RTL (DECL), 0)) = 1; \
3021 } \
3022 \
3023 else if (TARGET_GP_OPT && TREE_CODE (DECL) == VAR_DECL) \
3024 { \
3025 int size = int_size_in_bytes (TREE_TYPE (DECL)); \
3026 \
3027 if (size > 0 && size <= mips_section_threshold) \
3028 SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
3029 } \
3030 \
3031 else if (HALF_PIC_P ()) \
3032 HALF_PIC_ENCODE (DECL); \
3033 } \
3034 while (0)
3035
3036 /* The mips16 wants the constant pool to be after the function,
3037 because the PC relative load instructions use unsigned offsets. */
3038
3039 #define CONSTANT_POOL_BEFORE_FUNCTION (! TARGET_MIPS16)
3040
3041 #define ASM_OUTPUT_POOL_EPILOGUE(FILE, FNNAME, FNDECL, SIZE) \
3042 mips_string_length = 0;
3043
3044 #if 0
3045 /* In mips16 mode, put most string constants after the function. */
3046 #define CONSTANT_AFTER_FUNCTION_P(tree) \
3047 (TARGET_MIPS16 && mips16_constant_after_function_p (tree))
3048 #endif
3049 \f
3050 /* Specify the machine mode that this machine uses
3051 for the index in the tablejump instruction.
3052 ??? Using HImode in mips16 mode can cause overflow. However, the
3053 overflow is no more likely than the overflow in a branch
3054 instruction. Large functions can currently break in both ways. */
3055 #define CASE_VECTOR_MODE \
3056 (TARGET_MIPS16 ? HImode : TARGET_LONG64 ? DImode : SImode)
3057
3058 /* Define as C expression which evaluates to nonzero if the tablejump
3059 instruction expects the table to contain offsets from the address of the
3060 table.
3061 Do not define this if the table should contain absolute addresses. */
3062 #define CASE_VECTOR_PC_RELATIVE (TARGET_MIPS16)
3063
3064 /* Specify the tree operation to be used to convert reals to integers. */
3065 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
3066
3067 /* This is the kind of divide that is easiest to do in the general case. */
3068 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
3069
3070 /* Define this as 1 if `char' should by default be signed; else as 0. */
3071 #ifndef DEFAULT_SIGNED_CHAR
3072 #define DEFAULT_SIGNED_CHAR 1
3073 #endif
3074
3075 /* Max number of bytes we can move from memory to memory
3076 in one reasonably fast instruction. */
3077 #define MOVE_MAX (TARGET_64BIT ? 8 : 4)
3078 #define MAX_MOVE_MAX 8
3079
3080 /* Define this macro as a C expression which is nonzero if
3081 accessing less than a word of memory (i.e. a `char' or a
3082 `short') is no faster than accessing a word of memory, i.e., if
3083 such access require more than one instruction or if there is no
3084 difference in cost between byte and (aligned) word loads.
3085
3086 On RISC machines, it tends to generate better code to define
3087 this as 1, since it avoids making a QI or HI mode register. */
3088 #define SLOW_BYTE_ACCESS 1
3089
3090 /* We assume that the store-condition-codes instructions store 0 for false
3091 and some other value for true. This is the value stored for true. */
3092
3093 #define STORE_FLAG_VALUE 1
3094
3095 /* Define this if zero-extension is slow (more than one real instruction). */
3096 #define SLOW_ZERO_EXTEND
3097
3098 /* Define this to be nonzero if shift instructions ignore all but the low-order
3099 few bits. */
3100 #define SHIFT_COUNT_TRUNCATED 1
3101
3102 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
3103 is done just by pretending it is already truncated. */
3104 /* In 64 bit mode, 32 bit instructions require that register values be properly
3105 sign-extended to 64 bits. As a result, a truncate is not a no-op if it
3106 converts a value >32 bits to a value <32 bits. */
3107 /* ??? This results in inefficient code for 64 bit to 32 conversions.
3108 Something needs to be done about this. Perhaps not use any 32 bit
3109 instructions? Perhaps use PROMOTE_MODE? */
3110 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
3111 (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
3112
3113 /* Specify the machine mode that pointers have.
3114 After generation of rtl, the compiler makes no further distinction
3115 between pointers and any other objects of this machine mode. */
3116
3117 #define Pmode (TARGET_LONG64 ? DImode : SImode)
3118
3119 /* A function address in a call instruction
3120 is a word address (for indexing purposes)
3121 so give the MEM rtx a words's mode. */
3122
3123 #define FUNCTION_MODE (TARGET_LONG64 ? DImode : SImode)
3124
3125 /* Define TARGET_MEM_FUNCTIONS if we want to use calls to memcpy and
3126 memset, instead of the BSD functions bcopy and bzero. */
3127
3128 #if defined(MIPS_SYSV) || defined(OSF_OS)
3129 #define TARGET_MEM_FUNCTIONS
3130 #endif
3131
3132 \f
3133 /* A part of a C `switch' statement that describes the relative
3134 costs of constant RTL expressions. It must contain `case'
3135 labels for expression codes `const_int', `const', `symbol_ref',
3136 `label_ref' and `const_double'. Each case must ultimately reach
3137 a `return' statement to return the relative cost of the use of
3138 that kind of constant value in an expression. The cost may
3139 depend on the precise value of the constant, which is available
3140 for examination in X.
3141
3142 CODE is the expression code--redundant, since it can be obtained
3143 with `GET_CODE (X)'. */
3144
3145 #define CONST_COSTS(X,CODE,OUTER_CODE) \
3146 case CONST_INT: \
3147 if (! TARGET_MIPS16) \
3148 { \
3149 /* Always return 0, since we don't have different sized \
3150 instructions, hence different costs according to Richard \
3151 Kenner */ \
3152 return 0; \
3153 } \
3154 if ((OUTER_CODE) == SET) \
3155 { \
3156 if (INTVAL (X) >= 0 && INTVAL (X) < 0x100) \
3157 return 0; \
3158 else if ((INTVAL (X) >= 0 && INTVAL (X) < 0x10000) \
3159 || (INTVAL (X) < 0 && INTVAL (X) > -0x100)) \
3160 return COSTS_N_INSNS (1); \
3161 else \
3162 return COSTS_N_INSNS (2); \
3163 } \
3164 /* A PLUS could be an address. We don't want to force an address \
3165 to use a register, so accept any signed 16 bit value without \
3166 complaint. */ \
3167 if ((OUTER_CODE) == PLUS \
3168 && INTVAL (X) >= -0x8000 && INTVAL (X) < 0x8000) \
3169 return 0; \
3170 /* A number between 1 and 8 inclusive is efficient for a shift. \
3171 Otherwise, we will need an extended instruction. */ \
3172 if ((OUTER_CODE) == ASHIFT || (OUTER_CODE) == ASHIFTRT \
3173 || (OUTER_CODE) == LSHIFTRT) \
3174 { \
3175 if (INTVAL (X) >= 1 && INTVAL (X) <= 8) \
3176 return 0; \
3177 return COSTS_N_INSNS (1); \
3178 } \
3179 /* We can use cmpi for an xor with an unsigned 16 bit value. */ \
3180 if ((OUTER_CODE) == XOR \
3181 && INTVAL (X) >= 0 && INTVAL (X) < 0x10000) \
3182 return 0; \
3183 /* We may be able to use slt or sltu for a comparison with a \
3184 signed 16 bit value. (The boundary conditions aren't quite \
3185 right, but this is just a heuristic anyhow.) */ \
3186 if (((OUTER_CODE) == LT || (OUTER_CODE) == LE \
3187 || (OUTER_CODE) == GE || (OUTER_CODE) == GT \
3188 || (OUTER_CODE) == LTU || (OUTER_CODE) == LEU \
3189 || (OUTER_CODE) == GEU || (OUTER_CODE) == GTU) \
3190 && INTVAL (X) >= -0x8000 && INTVAL (X) < 0x8000) \
3191 return 0; \
3192 /* Equality comparisons with 0 are cheap. */ \
3193 if (((OUTER_CODE) == EQ || (OUTER_CODE) == NE) \
3194 && INTVAL (X) == 0) \
3195 return 0; \
3196 \
3197 /* Otherwise, work out the cost to load the value into a \
3198 register. */ \
3199 if (INTVAL (X) >= 0 && INTVAL (X) < 0x100) \
3200 return COSTS_N_INSNS (1); \
3201 else if ((INTVAL (X) >= 0 && INTVAL (X) < 0x10000) \
3202 || (INTVAL (X) < 0 && INTVAL (X) > -0x100)) \
3203 return COSTS_N_INSNS (2); \
3204 else \
3205 return COSTS_N_INSNS (3); \
3206 \
3207 case LABEL_REF: \
3208 return COSTS_N_INSNS (2); \
3209 \
3210 case CONST: \
3211 { \
3212 rtx offset = const0_rtx; \
3213 rtx symref = eliminate_constant_term (XEXP (X, 0), &offset); \
3214 \
3215 if (TARGET_MIPS16 && mips16_gp_offset_p (X)) \
3216 { \
3217 /* Treat this like a signed 16 bit CONST_INT. */ \
3218 if ((OUTER_CODE) == PLUS) \
3219 return 0; \
3220 else if ((OUTER_CODE) == SET) \
3221 return COSTS_N_INSNS (1); \
3222 else \
3223 return COSTS_N_INSNS (2); \
3224 } \
3225 \
3226 if (GET_CODE (symref) == LABEL_REF) \
3227 return COSTS_N_INSNS (2); \
3228 \
3229 if (GET_CODE (symref) != SYMBOL_REF) \
3230 return COSTS_N_INSNS (4); \
3231 \
3232 /* let's be paranoid.... */ \
3233 if (INTVAL (offset) < -32768 || INTVAL (offset) > 32767) \
3234 return COSTS_N_INSNS (2); \
3235 \
3236 return COSTS_N_INSNS (SYMBOL_REF_FLAG (symref) ? 1 : 2); \
3237 } \
3238 \
3239 case SYMBOL_REF: \
3240 return COSTS_N_INSNS (SYMBOL_REF_FLAG (X) ? 1 : 2); \
3241 \
3242 case CONST_DOUBLE: \
3243 { \
3244 rtx high, low; \
3245 if (TARGET_MIPS16) \
3246 return COSTS_N_INSNS (4); \
3247 split_double (X, &high, &low); \
3248 return COSTS_N_INSNS ((high == CONST0_RTX (GET_MODE (high)) \
3249 || low == CONST0_RTX (GET_MODE (low))) \
3250 ? 2 : 4); \
3251 }
3252
3253 /* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
3254 This can be used, for example, to indicate how costly a multiply
3255 instruction is. In writing this macro, you can use the construct
3256 `COSTS_N_INSNS (N)' to specify a cost equal to N fast instructions.
3257
3258 This macro is optional; do not define it if the default cost
3259 assumptions are adequate for the target machine.
3260
3261 If -mdebugd is used, change the multiply cost to 2, so multiply by
3262 a constant isn't converted to a series of shifts. This helps
3263 strength reduction, and also makes it easier to identify what the
3264 compiler is doing. */
3265
3266 /* ??? Fix this to be right for the R8000. */
3267 #define RTX_COSTS(X,CODE,OUTER_CODE) \
3268 case MEM: \
3269 { \
3270 int num_words = (GET_MODE_SIZE (GET_MODE (X)) > UNITS_PER_WORD) ? 2 : 1; \
3271 if (simple_memory_operand (X, GET_MODE (X))) \
3272 return COSTS_N_INSNS (num_words); \
3273 \
3274 return COSTS_N_INSNS (2*num_words); \
3275 } \
3276 \
3277 case FFS: \
3278 return COSTS_N_INSNS (6); \
3279 \
3280 case NOT: \
3281 return COSTS_N_INSNS ((GET_MODE (X) == DImode && !TARGET_64BIT) ? 2 : 1); \
3282 \
3283 case AND: \
3284 case IOR: \
3285 case XOR: \
3286 if (GET_MODE (X) == DImode && !TARGET_64BIT) \
3287 return COSTS_N_INSNS (2); \
3288 \
3289 break; \
3290 \
3291 case ASHIFT: \
3292 case ASHIFTRT: \
3293 case LSHIFTRT: \
3294 if (GET_MODE (X) == DImode && !TARGET_64BIT) \
3295 return COSTS_N_INSNS ((GET_CODE (XEXP (X, 1)) == CONST_INT) ? 4 : 12); \
3296 \
3297 break; \
3298 \
3299 case ABS: \
3300 { \
3301 enum machine_mode xmode = GET_MODE (X); \
3302 if (xmode == SFmode || xmode == DFmode) \
3303 return COSTS_N_INSNS (1); \
3304 \
3305 return COSTS_N_INSNS (4); \
3306 } \
3307 \
3308 case PLUS: \
3309 case MINUS: \
3310 { \
3311 enum machine_mode xmode = GET_MODE (X); \
3312 if (xmode == SFmode || xmode == DFmode) \
3313 { \
3314 if (mips_cpu == PROCESSOR_R3000 \
3315 || mips_cpu == PROCESSOR_R3900) \
3316 return COSTS_N_INSNS (2); \
3317 else if (mips_cpu == PROCESSOR_R6000) \
3318 return COSTS_N_INSNS (3); \
3319 else \
3320 return COSTS_N_INSNS (6); \
3321 } \
3322 \
3323 if (xmode == DImode && !TARGET_64BIT) \
3324 return COSTS_N_INSNS (4); \
3325 \
3326 break; \
3327 } \
3328 \
3329 case NEG: \
3330 if (GET_MODE (X) == DImode && !TARGET_64BIT) \
3331 return 4; \
3332 \
3333 break; \
3334 \
3335 case MULT: \
3336 { \
3337 enum machine_mode xmode = GET_MODE (X); \
3338 if (xmode == SFmode) \
3339 { \
3340 if (mips_cpu == PROCESSOR_R3000 \
3341 || mips_cpu == PROCESSOR_R3900 \
3342 || mips_cpu == PROCESSOR_R5000) \
3343 return COSTS_N_INSNS (4); \
3344 else if (mips_cpu == PROCESSOR_R6000) \
3345 return COSTS_N_INSNS (5); \
3346 else \
3347 return COSTS_N_INSNS (7); \
3348 } \
3349 \
3350 if (xmode == DFmode) \
3351 { \
3352 if (mips_cpu == PROCESSOR_R3000 \
3353 || mips_cpu == PROCESSOR_R3900 \
3354 || mips_cpu == PROCESSOR_R5000) \
3355 return COSTS_N_INSNS (5); \
3356 else if (mips_cpu == PROCESSOR_R6000) \
3357 return COSTS_N_INSNS (6); \
3358 else \
3359 return COSTS_N_INSNS (8); \
3360 } \
3361 \
3362 if (mips_cpu == PROCESSOR_R3000) \
3363 return COSTS_N_INSNS (12); \
3364 else if (mips_cpu == PROCESSOR_R3900) \
3365 return COSTS_N_INSNS (2); \
3366 else if (mips_cpu == PROCESSOR_R6000) \
3367 return COSTS_N_INSNS (17); \
3368 else if (mips_cpu == PROCESSOR_R5000) \
3369 return COSTS_N_INSNS (5); \
3370 else \
3371 return COSTS_N_INSNS (10); \
3372 } \
3373 \
3374 case DIV: \
3375 case MOD: \
3376 { \
3377 enum machine_mode xmode = GET_MODE (X); \
3378 if (xmode == SFmode) \
3379 { \
3380 if (mips_cpu == PROCESSOR_R3000 \
3381 || mips_cpu == PROCESSOR_R3900) \
3382 return COSTS_N_INSNS (12); \
3383 else if (mips_cpu == PROCESSOR_R6000) \
3384 return COSTS_N_INSNS (15); \
3385 else \
3386 return COSTS_N_INSNS (23); \
3387 } \
3388 \
3389 if (xmode == DFmode) \
3390 { \
3391 if (mips_cpu == PROCESSOR_R3000 \
3392 || mips_cpu == PROCESSOR_R3900) \
3393 return COSTS_N_INSNS (19); \
3394 else if (mips_cpu == PROCESSOR_R6000) \
3395 return COSTS_N_INSNS (16); \
3396 else \
3397 return COSTS_N_INSNS (36); \
3398 } \
3399 } \
3400 /* fall through */ \
3401 \
3402 case UDIV: \
3403 case UMOD: \
3404 if (mips_cpu == PROCESSOR_R3000 \
3405 || mips_cpu == PROCESSOR_R3900) \
3406 return COSTS_N_INSNS (35); \
3407 else if (mips_cpu == PROCESSOR_R6000) \
3408 return COSTS_N_INSNS (38); \
3409 else if (mips_cpu == PROCESSOR_R5000) \
3410 return COSTS_N_INSNS (36); \
3411 else \
3412 return COSTS_N_INSNS (69); \
3413 \
3414 case SIGN_EXTEND: \
3415 /* A sign extend from SImode to DImode in 64 bit mode is often \
3416 zero instructions, because the result can often be used \
3417 directly by another instruction; we'll call it one. */ \
3418 if (TARGET_64BIT && GET_MODE (X) == DImode \
3419 && GET_MODE (XEXP (X, 0)) == SImode) \
3420 return COSTS_N_INSNS (1); \
3421 else \
3422 return COSTS_N_INSNS (2); \
3423 \
3424 case ZERO_EXTEND: \
3425 if (TARGET_64BIT && GET_MODE (X) == DImode \
3426 && GET_MODE (XEXP (X, 0)) == SImode) \
3427 return COSTS_N_INSNS (2); \
3428 else \
3429 return COSTS_N_INSNS (1);
3430
3431 /* An expression giving the cost of an addressing mode that
3432 contains ADDRESS. If not defined, the cost is computed from the
3433 form of the ADDRESS expression and the `CONST_COSTS' values.
3434
3435 For most CISC machines, the default cost is a good approximation
3436 of the true cost of the addressing mode. However, on RISC
3437 machines, all instructions normally have the same length and
3438 execution time. Hence all addresses will have equal costs.
3439
3440 In cases where more than one form of an address is known, the
3441 form with the lowest cost will be used. If multiple forms have
3442 the same, lowest, cost, the one that is the most complex will be
3443 used.
3444
3445 For example, suppose an address that is equal to the sum of a
3446 register and a constant is used twice in the same basic block.
3447 When this macro is not defined, the address will be computed in
3448 a register and memory references will be indirect through that
3449 register. On machines where the cost of the addressing mode
3450 containing the sum is no higher than that of a simple indirect
3451 reference, this will produce an additional instruction and
3452 possibly require an additional register. Proper specification
3453 of this macro eliminates this overhead for such machines.
3454
3455 Similar use of this macro is made in strength reduction of loops.
3456
3457 ADDRESS need not be valid as an address. In such a case, the
3458 cost is not relevant and can be any value; invalid addresses
3459 need not be assigned a different cost.
3460
3461 On machines where an address involving more than one register is
3462 as cheap as an address computation involving only one register,
3463 defining `ADDRESS_COST' to reflect this can cause two registers
3464 to be live over a region of code where only one would have been
3465 if `ADDRESS_COST' were not defined in that manner. This effect
3466 should be considered in the definition of this macro.
3467 Equivalent costs should probably only be given to addresses with
3468 different numbers of registers on machines with lots of registers.
3469
3470 This macro will normally either not be defined or be defined as
3471 a constant. */
3472
3473 #define ADDRESS_COST(ADDR) (REG_P (ADDR) ? 1 : mips_address_cost (ADDR))
3474
3475 /* A C expression for the cost of moving data from a register in
3476 class FROM to one in class TO. The classes are expressed using
3477 the enumeration values such as `GENERAL_REGS'. A value of 2 is
3478 the default; other values are interpreted relative to that.
3479
3480 It is not required that the cost always equal 2 when FROM is the
3481 same as TO; on some machines it is expensive to move between
3482 registers if they are not general registers.
3483
3484 If reload sees an insn consisting of a single `set' between two
3485 hard registers, and if `REGISTER_MOVE_COST' applied to their
3486 classes returns a value of 2, reload does not check to ensure
3487 that the constraints of the insn are met. Setting a cost of
3488 other than 2 will allow reload to verify that the constraints are
3489 met. You should do this if the `movM' pattern's constraints do
3490 not allow such copying. */
3491
3492 #define REGISTER_MOVE_COST(FROM, TO) \
3493 ((FROM) == M16_REGS && GR_REG_CLASS_P (TO) ? 2 \
3494 : (FROM) == M16_NA_REGS && GR_REG_CLASS_P (TO) ? 2 \
3495 : GR_REG_CLASS_P (FROM) && (TO) == M16_REGS ? 2 \
3496 : GR_REG_CLASS_P (FROM) && (TO) == M16_NA_REGS ? 2 \
3497 : GR_REG_CLASS_P (FROM) && GR_REG_CLASS_P (TO) ? (TARGET_MIPS16 ? 4 : 2) \
3498 : (FROM) == FP_REGS && (TO) == FP_REGS ? 2 \
3499 : GR_REG_CLASS_P (FROM) && (TO) == FP_REGS ? 4 \
3500 : (FROM) == FP_REGS && GR_REG_CLASS_P (TO) ? 4 \
3501 : (((FROM) == HI_REG || (FROM) == LO_REG \
3502 || (FROM) == MD_REGS || (FROM) == HILO_REG) \
3503 && ((TO) == M16_REGS || (TO) == M16_NA_REGS)) ? 6 \
3504 : (((FROM) == HI_REG || (FROM) == LO_REG \
3505 || (FROM) == MD_REGS || (FROM) == HILO_REG) \
3506 && GR_REG_CLASS_P (TO)) ? (TARGET_MIPS16 ? 8 : 6) \
3507 : (((TO) == HI_REG || (TO) == LO_REG \
3508 || (TO) == MD_REGS || (TO) == HILO_REG) \
3509 && GR_REG_CLASS_P (FROM)) ? (TARGET_MIPS16 ? 12 : 6) \
3510 : (FROM) == ST_REGS && GR_REG_CLASS_P (TO) ? 4 \
3511 : (FROM) == FP_REGS && (TO) == ST_REGS ? 8 \
3512 : 12)
3513
3514 /* ??? Fix this to be right for the R8000. */
3515 #define MEMORY_MOVE_COST(MODE) \
3516 ((mips_cpu == PROCESSOR_R4000 || mips_cpu == PROCESSOR_R6000) ? 6 : 4)
3517
3518 /* A C expression for the cost of a branch instruction. A value of
3519 1 is the default; other values are interpreted relative to that. */
3520
3521 /* ??? Fix this to be right for the R8000. */
3522 #define BRANCH_COST \
3523 ((! TARGET_MIPS16 \
3524 && (mips_cpu == PROCESSOR_R4000 || mips_cpu == PROCESSOR_R6000)) \
3525 ? 2 : 1)
3526
3527 /* A C statement (sans semicolon) to update the integer variable COST
3528 based on the relationship between INSN that is dependent on
3529 DEP_INSN through the dependence LINK. The default is to make no
3530 adjustment to COST. On the MIPS, ignore the cost of anti- and
3531 output-dependencies. */
3532
3533 #define ADJUST_COST(INSN,LINK,DEP_INSN,COST) \
3534 if (REG_NOTE_KIND (LINK) != 0) \
3535 (COST) = 0; /* Anti or output dependence. */
3536 \f
3537 /* Optionally define this if you have added predicates to
3538 `MACHINE.c'. This macro is called within an initializer of an
3539 array of structures. The first field in the structure is the
3540 name of a predicate and the second field is an array of rtl
3541 codes. For each predicate, list all rtl codes that can be in
3542 expressions matched by the predicate. The list should have a
3543 trailing comma. Here is an example of two entries in the list
3544 for a typical RISC machine:
3545
3546 #define PREDICATE_CODES \
3547 {"gen_reg_rtx_operand", {SUBREG, REG}}, \
3548 {"reg_or_short_cint_operand", {SUBREG, REG, CONST_INT}},
3549
3550 Defining this macro does not affect the generated code (however,
3551 incorrect definitions that omit an rtl code that may be matched
3552 by the predicate can cause the compiler to malfunction).
3553 Instead, it allows the table built by `genrecog' to be more
3554 compact and efficient, thus speeding up the compiler. The most
3555 important predicates to include in the list specified by this
3556 macro are thoses used in the most insn patterns. */
3557
3558 #define PREDICATE_CODES \
3559 {"uns_arith_operand", { REG, CONST_INT, SUBREG }}, \
3560 {"arith_operand", { REG, CONST_INT, SUBREG }}, \
3561 {"arith32_operand", { REG, CONST_INT, SUBREG }}, \
3562 {"reg_or_0_operand", { REG, CONST_INT, SUBREG }}, \
3563 {"small_int", { CONST_INT }}, \
3564 {"large_int", { CONST_INT }}, \
3565 {"mips_const_double_ok", { CONST_DOUBLE }}, \
3566 {"const_float_1_operand", { CONST_DOUBLE }}, \
3567 {"simple_memory_operand", { MEM, SUBREG }}, \
3568 {"equality_op", { EQ, NE }}, \
3569 {"cmp_op", { EQ, NE, GT, GE, GTU, GEU, LT, LE, \
3570 LTU, LEU }}, \
3571 {"pc_or_label_operand", { PC, LABEL_REF }}, \
3572 {"call_insn_operand", { CONST_INT, CONST, SYMBOL_REF, REG}}, \
3573 {"move_operand", { CONST_INT, CONST_DOUBLE, CONST, \
3574 SYMBOL_REF, LABEL_REF, SUBREG, \
3575 REG, MEM}}, \
3576 {"movdi_operand", { CONST_INT, CONST_DOUBLE, CONST, \
3577 SYMBOL_REF, LABEL_REF, SUBREG, REG, \
3578 MEM, SIGN_EXTEND }}, \
3579 {"se_register_operand", { SUBREG, REG, SIGN_EXTEND }}, \
3580 {"se_reg_or_0_operand", { REG, CONST_INT, SUBREG, \
3581 SIGN_EXTEND }}, \
3582 {"se_uns_arith_operand", { REG, CONST_INT, SUBREG, \
3583 SIGN_EXTEND }}, \
3584 {"se_arith_operand", { REG, CONST_INT, SUBREG, \
3585 SIGN_EXTEND }}, \
3586 {"se_nonmemory_operand", { CONST_INT, CONST_DOUBLE, CONST, \
3587 SYMBOL_REF, LABEL_REF, SUBREG, \
3588 REG, SIGN_EXTEND }}, \
3589 {"se_nonimmediate_operand", { SUBREG, REG, MEM, SIGN_EXTEND }}, \
3590 {"consttable_operand", { LABEL_REF, SYMBOL_REF, CONST_INT, \
3591 CONST_DOUBLE, CONST }},
3592
3593 \f
3594 /* If defined, a C statement to be executed just prior to the
3595 output of assembler code for INSN, to modify the extracted
3596 operands so they will be output differently.
3597
3598 Here the argument OPVEC is the vector containing the operands
3599 extracted from INSN, and NOPERANDS is the number of elements of
3600 the vector which contain meaningful data for this insn. The
3601 contents of this vector are what will be used to convert the
3602 insn template into assembler code, so you can change the
3603 assembler output by changing the contents of the vector.
3604
3605 We use it to check if the current insn needs a nop in front of it
3606 because of load delays, and also to update the delay slot
3607 statistics. */
3608
3609 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
3610 final_prescan_insn (INSN, OPVEC, NOPERANDS)
3611
3612 \f
3613 /* Control the assembler format that we output. */
3614
3615 /* Output at beginning of assembler file.
3616 If we are optimizing to use the global pointer, create a temporary
3617 file to hold all of the text stuff, and write it out to the end.
3618 This is needed because the MIPS assembler is evidently one pass,
3619 and if it hasn't seen the relevant .comm/.lcomm/.extern/.sdata
3620 declaration when the code is processed, it generates a two
3621 instruction sequence. */
3622
3623 #define ASM_FILE_START(STREAM) mips_asm_file_start (STREAM)
3624
3625 /* Output to assembler file text saying following lines
3626 may contain character constants, extra white space, comments, etc. */
3627
3628 #define ASM_APP_ON " #APP\n"
3629
3630 /* Output to assembler file text saying following lines
3631 no longer contain unusual constructs. */
3632
3633 #define ASM_APP_OFF " #NO_APP\n"
3634
3635 /* How to refer to registers in assembler output.
3636 This sequence is indexed by compiler's hard-register-number (see above).
3637
3638 In order to support the two different conventions for register names,
3639 we use the name of a table set up in mips.c, which is overwritten
3640 if -mrnames is used. */
3641
3642 #define REGISTER_NAMES \
3643 { \
3644 &mips_reg_names[ 0][0], \
3645 &mips_reg_names[ 1][0], \
3646 &mips_reg_names[ 2][0], \
3647 &mips_reg_names[ 3][0], \
3648 &mips_reg_names[ 4][0], \
3649 &mips_reg_names[ 5][0], \
3650 &mips_reg_names[ 6][0], \
3651 &mips_reg_names[ 7][0], \
3652 &mips_reg_names[ 8][0], \
3653 &mips_reg_names[ 9][0], \
3654 &mips_reg_names[10][0], \
3655 &mips_reg_names[11][0], \
3656 &mips_reg_names[12][0], \
3657 &mips_reg_names[13][0], \
3658 &mips_reg_names[14][0], \
3659 &mips_reg_names[15][0], \
3660 &mips_reg_names[16][0], \
3661 &mips_reg_names[17][0], \
3662 &mips_reg_names[18][0], \
3663 &mips_reg_names[19][0], \
3664 &mips_reg_names[20][0], \
3665 &mips_reg_names[21][0], \
3666 &mips_reg_names[22][0], \
3667 &mips_reg_names[23][0], \
3668 &mips_reg_names[24][0], \
3669 &mips_reg_names[25][0], \
3670 &mips_reg_names[26][0], \
3671 &mips_reg_names[27][0], \
3672 &mips_reg_names[28][0], \
3673 &mips_reg_names[29][0], \
3674 &mips_reg_names[30][0], \
3675 &mips_reg_names[31][0], \
3676 &mips_reg_names[32][0], \
3677 &mips_reg_names[33][0], \
3678 &mips_reg_names[34][0], \
3679 &mips_reg_names[35][0], \
3680 &mips_reg_names[36][0], \
3681 &mips_reg_names[37][0], \
3682 &mips_reg_names[38][0], \
3683 &mips_reg_names[39][0], \
3684 &mips_reg_names[40][0], \
3685 &mips_reg_names[41][0], \
3686 &mips_reg_names[42][0], \
3687 &mips_reg_names[43][0], \
3688 &mips_reg_names[44][0], \
3689 &mips_reg_names[45][0], \
3690 &mips_reg_names[46][0], \
3691 &mips_reg_names[47][0], \
3692 &mips_reg_names[48][0], \
3693 &mips_reg_names[49][0], \
3694 &mips_reg_names[50][0], \
3695 &mips_reg_names[51][0], \
3696 &mips_reg_names[52][0], \
3697 &mips_reg_names[53][0], \
3698 &mips_reg_names[54][0], \
3699 &mips_reg_names[55][0], \
3700 &mips_reg_names[56][0], \
3701 &mips_reg_names[57][0], \
3702 &mips_reg_names[58][0], \
3703 &mips_reg_names[59][0], \
3704 &mips_reg_names[60][0], \
3705 &mips_reg_names[61][0], \
3706 &mips_reg_names[62][0], \
3707 &mips_reg_names[63][0], \
3708 &mips_reg_names[64][0], \
3709 &mips_reg_names[65][0], \
3710 &mips_reg_names[66][0], \
3711 &mips_reg_names[67][0], \
3712 &mips_reg_names[68][0], \
3713 &mips_reg_names[69][0], \
3714 &mips_reg_names[70][0], \
3715 &mips_reg_names[71][0], \
3716 &mips_reg_names[72][0], \
3717 &mips_reg_names[73][0], \
3718 &mips_reg_names[74][0], \
3719 &mips_reg_names[75][0], \
3720 }
3721
3722 /* print-rtl.c can't use REGISTER_NAMES, since it depends on mips.c.
3723 So define this for it. */
3724 #define DEBUG_REGISTER_NAMES \
3725 { \
3726 "$0", "at", "v0", "v1", "a0", "a1", "a2", "a3", \
3727 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", \
3728 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", \
3729 "t8", "t9", "k0", "k1", "gp", "sp", "$fp", "ra", \
3730 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
3731 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
3732 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
3733 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
3734 "hi", "lo", "accum","$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
3735 "$fcc5","$fcc6","$fcc7","$rap" \
3736 }
3737
3738 /* If defined, a C initializer for an array of structures
3739 containing a name and a register number. This macro defines
3740 additional names for hard registers, thus allowing the `asm'
3741 option in declarations to refer to registers using alternate
3742 names.
3743
3744 We define both names for the integer registers here. */
3745
3746 #define ADDITIONAL_REGISTER_NAMES \
3747 { \
3748 { "$0", 0 + GP_REG_FIRST }, \
3749 { "$1", 1 + GP_REG_FIRST }, \
3750 { "$2", 2 + GP_REG_FIRST }, \
3751 { "$3", 3 + GP_REG_FIRST }, \
3752 { "$4", 4 + GP_REG_FIRST }, \
3753 { "$5", 5 + GP_REG_FIRST }, \
3754 { "$6", 6 + GP_REG_FIRST }, \
3755 { "$7", 7 + GP_REG_FIRST }, \
3756 { "$8", 8 + GP_REG_FIRST }, \
3757 { "$9", 9 + GP_REG_FIRST }, \
3758 { "$10", 10 + GP_REG_FIRST }, \
3759 { "$11", 11 + GP_REG_FIRST }, \
3760 { "$12", 12 + GP_REG_FIRST }, \
3761 { "$13", 13 + GP_REG_FIRST }, \
3762 { "$14", 14 + GP_REG_FIRST }, \
3763 { "$15", 15 + GP_REG_FIRST }, \
3764 { "$16", 16 + GP_REG_FIRST }, \
3765 { "$17", 17 + GP_REG_FIRST }, \
3766 { "$18", 18 + GP_REG_FIRST }, \
3767 { "$19", 19 + GP_REG_FIRST }, \
3768 { "$20", 20 + GP_REG_FIRST }, \
3769 { "$21", 21 + GP_REG_FIRST }, \
3770 { "$22", 22 + GP_REG_FIRST }, \
3771 { "$23", 23 + GP_REG_FIRST }, \
3772 { "$24", 24 + GP_REG_FIRST }, \
3773 { "$25", 25 + GP_REG_FIRST }, \
3774 { "$26", 26 + GP_REG_FIRST }, \
3775 { "$27", 27 + GP_REG_FIRST }, \
3776 { "$28", 28 + GP_REG_FIRST }, \
3777 { "$29", 29 + GP_REG_FIRST }, \
3778 { "$30", 30 + GP_REG_FIRST }, \
3779 { "$31", 31 + GP_REG_FIRST }, \
3780 { "$sp", 29 + GP_REG_FIRST }, \
3781 { "$fp", 30 + GP_REG_FIRST }, \
3782 { "at", 1 + GP_REG_FIRST }, \
3783 { "v0", 2 + GP_REG_FIRST }, \
3784 { "v1", 3 + GP_REG_FIRST }, \
3785 { "a0", 4 + GP_REG_FIRST }, \
3786 { "a1", 5 + GP_REG_FIRST }, \
3787 { "a2", 6 + GP_REG_FIRST }, \
3788 { "a3", 7 + GP_REG_FIRST }, \
3789 { "t0", 8 + GP_REG_FIRST }, \
3790 { "t1", 9 + GP_REG_FIRST }, \
3791 { "t2", 10 + GP_REG_FIRST }, \
3792 { "t3", 11 + GP_REG_FIRST }, \
3793 { "t4", 12 + GP_REG_FIRST }, \
3794 { "t5", 13 + GP_REG_FIRST }, \
3795 { "t6", 14 + GP_REG_FIRST }, \
3796 { "t7", 15 + GP_REG_FIRST }, \
3797 { "s0", 16 + GP_REG_FIRST }, \
3798 { "s1", 17 + GP_REG_FIRST }, \
3799 { "s2", 18 + GP_REG_FIRST }, \
3800 { "s3", 19 + GP_REG_FIRST }, \
3801 { "s4", 20 + GP_REG_FIRST }, \
3802 { "s5", 21 + GP_REG_FIRST }, \
3803 { "s6", 22 + GP_REG_FIRST }, \
3804 { "s7", 23 + GP_REG_FIRST }, \
3805 { "t8", 24 + GP_REG_FIRST }, \
3806 { "t9", 25 + GP_REG_FIRST }, \
3807 { "k0", 26 + GP_REG_FIRST }, \
3808 { "k1", 27 + GP_REG_FIRST }, \
3809 { "gp", 28 + GP_REG_FIRST }, \
3810 { "sp", 29 + GP_REG_FIRST }, \
3811 { "fp", 30 + GP_REG_FIRST }, \
3812 { "ra", 31 + GP_REG_FIRST }, \
3813 { "$sp", 29 + GP_REG_FIRST }, \
3814 { "$fp", 30 + GP_REG_FIRST } \
3815 }
3816
3817 /* Define results of standard character escape sequences. */
3818 #define TARGET_BELL 007
3819 #define TARGET_BS 010
3820 #define TARGET_TAB 011
3821 #define TARGET_NEWLINE 012
3822 #define TARGET_VT 013
3823 #define TARGET_FF 014
3824 #define TARGET_CR 015
3825
3826 /* A C compound statement to output to stdio stream STREAM the
3827 assembler syntax for an instruction operand X. X is an RTL
3828 expression.
3829
3830 CODE is a value that can be used to specify one of several ways
3831 of printing the operand. It is used when identical operands
3832 must be printed differently depending on the context. CODE
3833 comes from the `%' specification that was used to request
3834 printing of the operand. If the specification was just `%DIGIT'
3835 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
3836 is the ASCII code for LTR.
3837
3838 If X is a register, this macro should print the register's name.
3839 The names can be found in an array `reg_names' whose type is
3840 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
3841
3842 When the machine description has a specification `%PUNCT' (a `%'
3843 followed by a punctuation character), this macro is called with
3844 a null pointer for X and the punctuation character for CODE.
3845
3846 See mips.c for the MIPS specific codes. */
3847
3848 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
3849
3850 /* A C expression which evaluates to true if CODE is a valid
3851 punctuation character for use in the `PRINT_OPERAND' macro. If
3852 `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no
3853 punctuation characters (except for the standard one, `%') are
3854 used in this way. */
3855
3856 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE]
3857
3858 /* A C compound statement to output to stdio stream STREAM the
3859 assembler syntax for an instruction operand that is a memory
3860 reference whose address is ADDR. ADDR is an RTL expression.
3861
3862 On some machines, the syntax for a symbolic address depends on
3863 the section that the address refers to. On these machines,
3864 define the macro `ENCODE_SECTION_INFO' to store the information
3865 into the `symbol_ref', and then check for it here. */
3866
3867 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
3868
3869
3870 /* A C statement, to be executed after all slot-filler instructions
3871 have been output. If necessary, call `dbr_sequence_length' to
3872 determine the number of slots filled in a sequence (zero if not
3873 currently outputting a sequence), to decide how many no-ops to
3874 output, or whatever.
3875
3876 Don't define this macro if it has nothing to do, but it is
3877 helpful in reading assembly output if the extent of the delay
3878 sequence is made explicit (e.g. with white space).
3879
3880 Note that output routines for instructions with delay slots must
3881 be prepared to deal with not being output as part of a sequence
3882 (i.e. when the scheduling pass is not run, or when no slot
3883 fillers could be found.) The variable `final_sequence' is null
3884 when not processing a sequence, otherwise it contains the
3885 `sequence' rtx being output. */
3886
3887 #define DBR_OUTPUT_SEQEND(STREAM) \
3888 do \
3889 { \
3890 if (set_nomacro > 0 && --set_nomacro == 0) \
3891 fputs ("\t.set\tmacro\n", STREAM); \
3892 \
3893 if (set_noreorder > 0 && --set_noreorder == 0) \
3894 fputs ("\t.set\treorder\n", STREAM); \
3895 \
3896 dslots_jump_filled++; \
3897 fputs ("\n", STREAM); \
3898 } \
3899 while (0)
3900
3901
3902 /* How to tell the debugger about changes of source files. Note, the
3903 mips ECOFF format cannot deal with changes of files inside of
3904 functions, which means the output of parser generators like bison
3905 is generally not debuggable without using the -l switch. Lose,
3906 lose, lose. Silicon graphics seems to want all .file's hardwired
3907 to 1. */
3908
3909 #ifndef SET_FILE_NUMBER
3910 #define SET_FILE_NUMBER() ++num_source_filenames
3911 #endif
3912
3913 #define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME) \
3914 mips_output_filename (STREAM, NAME)
3915
3916 /* This is defined so that it can be overridden in iris6.h. */
3917 #define ASM_OUTPUT_FILENAME(STREAM, NUM_SOURCE_FILENAMES, NAME) \
3918 do \
3919 { \
3920 fprintf (STREAM, "\t.file\t%d ", NUM_SOURCE_FILENAMES); \
3921 output_quoted_string (STREAM, NAME); \
3922 fputs ("\n", STREAM); \
3923 } \
3924 while (0)
3925
3926 /* This is how to output a note the debugger telling it the line number
3927 to which the following sequence of instructions corresponds.
3928 Silicon graphics puts a label after each .loc. */
3929
3930 #ifndef LABEL_AFTER_LOC
3931 #define LABEL_AFTER_LOC(STREAM)
3932 #endif
3933
3934 #define ASM_OUTPUT_SOURCE_LINE(STREAM, LINE) \
3935 mips_output_lineno (STREAM, LINE)
3936
3937 /* The MIPS implementation uses some labels for it's own purpose. The
3938 following lists what labels are created, and are all formed by the
3939 pattern $L[a-z].*. The machine independent portion of GCC creates
3940 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
3941
3942 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
3943 $Lb[0-9]+ Begin blocks for MIPS debug support
3944 $Lc[0-9]+ Label for use in s<xx> operation.
3945 $Le[0-9]+ End blocks for MIPS debug support
3946 $Lp\..+ Half-pic labels. */
3947
3948 /* This is how to output the definition of a user-level label named NAME,
3949 such as the label on a static function or variable NAME.
3950
3951 If we are optimizing the gp, remember that this label has been put
3952 out, so we know not to emit an .extern for it in mips_asm_file_end.
3953 We use one of the common bits in the IDENTIFIER tree node for this,
3954 since those bits seem to be unused, and we don't have any method
3955 of getting the decl nodes from the name. */
3956
3957 #define ASM_OUTPUT_LABEL(STREAM,NAME) \
3958 do { \
3959 assemble_name (STREAM, NAME); \
3960 fputs (":\n", STREAM); \
3961 } while (0)
3962
3963
3964 /* A C statement (sans semicolon) to output to the stdio stream
3965 STREAM any text necessary for declaring the name NAME of an
3966 initialized variable which is being defined. This macro must
3967 output the label definition (perhaps using `ASM_OUTPUT_LABEL').
3968 The argument DECL is the `VAR_DECL' tree node representing the
3969 variable.
3970
3971 If this macro is not defined, then the variable name is defined
3972 in the usual manner as a label (by means of `ASM_OUTPUT_LABEL'). */
3973
3974 #define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
3975 do \
3976 { \
3977 mips_declare_object (STREAM, NAME, "", ":\n", 0); \
3978 HALF_PIC_DECLARE (NAME); \
3979 } \
3980 while (0)
3981
3982
3983 /* This is how to output a command to make the user-level label named NAME
3984 defined for reference from other files. */
3985
3986 #define ASM_GLOBALIZE_LABEL(STREAM,NAME) \
3987 do { \
3988 fputs ("\t.globl\t", STREAM); \
3989 assemble_name (STREAM, NAME); \
3990 fputs ("\n", STREAM); \
3991 } while (0)
3992
3993 /* This says how to define a global common symbol. */
3994
3995 #define ASM_OUTPUT_COMMON(STREAM, NAME, SIZE, ROUNDED) \
3996 mips_declare_object (STREAM, NAME, "\n\t.comm\t", ",%u\n", (SIZE))
3997
3998 /* This says how to define a local common symbol (ie, not visible to
3999 linker). */
4000
4001 #define ASM_OUTPUT_LOCAL(STREAM, NAME, SIZE, ROUNDED) \
4002 mips_declare_object (STREAM, NAME, "\n\t.lcomm\t", ",%u\n", (SIZE))
4003
4004
4005 /* This says how to output an external. It would be possible not to
4006 output anything and let undefined symbol become external. However
4007 the assembler uses length information on externals to allocate in
4008 data/sdata bss/sbss, thereby saving exec time. */
4009
4010 #define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
4011 mips_output_external(STREAM,DECL,NAME)
4012
4013 /* This says what to print at the end of the assembly file */
4014 #define ASM_FILE_END(STREAM) mips_asm_file_end(STREAM)
4015
4016
4017 /* This is how to declare a function name. The actual work of
4018 emitting the label is moved to function_prologue, so that we can
4019 get the line number correctly emitted before the .ent directive,
4020 and after any .file directives.
4021
4022 Also, switch files if we are optimizing the global pointer. */
4023
4024 #define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL) \
4025 { \
4026 extern FILE *asm_out_text_file; \
4027 if (TARGET_GP_OPT && ! TARGET_MIPS16) \
4028 { \
4029 STREAM = asm_out_text_file; \
4030 /* ??? text_section gets called too soon. If the previous \
4031 function is in a special section and we're not, we have \
4032 to switch back to the text section. We can't call \
4033 text_section again as gcc thinks we're already there. */ \
4034 /* ??? See varasm.c. There are other things that get output \
4035 too early, like alignment (before we've switched STREAM). */ \
4036 if (DECL_SECTION_NAME (DECL) == NULL_TREE) \
4037 fprintf (STREAM, "%s\n", TEXT_SECTION_ASM_OP); \
4038 } \
4039 \
4040 HALF_PIC_DECLARE (NAME); \
4041 }
4042
4043 /* This is how to output an internal numbered label where
4044 PREFIX is the class of label and NUM is the number within the class. */
4045
4046 #define ASM_OUTPUT_INTERNAL_LABEL(STREAM,PREFIX,NUM) \
4047 fprintf (STREAM, "%s%s%d:\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
4048
4049 /* This is how to store into the string LABEL
4050 the symbol_ref name of an internal numbered label where
4051 PREFIX is the class of label and NUM is the number within the class.
4052 This is suitable for output with `assemble_name'. */
4053
4054 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
4055 sprintf (LABEL, "*%s%s%d", LOCAL_LABEL_PREFIX, PREFIX, NUM)
4056
4057 /* This is how to output an assembler line defining a `double' constant. */
4058
4059 #define ASM_OUTPUT_DOUBLE(STREAM,VALUE) \
4060 mips_output_double (STREAM, VALUE)
4061
4062
4063 /* This is how to output an assembler line defining a `float' constant. */
4064
4065 #define ASM_OUTPUT_FLOAT(STREAM,VALUE) \
4066 mips_output_float (STREAM, VALUE)
4067
4068
4069 /* This is how to output an assembler line defining an `int' constant. */
4070
4071 #define ASM_OUTPUT_INT(STREAM,VALUE) \
4072 do { \
4073 fprintf (STREAM, "\t.word\t"); \
4074 output_addr_const (STREAM, (VALUE)); \
4075 fprintf (STREAM, "\n"); \
4076 } while (0)
4077
4078 /* Likewise for 64 bit, `char' and `short' constants. */
4079
4080 #define ASM_OUTPUT_DOUBLE_INT(STREAM,VALUE) \
4081 do { \
4082 if (TARGET_64BIT) \
4083 { \
4084 fprintf (STREAM, "\t.dword\t"); \
4085 if (HOST_BITS_PER_WIDE_INT < 64 || GET_CODE (VALUE) != CONST_INT) \
4086 /* We can't use 'X' for negative numbers, because then we won't \
4087 get the right value for the upper 32 bits. */ \
4088 output_addr_const (STREAM, VALUE); \
4089 else \
4090 /* We must use 'X', because otherwise LONG_MIN will print as \
4091 a number that the Irix 6 assembler won't accept. */ \
4092 print_operand (STREAM, VALUE, 'X'); \
4093 fprintf (STREAM, "\n"); \
4094 } \
4095 else \
4096 { \
4097 assemble_integer (operand_subword ((VALUE), 0, 0, DImode), \
4098 UNITS_PER_WORD, 1); \
4099 assemble_integer (operand_subword ((VALUE), 1, 0, DImode), \
4100 UNITS_PER_WORD, 1); \
4101 } \
4102 } while (0)
4103
4104 #define ASM_OUTPUT_SHORT(STREAM,VALUE) \
4105 { \
4106 fprintf (STREAM, "\t.half\t"); \
4107 output_addr_const (STREAM, (VALUE)); \
4108 fprintf (STREAM, "\n"); \
4109 }
4110
4111 #define ASM_OUTPUT_CHAR(STREAM,VALUE) \
4112 { \
4113 fprintf (STREAM, "\t.byte\t"); \
4114 output_addr_const (STREAM, (VALUE)); \
4115 fprintf (STREAM, "\n"); \
4116 }
4117
4118 /* This is how to output an assembler line for a numeric constant byte. */
4119
4120 #define ASM_OUTPUT_BYTE(STREAM,VALUE) \
4121 fprintf (STREAM, "\t.byte\t0x%x\n", (VALUE))
4122
4123 /* This is how to output an element of a case-vector that is absolute. */
4124
4125 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
4126 fprintf (STREAM, "\t%s\t%sL%d\n", \
4127 TARGET_LONG64 ? ".dword" : ".word", \
4128 LOCAL_LABEL_PREFIX, \
4129 VALUE)
4130
4131 /* This is how to output an element of a case-vector that is relative.
4132 This is used for pc-relative code (e.g. when TARGET_ABICALLS or
4133 TARGET_EMBEDDED_PIC). */
4134
4135 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, VALUE, REL) \
4136 do { \
4137 if (TARGET_MIPS16) \
4138 fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
4139 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
4140 else if (TARGET_EMBEDDED_PIC) \
4141 fprintf (STREAM, "\t%s\t%sL%d-%sLS%d\n", \
4142 TARGET_LONG64 ? ".dword" : ".word", \
4143 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
4144 else if (mips_abi == ABI_32) \
4145 fprintf (STREAM, "\t%s\t%sL%d\n", \
4146 TARGET_LONG64 ? ".gpdword" : ".gpword", \
4147 LOCAL_LABEL_PREFIX, VALUE); \
4148 else \
4149 fprintf (STREAM, "\t%s\t%sL%d\n", \
4150 TARGET_LONG64 ? ".dword" : ".word", \
4151 LOCAL_LABEL_PREFIX, VALUE); \
4152 } while (0)
4153
4154 /* When generating embedded PIC or mips16 code we want to put the jump
4155 table in the .text section. In all other cases, we want to put the
4156 jump table in the .rdata section. Unfortunately, we can't use
4157 JUMP_TABLES_IN_TEXT_SECTION, because it is not conditional.
4158 Instead, we use ASM_OUTPUT_CASE_LABEL to switch back to the .text
4159 section if appropriate. */
4160 #define ASM_OUTPUT_CASE_LABEL(FILE, PREFIX, NUM, INSN) \
4161 do { \
4162 if (TARGET_EMBEDDED_PIC || TARGET_MIPS16) \
4163 function_section (current_function_decl); \
4164 ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); \
4165 } while (0)
4166
4167 /* This is how to output an assembler line
4168 that says to advance the location counter
4169 to a multiple of 2**LOG bytes. */
4170
4171 #define ASM_OUTPUT_ALIGN(STREAM,LOG) \
4172 { \
4173 int mask = (1 << (LOG)) - 1; \
4174 fprintf (STREAM, "\t.align\t%d\n", (LOG)); \
4175 }
4176
4177 /* This is how to output an assembler line to to advance the location
4178 counter by SIZE bytes. */
4179
4180 #define ASM_OUTPUT_SKIP(STREAM,SIZE) \
4181 fprintf (STREAM, "\t.space\t%u\n", (SIZE))
4182
4183 /* This is how to output a string. */
4184 #define ASM_OUTPUT_ASCII(STREAM, STRING, LEN) \
4185 do { \
4186 register int i, c, len = (LEN), cur_pos = 17; \
4187 register unsigned char *string = (unsigned char *)(STRING); \
4188 fprintf ((STREAM), "\t.ascii\t\""); \
4189 for (i = 0; i < len; i++) \
4190 { \
4191 register int c = string[i]; \
4192 \
4193 switch (c) \
4194 { \
4195 case '\"': \
4196 case '\\': \
4197 putc ('\\', (STREAM)); \
4198 putc (c, (STREAM)); \
4199 cur_pos += 2; \
4200 break; \
4201 \
4202 case TARGET_NEWLINE: \
4203 fputs ("\\n", (STREAM)); \
4204 if (i+1 < len \
4205 && (((c = string[i+1]) >= '\040' && c <= '~') \
4206 || c == TARGET_TAB)) \
4207 cur_pos = 32767; /* break right here */ \
4208 else \
4209 cur_pos += 2; \
4210 break; \
4211 \
4212 case TARGET_TAB: \
4213 fputs ("\\t", (STREAM)); \
4214 cur_pos += 2; \
4215 break; \
4216 \
4217 case TARGET_FF: \
4218 fputs ("\\f", (STREAM)); \
4219 cur_pos += 2; \
4220 break; \
4221 \
4222 case TARGET_BS: \
4223 fputs ("\\b", (STREAM)); \
4224 cur_pos += 2; \
4225 break; \
4226 \
4227 case TARGET_CR: \
4228 fputs ("\\r", (STREAM)); \
4229 cur_pos += 2; \
4230 break; \
4231 \
4232 default: \
4233 if (c >= ' ' && c < 0177) \
4234 { \
4235 putc (c, (STREAM)); \
4236 cur_pos++; \
4237 } \
4238 else \
4239 { \
4240 fprintf ((STREAM), "\\%03o", c); \
4241 cur_pos += 4; \
4242 } \
4243 } \
4244 \
4245 if (cur_pos > 72 && i+1 < len) \
4246 { \
4247 cur_pos = 17; \
4248 fprintf ((STREAM), "\"\n\t.ascii\t\""); \
4249 } \
4250 } \
4251 fprintf ((STREAM), "\"\n"); \
4252 } while (0)
4253
4254 /* Handle certain cpp directives used in header files on sysV. */
4255 #define SCCS_DIRECTIVE
4256
4257 /* Output #ident as a in the read-only data section. */
4258 #define ASM_OUTPUT_IDENT(FILE, STRING) \
4259 { \
4260 char *p = STRING; \
4261 int size = strlen (p) + 1; \
4262 rdata_section (); \
4263 assemble_string (p, size); \
4264 }
4265 \f
4266 /* Default to -G 8 */
4267 #ifndef MIPS_DEFAULT_GVALUE
4268 #define MIPS_DEFAULT_GVALUE 8
4269 #endif
4270
4271 /* Define the strings to put out for each section in the object file. */
4272 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
4273 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
4274 #define SDATA_SECTION_ASM_OP "\t.sdata" /* small data */
4275 #define RDATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
4276 #define READONLY_DATA_SECTION rdata_section
4277 #define SMALL_DATA_SECTION sdata_section
4278
4279 /* What other sections we support other than the normal .data/.text. */
4280
4281 #define EXTRA_SECTIONS in_sdata, in_rdata
4282
4283 /* Define the additional functions to select our additional sections. */
4284
4285 /* on the MIPS it is not a good idea to put constants in the text
4286 section, since this defeats the sdata/data mechanism. This is
4287 especially true when -O is used. In this case an effort is made to
4288 address with faster (gp) register relative addressing, which can
4289 only get at sdata and sbss items (there is no stext !!) However,
4290 if the constant is too large for sdata, and it's readonly, it
4291 will go into the .rdata section. */
4292
4293 #define EXTRA_SECTION_FUNCTIONS \
4294 void \
4295 sdata_section () \
4296 { \
4297 if (in_section != in_sdata) \
4298 { \
4299 fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP); \
4300 in_section = in_sdata; \
4301 } \
4302 } \
4303 \
4304 void \
4305 rdata_section () \
4306 { \
4307 if (in_section != in_rdata) \
4308 { \
4309 fprintf (asm_out_file, "%s\n", RDATA_SECTION_ASM_OP); \
4310 in_section = in_rdata; \
4311 } \
4312 }
4313
4314 /* Given a decl node or constant node, choose the section to output it in
4315 and select that section. */
4316
4317 #define SELECT_RTX_SECTION(MODE,RTX) mips_select_rtx_section (MODE, RTX)
4318
4319 #define SELECT_SECTION(DECL, RELOC) mips_select_section (DECL, RELOC)
4320
4321 \f
4322 /* Store in OUTPUT a string (made with alloca) containing
4323 an assembler-name for a local static variable named NAME.
4324 LABELNO is an integer which is different for each call. */
4325
4326 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
4327 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
4328 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
4329
4330 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
4331 do \
4332 { \
4333 fprintf (STREAM, "\t%s\t%s,%s,8\n\t%s\t%s,0(%s)\n", \
4334 TARGET_64BIT ? "dsubu" : "subu", \
4335 reg_names[STACK_POINTER_REGNUM], \
4336 reg_names[STACK_POINTER_REGNUM], \
4337 TARGET_64BIT ? "sd" : "sw", \
4338 reg_names[REGNO], \
4339 reg_names[STACK_POINTER_REGNUM]); \
4340 } \
4341 while (0)
4342
4343 #define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
4344 do \
4345 { \
4346 if (! set_noreorder) \
4347 fprintf (STREAM, "\t.set\tnoreorder\n"); \
4348 \
4349 dslots_load_total++; \
4350 dslots_load_filled++; \
4351 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
4352 TARGET_64BIT ? "ld" : "lw", \
4353 reg_names[REGNO], \
4354 reg_names[STACK_POINTER_REGNUM], \
4355 TARGET_64BIT ? "daddu" : "addu", \
4356 reg_names[STACK_POINTER_REGNUM], \
4357 reg_names[STACK_POINTER_REGNUM]); \
4358 \
4359 if (! set_noreorder) \
4360 fprintf (STREAM, "\t.set\treorder\n"); \
4361 } \
4362 while (0)
4363
4364 /* Define the parentheses used to group arithmetic operations
4365 in assembler code. */
4366
4367 #define ASM_OPEN_PAREN "("
4368 #define ASM_CLOSE_PAREN ")"
4369
4370 /* How to start an assembler comment.
4371 The leading space is important (the mips native assembler requires it). */
4372 #ifndef ASM_COMMENT_START
4373 #define ASM_COMMENT_START " #"
4374 #endif
4375 \f
4376
4377 /* Macros for mips-tfile.c to encapsulate stabs in ECOFF, and for
4378 and mips-tdump.c to print them out.
4379
4380 These must match the corresponding definitions in gdb/mipsread.c.
4381 Unfortunately, gcc and gdb do not currently share any directories. */
4382
4383 #define CODE_MASK 0x8F300
4384 #define MIPS_IS_STAB(sym) (((sym)->index & 0xFFF00) == CODE_MASK)
4385 #define MIPS_MARK_STAB(code) ((code)+CODE_MASK)
4386 #define MIPS_UNMARK_STAB(code) ((code)-CODE_MASK)
4387
4388 \f
4389 /* Default definitions for size_t and ptrdiff_t. */
4390
4391 #ifndef SIZE_TYPE
4392 #define NO_BUILTIN_SIZE_TYPE
4393 #define SIZE_TYPE (TARGET_LONG64 ? "long unsigned int" : "unsigned int")
4394 #endif
4395
4396 #ifndef PTRDIFF_TYPE
4397 #define NO_BUILTIN_PTRDIFF_TYPE
4398 #define PTRDIFF_TYPE (TARGET_LONG64 ? "long int" : "int")
4399 #endif
4400
4401 /* See mips_expand_prologue's use of loadgp for when this should be
4402 true. */
4403
4404 #define DONT_ACCESS_GBLS_AFTER_EPILOGUE (TARGET_ABICALLS && mips_abi != ABI_32)
4405 \f
4406 /* In mips16 mode, we need to look through the function to check for
4407 PC relative loads that are out of range. */
4408 #define MACHINE_DEPENDENT_REORG(X) machine_dependent_reorg (X)
4409
4410 /* We need to use a special set of functions to handle hard floating
4411 point code in mips16 mode. */
4412
4413 #ifndef INIT_SUBTARGET_OPTABS
4414 #define INIT_SUBTARGET_OPTABS
4415 #endif
4416
4417 #define INIT_TARGET_OPTABS \
4418 do \
4419 { \
4420 if (! TARGET_MIPS16 || ! mips16_hard_float) \
4421 INIT_SUBTARGET_OPTABS; \
4422 else \
4423 { \
4424 add_optab->handlers[(int) SFmode].libfunc = \
4425 gen_rtx (SYMBOL_REF, Pmode, "__mips16_addsf3"); \
4426 sub_optab->handlers[(int) SFmode].libfunc = \
4427 gen_rtx (SYMBOL_REF, Pmode, "__mips16_subsf3"); \
4428 smul_optab->handlers[(int) SFmode].libfunc = \
4429 gen_rtx (SYMBOL_REF, Pmode, "__mips16_mulsf3"); \
4430 flodiv_optab->handlers[(int) SFmode].libfunc = \
4431 gen_rtx (SYMBOL_REF, Pmode, "__mips16_divsf3"); \
4432 \
4433 eqsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__mips16_eqsf2"); \
4434 nesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__mips16_nesf2"); \
4435 gtsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__mips16_gtsf2"); \
4436 gesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__mips16_gesf2"); \
4437 ltsf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__mips16_ltsf2"); \
4438 lesf2_libfunc = gen_rtx (SYMBOL_REF, Pmode, "__mips16_lesf2"); \
4439 \
4440 floatsisf_libfunc = \
4441 gen_rtx (SYMBOL_REF, Pmode, "__mips16_floatsisf"); \
4442 fixsfsi_libfunc = \
4443 gen_rtx (SYMBOL_REF, Pmode, "__mips16_fixsfsi"); \
4444 \
4445 if (TARGET_DOUBLE_FLOAT) \
4446 { \
4447 add_optab->handlers[(int) DFmode].libfunc = \
4448 gen_rtx (SYMBOL_REF, Pmode, "__mips16_adddf3"); \
4449 sub_optab->handlers[(int) DFmode].libfunc = \
4450 gen_rtx (SYMBOL_REF, Pmode, "__mips16_subdf3"); \
4451 smul_optab->handlers[(int) DFmode].libfunc = \
4452 gen_rtx (SYMBOL_REF, Pmode, "__mips16_muldf3"); \
4453 flodiv_optab->handlers[(int) DFmode].libfunc = \
4454 gen_rtx (SYMBOL_REF, Pmode, "__mips16_divdf3"); \
4455 \
4456 extendsfdf2_libfunc = \
4457 gen_rtx (SYMBOL_REF, Pmode, "__mips16_extendsfdf2"); \
4458 truncdfsf2_libfunc = \
4459 gen_rtx (SYMBOL_REF, Pmode, "__mips16_truncdfsf2"); \
4460 \
4461 eqdf2_libfunc = \
4462 gen_rtx (SYMBOL_REF, Pmode, "__mips16_eqdf2"); \
4463 nedf2_libfunc = \
4464 gen_rtx (SYMBOL_REF, Pmode, "__mips16_nedf2"); \
4465 gtdf2_libfunc = \
4466 gen_rtx (SYMBOL_REF, Pmode, "__mips16_gtdf2"); \
4467 gedf2_libfunc = \
4468 gen_rtx (SYMBOL_REF, Pmode, "__mips16_gedf2"); \
4469 ltdf2_libfunc = \
4470 gen_rtx (SYMBOL_REF, Pmode, "__mips16_ltdf2"); \
4471 ledf2_libfunc = \
4472 gen_rtx (SYMBOL_REF, Pmode, "__mips16_ledf2"); \
4473 \
4474 floatsidf_libfunc = \
4475 gen_rtx (SYMBOL_REF, Pmode, "__mips16_floatsidf"); \
4476 fixdfsi_libfunc = \
4477 gen_rtx (SYMBOL_REF, Pmode, "__mips16_fixdfsi"); \
4478 } \
4479 } \
4480 } \
4481 while (0)
This page took 0.685485 seconds and 5 git commands to generate.