]> gcc.gnu.org Git - gcc.git/blob - gcc/config/mips/mips.c
# Fix misspellings in comments.
[gcc.git] / gcc / config / mips / mips.c
1 /* Subroutines for insn-output.c for MIPS
2 Contributed by A. Lichnewsky, lich@inria.inria.fr.
3 Changes by Michael Meissner, meissner@osf.org.
4 Copyright (C) 1989, 1990, 1991 Free Software Foundation, Inc.
5
6 This file is part of GNU CC.
7
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 #include "config.h"
23 #include "rtl.h"
24 #include "regs.h"
25 #include "hard-reg-set.h"
26 #include "real.h"
27 #include "insn-config.h"
28 #include "conditions.h"
29 #include "insn-flags.h"
30 #include "insn-attr.h"
31 #include "insn-codes.h"
32 #include "recog.h"
33 #include "output.h"
34
35 #undef MAX /* sys/param.h may also define these */
36 #undef MIN
37
38 #include <stdio.h>
39 #include <signal.h>
40 #include <sys/types.h>
41 #include <sys/file.h>
42 #include <ctype.h>
43 #include "tree.h"
44 #include "expr.h"
45 #include "flags.h"
46
47 #ifndef R_OK
48 #define R_OK 4
49 #define W_OK 2
50 #define X_OK 1
51 #endif
52
53 #if defined(USG) || defined(NO_STAB_H)
54 #include "gstab.h" /* If doing DBX on sysV, use our own stab.h. */
55 #else
56 #include <stab.h> /* On BSD, use the system's stab.h. */
57 #endif /* not USG */
58
59 #ifdef __GNU_STAB__
60 #define STAB_CODE_TYPE enum __stab_debug_code
61 #else
62 #define STAB_CODE_TYPE int
63 #endif
64
65 extern void abort ();
66 extern int atoi ();
67 extern char *getenv ();
68 extern char *mktemp ();
69
70 extern rtx adj_offsettable_operand ();
71 extern rtx copy_to_reg ();
72 extern void error ();
73 extern void fatal ();
74 extern tree lookup_name ();
75 extern void pfatal_with_name ();
76 extern void warning ();
77
78 extern tree current_function_decl;
79 extern FILE *asm_out_file;
80
81 /* Enumeration for all of the relational tests, so that we can build
82 arrays indexed by the test type, and not worry about the order
83 of EQ, NE, etc. */
84
85 enum internal_test {
86 ITEST_EQ,
87 ITEST_NE,
88 ITEST_GT,
89 ITEST_GE,
90 ITEST_LT,
91 ITEST_LE,
92 ITEST_GTU,
93 ITEST_GEU,
94 ITEST_LTU,
95 ITEST_LEU,
96 ITEST_MAX
97 };
98
99 /* Global variables for machine-dependent things. */
100
101 /* Threshold for data being put into the small data/bss area, instead
102 of the normal data area (references to the small data/bss area take
103 1 instruction, and use the global pointer, references to the normal
104 data area takes 2 instructions). */
105 int mips_section_threshold = -1;
106
107 /* Count the number of .file directives, so that .loc is up to date. */
108 int num_source_filenames = 0;
109
110 /* Count the number of sdb related labels are generated (to find block
111 start and end boundaries). */
112 int sdb_label_count = 0;
113
114 /* Next label # for each statment for Silicon Graphics IRIS systems. */
115 int sym_lineno = 0;
116
117 /* Non-zero if inside of a function, because the stupid MIPS asm can't
118 handle .files inside of functions. */
119 int inside_function = 0;
120
121 /* Files to separate the text and the data output, so that all of the data
122 can be emitted before the text, which will mean that the assembler will
123 generate smaller code, based on the global pointer. */
124 FILE *asm_out_data_file;
125 FILE *asm_out_text_file;
126
127 /* Linked list of all externals that are to be emitted when optimizing
128 for the global pointer if they haven't been declared by the end of
129 the program with an appropriate .comm or initialization. */
130
131 struct extern_list {
132 struct extern_list *next; /* next external */
133 char *name; /* name of the external */
134 int size; /* size in bytes */
135 } *extern_head = 0;
136
137 /* Name of the file containing the current function. */
138 char *current_function_file = "";
139
140 /* Warning given that Mips ECOFF can't support changing files
141 within a function. */
142 int file_in_function_warning = FALSE;
143
144 /* Whether to suppress issuing .loc's because the user attempted
145 to change the filename within a function. */
146 int ignore_line_number = FALSE;
147
148 /* Number of nested .set noreorder, noat, nomacro, and volatile requests. */
149 int set_noreorder;
150 int set_noat;
151 int set_nomacro;
152 int set_volatile;
153
154 /* The next branch instruction is a branch likely, not branch normal. */
155 int mips_branch_likely;
156
157 /* Count of delay slots and how many are filled. */
158 int dslots_load_total;
159 int dslots_load_filled;
160 int dslots_jump_total;
161 int dslots_jump_filled;
162
163 /* # of nops needed by previous insn */
164 int dslots_number_nops;
165
166 /* Number of 1/2/3 word references to data items (ie, not jal's). */
167 int num_refs[3];
168
169 /* registers to check for load delay */
170 rtx mips_load_reg, mips_load_reg2, mips_load_reg3, mips_load_reg4;
171
172 /* Cached operands, and operator to compare for use in set/branch on
173 condition codes. */
174 rtx branch_cmp[2];
175
176 /* what type of branch to use */
177 enum cmp_type branch_type;
178
179 /* Number of previously seen half-pic pointers and references. */
180 static int prev_half_pic_ptrs = 0;
181 static int prev_half_pic_refs = 0;
182
183 /* which cpu are we scheduling for */
184 enum processor_type mips_cpu;
185
186 /* which instruction set architecture to use. */
187 int mips_isa;
188
189 /* Strings to hold which cpu and instruction set architecture to use. */
190 char *mips_cpu_string; /* for -mcpu=<xxx> */
191 char *mips_isa_string; /* for -mips{1,2,3} */
192
193 /* Array to RTX class classification. At present, we care about
194 whether the operator is an add-type operator, or a divide/modulus,
195 and if divide/modulus, whether it is unsigned. This is for the
196 peephole code. */
197 char mips_rtx_classify[NUM_RTX_CODE];
198
199 /* Array giving truth value on whether or not a given hard register
200 can support a given mode. */
201 char mips_hard_regno_mode_ok[(int)MAX_MACHINE_MODE][FIRST_PSEUDO_REGISTER];
202
203 /* Current frame information calculated by compute_frame_size. */
204 struct mips_frame_info current_frame_info;
205
206 /* Zero structure to initialize current_frame_info. */
207 struct mips_frame_info zero_frame_info;
208
209 /* Temporary filename used to buffer .text until end of program
210 for -mgpopt. */
211 static char *temp_filename;
212
213 /* List of all MIPS punctuation characters used by print_operand. */
214 char mips_print_operand_punct[256];
215
216 /* Map GCC register number to debugger register number. */
217 int mips_dbx_regno[FIRST_PSEUDO_REGISTER];
218
219 /* Buffer to use to enclose a load/store operation with %{ %} to
220 turn on .set volatile. */
221 static char volatile_buffer[60];
222
223 /* Hardware names for the registers. If -mrnames is used, this
224 will be overwritten with mips_sw_reg_names. */
225
226 char mips_reg_names[][8] =
227 {
228 "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7",
229 "$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15",
230 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23",
231 "$24", "$25", "$26", "$27", "$28", "$sp", "$fp", "$31",
232 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7",
233 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",
234 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",
235 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31",
236 "hi", "lo", "$fcr31"
237 };
238
239 /* Mips software names for the registers, used to overwrite the
240 mips_reg_names array. */
241
242 char mips_sw_reg_names[][8] =
243 {
244 "$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
245 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
246 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
247 "t8", "t9", "k0", "k1", "gp", "sp", "$fp", "ra",
248 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7",
249 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",
250 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",
251 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31",
252 "hi", "lo", "$fcr31"
253 };
254
255 /* Map hard register number to register class */
256 enum reg_class mips_regno_to_class[] =
257 {
258 GR_REGS, GR_REGS, GR_REGS, GR_REGS,
259 GR_REGS, GR_REGS, GR_REGS, GR_REGS,
260 GR_REGS, GR_REGS, GR_REGS, GR_REGS,
261 GR_REGS, GR_REGS, GR_REGS, GR_REGS,
262 GR_REGS, GR_REGS, GR_REGS, GR_REGS,
263 GR_REGS, GR_REGS, GR_REGS, GR_REGS,
264 GR_REGS, GR_REGS, GR_REGS, GR_REGS,
265 GR_REGS, GR_REGS, GR_REGS, GR_REGS,
266 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
267 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
268 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
269 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
270 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
271 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
272 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
273 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
274 HI_REG, LO_REG, ST_REGS
275 };
276
277 /* Map register constraint character to register class. */
278 enum reg_class mips_char_to_class[256] =
279 {
280 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
281 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
282 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
283 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
284 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
285 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
286 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
287 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
288 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
289 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
290 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
291 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
292 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
293 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
294 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
295 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
296 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
297 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
298 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
299 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
300 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
301 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
302 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
303 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
304 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
305 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
306 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
307 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
308 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
309 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
310 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
311 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
312 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
313 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
314 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
315 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
316 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
317 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
318 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
319 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
320 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
321 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
322 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
323 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
324 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
325 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
326 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
327 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
328 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
329 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
330 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
331 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
332 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
333 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
334 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
335 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
336 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
337 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
338 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
339 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
340 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
341 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
342 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
343 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
344 };
345
346 \f
347 /* Return truth value of whether OP can be used as an operands
348 where a register or 16 bit unsigned integer is needed. */
349
350 int
351 uns_arith_operand (op, mode)
352 rtx op;
353 enum machine_mode mode;
354 {
355 if (GET_CODE (op) == CONST_INT && SMALL_INT_UNSIGNED (op))
356 return TRUE;
357
358 return register_operand (op, mode);
359 }
360
361 /* Return truth value of whether OP can be used as an operands
362 where a 16 bit integer is needed */
363
364 int
365 arith_operand (op, mode)
366 rtx op;
367 enum machine_mode mode;
368 {
369 if (GET_CODE (op) == CONST_INT && SMALL_INT (op))
370 return TRUE;
371
372 return register_operand (op, mode);
373 }
374
375 /* Return truth value of whether OP can be used as an operand in a two
376 address arithmetic insn (such as set 123456,%o4) of mode MODE. */
377
378 int
379 arith32_operand (op, mode)
380 rtx op;
381 enum machine_mode mode;
382 {
383 if (GET_CODE (op) == CONST_INT)
384 return TRUE;
385
386 return register_operand (op, mode);
387 }
388
389 /* Return truth value of whether OP is a integer which fits in 16 bits */
390
391 int
392 small_int (op, mode)
393 rtx op;
394 enum machine_mode mode;
395 {
396 return (GET_CODE (op) == CONST_INT && SMALL_INT (op));
397 }
398
399 /* Return truth value of whether OP is an integer which is too big to
400 be loaded with one instruction. */
401
402 int
403 large_int (op, mode)
404 rtx op;
405 enum machine_mode mode;
406 {
407 HOST_WIDE_INT value;
408
409 if (GET_CODE (op) != CONST_INT)
410 return FALSE;
411
412 value = INTVAL (op);
413 if ((value & ~0x0000ffff) == 0) /* ior reg,$r0,value */
414 return FALSE;
415
416 if (((unsigned long)(value + 32768)) <= 32767) /* subu reg,$r0,value */
417 return FALSE;
418
419 if ((value & 0xffff0000) == value) /* lui reg,value>>16 */
420 return FALSE;
421
422 return TRUE;
423 }
424
425 /* Return truth value of whether OP is a register or the constant 0. */
426
427 int
428 reg_or_0_operand (op, mode)
429 rtx op;
430 enum machine_mode mode;
431 {
432 switch (GET_CODE (op))
433 {
434 default:
435 break;
436
437 case CONST_INT:
438 return (INTVAL (op) == 0);
439
440 case CONST_DOUBLE:
441 if (CONST_DOUBLE_HIGH (op) != 0 || CONST_DOUBLE_LOW (op) != 0)
442 return FALSE;
443
444 return TRUE;
445
446 case REG:
447 case SUBREG:
448 return register_operand (op, mode);
449 }
450
451 return FALSE;
452 }
453
454 /* Return truth value of whether OP is one of the special multiply/divide
455 registers (hi, lo). */
456
457 int
458 md_register_operand (op, mode)
459 rtx op;
460 enum machine_mode mode;
461 {
462 return (GET_MODE_CLASS (mode) == MODE_INT
463 && GET_CODE (op) == REG
464 && MD_REG_P (REGNO (op)));
465 }
466
467 /* Return truth value of whether OP is the FP status register. */
468
469 int
470 fpsw_register_operand (op, mode)
471 rtx op;
472 enum machine_mode mode;
473 {
474 return (GET_CODE (op) == REG && ST_REG_P (REGNO (op)));
475 }
476
477 /* Return truth value if a CONST_DOUBLE is ok to be a legitimate constant. */
478
479 int
480 mips_const_double_ok (op, mode)
481 rtx op;
482 enum machine_mode mode;
483 {
484 if (GET_CODE (op) != CONST_DOUBLE)
485 return FALSE;
486
487 if (mode == DImode)
488 return TRUE;
489
490 if (mode != SFmode && mode != DFmode)
491 return FALSE;
492
493 if (CONST_DOUBLE_HIGH (op) == 0 && CONST_DOUBLE_LOW (op) == 0)
494 return TRUE;
495
496 #if HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
497 if (TARGET_MIPS_AS) /* gas doesn't like li.d/li.s yet */
498 {
499 union { double d; int i[2]; } u;
500 double d;
501
502 u.i[0] = CONST_DOUBLE_LOW (op);
503 u.i[1] = CONST_DOUBLE_HIGH (op);
504 d = u.d;
505
506 if (d != d)
507 return FALSE; /* NAN */
508
509 if (d < 0.0)
510 d = - d;
511
512 /* Rather than trying to get the accuracy down to the last bit,
513 just use approximate ranges. */
514
515 if (mode == DFmode && d > 1.0e-300 && d < 1.0e300)
516 return TRUE;
517
518 if (mode == SFmode && d > 1.0e-38 && d < 1.0e+38)
519 return TRUE;
520 }
521 #endif
522
523 return FALSE;
524 }
525
526 /* Return truth value if a memory operand fits in a single instruction
527 (ie, register + small offset). */
528
529 int
530 simple_memory_operand (op, mode)
531 rtx op;
532 enum machine_mode mode;
533 {
534 rtx addr, plus0, plus1;
535
536 /* Eliminate non-memory operations */
537 if (GET_CODE (op) != MEM)
538 return FALSE;
539
540 /* dword operations really put out 2 instructions, so eliminate them. */
541 if (GET_MODE_SIZE (GET_MODE (op)) > (HAVE_64BIT_P () ? 8 : 4))
542 return FALSE;
543
544 /* Decode the address now. */
545 addr = XEXP (op, 0);
546 switch (GET_CODE (addr))
547 {
548 default:
549 break;
550
551 case REG:
552 return TRUE;
553
554 case CONST_INT:
555 return SMALL_INT (op);
556
557 case PLUS:
558 plus0 = XEXP (addr, 0);
559 plus1 = XEXP (addr, 1);
560 if (GET_CODE (plus0) == REG
561 && GET_CODE (plus1) == CONST_INT
562 && SMALL_INT (plus1))
563 return TRUE;
564
565 else if (GET_CODE (plus1) == REG
566 && GET_CODE (plus0) == CONST_INT
567 && SMALL_INT (plus0))
568 return TRUE;
569
570 else
571 return FALSE;
572
573 #if 0
574 /* We used to allow small symbol refs here (ie, stuff in .sdata
575 or .sbss), but this causes some bugs in G++. Also, it won't
576 interfere if the MIPS linker rewrites the store instruction
577 because the function is PIC. */
578
579 case LABEL_REF: /* never gp relative */
580 break;
581
582 case CONST:
583 /* If -G 0, we can never have a GP relative memory operation.
584 Also, save some time if not optimizing. */
585 if (mips_section_threshold == 0 || !optimize || !TARGET_GP_OPT)
586 return FALSE;
587
588 {
589 rtx offset = const0_rtx;
590 addr = eliminate_constant_term (addr, &offset);
591 if (GET_CODE (op) != SYMBOL_REF)
592 return FALSE;
593
594 /* let's be paranoid.... */
595 if (INTVAL (offset) < 0 || INTVAL (offset) > 0xffff)
596 return FALSE;
597 }
598 /* fall through */
599
600 case SYMBOL_REF:
601 return SYMBOL_REF_FLAG (addr);
602 #endif
603 }
604
605 return FALSE;
606 }
607
608 /* Return true if the code of this rtx pattern is EQ or NE. */
609
610 int
611 equality_op (op, mode)
612 rtx op;
613 enum machine_mode mode;
614 {
615 if (mode != GET_MODE (op))
616 return FALSE;
617
618 return (classify_op (op, mode) & CLASS_EQUALITY_OP) != 0;
619 }
620
621 /* Return true if the code is a relational operations (EQ, LE, etc.) */
622
623 int
624 cmp_op (op, mode)
625 rtx op;
626 enum machine_mode mode;
627 {
628 if (mode != GET_MODE (op))
629 return FALSE;
630
631 return (classify_op (op, mode) & CLASS_CMP_OP) != 0;
632 }
633
634
635 /* Genrecog does not take the type of match_operator into consideration,
636 and would complain about two patterns being the same if the same
637 function is used, so make it believe they are different. */
638
639 int
640 cmp2_op (op, mode)
641 rtx op;
642 enum machine_mode mode;
643 {
644 if (mode != GET_MODE (op))
645 return FALSE;
646
647 return (classify_op (op, mode) & CLASS_CMP_OP) != 0;
648 }
649
650 /* Return true if the code is an unsigned relational operations (LEU, etc.) */
651
652 int
653 uns_cmp_op (op,mode)
654 rtx op;
655 enum machine_mode mode;
656 {
657 if (mode != GET_MODE (op))
658 return FALSE;
659
660 return (classify_op (op, mode) & CLASS_UNS_CMP_OP) == CLASS_UNS_CMP_OP;
661 }
662
663 /* Return true if the code is a relational operation FP can use. */
664
665 int
666 fcmp_op (op, mode)
667 rtx op;
668 enum machine_mode mode;
669 {
670 if (mode != GET_MODE (op))
671 return FALSE;
672
673 return (classify_op (op, mode) & CLASS_FCMP_OP) != 0;
674 }
675
676
677 /* Return true if the operand is either the PC or a label_ref. */
678
679 int
680 pc_or_label_operand (op, mode)
681 rtx op;
682 enum machine_mode mode;
683 {
684 if (op == pc_rtx)
685 return TRUE;
686
687 if (GET_CODE (op) == LABEL_REF)
688 return TRUE;
689
690 return FALSE;
691 }
692
693 \f
694 /* Return an operand string if the given instruction's delay slot or
695 wrap it in a .set noreorder section. This is for filling delay
696 slots on load type instructions under GAS, which does no reordering
697 on its own. For the MIPS assembler, all we do is update the filled
698 delay slot statistics.
699
700 We assume that operands[0] is the target register that is set.
701
702 In order to check the next insn, most of this functionality is moved
703 to FINAL_PRESCAN_INSN, and we just set the global variables that
704 it needs. */
705
706 char *
707 mips_fill_delay_slot (ret, type, operands, cur_insn)
708 char *ret; /* normal string to return */
709 enum delay_type type; /* type of delay */
710 rtx operands[]; /* operands to use */
711 rtx cur_insn; /* current insn */
712 {
713 register rtx set_reg;
714 register enum machine_mode mode;
715 register rtx next_insn = (cur_insn) ? NEXT_INSN (cur_insn) : (rtx)0;
716 register int num_nops;
717
718 if (type == DELAY_LOAD || type == DELAY_FCMP)
719 num_nops = 1;
720
721 else if (type == DELAY_HILO)
722 num_nops = 2;
723
724 else
725 num_nops = 0;
726
727 /* Make sure that we don't put nop's after labels. */
728 next_insn = NEXT_INSN (cur_insn);
729 while (next_insn != (rtx)0 && GET_CODE (next_insn) == NOTE)
730 next_insn = NEXT_INSN (next_insn);
731
732 dslots_load_total += num_nops;
733 if (TARGET_DEBUG_F_MODE
734 || !optimize
735 || type == DELAY_NONE
736 || operands == (rtx *)0
737 || cur_insn == (rtx)0
738 || next_insn == (rtx)0
739 || GET_CODE (next_insn) == CODE_LABEL
740 || (set_reg = operands[0]) == (rtx)0)
741 {
742 dslots_number_nops = 0;
743 mips_load_reg = (rtx)0;
744 mips_load_reg2 = (rtx)0;
745 mips_load_reg3 = (rtx)0;
746 mips_load_reg4 = (rtx)0;
747 return ret;
748 }
749
750 set_reg = operands[0];
751 if (set_reg == (rtx)0)
752 return ret;
753
754 while (GET_CODE (set_reg) == SUBREG)
755 set_reg = SUBREG_REG (set_reg);
756
757 mode = GET_MODE (set_reg);
758 dslots_number_nops = num_nops;
759 mips_load_reg = set_reg;
760 mips_load_reg2 = (mode == DImode || mode == DFmode)
761 ? gen_rtx (REG, SImode, REGNO (set_reg) + 1)
762 : (rtx)0;
763
764 if (type == DELAY_HILO)
765 {
766 mips_load_reg3 = gen_rtx (REG, SImode, MD_REG_FIRST);
767 mips_load_reg4 = gen_rtx (REG, SImode, MD_REG_FIRST+1);
768 }
769 else
770 {
771 mips_load_reg3 = 0;
772 mips_load_reg4 = 0;
773 }
774
775 if (TARGET_GAS && set_noreorder++ == 0)
776 fputs ("\t.set\tnoreorder\n", asm_out_file);
777
778 return ret;
779 }
780
781 \f
782 /* Determine whether a memory reference takes one (based off of the GP pointer),
783 two (normal), or three (label + reg) instructions, and bump the appropriate
784 counter for -mstats. */
785
786 void
787 mips_count_memory_refs (op, num)
788 rtx op;
789 int num;
790 {
791 int additional = 0;
792 int n_words = 0;
793 rtx addr, plus0, plus1;
794 enum rtx_code code0, code1;
795 int looping;
796
797 if (TARGET_DEBUG_B_MODE)
798 {
799 fprintf (stderr, "\n========== mips_count_memory_refs:\n");
800 debug_rtx (op);
801 }
802
803 /* Skip MEM if passed, otherwise handle movsi of address. */
804 addr = (GET_CODE (op) != MEM) ? op : XEXP (op, 0);
805
806 /* Loop, going through the address RTL */
807 do
808 {
809 looping = FALSE;
810 switch (GET_CODE (addr))
811 {
812 default:
813 break;
814
815 case REG:
816 case CONST_INT:
817 break;
818
819 case PLUS:
820 plus0 = XEXP (addr, 0);
821 plus1 = XEXP (addr, 1);
822 code0 = GET_CODE (plus0);
823 code1 = GET_CODE (plus1);
824
825 if (code0 == REG)
826 {
827 additional++;
828 addr = plus1;
829 looping = TRUE;
830 continue;
831 }
832
833 if (code0 == CONST_INT)
834 {
835 addr = plus1;
836 looping = TRUE;
837 continue;
838 }
839
840 if (code1 == REG)
841 {
842 additional++;
843 addr = plus0;
844 looping = TRUE;
845 continue;
846 }
847
848 if (code1 == CONST_INT)
849 {
850 addr = plus0;
851 looping = TRUE;
852 continue;
853 }
854
855 if (code0 == SYMBOL_REF || code0 == LABEL_REF || code0 == CONST)
856 {
857 addr = plus0;
858 looping = TRUE;
859 continue;
860 }
861
862 if (code1 == SYMBOL_REF || code1 == LABEL_REF || code1 == CONST)
863 {
864 addr = plus1;
865 looping = TRUE;
866 continue;
867 }
868
869 break;
870
871 case LABEL_REF:
872 n_words = 2; /* always 2 words */
873 break;
874
875 case CONST:
876 addr = XEXP (addr, 0);
877 looping = TRUE;
878 continue;
879
880 case SYMBOL_REF:
881 n_words = SYMBOL_REF_FLAG (addr) ? 1 : 2;
882 break;
883 }
884 }
885 while (looping);
886
887 if (n_words == 0)
888 return;
889
890 n_words += additional;
891 if (n_words > 3)
892 n_words = 3;
893
894 num_refs[n_words-1] += num;
895 }
896
897 \f
898 /* Return the appropriate instructions to move one operand to another. */
899
900 char *
901 mips_move_1word (operands, insn, unsignedp)
902 rtx operands[];
903 rtx insn;
904 int unsignedp;
905 {
906 char *ret = 0;
907 rtx op0 = operands[0];
908 rtx op1 = operands[1];
909 enum rtx_code code0 = GET_CODE (op0);
910 enum rtx_code code1 = GET_CODE (op1);
911 enum machine_mode mode = GET_MODE (op0);
912 int subreg_word0 = 0;
913 int subreg_word1 = 0;
914 enum delay_type delay = DELAY_NONE;
915
916 while (code0 == SUBREG)
917 {
918 subreg_word0 += SUBREG_WORD (op0);
919 op0 = SUBREG_REG (op0);
920 code0 = GET_CODE (op0);
921 }
922
923 while (code1 == SUBREG)
924 {
925 subreg_word1 += SUBREG_WORD (op1);
926 op1 = SUBREG_REG (op1);
927 code1 = GET_CODE (op1);
928 }
929
930 if (code0 == REG)
931 {
932 int regno0 = REGNO (op0) + subreg_word0;
933
934 if (code1 == REG)
935 {
936 int regno1 = REGNO (op1) + subreg_word1;
937
938 /* Just in case, don't do anything for assigning a register
939 to itself, unless we are filling a delay slot. */
940 if (regno0 == regno1 && set_nomacro == 0)
941 ret = "";
942
943 else if (GP_REG_P (regno0))
944 {
945 if (GP_REG_P (regno1))
946 ret = "move\t%0,%1";
947
948 else if (MD_REG_P (regno1))
949 {
950 delay = DELAY_HILO;
951 ret = "mf%1\t%0";
952 }
953
954 else
955 {
956 delay = DELAY_LOAD;
957 if (FP_REG_P (regno1))
958 ret = "mfc1\t%0,%1";
959
960 else if (regno1 == FPSW_REGNUM)
961 ret = "cfc1\t%0,$31";
962 }
963 }
964
965 else if (FP_REG_P (regno0))
966 {
967 if (GP_REG_P (regno1))
968 {
969 delay = DELAY_LOAD;
970 ret = "mtc1\t%1,%0";
971 }
972
973 if (FP_REG_P (regno1))
974 ret = "mov.s\t%0,%1";
975 }
976
977 else if (MD_REG_P (regno0))
978 {
979 if (GP_REG_P (regno1))
980 {
981 delay = DELAY_HILO;
982 ret = "mt%0\t%1";
983 }
984 }
985
986 else if (regno0 == FPSW_REGNUM)
987 {
988 if (GP_REG_P (regno1))
989 {
990 delay = DELAY_LOAD;
991 ret = "ctc1\t%0,$31";
992 }
993 }
994 }
995
996 else if (code1 == MEM)
997 {
998 delay = DELAY_LOAD;
999
1000 if (TARGET_STATS)
1001 mips_count_memory_refs (op1, 1);
1002
1003 if (GP_REG_P (regno0))
1004 {
1005 /* For loads, use the mode of the memory item, instead of the
1006 target, so zero/sign extend can use this code as well. */
1007 switch (GET_MODE (op1))
1008 {
1009 default: break;
1010 case SFmode: ret = "lw\t%0,%1"; break;
1011 case SImode: ret = "lw\t%0,%1"; break;
1012 case HImode: ret = (unsignedp) ? "lhu\t%0,%1" : "lh\t%0,%1"; break;
1013 case QImode: ret = (unsignedp) ? "lbu\t%0,%1" : "lb\t%0,%1"; break;
1014 }
1015 }
1016
1017 else if (FP_REG_P (regno0) && (mode == SImode || mode == SFmode))
1018 ret = "l.s\t%0,%1";
1019
1020 if (ret != (char *)0 && MEM_VOLATILE_P (op1))
1021 {
1022 int i = strlen (ret);
1023 if (i > sizeof (volatile_buffer) - sizeof ("%{%}"))
1024 abort ();
1025
1026 sprintf (volatile_buffer, "%%{%s%%}", ret);
1027 ret = volatile_buffer;
1028 }
1029 }
1030
1031 else if (code1 == CONST_INT)
1032 {
1033 if (INTVAL (op1) == 0)
1034 {
1035 if (GP_REG_P (regno0))
1036 ret = "move\t%0,%z1";
1037
1038 else if (FP_REG_P (regno0))
1039 {
1040 delay = DELAY_LOAD;
1041 ret = "mtc1\t%z1,%0";
1042 }
1043 }
1044
1045 else if (GP_REG_P (regno0))
1046 ret = (INTVAL (op1) < 0) ? "li\t%0,%1\t\t\t# %X1" : "li\t%0,%X1\t\t# %1";
1047 }
1048
1049 else if (code1 == CONST_DOUBLE && mode == SFmode)
1050 {
1051 if (CONST_DOUBLE_HIGH (op1) == 0 && CONST_DOUBLE_LOW (op1) == 0)
1052 {
1053 if (GP_REG_P (regno0))
1054 ret = "move\t%0,%.";
1055
1056 else if (FP_REG_P (regno0))
1057 {
1058 delay = DELAY_LOAD;
1059 ret = "mtc1\t%.,%0";
1060 }
1061 }
1062
1063 else
1064 {
1065 delay = DELAY_LOAD;
1066 ret = "li.s\t%0,%1";
1067 }
1068 }
1069
1070 else if (code1 == LABEL_REF)
1071 {
1072 if (TARGET_STATS)
1073 mips_count_memory_refs (op1, 1);
1074
1075 ret = "la\t%0,%a1";
1076 }
1077
1078 else if (code1 == SYMBOL_REF || code1 == CONST)
1079 {
1080 if (HALF_PIC_P () && CONSTANT_P (op1) && HALF_PIC_ADDRESS_P (op1))
1081 {
1082 rtx offset = const0_rtx;
1083
1084 if (GET_CODE (op1) == CONST)
1085 op1 = eliminate_constant_term (XEXP (op1, 0), &offset);
1086
1087 if (GET_CODE (op1) == SYMBOL_REF)
1088 {
1089 operands[2] = HALF_PIC_PTR (op1);
1090
1091 if (TARGET_STATS)
1092 mips_count_memory_refs (operands[2], 1);
1093
1094 if (INTVAL (offset) == 0)
1095 {
1096 delay = DELAY_LOAD;
1097 ret = "lw\t%0,%2";
1098 }
1099 else
1100 {
1101 dslots_load_total++;
1102 operands[3] = offset;
1103 ret = (SMALL_INT (offset))
1104 ? "lw\t%0,%2%#\n\tadd\t%0,%0,%3"
1105 : "lw\t%0,%2%#\n\t%[li\t%@,%3\n\tadd\t%0,%0,%@%]";
1106 }
1107 }
1108 }
1109 else
1110 {
1111 if (TARGET_STATS)
1112 mips_count_memory_refs (op1, 1);
1113
1114 ret = "la\t%0,%a1";
1115 }
1116 }
1117
1118 else if (code1 == PLUS)
1119 {
1120 rtx add_op0 = XEXP (op1, 0);
1121 rtx add_op1 = XEXP (op1, 1);
1122
1123 if (GET_CODE (XEXP (op1, 1)) == REG && GET_CODE (XEXP (op1, 0)) == CONST_INT)
1124 {
1125 add_op0 = XEXP (op1, 1); /* reverse operands */
1126 add_op1 = XEXP (op1, 0);
1127 }
1128
1129 operands[2] = add_op0;
1130 operands[3] = add_op1;
1131 ret = "add%:\t%0,%2,%3";
1132 }
1133 }
1134
1135 else if (code0 == MEM)
1136 {
1137 if (TARGET_STATS)
1138 mips_count_memory_refs (op0, 1);
1139
1140 if (code1 == REG)
1141 {
1142 int regno1 = REGNO (op1) + subreg_word1;
1143
1144 if (GP_REG_P (regno1))
1145 {
1146 switch (mode)
1147 {
1148 default: break;
1149 case SFmode: ret = "sw\t%1,%0"; break;
1150 case SImode: ret = "sw\t%1,%0"; break;
1151 case HImode: ret = "sh\t%1,%0"; break;
1152 case QImode: ret = "sb\t%1,%0"; break;
1153 }
1154 }
1155
1156 else if (FP_REG_P (regno1) && (mode == SImode || mode == SFmode))
1157 ret = "s.s\t%1,%0";
1158 }
1159
1160 else if (code1 == CONST_INT && INTVAL (op1) == 0)
1161 {
1162 switch (mode)
1163 {
1164 default: break;
1165 case SFmode: ret = "sw\t%z1,%0"; break;
1166 case SImode: ret = "sw\t%z1,%0"; break;
1167 case HImode: ret = "sh\t%z1,%0"; break;
1168 case QImode: ret = "sb\t%z1,%0"; break;
1169 }
1170 }
1171
1172 else if (code1 == CONST_DOUBLE && CONST_DOUBLE_HIGH (op1) == 0 && CONST_DOUBLE_LOW (op1) == 0)
1173 {
1174 switch (mode)
1175 {
1176 default: break;
1177 case SFmode: ret = "sw\t%.,%0"; break;
1178 case SImode: ret = "sw\t%.,%0"; break;
1179 case HImode: ret = "sh\t%.,%0"; break;
1180 case QImode: ret = "sb\t%.,%0"; break;
1181 }
1182 }
1183
1184 if (ret != (char *)0 && MEM_VOLATILE_P (op0))
1185 {
1186 int i = strlen (ret);
1187 if (i > sizeof (volatile_buffer) - sizeof ("%{%}"))
1188 abort ();
1189
1190 sprintf (volatile_buffer, "%%{%s%%}", ret);
1191 ret = volatile_buffer;
1192 }
1193 }
1194
1195 if (ret == (char *)0)
1196 {
1197 abort_with_insn (insn, "Bad move");
1198 return 0;
1199 }
1200
1201 if (delay != DELAY_NONE)
1202 return mips_fill_delay_slot (ret, delay, operands, insn);
1203
1204 return ret;
1205 }
1206
1207 \f
1208 /* Return the appropriate instructions to move 2 words */
1209
1210 char *
1211 mips_move_2words (operands, insn)
1212 rtx operands[];
1213 rtx insn;
1214 {
1215 char *ret = 0;
1216 rtx op0 = operands[0];
1217 rtx op1 = operands[1];
1218 enum rtx_code code0 = GET_CODE (operands[0]);
1219 enum rtx_code code1 = GET_CODE (operands[1]);
1220 int subreg_word0 = 0;
1221 int subreg_word1 = 0;
1222 enum delay_type delay = DELAY_NONE;
1223
1224 while (code0 == SUBREG)
1225 {
1226 subreg_word0 += SUBREG_WORD (op0);
1227 op0 = SUBREG_REG (op0);
1228 code0 = GET_CODE (op0);
1229 }
1230
1231 while (code1 == SUBREG)
1232 {
1233 subreg_word1 += SUBREG_WORD (op1);
1234 op1 = SUBREG_REG (op1);
1235 code1 = GET_CODE (op1);
1236 }
1237
1238 if (code0 == REG)
1239 {
1240 int regno0 = REGNO (op0) + subreg_word0;
1241
1242 if (code1 == REG)
1243 {
1244 int regno1 = REGNO (op1) + subreg_word1;
1245
1246 /* Just in case, don't do anything for assigning a register
1247 to itself, unless we are filling a delay slot. */
1248 if (regno0 == regno1 && set_nomacro == 0)
1249 ret = "";
1250
1251 else if (FP_REG_P (regno0))
1252 {
1253 if (FP_REG_P (regno1))
1254 ret = "mov.d\t%0,%1";
1255
1256 else
1257 {
1258 delay = DELAY_LOAD;
1259 ret = (TARGET_FLOAT64)
1260 ? "dmtc1\t%1,%0"
1261 : "mtc1\t%L1,%0\n\tmtc1\t%M1,%D0";
1262 }
1263 }
1264
1265 else if (FP_REG_P (regno1))
1266 {
1267 delay = DELAY_LOAD;
1268 ret = (TARGET_FLOAT64)
1269 ? "dmfc1\t%0,%1"
1270 : "mfc1\t%L0,%1\n\tmfc1\t%M0,%D1";
1271 }
1272
1273 else if (MD_REG_P (regno0) && GP_REG_P (regno1))
1274 {
1275 delay = DELAY_HILO;
1276 ret = "mthi\t%M1\n\tmtlo\t%L1";
1277 }
1278
1279 else if (GP_REG_P (regno0) && MD_REG_P (regno1))
1280 {
1281 delay = DELAY_HILO;
1282 ret = "mfhi\t%M0\n\tmflo\t%L0";
1283 }
1284
1285 else if (regno0 != (regno1+1))
1286 ret = "move\t%0,%1\n\tmove\t%D0,%D1";
1287
1288 else
1289 ret = "move\t%D0,%D1\n\tmove\t%0,%1";
1290 }
1291
1292 else if (code1 == CONST_DOUBLE)
1293 {
1294 if (CONST_DOUBLE_HIGH (op1) != 0 || CONST_DOUBLE_LOW (op1) != 0)
1295 {
1296 if (GET_MODE (op1) == DFmode)
1297 {
1298 delay = DELAY_LOAD;
1299 ret = "li.d\t%0,%1";
1300 }
1301
1302 else
1303 {
1304 operands[2] = GEN_INT (CONST_DOUBLE_LOW (op1));
1305 operands[3] = GEN_INT (CONST_DOUBLE_HIGH (op1));
1306 ret = "li\t%M0,%3\n\tli\t%L0,%2";
1307 }
1308 }
1309
1310 else
1311 {
1312 if (GP_REG_P (regno0))
1313 ret = "move\t%0,%.\n\tmove\t%D0,%.";
1314
1315 else if (FP_REG_P (regno0))
1316 {
1317 delay = DELAY_LOAD;
1318 ret = (TARGET_FLOAT64)
1319 ? "dmtc1\t%.,%0"
1320 : "mtc1\t%.,%0\n\tmtc1\t%.,%D0";
1321 }
1322 }
1323 }
1324
1325 else if (code1 == CONST_INT && INTVAL (op1) == 0)
1326 {
1327 if (GP_REG_P (regno0))
1328 ret = "move\t%0,%.\n\tmove\t%D0,%.";
1329
1330 else if (FP_REG_P (regno0))
1331 {
1332 delay = DELAY_LOAD;
1333 ret = (TARGET_FLOAT64)
1334 ? "dmtc1\t%.,%0"
1335 : "mtc1\t%.,%0\n\tmtc1\t%.,%D0";
1336 }
1337 }
1338
1339 else if (code1 == CONST_INT && GET_MODE (op0) == DImode && GP_REG_P (regno0))
1340 {
1341 operands[2] = GEN_INT (INTVAL (operands[1]) >= 0 ? 0 : -1);
1342 ret = "li\t%M0,%2\n\tli\t%L0,%1";
1343 }
1344
1345 else if (code1 == MEM)
1346 {
1347 delay = DELAY_LOAD;
1348
1349 if (TARGET_STATS)
1350 mips_count_memory_refs (op1, 2);
1351
1352 if (FP_REG_P (regno0))
1353 ret = "l.d\t%0,%1";
1354
1355 else if (offsettable_address_p (1, DFmode, XEXP (op1, 0)))
1356 {
1357 operands[2] = adj_offsettable_operand (op1, 4);
1358 if (reg_mentioned_p (op0, op1))
1359 ret = "lw\t%D0,%2\n\tlw\t%0,%1";
1360 else
1361 ret = "lw\t%0,%1\n\tlw\t%D0,%2";
1362 }
1363
1364 if (ret != (char *)0 && MEM_VOLATILE_P (op1))
1365 {
1366 int i = strlen (ret);
1367 if (i > sizeof (volatile_buffer) - sizeof ("%{%}"))
1368 abort ();
1369
1370 sprintf (volatile_buffer, "%%{%s%%}", ret);
1371 ret = volatile_buffer;
1372 }
1373 }
1374 }
1375
1376 else if (code0 == MEM)
1377 {
1378 if (code1 == REG)
1379 {
1380 int regno1 = REGNO (op1) + subreg_word1;
1381
1382 if (FP_REG_P (regno1))
1383 ret = "s.d\t%1,%0";
1384
1385 else if (offsettable_address_p (1, DFmode, XEXP (op0, 0)))
1386 {
1387 operands[2] = adj_offsettable_operand (op0, 4);
1388 ret = "sw\t%1,%0\n\tsw\t%D1,%2";
1389 }
1390 }
1391
1392 else if (code1 == CONST_DOUBLE
1393 && CONST_DOUBLE_HIGH (op1) == 0
1394 && CONST_DOUBLE_LOW (op1) == 0
1395 && offsettable_address_p (1, DFmode, XEXP (op0, 0)))
1396 {
1397 if (TARGET_FLOAT64)
1398 ret = "sd\t%.,%0";
1399 else
1400 {
1401 operands[2] = adj_offsettable_operand (op0, 4);
1402 ret = "sw\t%.,%0\n\tsw\t%.,%2";
1403 }
1404 }
1405
1406 if (TARGET_STATS)
1407 mips_count_memory_refs (op0, 2);
1408
1409 if (ret != (char *)0 && MEM_VOLATILE_P (op0))
1410 {
1411 int i = strlen (ret);
1412 if (i > sizeof (volatile_buffer) - sizeof ("%{%}"))
1413 abort ();
1414
1415 sprintf (volatile_buffer, "%%{%s%%}", ret);
1416 ret = volatile_buffer;
1417 }
1418 }
1419
1420 if (ret == (char *)0)
1421 {
1422 abort_with_insn (insn, "Bad move");
1423 return 0;
1424 }
1425
1426 if (delay != DELAY_NONE)
1427 return mips_fill_delay_slot (ret, delay, operands, insn);
1428
1429 return ret;
1430 }
1431
1432 \f
1433 /* Provide the costs of an addressing mode that contains ADDR.
1434 If ADDR is not a valid address, its cost is irrelevant. */
1435
1436 int
1437 mips_address_cost (addr)
1438 rtx addr;
1439 {
1440 switch (GET_CODE (addr))
1441 {
1442 default:
1443 break;
1444
1445 case LO_SUM:
1446 case HIGH:
1447 return 1;
1448
1449 case LABEL_REF:
1450 return 2;
1451
1452 case CONST:
1453 {
1454 rtx offset = const0_rtx;
1455 addr = eliminate_constant_term (addr, &offset);
1456 if (GET_CODE (addr) == LABEL_REF)
1457 return 2;
1458
1459 if (GET_CODE (addr) != SYMBOL_REF)
1460 return 4;
1461
1462 if (INTVAL (offset) < -32768 || INTVAL (offset) > 32767)
1463 return 2;
1464 }
1465 /* fall through */
1466
1467 case SYMBOL_REF:
1468 return SYMBOL_REF_FLAG (addr) ? 1 : 2;
1469
1470 case PLUS:
1471 {
1472 register rtx plus0 = XEXP (addr, 0);
1473 register rtx plus1 = XEXP (addr, 1);
1474
1475 if (GET_CODE (plus0) != REG && GET_CODE (plus1) == REG)
1476 {
1477 plus0 = XEXP (addr, 1);
1478 plus1 = XEXP (addr, 0);
1479 }
1480
1481 if (GET_CODE (plus0) != REG)
1482 break;
1483
1484 switch (GET_CODE (plus1))
1485 {
1486 default:
1487 break;
1488
1489 case CONST_INT:
1490 {
1491 int value = INTVAL (plus1);
1492 return (value < -32768 || value > 32767) ? 2 : 1;
1493 }
1494
1495 case CONST:
1496 case SYMBOL_REF:
1497 case LABEL_REF:
1498 case HIGH:
1499 case LO_SUM:
1500 return mips_address_cost (plus1) + 1;
1501 }
1502 }
1503 }
1504
1505 return 4;
1506 }
1507
1508 \f
1509 /* Make normal rtx_code into something we can index from an array */
1510
1511 static enum internal_test
1512 map_test_to_internal_test (test_code)
1513 enum rtx_code test_code;
1514 {
1515 enum internal_test test = ITEST_MAX;
1516
1517 switch (test_code)
1518 {
1519 default: break;
1520 case EQ: test = ITEST_EQ; break;
1521 case NE: test = ITEST_NE; break;
1522 case GT: test = ITEST_GT; break;
1523 case GE: test = ITEST_GE; break;
1524 case LT: test = ITEST_LT; break;
1525 case LE: test = ITEST_LE; break;
1526 case GTU: test = ITEST_GTU; break;
1527 case GEU: test = ITEST_GEU; break;
1528 case LTU: test = ITEST_LTU; break;
1529 case LEU: test = ITEST_LEU; break;
1530 }
1531
1532 return test;
1533 }
1534
1535 \f
1536 /* Generate the code to compare two integer values. The return value is:
1537 (reg:SI xx) The pseudo register the comparison is in
1538 (rtx)0 No register, generate a simple branch. */
1539
1540 rtx
1541 gen_int_relational (test_code, result, cmp0, cmp1, p_invert)
1542 enum rtx_code test_code; /* relational test (EQ, etc) */
1543 rtx result; /* result to store comp. or 0 if branch */
1544 rtx cmp0; /* first operand to compare */
1545 rtx cmp1; /* second operand to compare */
1546 int *p_invert; /* NULL or ptr to hold whether branch needs */
1547 /* to reverse its test */
1548 {
1549 struct cmp_info {
1550 enum rtx_code test_code; /* code to use in instruction (LT vs. LTU) */
1551 int const_low; /* low bound of constant we can accept */
1552 int const_high; /* high bound of constant we can accept */
1553 int const_add; /* constant to add (convert LE -> LT) */
1554 int reverse_regs; /* reverse registers in test */
1555 int invert_const; /* != 0 if invert value if cmp1 is constant */
1556 int invert_reg; /* != 0 if invert value if cmp1 is register */
1557 int unsignedp; /* != 0 for unsigned comparisons. */
1558 };
1559
1560 static struct cmp_info info[ (int)ITEST_MAX ] = {
1561
1562 { XOR, 0, 65535, 0, 0, 0, 0, 0 }, /* EQ */
1563 { XOR, 0, 65535, 0, 0, 1, 1, 0 }, /* NE */
1564 { LT, -32769, 32766, 1, 1, 1, 0, 0 }, /* GT */
1565 { LT, -32768, 32767, 0, 0, 1, 1, 0 }, /* GE */
1566 { LT, -32768, 32767, 0, 0, 0, 0, 0 }, /* LT */
1567 { LT, -32769, 32766, 1, 1, 0, 1, 0 }, /* LE */
1568 { LTU, -32769, 32766, 1, 1, 1, 0, 1 }, /* GTU */
1569 { LTU, -32768, 32767, 0, 0, 1, 1, 1 }, /* GEU */
1570 { LTU, -32768, 32767, 0, 0, 0, 0, 1 }, /* LTU */
1571 { LTU, -32769, 32766, 1, 1, 0, 1, 1 }, /* LEU */
1572 };
1573
1574 enum internal_test test;
1575 struct cmp_info *p_info;
1576 int branch_p;
1577 int eqne_p;
1578 int invert;
1579 rtx reg;
1580 rtx reg2;
1581
1582 test = map_test_to_internal_test (test_code);
1583 if (test == ITEST_MAX)
1584 abort ();
1585
1586 p_info = &info[ (int)test ];
1587 eqne_p = (p_info->test_code == XOR);
1588
1589 /* Eliminate simple branches */
1590 branch_p = (result == (rtx)0);
1591 if (branch_p)
1592 {
1593 if (GET_CODE (cmp0) == REG || GET_CODE (cmp0) == SUBREG)
1594 {
1595 /* Comparisons against zero are simple branches */
1596 if (GET_CODE (cmp1) == CONST_INT && INTVAL (cmp1) == 0)
1597 return (rtx)0;
1598
1599 /* Test for beq/bne. */
1600 if (eqne_p)
1601 return (rtx)0;
1602 }
1603
1604 /* allocate a pseudo to calculate the value in. */
1605 result = gen_reg_rtx (SImode);
1606 }
1607
1608 /* Make sure we can handle any constants given to us. */
1609 if (GET_CODE (cmp0) == CONST_INT)
1610 cmp0 = force_reg (SImode, cmp0);
1611
1612 if (GET_CODE (cmp1) == CONST_INT)
1613 {
1614 HOST_WIDE_INT value = INTVAL (cmp1);
1615 if (value < p_info->const_low || value > p_info->const_high)
1616 cmp1 = force_reg (SImode, cmp1);
1617 }
1618
1619 /* See if we need to invert the result. */
1620 invert = (GET_CODE (cmp1) == CONST_INT)
1621 ? p_info->invert_const
1622 : p_info->invert_reg;
1623
1624 if (p_invert != (int *)0)
1625 {
1626 *p_invert = invert;
1627 invert = FALSE;
1628 }
1629
1630 /* Comparison to constants, may involve adding 1 to change a LT into LE.
1631 Comparison between two registers, may involve switching operands. */
1632 if (GET_CODE (cmp1) == CONST_INT)
1633 {
1634 if (p_info->const_add != 0)
1635 {
1636 HOST_WIDE_INT new = INTVAL (cmp1) + p_info->const_add;
1637 /* If modification of cmp1 caused overflow,
1638 we would get the wrong answer if we follow the usual path;
1639 thus, x > 0xffffffffu would turn into x > 0u. */
1640 if ((p_info->unsignedp
1641 ? (unsigned HOST_WIDE_INT) new > INTVAL (cmp1)
1642 : new > INTVAL (cmp1))
1643 != (p_info->const_add > 0))
1644 /* 1 is the right value in the LE and LEU case.
1645 In the GT and GTU case, *p_invert is already set,
1646 so this is effectively 0. */
1647 return force_reg (SImode, const1_rtx);
1648 else
1649 cmp1 = GEN_INT (new);
1650 }
1651 }
1652 else if (p_info->reverse_regs)
1653 {
1654 rtx temp = cmp0;
1655 cmp0 = cmp1;
1656 cmp1 = temp;
1657 }
1658
1659 if (test == ITEST_NE && GET_CODE (cmp1) == CONST_INT && INTVAL (cmp1) == 0)
1660 reg = cmp0;
1661 else
1662 {
1663 reg = (invert || eqne_p) ? gen_reg_rtx (SImode) : result;
1664 emit_move_insn (reg, gen_rtx (p_info->test_code, SImode, cmp0, cmp1));
1665 }
1666
1667 if (test == ITEST_NE)
1668 {
1669 emit_move_insn (result, gen_rtx (GTU, SImode, reg, const0_rtx));
1670 invert = FALSE;
1671 }
1672
1673 else if (test == ITEST_EQ)
1674 {
1675 reg2 = (invert) ? gen_reg_rtx (SImode) : result;
1676 emit_move_insn (reg2, gen_rtx (LTU, SImode, reg, const1_rtx));
1677 reg = reg2;
1678 }
1679
1680 if (invert)
1681 emit_move_insn (result, gen_rtx (XOR, SImode, reg, const1_rtx));
1682
1683 return result;
1684 }
1685
1686 \f
1687 /* Emit the common code for doing conditional branches.
1688 operand[0] is the label to jump to.
1689 The comparison operands are saved away by cmp{si,sf,df}. */
1690
1691 void
1692 gen_conditional_branch (operands, test_code)
1693 rtx operands[];
1694 enum rtx_code test_code;
1695 {
1696 static enum machine_mode mode_map[(int)CMP_MAX][(int)ITEST_MAX] = {
1697 { /* CMP_SI */
1698 SImode, /* eq */
1699 SImode, /* ne */
1700 SImode, /* gt */
1701 SImode, /* ge */
1702 SImode, /* lt */
1703 SImode, /* le */
1704 SImode, /* gtu */
1705 SImode, /* geu */
1706 SImode, /* ltu */
1707 SImode, /* leu */
1708 },
1709 { /* CMP_SF */
1710 CC_FPmode, /* eq */
1711 CC_REV_FPmode, /* ne */
1712 CC_FPmode, /* gt */
1713 CC_FPmode, /* ge */
1714 CC_FPmode, /* lt */
1715 CC_FPmode, /* le */
1716 VOIDmode, /* gtu */
1717 VOIDmode, /* geu */
1718 VOIDmode, /* ltu */
1719 VOIDmode, /* leu */
1720 },
1721 { /* CMP_DF */
1722 CC_FPmode, /* eq */
1723 CC_REV_FPmode, /* ne */
1724 CC_FPmode, /* gt */
1725 CC_FPmode, /* ge */
1726 CC_FPmode, /* lt */
1727 CC_FPmode, /* le */
1728 VOIDmode, /* gtu */
1729 VOIDmode, /* geu */
1730 VOIDmode, /* ltu */
1731 VOIDmode, /* leu */
1732 },
1733 };
1734
1735 enum machine_mode mode;
1736 enum cmp_type type = branch_type;
1737 rtx cmp0 = branch_cmp[0];
1738 rtx cmp1 = branch_cmp[1];
1739 rtx label1 = gen_rtx (LABEL_REF, VOIDmode, operands[0]);
1740 rtx label2 = pc_rtx;
1741 rtx reg = (rtx)0;
1742 int invert = 0;
1743 enum internal_test test = map_test_to_internal_test (test_code);
1744
1745 if (test == ITEST_MAX)
1746 {
1747 mode = SImode;
1748 goto fail;
1749 }
1750
1751 /* Get the machine mode to use (CCmode, CC_EQmode, CC_FPmode, or CC_REV_FPmode). */
1752 mode = mode_map[(int)type][(int)test];
1753 if (mode == VOIDmode)
1754 goto fail;
1755
1756 switch (branch_type)
1757 {
1758 default:
1759 goto fail;
1760
1761 case CMP_SI:
1762 reg = gen_int_relational (test_code, (rtx)0, cmp0, cmp1, &invert);
1763 if (reg != (rtx)0)
1764 {
1765 cmp0 = reg;
1766 cmp1 = const0_rtx;
1767 test_code = NE;
1768 }
1769
1770 /* Make sure not non-zero constant if ==/!= */
1771 else if (GET_CODE (cmp1) == CONST_INT && INTVAL (cmp1) != 0)
1772 cmp1 = force_reg (SImode, cmp1);
1773
1774 break;
1775
1776 case CMP_DF:
1777 case CMP_SF:
1778 {
1779 rtx reg = gen_rtx (REG, mode, FPSW_REGNUM);
1780 emit_insn (gen_rtx (SET, VOIDmode, reg, gen_rtx (test_code, mode, cmp0, cmp1)));
1781 cmp0 = reg;
1782 cmp1 = const0_rtx;
1783 test_code = NE;
1784 }
1785 break;
1786 }
1787
1788 /* Generate the jump */
1789 if (invert)
1790 {
1791 label2 = label1;
1792 label1 = pc_rtx;
1793 }
1794
1795 emit_jump_insn (gen_rtx (SET, VOIDmode,
1796 pc_rtx,
1797 gen_rtx (IF_THEN_ELSE, VOIDmode,
1798 gen_rtx (test_code, mode, cmp0, cmp1),
1799 label1,
1800 label2)));
1801
1802 return;
1803
1804 fail:
1805 abort_with_insn (gen_rtx (test_code, mode, cmp0, cmp1), "bad test");
1806 }
1807
1808 \f
1809 #define UNITS_PER_SHORT (SHORT_TYPE_SIZE / BITS_PER_UNIT)
1810
1811 /* Internal code to generate the load and store of one word/short/byte.
1812 The load is emitted directly, and the store insn is returned. */
1813
1814 #if 0
1815 static rtx
1816 block_move_load_store (dest_reg, src_reg, p_bytes, p_offset, align, orig_src)
1817 rtx src_reg; /* register holding source memory address */
1818 rtx dest_reg; /* register holding dest. memory address */
1819 int *p_bytes; /* pointer to # bytes remaining */
1820 int *p_offset; /* pointer to current offset */
1821 int align; /* alignment */
1822 rtx orig_src; /* original source for making a reg note */
1823 {
1824 int bytes; /* # bytes remaining */
1825 int offset; /* offset to use */
1826 int size; /* size in bytes of load/store */
1827 enum machine_mode mode; /* mode to use for load/store */
1828 rtx reg; /* temporary register */
1829 rtx src_addr; /* source address */
1830 rtx dest_addr; /* destination address */
1831 rtx insn; /* insn of the load */
1832 rtx orig_src_addr; /* original source address */
1833 rtx (*load_func)(); /* function to generate load insn */
1834 rtx (*store_func)(); /* function to generate destination insn */
1835
1836 bytes = *p_bytes;
1837 if (bytes <= 0 || align <= 0)
1838 abort ();
1839
1840 if (bytes >= UNITS_PER_WORD && align >= UNITS_PER_WORD)
1841 {
1842 mode = SImode;
1843 size = UNITS_PER_WORD;
1844 load_func = gen_movsi;
1845 store_func = gen_movsi;
1846 }
1847
1848 #if 0
1849 /* Don't generate unaligned moves here, rather defer those to the
1850 general movestrsi_internal pattern. */
1851 else if (bytes >= UNITS_PER_WORD)
1852 {
1853 mode = SImode;
1854 size = UNITS_PER_WORD;
1855 load_func = gen_movsi_ulw;
1856 store_func = gen_movsi_usw;
1857 }
1858 #endif
1859
1860 else if (bytes >= UNITS_PER_SHORT && align >= UNITS_PER_SHORT)
1861 {
1862 mode = HImode;
1863 size = UNITS_PER_SHORT;
1864 load_func = gen_movhi;
1865 store_func = gen_movhi;
1866 }
1867
1868 else
1869 {
1870 mode = QImode;
1871 size = 1;
1872 load_func = gen_movqi;
1873 store_func = gen_movqi;
1874 }
1875
1876 offset = *p_offset;
1877 *p_offset = offset + size;
1878 *p_bytes = bytes - size;
1879
1880 if (offset == 0)
1881 {
1882 src_addr = src_reg;
1883 dest_addr = dest_reg;
1884 }
1885 else
1886 {
1887 src_addr = gen_rtx (PLUS, Pmode, src_reg, GEN_INT (offset));
1888 dest_addr = gen_rtx (PLUS, Pmode, dest_reg, GEN_INT (offset));
1889 }
1890
1891 reg = gen_reg_rtx (mode);
1892 insn = emit_insn ((*load_func) (reg, gen_rtx (MEM, mode, src_addr)));
1893 orig_src_addr = XEXP (orig_src, 0);
1894 if (CONSTANT_P (orig_src_addr))
1895 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUIV,
1896 plus_constant (orig_src_addr, offset),
1897 REG_NOTES (insn));
1898
1899 return (*store_func) (gen_rtx (MEM, mode, dest_addr), reg);
1900 }
1901 #endif
1902
1903 \f
1904 /* Write a series of loads/stores to move some bytes. Generate load/stores as follows:
1905
1906 load 1
1907 load 2
1908 load 3
1909 store 1
1910 load 4
1911 store 2
1912 load 5
1913 store 3
1914 ...
1915
1916 This way, no NOP's are needed, except at the end, and only
1917 two temp registers are needed. Two delay slots are used
1918 in deference to the R4000. */
1919
1920 #if 0
1921 static void
1922 block_move_sequence (dest_reg, src_reg, bytes, align, orig_src)
1923 rtx dest_reg; /* register holding destination address */
1924 rtx src_reg; /* register holding source address */
1925 int bytes; /* # bytes to move */
1926 int align; /* max alignment to assume */
1927 rtx orig_src; /* original source for making a reg note */
1928 {
1929 int offset = 0;
1930 rtx prev2_store = (rtx)0;
1931 rtx prev_store = (rtx)0;
1932 rtx cur_store = (rtx)0;
1933
1934 while (bytes > 0)
1935 {
1936 /* Is there a store to do? */
1937 if (prev2_store)
1938 emit_insn (prev2_store);
1939
1940 prev2_store = prev_store;
1941 prev_store = cur_store;
1942 cur_store = block_move_load_store (dest_reg, src_reg,
1943 &bytes, &offset,
1944 align, orig_src);
1945 }
1946
1947 /* Finish up last three stores. */
1948 if (prev2_store)
1949 emit_insn (prev2_store);
1950
1951 if (prev_store)
1952 emit_insn (prev_store);
1953
1954 if (cur_store)
1955 emit_insn (cur_store);
1956 }
1957 #endif
1958
1959 \f
1960 /* Write a loop to move a constant number of bytes. Generate load/stores as follows:
1961
1962 do {
1963 temp1 = src[0];
1964 temp2 = src[1];
1965 ...
1966 temp<last> = src[MAX_MOVE_REGS-1];
1967 dest[0] = temp1;
1968 dest[1] = temp2;
1969 ...
1970 dest[MAX_MOVE_REGS-1] = temp<last>;
1971 src += MAX_MOVE_REGS;
1972 dest += MAX_MOVE_REGS;
1973 } while (src != final);
1974
1975 This way, no NOP's are needed, and only MAX_MOVE_REGS+3 temp
1976 registers are needed.
1977
1978 Aligned moves move MAX_MOVE_REGS*4 bytes every (2*MAX_MOVE_REGS)+3
1979 cycles, unaligned moves move MAX_MOVE_REGS*4 bytes every
1980 (4*MAX_MOVE_REGS)+3 cycles, assuming no cache misses. */
1981
1982 #define MAX_MOVE_REGS 4
1983 #define MAX_MOVE_BYTES (MAX_MOVE_REGS * UNITS_PER_WORD)
1984
1985 static void
1986 block_move_loop (dest_reg, src_reg, bytes, align, orig_src)
1987 rtx dest_reg; /* register holding destination address */
1988 rtx src_reg; /* register holding source address */
1989 int bytes; /* # bytes to move */
1990 int align; /* alignment */
1991 rtx orig_src; /* original source for making a reg note */
1992 {
1993 rtx dest_mem = gen_rtx (MEM, BLKmode, dest_reg);
1994 rtx src_mem = gen_rtx (MEM, BLKmode, src_reg);
1995 rtx align_rtx = GEN_INT (align);
1996 rtx label;
1997 rtx final_src;
1998 rtx bytes_rtx;
1999 int leftover;
2000
2001 if (bytes < 2*MAX_MOVE_BYTES)
2002 abort ();
2003
2004 leftover = bytes % MAX_MOVE_BYTES;
2005 bytes -= leftover;
2006
2007 label = gen_label_rtx ();
2008 final_src = gen_reg_rtx (Pmode);
2009 bytes_rtx = GEN_INT (bytes);
2010
2011 if (bytes > 0x7fff)
2012 {
2013 emit_insn (gen_movsi (final_src, bytes_rtx));
2014 emit_insn (gen_addsi3 (final_src, final_src, src_reg));
2015 }
2016 else
2017 emit_insn (gen_addsi3 (final_src, src_reg, bytes_rtx));
2018
2019 emit_label (label);
2020
2021 bytes_rtx = GEN_INT (MAX_MOVE_BYTES);
2022 emit_insn (gen_movstrsi_internal (dest_mem, src_mem, bytes_rtx, align_rtx));
2023 emit_insn (gen_addsi3 (src_reg, src_reg, bytes_rtx));
2024 emit_insn (gen_addsi3 (dest_reg, dest_reg, bytes_rtx));
2025 emit_insn (gen_cmpsi (src_reg, final_src));
2026 emit_jump_insn (gen_bne (label));
2027
2028 if (leftover)
2029 emit_insn (gen_movstrsi_internal (dest_mem, src_mem,
2030 GEN_INT (leftover),
2031 align_rtx));
2032 }
2033
2034 \f
2035 /* Use a library function to move some bytes. */
2036
2037 static void
2038 block_move_call (dest_reg, src_reg, bytes_rtx)
2039 rtx dest_reg;
2040 rtx src_reg;
2041 rtx bytes_rtx;
2042 {
2043 #ifdef TARGET_MEM_FUNCTIONS
2044 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "memcpy"), 0,
2045 VOIDmode, 3,
2046 dest_reg, Pmode,
2047 src_reg, Pmode,
2048 bytes_rtx, SImode);
2049 #else
2050 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "bcopy"), 0,
2051 VOIDmode, 3,
2052 src_reg, Pmode,
2053 dest_reg, Pmode,
2054 bytes_rtx, SImode);
2055 #endif
2056 }
2057
2058 \f
2059 /* Expand string/block move operations.
2060
2061 operands[0] is the pointer to the destination.
2062 operands[1] is the pointer to the source.
2063 operands[2] is the number of bytes to move.
2064 operands[3] is the alignment. */
2065
2066 void
2067 expand_block_move (operands)
2068 rtx operands[];
2069 {
2070 rtx bytes_rtx = operands[2];
2071 rtx align_rtx = operands[3];
2072 int constp = (GET_CODE (bytes_rtx) == CONST_INT);
2073 int bytes = (constp ? INTVAL (bytes_rtx) : 0);
2074 int align = INTVAL (align_rtx);
2075 rtx orig_src = operands[1];
2076 rtx src_reg;
2077 rtx dest_reg;
2078
2079 if (constp && bytes <= 0)
2080 return;
2081
2082 if (align > UNITS_PER_WORD)
2083 align = UNITS_PER_WORD;
2084
2085 /* Move the address into scratch registers. */
2086 dest_reg = copy_addr_to_reg (XEXP (operands[0], 0));
2087 src_reg = copy_addr_to_reg (XEXP (orig_src, 0));
2088
2089 if (TARGET_MEMCPY)
2090 block_move_call (dest_reg, src_reg, bytes_rtx);
2091
2092 #if 0
2093 else if (constp && bytes <= 3*align)
2094 block_move_sequence (dest_reg, src_reg, bytes, align, orig_src);
2095 #endif
2096
2097 else if (constp && bytes <= 2*MAX_MOVE_BYTES)
2098 emit_insn (gen_movstrsi_internal (gen_rtx (MEM, BLKmode, dest_reg),
2099 gen_rtx (MEM, BLKmode, src_reg),
2100 bytes_rtx, align_rtx));
2101
2102 else if (constp && align >= UNITS_PER_WORD && optimize)
2103 block_move_loop (dest_reg, src_reg, bytes, align, orig_src);
2104
2105 else if (constp && optimize)
2106 {
2107 /* If the alignment is not word aligned, generate a test at
2108 runtime, to see whether things wound up aligned, and we
2109 can use the faster lw/sw instead ulw/usw. */
2110
2111 rtx temp = gen_reg_rtx (Pmode);
2112 rtx aligned_label = gen_label_rtx ();
2113 rtx join_label = gen_label_rtx ();
2114 int leftover = bytes % MAX_MOVE_BYTES;
2115
2116 bytes -= leftover;
2117
2118 emit_insn (gen_iorsi3 (temp, src_reg, dest_reg));
2119 emit_insn (gen_andsi3 (temp, temp, GEN_INT (UNITS_PER_WORD-1)));
2120 emit_insn (gen_cmpsi (temp, const0_rtx));
2121 emit_jump_insn (gen_beq (aligned_label));
2122
2123 /* Unaligned loop. */
2124 block_move_loop (dest_reg, src_reg, bytes, 1, orig_src);
2125 emit_jump_insn (gen_jump (join_label));
2126 emit_barrier ();
2127
2128 /* Aligned loop. */
2129 emit_label (aligned_label);
2130 block_move_loop (dest_reg, src_reg, bytes, UNITS_PER_WORD, orig_src);
2131 emit_label (join_label);
2132
2133 /* Bytes at the end of the loop. */
2134 if (leftover)
2135 {
2136 #if 0
2137 if (leftover <= 3*align)
2138 block_move_sequence (dest_reg, src_reg, leftover, align, orig_src);
2139
2140 else
2141 #endif
2142 emit_insn (gen_movstrsi_internal (gen_rtx (MEM, BLKmode, dest_reg),
2143 gen_rtx (MEM, BLKmode, src_reg),
2144 GEN_INT (leftover),
2145 GEN_INT (align)));
2146 }
2147 }
2148
2149 else
2150 block_move_call (dest_reg, src_reg, bytes_rtx);
2151 }
2152
2153 \f
2154 /* Emit load/stores for a small constant block_move.
2155
2156 operands[0] is the memory address of the destination.
2157 operands[1] is the memory address of the source.
2158 operands[2] is the number of bytes to move.
2159 operands[3] is the alignment.
2160 operands[4] is a temp register.
2161 operands[5] is a temp register.
2162 ...
2163 operands[3+num_regs] is the last temp register.
2164
2165 The block move type can be one of the following:
2166 BLOCK_MOVE_NORMAL Do all of the block move.
2167 BLOCK_MOVE_NOT_LAST Do all but the last store.
2168 BLOCK_MOVE_LAST Do just the last store. */
2169
2170 char *
2171 output_block_move (insn, operands, num_regs, move_type)
2172 rtx insn;
2173 rtx operands[];
2174 int num_regs;
2175 enum block_move_type move_type;
2176 {
2177 rtx dest_reg = XEXP (operands[0], 0);
2178 rtx src_reg = XEXP (operands[1], 0);
2179 int bytes = INTVAL (operands[2]);
2180 int align = INTVAL (operands[3]);
2181 int num = 0;
2182 int offset = 0;
2183 int use_lwl_lwr = FALSE;
2184 int last_operand = num_regs+4;
2185 int i;
2186 rtx xoperands[10];
2187
2188 struct {
2189 char *load; /* load insn without nop */
2190 char *load_nop; /* load insn with trailing nop */
2191 char *store; /* store insn */
2192 char *final; /* if last_store used: NULL or swr */
2193 char *last_store; /* last store instruction */
2194 int offset; /* current offset */
2195 enum machine_mode mode; /* mode to use on (MEM) */
2196 } load_store[4];
2197
2198 /* Detect a bug in GCC, where it can give us a register
2199 the same as one of the addressing registers. */
2200 for (i = 4; i < last_operand; i++)
2201 {
2202 if (reg_mentioned_p (operands[i], operands[0])
2203 || reg_mentioned_p (operands[i], operands[1]))
2204 {
2205 abort_with_insn (insn, "register passed as address and temp register to block move");
2206 }
2207 }
2208
2209 /* If we are given global or static addresses, and we would be
2210 emitting a few instructions, try to save time by using a
2211 temporary register for the pointer. */
2212 if (bytes > 2*align || move_type != BLOCK_MOVE_NORMAL)
2213 {
2214 if (CONSTANT_P (src_reg))
2215 {
2216 if (TARGET_STATS)
2217 mips_count_memory_refs (operands[1], 1);
2218
2219 src_reg = operands[ 3 + num_regs-- ];
2220 if (move_type != BLOCK_MOVE_LAST)
2221 {
2222 xoperands[1] = operands[1];
2223 xoperands[0] = src_reg;
2224 output_asm_insn ("la\t%0,%1", xoperands);
2225 }
2226 }
2227
2228 if (CONSTANT_P (dest_reg))
2229 {
2230 if (TARGET_STATS)
2231 mips_count_memory_refs (operands[0], 1);
2232
2233 dest_reg = operands[ 3 + num_regs-- ];
2234 if (move_type != BLOCK_MOVE_LAST)
2235 {
2236 xoperands[1] = operands[0];
2237 xoperands[0] = dest_reg;
2238 output_asm_insn ("la\t%0,%1", xoperands);
2239 }
2240 }
2241 }
2242
2243 if (num_regs > (sizeof (load_store) / sizeof (load_store[0])))
2244 num_regs = (sizeof (load_store) / sizeof (load_store[0]));
2245
2246 else if (num_regs < 1)
2247 abort ();
2248
2249 if (TARGET_GAS && move_type != BLOCK_MOVE_LAST && set_noreorder++ == 0)
2250 output_asm_insn (".set\tnoreorder", operands);
2251
2252 while (bytes > 0)
2253 {
2254 load_store[num].offset = offset;
2255
2256 if (bytes >= UNITS_PER_WORD && align >= UNITS_PER_WORD)
2257 {
2258 load_store[num].load = "lw\t%0,%1";
2259 load_store[num].load_nop = "lw\t%0,%1%#";
2260 load_store[num].store = "sw\t%0,%1";
2261 load_store[num].last_store = "sw\t%0,%1";
2262 load_store[num].final = (char *)0;
2263 load_store[num].mode = SImode;
2264 offset += UNITS_PER_WORD;
2265 bytes -= UNITS_PER_WORD;
2266 }
2267
2268 else if (bytes >= UNITS_PER_WORD)
2269 {
2270 #if BYTES_BIG_ENDIAN
2271 load_store[num].load = "lwl\t%0,%1\n\tlwr\t%0,%2";
2272 load_store[num].load_nop = "lwl\t%0,%1\n\tlwr\t%0,%2%#";
2273 load_store[num].store = "swl\t%0,%1\n\tswr\t%0,%2";
2274 load_store[num].last_store = "swr\t%0,%2";
2275 load_store[num].final = "swl\t%0,%1";
2276 #else
2277 load_store[num].load = "lwl\t%0,%2\n\tlwr\t%0,%1";
2278 load_store[num].load_nop = "lwl\t%0,%2\n\tlwr\t%0,%1%#";
2279 load_store[num].store = "swl\t%0,%2\n\tswr\t%0,%1";
2280 load_store[num].last_store = "swr\t%0,%1";
2281 load_store[num].final = "swl\t%0,%2";
2282 #endif
2283 load_store[num].mode = SImode;
2284 offset += UNITS_PER_WORD;
2285 bytes -= UNITS_PER_WORD;
2286 use_lwl_lwr = TRUE;
2287 }
2288
2289 else if (bytes >= UNITS_PER_SHORT && align >= UNITS_PER_SHORT)
2290 {
2291 load_store[num].load = "lh\t%0,%1";
2292 load_store[num].load_nop = "lh\t%0,%1%#";
2293 load_store[num].store = "sh\t%0,%1";
2294 load_store[num].last_store = "sh\t%0,%1";
2295 load_store[num].final = (char *)0;
2296 load_store[num].offset = offset;
2297 load_store[num].mode = HImode;
2298 offset += UNITS_PER_SHORT;
2299 bytes -= UNITS_PER_SHORT;
2300 }
2301
2302 else
2303 {
2304 load_store[num].load = "lb\t%0,%1";
2305 load_store[num].load_nop = "lb\t%0,%1%#";
2306 load_store[num].store = "sb\t%0,%1";
2307 load_store[num].last_store = "sb\t%0,%1";
2308 load_store[num].final = (char *)0;
2309 load_store[num].mode = QImode;
2310 offset++;
2311 bytes--;
2312 }
2313
2314 if (TARGET_STATS && move_type != BLOCK_MOVE_LAST)
2315 {
2316 dslots_load_total++;
2317 dslots_load_filled++;
2318
2319 if (CONSTANT_P (src_reg))
2320 mips_count_memory_refs (src_reg, 1);
2321
2322 if (CONSTANT_P (dest_reg))
2323 mips_count_memory_refs (dest_reg, 1);
2324 }
2325
2326 /* Emit load/stores now if we have run out of registers or are
2327 at the end of the move. */
2328
2329 if (++num == num_regs || bytes == 0)
2330 {
2331 /* If only load/store, we need a NOP after the load. */
2332 if (num == 1)
2333 {
2334 load_store[0].load = load_store[0].load_nop;
2335 if (TARGET_STATS && move_type != BLOCK_MOVE_LAST)
2336 dslots_load_filled--;
2337 }
2338
2339 if (move_type != BLOCK_MOVE_LAST)
2340 {
2341 for (i = 0; i < num; i++)
2342 {
2343 int offset;
2344
2345 if (!operands[i+4])
2346 abort ();
2347
2348 if (GET_MODE (operands[i+4]) != load_store[i].mode)
2349 operands[i+4] = gen_rtx (REG, load_store[i].mode, REGNO (operands[i+4]));
2350
2351 offset = load_store[i].offset;
2352 xoperands[0] = operands[i+4];
2353 xoperands[1] = gen_rtx (MEM, load_store[i].mode,
2354 plus_constant (src_reg, offset));
2355
2356 if (use_lwl_lwr)
2357 xoperands[2] = gen_rtx (MEM, load_store[i].mode,
2358 plus_constant (src_reg, UNITS_PER_WORD-1+offset));
2359
2360 output_asm_insn (load_store[i].load, xoperands);
2361 }
2362 }
2363
2364 for (i = 0; i < num; i++)
2365 {
2366 int last_p = (i == num-1 && bytes == 0);
2367 int offset = load_store[i].offset;
2368
2369 xoperands[0] = operands[i+4];
2370 xoperands[1] = gen_rtx (MEM, load_store[i].mode,
2371 plus_constant (dest_reg, offset));
2372
2373
2374 if (use_lwl_lwr)
2375 xoperands[2] = gen_rtx (MEM, load_store[i].mode,
2376 plus_constant (dest_reg, UNITS_PER_WORD-1+offset));
2377
2378 if (move_type == BLOCK_MOVE_NORMAL)
2379 output_asm_insn (load_store[i].store, xoperands);
2380
2381 else if (move_type == BLOCK_MOVE_NOT_LAST)
2382 {
2383 if (!last_p)
2384 output_asm_insn (load_store[i].store, xoperands);
2385
2386 else if (load_store[i].final != (char *)0)
2387 output_asm_insn (load_store[i].final, xoperands);
2388 }
2389
2390 else if (last_p)
2391 output_asm_insn (load_store[i].last_store, xoperands);
2392 }
2393
2394 num = 0; /* reset load_store */
2395 use_lwl_lwr = FALSE; /* reset whether or not we used lwl/lwr */
2396 }
2397 }
2398
2399 if (TARGET_GAS && move_type != BLOCK_MOVE_LAST && --set_noreorder == 0)
2400 output_asm_insn (".set\treorder", operands);
2401
2402 return "";
2403 }
2404
2405 \f
2406 /* Argument support functions. */
2407
2408 /* Initialize CUMULATIVE_ARGS for a function. */
2409
2410 void
2411 init_cumulative_args (cum, fntype, libname)
2412 CUMULATIVE_ARGS *cum; /* argument info to initialize */
2413 tree fntype; /* tree ptr for function decl */
2414 rtx libname; /* SYMBOL_REF of library name or 0 */
2415 {
2416 static CUMULATIVE_ARGS zero_cum;
2417 tree param, next_param;
2418
2419 if (TARGET_DEBUG_E_MODE)
2420 {
2421 fprintf (stderr, "\ninit_cumulative_args, fntype = 0x%.8lx", (long)fntype);
2422 if (!fntype)
2423 fputc ('\n', stderr);
2424
2425 else
2426 {
2427 tree ret_type = TREE_TYPE (fntype);
2428 fprintf (stderr, ", fntype code = %s, ret code = %s\n",
2429 tree_code_name[ (int)TREE_CODE (fntype) ],
2430 tree_code_name[ (int)TREE_CODE (ret_type) ]);
2431 }
2432 }
2433
2434 *cum = zero_cum;
2435
2436 /* Determine if this function has variable arguments. This is
2437 indicated by the last argument being 'void_type_mode' if there
2438 are no variable arguments. The standard MIPS calling sequence
2439 passes all arguments in the general purpose registers in this
2440 case. */
2441
2442 for (param = (fntype) ? TYPE_ARG_TYPES (fntype) : 0;
2443 param != (tree)0;
2444 param = next_param)
2445 {
2446 next_param = TREE_CHAIN (param);
2447 if (next_param == (tree)0 && TREE_VALUE (param) != void_type_node)
2448 cum->gp_reg_found = 1;
2449 }
2450 }
2451
2452 /* Advance the argument to the next argument position. */
2453
2454 void
2455 function_arg_advance (cum, mode, type, named)
2456 CUMULATIVE_ARGS *cum; /* current arg information */
2457 enum machine_mode mode; /* current arg mode */
2458 tree type; /* type of the argument or 0 if lib support */
2459 int named; /* whether or not the argument was named */
2460 {
2461 if (TARGET_DEBUG_E_MODE)
2462 fprintf (stderr,
2463 "function_adv( {gp reg found = %d, arg # = %2d, words = %2d}, %4s, 0x%.8x, %d )\n\n",
2464 cum->gp_reg_found, cum->arg_number, cum->arg_words, GET_MODE_NAME (mode),
2465 type, named);
2466
2467 cum->arg_number++;
2468 switch (mode)
2469 {
2470 default:
2471 error ("Illegal mode given to function_arg_advance");
2472 break;
2473
2474 case VOIDmode:
2475 break;
2476
2477 case BLKmode:
2478 cum->gp_reg_found = 1;
2479 cum->arg_words += (int_size_in_bytes (type) + 3) / 4;
2480 break;
2481
2482 case SFmode:
2483 cum->arg_words++;
2484 break;
2485
2486 case DFmode:
2487 cum->arg_words += 2;
2488 break;
2489
2490 case DImode:
2491 cum->gp_reg_found = 1;
2492 cum->arg_words += 2;
2493 break;
2494
2495 case QImode:
2496 case HImode:
2497 case SImode:
2498 cum->gp_reg_found = 1;
2499 cum->arg_words++;
2500 break;
2501 }
2502 }
2503
2504 /* Return a RTL expression containing the register for the given mode,
2505 or 0 if the argument is too be passed on the stack. */
2506
2507 struct rtx_def *
2508 function_arg (cum, mode, type, named)
2509 CUMULATIVE_ARGS *cum; /* current arg information */
2510 enum machine_mode mode; /* current arg mode */
2511 tree type; /* type of the argument or 0 if lib support */
2512 int named; /* != 0 for normal args, == 0 for ... args */
2513 {
2514 rtx ret;
2515 int regbase = -1;
2516 int bias = 0;
2517 int struct_p = ((type != (tree)0)
2518 && (TREE_CODE (type) == RECORD_TYPE
2519 || TREE_CODE (type) == UNION_TYPE));
2520
2521 if (TARGET_DEBUG_E_MODE)
2522 fprintf (stderr,
2523 "function_arg( {gp reg found = %d, arg # = %2d, words = %2d}, %4s, 0x%.8x, %d ) = ",
2524 cum->gp_reg_found, cum->arg_number, cum->arg_words, GET_MODE_NAME (mode),
2525 type, named);
2526
2527 switch (mode)
2528 {
2529 default:
2530 error ("Illegal mode given to function_arg");
2531 break;
2532
2533 case SFmode:
2534 if (cum->gp_reg_found || cum->arg_number >= 2)
2535 regbase = GP_ARG_FIRST;
2536 else {
2537 regbase = (TARGET_SOFT_FLOAT) ? GP_ARG_FIRST : FP_ARG_FIRST;
2538 if (cum->arg_words == 1) /* first arg was float */
2539 bias = 1; /* use correct reg */
2540 }
2541
2542 break;
2543
2544 case DFmode:
2545 cum->arg_words += (cum->arg_words & 1);
2546 regbase = (cum->gp_reg_found || TARGET_SOFT_FLOAT)
2547 ? GP_ARG_FIRST
2548 : FP_ARG_FIRST;
2549 break;
2550
2551 case BLKmode:
2552 if (type != (tree)0 && TYPE_ALIGN (type) > BITS_PER_WORD)
2553 cum->arg_words += (cum->arg_words & 1);
2554
2555 regbase = GP_ARG_FIRST;
2556 break;
2557
2558 case VOIDmode:
2559 case QImode:
2560 case HImode:
2561 case SImode:
2562 regbase = GP_ARG_FIRST;
2563 break;
2564
2565 case DImode:
2566 cum->arg_words += (cum->arg_words & 1);
2567 regbase = GP_ARG_FIRST;
2568 }
2569
2570 if (cum->arg_words >= MAX_ARGS_IN_REGISTERS)
2571 {
2572 if (TARGET_DEBUG_E_MODE)
2573 fprintf (stderr, "<stack>%s\n", struct_p ? ", [struct]" : "");
2574
2575 ret = (rtx)0;
2576 }
2577 else
2578 {
2579 if (regbase == -1)
2580 abort ();
2581
2582 ret = gen_rtx (REG, mode, regbase + cum->arg_words + bias);
2583
2584 if (TARGET_DEBUG_E_MODE)
2585 fprintf (stderr, "%s%s\n", reg_names[regbase + cum->arg_words + bias],
2586 struct_p ? ", [struct]" : "");
2587
2588 /* The following is a hack in order to pass 1 byte structures
2589 the same way that the MIPS compiler does (namely by passing
2590 the structure in the high byte or half word of the register).
2591 This also makes varargs work. If we have such a structure,
2592 we save the adjustment RTL, and the call define expands will
2593 emit them. For the VOIDmode argument (argument after the
2594 last real argument, pass back a parallel vector holding each
2595 of the adjustments. */
2596
2597 if (struct_p && (mode == QImode || mode == HImode))
2598 {
2599 rtx amount = GEN_INT (BITS_PER_WORD - GET_MODE_BITSIZE (mode));
2600 rtx reg = gen_rtx (REG, SImode, regbase + cum->arg_words + bias);
2601 cum->adjust[ cum->num_adjusts++ ] = gen_ashlsi3 (reg, reg, amount);
2602 }
2603 }
2604
2605 if (mode == VOIDmode && cum->num_adjusts > 0)
2606 ret = gen_rtx (PARALLEL, VOIDmode, gen_rtvec_v (cum->num_adjusts, cum->adjust));
2607
2608 return ret;
2609 }
2610
2611
2612 int
2613 function_arg_partial_nregs (cum, mode, type, named)
2614 CUMULATIVE_ARGS *cum; /* current arg information */
2615 enum machine_mode mode; /* current arg mode */
2616 tree type; /* type of the argument or 0 if lib support */
2617 int named; /* != 0 for normal args, == 0 for ... args */
2618 {
2619 if (mode == BLKmode && cum->arg_words < MAX_ARGS_IN_REGISTERS)
2620 {
2621 int words = (int_size_in_bytes (type) + 3) / 4;
2622
2623 if (words + cum->arg_words < MAX_ARGS_IN_REGISTERS)
2624 return 0; /* structure fits in registers */
2625
2626 if (TARGET_DEBUG_E_MODE)
2627 fprintf (stderr, "function_arg_partial_nregs = %d\n",
2628 MAX_ARGS_IN_REGISTERS - cum->arg_words);
2629
2630 return MAX_ARGS_IN_REGISTERS - cum->arg_words;
2631 }
2632
2633 else if (mode == DImode && cum->arg_words == MAX_ARGS_IN_REGISTERS-1)
2634 {
2635 if (TARGET_DEBUG_E_MODE)
2636 fprintf (stderr, "function_arg_partial_nregs = 1\n");
2637
2638 return 1;
2639 }
2640
2641 return 0;
2642 }
2643
2644 \f
2645 /* Print the options used in the assembly file. */
2646
2647 static struct {char *name; int value;} target_switches []
2648 = TARGET_SWITCHES;
2649
2650 void
2651 print_options (out)
2652 FILE *out;
2653 {
2654 int line_len;
2655 int len;
2656 int j;
2657 char **p;
2658 int mask = TARGET_DEFAULT;
2659
2660 /* Allow assembly language comparisons with -mdebug eliminating the
2661 compiler version number and switch lists. */
2662
2663 if (TARGET_DEBUG_MODE)
2664 return;
2665
2666 fprintf (out, "\n # %s %s", language_string, version_string);
2667 #ifdef TARGET_VERSION_INTERNAL
2668 TARGET_VERSION_INTERNAL (out);
2669 #endif
2670 #ifdef __GNUC__
2671 fprintf (out, " compiled by GNU C\n\n");
2672 #else
2673 fprintf (out, " compiled by CC\n\n");
2674 #endif
2675
2676 fprintf (out, " # Cc1 defaults:");
2677 line_len = 32767;
2678 for (j = 0; j < sizeof target_switches / sizeof target_switches[0]; j++)
2679 {
2680 if (target_switches[j].name[0] != '\0'
2681 && target_switches[j].value > 0
2682 && (target_switches[j].value & mask) == target_switches[j].value)
2683 {
2684 mask &= ~ target_switches[j].value;
2685 len = strlen (target_switches[j].name) + 1;
2686 if (len + line_len > 79)
2687 {
2688 line_len = 2;
2689 fputs ("\n #", out);
2690 }
2691 fprintf (out, " -m%s", target_switches[j].name);
2692 line_len += len;
2693 }
2694 }
2695
2696 fprintf (out, "\n\n # Cc1 arguments (-G value = %d, Cpu = %s, ISA = %d):",
2697 mips_section_threshold, mips_cpu_string, mips_isa);
2698
2699 line_len = 32767;
2700 for (p = &save_argv[1]; *p != (char *)0; p++)
2701 {
2702 char *arg = *p;
2703 if (*arg == '-')
2704 {
2705 len = strlen (arg) + 1;
2706 if (len + line_len > 79)
2707 {
2708 line_len = 2;
2709 fputs ("\n #", out);
2710 }
2711 fprintf (out, " %s", *p);
2712 line_len += len;
2713 }
2714 }
2715
2716 fputs ("\n\n", out);
2717 }
2718
2719 \f
2720 /* Abort after printing out a specific insn. */
2721
2722 void
2723 abort_with_insn (insn, reason)
2724 rtx insn;
2725 char *reason;
2726 {
2727 error (reason);
2728 debug_rtx (insn);
2729 abort ();
2730 }
2731
2732 /* Write a message to stderr (for use in macros expanded in files that do not
2733 include stdio.h). */
2734
2735 void
2736 trace (s, s1, s2)
2737 char *s, *s1, *s2;
2738 {
2739 fprintf (stderr, s, s1, s2);
2740 }
2741
2742 \f
2743 #ifdef SIGINFO
2744
2745 static void
2746 siginfo (signo)
2747 int signo;
2748 {
2749 fprintf (stderr, "compiling '%s' in '%s'\n",
2750 (current_function_name != (char *)0) ? current_function_name : "<toplevel>",
2751 (current_function_file != (char *)0) ? current_function_file : "<no file>");
2752 fflush (stderr);
2753 }
2754 #endif /* SIGINFO */
2755
2756 \f
2757 /* Set up the threshold for data to go into the small data area, instead
2758 of the normal data area, and detect any conflicts in the switches. */
2759
2760 void
2761 override_options ()
2762 {
2763 register int i, start;
2764 register int regno;
2765 register enum machine_mode mode;
2766
2767 if (g_switch_set)
2768 mips_section_threshold = g_switch_value;
2769
2770 else
2771 mips_section_threshold = (TARGET_MIPS_AS) ? 8 : 0;
2772
2773 /* Identify the processor type */
2774 if (mips_cpu_string == (char *)0
2775 || !strcmp (mips_cpu_string, "default")
2776 || !strcmp (mips_cpu_string, "DEFAULT"))
2777 {
2778 mips_cpu_string = "default";
2779 mips_cpu = PROCESSOR_DEFAULT;
2780 }
2781
2782 else
2783 {
2784 char *p = mips_cpu_string;
2785
2786 if (*p == 'r' || *p == 'R')
2787 p++;
2788
2789 /* Since there is no difference between a R2000 and R3000 in
2790 terms of the scheduler, we collapse them into just an R3000. */
2791
2792 mips_cpu = PROCESSOR_DEFAULT;
2793 switch (*p)
2794 {
2795 case '2':
2796 if (!strcmp (p, "2000") || !strcmp (p, "2k") || !strcmp (p, "2K"))
2797 mips_cpu = PROCESSOR_R3000;
2798 break;
2799
2800 case '3':
2801 if (!strcmp (p, "3000") || !strcmp (p, "3k") || !strcmp (p, "3K"))
2802 mips_cpu = PROCESSOR_R3000;
2803 break;
2804
2805 case '4':
2806 if (!strcmp (p, "4000") || !strcmp (p, "4k") || !strcmp (p, "4K"))
2807 mips_cpu = PROCESSOR_R4000;
2808 break;
2809
2810 case '6':
2811 if (!strcmp (p, "6000") || !strcmp (p, "6k") || !strcmp (p, "6K"))
2812 mips_cpu = PROCESSOR_R6000;
2813 break;
2814 }
2815
2816 if (mips_cpu == PROCESSOR_DEFAULT)
2817 {
2818 error ("bad value (%s) for -mcpu= switch", mips_cpu_string);
2819 mips_cpu_string = "default";
2820 }
2821 }
2822
2823 /* Now get the architectural level. */
2824 if (mips_isa_string == (char *)0)
2825 mips_isa = 1;
2826
2827 else if (isdigit (*mips_isa_string))
2828 mips_isa = atoi (mips_isa_string);
2829
2830 else
2831 {
2832 error ("bad value (%s) for -mips switch", mips_isa_string);
2833 mips_isa = 1;
2834 }
2835
2836 if (mips_isa < 0 || mips_isa > 3)
2837 error ("-mips%d not supported", mips_isa);
2838
2839 else if (mips_isa > 1
2840 && (mips_cpu == PROCESSOR_DEFAULT || mips_cpu == PROCESSOR_R3000))
2841 error ("-mcpu=%s does not support -mips%d", mips_cpu_string, mips_isa);
2842
2843 else if (mips_cpu == PROCESSOR_R6000 && mips_isa > 2)
2844 error ("-mcpu=%s does not support -mips%d", mips_cpu_string, mips_isa);
2845
2846 /* make sure sizes of ints/longs/etc. are ok */
2847 if (mips_isa < 3)
2848 {
2849 if (TARGET_INT64)
2850 fatal ("Only the r4000 can support 64 bit ints");
2851
2852 else if (TARGET_LONG64)
2853 fatal ("Only the r4000 can support 64 bit longs");
2854
2855 else if (TARGET_LLONG128)
2856 fatal ("Only the r4000 can support 128 bit long longs");
2857
2858 else if (TARGET_FLOAT64)
2859 fatal ("Only the r4000 can support 64 bit fp registers");
2860 }
2861 else if (TARGET_INT64 || TARGET_LONG64 || TARGET_LLONG128 || TARGET_FLOAT64)
2862 warning ("r4000 64/128 bit types not yet supported");
2863
2864 /* Tell halfpic.c that we have half-pic code if we do. */
2865 if (TARGET_HALF_PIC)
2866 HALF_PIC_INIT ();
2867
2868 /* -mrnames says to use the MIPS software convention for register
2869 names instead of the hardware names (ie, a0 instead of $4).
2870 We do this by switching the names in mips_reg_names, which the
2871 reg_names points into via the REGISTER_NAMES macro. */
2872
2873 if (TARGET_NAME_REGS)
2874 {
2875 if (TARGET_GAS)
2876 {
2877 target_flags &= ~ MASK_NAME_REGS;
2878 error ("Gas does not support the MIPS software register name convention.");
2879 }
2880 else
2881 bcopy ((char *) mips_sw_reg_names, (char *) mips_reg_names, sizeof (mips_reg_names));
2882 }
2883
2884 /* If this is OSF/1, set up a SIGINFO handler so we can see what function
2885 is currently being compiled. */
2886 #ifdef SIGINFO
2887 if (getenv ("GCC_SIGINFO") != (char *)0)
2888 {
2889 struct sigaction action;
2890 action.sa_handler = siginfo;
2891 action.sa_mask = 0;
2892 action.sa_flags = SA_RESTART;
2893 sigaction (SIGINFO, &action, (struct sigaction *)0);
2894 }
2895 #endif
2896
2897 #if defined(_IOLBF)
2898 #if defined(ultrix) || defined(__ultrix) || defined(__OSF1__) || defined(__osf__) || defined(osf)
2899 /* If -mstats and -quiet, make stderr line buffered. */
2900 if (quiet_flag && TARGET_STATS)
2901 setvbuf (stderr, (char *)0, _IOLBF, BUFSIZ);
2902 #endif
2903 #endif
2904
2905 /* Set up the classification arrays now. */
2906 mips_rtx_classify[(int)PLUS] = CLASS_ADD_OP;
2907 mips_rtx_classify[(int)MINUS] = CLASS_ADD_OP;
2908 mips_rtx_classify[(int)DIV] = CLASS_DIVMOD_OP;
2909 mips_rtx_classify[(int)MOD] = CLASS_DIVMOD_OP;
2910 mips_rtx_classify[(int)UDIV] = CLASS_DIVMOD_OP | CLASS_UNSIGNED_OP;
2911 mips_rtx_classify[(int)UMOD] = CLASS_DIVMOD_OP | CLASS_UNSIGNED_OP;
2912 mips_rtx_classify[(int)EQ] = CLASS_CMP_OP | CLASS_EQUALITY_OP | CLASS_FCMP_OP;
2913 mips_rtx_classify[(int)NE] = CLASS_CMP_OP | CLASS_EQUALITY_OP | CLASS_FCMP_OP;
2914 mips_rtx_classify[(int)GT] = CLASS_CMP_OP | CLASS_FCMP_OP;
2915 mips_rtx_classify[(int)GE] = CLASS_CMP_OP | CLASS_FCMP_OP;
2916 mips_rtx_classify[(int)LT] = CLASS_CMP_OP | CLASS_FCMP_OP;
2917 mips_rtx_classify[(int)LE] = CLASS_CMP_OP | CLASS_FCMP_OP;
2918 mips_rtx_classify[(int)GTU] = CLASS_CMP_OP | CLASS_UNSIGNED_OP;
2919 mips_rtx_classify[(int)GEU] = CLASS_CMP_OP | CLASS_UNSIGNED_OP;
2920 mips_rtx_classify[(int)LTU] = CLASS_CMP_OP | CLASS_UNSIGNED_OP;
2921 mips_rtx_classify[(int)LEU] = CLASS_CMP_OP | CLASS_UNSIGNED_OP;
2922
2923 mips_print_operand_punct['?'] = TRUE;
2924 mips_print_operand_punct['#'] = TRUE;
2925 mips_print_operand_punct['&'] = TRUE;
2926 mips_print_operand_punct['!'] = TRUE;
2927 mips_print_operand_punct['*'] = TRUE;
2928 mips_print_operand_punct['@'] = TRUE;
2929 mips_print_operand_punct['.'] = TRUE;
2930 mips_print_operand_punct['('] = TRUE;
2931 mips_print_operand_punct[')'] = TRUE;
2932 mips_print_operand_punct['['] = TRUE;
2933 mips_print_operand_punct[']'] = TRUE;
2934 mips_print_operand_punct['<'] = TRUE;
2935 mips_print_operand_punct['>'] = TRUE;
2936 mips_print_operand_punct['{'] = TRUE;
2937 mips_print_operand_punct['}'] = TRUE;
2938
2939 mips_char_to_class['d'] = GR_REGS;
2940 mips_char_to_class['f'] = ((TARGET_HARD_FLOAT) ? FP_REGS : NO_REGS);
2941 mips_char_to_class['h'] = HI_REG;
2942 mips_char_to_class['l'] = LO_REG;
2943 mips_char_to_class['x'] = MD_REGS;
2944 mips_char_to_class['y'] = GR_REGS;
2945 mips_char_to_class['z'] = ST_REGS;
2946
2947 /* Set up array to map GCC register number to debug register number.
2948 Ignore the special purpose register numbers. */
2949
2950 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2951 mips_dbx_regno[i] = -1;
2952
2953 start = GP_DBX_FIRST - GP_REG_FIRST;
2954 for (i = GP_REG_FIRST; i <= GP_REG_LAST; i++)
2955 mips_dbx_regno[i] = i + start;
2956
2957 start = FP_DBX_FIRST - FP_REG_FIRST;
2958 for (i = FP_REG_FIRST; i <= FP_REG_LAST; i++)
2959 mips_dbx_regno[i] = i + start;
2960
2961 /* Set up array giving whether a given register can hold a given mode.
2962 At present, restrict ints from being in FP registers, because reload
2963 is a little enthusiastic about storing extra values in FP registers,
2964 and this is not good for things like OS kernels. Also, due to the
2965 mandatory delay, it is as fast to load from cached memory as to move
2966 from the FP register. */
2967
2968 for (mode = VOIDmode;
2969 mode != MAX_MACHINE_MODE;
2970 mode = (enum machine_mode)((int)mode + 1))
2971 {
2972 register int size = GET_MODE_SIZE (mode);
2973 register enum mode_class class = GET_MODE_CLASS (mode);
2974
2975 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2976 {
2977 register int temp;
2978
2979 if (mode == CC_FPmode || mode == CC_REV_FPmode)
2980 temp = (regno == FPSW_REGNUM);
2981
2982 else if (GP_REG_P (regno))
2983 temp = ((regno & 1) == 0 || (size <= UNITS_PER_WORD));
2984
2985 else if (FP_REG_P (regno))
2986 temp = ((TARGET_FLOAT64 || ((regno & 1) == 0))
2987 && (class == MODE_FLOAT
2988 || class == MODE_COMPLEX_FLOAT
2989 || (TARGET_DEBUG_H_MODE && class == MODE_INT)));
2990
2991 else if (MD_REG_P (regno))
2992 temp = (mode == SImode || (regno == MD_REG_FIRST && mode == DImode));
2993
2994 else
2995 temp = FALSE;
2996
2997 mips_hard_regno_mode_ok[(int)mode][regno] = temp;
2998 }
2999 }
3000 }
3001
3002 \f
3003 /*
3004 * The MIPS debug format wants all automatic variables and arguments
3005 * to be in terms of the virtual frame pointer (stack pointer before
3006 * any adjustment in the function), while the MIPS 3.0 linker wants
3007 * the frame pointer to be the stack pointer after the initial
3008 * adjustment. So, we do the adjustment here. The arg pointer (which
3009 * is eliminated) points to the virtual frame pointer, while the frame
3010 * pointer (which may be eliminated) points to the stack pointer after
3011 * the initial adjustments.
3012 */
3013
3014 int
3015 mips_debugger_offset (addr, offset)
3016 rtx addr;
3017 int offset;
3018 {
3019 rtx offset2 = const0_rtx;
3020 rtx reg = eliminate_constant_term (addr, &offset2);
3021
3022 if (!offset)
3023 offset = INTVAL (offset2);
3024
3025 if (reg == stack_pointer_rtx || reg == frame_pointer_rtx)
3026 {
3027 int frame_size = (!current_frame_info.initialized)
3028 ? compute_frame_size (get_frame_size ())
3029 : current_frame_info.total_size;
3030
3031 offset = offset - frame_size;
3032 }
3033 /* sdbout_parms does not want this to crash for unrecognized cases. */
3034 #if 0
3035 else if (reg != arg_pointer_rtx)
3036 abort_with_insn (addr, "mips_debugger_offset called with non stack/frame/arg pointer.");
3037 #endif
3038
3039 return offset;
3040 }
3041
3042 \f
3043 /* A C compound statement to output to stdio stream STREAM the
3044 assembler syntax for an instruction operand X. X is an RTL
3045 expression.
3046
3047 CODE is a value that can be used to specify one of several ways
3048 of printing the operand. It is used when identical operands
3049 must be printed differently depending on the context. CODE
3050 comes from the `%' specification that was used to request
3051 printing of the operand. If the specification was just `%DIGIT'
3052 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
3053 is the ASCII code for LTR.
3054
3055 If X is a register, this macro should print the register's name.
3056 The names can be found in an array `reg_names' whose type is
3057 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
3058
3059 When the machine description has a specification `%PUNCT' (a `%'
3060 followed by a punctuation character), this macro is called with
3061 a null pointer for X and the punctuation character for CODE.
3062
3063 The MIPS specific codes are:
3064
3065 'X' X is CONST_INT, prints 32 bits in hexadecimal format = "0x%08x",
3066 'x' X is CONST_INT, prints 16 bits in hexadecimal format = "0x%04x",
3067 'd' output integer constant in decimal,
3068 'z' if the operand is 0, use $0 instead of normal operand.
3069 'D' print second register of double-word register operand.
3070 'L' print low-order register of double-word register operand.
3071 'M' print high-order register of double-word register operand.
3072 'C' print part of opcode for a branch condition.
3073 'N' print part of opcode for a branch condition, inverted.
3074 '(' Turn on .set noreorder
3075 ')' Turn on .set reorder
3076 '[' Turn on .set noat
3077 ']' Turn on .set at
3078 '<' Turn on .set nomacro
3079 '>' Turn on .set macro
3080 '{' Turn on .set volatile (not GAS)
3081 '}' Turn on .set novolatile (not GAS)
3082 '&' Turn on .set noreorder if filling delay slots
3083 '*' Turn on both .set noreorder and .set nomacro if filling delay slots
3084 '!' Turn on .set nomacro if filling delay slots
3085 '#' Print nop if in a .set noreorder section.
3086 '?' Print 'l' if we are to use a branch likely instead of normal branch.
3087 '@' Print the name of the assembler temporary register (at or $1).
3088 '.' Print the name of the register with a hard-wired zero (zero or $0). */
3089
3090 void
3091 print_operand (file, op, letter)
3092 FILE *file; /* file to write to */
3093 rtx op; /* operand to print */
3094 int letter; /* %<letter> or 0 */
3095 {
3096 register enum rtx_code code;
3097
3098 if (PRINT_OPERAND_PUNCT_VALID_P (letter))
3099 {
3100 switch (letter)
3101 {
3102 default:
3103 error ("PRINT_OPERAND: Unknown punctuation '%c'", letter);
3104 break;
3105
3106 case '?':
3107 if (mips_branch_likely)
3108 putc ('l', file);
3109 break;
3110
3111 case '@':
3112 fputs (reg_names [GP_REG_FIRST + 1], file);
3113 break;
3114
3115 case '.':
3116 fputs (reg_names [GP_REG_FIRST + 0], file);
3117 break;
3118
3119 case '&':
3120 if (final_sequence != 0 && set_noreorder++ == 0)
3121 fputs (".set\tnoreorder\n\t", file);
3122 break;
3123
3124 case '*':
3125 if (final_sequence != 0)
3126 {
3127 if (set_noreorder++ == 0)
3128 fputs (".set\tnoreorder\n\t", file);
3129
3130 if (set_nomacro++ == 0)
3131 fputs (".set\tnomacro\n\t", file);
3132 }
3133 break;
3134
3135 case '!':
3136 if (final_sequence != 0 && set_nomacro++ == 0)
3137 fputs ("\n\t.set\tnomacro", file);
3138 break;
3139
3140 case '#':
3141 if (set_noreorder != 0)
3142 fputs ("\n\tnop", file);
3143
3144 else if (TARGET_GAS || TARGET_STATS)
3145 fputs ("\n\t#nop", file);
3146
3147 break;
3148
3149 case '(':
3150 if (set_noreorder++ == 0)
3151 fputs (".set\tnoreorder\n\t", file);
3152 break;
3153
3154 case ')':
3155 if (set_noreorder == 0)
3156 error ("internal error: %%) found without a %%( in assembler pattern");
3157
3158 else if (--set_noreorder == 0)
3159 fputs ("\n\t.set\treorder", file);
3160
3161 break;
3162
3163 case '[':
3164 if (set_noat++ == 0)
3165 fputs (".set\tnoat\n\t", file);
3166 break;
3167
3168 case ']':
3169 if (set_noat == 0)
3170 error ("internal error: %%] found without a %%[ in assembler pattern");
3171
3172 else if (--set_noat == 0)
3173 fputs ("\n\t.set\tat", file);
3174
3175 break;
3176
3177 case '<':
3178 if (set_nomacro++ == 0)
3179 fputs (".set\tnomacro\n\t", file);
3180 break;
3181
3182 case '>':
3183 if (set_nomacro == 0)
3184 error ("internal error: %%> found without a %%< in assembler pattern");
3185
3186 else if (--set_nomacro == 0)
3187 fputs ("\n\t.set\tmacro", file);
3188
3189 break;
3190
3191 case '{':
3192 if (set_volatile++ == 0)
3193 fprintf (file, "%s.set\tvolatile\n\t", (TARGET_MIPS_AS) ? "" : "#");
3194 break;
3195
3196 case '}':
3197 if (set_volatile == 0)
3198 error ("internal error: %%} found without a %%{ in assembler pattern");
3199
3200 else if (--set_volatile == 0)
3201 fprintf (file, "\n\t%s.set\tnovolatile", (TARGET_MIPS_AS) ? "" : "#");
3202
3203 break;
3204 }
3205 return;
3206 }
3207
3208 if (! op)
3209 {
3210 error ("PRINT_OPERAND null pointer");
3211 return;
3212 }
3213
3214 code = GET_CODE (op);
3215 if (letter == 'C')
3216 switch (code)
3217 {
3218 case EQ: fputs ("eq", file); break;
3219 case NE: fputs ("ne", file); break;
3220 case GT: fputs ("gt", file); break;
3221 case GE: fputs ("ge", file); break;
3222 case LT: fputs ("lt", file); break;
3223 case LE: fputs ("le", file); break;
3224 case GTU: fputs ("gtu", file); break;
3225 case GEU: fputs ("geu", file); break;
3226 case LTU: fputs ("ltu", file); break;
3227 case LEU: fputs ("leu", file); break;
3228
3229 default:
3230 abort_with_insn (op, "PRINT_OPERAND, illegal insn for %%C");
3231 }
3232
3233 else if (letter == 'N')
3234 switch (code)
3235 {
3236 case EQ: fputs ("ne", file); break;
3237 case NE: fputs ("eq", file); break;
3238 case GT: fputs ("le", file); break;
3239 case GE: fputs ("lt", file); break;
3240 case LT: fputs ("ge", file); break;
3241 case LE: fputs ("gt", file); break;
3242 case GTU: fputs ("leu", file); break;
3243 case GEU: fputs ("ltu", file); break;
3244 case LTU: fputs ("geu", file); break;
3245 case LEU: fputs ("gtu", file); break;
3246
3247 default:
3248 abort_with_insn (op, "PRINT_OPERAND, illegal insn for %%N");
3249 }
3250
3251 else if (code == REG)
3252 {
3253 register int regnum = REGNO (op);
3254
3255 if (letter == 'M')
3256 regnum += MOST_SIGNIFICANT_WORD;
3257
3258 else if (letter == 'L')
3259 regnum += LEAST_SIGNIFICANT_WORD;
3260
3261 else if (letter == 'D')
3262 regnum++;
3263
3264 fprintf (file, "%s", reg_names[regnum]);
3265 }
3266
3267 else if (code == MEM)
3268 output_address (XEXP (op, 0));
3269
3270 else if (code == CONST_DOUBLE)
3271 {
3272 #if HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
3273 union { double d; int i[2]; } u;
3274 u.i[0] = CONST_DOUBLE_LOW (op);
3275 u.i[1] = CONST_DOUBLE_HIGH (op);
3276 if (GET_MODE (op) == SFmode)
3277 {
3278 float f;
3279 f = u.d;
3280 u.d = f;
3281 }
3282 fprintf (file, "%.20e", u.d);
3283 #else
3284 fatal ("CONST_DOUBLE found in cross compilation");
3285 #endif
3286 }
3287
3288 else if ((letter == 'x') && (GET_CODE(op) == CONST_INT))
3289 fprintf (file, "0x%04x", 0xffff & (INTVAL(op)));
3290
3291 else if ((letter == 'X') && (GET_CODE(op) == CONST_INT))
3292 fprintf (file, "0x%08x", INTVAL(op));
3293
3294 else if ((letter == 'd') && (GET_CODE(op) == CONST_INT))
3295 fprintf (file, "%d", (INTVAL(op)));
3296
3297 else if (letter == 'z'
3298 && (GET_CODE (op) == CONST_INT)
3299 && INTVAL (op) == 0)
3300 fputs (reg_names[GP_REG_FIRST], file);
3301
3302 else if (letter == 'd' || letter == 'x' || letter == 'X')
3303 fatal ("PRINT_OPERAND: letter %c was found & insn was not CONST_INT", letter);
3304
3305 else
3306 output_addr_const (file, op);
3307 }
3308
3309 \f
3310 /* A C compound statement to output to stdio stream STREAM the
3311 assembler syntax for an instruction operand that is a memory
3312 reference whose address is ADDR. ADDR is an RTL expression.
3313
3314 On some machines, the syntax for a symbolic address depends on
3315 the section that the address refers to. On these machines,
3316 define the macro `ENCODE_SECTION_INFO' to store the information
3317 into the `symbol_ref', and then check for it here. */
3318
3319 void
3320 print_operand_address (file, addr)
3321 FILE *file;
3322 rtx addr;
3323 {
3324 if (!addr)
3325 error ("PRINT_OPERAND_ADDRESS, null pointer");
3326
3327 else
3328 switch (GET_CODE (addr))
3329 {
3330 default:
3331 abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, illegal insn #1");
3332 break;
3333
3334 case REG:
3335 if (REGNO (addr) == ARG_POINTER_REGNUM)
3336 abort_with_insn (addr, "Arg pointer not eliminated.");
3337
3338 fprintf (file, "0(%s)", reg_names [REGNO (addr)]);
3339 break;
3340
3341 case PLUS:
3342 {
3343 register rtx reg = (rtx)0;
3344 register rtx offset = (rtx)0;
3345 register rtx arg0 = XEXP (addr, 0);
3346 register rtx arg1 = XEXP (addr, 1);
3347
3348 if (GET_CODE (arg0) == REG)
3349 {
3350 reg = arg0;
3351 offset = arg1;
3352 if (GET_CODE (offset) == REG)
3353 abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, 2 regs");
3354 }
3355 else if (GET_CODE (arg1) == REG)
3356 {
3357 reg = arg1;
3358 offset = arg0;
3359 }
3360 else if (CONSTANT_P (arg0) && CONSTANT_P (arg1))
3361 {
3362 output_addr_const (file, addr);
3363 break;
3364 }
3365 else
3366 abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, no regs");
3367
3368 if (!CONSTANT_P (offset))
3369 abort_with_insn (addr, "PRINT_OPERAND_ADDRESS, illegal insn #2");
3370
3371 if (REGNO (reg) == ARG_POINTER_REGNUM)
3372 abort_with_insn (addr, "Arg pointer not eliminated.");
3373
3374 output_addr_const (file, offset);
3375 fprintf (file, "(%s)", reg_names [REGNO (reg)]);
3376 }
3377 break;
3378
3379 case LABEL_REF:
3380 case SYMBOL_REF:
3381 case CONST_INT:
3382 case CONST:
3383 output_addr_const (file, addr);
3384 break;
3385 }
3386 }
3387
3388 \f
3389 /* If optimizing for the global pointer, keep track of all of
3390 the externs, so that at the end of the file, we can emit
3391 the appropriate .extern declaration for them, before writing
3392 out the text section. We assume that all names passed to
3393 us are in the permanent obstack, so that they will be valid
3394 at the end of the compilation.
3395
3396 If we have -G 0, or the extern size is unknown, don't bother
3397 emitting the .externs. */
3398
3399 int
3400 mips_output_external (file, decl, name)
3401 FILE *file;
3402 tree decl;
3403 char *name;
3404 {
3405 register struct extern_list *p;
3406 int len;
3407
3408 if (TARGET_GP_OPT
3409 && mips_section_threshold != 0
3410 && ((TREE_CODE (decl)) != FUNCTION_DECL)
3411 && ((len = int_size_in_bytes (TREE_TYPE (decl))) > 0))
3412 {
3413 p = (struct extern_list *)permalloc ((long) sizeof (struct extern_list));
3414 p->next = extern_head;
3415 p->name = name;
3416 p->size = len;
3417 extern_head = p;
3418 }
3419 return 0;
3420 }
3421
3422 \f
3423 /* Compute a string to use as a temporary file name. */
3424
3425 static FILE *
3426 make_temp_file ()
3427 {
3428 FILE *stream;
3429 char *base = getenv ("TMPDIR");
3430 int len;
3431
3432 if (base == (char *)0)
3433 {
3434 #ifdef P_tmpdir
3435 if (access (P_tmpdir, R_OK | W_OK) == 0)
3436 base = P_tmpdir;
3437 else
3438 #endif
3439 if (access ("/usr/tmp", R_OK | W_OK) == 0)
3440 base = "/usr/tmp/";
3441 else
3442 base = "/tmp/";
3443 }
3444
3445 len = strlen (base);
3446 temp_filename = (char *) alloca (len + sizeof("/ccXXXXXX"));
3447 strcpy (temp_filename, base);
3448 if (len > 0 && temp_filename[len-1] != '/')
3449 temp_filename[len++] = '/';
3450
3451 strcpy (temp_filename + len, "ccXXXXXX");
3452 mktemp (temp_filename);
3453
3454 stream = fopen (temp_filename, "w+");
3455 if (!stream)
3456 pfatal_with_name (temp_filename);
3457
3458 unlink (temp_filename);
3459 return stream;
3460 }
3461
3462 \f
3463 /* Emit a new filename to a stream. If this is MIPS ECOFF, watch out
3464 for .file's that start within a function. If we are smuggling stabs, try to
3465 put out a MIPS ECOFF file and a stab. */
3466
3467 void
3468 mips_output_filename (stream, name)
3469 FILE *stream;
3470 char *name;
3471 {
3472 static int first_time = TRUE;
3473 char ltext_label_name[100];
3474
3475 if (first_time)
3476 {
3477 first_time = FALSE;
3478 SET_FILE_NUMBER ();
3479 current_function_file = name;
3480 fprintf (stream, "\t.file\t%d \"%s\"\n", num_source_filenames, name);
3481 if (!TARGET_GAS && write_symbols == DBX_DEBUG)
3482 fprintf (stream, "\t#@stabs\n");
3483 }
3484
3485 else if (!TARGET_GAS && write_symbols == DBX_DEBUG)
3486 {
3487 ASM_GENERATE_INTERNAL_LABEL (ltext_label_name, "Ltext", 0);
3488 fprintf (stream, "%s \"%s\",%d,0,0,%s\n", ASM_STABS_OP,
3489 name, N_SOL, &ltext_label_name[1]);
3490 }
3491
3492 else if (name != current_function_file
3493 && strcmp (name, current_function_file) != 0)
3494 {
3495 if (inside_function && !TARGET_GAS)
3496 {
3497 if (!file_in_function_warning)
3498 {
3499 file_in_function_warning = TRUE;
3500 ignore_line_number = TRUE;
3501 warning ("MIPS ECOFF format does not allow changing filenames within functions with #line");
3502 }
3503
3504 fprintf (stream, "\t#.file\t%d \"%s\"\n", num_source_filenames, name);
3505 }
3506
3507 else
3508 {
3509 SET_FILE_NUMBER ();
3510 current_function_file = name;
3511 fprintf (stream, "\t.file\t%d \"%s\"\n", num_source_filenames, name);
3512 }
3513 }
3514 }
3515
3516 \f
3517 /* Emit a linenumber. For encapsulated stabs, we need to put out a stab
3518 as well as a .loc, since it is possible that MIPS ECOFF might not be
3519 able to represent the location for inlines that come from a different
3520 file. */
3521
3522 void
3523 mips_output_lineno (stream, line)
3524 FILE *stream;
3525 int line;
3526 {
3527 if (!TARGET_GAS && write_symbols == DBX_DEBUG)
3528 {
3529 ++sym_lineno;
3530 fprintf (stream, "$LM%d:\n\t%s %d,0,%d,$LM%d\n",
3531 sym_lineno, ASM_STABN_OP, N_SLINE, line, sym_lineno);
3532 }
3533
3534 else
3535 {
3536 fprintf (stream, "\n\t%s.loc\t%d %d\n",
3537 (ignore_line_number) ? "#" : "",
3538 num_source_filenames, line);
3539
3540 LABEL_AFTER_LOC (stream);
3541 }
3542 }
3543
3544 \f
3545 /* If defined, a C statement to be executed just prior to the
3546 output of assembler code for INSN, to modify the extracted
3547 operands so they will be output differently.
3548
3549 Here the argument OPVEC is the vector containing the operands
3550 extracted from INSN, and NOPERANDS is the number of elements of
3551 the vector which contain meaningful data for this insn. The
3552 contents of this vector are what will be used to convert the
3553 insn template into assembler code, so you can change the
3554 assembler output by changing the contents of the vector.
3555
3556 We use it to check if the current insn needs a nop in front of it
3557 because of load delays, and also to update the delay slot
3558 statistics. */
3559
3560 void
3561 final_prescan_insn (insn, opvec, noperands)
3562 rtx insn;
3563 rtx opvec[];
3564 int noperands;
3565 {
3566 if (dslots_number_nops > 0)
3567 {
3568 rtx pattern = PATTERN (insn);
3569 int length = get_attr_length (insn);
3570
3571 /* Do we need to emit a NOP? */
3572 if (length == 0
3573 || (mips_load_reg != (rtx)0 && reg_mentioned_p (mips_load_reg, pattern))
3574 || (mips_load_reg2 != (rtx)0 && reg_mentioned_p (mips_load_reg2, pattern))
3575 || (mips_load_reg3 != (rtx)0 && reg_mentioned_p (mips_load_reg3, pattern))
3576 || (mips_load_reg4 != (rtx)0 && reg_mentioned_p (mips_load_reg4, pattern)))
3577 fputs ((set_noreorder) ? "\tnop\n" : "\t#nop\n", asm_out_file);
3578
3579 else
3580 dslots_load_filled++;
3581
3582 while (--dslots_number_nops > 0)
3583 fputs ((set_noreorder) ? "\tnop\n" : "\t#nop\n", asm_out_file);
3584
3585 mips_load_reg = (rtx)0;
3586 mips_load_reg2 = (rtx)0;
3587 mips_load_reg3 = (rtx)0;
3588 mips_load_reg4 = (rtx)0;
3589
3590 if (set_noreorder && --set_noreorder == 0)
3591 fputs ("\t.set\treorder\n", asm_out_file);
3592 }
3593
3594 if (TARGET_STATS)
3595 {
3596 enum rtx_code code = GET_CODE (insn);
3597 if (code == JUMP_INSN || code == CALL_INSN)
3598 dslots_jump_total++;
3599 }
3600 }
3601
3602 \f
3603 /* Output at beginning of assembler file.
3604 If we are optimizing to use the global pointer, create a temporary
3605 file to hold all of the text stuff, and write it out to the end.
3606 This is needed because the MIPS assembler is evidently one pass,
3607 and if it hasn't seen the relevant .comm/.lcomm/.extern/.sdata
3608 declaration when the code is processed, it generates a two
3609 instruction sequence. */
3610
3611 void
3612 mips_asm_file_start (stream)
3613 FILE *stream;
3614 {
3615 ASM_OUTPUT_SOURCE_FILENAME (stream, main_input_filename);
3616
3617 /* Versions of the MIPS assembler before 2.20 generate errors
3618 if a branch inside of a .set noreorder section jumps to a
3619 label outside of the .set noreorder section. Revision 2.20
3620 just set nobopt silently rather than fixing the bug. */
3621
3622 if (TARGET_MIPS_AS && optimize && flag_delayed_branch)
3623 fprintf (stream, "\t.set\tnobopt\n");
3624
3625 /* Generate the pseudo ops that the Pyramid based System V.4 wants. */
3626 if (TARGET_ABICALLS)
3627 fprintf (stream, "\t.abicalls\n");
3628
3629 if (TARGET_GP_OPT)
3630 {
3631 asm_out_data_file = stream;
3632 asm_out_text_file = make_temp_file ();
3633 }
3634 else
3635 asm_out_data_file = asm_out_text_file = stream;
3636
3637 if (TARGET_NAME_REGS)
3638 fprintf (asm_out_file, "#include <regdef.h>\n");
3639
3640 print_options (stream);
3641 }
3642
3643 \f
3644 /* If we are optimizing the global pointer, emit the text section now
3645 and any small externs which did not have .comm, etc that are
3646 needed. Also, give a warning if the data area is more than 32K and
3647 -pic because 3 instructions are needed to reference the data
3648 pointers. */
3649
3650 void
3651 mips_asm_file_end (file)
3652 FILE *file;
3653 {
3654 char buffer[8192];
3655 tree name_tree;
3656 struct extern_list *p;
3657 int len;
3658
3659 if (HALF_PIC_P ())
3660 HALF_PIC_FINISH (file);
3661
3662 if (TARGET_GP_OPT)
3663 {
3664 if (extern_head)
3665 fputs ("\n", file);
3666
3667 for (p = extern_head; p != 0; p = p->next)
3668 {
3669 name_tree = get_identifier (p->name);
3670
3671 /* Positively ensure only one .extern for any given symbol. */
3672 if (! TREE_ASM_WRITTEN (name_tree))
3673 {
3674 TREE_ASM_WRITTEN (name_tree) = 1;
3675 fputs ("\t.extern\t", file);
3676 assemble_name (file, p->name);
3677 fprintf (file, ", %d\n", p->size);
3678 }
3679 }
3680
3681 fprintf (file, "\n\t.text\n");
3682 rewind (asm_out_text_file);
3683 if (ferror (asm_out_text_file))
3684 fatal_io_error (temp_filename);
3685
3686 while ((len = fread (buffer, 1, sizeof (buffer), asm_out_text_file)) > 0)
3687 if (fwrite (buffer, 1, len, file) != len)
3688 pfatal_with_name (asm_file_name);
3689
3690 if (len < 0)
3691 pfatal_with_name (temp_filename);
3692
3693 if (fclose (asm_out_text_file) != 0)
3694 pfatal_with_name (temp_filename);
3695 }
3696 }
3697
3698 \f
3699 /* Emit either a label, .comm, or .lcomm directive, and mark
3700 that the symbol is used, so that we don't emit an .extern
3701 for it in mips_asm_file_end. */
3702
3703 void
3704 mips_declare_object (stream, name, init_string, final_string, size)
3705 FILE *stream;
3706 char *name;
3707 char *init_string;
3708 char *final_string;
3709 int size;
3710 {
3711 fputs (init_string, stream); /* "", "\t.comm\t", or "\t.lcomm\t" */
3712 assemble_name (stream, name);
3713 fprintf (stream, final_string, size); /* ":\n", ",%u\n", ",%u\n" */
3714
3715 if (TARGET_GP_OPT && mips_section_threshold != 0)
3716 {
3717 tree name_tree = get_identifier (name);
3718 TREE_ASM_WRITTEN (name_tree) = 1;
3719 }
3720 }
3721
3722 \f
3723 /* Output a double precision value to the assembler. If both the
3724 host and target are IEEE, emit the values in hex. */
3725
3726 void
3727 mips_output_double (stream, value)
3728 FILE *stream;
3729 REAL_VALUE_TYPE value;
3730 {
3731 #ifdef REAL_VALUE_TO_TARGET_DOUBLE
3732 long value_long[2];
3733 REAL_VALUE_TO_TARGET_DOUBLE (value, value_long);
3734
3735 fprintf (stream, "\t.word\t0x%08lx\t\t# %.20g\n\t.word\t0x%08lx\n",
3736 value_long[0], value, value_long[1]);
3737 #else
3738 fprintf (stream, "\t.double\t%.20g\n", value);
3739 #endif
3740 }
3741
3742
3743 /* Output a single precision value to the assembler. If both the
3744 host and target are IEEE, emit the values in hex. */
3745
3746 void
3747 mips_output_float (stream, value)
3748 FILE *stream;
3749 REAL_VALUE_TYPE value;
3750 {
3751 #ifdef REAL_VALUE_TO_TARGET_SINGLE
3752 long value_long;
3753 REAL_VALUE_TO_TARGET_SINGLE (value, value_long);
3754
3755 fprintf (stream, "\t.word\t0x%08lx\t\t# %.12g (float)\n", value_long, value);
3756 #else
3757 fprintf (stream, "\t.float\t%.12g\n", value);
3758 #endif
3759 }
3760
3761 \f
3762 /* Return TRUE if any register used in the epilogue is used. This to insure
3763 any insn put into the epilogue delay slots is safe. */
3764
3765 int
3766 epilogue_reg_mentioned_p (insn)
3767 rtx insn;
3768 {
3769 register char *fmt;
3770 register int i;
3771 register enum rtx_code code;
3772 register int regno;
3773
3774 if (insn == (rtx)0)
3775 return 0;
3776
3777 if (GET_CODE (insn) == LABEL_REF)
3778 return 0;
3779
3780 code = GET_CODE (insn);
3781 switch (code)
3782 {
3783 case REG:
3784 regno = REGNO (insn);
3785 if (regno == STACK_POINTER_REGNUM)
3786 return 1;
3787
3788 if (regno == FRAME_POINTER_REGNUM && frame_pointer_needed)
3789 return 1;
3790
3791 if (!call_used_regs[regno])
3792 return 1;
3793
3794 if (regno != MIPS_TEMP1_REGNUM && regno != MIPS_TEMP2_REGNUM)
3795 return 0;
3796
3797 if (!current_frame_info.initialized)
3798 compute_frame_size (get_frame_size ());
3799
3800 return (current_frame_info.total_size >= 32768);
3801
3802 case SCRATCH:
3803 case CC0:
3804 case PC:
3805 case CONST_INT:
3806 case CONST_DOUBLE:
3807 return 0;
3808 }
3809
3810 fmt = GET_RTX_FORMAT (code);
3811 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3812 {
3813 if (fmt[i] == 'E')
3814 {
3815 register int j;
3816 for (j = XVECLEN (insn, i) - 1; j >= 0; j--)
3817 if (epilogue_reg_mentioned_p (XVECEXP (insn, i, j)))
3818 return 1;
3819 }
3820 else if (fmt[i] == 'e' && epilogue_reg_mentioned_p (XEXP (insn, i)))
3821 return 1;
3822 }
3823
3824 return 0;
3825 }
3826
3827 \f
3828 /* Return the bytes needed to compute the frame pointer from the current
3829 stack pointer.
3830
3831 Mips stack frames look like:
3832
3833 Before call After call
3834 +-----------------------+ +-----------------------+
3835 high | | | |
3836 mem. | | | |
3837 | caller's temps. | | caller's temps. |
3838 | | | |
3839 +-----------------------+ +-----------------------+
3840 | | | |
3841 | arguments on stack. | | arguments on stack. |
3842 | | | |
3843 +-----------------------+ +-----------------------+
3844 | 4 words to save | | 4 words to save |
3845 | arguments passed | | arguments passed |
3846 | in registers, even | | in registers, even |
3847 SP->| if not passed. | FP->| if not passed. |
3848 +-----------------------+ +-----------------------+
3849 | |
3850 | GP save for V.4 abi |
3851 | |
3852 +-----------------------+
3853 | |
3854 | fp register save |
3855 | |
3856 +-----------------------+
3857 | |
3858 | gp register save |
3859 | |
3860 +-----------------------+
3861 | |
3862 | local variables |
3863 | |
3864 +-----------------------+
3865 | |
3866 | alloca allocations |
3867 | |
3868 +-----------------------+
3869 | |
3870 | arguments on stack |
3871 | |
3872 +-----------------------+
3873 | 4 words to save |
3874 | arguments passed |
3875 | in registers, even |
3876 low SP->| if not passed. |
3877 memory +-----------------------+
3878
3879 */
3880
3881 long
3882 compute_frame_size (size)
3883 int size; /* # of var. bytes allocated */
3884 {
3885 int regno;
3886 long total_size; /* # bytes that the entire frame takes up */
3887 long var_size; /* # bytes that variables take up */
3888 long args_size; /* # bytes that outgoing arguments take up */
3889 long extra_size; /* # extra bytes */
3890 long gp_reg_rounded; /* # bytes needed to store gp after rounding */
3891 long gp_reg_size; /* # bytes needed to store gp regs */
3892 long fp_reg_size; /* # bytes needed to store fp regs */
3893 long mask; /* mask of saved gp registers */
3894 long fmask; /* mask of saved fp registers */
3895 int fp_inc; /* 1 or 2 depending on the size of fp regs */
3896 long fp_bits; /* bitmask to use for each fp register */
3897
3898 gp_reg_size = 0;
3899 fp_reg_size = 0;
3900 mask = 0;
3901 fmask = 0;
3902 extra_size = MIPS_STACK_ALIGN (((TARGET_ABICALLS) ? UNITS_PER_WORD : 0));
3903 var_size = MIPS_STACK_ALIGN (size);
3904 args_size = MIPS_STACK_ALIGN (current_function_outgoing_args_size);
3905
3906 /* The MIPS 3.0 linker does not like functions that dynamically
3907 allocate the stack and have 0 for STACK_DYNAMIC_OFFSET, since it
3908 looks like we are trying to create a second frame pointer to the
3909 function, so allocate some stack space to make it happy. */
3910
3911 if (args_size == 0 && current_function_calls_alloca)
3912 args_size = 4*UNITS_PER_WORD;
3913
3914 total_size = var_size + args_size + extra_size;
3915
3916 /* Calculate space needed for gp registers. */
3917 for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
3918 {
3919 if (MUST_SAVE_REGISTER (regno))
3920 {
3921 gp_reg_size += UNITS_PER_WORD;
3922 mask |= 1L << (regno - GP_REG_FIRST);
3923 }
3924 }
3925
3926 /* Calculate space needed for fp registers. */
3927 if (TARGET_FLOAT64)
3928 {
3929 fp_inc = 1;
3930 fp_bits = 1;
3931 }
3932 else
3933 {
3934 fp_inc = 2;
3935 fp_bits = 3;
3936 }
3937
3938 for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno += fp_inc)
3939 {
3940 if (regs_ever_live[regno] && !call_used_regs[regno])
3941 {
3942 fp_reg_size += 2*UNITS_PER_WORD;
3943 fmask |= fp_bits << (regno - FP_REG_FIRST);
3944 }
3945 }
3946
3947 gp_reg_rounded = MIPS_STACK_ALIGN (gp_reg_size);
3948 total_size += gp_reg_rounded + fp_reg_size;
3949
3950 if (total_size == extra_size)
3951 total_size = extra_size = 0;
3952
3953 /* Save other computed information. */
3954 current_frame_info.total_size = total_size;
3955 current_frame_info.var_size = var_size;
3956 current_frame_info.args_size = args_size;
3957 current_frame_info.extra_size = extra_size;
3958 current_frame_info.gp_reg_size = gp_reg_size;
3959 current_frame_info.fp_reg_size = fp_reg_size;
3960 current_frame_info.mask = mask;
3961 current_frame_info.fmask = fmask;
3962 current_frame_info.initialized = reload_completed;
3963 current_frame_info.num_gp = gp_reg_size / UNITS_PER_WORD;
3964 current_frame_info.num_fp = fp_reg_size / (2*UNITS_PER_WORD);
3965
3966 if (mask)
3967 {
3968 unsigned long offset = args_size + var_size + gp_reg_size - UNITS_PER_WORD;
3969 current_frame_info.gp_sp_offset = offset;
3970 current_frame_info.gp_save_offset = offset - total_size;
3971 }
3972 else
3973 {
3974 current_frame_info.gp_sp_offset = 0;
3975 current_frame_info.gp_save_offset = 0;
3976 }
3977
3978
3979 if (fmask)
3980 {
3981 unsigned long offset = args_size + var_size + gp_reg_rounded + fp_reg_size - 2*UNITS_PER_WORD;
3982 current_frame_info.fp_sp_offset = offset;
3983 current_frame_info.fp_save_offset = offset - total_size + UNITS_PER_WORD;
3984 }
3985 else
3986 {
3987 current_frame_info.fp_sp_offset = 0;
3988 current_frame_info.fp_save_offset = 0;
3989 }
3990
3991 /* Ok, we're done. */
3992 return total_size;
3993 }
3994
3995 \f
3996 /* Common code to emit the insns (or to write the instructions to a file)
3997 to save/restore registers.
3998
3999 Other parts of the code assume that MIPS_TEMP1_REGNUM (aka large_reg)
4000 is not modified within save_restore_insns. */
4001
4002 #define BITSET_P(value,bit) (((value) & (1L << (bit))) != 0)
4003
4004 static void
4005 save_restore_insns (store_p, large_reg, large_offset, file)
4006 int store_p; /* true if this is prologue */
4007 rtx large_reg; /* register holding large offset constant or NULL */
4008 long large_offset; /* large constant offset value */
4009 FILE *file; /* file to write instructions to instead of making RTL */
4010 {
4011 long mask = current_frame_info.mask;
4012 long fmask = current_frame_info.fmask;
4013 int regno;
4014 rtx base_reg_rtx;
4015 long base_offset;
4016 long gp_offset;
4017 long fp_offset;
4018 long end_offset;
4019
4020 if (frame_pointer_needed && !BITSET_P (mask, FRAME_POINTER_REGNUM - GP_REG_FIRST))
4021 abort ();
4022
4023 if (mask == 0 && fmask == 0)
4024 return;
4025
4026 /* Save registers starting from high to low. The debuggers prefer
4027 at least the return register be stored at func+4, and also it
4028 allows us not to need a nop in the epilog if at least one
4029 register is reloaded in addition to return address. */
4030
4031 /* Save GP registers if needed. */
4032 if (mask)
4033 {
4034 /* Pick which pointer to use as a base register. For small
4035 frames, just use the stack pointer. Otherwise, use a
4036 temporary register. Save 2 cycles if the save area is near
4037 the end of a large frame, by reusing the constant created in
4038 the prologue/epilogue to adjust the stack frame. */
4039
4040 gp_offset = current_frame_info.gp_sp_offset;
4041 end_offset = gp_offset - (current_frame_info.gp_reg_size - UNITS_PER_WORD);
4042
4043 if (gp_offset < 0 || end_offset < 0)
4044 fatal ("gp_offset (%ld) or end_offset (%ld) is less than zero.",
4045 gp_offset, end_offset);
4046
4047 else if (gp_offset < 32768)
4048 {
4049 base_reg_rtx = stack_pointer_rtx;
4050 base_offset = 0;
4051 }
4052
4053 else if (large_reg != (rtx)0
4054 && (((unsigned long)(large_offset - gp_offset)) < 32768)
4055 && (((unsigned long)(large_offset - end_offset)) < 32768))
4056 {
4057 base_reg_rtx = gen_rtx (REG, Pmode, MIPS_TEMP2_REGNUM);
4058 base_offset = large_offset;
4059 if (file == (FILE *)0)
4060 emit_insn (gen_addsi3 (base_reg_rtx, large_reg, stack_pointer_rtx));
4061 else
4062 fprintf (file, "\taddu\t%s,%s,%s\n",
4063 reg_names[MIPS_TEMP2_REGNUM],
4064 reg_names[REGNO (large_reg)],
4065 reg_names[STACK_POINTER_REGNUM]);
4066 }
4067
4068 else
4069 {
4070 base_reg_rtx = gen_rtx (REG, Pmode, MIPS_TEMP2_REGNUM);
4071 base_offset = gp_offset;
4072 if (file == (FILE *)0)
4073 {
4074 emit_move_insn (base_reg_rtx, GEN_INT (gp_offset));
4075 emit_insn (gen_addsi3 (base_reg_rtx, base_reg_rtx, stack_pointer_rtx));
4076 }
4077 else
4078 fprintf (file, "\tli\t%s,0x%.08lx\t# %ld\n\taddu\t%s,%s,%s\n",
4079 reg_names[MIPS_TEMP2_REGNUM],
4080 (long)base_offset,
4081 (long)base_offset,
4082 reg_names[MIPS_TEMP2_REGNUM],
4083 reg_names[MIPS_TEMP2_REGNUM],
4084 reg_names[STACK_POINTER_REGNUM]);
4085 }
4086
4087 for (regno = GP_REG_LAST; regno >= GP_REG_FIRST; regno--)
4088 {
4089 if (BITSET_P (mask, regno - GP_REG_FIRST))
4090 {
4091 if (file == (FILE *)0)
4092 {
4093 rtx reg_rtx = gen_rtx (REG, Pmode, regno);
4094 rtx mem_rtx = gen_rtx (MEM, Pmode,
4095 gen_rtx (PLUS, Pmode, base_reg_rtx,
4096 GEN_INT (gp_offset - base_offset)));
4097
4098 if (store_p)
4099 emit_move_insn (mem_rtx, reg_rtx);
4100 else
4101 emit_move_insn (reg_rtx, mem_rtx);
4102 }
4103 else
4104 fprintf (file, "\t%s\t%s,%ld(%s)\n",
4105 (store_p) ? "sw" : "lw",
4106 reg_names[regno],
4107 gp_offset - base_offset,
4108 reg_names[REGNO(base_reg_rtx)]);
4109
4110 gp_offset -= UNITS_PER_WORD;
4111 }
4112 }
4113 }
4114 else
4115 {
4116 base_reg_rtx = (rtx)0; /* Make sure these are initialzed */
4117 base_offset = 0;
4118 }
4119
4120 /* Save floating point registers if needed. */
4121 if (fmask)
4122 {
4123 int fp_inc = (TARGET_FLOAT64) ? 1 : 2;
4124
4125 /* Pick which pointer to use as a base register. */
4126 fp_offset = current_frame_info.fp_sp_offset;
4127 end_offset = fp_offset - (current_frame_info.fp_reg_size - 2*UNITS_PER_WORD);
4128
4129 if (fp_offset < 0 || end_offset < 0)
4130 fatal ("fp_offset (%ld) or end_offset (%ld) is less than zero.",
4131 fp_offset, end_offset);
4132
4133 else if (fp_offset < 32768)
4134 {
4135 base_reg_rtx = stack_pointer_rtx;
4136 base_offset = 0;
4137 }
4138
4139 else if (base_reg_rtx != (rtx)0
4140 && (((unsigned long)(base_offset - fp_offset)) < 32768)
4141 && (((unsigned long)(base_offset - end_offset)) < 32768))
4142 {
4143 ; /* already set up for gp registers above */
4144 }
4145
4146 else if (large_reg != (rtx)0
4147 && (((unsigned long)(large_offset - fp_offset)) < 32768)
4148 && (((unsigned long)(large_offset - end_offset)) < 32768))
4149 {
4150 base_reg_rtx = gen_rtx (REG, Pmode, MIPS_TEMP2_REGNUM);
4151 base_offset = large_offset;
4152 if (file == (FILE *)0)
4153 emit_insn (gen_addsi3 (base_reg_rtx, large_reg, stack_pointer_rtx));
4154 else
4155 fprintf (file, "\taddu\t%s,%s,%s\n",
4156 reg_names[MIPS_TEMP2_REGNUM],
4157 reg_names[REGNO (large_reg)],
4158 reg_names[STACK_POINTER_REGNUM]);
4159 }
4160
4161 else
4162 {
4163 base_reg_rtx = gen_rtx (REG, Pmode, MIPS_TEMP2_REGNUM);
4164 base_offset = fp_offset;
4165 if (file == (FILE *)0)
4166 {
4167 emit_move_insn (base_reg_rtx, GEN_INT (fp_offset));
4168 emit_insn (gen_addsi3 (base_reg_rtx, base_reg_rtx, stack_pointer_rtx));
4169 }
4170 else
4171 fprintf (file, "\tli\t%s,0x%.08lx\t# %ld\n\taddu\t%s,%s,%s\n",
4172 reg_names[MIPS_TEMP2_REGNUM],
4173 (long)base_offset,
4174 (long)base_offset,
4175 reg_names[MIPS_TEMP2_REGNUM],
4176 reg_names[MIPS_TEMP2_REGNUM],
4177 reg_names[STACK_POINTER_REGNUM]);
4178 }
4179
4180 for (regno = FP_REG_LAST-1; regno >= FP_REG_FIRST; regno -= fp_inc)
4181 {
4182 if (BITSET_P (fmask, regno - FP_REG_FIRST))
4183 {
4184 if (file == (FILE *)0)
4185 {
4186 rtx reg_rtx = gen_rtx (REG, DFmode, regno);
4187 rtx mem_rtx = gen_rtx (MEM, DFmode,
4188 gen_rtx (PLUS, Pmode, base_reg_rtx,
4189 GEN_INT (fp_offset - base_offset)));
4190
4191 if (store_p)
4192 emit_move_insn (mem_rtx, reg_rtx);
4193 else
4194 emit_move_insn (reg_rtx, mem_rtx);
4195 }
4196 else
4197 fprintf (file, "\t%s\t%s,%ld(%s)\n",
4198 (store_p) ? "s.d" : "l.d",
4199 reg_names[regno],
4200 fp_offset - base_offset,
4201 reg_names[REGNO(base_reg_rtx)]);
4202
4203
4204 fp_offset -= 2*UNITS_PER_WORD;
4205 }
4206 }
4207 }
4208 }
4209
4210 \f
4211 /* Set up the stack and frame (if desired) for the function. */
4212
4213 void
4214 function_prologue (file, size)
4215 FILE *file;
4216 int size;
4217 {
4218 long tsize = current_frame_info.total_size;
4219
4220 ASM_OUTPUT_SOURCE_FILENAME (file, DECL_SOURCE_FILE (current_function_decl));
4221
4222 if (debug_info_level != DINFO_LEVEL_TERSE)
4223 ASM_OUTPUT_SOURCE_LINE (file, DECL_SOURCE_LINE (current_function_decl));
4224
4225 inside_function = 1;
4226 fputs ("\t.ent\t", file);
4227 assemble_name (file, current_function_name);
4228 fputs ("\n", file);
4229
4230 assemble_name (file, current_function_name);
4231 fputs (":\n", file);
4232
4233 if (TARGET_ABICALLS)
4234 fprintf (file,
4235 "\t.set\tnoreorder\n\t.cpload\t%s\n\t.set\treorder\n",
4236 reg_names[ GP_REG_FIRST + 25 ]);
4237
4238 tsize = current_frame_info.total_size;
4239 if (tsize > 0 && TARGET_ABICALLS)
4240 fprintf (file, "\t.cprestore %d\n", tsize + STARTING_FRAME_OFFSET);
4241
4242 fprintf (file, "\t.frame\t%s,%d,%s\t\t# vars= %d, regs= %d/%d, args = %d, extra= %d\n",
4243 reg_names[ (frame_pointer_needed) ? FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM ],
4244 tsize,
4245 reg_names[31 + GP_REG_FIRST],
4246 current_frame_info.var_size,
4247 current_frame_info.num_gp,
4248 current_frame_info.num_fp,
4249 current_function_outgoing_args_size,
4250 current_frame_info.extra_size);
4251
4252 fprintf (file, "\t.mask\t0x%08lx,%d\n\t.fmask\t0x%08lx,%d\n",
4253 current_frame_info.mask,
4254 current_frame_info.gp_save_offset,
4255 current_frame_info.fmask,
4256 current_frame_info.fp_save_offset);
4257 }
4258
4259 \f
4260 /* Expand the prologue into a bunch of separate insns. */
4261
4262 void
4263 mips_expand_prologue ()
4264 {
4265 int regno;
4266 long tsize;
4267 rtx tmp_rtx = (rtx)0;
4268 char *arg_name = (char *)0;
4269 tree fndecl = current_function_decl;
4270 tree fntype = TREE_TYPE (fndecl);
4271 tree fnargs = (TREE_CODE (fntype) != METHOD_TYPE)
4272 ? DECL_ARGUMENTS (fndecl)
4273 : 0;
4274 rtx next_arg_reg;
4275 int i;
4276 tree next_arg;
4277 tree cur_arg;
4278 CUMULATIVE_ARGS args_so_far;
4279
4280 /* Determine the last argument, and get its name. */
4281
4282 INIT_CUMULATIVE_ARGS (args_so_far, fntype, (rtx)0);
4283 regno = GP_ARG_FIRST;
4284
4285 for (cur_arg = fnargs; cur_arg != (tree)0; cur_arg = next_arg)
4286 {
4287 tree type = DECL_ARG_TYPE (cur_arg);
4288 enum machine_mode passed_mode = TYPE_MODE (type);
4289 rtx entry_parm = FUNCTION_ARG (args_so_far,
4290 passed_mode,
4291 DECL_ARG_TYPE (cur_arg),
4292 1);
4293
4294 if (entry_parm)
4295 {
4296 int words;
4297
4298 /* passed in a register, so will get homed automatically */
4299 if (GET_MODE (entry_parm) == BLKmode)
4300 words = (int_size_in_bytes (type) + 3) / 4;
4301 else
4302 words = (GET_MODE_SIZE (GET_MODE (entry_parm)) + 3) / 4;
4303
4304 regno = REGNO (entry_parm) + words - 1;
4305 }
4306 else
4307 {
4308 regno = GP_ARG_LAST+1;
4309 break;
4310 }
4311
4312 FUNCTION_ARG_ADVANCE (args_so_far,
4313 passed_mode,
4314 DECL_ARG_TYPE (cur_arg),
4315 1);
4316
4317 next_arg = TREE_CHAIN (cur_arg);
4318 if (next_arg == (tree)0)
4319 {
4320 if (DECL_NAME (cur_arg))
4321 arg_name = IDENTIFIER_POINTER (DECL_NAME (cur_arg));
4322
4323 break;
4324 }
4325 }
4326
4327 /* In order to pass small structures by value in registers
4328 compatibly with the MIPS compiler, we need to shift the value
4329 into the high part of the register. Function_arg has encoded a
4330 PARALLEL rtx, holding a vector of adjustments to be made as the
4331 next_arg_reg variable, so we split up the insns, and emit them
4332 separately. */
4333
4334 next_arg_reg = FUNCTION_ARG (args_so_far, VOIDmode, void_type_node, 1);
4335 if (next_arg_reg != (rtx)0 && GET_CODE (next_arg_reg) == PARALLEL)
4336 {
4337 rtvec adjust = XVEC (next_arg_reg, 0);
4338 int num = GET_NUM_ELEM (adjust);
4339
4340 for (i = 0; i < num; i++)
4341 {
4342 rtx pattern = RTVEC_ELT (adjust, i);
4343 if (GET_CODE (pattern) != SET
4344 || GET_CODE (SET_SRC (pattern)) != ASHIFT)
4345 abort_with_insn (pattern, "Insn is not a shift");
4346
4347 PUT_CODE (SET_SRC (pattern), ASHIFTRT);
4348 emit_insn (pattern);
4349 }
4350 }
4351
4352 /* If this function is a varargs function, store any registers that
4353 would normally hold arguments ($4 - $7) on the stack. */
4354 if ((TYPE_ARG_TYPES (fntype) != 0
4355 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype))) != void_type_node))
4356 || (arg_name != (char *)0
4357 && ((arg_name[0] == '_' && strcmp (arg_name, "__builtin_va_alist") == 0)
4358 || (arg_name[0] == 'v' && strcmp (arg_name, "va_alist") == 0))))
4359 {
4360 for (; regno <= GP_ARG_LAST; regno++)
4361 {
4362 rtx ptr = stack_pointer_rtx;
4363 if (regno != GP_ARG_FIRST)
4364 ptr = gen_rtx (PLUS, Pmode, ptr,
4365 GEN_INT ((regno - GP_ARG_FIRST) * UNITS_PER_WORD));
4366
4367 emit_move_insn (gen_rtx (MEM, Pmode, ptr), gen_rtx (REG, Pmode, regno));
4368 }
4369 }
4370
4371 tsize = compute_frame_size (get_frame_size ());
4372 if (tsize > 0)
4373 {
4374 rtx tsize_rtx = GEN_INT (tsize);
4375
4376 if (tsize > 32767)
4377 {
4378 tmp_rtx = gen_rtx (REG, SImode, MIPS_TEMP1_REGNUM);
4379 emit_move_insn (tmp_rtx, tsize_rtx);
4380 tsize_rtx = tmp_rtx;
4381 }
4382
4383 emit_insn (gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx, tsize_rtx));
4384
4385 save_restore_insns (TRUE, tmp_rtx, tsize, (FILE *)0);
4386
4387 if (frame_pointer_needed)
4388 emit_insn (gen_movsi (frame_pointer_rtx, stack_pointer_rtx));
4389 }
4390
4391 /* If we are profiling, make sure no instructions are scheduled before
4392 the call to mcount. */
4393
4394 if (profile_flag || profile_block_flag)
4395 emit_insn (gen_blockage ());
4396 }
4397
4398 \f
4399 /* Do any necessary cleanup after a function to restore stack, frame, and regs. */
4400
4401 void
4402 function_epilogue (file, size)
4403 FILE *file;
4404 int size;
4405 {
4406 long tsize;
4407 char *sp_str = reg_names[STACK_POINTER_REGNUM];
4408 char *t1_str = reg_names[MIPS_TEMP1_REGNUM];
4409 rtx epilogue_delay = current_function_epilogue_delay_list;
4410 int noreorder = !TARGET_MIPS_AS || (epilogue_delay != 0);
4411 int noepilogue = FALSE;
4412 int load_nop = FALSE;
4413 int load_only_r31;
4414 rtx tmp_rtx = (rtx)0;
4415 rtx restore_rtx;
4416 int i;
4417
4418 /* The epilogue does not depend on any registers, but the stack
4419 registers, so we assume that if we have 1 pending nop, it can be
4420 ignored, and 2 it must be filled (2 nops occur for integer
4421 multiply and divide). */
4422
4423 if (dslots_number_nops > 0)
4424 {
4425 if (dslots_number_nops == 1)
4426 {
4427 dslots_number_nops = 0;
4428 dslots_load_filled++;
4429 }
4430 else
4431 {
4432 while (--dslots_number_nops > 0)
4433 fputs ((set_noreorder) ? "\tnop\n" : "\t#nop\n", asm_out_file);
4434 }
4435
4436 if (set_noreorder > 0 && --set_noreorder == 0)
4437 fputs ("\t.set\treorder\n", file);
4438 }
4439
4440 if (set_noat != 0)
4441 {
4442 set_noat = 0;
4443 fputs ("\t.set\tat\n", file);
4444 error ("internal gcc error: .set noat left on in epilogue");
4445 }
4446
4447 if (set_nomacro != 0)
4448 {
4449 set_nomacro = 0;
4450 fputs ("\t.set\tmacro\n", file);
4451 error ("internal gcc error: .set nomacro left on in epilogue");
4452 }
4453
4454 if (set_noreorder != 0)
4455 {
4456 set_noreorder = 0;
4457 fputs ("\t.set\treorder\n", file);
4458 error ("internal gcc error: .set noreorder left on in epilogue");
4459 }
4460
4461 if (set_volatile != 0)
4462 {
4463 set_volatile = 0;
4464 fprintf (file, "\t#.set\tnovolatile\n", (TARGET_MIPS_AS) ? "" : "#");
4465 error ("internal gcc error: .set volatile left on in epilogue");
4466 }
4467
4468 size = MIPS_STACK_ALIGN (size);
4469 tsize = (!current_frame_info.initialized)
4470 ? compute_frame_size (size)
4471 : current_frame_info.total_size;
4472
4473 if (tsize == 0 && epilogue_delay == 0)
4474 {
4475 rtx insn = get_last_insn ();
4476
4477 /* If the last insn was a BARRIER, we don't have to write any code
4478 because a jump (aka return) was put there. */
4479 if (GET_CODE (insn) == NOTE)
4480 insn = prev_nonnote_insn (insn);
4481 if (insn && GET_CODE (insn) == BARRIER)
4482 noepilogue = TRUE;
4483
4484 noreorder = FALSE;
4485 }
4486
4487 if (!noepilogue)
4488 {
4489 /* In the reload sequence, we don't need to fill the load delay
4490 slots for most of the loads, also see if we can fill the final
4491 delay slot if not otherwise filled by the reload sequence. */
4492
4493 if (noreorder)
4494 fprintf (file, "\t.set\tnoreorder\n");
4495
4496 if (tsize > 32767)
4497 {
4498 fprintf (file, "\tli\t%s,0x%.08lx\t# %ld\n", t1_str, (long)tsize, (long)tsize);
4499 tmp_rtx = gen_rtx (REG, Pmode, MIPS_TEMP1_REGNUM);
4500 }
4501
4502 if (frame_pointer_needed)
4503 fprintf (file, "\tmove\t%s,%s\t\t\t# sp not trusted here\n",
4504 sp_str, reg_names[FRAME_POINTER_REGNUM]);
4505
4506 save_restore_insns (FALSE, tmp_rtx, tsize, file);
4507
4508 load_only_r31 = (current_frame_info.mask == (1 << 31)
4509 && current_frame_info.fmask == 0);
4510
4511 if (noreorder)
4512 {
4513 /* If the only register saved is the return address, we need a
4514 nop, unless we have an instruction to put into it. Otherwise
4515 we don't since reloading multiple registers doesn't reference
4516 the register being loaded. */
4517
4518 if (load_only_r31)
4519 {
4520 if (epilogue_delay)
4521 final_scan_insn (XEXP (epilogue_delay, 0),
4522 file,
4523 1, /* optimize */
4524 -2, /* prescan */
4525 1); /* nopeepholes */
4526 else
4527 {
4528 fprintf (file, "\tnop\n");
4529 load_nop = TRUE;
4530 }
4531 }
4532
4533 fprintf (file, "\tj\t%s\n", reg_names[GP_REG_FIRST + 31]);
4534
4535 if (tsize > 32767)
4536 fprintf (file, "\taddu\t%s,%s,%s\n", sp_str, sp_str, t1_str);
4537
4538 else if (tsize > 0)
4539 fprintf (file, "\taddu\t%s,%s,%d\n", sp_str, sp_str, tsize);
4540
4541 else if (!load_only_r31 && epilogue_delay != 0)
4542 final_scan_insn (XEXP (epilogue_delay, 0),
4543 file,
4544 1, /* optimize */
4545 -2, /* prescan */
4546 1); /* nopeepholes */
4547
4548 fprintf (file, "\t.set\treorder\n");
4549 }
4550
4551 else
4552 {
4553 if (tsize > 32767)
4554 fprintf (file, "\taddu\t%s,%s,%s\n", sp_str, sp_str, t1_str);
4555
4556 else if (tsize > 0)
4557 fprintf (file, "\taddu\t%s,%s,%d\n", sp_str, sp_str, tsize);
4558
4559 fprintf (file, "\tj\t%s\n", reg_names[GP_REG_FIRST + 31]);
4560 }
4561 }
4562
4563 fputs ("\t.end\t", file);
4564 assemble_name (file, current_function_name);
4565 fputs ("\n", file);
4566
4567 if (TARGET_STATS)
4568 {
4569 int num_gp_regs = current_frame_info.gp_reg_size / 4;
4570 int num_fp_regs = current_frame_info.fp_reg_size / 8;
4571 int num_regs = num_gp_regs + num_fp_regs;
4572 char *name = current_function_name;
4573
4574 if (name[0] == '*')
4575 name++;
4576
4577 dslots_load_total += num_regs;
4578
4579 if (!noepilogue)
4580 dslots_jump_total++;
4581
4582 if (noreorder)
4583 {
4584 dslots_load_filled += num_regs;
4585
4586 /* If the only register saved is the return register, we
4587 can't fill this register's delay slot. */
4588
4589 if (load_only_r31 && epilogue_delay == 0)
4590 dslots_load_filled--;
4591
4592 if (tsize > 0 || (!load_only_r31 && epilogue_delay != 0))
4593 dslots_jump_filled++;
4594 }
4595
4596 fprintf (stderr,
4597 "%-20s fp=%c leaf=%c alloca=%c setjmp=%c stack=%4ld arg=%3ld reg=%2d/%d delay=%3d/%3dL %3d/%3dJ refs=%3d/%3d/%3d",
4598 name,
4599 (frame_pointer_needed) ? 'y' : 'n',
4600 ((current_frame_info.mask & (1 << 31)) != 0) ? 'n' : 'y',
4601 (current_function_calls_alloca) ? 'y' : 'n',
4602 (current_function_calls_setjmp) ? 'y' : 'n',
4603 (long)current_frame_info.total_size,
4604 (long)current_function_outgoing_args_size,
4605 num_gp_regs, num_fp_regs,
4606 dslots_load_total, dslots_load_filled,
4607 dslots_jump_total, dslots_jump_filled,
4608 num_refs[0], num_refs[1], num_refs[2]);
4609
4610 if (HALF_PIC_NUMBER_PTRS > prev_half_pic_ptrs)
4611 {
4612 fprintf (stderr, " half-pic=%3d", HALF_PIC_NUMBER_PTRS - prev_half_pic_ptrs);
4613 prev_half_pic_ptrs = HALF_PIC_NUMBER_PTRS;
4614 }
4615
4616 if (HALF_PIC_NUMBER_REFS > prev_half_pic_refs)
4617 {
4618 fprintf (stderr, " pic-ref=%3d", HALF_PIC_NUMBER_REFS - prev_half_pic_refs);
4619 prev_half_pic_refs = HALF_PIC_NUMBER_REFS;
4620 }
4621
4622 fputc ('\n', stderr);
4623 }
4624
4625 /* Reset state info for each function. */
4626 inside_function = FALSE;
4627 ignore_line_number = FALSE;
4628 dslots_load_total = 0;
4629 dslots_jump_total = 0;
4630 dslots_load_filled = 0;
4631 dslots_jump_filled = 0;
4632 num_refs[0] = 0;
4633 num_refs[1] = 0;
4634 num_refs[2] = 0;
4635 mips_load_reg = (rtx)0;
4636 mips_load_reg2 = (rtx)0;
4637 current_frame_info = zero_frame_info;
4638
4639 /* Restore the output file if optimizing the GP (optimizing the GP causes
4640 the text to be diverted to a tempfile, so that data decls come before
4641 references to the data). */
4642
4643 if (TARGET_GP_OPT)
4644 asm_out_file = asm_out_data_file;
4645 }
4646
4647 \f
4648 /* Expand the epilogue into a bunch of separate insns. */
4649
4650 void
4651 mips_expand_epilogue ()
4652 {
4653 long tsize = current_frame_info.total_size;
4654 rtx tsize_rtx = GEN_INT (tsize);
4655 rtx tmp_rtx = (rtx)0;
4656
4657 if (tsize > 32767)
4658 {
4659 tmp_rtx = gen_rtx (REG, SImode, MIPS_TEMP1_REGNUM);
4660 emit_move_insn (tmp_rtx, tsize_rtx);
4661 tsize_rtx = tmp_rtx;
4662 }
4663
4664 if (tsize > 0)
4665 {
4666 if (frame_pointer_needed)
4667 emit_insn (gen_movsi (stack_pointer_rtx, frame_pointer_rtx));
4668
4669 save_restore_insns (FALSE, tmp_rtx, tsize, (FILE *)0);
4670
4671 emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, tsize_rtx));
4672 }
4673
4674 emit_jump_insn (gen_return_internal (gen_rtx (REG, Pmode, GP_REG_FIRST+31)));
4675 }
4676
4677 \f
4678 /* Define the number of delay slots needed for the function epilogue.
4679
4680 On the mips, we need a slot if either no stack has been allocated,
4681 or the only register saved is the return register. */
4682
4683 int
4684 mips_epilogue_delay_slots ()
4685 {
4686 if (!current_frame_info.initialized)
4687 (void) compute_frame_size (get_frame_size ());
4688
4689 if (current_frame_info.total_size == 0)
4690 return 1;
4691
4692 if (current_frame_info.mask == (1 << 31) && current_frame_info.fmask == 0)
4693 return 1;
4694
4695 return 0;
4696 }
4697
4698 \f
4699 /* Return true if this function is known to have a null epilogue.
4700 This allows the optimizer to omit jumps to jumps if no stack
4701 was created. */
4702
4703 int
4704 simple_epilogue_p ()
4705 {
4706 if (!reload_completed)
4707 return 0;
4708
4709 if (current_frame_info.initialized)
4710 return current_frame_info.total_size == 0;
4711
4712 return (compute_frame_size (get_frame_size ())) == 0;
4713 }
This page took 0.251187 seconds and 5 git commands to generate.